
AppIS: Protect Android Apps
Against Runtime Repackaging Attacks

Lina Song†, Zhanyong Tang†∗, Zhen Li†, Xiaoqing Gong†, Xiaojiang Chen†, Dingyi Fang†, Zheng Wang‡
†School of Information Science and Technology, Northwest University, Xi’an, China

‡School of Computing and Communications, Lancaster University, UK.

Abstract—Apps repackaged through reverse engineering pose a
significant security threat to the Android smart phone ecosystem.
Previous solutions have mostly focused on the detection and
identification of repackaged apps. Nevertheless, current app
anti-repackaging services can only protect applications at a
coarse level and have significant performance overhead. These
approaches can neither meet the performance requirements of
Android nor achieve fine-grained protection against cumulative
attack1 at the same time. Specifically, these solutions rely on a
fix-structure detecting engine and then will execute the same path
at different times, which lead to the whole protection performs
poorly when faced with dynamic cumulative attack, which is
typical in real-world attack.

This paper introduces the AppIS, a reinforced anti-
repackaging immune system, that is robust to app-repackaging
attack scenarios. Unlike past work, which mostly focuses on
simple protection only from just one respect, our design exploits
an interlocking guarding net with time diversity for the tamper-
proofing of Android applications. The intuition underlying our
design is that a dynamic and static combining method can provide
a multi-level protection for the codes, core algorithm and sensitive
data. We analyze and classify the existing threats on Android
platform and furthermore abstract then model the repackaging
attack scenarios. We then adapt a random controller used by
the dispatcher to randomly construct guarding net with different
structure every time. We have built a prototype of our design
using Java Native Interface cross-layer calling mechanism for
performance requirement. Results from a deployment of AppIS
on three kinds of popular apps demonstrate that the new design
can prevent our apps from cumulative attack without extra
performance cost.

I. INTRODUCTION

How many times have you found that your mobile phones
are installed useless bundled software by default but you only
download a legitimate one? Unfortunately, that legitimate one
was repackaged. Protecting apps from repackaging like this
occasion is also a major problem in the official marketplaces
(e.g., Google Play and Apple Store) as well as third-party
alternative Android marketplaces, where repackaged apps are
hosted. The industry is seeking a solution to this problem
and recently trys to adopt an online security service for
app reinforcement. For example, Bangcle, a new mobile app
security service provider, is able to provide the app developers
with security assessment, application reinforcement, channel
monitoring and other services. Current app anti-repackaging

∗Corresponding author. Email address: zytang@nwu.edu.cn
1In this paper, we define the attack process that requires the attacker to

repeatedly initiate attack for accumulating attack lessons as the cumulative
attack.

services, however, can only provide a coarse-grained check-
sum protection but will greatly reduce the performance be-
cause of the insertion of a lot of other code, which is still
inadequate in resisting cumulative attack. In addition, there are
many other potential threats in the process of app uploading.
For example, some attackers may use cumulative attacks to
get the execution control flow and then get the key code or
algorithm by constantly debugging trace. At the same time,
developers also hope that their apps are strong enough to
deal with the cumulative attack in the absence of any per-
formance cost. Fine-grained anti-repackaging protection with
high performance is also indispensable for some application
marketplaces like official Android markets and other third-
party alternative marketplaces.

App anti-repackaging protection has recently received much
attention. There are two main research directions in this field,
i.e., detection and recognition of infected apps, as well as rein-
forcement before being released to markets. Some researchers
have implemented these methods. However, while the detec-
tion and recognition of repackaged apps is a belated protection
which seriously damages the interests and enthusiasm of the
majority of app developers, the current app reinforcement
can only address the symptoms temporarily just one time,
but cannot cope with sophisticated cumulative attack. Indeed,
these attacks are widely existed in real life.

