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Abstract

Most of current research on the coverage performance of multi-stream MIMO heterogeneous

networks (HetNets) has been focusing on a single data-stream. This does not always provide accurate

results as our analysis shows the cross-stream correlation due to interference can greatly affect the

coverage performance. This paper analyzes the coverage probability in such systems, and studies the

impact of cross-stream correlation. Specifically, we focus on the max-SIR cell association policy, and

leverage stochastic geometry to study scenarios whereby a receiver is considered in the coverage, if all

of its data-streams are successfully decodeable. Assuming open-loop maximum ratio combining (MRC)

at receivers, we consider cases where partial channel state information is available at the receiver. We

then obtain an upper-bound on the coverage and formulate cross-stream SIR correlation. We further

show that approximating such systems based on fully-correlated (non-correlated) data-streams, results

in a slight underestimation (substantial overestimation) of the coverage performance. Our results provide

insights on the multiplexing regimes where densification improves the coverage performance. We also

compare MRC with more complex zero-forcing receiver and provide quantitative insights on the design

trade-offs. Analysis is validated via extensive simulations.
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Densification, heterogeneous networks (HetNets), multiple-input multiple-output (MIMO), multi-

plexing gain, network-wise coverage performance, signal-to-interference ratio (SIR) correlation, stochas-

tic geometry.

I. I NTRODUCTION

Spectral efficiency in heterogenous networks (HetNets) is substantially enhanced using den-

sification and universal frequency reuse. A key physical-layer component of dense HetNets is

MIMO technology which is also capable of meeting the high demand for wireless bandwidth

[2, 3]. Nevertheless, macroscopic (network-level) performance, where MIMO multiplexing com-

munication is utilized in conjunction with densification and heterogeneity, still remains to be

explored.

Conventionally, MIMO systems are analyzed for isolated scenarios, where only point-to-point,

single cell, and/or clustered communications are considered [4, 5]. Such analyses can characterize

the various design aspects of MIMO HetNets, but they cannot capture the macroscopic perfor-

mance of MIMO systems under severe and heterogenous inter-cell interference (ICI), commonly

seen in dense HetNets with aggressive frequency reuse. We would like to address this very issue

by using stochastic-geometry-based analytical techniques.

Stochastic geometry has been widely used for modeling and performance evaluation of wireless

cellular networks, including HetNets, e.g., [6–10]. Using these techniques enables incorporation

of impacts of line-of-sight propagation, path-loss models, and blockage effect into the network-

wise evaluation of spectral efficiency without compromising the tractability and accuracy of the

analysis [8, 10, 11].

A. Related Work

Reviewed below are the related studies of the performance of MIMO systems. The adopted

cell-association (CA) policy plays a crucial role in the performance of MIMO HetNet systems.

In a given coverage area, cell association determines which BS to serve a given mobile user.

Different CA approaches are categorized asrange expansionandMax-SIR association.

The range expansion policy uses maximum average received power as the association criterion.

The coverage probability and area spectral efficiency (ASE) of multiple-input single-output
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(MISO) space-division multiple access (SDMA) systems utilizing this CA policy has been

investigated in [12, 13]. The merits of interference cancellation in zero-forcing (ZF) based receive

filters in enhancing the coverage of cellular systems was also demonstrated in [14]. Further,

in [15–20] design issues, impacts of beamforming schemes, and antenna selection techniques

on ASE, coverage, and energy-efficiency of MIMO communications with range extension CA

were investigated [15–17]. Optimized offloading for controlling ICI utilizing coordinated MIMO

communications was carried out in [18]. Coverage probability, spectral efficiency, and load

balancing in MIMO systems are also considered in [19]. To improve the performance of range

expansion in MIMO systems, the authors of [20] proposed a threshold-based CA solution.

With multi-antenna receivers, the authors of [21, 22] focused on maximum ratio combining

(MRC) and optimal combining in the downlink and uplink, respectively. Applying Gil-Pelaez

inversion theorem in [11], the symbol error probability (SEP) of MIMO multiplexing systems

was analyzed in [23]. Equivalent-in distribution (EiD) was also developed in [24] to quantify

error probability. Adopting the proposed framework of [24], a unified method for studying outage

probability in MIMO communications was then proposed in [25].

In general, range-expansion CA does not distinguish between the corresponding MIMO tech-

niques in the CA stage. So, in many cases mentioned above, the CA policy is in fact a replica

of the one considered in the SISO counterpart [7, 9]. This makes range expansion defiant in

effectively incorporating the attributes of MIMO communications to improve multiplexing and

diversity. That is one of the reasons why heuristic offloading procedures are often required to

optimize the system performance [13, 18, 20].

Nevertheless, the coverage is directly related to signal-to-interference (SIR) distribution. In

addition, many network management functions, such as handover and fractional frequency reuse,

often operate based on the SIR (or a function thereof) as the main decision metric. These justify

consideration of CA rules based on the SIR characteristics.

The authors of [6, 26, 27] considered max-SIR CA in which the serving BS is the one that

provides the maximum SIR. For MISO systems, the authors of [28] provided ordering results

on the coverage, capacity, and ASE, and compared several beamforming techniques. In [29],
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we proposed a flexible max-SIR CA rule tailored for MISO-SDMA systems. Algorithms for

specifying the number of required SIR measurements before choosing the supporting BS in

order to optimize the coverage probability/spectral efficiency were also developed in [29].

Unlike the range-expansion technique for which various aspects of coverage performance have

been investigated, the coverage performance of multi-stream MIMO-MRC communications with

max-SIR CA is yet to be explored. The main objective of this paper is to analyze the coverage

performance of MIMO communication with max-SIR CA rule, where multiple streams are

transmitted at the same time. Note that in the literature of multi-stream MIMO communications,

the coverage probability of the network is often estimated from the perspective of a given

data stream. The thus-obtained coverage for a given data stream is then treated as the coverage

performance of the multiplexing (multi-stream) system, see, e.g., [21, 30–33]. Nevertheless, such

approach may cause substantial error in the evaluation of the coverage probability of multi-stream

MIMO HetNets, as the possible correlation across data streams are entirely overlooked.

In fact, when the SIR values among data streams are correlated, thestream-levelperformance

that considers the reception quality of a single data stream independent from the others, becomes

inadequate. This is because the successful decoding of a data stream is partially dependent

upon the decoding status of other data streams. Therefore, the coverage performance of MIMO

multiplexing systems from alink-level perspective that considers the reception of all the data

steams becomes crucial. In our previous works, [1][49][34], we studied the coverage probability

of MIMO multiplexing systems from a link-level perspective. In [49] the focus was on multi-

stream MIMO systems where the pre-coding and decoding filters at the transmitter and receiver

was constructed according the singular value decomposition (SVD) technique. This techniques

however requires perfect and timely CSI at both the transmitter and receiver, which imposes

high signaling overhead particularly in dense configurations. Furthermore, in [34], we investi-

gated the link-level coverage performance for multi-stream MIMO networks with zero-forcing

beamforming (ZFBF) receivers. The simulation results in [34] show subtle differences between

link-level, and stream-level coverage performance in a multi-stream MIMO system. Despite its

importance, to the best of our knowledge, the roots and scales of such a discrepancy has not yet
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been investigated in the related literature.

On the other hand, in SIMO ad hoc networks, the ICI is shown to result in a high correlation

among impinged signals across different receive antennas, see, e.g., [35, 36]. Such a correlation

compromise the otherwise achievable diversity gain in cases where signals across antennas are

independent. This is because in the presence of ICI, the path-loss fluctuations invoke (statistically)

correlated interference among antennas due to the common locations of interferers. A similar

conclusion was drawn in [21], where the interference correlation was investigated in space-

time MIMO ad hoc networks. It was also shown in [21] that ignoring interference correlation

among antennas may, in some cases, substantially compromise the accuracy of the analysis. The

analysis in [21] is, however, limited to the CDF distribution of an individual data stream, thus

being unable to depict the impact of correlation on the CDF distribution of a communication

link with a set of data streams.

B. Contributions and Organization

In this paper, we investigate cross-stream SIR correlation and its impacts on the link-level

coverage probability in MIMO multiplexing systems. We mainly focus on the maximum ratio

combining (MRC) receivers. Note that compared to the ZFBF, the coverage evaluation of the

MRC is more challenging due to the cross-stream interference. The coverage performance of

MIMO-MRC systems from thestream-level perspectiveis studied in the context of ad hoc

communications, e.g., [32]. The results in an ad hoc context are not necessarily extendable to

cellular networks because, unlike cellular systems, ad hoc communications often operate without

a CA mechanism and lack a central scheduler.

Here we evaluate the MIMO-MRC coverage probability from a link-level perspective in

cellular networks. Despite the popularity and practical significance of an MIMO-MRC system

for cellular communications due to its simple implementation and near zero feedback overheads,

its performance in HetNet settings has not yet been investigated. Our model and analysis are

concerned with scenarios that channel state information (CSI) is not available at the BSs and

only partially known at the UEs. This paper makes the following two main contributions.
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• We obtain a closed-form and easy-to-compute tight upper bound on the network coverage

probability for cases where successful decoding of all transmitted data streams is required.

The unique feature of our analysis is to accurately incorporate SIR correlation. Our analytical

results—supported by extensive simulations—provide significant practical insights on the

impacts of densification on the link-level coverage performance. Based on this result, we

conclude that improvement in the network coverage performance by densification is subject

to careful selection of multiplexing gains in different tiers.

• We also analyze the cross-stream SIR correlation amongst multiple streams in a communica-

tion link. Our analysis provides quantitative insights on the impact of tiers’ BSs density, path-

loss exponent, CSI inaccuracy, and multiplexing gains on the SIR correlation among data

streams. To understand the impacts of SIR correlation on the coverage probability, we then

obtain the closed-form bounds on the coverage probabilities for two extreme settings: full

SIR correlation (FC) among data streams, and no SIR correlation (NC) among data streams.

We then show that the NC setting substantially over-estimates the coverage performance

while the FC setting slightly underestimates it.

The rest of the paper is organized as follows. Section II presents the system model and Section

III provides coverage evaluation. Section IV investigates the SIR correlation and its impact on the

coverage probability. The simulation results are provided in Section V followed by conclusions

in Section VI.

