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Densification, heterogeneous networks (HetNets), multiple-input multiple-output (MIMO), multi-
plexing gain, network-wise coverage performance, signal-to-interference ratio (SIR) correlation, stochas-
tic geometry.

I. INTRODUCTION

Spectral efficiency in heterogenous networks (HetNets) is substantially enhanced using den-
sification and universal frequency reuse. A key physical-layer component of dense HetNets is
MIMO technology which is also capable of meeting the high demand for wireless bandwidth
[2, 3]. Nevertheless, macroscopic (network-level) performance, where MIMO multiplexing com-
munication is utilized in conjunction with densification and heterogeneity, still remains to be
explored.

Conventionally, MIMO systems are analyzed for isolated scenarios, where only point-to-point,
single cell, and/or clustered communications are considered [4, 5]. Such analyses can characterize
the various design aspects of MIMO HetNets, but they cannot capture the macroscopic perfor-
mance of MIMO systems under severe and heterogenous inter-cell interference (ICI), commonly
seen in dense HetNets with aggressive frequency reuse. We would like to address this very issue
by using stochastic-geometry-based analytical techniques.

Stochastic geometry has been widely used for modeling and performance evaluation of wireless
cellular networks, including HetNets, e.g., [6—10]. Using these techniques enables incorporation
of impacts of line-of-sight propagation, path-loss models, and blockage effect into the network-
wise evaluation of spectral efficiency without compromising the tractability and accuracy of the
analysis [8, 10, 11].

A. Related Work

Reviewed below are the related studies of the performance of MIMO systems. The adopted
cell-association (CA) policy plays a crucial role in the performance of MIMO HetNet systems.
In a given coverage area, cell association determines which BS to serve a given mobile user.
Different CA approaches are categorizedraisge expansiomnd Max-SIR associatian

The range expansion policy uses maximum average received power as the association criterion.

The coverage probability and area spectral efficiency (ASE) of multiple-input single-output
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(MISO) space-division multiple access (SDMA) systems utilizing this CA policy has been
investigated in [12, 13]. The merits of interference cancellation in zero-forcing (ZF) based receive
filters in enhancing the coverage of cellular systems was also demonstrated in [14]. Further,
in [15-20] design issues, impacts of beamforming schemes, and antenna selection techniques
on ASE, coverage, and energy-efficiency of MIMO communications with range extension CA
were investigated [15-17]. Optimized offloading for controlling ICI utilizing coordinated MIMO
communications was carried out in [18]. Coverage probability, spectral efficiency, and load
balancing in MIMO systems are also considered in [19]. To improve the performance of range
expansion in MIMO systems, the authors of [20] proposed a threshold-based CA solution.

With multi-antenna receivers, the authors of [21, 22] focused on maximum ratio combining
(MRC) and optimal combining in the downlink and uplink, respectively. Applying Gil-Pelaez
inversion theorem in [11], the symbol error probability (SEP) of MIMO multiplexing systems
was analyzed in [23]. Equivalent-in distribution (EiD) was also developed in [24] to quantify
error probability. Adopting the proposed framework of [24], a unified method for studying outage
probability in MIMO communications was then proposed in [25].

In general, range-expansion CA does not distinguish between the corresponding MIMO tech-
niques in the CA stage. So, in many cases mentioned above, the CA policy is in fact a replica
of the one considered in the SISO counterpart [7,9]. This makes range expansion defiant in
effectively incorporating the attributes of MIMO communications to improve multiplexing and
diversity. That is one of the reasons why heuristic offloading procedures are often required to
optimize the system performance [13, 18, 20].

Nevertheless, the coverage is directly related to signal-to-interference (SIR) distribution. In
addition, many network management functions, such as handover and fractional frequency reuse,
often operate based on the SIR (or a function thereof) as the main decision metric. These justify
consideration of CA rules based on the SIR characteristics.

The authors of [6, 26, 27] considered max-SIR CA in which the serving BS is the one that
provides the maximum SIR. For MISO systems, the authors of [28] provided ordering results

on the coverage, capacity, and ASE, and compared several beamforming techniques. In [29],
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we proposed a flexible max-SIR CA rule tailored for MISO-SDMA systems. Algorithms for
specifying the number of required SIR measurements before choosing the supporting BS in
order to optimize the coverage probability/spectral efficiency were also developed in [29].

Unlike the range-expansion technique for which various aspects of coverage performance have
been investigated, the coverage performance of multi-stream MIMO-MRC communications with
max-SIR CA is yet to be explored. The main objective of this paper is to analyze the coverage
performance of MIMO communication with max-SIR CA rule, where multiple streams are
transmitted at the same time. Note that in the literature of multi-stream MIMO communications,
the coverage probability of the network is often estimated from the perspective of a given
data stream. The thus-obtained coverage for a given data stream is then treated as the coverage
performance of the multiplexing (multi-stream) system, see, e.g., [21, 30-33]. Nevertheless, such
approach may cause substantial error in the evaluation of the coverage probability of multi-stream
MIMO HetNets, as the possible correlation across data streams are entirely overlooked.

In fact, when the SIR values among data streams are correlatestyéaen-leveperformance
that considers the reception quality of a single data stream independent from the others, becomes
inadequate. This is because the successful decoding of a data stream is partially dependent
upon the decoding status of other data streams. Therefore, the coverage performance of MIMO
multiplexing systems from &ink-level perspective that considers the reception of all the data
steams becomes crucial. In our previous works, [1][49][34], we studied the coverage probability
of MIMO multiplexing systems from a link-level perspective. In [49] the focus was on multi-
stream MIMO systems where the pre-coding and decoding filters at the transmitter and receiver
was constructed according the singular value decomposition (SVD) technique. This techniques
however requires perfect and timely CSI at both the transmitter and receiver, which imposes
high signaling overhead particularly in dense configurations. Furthermore, in [34], we investi-
gated the link-level coverage performance for multi-stream MIMO networks with zero-forcing
beamforming (ZFBF) receivers. The simulation results in [34] show subtle differences between
link-level, and stream-level coverage performance in a multi-stream MIMO system. Despite its

importance, to the best of our knowledge, the roots and scales of such a discrepancy has not yet
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been investigated in the related literature.

On the other hand, in SIMO ad hoc networks, the ICI is shown to result in a high correlation
among impinged signals across different receive antennas, see, e.g., [35, 36]. Such a correlation
compromise the otherwise achievable diversity gain in cases where signals across antennas are
independent. This is because in the presence of ICI, the path-loss fluctuations invoke (statistically)
correlated interference among antennas due to the common locations of interferers. A similar
conclusion was drawn in [21], where the interference correlation was investigated in space-
time MIMO ad hoc networks. It was also shown in [21] that ignoring interference correlation
among antennas may, in some cases, substantially compromise the accuracy of the analysis. The
analysis in [21] is, however, limited to the CDF distribution of an individual data stream, thus
being unable to depict the impact of correlation on the CDF distribution of a communication

link with a set of data streams.

B. Contributions and Organization

In this paper, we investigate cross-stream SIR correlation and its impacts on the link-level
coverage probability in MIMO multiplexing systems. We mainly focus on the maximum ratio
combining (MRC) receivers. Note that compared to the ZFBF, the coverage evaluation of the
MRC is more challenging due to the cross-stream interference. The coverage performance of
MIMO-MRC systems from thestream-level perspectivis studied in the context of ad hoc
communications, e.g., [32]. The results in an ad hoc context are not necessarily extendable to
cellular networks because, unlike cellular systems, ad hoc communications often operate without
a CA mechanism and lack a central scheduler.

Here we evaluate the MIMO-MRC coverage probability from a link-level perspective in
cellular networks. Despite the popularity and practical significance of an MIMO-MRC system
for cellular communications due to its simple implementation and near zero feedback overheads,
its performance in HetNet settings has not yet been investigated. Our model and analysis are
concerned with scenarios that channel state information (CSI) is not available at the BSs and

only partially known at the UEs. This paper makes the following two main contributions.
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« We obtain a closed-form and easy-to-compute tight upper bound on the network coverage
probability for cases where successful decoding of all transmitted data streams is required.
The unique feature of our analysis is to accurately incorporate SIR correlation. Our analytical
results—supported by extensive simulations—provide significant practical insights on the
impacts of densification on the link-level coverage performance. Based on this result, we
conclude that improvement in the network coverage performance by densification is subject
to careful selection of multiplexing gains in different tiers.

« We also analyze the cross-stream SIR correlation amongst multiple streams in a communica-
tion link. Our analysis provides quantitative insights on the impact of tiers’ BSs density, path-
loss exponent, CSI inaccuracy, and multiplexing gains on the SIR correlation among data
streams. To understand the impacts of SIR correlation on the coverage probability, we then
obtain the closed-form bounds on the coverage probabilities for two extreme settings: full
SIR correlation (FC) among data streams, and no SIR correlation (NC) among data streams.
We then show that the NC setting substantially over-estimates the coverage performance

while the FC setting slightly underestimates it.