This paper introduces AppIS, a scalable and effective coun-
termeasure for anti-repackaging, which is an app reinforcing
framework like biological immune system of humans. In
line with common practice in application protection, AppIS
employs added security units as guards with interlocking
relationship between each other. To better cope with cumu-
lative attacks, both static and dynamic mechanism should be
invoked here. The challenge however is how to design a guard
net with time diversity, which means constructing different
net structures at different times without extra performance
overhead.

Unlike past approaches, which mostly focuses on consid-
ering the complexity of protecting scheme to protect apk
file while ignoring the high performance overhead brought to
Android, AppIS exploits an interlocking dynamic-dispatching
guard net of time diversity, whose net structure is produced
from static defense net, invoking more efficient C/C++ codes
in native layer via Java Native Interface(JNI), to achieve multi-
level protection and high performance of dual purpose for the
tamper-proofing of apps. Specifically, our system deploys a

dispatcher to use a random controller to randomly construct
guard net with different structures. That is to say, constructing
the different execution path. By doing this, it can make the
protected app execute in different path at different times. There
is no doubt that AppIS will cost an attacker more time and
energy to complete a successful attack, because he can not
accumulate the attacking knowledge under the protection of
dynamic guard net. Hence, AppIS can greatly increase the
intense of protection in resisting cumulative attack.

To illustrate the creation and spread of infected apps caused
by repackaging attack, Fig. 1 shows an actual scenario of
infected apps’ creation and diffusion. In general, developers
create apps and submit them to official markets without
solid protection (1©). Anyone can gain access to these app-
s, including adversaries (2©). Past experience shows, most
android apps themselves do not have enough protection so
that they are vulnerable to attack by an attacker with reverse
engineering experience. In Section II, we will show the real
attack scenarios through several mainstream applications (e.g.
Temple Run, a hot game). An attacker releases these infected
apps to the third party application market(3©). In real life, due
to the improper security regulation of app market, it is easy for
users to be ignorant of downloading the repackaged version
of the legal app(4©). What is worse, in order to spread these
infected apps and lure users to download them, adversary also
trends to process them by using sociology and psychology.
So developers need to strengthen their own applications (5©),
which can protect not only the interests of their own, but also
the interests of users.

So how can we implement the anti-repackaging immune
system to resist cumulative attack with high performance
to prevent the generation and dissemination of malicious
apps? To do so, we need to adopt a dynamic and static
combining method as well as Java Native Interface (JNI)
cross-layer calling mechanism, which can provide apps with
multi-level protection against cumulative attacks without extra
performance cost. AppIS eliminates the high probability of
infection by raising the immunity of the app itself. An intuitive
way to carry out this straightforward idea is to add some secure
units, Guards we called. These guards are pre-deployed into
the codes and will be sequentially executed to detect and make
timely response to the modification of app when running. In
this case, any infecting behaviors, including modification and
injection to app code or data, could be detected and handled
by the app itself. However, this intuitive approach has two
limitations: Firstly, all the guards are related to the execution
path and will be invoked when running the app. Thus, the
more guards, the higher the security, but also the lower oper-
ating efficiency, which is a serious conflict especially on the
performance-first platform like Android. Secondly, the layout
of guards in app is fixed and static so adversary could find and
disable this protection by Cumulative Attack [1] in an accepted
time. To address above limitations on scalability, efficiency
and robustness, AppIS allows more guards without increased
influence on performances by using the JNI cross-layer calling
mechanism. Additionally, the built-in random dispatcher of

Legitimate Apps

Infected Apps

⑤

②

Developer B

Adversary

User
App Markets

Protected Apps

④

Legitimate App

Infected App

Repackaging

Developer A

①

③

Fig. 1: The Scenario of infected apps creation and spread: Adversary down-
loads the hot applications from markets and creates infected versions after
repackaging, then spreads their APKs to various alternative markets and lures
the users to download and run them.

AppIS allows to randomly construct the layout of embedded
guards for each app, which can enforce flexible security to
arbitrary apps by raising the difficulty of repackaging.