II. SYSTEM MODEL

We consider the downlink in a heterogeneous cellular network (HetNet) consisting ofK ≥ 1

tiers of randomly located base-stations (BSs). In each tieri ∈ K, BSs are spatially distributed

according to a homogenous Poisson Point Process (PPP),Φi, with a given spatial density,λi ≥
1 [6]. For mathematical tractability, we assume that the PPPs corresponding to each tier are

mutually independent. Therefore, each tieri can be completely characterized by the spatial

density of its BSs,λi, their transmit power,Pi Watts, the corresponding SIR threshold at the

receivers,βi ≥ 1, the number of BS’s transmit antennasN t
i , and the number of scheduled

streamsSi ≤ min{N t
i , N

r} (also referred to as themultiplexing gain), whereN r is the number
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of antennas at the user equipments (UEs).

In the model under consideration,Si data streams are considered in each tier/BS as parallel

flows of information as in [31, 32]. UEs are randomly located across the network coverage area

and form a PPP,ΦU , with densityλU À ∑
i λi, independent of{Φi}s. Similar to [21, 28, 37],

we further assume that in each active cell, only one UE is served at each time slot. If more than

one UE are associated with a given BS, we adopt time-sharing per cell for scheduling the UEs.

Considering the stationarity of the point processes, according to Slivnayak’s theorem, we can

investigate spatial network performance from the perspective of a UE located at the origin [38,

39]; we will refer to such an UE thetypical UE.

Let Hxi
∈ CNr×Si be the fading channel matrix between BSxi and the typical UE, where

each entry is independently drawn from a complex Gaussian random variable with zero mean

and unit variance,CN (0, 1), i.e., Rayleigh fading assumption.

Here we focus on the scenarios that only partial CSI is available at the receivers. As in

[40, 41], the quantified measure for channel estimation error is considered to be the correlation

coefficient between the actual fading channel coefficient and its estimated value asHxi
=

√
1− ε2

i H̃xi
+εiExi

, whereH̃xi
is the estimated channel which is a complex Gaussian random

matrix with zero mean and identity covariance matrix;ε2
i measures the inaccuracy of channel

estimation; andExi
is a complex Gaussian random matrix with zero mean and identity covariance

matrix. Random variablesExi
and H̃xi

are assumed independent, e.g., in cases where CSI is

estimated using a pilot-based minimum mean square error (MMSE) [40, 41].

For the typical UE associated with BSxi transmittingSi data streams, the received signal,

yxi
∈ CNr×1, is:

yxi
= ‖xi‖−α

2

√
1− ε2i H̃xisxi + ‖xi‖−α

2 εiExisxi +
∑

j∈K

∑

xj∈Φj/x0

‖xi‖−α
2 Hxj sxj , (1)

wheresxi
= [sxi,1 . . . sxi,Si

]T ∈ CSi×1, so thatsxi,l ∼ CN (0, Pi/Si), is the transmitted streams

at BS xi; ‖xi‖−α is the distance-dependent path-loss attenuation;‖xi‖ denotes the Euclidian

distance between BSxi and the origin; andα > 2 is the path-loss exponent. We further assume

that the transmitted signals as well as channel matrices are independent. The first term in (1)

accounts for the useful signal, the second term represents the interference due to inaccuracy of

CSI, and the last term is the ICI. At the receiver, maximum ratio combining (MRC) [32] is
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adopted with decoding filterUxi
= Hxi

= [hxi,1 . . . hxi,Si
]. Post-processing SIR for data stream

li is therefore

SIRMRC
xi,li =

Pi

Si
‖xi‖−α(1− ε2i )‖h̃xi,li‖2

Pi

Si‖xi‖α

(
∑

l′ 6=li

‖h̃†xi,li
hxi,l′‖2

‖h̃xi,li
‖2 + ε2i

‖h̃†xi,li
exi,li

‖2
‖h̃xi,li

‖2

)
+

∑
j∈K

∑
xj∈Φj/xi

Pj

Sj‖xj‖α

Sj∑
lj=1

‖h̃†xi,li
hxj,lj

‖2
‖h̃xi,li

‖2

. (2)

We then set random variable (r.v.)HMRC
xi,li

, ‖h̃xi,li‖2 which is chi-squared with2N r degrees-

of-freedom (DoFs). Further, we define r.v.ŝHMRC
xi,li

,
∑
l′ 6=li

‖h̃†xi,li
hxi,l′‖2

‖h̃xi,li
‖2 which is also chi-squared

with 2(Si − 1) DoFs, andH̃MRC
xi,li

, ‖h̃†xi,li
exi,li

‖2
‖h̃xi,li

‖2 which is an exponential r.v. BotĥHMRC
xi,li

and

H̃MRC
xi,li

are independent ofHMRC
xi,li

. We further setGMRC
xj ,li

,
Sj∑

lj=1

‖h̃†xi,li
hxj,lj

‖2
‖h̃xi,li

‖2 which is also chi-

squared with2Sj DoFs and independent of̂HMRC
xi,li

, H̃MRC
xi,li

, andHMRC
xi,li

. Using the above notation,

HMRC
xi,li

, ĤMRC
xi,li

, H̃MRC
xi,li

, andGMRC
xj ,li

, respectively, stand for the channel power gains associated with

the intending theli-th data stream, the interference on streamli due to imperfect CSI estimation,

the inter-stream interference caused by streamsl′i 6= li, and the ICI imposed byxj 6= xi. Post-

processing SIR in (2) is then represented as

SIRMRC
xi,li =

Pi

Si
‖xi‖−α(1− ε2i )H

MRC
xi,li

Pi

Si‖xi‖α

(
ĤMRC

xi,li
+ ε2i H̃

MRC
xi,li

)
+

∑
j∈K

∑
xj∈Φj/xi

PjGMRC
xj,li

Sj‖xj‖α

. (3)

Eq. (3) incorporates per-stream transmission power, multiplexing gains, ICI, CSI inaccuracy,

and inter-stream interference.

III. C OVERAGE PERFORMANCEEVALUATION

A. Coverage Performance in Multi-Stream MIMO Systems

In HetNets, similar to other wireless networks, the SIR is translated into practical performance

metrics, such as the coverage probability. For a given coverage probability, one can then, among

other parameters, evaluate the required density of the BSs in each tier and/or their multiplexing

gains. In the case of a HetNet with single-stream transmission, the coverage probability in a tier,

i, is directly related to the cumulative distribution function (CDF) of the corresponding SIR. More

specifically, for tieri, the coverage probability is often defined as the probability that the SIR

stays above a given threshold,βi, throughout the coverage area. In the case of multiple streams

however, depending on the transceiver structure and/or the quality requirements, evaluating the

coverage probability becomes more complex.

Page 8 of 35IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

9

In some transceiver techniques, the coverage probability depends upon the CDF of the weakest

SIR value amongSi streams [42–45]. Thus, a UE is considered in the coverage if all of its streams

are successfully decoded; this is referred toall-coverage probabilityas in the isolated scenarios

[45, 46].1

To specify the CA policy, we focus on the max-SIR CA rule as in [6, 28, 34], where a

typical UE is associated with a BS that provides the strongest SIR. To evaluate the all-coverage

probability, we adopt the max-SIR CA rule of [34] which is an extension of the one considered

in [6, 28, 29], to the multi-stream MIMO communications: the associated BS is the one whose

corresponding minimum SIR value (measured across streams) is the maximum among all the BSs.

For brevity, we will henceforth refer to the all-coverage probability as the coverage performance.

A typical UE is thus in the coverage if the set

AMRC
all =

{
∃i ∈ K : max

xi∈Φi

min
li=1,...,Si

SIRMRC
xi,li ≥ βi

}
, (4)

is nonempty and the coverage probability is defined asPMRC
C = P{AMRC

all 6= ∅}.

B. The Coverage Probability

Analytical evaluation ofPMRC
C is rather complex due mainly to the cross stream SIR corre-

lation, non-Rayleigh-type fluctuations, CSI inaccuracy, and also the inter-stream interference. In

the following proposition, we provide an analytical upper bound on the coverage probability.

Proposition 1: In a MIMO-MRC system adopting maximum SIR CA rule, the coverage

probability is upper-bounded as:

PMRC
C ≤ π

C̃(α)

∑

i∈K

λi

(
Pi(1−ε2i )

S2
i βi

)α̌

(Θ(βi, εi, Si))
Si

K∑
j=1

λj

(
Pj

Sj

)α̌
(

Γ( α̌
Si

+Sj)

Γ(Sj)

)Si
, (5)

where

Θ(βi, εi, Si) ,
Nr−1∑
ri=0

ri∑
qi=0

qi∑
pi=0

(−1)qi−piβ2qi−pi

i

ε−4qi+2pi

i (1− ε2i )Si

(
1− ε2i + βi

)−qi−Si+1 (
1 + ε2i (βi − 1)

)−qi+pi−1

piB(Si − 1, pi)(ri − qi)B( α̌
Si

, ri − qi)
, (6)

andB(a, b) = Γ(a)Γ(b)
Γ(a+b)

is the beta function.

1Note that if the original data streams are spatially coded across multiple data streams, thensum-coverage probabilityis a

relevant metric, whereby the accumulated transmitted data rate must be large enough for a link to be considered in coverage

[45, 47]. We exclude such cases and focus on the all-coverage probability.
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Proof: We use Lemma 1 in [6] and note thatβi ≥ 1, ∀i, and write

PMRC
C =

∑

i∈K
E

∑

xi∈Φi

1
(

min
li=1,...,Si

SIRMRC
xi,li ≥ βi

)
=

∑

i∈K
2πλi

∞∫

0

xiE{Φj}P
{
SIRMRC

xi,li ≥ βi : ∀li
∣∣{Φj}

}
dxi

=
∑

i∈K
2πλi

∞∫

0

xiE{Φj}
Si∏

li=1

P
{
SIRMRC

xi,l ≥ βi

∣∣{Φj}
}

dxi, (7)

where the first equation is according to Slivnyak- and Campbell-Mecke’s Theorems [38]. We then

note that conditioned to processesΦjs, the SIR values across streams are statistically independent.