The rest of the paper is organized as follows. Section Il presents the system model and Section
lIl provides coverage evaluation. Section 1V investigates the SIR correlation and its impact on the
coverage probability. The simulation results are provided in Section V followed by conclusions

in Section VI.

1. SYSTEM MODEL
We consider the downlink in a heterogeneous cellular network (HetNet) consistiRg>oft

tiers of randomly located base-stations (BSs). In eachitierkC, BSs are spatially distributed
according to a homogenous Poisson Point Process (RRR)ith a given spatial density,; >

1 [6]. For mathematical tractability, we assume that the PPPs corresponding to each tier are
mutually independent. Therefore, each tiecan be completely characterized by the spatial
density of its BSs,\;, their transmit powerp; Watts, the corresponding SIR threshold at the
receivers,3; > 1, the number of BS’s transmit antenna§, and the number of scheduled

streamsS; < min{ N}, N"} (also referred to as theaultiplexing gair), where N" is the number
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of antennas at the user equipments (UES).

In the model under consideratiofy; data streams are considered in each tier/BS as parallel
flows of information as in [31, 32]. UEs are randomly located across the network coverage area
and form a PPRpy, with density\y > > . \;, independent of ®;}s. Similar to [21, 28, 37],
we further assume that in each active cell, only one UE is served at each time slot. If more than
one UE are associated with a given BS, we adopt time-sharing per cell for scheduling the UEs.
Considering the stationarity of the point processes, according to Slivnayak’s theorem, we can
investigate spatial network performance from the perspective of a UE located at the origin [38,
39]; we will refer to such an UE thgpical UE

Let H,, € CN"*% be the fading channel matrix between BSand the typical UE, where
each entry is independently drawn from a complex Gaussian random variable with zero mean
and unit varianceC (0, 1), i.e., Rayleigh fading assumption.

Here we focus on the scenarios that only partial CSl is available at the receivers. As in
[40, 41], the quantified measure for channel estimation error is considered to be the correlation
coefficient between the actual fading channel coefficient and its estimated valbE, as-
\/Te? /I?xi +e6FE,,, Where/ﬁxi is the estimated channel which is a complex Gaussian random
matrix with zero mean and identity covariance matkix;measures the inaccuracy of channel
estimation; andZ,, is a complex Gaussian random matrix with zero mean and identity covariance
matrix. Random variable&,, and /I?xi are assumed independent, e.g., in cases where CSI is

estimated using a pilot-based minimum mean square error (MMSE) [40, 41].
For the typical UE associated with B transmitting S; data streams, the received signal,
Y, € CN"is:

Y, =zl "3\ /1— EHy,so, + |2l 2 6iBase, + > > |l "2 Hy,so,, 1)
JEK ;€D /xo
wheres,, = [s;,1...54,5]7 € C%*!, so thats,,; ~ CN(0, P;/S;), is the transmitted streams

at BS z;; |||~ is the distance-dependent path-loss attenuatijerl denotes the Euclidian
distance between BS; and the origin; andv > 2 is the path-loss exponent. We further assume
that the transmitted signals as well as channel matrices are independent. The first term in (1)
accounts for the useful signal, the second term represents the interference due to inaccuracy of
CSI, and the last term is the ICI. At the receiver, maximum ratio combining (MRC) [32] is
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adopted with decoding filtel/,, = H,, = [h,, 1 ... h,, s,]. Post-processing SIR for data stream
l; is therefore

%Hle_a(l - 612)||i7’13i7li||2

GTRMRC _

x;,l ¢ -4 S =t '
P; Z thivlih%vl’ 12 + 2 thi,liem,;.li 12 + Z Z P 27: Hh‘ull h’”j*lj 2
CAFAE [ A N , SilesT= [
V£l irli ili jEK z;€d, [z ;=1 irli

)

We then set random variable (r\M5C 2 A, ;. ||? which is chi-squared witRN" degrees-

ml?
~1 5
. ~ hy, . h, 1
of-freedom (DoFs). Further, we define rvg"%c £ 3~ ””l”lhl—;H;”
S Ul Ty,

~t 2
. ~ Rl en . L . -
with 2(S; — 1) DoFs, andHMEC £ % which is an exponential r.v. Boti/M}“ and
(2042 Il‘l’L RA2
Sj
rTMRC H MRC MRC 24
H,. - are independent off,’;~. We further setG; 7~ = 121
=
squared witt2S; DoFs and independent éf}"°, H}'¢, and H}''°. Using the above notation,

which is also chi-squared

i

Al
b, 1P 0 11

sby T

TN which is also chi-
4,0

HY'C, Hyﬁ‘c ﬁxic, andG%I}iC, respectively, stand for the channel power gains associated with
the intending thé;-th data stream, the interference on strdanue to imperfect CSI estimation,
the inter-stream interference caused by stregms(;, and the ICI imposed by; # x;. Post-
processing SIR in (2) is then represented as

sl (1 = ) HYRC

C
SIRMRC — o ©)

P; TMRC 2 FTMRC ibi
Sillzall (Hmi’l"' +6iH$i’l" ) + Z ) Sjllzill~
JER x; €D, /x;
Eq. (3) incorporates per-stream transmission power, multiplexing gains, ICI, CSI inaccuracy,

and inter-stream interference.
I1l. COVERAGE PERFORMANCEEVALUATION

A. Coverage Performance in Multi-Stream MIMO Systems
In HetNets, similar to other wireless networks, the SIR is translated into practical performance

metrics, such as the coverage probability. For a given coverage probability, one can then, among
other parameters, evaluate the required density of the BSs in each tier and/or their multiplexing
gains. In the case of a HetNet with single-stream transmission, the coverage probability in a tier,
1, is directly related to the cumulative distribution function (CDF) of the corresponding SIR. More
specifically, for tieri, the coverage probability is often defined as the probability that the SIR
stays above a given thresholgl, throughout the coverage area. In the case of multiple streams
however, depending on the transceiver structure and/or the quality requirements, evaluating the

coverage probability becomes more complex.
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In some transceiver techniques, the coverage probability depends upon the CDF of the weakest
SIR value among; streams [42—45]. Thus, a UE is considered in the coverage if all of its streams
are successfully decoded; this is referrecaiecoverage probabilityas in the isolated scenarios
[45, 46]1

To specify the CA policy, we focus on the max-SIR CA rule as in [6,28,34], where a
typical UE is associated with a BS that provides the strongest SIR. To evaluate the all-coverage
probability, we adopt the max-SIR CA rule of [34] which is an extension of the one considered
in [6, 28, 29], to the multi-stream MIMO communications: the associated BS is the one whose
corresponding minimum SIR value (measured across streams) is the maximum among all the BSs.
For brevity, we will henceforth refer to the all-coverage probability as the coverage performance.
A typical UE is thus in the coverage if the set

M : MRC
AMRC _ {ﬂz eK: mex min SIR,, 7, = ﬁi} ; 4)

is nonempty and the coverage probability is definedPf&C = P{AMEC £ ()},

B. The Coverage Probability

Analytical evaluation ofPMEC is rather complex due mainly to the cross stream SIR corre-
lation, non-Rayleigh-type fluctuations, CSI inaccuracy, and also the inter-stream interference. In

the following proposition, we provide an analytical upper bound on the coverage probability.
Proposition I In a MIMO-MRC system adopting maximum SIR CA rule, the coverage
probability is upper-bounded as:

B
< - L , (5)
Clo) g K\ (p\® (TE+s))™
EEONE =

where
— ) r ﬁzq s (1 — €2+ ﬂi) e S (1 +€2(B; — 1))—qi+pz—1
517677 7 z Z Z —4q +2p 62)51‘, pB(S 1 p~)(7’- — q-)B(Q - Q‘) y (6)
r;=0 ¢;=0p;=0 € 7 1 7 s P % % CTRA i
andB(a,b) = —F(l; is the beta function.