In summary, this paper makes the following contributions:
• To leverage the exploitations of current vulnerable app

ecosphere on Android, we devised two realistic attacks
on real apps, which can bypass the coarse protection and
repackage the popular apps.

• We designed AppIS as a practical solution that would
protect the app without making any changes to the
underlying Android architecture, making AppIS easy to
adopt.

• The results of the quantitative evaluation show that AppIS
is a strong enough protection scheme. We measured its
security on app and conducted thoroughly evaluations on
app storage cost, launch delays, memory use, etc., which
shows that AppIS, compared with other approaches,
is more effective and has lower memory and runtime
overhead.

II. BACKGROUND AND RELATED WORK

In this section, we present related work in the following
category:

Detection of repackaged app on Android platform:To
isolate the user from repackaged apps, research recently main-
ly focused on the detection and identification of repackaged
apps. Yajin Zhou [2] found most of malware coming from
repackaging attack. DNA Droid, a detection framework de-
veloped by J Crussell, can find the repackaged version by
comparing the code similarity of two apps. [3] Zhou Wu [4]
also put forward a repackaging detection mechanism, unlike
the former, it was mainly based on checking the coupling
relationship between modules instead of app comparison. Ad-
mittedly, repackaging detection and identification, can block
the spread of repackaged version, and alleviate the trend of
app tampering. Moreover, many researches were dedicated to
detecting malicious code [5]–[10] in app market because one
of the main purposes of repackaging is to generate malware.

Software tamper proofing: To prevent attackers from ille-
gally tampering with apps and abusing the key information,
research in this field often follows the detecting-responding
process.Typically, static and dynamic tamper proofing are two
important techniques. In static protection, confusion is often
used to increase the reverse difficulty,which can safeguard key
information in program to some extent, such as control flow
obfuscation [11], lexical confusion [12], etc. While in dynamic
field, Integrity verification is often used. And checksum, Hash
value [13]–[15], signature, etc. are indicators of integrity
verification. Besides, a software tamper-proofing model based
on the idea of guarding net, first proposed by Hoi [16], is also a
critical dynamic tamper proofing technique. In this model, the
guarding net is formed by embedding multiple security units
as guards into the program to achieve self-protection. Different
guards are designed to complete different tasks, for example,
some guards are responsible for detection, while others are
used for response. Unlike other schemes, these guards can
protect each other, so there is no isolated guard..

App protection on mobile terminal: In official Android
SDK, Google provides developers with ProGuard for prelimi-
nary code confusion, increasing the complexity of code logic.
Additionally, Android system can verify the identity of app
developer with signature verification. Signature is useful for
malware or attack detection. [17]–[19].These two protections,
however, can only provide a primary protection and it’s easy
for attackers to bypass. Some online reinforcement services e-
merge as the times require, such as DexGuard abroad, Bangcle
at home. They can provide security services including shell
protection, encryption, dynamic loading and anti-debugging
technology, greatly increasing the protection intensity. But
their shortcomings can not be underestimated. First, although
these protection have joined Integrity Verification (or IV,
for short) module, these check points are still lack of self-
protection and can not hide them very well, which cannot
defense cumulative attack as well as effectively prevent the
verification module from bypassing or destruction. Secondly,
this add-on manner brings tremendous performance overhead
to the protected app, including startup time consumption, run-
time performance cost and space overhead, etc.What’s more,
because of the online manner, developers need to upload the
original app, which may cause security risk about developers’
copyright and privacy when uploading.

III. ATTACK MODEL

Repackaging an application refers to that attacker modifies
then redistributes the legitimate app. At present, repackaging
attack can be classified into three categories according to
different attack purposes as follows:

Malware: In this attack case, attackers usually embed
malicious code into the legitimate apps for malicious purpose,
and then these normal apps become a Trojan or virus host.

Here we analyze a malicious repackaged app bundled with
the Trojan DroidKungFu2 to understand the process of repack-

2DroidKungFu is one of the most widely spread, the most influential Trojan
on Android platform.