For a fixed value ofxi, we have

P
{
SIRMRC

xi,li ≥ βi

∣∣{Φj}
}

= P
{

HMRC
xi,li ≥ βi(ε2i H̃

MRC
xi,li

+ ĤMRC
xi,li

)
1− ε2i

+
Siβix

α
i

Pi(1− ε2i )

∑

j∈K

∑

xj∈Φj/xi

Pj

Sj
‖xj‖−αGMRC

xj ,li

∣∣{Φj}
}

=

∞∫

0

L−1
F̄

HMRC
i

(ti)
∏

j∈K

∏

xj∈Φj/xi

EGMRC
xj,li

e
−ti

βiSixα
i

Pi(1−ε2
i
)

Pj
Sj
‖xj‖−αGMRC

xj,liEe
−ti

βi(ε2i H̃MRC
xi,li

+ĤMRC
xi,li

)

1−ε2
i dti

=

∞∫

0

L−1
F̄

HMRC
i

(ti)
(
1 + tiβi

1−ε2i

)Si−1

(1 + tiε2i βi

1−ε2i
)

∏

j∈K

∏

xj∈Φj/xi

EGMRC
xj,li

e
−ti

βiSixα
i

Pi(1−ε2
i
)

Pj
Sj‖xj‖α GMRC

xj,li dti, (8)

whereL−1
F̄

HMRC
i

(ti) is the inverse Laplace transform ofHMRC
i , L−1

F̄
HMRC

i

(ti) =
Nr−1∑
m=0

1
m!

δ(m)(t− 1)

(see, Lemmas 1 and 2 in [34]), andδ(m)(t) is the m-th derivative of the Dirac delta function.

Note that in (8) we drop indexli from LF̄
Hzf

i

(ti) becauseHzf
xi,li

are identical random variables

(rv.) across the streams. Substituting (8) into (7) followed by straightforward derivations yields

PMRC
C =

∑

i∈K
2πλi

∞∫

0

xiE{Φj}
Si∏

li=1

∞∫

0

L−1
F̄

HMRC
i

(ti)
∏

j∈K

∏
xj∈Φj/xi

EGMRC
xj,li

e
−ti

βiSixα
i

Pi(1−ε2
i
)

Pj
Sj
‖xj‖−αGMRC

xj,li dtidxi

(
1 + tiβi

1−ε2i

)Si−1

(1 + tiε2i βi

1−ε2i
)

=
∑

i∈K
2πλi

∞∫

0

xidxiEΦ

∞∫

0

. . .

∞∫

0

∏

j∈K

∏

xj∈Φj/xi

EGMRC
xj

Si∏

li=1

e
− βiSixα

i
Pi(1−ε2

i
)

PjGMRC
xj,li

tli

Sj‖xj‖α

Si∏

li=1

L−1
F̄

HMRC
i

(tli)dtli
(
1 + tli

βi

1−ε2i

)Si−1

(1 + tli
ε2i βi

1−ε2i
)
,

as rv.sGzf
xj ,li

are independent and identically distributed (i.i.d.) rv.s across the streams. Thus,

PMRC
C =

∑

i∈K
2πλi

∞∫

0

xidxi

∞∫

0

. . .

∞∫

0

∏

j∈K
EΦj

∏

xj∈Φj/xi

EGMRC
xj

e
− βiSixα

i
Pi(1−ε2

i
)

Pj

Si∑
li=1

GMRC
xj,li

tli

Sj‖xj‖α

Si∏

li=1

L−1
F̄

HMRC
i

(ti)dtli
(
1 + tiβi

1−ε2i

)Si−1

(1 + tiε2i βi

1−ε2i
)

=
∑

i∈K
2πλi

∞∫

0

xidxi

∞∫

0

. . .

∞∫

0

Si∏

li=1

e
− x2

i
Si

C̃(α)

(
βiSi

Pi(1−ε2
i
)

)α̌ K∑
j=1

λj

(
Pj
Sj

)α̌
E

GMRC
j

[
(

Si∑
li=1

GMRC
j,li

tli
)α̌

]

L−1
F̄

HMRC
i

(ti)dtli
(
1 + tiβi

1−ε2i

)Si−1

(1 + tiε2i βi

1−ε2i
)

.
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Reordering the integrals we then have

PMRC
C =

∑

i∈K
2πλi

∞∫

0

. . .

∞∫

0

Si∏

li=1

L−1
F̄

HMRC
i

(ti)dtli
(
1 + tiβi

1−ε2i

)Si−1

(1 + tiε2i βi

1−ε2i
)

∞∫

0

xie
−x2

i C̃(α)

(
βiSi

Pi(1−ε2
i
)

)α̌ K∑
j=1

λj

(
Pj
Sj

)α̌
E

[
(

Si∑
li=1

GMRC
j,li

tli
)α̌

]

dxi

=
∑

i∈K

π

C̃(α)

∞∫

0

. . .

∞∫

0

λi

(
Pi(1−ε2i )

Siβi

)α̌

∑
j∈K

λj

(
Pj

Sj

)α̌

EGMRC
j

[
(

Si∑
li=1

GMRC
j,li

tli)α̌

]
Si∏

li=1

L−1
F̄

HMRC
i

(ti)dtli
(
1 + tiβi

1−ε2i

)Si−1

(1 + tiε2i βi

1−ε2i
)
,

which is not easily tractable due toEGMRC
j

[
(
∑Si

li=1 GMRC
j,li

tli)
α̌
]
. To make the analysis tractable,

we transform
∑Si

li=1 GMRC
j,li

tli into a multiplicative form
Si∏

li=1

GMRC
j,li

tli so that expectation operation

on GMRC
j,li

becomes effective irrespective of variablestlis. To do this, we adopt the arithmetic-

geometric inequality, which results in the following upper-bound on the coverage probability:

PMRC
C ≤

∑

i∈K

π
C̃(α)

(
Pi(1−ε2i )

Siβi

)α̌
λi

Sα̌
i

K∑
j=1

λj

(
Pj

Sj

)α̌

EGMRC
j

Si∏
li=1

(GMRC
j,li

)
α̌
Si

∞∫

0

. . .

∞∫

0

Si∏

li=1

t
− α̌

Si

li
L−1

F̄
HMRC

i

(tli)
(
1 + tiβi

1−ε2i

)Si−1

(1 + tiε2i βi

1−ε2i
)
dtli

=
∑

i∈K

π
C̃(α)

(
Pi(1−ε2i )

Siβi

)α̌
λi

Sα̌
i

K∑
j=1

λj

(
Pj

Sj

)α̌ (
EGMRC

j
(GMRC

j )
α̌
Si

)Si




∞∫

0

t
− α̌

Si
i L−1

F̄
HMRC

i

(ti)
(
1 + tiβi

1−ε2i

)Si−1

(1 + tiε2i βi

1−ε2i
)




Si

, (9)

where the last step is due to the fact that rv.sGMRC
xj ,li

are i.i.d. across streams. The integral in

(9) is evaluated in Appendix A. The proof is done using the result of Appendix A, and noticing

that GMRC
xj ,li

is chi-squared with2Sj DoFs. ¥

Despite significant model complexities, Proposition 1 provides a closed-form upper-bound for

the coverage probability. It is difficult to quantify the accuracy of the derived upper-bound as

GMRC
j,li

s are random in nature andtlis are integral variables. However, our simulation results in

Section V indicate that the upper-bound of Proposition 1 is accurate and representative.

The bound on the coverage probability in (5) shows the effects of many important parameters

such as the BS deployment density in each tier, their TX power and multiplexing gain, CSI

inaccuracies, and the corresponding tiers’ SIR threshold. The impact of the number of receive

antennas is captured via parameterΘ(βi, εi, Si) in (6). Note that the numerator and denominator

of (5) correspond to the intended communication link, and the ICI, respectively.

A close examination of (5) in Proposition 1 provides significant insights on important design

aspects of HetNets which are discussed in the following subsections.
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Fig. 1. Combinations of multiplexing gains for which∂P
MRC
C

∂λ̃1
> 0, whereα = 4, ε1 = ε2 = 0.1, P1 = 50W, andP2 = 1W.

C. Does Densification Always Improve the Coverage Probability?

We investigate the impact of densification on the coverage probability. We are interested in

combinations of system parameters for which the coverage probability is increased by increasing

the density of the BS in a given tier, namely tier 1:∂PMRC
C

∂λ̃1
> 0. For brevity, we setK = 2,

and λ̃1 = λ1(P1/S1)
α̌, λ̃2 = λ2(P2/S2)

α̌, Aji =

(
Γ( α̌

Si
+Sj)

Γ(Sj)

)Si

. In this case, it can be shown

that for ∂PMRC
C

∂λ̃1
> 0, it is necessary to haveλ̃2

λ̃1
(A21 − BA22) < A12B − A11, where B =√(

(1−ε21)β2S2

(1−ε22)β1S1

)α̌
(Θ(β1,ε1,S1))S1A21

(Θ(β2,ε2,S2))S2A12
. Fig. 1 shows various combinations of the multiplexing gains

that guaranteeλ̃2

λ̃1
(A21−BA22) < A12B−A11. In general, for densification of tier 1 to be effective

in improving coverage performance, we needS2 > S1. In fact, as decodingS2 data streams is

more unlikely thanS1 data streams, densification of tier 1 allows UEs to be more frequently

be associated with tier 1, thus improving the coverage probability. Moreover, by increasingβ1,

we get a smaller number of multiplexing gain combinations,(S1, S2), in which densification

improves the coverage probability.

D. Coverage Performance of Relevant MIMO Communications Scenarios

Although Proposition 1 considers an open-loop tranceiver, one can utilize Proposition 1 to

evaluate the coverage probability for various closed-loop scenarios, such as SISO (N t
i = N r = 1,

∀i) [6], MISO-SDMA (N r = 1) [12, 28], Limited-feedback MISO-SDMA [28], and SIMO (Si =

1, ∀i). This is simply because the corresponding post-processing SIRs in the aforementioned

closed loop techniques are often a function of the obtained SIR in (3).
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Assuming perfect CSI, immediate extensions of Proposition 1 are for zero-forcing beamform-

ing (ZFBF) at the receiver, and orthogonal space-time block codes (OSTBC). Such extensions

can be done after making proper adjustments to the number of DoFs in the desired and interfering

signals through the general framework proposed in [32].