INote that if the original data streams are spatially coded across multiple data streamsyrtienverage probabilitis a
relevant metric, whereby the accumulated transmitted data rate must be large enough for a link to be considered in coverage

[45,47]. We exclude such cases and focus on the all-coverage probability.
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10

Proof: We use Lemma 1 in [6] and note that > 1, Vi, and write

’PMRC ZE Z 1( I{nn SIRMRC > ﬁl>

> 2w /xlE{%}P{SlR%f}? > B VL |{®;}} da
iEK  x;€®; e

e

— sz /:z:JE{q) } H P {SIR}YC > Bi|{®;}} da;, (7)

i€ ;=1
where the first equation is according to Slivnyak- and Campbell-Mecke’s Theorems [38]. We then
note that conditioned to processkess, the SIR values across streams are statistically independent.
For a fixed value ofr;, we have
Bi(e; HYC - HMRF) S By
P{SIRYTC > f;|{0,}} = P{H}HC > T T DB ¢ s |G

JGIC z]E<DJ/z1

2

i S A A

—t; B;S; 12 SJ I JH aGIVIRC —t; . i
:/ DI TI Eepee 70 e s,
HMRC
0 JEK 2, €D, /x;
71
00 t; v )
HMRC( Z) —t; 7&'5”2 73,“1;7”(16324310.
1 H H EGMRce Pit=eg) 23 1% I dt,, 8
i— 2
0 1l L2 (1+ b BL)JGK%E%/%
N"—1

whereﬁglmc( ;) is the inverse Laplace transform &f'R¢, £
HM

e ()= 3 0™t —1)

2 0

(see, Lemmas 1 and 2 in [34]), anti™(t) is the m-th derlvatlve of the Dlrac delta function.
Note that in (8) we drop index from ﬁFHZ (t;) becauseHZfl are identical random variables

(rv.) across the streams. Substituting (8) into (7) followed by straightforward derivations yields

BiS;zf —a AMRC
—t; 5 G
MRC N H ]EGMRce Pi= F2) 5 Il i lldt dx;
PERC =) 2wk /xE{cp ) H/ N T LR
? —
()
P; GMRC S; £1?:1MRC (tli)dtli

_2271-)\ /x dz; ]E¢/ /H H EgMnc He P(l =R Y MTJua H - .

iek JER ;€D /x; l;=1 (1 + 2% 67) (1 + tlllileft)

as rv.sG;fjjli are independent and identically distributed (i.i.d.) rv.s across the streams. Thus,

P, 3 GMRC -1
o0 BiS;a 7 112 @ity Si L (ti)dtli
5;

F
PMRC Z27T)‘ /l‘ldl‘i/ ) /HE<I> H EGMRCG P (1— F) Te,; T HMRC

ti B Si—1 tie20;
ek 5 JEK  w;€®;/w;i =1 (14 5% 1+ 52=)

i

P\ @
>\J<—j) EG?ARC{(ZE GMch ph ]le (t:)ds,

FH%\/IRC

)i (1+£2)" (+555)
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1 11
2
3 . :
4 Reordering the integrals we then have
5 o0 £t ( ')dtl. o0 2~ B;S P; 5i _re a}
Fymre —z;C()| = X Ailsh) EICY Gyitty)

6 PMRC ZQF)‘ / /H _ /a:ze ( ( >) ( J) 121 dz;
7 7 ti ﬁl t 626
! iek = 1 + < ) (1 +322) 0
9 o oo (P(1=€d) L1 (t)dty,
, Fly Ry B C S
11 & 57 iPi Si_l tqefﬁq ’
12 IEK 0 Aj (%) Egyme |( Y2 GYRCn,)s| v (1 + f—ﬁz) (I+327)
13 jefc ! J =1 7"
1; which is not easily tractable due Hync [(Zl LG )d] To make the analysis tractable,
16 4 . .
17 we transformZi; | GJ¢t, into a multiplicative formH G2t so that expectation operation
1 Li=1 : : :
18 on GMRC becomes effective irrespective of variables. To do this, we adopt the arithmetic-
;‘1) geometric inequality, which results in the following upper-bound on the coverage probability:
22 x (P=)\Y A 0o o0 g {S%Lrl t.
23 MRC @(a)( Si ) g 5 li FHiMRC( )

PMRC < . H o dt,,
24 iek S P\ & MRC\$ L=1 (1+ tiﬂi) ‘ (1+ tiE?ﬂi)
25 j;l)‘ (577) EGMRC Inl(Gj,l,, ) 0 0 "= 17612 176?

s Pi(1—¢€3) % Ai o t. VLD t;

28 _ (a) ( SiBi ) 57 ' FH,MRC( )
29 _Z K A\ &\ Si 18 )5 tic2B; ’ &
30 ek j;l Aj (?j) (EG?/IRC (G?/IRC)Si> 0 (1 + 1:;?) (1 + 1:6%)
31 : . . .
32 where the last step is due to the fact that Niéﬁc are i.i.d. across streams. The integral in
33 : . : : : . -
34 (9) is evaluated in Appendix A. The proof is done using the result of Appendix A, and noticing
35 : : .
36 that G}'} is chi-squared witl2S; DoFs. u
g; Despite significant model complexities, Proposition 1 provides a closed-form upper-bound for
zg the coverage probability. It is difficult to quantify the accuracy of the derived upper-bound as
j; GY s are random in nature args are integral variables. However, our simulation results in
ji Section V indicate that the upper-bound of Proposition 1 is accurate and representative.
45 The bound on the coverage probability in (5) shows the effects of many important parameters
46
j; such as the BS deployment density in each tier, their TX power and multiplexing gain, CSI
‘S‘g inaccuracies, and the corresponding tiers’ SIR threshold. The impact of the number of receive
g; antennas is captured via paramegps;, €;,.S;) in (6). Note that the numerator and denominator
gi of (5) correspond to the intended communication link, and the ICI, respectively.
35 A close examination of (5) in Proposition 1 provides significant insights on important design
56
57 aspects of HetNets which are discussed in the following subsections.
58
59
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Fig. 1. Combinations of multiplexing gains for whlc?fgcT > 0, wherea =4, e; = e2 = 0.1, P, = 50W, and P, = 1W.

C. Does Densification Always Improve the Coverage Probability?

We investigate the impact of densification on the coverage probability. We are interested in
combinations of system parameters for which the coverage probability is increased by increasing

the density of the BS in a given tier, namely tieré@%—fa > 0. For brevity, we setk = 2,

F(Sii+5j)
I(55)

Si
and \; = A\ (Py/S1)%, Ay = Mo(Py/S5)%, Ay = ( ) . In this case, it can be shown

9PMRC
dPQ

oA

(1=)B252 \ ¥ (O(BLe1,91)51 421 , N o :
\/((1—6%)&51) 00955 4r, 110 1 shows various combinations of the multiplexing gains

that guaranteéf(Agl—BAzz) < A13B—Aq1. In general, for densification of tier 1 to be effective

that for

> (, it is necessary to havéf(Azl — BAy) < AisB — Ay, where B =

in improving coverage performance, we negd> S;. In fact, as decoding, data streams is
more unlikely thanS; data streams, densification of tier 1 allows UEs to be more frequently
be associated with tier 1, thus improving the coverage probability. Moreover, by incrgasing
we get a smaller number of multiplexing gain combinatiofis,, S5), in which densification

improves the coverage probability.

D. Coverage Performance of Relevant MIMO Communications Scenarios

Although Proposition 1 considers an open-loop tranceiver, one can utilize Proposition 1 to
evaluate the coverage probability for various closed-loop scenarios, such as/$ISON" = 1,
Vi) [6], MISO-SDMA (N" = 1) [12, 28], Limited-feedback MISO-SDMA [28], and SIMG{( =
1, V7). This is simply because the corresponding post-processing SIRs in the aforementioned

closed loop techniques are often a function of the obtained SIR in (3).
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2

2 Assuming perfect CSI, immediate extensions of Proposition 1 are for zero-forcing beamform-
2 ing (ZFBF) at the receiver, and orthogonal space-time block codes (OSTBC). Such extensions
; can be done after making proper adjustments to the number of DoFs in the desired and interfering
20 signals through the general framework proposed in [32].

11

ig E. Selecting the Tranceiver Technique

1‘51 We compare two prevalent open-loop tejgp_n;ques; ZFBF and MRC. Here we assume a perfect
i? CSIR, i.e.,c; = 0 Vi. We then seB? (S;) £ mzo F(Fgf;—% The coverage probability of the

18 system with ZFBF was derived in [34] as: ]

22 e (g) <(FS<S>)>

gi This is consistent with Proposition 1, @&“" in (10) can also be obtained using the bound on

Sg PYRC in Proposition 1, simply by substituting(3;, 0, S;) in (5) with ©%F(S;).

% Using (10) and Proposition 1, we can now inspect whether ZFBF outperforms MRC. For
ég clarity, we setK = 1. It is then straightforward to confirm tha®t > PYRC if ©ZF(S;) >

31 ©(6;,0,5;). Fig. 2 shows that, in general, ZFBF yields a higher coverage probability than MRC.
gé This is mainly because the MRC receivers suffer from inter-stream interference. Furthermore,
gg as shown in Fig. 2.a, by increasing the multiplexing gain, ZFBF becomes even more efficient
g? than MRC. For a largeN", the superiority of ZFBF over MRC is shown to be reduced because
gg the MRC receivers can harness diversity more effectively than ZFBF. Noticing that the ZFBF
32 receiver complexity of a large arrays can be very high (because of the required matrix inversion
j:% operation), MRC provides room for compromising coverage performance (in fact, slightly for
jg larger arrays) over computational complexity. Such aspects can be exploited in the design of
j? HetNets. For instance, it is plausible to adaptively select either ZFBF or MRC in order to
jg keep the prescribed coverage performance intact, while minimizing the complexity and energy
22 consumption of the signal processing modules at the receivers.

§§ Fig. 2.b also indicates that for a larger SIR threshagld,ZFBF significantly outperforms

gg MRC, while for small to moderate values of ZFBF is only slightly better than MRC. This

g? observation suggests that for low-rate scenarios (e.g., for the cell-edge UES) one can trade off
58

59
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Fig. 2. (a): , vs.the multiplexing gains; (b) ZF vs.the SIR thresholds.

a slightly higher performance for a significantly lower computational complexity. Fig. 2 further

indicates that the relative performance of ZFBF and MRC is not related to the path-loss exponent.