~/res
~/smali
AndroidManifest.xml

APK Package

APK Package

~/res
~/smali
AndroidManifest.xml
DroidKungFu payload

②

③

(a) Malware Repackaging Attack

~/res
~/smali
AndroidManifest.xml
Origin Ads Plug ins

APK Package

APK Package

~/res
~/smali
AndroidManifest.xml
Youmi Ads Plugins

①

②

③

(b) Fake-Ads Repackaging Attack

~/res
~/smali
AndroidManifest.xml

APK Package

APK Package

~/res
~/smali
AndroidManifest.xml

①

②

③

(c) Pay-Crack Repackaging Attack

①

Fig. 2: Three types of repackaging attack according to different attack
purposes.

aging, as shown in Fig.2(a). Attackers usually download the
legitimate APK, then decompile it and analyze the smali code
to find an appropriate place to inject DroidKungFu payload.
Then modify the corresponding configuration file On the other
hand, the bulk of malicious payload will be placed in the smali
or libs directory. Eventually, attackers repackage the modified
app and sign it again for redistribution.

Fake Advertisement: In this scenario, the reasons why
attackers repackage apps are as follows.

1) While playing hot games, they cannot tolerate the an-
noying in-app ads so they remove them.

2) Malicious authors repackage apps to replace original ads
or embed new ads to ”steal” or re-route ad revenues
driven by interests.

Fig.2(b) shows the injection of Youmi ads into a normal app
without any ads before. The attack process is similar to the
one of malware, but to display fake ads on the interface the
former usually needs to modify the apk layout file while the
latter needs to hide their behavior as well as avoiding being
perceived, so they cannot change the host interface.

In-App Purchase Crack: For ”free” use of privilege service
of apps instead of paying for use, attackers either crack
these apps through repackaging and bypass the authentication
module, or modify the pay logic to be ”free”, as shown in
Fig.2(c).

IV. APPIS OVERVIEW

AppIS is a reinforced anti-repackaging system that can
provide a multi-level protection for Android applications,
much safer than the traditional mechanism.

A. Key Ideas

Following a common practice in software protection, AppIS
leverages the traditional guard net to provide multi-level
safeguard for apps. AppIS’s infrastructure also includes a static
net consisting of several guards (or safety units with defending
functions) to furnish basic security services. Further, AppIS
adds a time-diversity module as a value-added function to cope
with cumulative attack.

To reinforce an app, at a high level AppIS goes through the
following steps:
• AppIS analyzes an app to find out all the functions to

be protected, and then sets up some security guards to
perform different tasks.

Android

Original

App

G
o

a
l

G
e

n
e

ra
tio

n

Guard

Construction

D
e
p
e

n
d

e
n

cy

R
e
la

tio
n
s
h
ip

C
o
n
s
tru

ctio
n

Guard-Goal

dependency

Guard-Guard

Dependency

Scheduling Engine

Deployment
Dex Parsing

Pre-processing Static Guarding Net Construction

Android

Protected

App

Dynamic Guarding Net

Construction

Guarding Net Set

Fig. 3: The overall architecture of AppIS, which is comprised of three main stages, including pre-processing, static guarding net construction and dynamic
guarding net construction: The basic idea of AppIS is to embed dynamically-scheduling guarding net into original app.

• AppIS constructs dependency relationship among these
guards to form a static guarding net.

• AppIS constructs different executing paths at different
times through a scheduing dispatcher. This can form a
static and dynamic combining guarding net to achieve
multi-level protection.

B. Overall Architecture of AppIS

The overall architecture of AppIS is shown in Fig.3, in
which you can see there are mainly three stages.