E. Selecting the Tranceiver Technique

We compare two prevalent open-loop techniques: ZFBF and MRC. Here we assume a perfect

CSIR, i.e.,εi = 0 ∀i. We then setΘZF(Si)
∆
=

Nr−Si∑
mi=0

Γ( α̌
Si

+mi)

Γ( α̌
Si

)Γ(1+mi)
. The coverage probability of the

system with ZFBF was derived in [34] as:

PZF
C ≤ π

C̃(α)

∑

i∈K

λi

(
Pi

S2
i βi

)α̌

(ΘZF(Si))Si

∑
j∈K λj

(
Pj

Sj

)α̌
(

Γ( α̌
Si

+Sj)

Γ(Sj)

)Si
. (10)

This is consistent with Proposition 1, asPZF
C in (10) can also be obtained using the bound on

PMRC
C in Proposition 1, simply by substitutingΘ(βi, 0, Si) in (5) with ΘZF(Si).

Using (10) and Proposition 1, we can now inspect whether ZFBF outperforms MRC. For

clarity, we setK = 1. It is then straightforward to confirm thatPZF
C > PMRC

C if ΘZF(Si) >

Θ(βi, 0, Si). Fig. 2 shows that, in general, ZFBF yields a higher coverage probability than MRC.

This is mainly because the MRC receivers suffer from inter-stream interference. Furthermore,

as shown in Fig. 2.a, by increasing the multiplexing gain, ZFBF becomes even more efficient

than MRC. For a largerN r, the superiority of ZFBF over MRC is shown to be reduced because

the MRC receivers can harness diversity more effectively than ZFBF. Noticing that the ZFBF

receiver complexity of a large arrays can be very high (because of the required matrix inversion

operation), MRC provides room for compromising coverage performance (in fact, slightly for

larger arrays) over computational complexity. Such aspects can be exploited in the design of

HetNets. For instance, it is plausible to adaptively select either ZFBF or MRC in order to

keep the prescribed coverage performance intact, while minimizing the complexity and energy

consumption of the signal processing modules at the receivers.

Fig. 2.b also indicates that for a larger SIR threshold,β, ZFBF significantly outperforms

MRC, while for small to moderate values ofβ, ZFBF is only slightly better than MRC. This

observation suggests that for low-rate scenarios (e.g., for the cell-edge UEs) one can trade off
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, vs. the multiplexing gainS; (b): P
MRC
C

PZF
C

vs. the SIR thresholdβ.

a slightly higher performance for a significantly lower computational complexity. Fig. 2 further

indicates that the relative performance of ZFBF and MRC is not related to the path-loss exponent.

IV. CROSS-STREAM SIR CORRELATION

As it is also shown in (7), for a given MIMO receiver, the SIR values across streams are

statistically correlated mainly because of the correlated interference among antennas due to the

common locations of interferers. More specifically, the interference originated from near-by BSs

may cause a high level of interference simultaneously to all of the data streams transmitted

to a typical UE. As shown in the proof of Proposition 1, the cross-stream SIR correlation

renders analytical complexities. In this section, we characterize the aforementioned correlation

and analyze its impact on the system coverage performance.

A. SIR Correlation Coefficient

In a link, the coverage probability is related to the joint SIRs’ CDF of the streams. Here we

focus on the SIR correlation instead of the ICI correlation. To quantify the SIR correlation, the

Pearson correlation coefficients is used:

ρMRC
xi

(li, l′i) =
E

[
SIRMRC

xi,li SIRMRC
xi,l′i

]
− SIR

MRC

xi,li SIR
MRC

xi,l′i√
Var

(
SIRMRC

xi,li

)
Var

(
SIRMRC

xi,l′i

) =
E

[
SIRMRC

xi,li SIRMRC
xi,l′i

]
− (SIR

MRC

xi,li )2

Var
(
SIRMRC

xi,li

) , (11)

whereE[.] is the expectation operator,SIR
MRC

xi,li
is the average SIR value on data streamli, and

Var[.] is the variance operator. The focus in the related literature (e.g., [35, 48]) is often on
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Fig. 4. Correlation coefficientvs. α and ε1.

understanding of the interference correlation among antennas. In contrast, as [49] we here focus

on the SIR correlation among data streams.

Proposition 2: For the typical UE receiving data from BS,xi, in a MIMO-MRC multiplexing

system, the correlation coefficient between data streamsli and l′i, ∀li, l′i, li 6= l′i is:

ρMRC
xi

(li, l′i) =

∞∫
0

∞∫
0

e

−C̃(α)
∑
j

λj(
Pj
Sj

)α̌W j(t,τ)

1+(t+τ)
Pi
Si

x
−α
i

− e−(tα̌+τα̌)Λ

(1+t
Pi
Si

x
−α
i

)(1+τ
Pi
Si

x
−α
i

)
(
1+t

Pi
Si

ε2i x−α
i

)(
1+τ

Pi
Si

ε2i x−α
i

)(
(1+t

Pi
Si

x−α
i )(1+τ

Pi
Si

x−α
i )

)Si−2 dtdτ

∞∫
0

∞∫
0


 Nr+1

Nr e−(t+τ)α̌Λ
(

1+
(t+τ)Piε2

i
Sixα

i

)(
1+

(t+τ)Pi
Sixα

i

)Si−1 − e−(tα̌+τα̌)Λ
(
1+

tPi
Sixα

i
ε2i

)(
1+

Piε2
i

τ

Sixα
i

)(
(1+

tPi
Sixα

i
)(1+

Piτ

Sixα
i

)
)Si−1


 dtdτ

,

(12)

whereα̌ = 2/α, Λ , C̃(α)
∑
j

λj

(
Pj

Sj

)α̌
Γ(α̌+Sj)

Γ(Sj)
, C̃(α) , πΓ(1− α̌), Γ(a) ,

∞∫
0

e−zza−1dz, and

W j(t, τ) ,
∞∫

0

∞∫

0

(tg1 + τg2)
α̌ (g1g2)

Sj−1

Γ2(Sj)
e−(g1+g2)dg1dg2. (13)

Proof: See Appendix B. ¥

As shown in (12), the ICI affects the correlation coefficient mainly throughΛ, whereΛ is a

function of BSs’ density, their transmission powers and multiplexing gains, and the corresponding

path-loss exponent. It is further shown in (12) that the multiplexing gains and CSI estimation

inaccuracy may affect the correlation by imposing self-interference.

Fig. 3 shows the impact ofλ1 andλ2 on ρMRC
xi

(li, l
′
i). As it is seen for a sparse network, where

λ1 → 0 andλ2 → 0, the correlation coefficient is very close to 0. In other words, the network

behaves like an isolated link, where BSs are sparse in the coverage area. By increasing the
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density of BSs, however,ρMRC
xi

(li, l
′
i) is proportionally increased such that in an extreme case of

high density of BSs whereλ1 ≈ 0.01 and/orλ2 ≈ 0.01, the SIRs of data streams become highly

correlated. In such a case, if a data stream,li, experiences outage due to a close-by interfering

BS, then other data streamsl′i 6= li will most likely experience the same.

Proposition 2 further shows that the imposed correlation due to the CSI estimation error seems

negligible. This is because each individual data stream receivesSi − 1 inter-stream interference

which is much more powerful than the interference imposed by the CSI estimation error. Fig. 4

confirms this, indicating that the SIR correlation is not affected by change in the value ofε1.

The impact of path-loss exponent is also seen in Fig. 4. For a lowerα, even a small number

of moderately close interferers induce a substantial level of interference. This reduces the SIR

for all data streams at the same time, thus causing a large correlation among data streams. For

a higher value ofα, the collective impact of the ICI received from the BSs located far from

the receiver causes correlation, and hence unless the density of interferers is very high, the

correlation is negligible.

One can therefore conclude that densification in multi-stream systems causes substantial SIR

correlation among data streams through the ICI. This consequently affects the outage performance

of the HetNet. Proposition 2, however, does not explicitly quantify the impact of the SIR

correlation on the coverage performance.

B. Impact of SIR Correlation on the Coverage Performance

To analyze the impact of cross-stream SIR correlation on the coverage performance, here we

introduce a multiplexing setting, namelyfull-correlation (FC) where the interference is fully

correlated across all data streams in a link2. In other words, in the FC setting, the same level of

ICI is received among all data streams in the communication link. Therefore, exchangingGMRC
xj ,li

with its average value,Sj, the ICI in the FC setting isIFC =
∑
j∈K

∑
xj∈Φj/xi

Pj‖xj‖−α. Assuming

a typical UE is associated with BSxi, the corresponding post-processing SIR for streamli is

SIRMRC−FC
xi,li

=
Pi

Si
‖xi‖−α(1− ε2i )H

MRC
xi,li

Pi

Si‖xi‖α

(
ĤMRC

xi,li
+ ε2i H̃

MRC
xi,li

)
+ IFC

. (14)

2In [36] a similar assumption made to quantify signal correlation of optimal-combining in SIMO ad hoc networks.
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Based on the adopted CA policy, the associated BS for a link is the one that its corresponding

smallest SIR valuesSIRMRC−FC
xi,li

across all data streams, is the maximum among all the BSs.

Therefore, the typical UE is in coverage if

AMRC−FC
all =

{
∃i ∈ K : max

xi∈Φi

min
li=1,...,Si

SIRMRC−FC
xi,li

≥ βi

}
, (15)

is not empty. An upper-bound on the corresponding coverage probability,PMRC−FC
C , is given in

the following proposition.

Proposition 3: In the FC setting, the coverage probability is upper-bounded as:

PMRC−FC
C ≤ π

C̃(α)
K∑

j=1

λjP α̌
j

∑

i∈K
λi

(
Pi(1− ε2i )

S2
i βi

)α̌

(Θ(βi, εi, Si))
Si . (16)

Proof: We prove the proposition by following the same line of argument as in the proof of

Proposition 1. In the FC setting, (7) is reduced to

PMRC−FC
C =

∑

i∈K
2πλi

∞∫

0

xiE{IFC}
Si∏

li=1

P
{

SIRMRC−FC
xi,l

≥ βi

∣∣IFC
}

dxi (17)

=
∑

i∈K
2πλi

∞∫

0

xi

Si∏

li=1

∞∫

0

L−1
F̄

HMRC
i

(ti)
(
1 + tiβi

1−ε2i

)Si−1

(1 + tiε2i βi

1−ε2i
)

∏

j∈K
EΦj

∏

xj∈Φj/xi

e
−ti

βiSixα
i

Pi(1−ε2
i
)
Pj‖xj‖−α

dti

(a)
=

∑

i∈K
2πλi

∞∫

0

xi

∞∫

0

. . .