IV. CROSSSTREAM SIR CORRELATION

As it is also shown in (7), for a given MIMO receiver, the SIR values across streams are
statistically correlated mainly because of the correlated interference among antennas due to the
common locations of interferers. More specifically, the interference originated from near-by BSs
may cause a high level of interference simultaneously to all of the data streams transmitted
to a typical UE. As shown in the proof of Proposition 1, the cross-stream SIR correlation
renders analytical complexities. In this section, we characterize the aforementioned correlation

and analyze its impact on the system coverage performance.

A. SIR Correlation Coefficient

In a link, the coverage probability is related to the joint SIRs’ CDF of the streams. Here we
focus on the SIR correlation instead of the ICI correlation. To quantify the SIR correlation, the
Pearson correlation coefficients is used:

[SIRMRCSIREA%,C} —SIR,.;. STR,. ), [SIRMRCSIR%C] (STR, )2

MRCZ 1 _ 11

e 1) = - Var (STRYTC) - 4D
\/ Var (SIRYC) Var (SIRYTC) 2o s

whereE[.] is the expectation operatcﬁﬁﬁic is the average SIR value on data streigand

Var[.] is the variance operator. The focus in the related literature (e.g., [35,48]) is often on



Page 15 of 35 IEEE Transactions on Wireless Communications

15

—Q — —104 —1n-3
Sl=82=6,a=4,81=0.1 81—52—6,)\1—10 ,)\2—10

0.14+

o

o

N}
]

©CoO~NOUTA,WNPE

©
-
L

0.08

correlation coefficient

correlation coefficient

-
N
)

0.01

© o

o o
ok O

N ]

17 Fig. 3. Correlation coefficients. A1 and A2, where Fig. 4. Correlation coefficierNs. o ande;.

18 K =2, N" =8, x; =20, P, = 50W, and P, = 10W.

21 understanding of the interference correlation among antennas. In contrast, as [49] we here focus

23 on the SIR correlation among data streams.
24 Proposition 2 For the typical UE receiving data from BS;, in a MIMO-MRC multiplexing
26 system, the correlation coefficient between data strdamsd !}, Vi, [}, [; # . is:

IRl

~ P; <
—C() X A (gD YW (t,7) - -
e J J c— (Y HTA

29 00 00 L (tr) Bha, @ 7(1+t%mf°‘)<1+7§?wfa)
30 f f P 2 —o P 2 —a Pj —a Py —ay) 52 dtdr
MRC (7. 7/ 0 0 (1+tgtear®) (14rghetar ) (e Shal )47 Shar )
31 I UNOES ’
32 00 00 Nlcj;le,(tJFT)dA e— (t&+r)A dtd
00 1+ 52 (1+ 508 ) (1+ 5z €ri) 1+ 5;2% ((1+ 528 )(1+ Sz ))
34 (12)

36 whered = 2/a, A 2 C(a) 32 ), (%)a Het%) C(a) £ #T(1 — &), [(a) £
j J J

e %2 1dz, and

39 o . 00 00 d(glgz)sjfl AV
40 Wj(t,T) = //(tgl + 7'92) 2—6 &LV dgldgg (13)
I2(5;)

0 0
43 Proof: See Appendix B. [ |
45 As shown in (12), the ICI affects the correlation coefficient mainly throhghvhereA is a
47 function of BSs’ density, their transmission powers and multiplexing gains, and the corresponding
49 path-loss exponent. It is further shown in (12) that the multiplexing gains and CSI estimation
51 inaccuracy may affect the correlation by imposing self-interference.
53 Fig. 3 shows the impact of; and A, on p}chC(li, I1). As it is seen for a sparse network, where

55 A1 — 0 and X\, — 0, the correlation coefficient is very close to 0. In other words, the network

57 behaves like an isolated link, where BSs are sparse in the coverage area. By increasing the
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density of BSs, howevepla\f,RC(li, I}) is proportionally increased such that in an extreme case of
high density of BSs wherg; ~ 0.01 and/or); ~ 0.01, the SIRs of data streams become highly
correlated. In such a case, if a data stregmexperiences outage due to a close-by interfering
BS, then other data strearljs# [; will most likely experience the same.

Proposition 2 further shows that the imposed correlation due to the CSI estimation error seems
negligible. This is because each individual data stream recéivesl inter-stream interference
which is much more powerful than the interference imposed by the CSI estimation error. Fig. 4
confirms this, indicating that the SIR correlation is not affected by change in the valye of

The impact of path-loss exponent is also seen in Fig. 4. For a layweven a small number
of moderately close interferers induce a substantial level of interference. This reduces the SIR
for all data streams at the same time, thus causing a large correlation among data streams. For
a higher value ofx, the collective impact of the ICI received from the BSs located far from
the receiver causes correlation, and hence unless the density of interferers is very high, the
correlation is negligible.

One can therefore conclude that densification in multi-stream systems causes substantial SIR
correlation among data streams through the ICI. This consequently affects the outage performance
of the HetNet. Proposition 2, however, does not explicitly quantify the impact of the SIR

correlation on the coverage performance.

B. Impact of SIR Correlation on the Coverage Performance

To analyze the impact of cross-stream SIR correlation on the coverage performance, here we
introduce a multiplexing setting, namefull-correlation (FC) where the interference is fully
correlated across all data streams in a3irk other words, in the FC setting, the same level of
ICl is received among all data streams in the communication link. Therefore, excha(ﬁﬁﬁfg

with its average value$;, the ICI in the FC setting ig¥° = 3>  >°  Pj||z;]|~®. Assuming
JEK xjeq)j/xi

a typical UE is associated with BS, the corresponding post-processing SIR for stréais

o |~ (1 — ) HYTC

SIRG T = —— - :
i MRC 2 riTMRC FC
Sinqu"‘ (Hﬂ?mli + € Hﬂﬁi,lz‘ ) +1

(14)

%In [36] a similar assumption made to quantify signal correlation of optimal-combining in SIMO ad hoc networks.
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2
3 . . . . .
4 Based on the adopted CA policy, the associated BS for a link is the one that its corresponding
g smallest SIR valueSIR)!;“"* across all data streams, is the maximum among all the BSs.
7 Therefore, the typical UE is in coverage if
8
9 ‘ . _
10 AI;/IIFC Fe {EI'L er: ;neag :I{HIIS SIRQ/E’F}? FC > ﬁl} , (15)
11
ig is not empty. An upper-bound on the corresponding coverage probaBilitys "¢, is given in
14 the following proposition.
15
16 Proposition 3 In the FC setting, the coverage probability is upper-bounded as:
17 a
o PR ——F—— 3\ ( e ”) CIOREAIN (16)
2 Cla) 3 A Pf 1<K
21 -
22 Proof: We prove the proposition by following the same line of argument as in the proof of
23
24 Proposition 1. In the FC setting, (7) is reduced to
25
g? PURC-FC _ § o), / 2B re H P{SIRMECTC > 5|17 } 17)
€L ;=1
28
29 0o -1

30 n ‘CF‘HMRC (t:) —t; ﬁtitp llzs ]|~
30 =ZQ7r)\i/mi H/ ( m [[Ee, JI ¢ 70" ",
0

5\ i1 23,
1+ %) (1 + %) JEK z;€P;/x;
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where in (a) we insert the Laplace transform/6f and in (b) the integrals are reordered and we

integrate the inner integral with respect:tg In (c) arithmetic-geometric inequality is applied

followed by (d) and (e) where the fading gai ;\“}C, are i.i.d. Applying the result of Appendix

A in (e), completes the proof. [ |
Comparing Propositions 1 and 3, we note that in general for the FC setting, the coverage

probability has a more simplified form. On the other hand, the upper-bound of the coverage

performance of a MIMO-MRC HetNet system is (almost) always higher than the same system

assuming the FC setting. This is because by noting thq}f@ (0,1), there holdsT < S

[35]. Therefore, noticing that both (16) and (5) have the same nominator while the denominator

of the former is larger than that of the latter, we obt&@}"°"C < PMREC. Consequently, we

can conclude that adding to the correlation among data streams of a communication link can

reduce the coverage probability. Although this result is based on the derived upper-bounds on the

coverage probabilities in (16) and (5), our simulation results in Section V confirm its credibility.