In the app pre-processing stage, we parse the DEX or APK
for app to be protected for generating its corresponding funtion
call graph, then choose some key API as protection target,
named Goal. In the static guarding net construction stage, first-
ly, we construct some guards according to the guard template,
then build the dependency relationship to form a guarding net,
which includes the Guard-Goal dependency and Guard-Guard
dependency. We choose different guards to build diversified
dependency relationship for security, then generate a collection
of guarding net. In the dynamic guarding net construction
stage, we introduce a scheduling engine to dynamically select
different guarding nets. In ordinary protecting schemes, there
can be a large number of vulnerable points for cumulative
attack. This type of attack is pretty common in real life. In
next section, we describe AppIS’s dynamic guarding net to
deal with serious cumulative attack. In the end, a protected
app with dynamic guarding net is generated.

V. CONSTRUCTING STATIC GUARDING NET ON ANDROID

The static guarding net was originally used in software
protection in PC platform, which is designed as a sophisticated
structure in the form of a network of interlocking security unit,
not a single security module, to work together for preventing
malicious attacks. In this section, we focus on how to transfer
this kind of protection mechanism to Android platform, that
is to say, how to construct a static guarding net on Android
platform.

Static guarding net made up of many safety units can be
used for software protection, like in PC platform. Such an
approach however is just adopted in the mature platform,
which has not been implemented on the new Android facility
yet. We plan to program several safety units, or guards we
called, to do certain security tasks. Meanwhile, not single
unit but a network of these guards is used in our guarding
framework in order to reinforce the protection of each other

Android
Running Time

A3A1 A2 A4 A5G1 G2 G3

protect

protect protect

protect

protect
protectprotect protect

Fig. 4: Memory layout of the guarded program: G denotes the target API to
be protected, and A denotes corresponding guard.

by creating mutual-protection. In order to make this idea works
well on Android, we need to construct the guarding net step
by step.

To visually understand this idea, let us again consider the
simple possible guarding scenario shown in Fig.4. Fig.4 shows
the memory image of the protected app, in which there are
three security-sensitive regions as attack goals, G1, G2 and
G3. And they are protected by our preset guards A1,. . . ,A5
in an interlocking manner. For example, the vulnerable crack
point G1, is guarded by A1, which is also protected by another
guard, A2. Once AppIS finds that the G1 in the program
is being cracked, A1, A2 and a sequence of guards will
be invoked as a chain reaction, which greatly increases the
difficulty of attack.

In this simple scheme, guard can prevent an attacker from
attacking the object directly. However, due to the relative
isolation of the guard, the lack of security of the guard itself,
for the attacker, you can locate and attack guard to make it fail,
and thus affect the protection of the goals. Therefore, how to
increase the protection of the guard to improve the safety of its
own is a challenge need to solve for improving the reliability
of the program.

A. Guards construction

In AppIS, we design a interlocking network of safety unit-
s(or guards) embedded within an app. Each guard is deployed
to safeguard certain goals, commonly the key code, resources
or data. So the first nut for us to crack is how to construct
the guards well. Given the fact that most code in Android
application is mainly programmed with Java, so the Java code
segment is the most important protection target.

Intuitively, Android program is mainly developed in Java
code, so we can use Java to achieve guards in the source code,

for example, Fig.5 is a template of the guard, it verifies the
integrity of the goals to provide protection. It will dynamically
obtain the checksum of the goals and compare it with the
stored value in advance. If the two are different, it means the
current program is suffering from a heavy repackaging attack.
And the guards will respond to this, for instance, terminate
the program directly.

1 Guard :
1 c a l c H a h s = guard . ge tHasho fGoa l (g o a l I d) ;

3 2 preHashValue = guard . ge tP reHas hVa lue (g o a l I d) ;
3 i f (c a l c H a s h != preHashValue)

5 4 System . e x i t (1) ;

Fig. 5: Template of guard.