∞∫

0

e
−x2

i C̃(α)

(
βiSi

Pi(1−ε2
i
)

)α̌ K∑
j=1

λjP α̌
j (

Si∑
li=1

tli
)α̌ Si∏

li=1

L−1
F̄

HMRC
i

(tli)
(
1 + tli

βi

1−ε2i

)Si−1

(1 + tli
ε2i βi

1−ε2i
)
dtli

(b)
=

π

C̃(α)
K∑

j=1

λjP α̌
j

∑

i∈K
λi

(
βiSi

Pi(1− ε2i )

)−α̌
∞∫

0

. . .

∞∫

0

(
Si∑

li=1

tli)
−α̌

Si∏

li=1

L−1
F̄

HMRC
i

(tli)
(
1 + tli

βi

1−ε2i

)Si−1

(1 + tli
ε2i βi

1−ε2i
)
dtli

(c)

≤ π

C̃(α)
K∑

j=1

λjP α̌
j

∑

i∈K
λi

(
βiS

2
i

Pi(1− ε2i )

)−α̌ ∞∫

0

. . .

∞∫

0

Si∏

li=1

t
− α̌

Si

li
L−1

F̄
HMRC

i

(tli)
(
1 + tli

βi

1−ε2i

)Si−1

(1 + tli
ε2i βi

1−ε2i
)
dtli

(d)
=

π

C̃(α)
K∑

j=1

λjP α̌
j

∑

i∈K
λi

(
βiS

2
i

Pi(1− ε2i )

)−α̌ Si∏

li=1

∞∫

0

t
− α̌

Si

li
L−1

F̄
HMRC

i

(tli)
(
1 + tli

βi

1−ε2i

)Si−1

(1 + tli
ε2i βi

1−ε2i
)
dtli

(e)
=

π

C̃(α)
K∑

j=1

λjP α̌
j

∑

i∈K
λi

(
βiS

2
i

Pi(1− ε2i )

)−α̌




∞∫

0

t
− α̌

Si
i L−1

F̄
HMRC

i

(ti)
(
1 + tiβi

1−ε2i

)Si−1

(1 + tiε2i βi

1−ε2i
)
dti




Si

,
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where in (a) we insert the Laplace transform ofIFC and in (b) the integrals are reordered and we

integrate the inner integral with respect toxi. In (c) arithmetic-geometric inequality is applied

followed by (d) and (e) where the fading gains,HMRC
xi,li

, are i.i.d. Applying the result of Appendix

A in (e), completes the proof. ¥

Comparing Propositions 1 and 3, we note that in general for the FC setting, the coverage

probability has a more simplified form. On the other hand, the upper-bound of the coverage

performance of a MIMO-MRC HetNet system is (almost) always higher than the same system

assuming the FC setting. This is because by noting that forα̌
Si
∈ (0, 1), there holds

Γ( α̌
Si

+Sj)

Γ(Sj)
. S

α̌
Si
j

[35]. Therefore, noticing that both (16) and (5) have the same nominator while the denominator

of the former is larger than that of the latter, we obtainPMRC−FC
C . PMRC

C . Consequently, we

can conclude that adding to the correlation among data streams of a communication link can

reduce the coverage probability. Although this result is based on the derived upper-bounds on the

coverage probabilities in (16) and (5), our simulation results in Section V confirm its credibility.

C. What If the Cross-Stream SIR Correlation Is Overlooked?

The above analysis shows that approximating a practical scenario based on the FC setting

results in underestimation of the coverage probability. Another way to simplify the coverage

analysis is to simply ignore the cross stream SIR correlation, i.e., statistically independent SIR

values. We refer to this case asno-correlation(NC) setting. Starting from (7) and assuming the

NC setting, the coverage probability in (7) is written as

PMRC−NC
C =

∑

i∈K
2πλi

∞∫

0

xi

Si∏

li=1

EΦP
{
SIRMRC

xi,li ≥ βi

∣∣Φ}
dxi. (18)

The coverage probability in (18) can then be written as:

PMRC−NC
C =

∑

i∈K
2πλi

∞∫

0

xi

Si∏

li=1

∞∫

0

L−1
F̄

HMRC
i

(ti)
(
1 + tiβi

1−ε2i

)Si−1

(1 + tiε2i βi

1−ε2i
)

∏

j∈K
EΦj

∏

xj∈Φj/xi

EGMRC
xj,li

e
−tli

βiSixα
i

Pi(1−ε2
i
)

PjGMRC
xj,li

Sj‖xj‖α

dti

(a)
=

∑

i∈K
2πλi

∞∫

0

xi

∞∫

0

. . .

∞∫

0

e
−x2

i Λ

(
βiSi

Pi(1−ε2
i
)

)α̌

(
Si∑

li=1
tα̌
li

) Si∏

li=1

L−1
F̄

HMRC
i

(tli)
(
1 + tli

βi

1−ε2i

)Si−1

(1 + tli
ε2i βi

1−ε2i
)
dtli

=
π

Λ

∑

i∈K
λi

(
βiSi

Pi(1− ε2i )

)−α̌
∞∫

0

. . .

∞∫

0

(
Si∏

li=1

tli

)−α̌ Si∏

li=1

L−1
F̄

HMRC
i

(tli)
(
1 + tli

βi

1−ε2i

)Si−1

(1 + tli
ε2i βi

1−ε2i
)
dtli
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=
π

Λ

∑

i∈K
λi

(
βiS

2
i

Pi(1− ε2i )

)−α̌ Si∏

li=1

∞∫

0

t−α̌
li
L−1

F̄
HMRC

i

(tli)
(
1 + tli

βi

1−ε2i

)Si−1

(1 + tli
ε2i βi

1−ε2i
)
dtli

(b)
=

π

Λ

∑

i∈K
λi

(
βiS

2
i

Pi(1− ε2i )

)−α̌




∞∫

0

t−α̌
i L−1

F̄
HMRC

i

(ti)
(
1 + tiβi

1−ε2i

)Si−1

(1 + tiε2i βi

1−ε2i
)
dti




Si

,

where in (a) we insert the Laplace transform of the ICI and further notice the definition ofΛ

as in Proposition 2. Denoting the integral in (b) byΘ̃(βi, εi, Si) and following the same line of

argument as in Appendix A, we evaluate this integral as

Θ̃(βi, εi, Si) ,
Nr−1∑
ri=0

ri∑
qi=0

qi∑
pi=0

(−1)qi−piβ2qi−pi

i

ε−4qi+2pi

i (1− ε2i )Si

(
1− ε2i + βi

)−qi−Si+1 (
1 + ε2i (βi − 1)

)−qi+pi−1

piB(Si − 1, pi)(ri − qi)B(α̌, ri − qi)
. (19)

Using this, (18) is then reduced to

PMRC−NC
C =

π

Λ

∑

i∈K
λi

(
Pi(1− ε2i )

Siβi

)α̌ (
Θ̃(βi, εi, Si)

)Si

. (20)

Note that NC setting is in fact an extreme case and thusPMRC−NC
C is not practically achievable.

This is simply because it does not comply with the max-SIR CA rule as in the NC setting,

an independent set of interferers appears on each data stream. Therefore, there might be cases

where the typical UE becomes associated with different BSs for different data streams. This,

however, contradicts the reality of the MIMO signal model as presented in 1.

We further note that, ašα ∈ (0, 1), by using Γ(α̌+Sj)

Γ(Sj)
. Sα̌

j a lower-bound onPMRC−NC
C is

PMRC−NC
C &

π
∑
i∈K

λi

(
Pi(1−ε2i )

S2
i βi

)α̌ (
Θ̃(βi, εi, Si)

)Si

C̃(α)
K∑

j=1

λjP α̌
j

≥
π

∑
i∈K

λi

(
Pi(1−ε2i )

S2
i βi

)α̌

(Θ(βi, εi, Si))
Si

C̃(α)
K∑

j=1

λjP α̌
j

= PMRC−FC
C .

where the second inequality is becauseΘ̃(βi, εi, Si) ≥ Θ(βi, εi, Si). To confirm this, we notice

that the beta function is a decreasing function of its argument, and observing that by compar-

ing Θ̃(βi, εi, Si) in (19) andΘ(βi, εi, Si) in (6), we note that for a given positive numbera,

Θ̃(βi, εi, Si)−Θ(βi, εi, Si) ∝ 1
B(α̌,a)

− 1
B( α̌

Si
,a)

.

On the other hand, sinceα̌
Si
∈ (0, 1), there holds

Γ( α̌
Si

+Sj)

Γ(Sj)
> S

α̌
Si
j Γ(1+ α̌

Si
) [35]. Applying this,

PMRC
C in (5) is further upper-bounded as

PMRC
C ≤

π
∑
i∈K

λi

(
Pi(1−ε2i )

S2
i βi

)α̌ (
Θ(βi, εi, Si)Γ(1 + α̌

Si
)
)Si

C̃(α)
K∑

j=1

λjP α̌
j

≤
π

∑
i∈K

λi

(
Pi(1−ε2i )

S2
i βi

)α̌

(Θ(βi, εi, Si)))
Si

C̃(α)
K∑

j=1

λjP α̌
j

≤ PMRC−NC
C ,
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where the last line is becauseΓ(1+ α̌
Si

) ≤ 1 for α̌
Si
∈ (0, 1). Consequently, using the NC setting,

the coverage probability is basically overestimated. This implies that the common approach

that focuses on either isolated scenarios or non-isolated scenarios but with emphasis of the

characterization of MIMO communications from the perspective of a data stream is essentially

overestimation of the actual performance of the network.

V. SIMULATION RESULTS

In this section, we use simulations to evaluate the performance of a MIMO-MRC HetNet

setting and further examine the accuracy of the developed analysis. The simulated system is a

2-tier HetNet, i.e.,K = 2. The macro BS in the first tier has a high Tx power ofP1 = 50W. The

second tier consists of femto BSs with a low Tx power ofP2 = 1W. The path-loss exponent is

α = 4, and the CSI estimation errorεi = 0.1 ∀i, N t
1 = N t

2 = 16. In a disk with radius10, 000

units, we randomly drop BSs of each tier according to the corresponding tier densities. We set

λU = 1 so all the BSs are assumed to be active. We apply Monte Carlo technique and analyze

40, 000 snapshots of simulations. In each snapshot the MIMO channels are randomly generated.