C. What If the Cross-Stream SIR Correlation Is Overlooked?

The above analysis shows that approximating a practical scenario based on the FC setting
results in underestimation of the coverage probability. Another way to simplify the coverage
analysis is to simply ignore the cross stream SIR correlation, i.e., statistically independent SIR
values. We refer to this case ae-correlation(NC) setting. Starting from (7) and assuming the
NC setting, the coverage probability in (7) is written as

PYRONC =N "om); [ f’[ EoP {SIRYC > 6|®} da;. (18)
iek o0 L=1

The coverage probability in (18) can then be written as:

S g, -1 (f) PR GMRC
PMRC-NC 1 FHMRC ! —h %W
227)\ T H " H Ecbj H EGMRCG Pi(1=<i) dt;
i€k li=17 1 + ffi ( + 71‘{26%) JjeK z; €D /m;
o e a(as ) E s ot
—zi A —Z (2 1) FpyMre M
@2271')\1/1:1'/.../6 <Pl(1 7)) li=1 - T dt,
L, B t, €36
iek 3 ) ) ;=1 (1+ 1 62> (1+ = )
- T8\ s e ()
s 08:S; * u Fuymre VY
= — A e t dt
A Z ’ (Pl(l - 62)) / / (H ll) H 1, Bi Si—1 t, €20 b
ex 0 \Li=1 li=1 (1 + - (1+5=%)
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—a S % oLt ()
.52 d L &F ume b
~ IS () 1 i i,
A Pi(l - 61') t,B8: 7! t, €20, ’
e li=17 (1 + 1163) (1 11—62 )
- S
~ 00 —& -1 ) i
O ( 52512 )_a / b Fpmre (ti) ”
A \P1—e o Si-1 —o i
iex 4= o (1+42) " 0+ 5

where in (a) we insert the Laplace transform of the ICI and further notice the definitidn of
as in Proposition 2. Denoting the integral in (b) 8Y3;, ¢;, S;) and following the same line of

argument as in Appendix A, we evaluate this integral as

T—1 7, q —Pi ﬁ2q —Pi (1 _ e? +ﬁi)_47‘,—57’,+1 (1 +612(6L . 1))—q7z+p,—1
/617 €, 5, TZ_O qzopz 7411 +2p E?)Si sz(Sz — 17pi)(7‘i — Qi)B(dﬂ"i _ qi) (19)
Using this, (18) is then reduced to
2 [e% ~ S
PMRC NC AZ)\ < Sﬁl & ) (@(ﬂi,ei,si)> . (20)

€KX

EC—NC

Note that NC setting is in fact an extreme case and i is not practically achievable.

This is simply because it does not comply with the max-SIR CA rule as in the NC setting,

an independent set of interferers appears on each data stream. Therefore, there might be cases

where the typical UE becomes associated with different BSs for different data streams. This,

however, contradicts the reality of the MIMO signal model as presented in 1.

We further note that, a& < (0, 1), by using—: O‘+S )< S& a lower-bound OrPMRC-NC jg
~ S g & ‘
™ Z /\ ( 1 - )) ( (ﬁiaeiasi)> ™ E )\ (P(l )) ( (ﬂi,ei,Si))S’
Pg/IRC—NC > ek - > - _ PgIRC—FC.
Cla) 3 NP Cla) 3 NP,
Jj=1 j=1

where the second inequality is becatﬁ@ﬁi,ei,&) > O(0;, €,
that the beta function is a decreasing function of its argument, and observing that by compar-
ing ©(8;,¢,S;) in (19) andO(;,¢;,S;) in (6), we note that for a given positive number
N(ﬁz‘aﬁz” Si) — OB, €, Si)
On the other hand, smcg € (0,1),
PYRC in (5) is further upper-bounded as

S;). To confirm this, we notice

1
B(d,a)

1
B(§.a)"

there holds— > S ‘T

) (1+<

) [35]. Applying this,

[} 5 Si &2 [} )
2 A (P (0 e sor+ £) T 7 DA (M) O, 500
US 1€ -
'Pg[RC < - — < - = < rPgTRC NC’
Cla) X AP Cla) Y A Pf
J= J=
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where the last line is becau$gl + Sﬂ) <1 for Si € (0,1). Consequently, using the NC setting,

the coverage probability is basically overestimated. This implies that the common approach

that focuses on either isolated scenarios or non-isolated scenarios but with emphasis of the
characterization of MIMO communications from the perspective of a data stream is essentially

overestimation of the actual performance of the network.

V. SIMULATION RESULTS

In this section, we use simulations to evaluate the performance of a MIMO-MRC HetNet
setting and further examine the accuracy of the developed analysis. The simulated system is a
2-tier HetNet, i.e. K = 2. The macro BS in the first tier has a high Tx powerfgf= 50W. The
second tier consists of femto BSs with a low Tx powerFof= 1W. The path-loss exponent is
« = 4, and the CSI estimation erref = 0.1 Vi, N} = N! = 16. In a disk with radiusl0, 000
units, we randomly drop BSs of each tier according to the corresponding tier densities. We set
Ay = 1 so all the BSs are assumed to be active. We apply Monte Carlo technique and analyze
40, 000 snapshots of simulations. In each snapshot the MIMO channels are randomly generated.

For the UEs, the corresponding SIR values are then calculated based on the MRC receiver.

A. Impact of Path-loss Exponent, CSI Estimation Error, and SIR Threshold

Fig. 5.a shows the coverage probabilig.the estimation errok, = ¢;, Vi, for several values of
the path-loss exponent, The bound obtained in Prop. 1 is shown to be close to the simulation
result. Also, increasing the CSI inaccuracy is shown to reduce the coverage performance. This
is because the interference on each data stream is increased due to the CSI inaccuracy. It is also
seen in Fig. 5.a that increasing the path-loss exponent improves the outage performance. Noting
that a largery implies a smaller signal strength, the improved outage performance suggests that
the ICI is the main limiting factor.

Fig. 5.a also shows that in contrast to the cases with a smaller path-loss exponent (e.g., outdoor
communications), the coverage is not significantly affected by the CSI inaccuracy where the

path-loss exponent is high (e.g., indoor communications). This suggests that a simpler transceiver
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22 Fig. 5. (a): Coverage Probabilitys. the CSI estimation error. (b): Coverage Probabilisy 3..
23
24
25 design or/and signaling protocol can be used without any significant compromise of the coverage
26
27 probability. Fig. 5.b shows the coverage probability versusThe bound obtained in Prop. 1
28
29 is is shown to be sufficiently accurate even for small valueg,ofit also shows that a higher
30
31 (5 results in a lower coverage performance.
32
33
34 I . . .
35 B. Impact of Densificaiton and Multiplexing Gains
36
37 In Figs. 6 and 7 the coverage probability is given veraysWe consider 5 settings (Stg)
38
39 of multiplexing gains between two tiers, where Stgl, Stg2, Stg3, Stg4, and Stg5, respectively,
40
41 refer to (Sl = 1,32 = 1), (Sl = 4,52 = ]_), (Sl = 4,82 = 2), (Sl = 1,52 = 2), and
42
43 (S; = 8,52 = 2). Fig. 6 shows the coverage performance for Stgl, Stg2, and Stg3. The results
44
45 of Stgl, Stg4, and Stg5 are plotted in Fig. 7. Both figures show the outage performance for
46
47 Ay = 1073, and Ay = 1072,
48 . N . .
49 It is seen in Figs. 6 and 7 that the analytical result presented in Prop. 1 closely follows
50 . . . . L
51 the simulation results. It is also observed that a single stream communications, Stgl, generally
52 N . . . :
53 outperforms the other combinations of multiplexing gains, regardless of the density of the BSs
54 . . . L e ,
55 in both tiers. For the single stream case, it is also seen that densification Inali®ays results
gs in a higher improvement in the coverage probability. Nevertheless, comparison of Fig. 6.a with
58
59
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Fig. 6.b (resp. Fig. 7.a with Fig. 7.b) suggests that the improvement of the coverage probability

by increasing\; is reduced if tier 2 is also densified at the same time.

Fig. 6 also shows that for a small to moderate increasingS; from 1 to 4 (Stgt- Stg2)
does not compromise coverage performance. However, for a sufficiently \aydkee coverage
performance in Stg2 is significantly reduced. Comparing Fig. 6.a with Fig. 6.b, we further
observe that for a higher value af, the positive impact of having a largéf on the coverage
performance is lower. Therefore, densification in tier 2 allows the growth of multiplexing gain in
tier 1. This is because for a largas, the UEs are more likely to be associated with the BSs in
tier 2. This is because the successful decoding of a data streams $gheré is more probable

than that ofS; = 4, so the coverage probability is improved.

Results in Fig. 7 show that for a small to moderate increasingS; from 1 to 2 (Stgit-
Stg4) substantially reduces the coverage performance. To tackle this problem, one may consider
increasing\; which reduces the performance gap. For a very dense tier 1, the coverage per-
formance of Stgl and Stg4 are then converged. Comparing Fig. 7.a with Fig. 7.b, one can see
that by increasing\,;, the impact ofS; on the coverage performance is increased. Therefore,
when densifying tier 2, increasing its multiplexing gain is not recommended. This is because
for a larger)\,, the UEs are more likely to be associated with the BSs in tier 2. The chance of
successful decoding &, = 2 is less than that of; = 1, and hence the coverage probability is
reduced. To address this issue, one might densify tier 1. By increasjidEs are more often
associated with the BSs in tier 1, whese = 1 and it is more likely for the data stream to be

successfully decoded.