The security of guard itself, however, should be also taken
into consideration. Hence, the guard should monitor each other
and protect each other. We have designed several guards with
the same structure, which are composed of the triggering
module in Java layer, the main function module in native
layer and the key information module. Taking into account
that the Java layer is easy to hack, the implementation of main
function module of guards is written in C/C++ language, and
besides the trigger module will then call the JNI interface, thus
this cross-layer calling mechanism can enhance the strength of
guards against attack. Consequently, we designed the follow-
ing three guards.
• J Guard: J Guard is a special code snippet mainly used

to protect user defined Java code. Its triggering module
is implemented in Java. The J Guards will be embedded
into a Java function to bind the Java function for the
purpose of protection, and these guards will be executed
when the Java function is running, then the main function
module written in C/C++ will be triggered. The main
function module checks the integrity of Java function
through hash calculation. In addition, the key information
module is used to record the key information related to
the guards, and it will be initialized when constructing
the guarding net.

• N Guard: N Guard is used to protect other safety guard-
s. It mainly aims at the protection of native function. Its
triggering module written in Java will trigger the main
function module in native layer. Different from J Guard,
the N Guard is designed for native function protection.

• D Guard: D Guard is a safety unit which is primarily
responsible for the reinforcement of the DEX executable
file on Android. Its original design basis is the fact that
all the trigger modules in guards are stored in DEX file,
so the safeguard of the DEX file is the safeguard of the
trigger module in guards.

B. Guarding Net Construction

In practice, it is infeasible to deploy a series of single guards
to provide unilateral reinforcement protection for Android

(a) Dependency Graph (b) Dependency Table

Fig. 6: (a)(b) shows the dependency relationship between Goals and Guards

apps. AppIS aims to achieve multidimensional protection with
a interlocking guarding net. In other words, once an app is
tampered with, even if the guard is cracked, other guards can
still be triggered to take a sequence of protective actions. In
this way, all the guards form a complete multi-level protecting
barrier.

To visually understand this idea, let us again consider the
dependency graph between guards in Fig.6. Fig.6(a) shows
a dependency graph between guards while Fig.6(b) shows a
dependency table, which explains the main idea in a totally
different form. As you can see, G1 and G2 are protected by
other guards, Ab1, . . . , Ab5. This intricate mesh structure
is sufficient to deal with ordinary attacks, because even the
guard like Ab1 is attacked, its adjacent guards will still work
and notice this attack, and then turn to protect the Ab1.

Now we formally construct a static interlocking guarding
net, where all of the guards are organized into a mutual
protection mode to strengthen the reinforcement. Next we
will introduce the corresponding guarding net construction
algorithm. Then we start by explaining its potential safety
weakness. After that, we will present AppIS’s further opti-
mization against this weakness.

C. Guarding Net Construction Algorithm

When constructing a relationship between guards in a
guarding net, a series of constraints must be met, as follows:

1) Each Goal is protected by at least one guard J Guard;
2) Each guard is protected by at least two guards (one

J Guard and one N Guard);
3) When the program is executed, the guard that performs

the protection function must be able to execute in a
timely manner near the execution time of the protected
node.

For the first condition, the Goal in guarding net is generally
a custom Java function in Android application, so the Goal
should be associated with at least one guard(J Guard) which
can protect Java function.

For the second condition, through the use of JNI program-
ming, the code portion of each guard comprises a trigger
module in Java layer and the main functional modules in
Native layer, so in order to prevent guard code from tampering,
each Goal requires at least two guards for protection, one is
J Guard, which is responsible for protecting the guard’s trigger

module, the other is N Guard, responsible for protecting the
main function module of guards.

For the third condition, each Goal or Guard needs to
consider the response time of the protection function when
choosing its own guard for protection. The so-called response
timeliness means that when the protected node is tampered
with, the corresponding guard can monitor and respond to the
attack in a timely manner. Therefore, you should select the
guard near the execution of the protected node as the guard.