For the UEs, the corresponding SIR values are then calculated based on the MRC receiver.

A. Impact of Path-loss Exponent, CSI Estimation Error, and SIR Threshold

Fig. 5.a shows the coverage probabilityvs.the estimation error,ε = εi, ∀i, for several values of

the path-loss exponent,α. The bound obtained in Prop. 1 is shown to be close to the simulation

result. Also, increasing the CSI inaccuracy is shown to reduce the coverage performance. This

is because the interference on each data stream is increased due to the CSI inaccuracy. It is also

seen in Fig. 5.a that increasing the path-loss exponent improves the outage performance. Noting

that a largerα implies a smaller signal strength, the improved outage performance suggests that

the ICI is the main limiting factor.

Fig. 5.a also shows that in contrast to the cases with a smaller path-loss exponent (e.g., outdoor

communications), the coverage is not significantly affected by the CSI inaccuracy where the

path-loss exponent is high (e.g., indoor communications). This suggests that a simpler transceiver
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Fig. 5. (a): Coverage Probabilityvs. the CSI estimation error. (b): Coverage Probabilityvs. β2.

design or/and signaling protocol can be used without any significant compromise of the coverage

probability. Fig. 5.b shows the coverage probability versusβ2. The bound obtained in Prop. 1

is is shown to be sufficiently accurate even for small values ofβ2. It also shows that a higher

β2 results in a lower coverage performance.

B. Impact of Densificaiton and Multiplexing Gains

In Figs. 6 and 7 the coverage probability is given versusλ1. We consider 5 settings (Stg)

of multiplexing gains between two tiers, where Stg1, Stg2, Stg3, Stg4, and Stg5, respectively,

refer to (S1 = 1, S2 = 1), (S1 = 4, S2 = 1), (S1 = 4, S2 = 2), (S1 = 1, S2 = 2), and

(S1 = 8, S2 = 2). Fig. 6 shows the coverage performance for Stg1, Stg2, and Stg3. The results

of Stg1, Stg4, and Stg5 are plotted in Fig. 7. Both figures show the outage performance for

λ2 = 10−3, andλ2 = 10−2.

It is seen in Figs. 6 and 7 that the analytical result presented in Prop. 1 closely follows

the simulation results. It is also observed that a single stream communications, Stg1, generally

outperforms the other combinations of multiplexing gains, regardless of the density of the BSs

in both tiers. For the single stream case, it is also seen that densification in tier1 always results

in a higher improvement in the coverage probability. Nevertheless, comparison of Fig. 6.a with
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Fig. 6.b (resp. Fig. 7.a with Fig. 7.b) suggests that the improvement of the coverage probability

by increasingλ1 is reduced if tier 2 is also densified at the same time.

Fig. 6 also shows that for a small to moderateλ1, increasingS1 from 1 to 4 (Stg1→ Stg2)

does not compromise coverage performance. However, for a sufficiently largeλ1, the coverage

performance in Stg2 is significantly reduced. Comparing Fig. 6.a with Fig. 6.b, we further

observe that for a higher value ofλ2, the positive impact of having a largerS1 on the coverage

performance is lower. Therefore, densification in tier 2 allows the growth of multiplexing gain in

tier 1. This is because for a largerλ2, the UEs are more likely to be associated with the BSs in

tier 2. This is because the successful decoding of a data streams whereS2 = 1 is more probable

than that ofS1 = 4, so the coverage probability is improved.

Results in Fig. 7 show that for a small to moderateλ1, increasingS2 from 1 to 2 (Stg1→
Stg4) substantially reduces the coverage performance. To tackle this problem, one may consider

increasingλ1 which reduces the performance gap. For a very dense tier 1, the coverage per-

formance of Stg1 and Stg4 are then converged. Comparing Fig. 7.a with Fig. 7.b, one can see

that by increasingλ2, the impact ofS2 on the coverage performance is increased. Therefore,

when densifying tier 2, increasing its multiplexing gain is not recommended. This is because

for a largerλ2, the UEs are more likely to be associated with the BSs in tier 2. The chance of

successful decoding ofS2 = 2 is less than that ofS2 = 1, and hence the coverage probability is

reduced. To address this issue, one might densify tier 1. By increasingλ1, UEs are more often

associated with the BSs in tier 1, whereS1 = 1 and it is more likely for the data stream to be

successfully decoded.

It is further seen in Figs. 6 and 7 that both Stg3 and Stg4 similarly perform with a low

coverage performance, where densification neither in tier 1 nor in tier 2, can compensate the

significant coverage reduction compared to Stg1. This is because in cases where bothS1 andS2

are high, successful decoding of data streams is less likely, even for a high density of the BSs.

For such cases, reducing the multiplexing gains seems the only way to improve the coverage

performance.
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Fig. 6. (a): Coverage Probabilityvs. λ1 whenλ2 = 10−3; (b): Coverage Probabilityvs. λ1 whenλ2 = 10−2, whereβ1 = 5,

β2 = 10, andNr = 10.
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Fig. 7. (a): Coverage Probabilityvs. λ1 whenλ2 = 10−3; (b): Coverage Probabilityvs. λ1 whenλ2 = 10−2, whereβ1 = 5,

β2 = 10, andNr = 10.

C. Impact of the SIR Correlation

In Section IV we quantitatively investigated the impact of SIR correlation on the coverage

probability. We show that under FC setting the upper-bound of the coverage probability is

underestimated, whereas by ignoring SIR correlation, the coverage probability is overestimated.

These results in Figs 5, 6, and 7 confirmed the above analysis.
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We further observe that the coverage probability in the NC settingsubstantiallyoverestimates

the coverage performance, while surprisingly the FC settingslightly underestimates the coverage

performance. From Fig. 5.a we also notice that for a smallerα, the coverage probability in the

FC setting becomes more accurate for the same reason as the observation made in Fig. 4, where

a smaller path-loss exponent results in a larger SIR correlation.

VI. CONCLUSION

Adopting tools of stochastic geometry, we studied the coverage probability of MIMO-MRC

multiplexing systems in HetNets. Our analysis incorporated impacts of many important system

parameters including the density of BSs, transmission powers, SIR thresholds, multiplexing

gains, and CSI inaccuracies on the coverage performance. We derived an accurate upper-bound

on the coverage probability in a closed-form. Important engineering insights were derived from

scrutinizing our analytical and simulation results: (i) densification in multiplexing systems will be

practiced in conjunction with multiplexing gains, else dramatic coverage loss might be inevitable;

(ii ) in indoor scenarios (high path-loss exponent regimes) it is possible to reduce the pilot

signaling overhead designated for CSI estimation without imposing noticeable coverage loss; (iii )

although MRC suffers from intra-stream interference in comparison to more complex receivers

such as ZFBF, the relative coverage loss in large array scenarios and/or for cell edge users is

barely noticeable.

We also developed analytical tools facilitating thorough investigations of the impacts of cross-

stream SIR correlation on the coverage performance of multi-stream systems. Specifically, by

focusing on the communication scenarios that the successful decoding of all transmitted data

streams are required for the coverage, assuming full correlation among data streams is shown

to yield a slightly smaller coverage performance. On the other hand, our analysis proved that

by neglecting such correlation, as commonly assumed in the literature, one should expect a

substantial overestimation of the coverage probability.

The results in this paper can be further utilized for performance bench-marking, where the

performance of advanced MIMO techniques is compared to zero-feedback MRC. Such a com-
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parison provides quantitative insights on the cost versus the benefit of adopting such techniques,

e.g., the higher computational complexities and the required signaling overheads versus the gain

on the coverage. Besides, our results provide an analytical tool for designing system parameters

and aspects such as the required CSI accuracy and network coverage performance based on the

wireless environment characteristics, such as path-loss exponent.

APPENDIX A: CLOSED-FORM FOR (9)

Using the characteristics of Dirac delta function, we write

∞∫

0

t
− α̌

Si
i L−1
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i
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1
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Applying the Leibniz rule along with straightforward mathematical derivation we then get
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Using this, (21) is then re written as

(21) =
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ri=0

ri∑
qi=0

qi∑
pi=0

(−1)qi−piβ2qi−pi

i

ε−4qi+2pi

i

(
1− ε2i + βi

)−qi−Si+1 (
1 + ε2i (βi − 1)

)−qi+pi−1

(1− ε2i )SipiB(Si − 1, pi)(ri − qi)B( α̌
Si

, ri − qi)
. (23)

Page 25 of 35 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

26

APPENDIX B: PROOF OFPROPOSITION2

We start with the evaluation ofSIR
MRC

xi,li
. Due to the independence of the intended and

interfering signals, and noting thatHMRC
xi,li

is a chi-square distributed with2N r DoFs, we write
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Using
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0
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where in (a) the independence ofr.v.s is used, and in (b) we insert the Laplace transforms of

r.v.s H̃MRC
xi,li

, which is a chi-square distributed r.v. with2(Si − 1) DoFs, andH̃MRC
xi,li

, which is

exponentially distributed, at pointPi

Si
x−α

i . In the last step, the following formula is used [50]:
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To evaluateVar(SIRsvd
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Combining (26) and (27),Var(SIRsvd
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where
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xi,li )+
∑

j∈K

∑

xj∈Φj/xi

PjG
MRC
xj ,li

Sj‖xj‖α

)−1(
Pi

Sixα
i

(ε2i H̃
MRC
xi,l′i
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Inserting (30) in (29), yields:
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where in the last step we apply (25) in which̄Wj(t, τ) is W̄j(t, τ) = E
[
(tGMRC

xj ,l′i
+ τGMRC

xj ,l′i
)α̌

]
.