It is further seen in Figs. 6 and 7 that both Stg3 and Stg4 similarly perform with a low
coverage performance, where densification neither in tier 1 nor in tier 2, can compensate the
significant coverage reduction compared to Stgl. This is because in cases whese aoths,
are high, successful decoding of data streams is less likely, even for a high density of the BSs.
For such cases, reducing the multiplexing gains seems the only way to improve the coverage

performance.
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jg C. Impact of the SIR Correlation
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51 In Section IV we quantitatively investigated the impact of SIR correlation on the coverage
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57 These results in Figs 5, 6, and 7 confirmed the above analysis.
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We further observe that the coverage probability in the NC se#tiiggtantiallyoverestimates
the coverage performance, while surprisingly the FC se#iligintly underestimates the coverage
performance. From Fig. 5.a we also notice that for a smallghe coverage probability in the
FC setting becomes more accurate for the same reason as the observation made in Fig. 4, where

a smaller path-loss exponent results in a larger SIR correlation.

VI. CONCLUSION

Adopting tools of stochastic geometry, we studied the coverage probability of MIMO-MRC
multiplexing systems in HetNets. Our analysis incorporated impacts of many important system
parameters including the density of BSs, transmission powers, SIR thresholds, multiplexing
gains, and CSI inaccuracies on the coverage performance. We derived an accurate upper-bound
on the coverage probability in a closed-form. Important engineering insights were derived from
scrutinizing our analytical and simulation resulig:densification in multiplexing systems will be
practiced in conjunction with multiplexing gains, else dramatic coverage loss might be inevitable;
(i) in indoor scenarios (high path-loss exponent regimes) it is possible to reduce the pilot
signaling overhead designated for CSI estimation without imposing noticeable coveragai Joss; (
although MRC suffers from intra-stream interference in comparison to more complex receivers
such as ZFBF, the relative coverage loss in large array scenarios and/or for cell edge users is
barely noticeable.

We also developed analytical tools facilitating thorough investigations of the impacts of cross-
stream SIR correlation on the coverage performance of multi-stream systems. Specifically, by
focusing on the communication scenarios that the successful decoding of all transmitted data
streams are required for the coverage, assuming full correlation among data streams is shown
to yield a slightly smaller coverage performance. On the other hand, our analysis proved that
by neglecting such correlation, as commonly assumed in the literature, one should expect a
substantial overestimation of the coverage probability.

The results in this paper can be further utilized for performance bench-marking, where the

performance of advanced MIMO techniques is compared to zero-feedback MRC. Such a com-



Page 25 of 35 IEEE Transactions on Wireless Communications

25

parison provides quantitative insights on the cost versus the benefit of adopting such techniques,
e.g., the higher computational complexities and the required signaling overheads versus the gain

on the coverage. Besides, our results provide an analytical tool for designing system parameters

©CoO~NOUTA,WNPE

and aspects such as the required CSI accuracy and network coverage performance based on the

wireless environment characteristics, such as path-loss exponent.
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18 Using the characteristics of Dirac delta function, we write

by ( F mrc Nt t.
21 / —— E /6“”7 (t; — 1) i dt;
22 iBi \ ' tie2Bi — 7! 48\ t;€2 ,61

0 1o 1 , ) ri=0 1+ 5% (1+=5)

25 B N"—1 (_1)m dri t—%

. (21)
Z' dtri 5\ i~ €23, =
27 r;=0 " (1 + fﬁ;) (1 +5 L ﬂ )

29 Applying the Leibniz rule along with straightforward mathematical derivation we then get

&
t S

31 dri 5 T N e 1 dri—d
32 i S;—1 ( ) S. -1 -

dtrl €2; i dt% . v €2; dtr" qi
33 (1+e2) " (e 5dE) =M e ) (1 )

i

dPi 1 d%i—Pi 1 dii—4% s
g? - Z ( ) Z <pz) dtpi (1+ %)Si—l dtai—pi (1+ te2 [31) dtm—qit S, (22)

1—e

which is

41 pi—1 qi—pi—1 ri—qi—1

(@) T (Si 1+ my) IT (1 +w) I (5 +m)

Ti di

43 (22)=> > =0 ui=0 n

S —1 ] qi—pi+1 e S ri—qs
44 q;i=0p;=0 (1_[’; )4 (1 + tﬁz )‘1 (%ﬁ)*%‘i’pi (1 + tﬂle ) (=1)—ritaits +ri—q

45

: r s

) S N\%t+Si—1 C\Pi—2q e2 \ 4 Pitl -
2 worb T (1)U () T (14 25) T s Or()

B i

(=)@ () ()T (Si — 1+ pi)T(g; — pi + DL(§ + 75 — i)

qi

51 Using this, (21) is then re written as

53 Nil i Z‘ )i— 162%‘,—[)@ (1 _ 62 + ﬁi)iqiisi+1 (1 +e€ ( )) Gitpis
>4 -4qz+2pt (1= )5 piB(S: = Lpi)(ri — 4:)B(§ 71— 41)

55 ri=0 q;=0p;=0

(23)



©CoO~NOUTA,WNPE

IEEE Transactions on Wireless Communications Page 26 of 35

26

APPENDIX B: PROOF OFPROPOSITIONZ2

We start with the evaluation oﬁiﬂl{c Due to the independence of the intended and
interfering signals, and noting tha{xic is a chi-square distributed withN" DoFs, we write

GMRC

MRC PiNT(l —€) P 9 mMre MRC il
SIR,. R 2 AMRC | [ A L . 24
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Using [ e **ds = z~!, the expectation in (24) is evaluated as
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where in (a) the independence 10f.s is used, and in (b) we insert the Laplace transforms of

rv.s HMRC, which is a chi-square distributed r.v. wif{S; — 1) DoFs, andH>%}C, which is

exponentially distributed, at pOiI’%x;a. In the last step, the following formula is used [50]:
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T E@j

in which E(G}R¢)% = F(F‘S‘(;,S)j) is substituted withG}'*“ which is also a chi-squared r.v. with
J

2S; DoFs. Finally, substituting\ defined in Proposition 1 yields
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Combining (26) and (27)Vaur(SIRSVd ) is then obtained, and

(P(lsg# 1, (28)

x4,

E [SIRYGCSIRYTC |



Page 27 of 35

©CoO~NOUTA,WNPE

IEEE Transactions on Wireless Communications

27
where
MRC MRC
P on MRC MRC Gw P; 2 FTMR MRC Gw 1
I=FE HYROL g el HMY
(Siw?<€ SO DD D sixq( ORI, X g
JERK z; €D, /x; JEK 2, €D, /x;

ST (LGN GRS

E JE)Cz E<I> /T _ a MRC MR,C
// ¢ Ee ™ Sior CHHTED G, (29)
1+tP 2z )(1+T%e§x;“)

0 0

It is also straightforward to show that

- At
P, ”hif,lihmi~l"‘2 thi,L;hzlyl””
P . s |t Y e — T Y e —
— iy (tHMRC+THM“‘?) SizF \ U TR, gl vigy TR
Ee S x .l @l — Ee 1 #1; AU, il
[ 3 A
P, S TNTLTIRT w1 gl EPN L
¢ +7 - +(t+7
E Sw?( vit MRe 2 w;ﬂz Thy, /02 N TS
= e %’

Tgs l

2

WAL hy a2 Who b, - 2

P; ;L gl w0 T A h
—maw |t Y e D NI
IE: 2 I [l —(t+7) — 5 —
i ’ ’ x,,l 2
VAL L o4 Ty o
@ it g Ee zioly

1 1

- : 30)
Si—2 P —a (
((1+t§i:x;a)(1+7%x;a)) 1+ (t+7)Ea;
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where in the last step we apply (25) in whith; (¢, 7) is W;(t,7) = [( GM - TGJIZH}/C)

This is then simplified to (13) noting the independenceG@f}f, and G%I}C The proof is
completed by obtaining (12) through combining (28) and (31), and inserting the result as well
as the obtained formulas fdfar(SIRSVd) and mﬁ“ﬁc into the definition of SIR correlation

coefficient in (11).
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Abstract—We study the coverage performance of multi- that in some scenarios space-division multiple access (SDMA)
antenna (MIMO) communications with maximum ratio combin-  was an inferior scheme to single user eigen-beamforming. In
ing (MRC) at the receiver in heterogeneous networks (HetNets). [5], [6] area spectral efficiency of MISO-SDMA systems has

Our main interest in on multi-stream communications when investigated assuming CA rule of maximum average received
BSs do not have access to channel state information. Adopt- 9 g g

ing stochastic geometry we evaluate the network-wise coveragePOWer. In [7] the outage performance of space-time block
performance of MIMO-MRC assuming maximum signal-to- codes at the transmitters and optimal combining received filters
interference ratio (SIR) cell association rule. Coverage analysis have studied. Work of [8] has focused on the advantages of

in MIMO-MRC HetNets is challenging due to inter-stteam niarference cancellation in zero-forcing based received filters
interference and statistical dependencies among streams’ SIR .

values in each communication link. Using the results of stochastic in enhancing the coverage performance of cellular systems.

geometry we then investigate this problem and obtain tractable However, the CA rules of [7], [8], [9] are simply a duplicate
analytical approximations for the coverage performance. We of the counterpart in single-antenna (SISO) systems of e.g.,

then show that our results are adequately accurate and easily [3]. It is then very compelling to develop analysis based on
computable. Our analysis sheds light on the impacts of important CA rules that comprehensively encompass the traits of MIMO

system parameters on the coverage performance, and provides nications in improving multiplexing and diversity. For
guantitative insight on the densification in conjunction with high communications proving muflipliexing a ersity. Fo

multiplexing gains in MIMO HetNets. We further observe that this reason, we here focus on maximum SIR rule.
increasing multiplexing gain in high-power tier can cost a huge ~ We chiefly focus on multi-stream MIMO-MRC HetNets.

coverage reduction unless it is practiced with densification in Degpite the practical significance of MIMO-MRC — chiefly
femto-cell tier. because of its straightforward implementations, affordable
computational complexities, and near to zero feedback over-
heads — the literature dealing with its performance in HetNets
Traffic demands of cellular networks—heavily driven by thés small. This is because of inherent complexities rooting from
popularity of video streaming and mobile social networking—+esidual interference among data streams each communication
are rapidly growing. Densification is one of the main apink suffers from. It was however previously studied in the
proaches operators are advocating to smoothly deal with thisrature of ad hoc communications, see. e.g., [10]. But, in
unprecedented deluge of traffic [1]. Spectral efficiency iomparison to cellular systems in ad hoc communications the
expectedly growing substantially because of small commumietwork configuration lacks CA stage, which render inappli-
cation distance and universal frequency reuse. Much betteibility of the derived results therein for HetNets. Besides,
performance will be, on the other hand, materialized by vasfly the literature of MIMO communications, both ad hoc and
exploiting multi-antenna (MIMO) techniques. cellular systems, the coverage probability per a data stream
Nevertheless, the network performance of MIMO communivas merely studied, while in reality coverage probability per a
cations in conjunction with densification and heterogeneity dommunication link (global coverage probability) comprising
yet to be truly understood. One way to pave the road for suohmultiple streams is the main performance metric. To bridge
comprehensive assessment of the network can be achievedigh gaps, we therefore provide accurate approximations on
adopting tools from stochastic geometry. It has been vasthe latter metric via analysis. The derived bounds explicitly
employed for evaluation of the various performance metricapture the impacts of important system parameters such as
in wireless networks including heterogeneous networks (Hetensity of BSs and multiplexing gains. Our results, further,
Nets), see, e.g., [2], [3]. Work of [2] has proposed a flexiblmdicate that, in general, increasing multiplexing gains worsens
approach in modeling the network bl tiers of indepen- the coverage performance of HetNets.
dent Poisson point processes (PPPs) and maximum signal-
to-interference ratio (SIR) for purpose of cell association
(CA). Authors in [4] have then used the framework of [2] Consider downlink communication paradigms in heteroge-
for studying the coverage and rate performances of MIS@ous cellular networks (HetNets) comprising/6f> 1 tiers
HetNets. By providing ordering results, it has been showosf randomly located BSs. BSs of tier € K are spatially

I. INTRODUCTION

Il. SYSTEM MODEL
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distributed according to a homogenous Poisson Point Procassociated with;-th data stream is
(PPP)®; with given spatial density\; > 1 [2]. For mathe-

. S L3 x| T HPe
matical tractability we assume that the processes are mutu mrc _ S < zi,li
i ia 1 1 1 7)li - ; r C1 °
independent. Eagh t|erca_n entirely be chara_cte_nzed with the” ® g; xi”faH;rzflci +3 % %”‘rjnfaGgljrji
parameters: spatial density of B3s, transmission power of JEK z;€@; /x5 ’
BSs P, Watts, SIR threshold; > 1, number of BS’s transmit )

antennasN?, and finally the number of scheduled streamBer €ach stream and across streams all fading coefficients are
S; < min{N!,N"}. S; is referred to as multiplexing gain independent. Also, (2) is identically, but natdependently
here. Also, N" is the number of antennas user equipmeniiStributed across streams. The nominator and denominator of
(UEs) possess. The modelled system of multi-stream d&fd are respectively represent the effective power of intended
communication is considered & pipes of information as Signal of streani; and inter-stream interference plus ICI.

[11], [10]. UEs also randomly scattered across the network

and form a PPP®;, independent of{®;}s, with density [11. COVERAGE ANALYSIS

Au > >, \i. At each given time slot only one UE is served . o .
per active cell [12], [4], [7]. In the case that more that one UE We merely consider fixed-rate transmission (FRT) scheme,

! . . ; . . . In,which the transmission rate on each strelans constant,

is associated with a given BS time-sharing per cell is adoptgﬂd equal toR,., ;, — log (1 + ;) bit/sec/Hz, assuming that

for scheduling. i ) \ the typical UE“i:s associated with BS;. Typical UE is
Note _that gccordlng to_Sllvnayaks theorem and thanks _Egsociated with the best BS that its weakest stream is stronger

the stationarity of the point processes [13], [14], the spatig|,, the corresponding SIR threshold. To declare the coverage

performance O_f the netwqr_k can be adequ_ately obtameql f“ﬂ@r communication link, FRT scheme mandates that af;all

the eye of dypical UE positioned at the origin. Let the typical scheduled streams the corresponding SIR values satisfy the

UE be associated with B3; transmitting S; data streams. required SIR threshold; > 1, i.e., the typical UE is claimed

Denotey, € CN'*! as the received signal: to be in coverage if set

jeK z;€d; /w0
is nonempty. We therefore define coverage probahbilftyf =

where s;;, = [sg,1... 842,57 € C%*1, so thats,,; ~ P{As # 0}. Note that exact evaluation af’'® is very
CN(0, P;/S;), is the transmitted streams at BS, H,, € complex mainly because of dependency of SIR values (2)
CN"*5 is the intended fading channel matrix between BS&cross streams per each communication link as well as the
z; and the typical UE with entries independently drawinter-stream interference on each stream. We thus in the
from CN(0,1), i.e., Rayleigh fading assumption. Transmittedollowing resort to approximating the coverage probability.
signals are assumed independent. Likewise, channel matriceBroposition 1: With MIMO-MRC and maximum SIR CA
are independent]z;||~* is the distance-dependent path-los&lle; the coverage performance can be approximated as
attenuation wheréz; || denotes the Euclidian distance between

) 5 Si
BS z; and the origin, andv > 2 is the path-loss exponent. P (SP,; )a A (Nil (] 5 >
We further defined = 2/a. We assume that the typical UE .. _ ¥ Clog \SiBi) S\ ez mal a7 ey
knows H ., perfectly—perfect CSI at the receiver (CSIR). "™ = P K \ (B & (T(&+5;) Si
We focus on the scenarios that BSs do not have access to J; ! <§> ( T(s;) >
the channel state information at the transmitter (CSIT). Thus 4)

BSs of each tiei simply turn onS; transmit antennas and air Proof: See the Appendix.

information-bearing signals with fixed transmission powtr  (4) demonstrates impacts of many important system pa-
that is equally divided among the transmitted data streamgameters such as deployment density, transmission power,
open-looptechnique [10], [11]. For the specific purpose ofmultiplexing gain, and SIR threshold of tiers. Note that, in
this paper maximum ratio combining (MRC) at the receivegeneral the nominator and denominator of (4) are respectively
is considered. Accordingly, for decodirigth stream of data corresponding to the intended communication link and ICI.
the typical receiver extracts-th column of matrixH ,, and On the other hand, the impact of inter-stream interference
multiplies its corresponding conjugate with the received vectisr captured by(1 +t5;)% " that solely depends on SIR
(1). Letrv.s H™¢ be chi-squared wittN" DoFs, H™'¢ be threshold and multiplexing gain.

chi-squared with2(S; — 1) DoFs, andG;; be chi-squared Please note that evaluation of (4) is actually computationally
with DoF 25, respectively, standing for the intending channeiffordable. But, it is yet possible to provide bounds excluding
power gains associated with-th data stream, inter-streamthe evaluation of high-order derivatives as is carried out in
interference on streany, caused by streamg§ # [;, and following:

inter-cell interference (ICl) caused by BSs # x; on data Proposition 2: Another approximation on the coverage
stream/;. Regarding [10] we can show that the SIR expressig@robability of MIMO-MRC system with maximum SIR CA
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Proof: To prove this claim, we apply the following heuristic ol - . 3§
approximation 10 o, 10
(s szt 1 (5,1 Fig. 1. A\ = 104 4, N" =10, P, = 50 W, P, — 10W, 3 = 2
3.)Si—1 _ i i i L Fig. 1. A =107% a=4, N" =10, P = , P1 = ,B1 =2,
(1 + tlﬁl) - ZZO ( l; )ﬁl tl ZZO < l; )Bl " andf =5.