This is then simplified to (13) noting the independence ofGMRC
xj ,l′i

, and GMRC
xj ,l′i

. The proof is

completed by obtaining (12) through combining (28) and (31), and inserting the result as well

as the obtained formulas forVar(SIRsvd
xi,li

) and SIR
MRC

xi,li
into the definition of SIR correlation

coefficient in (11).
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Abstract— We study the coverage performance of multi-
antenna (MIMO) communications with maximum ratio combin-
ing (MRC) at the receiver in heterogeneous networks (HetNets).
Our main interest in on multi-stream communications when
BSs do not have access to channel state information. Adopt-
ing stochastic geometry we evaluate the network-wise coverage
performance of MIMO-MRC assuming maximum signal-to-
interference ratio (SIR) cell association rule. Coverage analysis
in MIMO-MRC HetNets is challenging due to inter-stream
interference and statistical dependencies among streams’ SIR
values in each communication link. Using the results of stochastic
geometry we then investigate this problem and obtain tractable
analytical approximations for the coverage performance. We
then show that our results are adequately accurate and easily
computable. Our analysis sheds light on the impacts of important
system parameters on the coverage performance, and provides
quantitative insight on the densification in conjunction with high
multiplexing gains in MIMO HetNets. We further observe that
increasing multiplexing gain in high-power tier can cost a huge
coverage reduction unless it is practiced with densification in
femto-cell tier.

I. I NTRODUCTION

Traffic demands of cellular networks—heavily driven by the
popularity of video streaming and mobile social networking—
are rapidly growing. Densification is one of the main ap-
proaches operators are advocating to smoothly deal with this
unprecedented deluge of traffic [1]. Spectral efficiency is
expectedly growing substantially because of small communi-
cation distance and universal frequency reuse. Much better
performance will be, on the other hand, materialized by vastly
exploiting multi-antenna (MIMO) techniques.

Nevertheless, the network performance of MIMO communi-
cations in conjunction with densification and heterogeneity is
yet to be truly understood. One way to pave the road for such
comprehensive assessment of the network can be achieved by
adopting tools from stochastic geometry. It has been vastly
employed for evaluation of the various performance metrics
in wireless networks including heterogeneous networks (Het-
Nets), see, e.g., [2], [3]. Work of [2] has proposed a flexible
approach in modeling the network byK tiers of indepen-
dent Poisson point processes (PPPs) and maximum signal-
to-interference ratio (SIR) for purpose of cell association
(CA). Authors in [4] have then used the framework of [2]
for studying the coverage and rate performances of MISO
HetNets. By providing ordering results, it has been shown

that in some scenarios space-division multiple access (SDMA)
was an inferior scheme to single user eigen-beamforming. In
[5], [6] area spectral efficiency of MISO-SDMA systems has
investigated assuming CA rule of maximum average received
power. In [7] the outage performance of space-time block
codes at the transmitters and optimal combining received filters
have studied. Work of [8] has focused on the advantages of
interference cancellation in zero-forcing based received filters
in enhancing the coverage performance of cellular systems.
However, the CA rules of [7], [8], [9] are simply a duplicate
of the counterpart in single-antenna (SISO) systems of e.g.,
[3]. It is then very compelling to develop analysis based on
CA rules that comprehensively encompass the traits of MIMO
communications in improving multiplexing and diversity. For
this reason, we here focus on maximum SIR rule.

We chiefly focus on multi-stream MIMO-MRC HetNets.
Despite the practical significance of MIMO-MRC — chiefly
because of its straightforward implementations, affordable
computational complexities, and near to zero feedback over-
heads — the literature dealing with its performance in HetNets
is small. This is because of inherent complexities rooting from
residual interference among data streams each communication
link suffers from. It was however previously studied in the
literature of ad hoc communications, see. e.g., [10]. But, in
comparison to cellular systems in ad hoc communications the
network configuration lacks CA stage, which render inappli-
cability of the derived results therein for HetNets. Besides,
in the literature of MIMO communications, both ad hoc and
cellular systems, the coverage probability per a data stream
was merely studied, while in reality coverage probability per a
communication link (global coverage probability) comprising
of multiple streams is the main performance metric. To bridge
such gaps, we therefore provide accurate approximations on
the latter metric via analysis. The derived bounds explicitly
capture the impacts of important system parameters such as
density of BSs and multiplexing gains. Our results, further,
indicate that, in general, increasing multiplexing gains worsens
the coverage performance of HetNets.

II. SYSTEM MODEL

Consider downlink communication paradigms in heteroge-
neous cellular networks (HetNets) comprising ofK ≥ 1 tiers
of randomly located BSs. BSs of tieri ∈ K are spatially
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distributed according to a homogenous Poisson Point Process
(PPP)Φi with given spatial densityλi ≥ 1 [2]. For mathe-
matical tractability we assume that the processes are mutually
independent. Each tieri can entirely be characterized with the
parameters: spatial density of BSsλi , transmission power of
BSsPi Watts, SIR thresholdβi ≥ 1, number of BS’s transmit
antennasN t

i , and finally the number of scheduled streams
Si ≤ min{N t

i , N
r}. Si is referred to as multiplexing gain

here. Also,Nr is the number of antennas user equipments
(UEs) possess. The modelled system of multi-stream data
communication is considered asSi pipes of information as
[11], [10]. UEs also randomly scattered across the network
and form a PPPΦU , independent of{Φi}s, with density
λU À ∑

i λi. At each given time slot only one UE is served
per active cell [12], [4], [7]. In the case that more that one UE
is associated with a given BS time-sharing per cell is adopted
for scheduling.

Note that according to Slivnayak’s theorem and thanks to
the stationarity of the point processes [13], [14], the spatial
performance of the network can be adequately obtained from
the eye of atypical UEpositioned at the origin. Let the typical
UE be associated with BSxi transmittingSi data streams.
Denoteyxi

∈ CNr×1 as the received signal:

yxi
= ‖xi‖−α

2 Hxisxi +
∑

j∈K

∑

xj∈Φj/x0

‖xi‖−α
2 Hxj sxj , (1)

where sxi = [sxi,1 . . . sxi,Si ]
T ∈ CSi×1, so that sxi,l ∼

CN (0, Pi/Si), is the transmitted streams at BSxi, Hxi ∈
CNr×Si is the intended fading channel matrix between BS
xi and the typical UE with entries independently drawn
from CN (0, 1), i.e., Rayleigh fading assumption. Transmitted
signals are assumed independent. Likewise, channel matrices
are independent.‖xi‖−α is the distance-dependent path-loss
attenuation where‖xi‖ denotes the Euclidian distance between
BS xi and the origin, andα > 2 is the path-loss exponent.
We further defineα̌ = 2/α. We assume that the typical UE
knowsHxi perfectly—perfect CSI at the receiver (CSIR).

We focus on the scenarios that BSs do not have access to
the channel state information at the transmitter (CSIT). Thus
BSs of each tieri simply turn onSi transmit antennas and air
information-bearing signals with fixed transmission powerPi

that is equally divided among the transmitted data streams—
open-looptechnique [10], [11]. For the specific purpose of
this paper maximum ratio combining (MRC) at the receiver
is considered. Accordingly, for decodingli-th stream of data
the typical receiver extractsli-th column of matrixHxi and
multiplies its corresponding conjugate with the received vector
(1). Let r.v.s Hmrc

xi,li
be chi-squared with2Nr DoFs,H̃mrc

xi,li
be

chi-squared with2(Si − 1) DoFs, andGmrc
xj ,li

be chi-squared
with DoF 2Sj , respectively, standing for the intending channel
power gains associated withli-th data stream, inter-stream
interference on streamli caused by streamsl′i 6= li, and
inter-cell interference (ICI) caused by BSsxj 6= xi on data
streamli. Regarding [10] we can show that the SIR expression

associated withli-th data stream is

SIRmrc
xi,li =

Pi

Si
‖xi‖−αHmrc

xi,li

Pi

Si
‖xi‖−αH̃mrc

xi,li
+

∑
j∈K

∑
xj∈Φj/xi

Pj

Sj
‖xj‖−αGmrc

xj ,li

.

(2)
Per each stream and across streams all fading coefficients are
independent. Also, (2) is identically, but notindependently,
distributed across streams. The nominator and denominator of
(2) are respectively represent the effective power of intended
signal of streamli and inter-stream interference plus ICI.

III. C OVERAGE ANALYSIS

We merely consider fixed-rate transmission (FRT) scheme,
in which the transmission rate on each streamli is constant,
and equal toRxi,li = log (1 + βi) bit/sec/Hz, assuming that
the typical UE is associated with BSxi. Typical UE is
associated with the best BS that its weakest stream is stronger
than the corresponding SIR threshold. To declare the coverage
per communication link, FRT scheme mandates that at allSi

scheduled streams the corresponding SIR values satisfy the
required SIR thresholdβi ≥ 1, i.e., the typical UE is claimed
to be in coverage if set

Afrt =
{
∃i ∈ K : max

xi∈Φi

min
li=1,...,Si

SIRmrc
xi,li ≥ βi

}
, (3)

is nonempty. We therefore define coverage probabilityomrc
frt =

P{Afrt 6= ∅}. Note that exact evaluation ofomrc
frt is very

complex mainly because of dependency of SIR values (2)
across streams per each communication link as well as the
inter-stream interference on each stream. We thus in the
following resort to approximating the coverage probability.

Proposition 1: With MIMO-MRC and maximum SIR CA
rule, the coverage performance can be approximated as

omrc
frt ≤

∑
i∈K

π

C̃(α)

(
Pi

Siβi

)α̌
λi

Sα̌
i

(
Nr−1∑
ri=0

(−1)ri

ri!
dri

dtri
t
− α̌

Si

(1+tβi)
Si−1

∣∣∣
t=1

)Si

K∑
j=1

λj

(
Pj

Sj

)α̌
(

Γ( α̌
Si

+Sj)

Γ(Sj)

)Si
.

(4)
Proof: See the Appendix.

(4) demonstrates impacts of many important system pa-
rameters such as deployment density, transmission power,
multiplexing gain, and SIR threshold of tiers. Note that, in
general the nominator and denominator of (4) are respectively
corresponding to the intended communication link and ICI.
On the other hand, the impact of inter-stream interference
is captured by(1 + tβi)

Si−1 that solely depends on SIR
threshold and multiplexing gain.