Using this, equation (10) in appendix is reduced to "

—-S;
& —1

i P; Aj S; =1 gli - S,

(a) (Si,ﬁ’i) S <l§0 ( 1 )ﬂz > (/ EFH?HC (tb)) ¢

Z K NG (T(E+5)\ % &8 sl
'LGK . & S'l J SI 2 .803 ‘
ng )\] (Sj) ( F(Sj) ) ’ t'L E //’fuf o ° o

The claimed result is then obtained recalling th&t™ is chi- ot e
squared r.v. with DORN™. s

Corollary 1: Let S; = 1 Vi and N = 1, thus (4) is —prop 1576.5,72 ||

> N ( P; ) & \ - = =Prop2. S,=6, S,=2

reduced twsiso = (g % which coincides with
the result of [2] of single- -antenna (SISO) HetNets. h

Corollary 2: Let S; = 1 Vi thus o =

ojary - @ Fig. 2. As = 10~% a =4, N™ = 10, P, = 50 W, P, = 10W, 8, = 2,
a—+r =

0SISO Z NCINEE=DE and Bz = 5.

Note that in the case of SIMO scenario the results are . _ o .
actually accurate. On the other hand, by comparing SISO andVioreover, both of these illustrations highlight many im-

SIMO cases it is easy to confirm that portant trends showing the impacts of multiplexing gains and
densifications on the coverage performance.
OSIMO Z Oé+7’ First, as Fig. 1 reveals when; is fixed (the density of
0SISO I'(a ) high-power BSs in tier 1) by increasing, smaller coverage

will follow if S; = Ss. In the contrary, Fig. 2 indicates that
Using this result, one may show that by applying Kershawg,en, \, is kept fixed (density of low-power BSs in tier 2) by
inequality [15] we have increasing); higher coverage performance is resulted again
NT_1 NT-1 whensS; = Ss. In fact, for the cases that the multiplexing gains
(&) 2SO > Z (r+0.5d)dfl ~ / (z+0.5d)5"1 d», are the same across the tiers, the coverage probability _coqld
0SISO decreaselincrease depends upon the tier that the densification

= 0 is practiced in. The findings of these illustrations indicate
or equivalentlyﬁ% o (N7)&, that for. sqch cases it is better to densify the tier with higher
transmission power.
IV. SIMULATION RESULTS Second,on the other hand, Fig. 1 shows that for fixed
In this section we present simulation results. For clarity w;, increasing); is beneficial and renders higher coverage
set K = 2. The simulation results are based on Monte Carferformance whenS; = 6 and S, = 2. Fig. 2 further
technique. highlights that whenS; = 6 and Sy = 2 and \; is fixed,

We study the accuracy of the analytical findings of the papicreasing); extremely exacerbates the coverage probability.
against deploying densities of the BSs in Fig. 1 and Fig. £onsequently, in scenarios that multiplexing gains are not the
In the former (the later) we fix\; = 107% (A, = 10~%) same itis better to densify the tier corresponding to low-power
and change\, (\;). As it is seen Proposition 1 providesand low multiplexing gain.
accurate bound on the coverage probability while the accuracyThird, for high values of A\, Fig. 1 indicates that both
of Proposition 2 is generally questionable. However, theseenarios ofS; = 6, S; = 2 and S, = Sy = 2 perform the
are scenarios, see, Fig. 2 caseSf= 6 and S, = 2, that same. While, Fig. 2 indicates that for high values\gtthere is
Proposition 2 is also accurate. a huge gap between the coverage probability of regine: 6,
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S, = 2 and coverage probability of regim& = S, = 2. In [4] H. S. Dhillon et al, “Downlink MIMO hetnets: Modeling, ordering
the other words, when the network is ultra-dense in low-power [ﬁf”l'té ag‘;’ F;%g"gggge g’;"'yzséfg'f Trans. Wireless. Commol. 12,
tier, it '?’ pOS‘fSIb|e to mc_rease the multlplexmg gain of hIgh'[S] C. Li ei al, “Success prébability and area spectral efficiency in multiuser
power tier without worrying about the coverage performance. MIMO HetNets,” submitted to IEEE Trans. Comp2015.
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9 [9] C. Li et al, “Analysis of area spectral efficiency and link reliability in

According .tO the TeSUltS of b(_)th Fig. 1 and Fig. 2 WE " multiuser MIMO HetNets,"in Proc. IEEE Int. Conf. Commun. (ICC)
observe that increasing the density of low power BSs of tier Jun. 2015.

; ; iliP] R. H. Y. Louie et al, “Open-loop spatial multiplexing and diversity
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thalj does tier 1. For example, 10 fold densification of tier nq 1 pp. 317-344, Jan. 2011.
2 (tier 1) changes the coverage performance by more tHah R. Vaze and R. W. H. Jr., “Transmission capacity of ad-hoc networks

e i i ; with multiple antennas using transmit stream adaptation and interference

3.00% (.100%)' This IS.aCtua.'"y very important from prgctlcal cancellation,”IEEE Trans. Inf. Theoryol. 58, no. 2, pp. 780-792, Feb.
viewpoints because installing more low-power BSs is more g1,
economically feasible than increasing the density of higlit2] V. Chandrasekhaet al, “Coverage in multi-antenna two-tier networks,”

; ; ; ; IEEE Trans. Wireless. Compvol. 8, no. 10, pp. 5314-5327, Oct. 2009.
power BSs of tier 1. Finally, both of these figures confirm thz?{?,] J. F. C. Kingmanpoisson Processes Oxford University Press, 1993.

fOI’ large values of\; as well as\, the coverage proba}bility [14] M. Haenggi and R. K. Ganti, “Interference in large wireless networks,”
is stable and does not responde to densities, which is known Foundations and Trends in Networkingol. 3, no. 2, 2008, Available

i ; ; ; at http://www.nd.edu/ mhaenggi/pubs/now.pdf.
as scale Invariancy phenomenon in the literature [2] [15] K. Huang et al, “Spatial interference cancellation for multiantenna

mobile ad hoc networks,JEEE Trans. Inf. Theoryvol. 58, no. 3, pp.
V. CONCLUSIONS 1660-1676, Mrc. 2012.

. . l[|16] W. C. Aoet al,, “Bounds and exact mean node degree and node isolation
We studied the coverage performance of multi-antenna probability in interference-limited wireless ad hoc networks with general

(MIMO) communications with multi-stream maximum ratio|k : fading,” IEEE TVl'E vgl. Gﬁ' no. 5, pp. 2342—2d348,é]un. 20125 o
combining (MRC) at the receiver in heterogenous networks’] M- Haenggiet al, "Stochastic geometry and random graphs for the
(HetNets) when BSs did not have access to channel state infor- 33?"{3';95‘284%‘?2%*;_02(%';?'935 NEWONEREE JSAGvol. 27, no. 7.
mation. We utilized powerful tools of stochastic geometry and

PPP to comprehensively evaluate the network-wise coverage APPENDIX: PROOF OFPROPOSITION1

performance of MIMO-MRC when the cell association rule According to Lemma 1 in [2] and recalling that we have
was maximum signal-to-interference ratio (SIR). Our analysgssumed3; > 1 Vi, we can write

provided accurate, and easy-to-use bound of the coverage per- e _ v

formance. Combined with simulations, it further demonstrated ~ %fi° = > E > 1 (lzllmns SIR; T = ﬁi) . (6
various important aspects of denseness and high multiplexing €L wed; o

gains in HetNets. It was observed that increasing multiplexirf§) is further simplified as:

gains could severely damage the coverage probability unless it o0

practiced in high-power, low density tier in conjunction with o = szi/mip{ min _ SIRy;, > ﬁi} dz;
densified low-power tier. iex L=t Si
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1
2 xEe t O Lidt; where in the last step we have applied following formula [17]:
3 © _1 —sillzi|| " %hg . —C(a)s® &
4 FH —tiB; praf 5; e H Ep, e illzg ™% he; — = Cle)sFEIRT]
5 (1L+t:8,)5 T H II Egprs e an @ €®;
6 0 JEK z;€@; /x5 ®) Consequently,
7 where£L-'  (t;) is the inverse Laplace transform &f™¢ o oo Lot
8 FH:'—an v Z ﬂ FHmzc tll)
' r_ Oft . = 271')\1/ / ————dty,
20 which is equal toc%j,mc (t;) = ZO L.5(m)(¢—1) [16], such ek T e N R B:)*
; m=
11 that [ e—tih ot gt = eSS B andatm (1) s th T sre@( )" £ () Eame (3 ampen,)
12 a fe Fy e (Li)dE = € Z Ir. an () is the /a: . AN A N P
13 m-th derivative of Dirac delta functlon Note that in (8) we ¢
have discarded indek from /:‘ (t;) due to the fact that
14 nrc 1
& o] oo S; E t )
15 H'} are identical r.v.s across streams Substituting (8) into Z ( ) / / Frmre () _ma,
16 (7) ‘and applying some straightforward manipulations, it is then SiBi oy (L+t, B )
17 seen that 0 o
18 Z Si o0 EI;Hmrc ) H H X ’ (9)
19 Ogltrc — 27T>\ /leE{qw } __1 )\ I E mre Gmrc &
20 ek ;=1 0 + ti ﬁl jex z;€P; /x; ch ( > GJ ( z )
21 18 500 T e gmre Unfortunately, direct evaluation of (9) seems highly un-
22 Egmre e Pt sy il dtida; tractable. Instead, we in the following resort to the arithmetic-
23 o geometric inequality for deriving an upper-bound, i.e.,
24 o o s; N
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