Please note that evaluation of (4) is actually computationally
affordable. But, it is yet possible to provide bounds excluding
the evaluation of high-order derivatives as is carried out in
following:

Proposition 2: Another approximation on the coverage
probability of MIMO-MRC system with maximum SIR CA
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rule might be

omrc
frt ≈ π

C̃(α)

∑

i∈K

λi

(
Pi

S2
i βi

)α̌ (
Nr−1∑
ri=0

Γ( α̌
Si

+
Si−1

2 +ri)

Γ( α̌
Si

+
Si−1

2 )Γ(1+ri)

Si−1∑
li=0

(Si−1
li

)β
li
i

)Si

∑
j∈K λj

(
Pj

Sj

)α̌
(

Γ( α̌
Si

+Sj)

Γ(Sj)

)Si
,

(5)
Proof: To prove this claim, we apply the following heuristic
approximation

(1 + tiβi)
Si−1 =

Si−1∑

li=0

(
Si − 1

li

)
βli

i tli
i ≈ t

Si−1
2

i

Si−1∑

li=0

(
Si − 1

li

)
βli

i .

Using this, equation (10) in appendix is reduced to

=
∑
i∈K

π

C̃(α)

(
Pi

Siβi

)α̌
λi

Sα̌
i

(
Si−1∑
li=0

(
Si−1

li

)
βli

i

)−Si

K∑
j=1

λj

(
Pj

Sj

)α̌
(

Γ( α̌
Si

+Sj)

Γ(Sj)

)Si




∞∫

0

LF̄Hmrc
i

(ti)

t
α̌
Si

Si−1
2

i




Si

.

The claimed result is then obtained recalling thatHrmc
i is chi-

squared r.v. with DoF2Nr.
Corollary 1: Let Si = 1 ∀i and Nr = 1, thus (4) is

reduced tooSISO = π
C(α)

∑
i∈K λi

(
Pi
βi

)α̌

∑
j∈K λjP α̌

j
, which coincides with

the result of [2] of single-antenna (SISO) HetNets.
Corollary 2: Let Si = 1 ∀i thus oSIMO =

oSISO

Nr−1∑
r=0

Γ(α̌+r)
Γ(α̌)Γ(1+r) .

Note that in the case of SIMO scenario the results are
actually accurate. On the other hand, by comparing SISO and
SIMO cases it is easy to confirm that

oSIMO

oSISO
=

Nr−1∑
r=0

Γ(α̌ + r)
Γ(α̌)Γ(1 + r)

.

Using this result, one may show that by applying Kershaws
inequality [15] we have

Γ(α̌)
oSIMO

oSISO
≥

Nr−1∑
r=0

(r + 0.5α̌)α̌−1 ≈
Nr−1∫

0

(z + 0.5α̌)α̌−1
dz,

or equivalentlyozf
SIMO

oSISO
∝ (Nr)α̌.

IV. SIMULATION RESULTS

In this section we present simulation results. For clarity we
setK = 2. The simulation results are based on Monte Carlo
technique.

We study the accuracy of the analytical findings of the paper
against deploying densities of the BSs in Fig. 1 and Fig. 2.
In the former (the later) we fixλ1 = 10−4 (λ2 = 10−4)
and changeλ2 (λ1). As it is seen Proposition 1 provides
accurate bound on the coverage probability while the accuracy
of Proposition 2 is generally questionable. However, there
are scenarios, see, Fig. 2 case ofS1 = 6 and S2 = 2, that
Proposition 2 is also accurate.
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Fig. 1. λ1 = 10−4. α = 4, Nr = 10, P1 = 50 W, P1 = 10W, β1 = 2,
andβ2 = 5.
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Fig. 2. λ2 = 10−4. α = 4, Nr = 10, P1 = 50 W, P1 = 10W, β1 = 2,
andβ2 = 5.

Moreover, both of these illustrations highlight many im-
portant trends showing the impacts of multiplexing gains and
densifications on the coverage performance.

First, as Fig. 1 reveals whenλ1 is fixed (the density of
high-power BSs in tier 1) by increasingλ2 smaller coverage
will follow if S1 = S2. In the contrary, Fig. 2 indicates that
whenλ2 is kept fixed (density of low-power BSs in tier 2) by
increasingλ1 higher coverage performance is resulted again
whenS1 = S2. In fact, for the cases that the multiplexing gains
are the same across the tiers, the coverage probability could
decrease/increase depends upon the tier that the densification
is practiced in. The findings of these illustrations indicate
that for such cases it is better to densify the tier with higher
transmission power.

Second,on the other hand, Fig. 1 shows that for fixed
λ1, increasingλ2 is beneficial and renders higher coverage
performance whenS1 = 6 and S2 = 2. Fig. 2 further
highlights that whenS1 = 6 and S2 = 2 and λ2 is fixed,
increasingλ1 extremely exacerbates the coverage probability.
Consequently, in scenarios that multiplexing gains are not the
same it is better to densify the tier corresponding to low-power
and low multiplexing gain.

Third, for high values ofλ2 Fig. 1 indicates that both
scenarios ofS1 = 6, S2 = 2 and S1 = S2 = 2 perform the
same. While, Fig. 2 indicates that for high values ofλ1 there is
a huge gap between the coverage probability of regimeS1 = 6,
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S2 = 2 and coverage probability of regimeS1 = S2 = 2. In
the other words, when the network is ultra-dense in low-power
tier, it is possible to increase the multiplexing gain of high-
power tier without worrying about the coverage performance.

In summary, the above observations suggest that increasing
the density of low power BSs (tier two) should be interpreted
as a welcome for the growth of the multiplexing gains of tier 1
without damaging the coverage performance. Moreover, if we
are allowed to practice densification in tier 1, it could render
higher performance provided that the similar multiplexing
gains are set across the all tiers.

According to the results of both Fig. 1 and Fig. 2 we
observe that increasing the density of low power BSs of tier
2 yields a much profound impact on the coverage probability
than does tier 1. For example, 10 fold densification of tier
2 (tier 1) changes the coverage performance by more than
300% (100%). This is actually very important from practical
viewpoints because installing more low-power BSs is more
economically feasible than increasing the density of high-
power BSs of tier 1. Finally, both of these figures confirm that
for large values ofλ1 as well asλ2 the coverage probability
is stable and does not responde to densities, which is known
as scale invariancy phenomenon in the literature [2].

V. CONCLUSIONS

We studied the coverage performance of multi-antenna
(MIMO) communications with multi-stream maximum ratio
combining (MRC) at the receiver in heterogenous networks
(HetNets) when BSs did not have access to channel state infor-
mation. We utilized powerful tools of stochastic geometry and
PPP to comprehensively evaluate the network-wise coverage
performance of MIMO-MRC when the cell association rule
was maximum signal-to-interference ratio (SIR). Our analysis
provided accurate, and easy-to-use bound of the coverage per-
formance. Combined with simulations, it further demonstrated
various important aspects of denseness and high multiplexing
gains in HetNets. It was observed that increasing multiplexing
gains could severely damage the coverage probability unless it
practiced in high-power, low density tier in conjunction with
densified low-power tier.
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APPENDIX: PROOF OFPROPOSITION1

According to Lemma 1 in [2] and recalling that we have
assumedβi ≥ 1 ∀i, we can write

omrc
frt =

∑

i∈K
E

∑

xi∈Φi

1
(

min
l=1,...,Si

SIRmrc
xi,l ≥ βi

)
. (6)

(6) is further simplified as:

omrc
frt =

∑
i∈K

2πλi

∞∫

0

xiP
{

min
li=1,...,Si

SIRmrc
xi,li ≥ βi

}
dxi

=
∑
i∈K

2πλi

∞∫

0

xiE{Φj}

Si∏

li=1

P
{
SIRmrc

xi,l ≥ βi

∣∣{Φj}
}

dxi (7)

where the first step is because of Campbell’s theorem [13], and
in step 4 we have used the fact that conditioned on processes
Φjs SIR values across streams are statistically independent.
For fix value of xi, we now provide an expression for
P

{
SIRmrc

xi,li ≥ βi

∣∣{Φj}
}

as follows

P
{
SIRmrc

xi,li ≥ βi

∣∣{Φj}
}

= P
{

Hmrc
xi,li ≥

Siβix
α
i

Pi

Pi

Si
x−α

i H̃mrc
xi,li

+
Siβix

α
i

Pi

∑
j∈K

∑

xj∈Φj/xi

Pj

Sj
‖xj‖−αGmrc

xj ,li

∣∣{Φj}
}

=

∞∫

0

L−1
F̄Hmrc

i

(ti)
∏
j∈K

∏

xj∈Φj/xi

EGmrc
xj,li

e
−tiβi

Si
Pi

xα
i

Pj
Sj
‖xj‖−αGmrc

xj,li
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×Ee
−tiβiH̃mrc

xi,li dti

=

∞∫

0

L−1
F̄Hmrc

i

(ti)

(1 + tiβi)
Si−1

∏
j∈K

∏

xj∈Φj/xi

EGmrc
xj,li

e
−tiβi

Si
Pi

xα
i

Pj
Sj‖xj‖α Gmrc

xj,li dti

(8)
whereL−1

F̄Hmrc
i

(ti) is the inverse Laplace transform ofHmrc
i

which is equal toL−1
F̄Hmrc

i

(ti) =
Nr−1∑
m=0

1
m!δ

(m)(t−1) [16], such

that
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0

e−tihL−1
F̄Hmrc

i

(ti)dti = e−h
Nr−1∑
l=0

hl

l! , andδ(m)(t) is the

m-th derivative of Dirac delta function. Note that in (8) we
have discarded indexli from L−1

F̄Hmrc
i

(ti) due to the fact that

Hmrc
xi,li

are identical r.v.s across streams. Substituting (8) into
(7) and applying some straightforward manipulations, it is then
seen that

omrc
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∑
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Si∏
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as r.v.sGmrc
xj ,li

are i.i.d. across streams. Consequently,
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where in the last step we have applied following formula [17]:

EΦj

∏
xj∈Φj
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Consequently,
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Unfortunately, direct evaluation of (9) seems highly un-
tractable. Instead, we in the following resort to the arithmetic-
geometric inequality for deriving an upper-bound, i.e.,
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Utilizing this, (9) can be upper-bounded by
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(10)
where the last step was due to the fact that r.v.sGmrc

xj ,li
are

i.i.d. across streams. Note that
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Also, recalling that r.v.sGmrc
xj ,li

are chi-squared with DoF2Sj ,

it is straightforward to show thatEGmrc
j

(Gmrc
j )

α̌
Si =

Γ( α̌
Si

+Sj)

Γ(Sj)

By substituting (11) into (10) the desired result is obtained.

Page 35 of 35 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