Through the detailed analysis of the above constraints, the
main algorithm of the guarding net construction is as shown
in Algorithm 1, 2. As you can see, Algorithm 1 illustrates
the association algorithm between protection target G and
J Guard, while Algorithm 2 shows the association algorithm
between these guards to form a complicated guarding net. In
Algorithm 1, there are two scenarios. In Scenario 1, when the
number of Goals is less than the number of J Guard, first
get the calling chain with length L of the Goal, then in the
calling chain, randomly select a function other than the Goal
as a binding function, and finally generate the corresponding
gL table entry. Scenario 2 is similar to Scenario 1, but the
difference lies in that if there are duplicate entries in the
binding function in each entry, the binding function will be
re-selected for replacement. In Algorithm 2, choose two guard
in S, one is Node, the other is Node1, firstly get the calling
chain callChain with a length of 2L + 1 centered on Node,
then get the calling chain callChain1 with a length of 2L + 1
centered on Node1. Finally, if callChain has an intersection
with callChain1, the node1 is set to a one-way protection
association of the Node, and the ID of the Node1 is assigned
to the Node’s oid.

D. Safety Weakness: Not Against Cumulative Attack

A static guarding net can only coarsely protect app from
repackaging, and there are still some security risks. The
most prominent safety weakness is that if an attacker attack
a specific app continuously, even if other guards can make
some timely response, an attacker is still able to accumulate
a certain degree of attack knowledge in each attack process.
In the end, he will use the accumulated knowledge of the
attack to successfully crack your application. The process is
called cumulative attack.

Cumulative attack, refers to the attacker through repeated
attacks to obtain the accumulation of attack information.
The process of attack on an app is essentially a process of
accumulation and extraction of information by one or more
reverse attacks. For those apps with complex logic, it is
difficult for an attacker to get enough knowledge through just
one-time execution of the procedure. Usually, they need to
attack repeatedly till they get enough knowledge to crack the
app. It is only when the accumulated knowledge exceeds a
certain threshold that they have completed a successful attack.

Algorithm 1 Association algorithm between protection target
G and guard J Guard
Input:

FILE: Java function call graph description file of the protected application
gArray[]: A user-defined array of Goals
N : Number of user defined J Guard
L: Initial length of the user-defined call chain

Output:
gL: J Guard information list,a vector {Goal ID, Java layer function ID bound to
the trigger module}

1: M = len(gArray[]);
2: if M <= N then
3: for (i = 0; i < N ; i + +) do
4: chainArray[L] =
5: getCallChain(FILE, gArray[i%M], L)
6: bindMethodID =
7: selectBindMethodByRandom(chainArray[],
8: random(L));
9: gL[i] = {gArray[i%M], bindMethodID}

10: while (i >= M)&&(gL[x].[0] = gist[i][0])&&(gL[x].[1] =
gL[i].[1])) do

11: gL[i].[1] =
12: selectBindMethodByRandom(chainArray[],
13: random(L));
14: end while
15: end for
16: end if
17: if M > N then
18: for (j = 0; j < M ; j + +) do
19: chainArray[L] = getCallChain(FILE, gArray[j], L)
20: bindMethodID =
21: selectcBindMethodByRandom(chainArray[],
22: random(L))
23: while (j >= N)&&(isRepeat(gL[j%N], bindMethodID)) do
24: bindMethodID =
25: selectBindMethodByRandom(chainArray[],
26: random(L))
27: end while
28: gL[j%N] = add(gL[j%N].[1], bindMethodID)
29: end for
30: end if

Algorithm 2 Association algorithm between guards
Input:

S: Guards collection
FILE: Java function call graph description file of the protected app
L: Initial length of calling chain

Output:
RList: Protection association list between guards, a vector {node ID, Guard ID for
protecting Goal, Guard ID for protecting other guards }, denoted as {id, iid, oid}*/

1: while Node.oid < 1 do
2: callChain = getCallChain(FILE,Node, L)
3: callChain1 = getCallChain(FILE,Node1, L)
4: if isIntersect(callChain, callChain1) then
5: Node.oid = Node1.id
6: end if
7: end while

VI. DYNAMIC GUARDING NET: AN APPROACH AGAINST
CUMULATIVE ATTACK

To defend against cumulative attack, we further explore
the mesh structure of our AppIS, by attaching a randomized
scheduling engine. Therefore, every time the attacker runs the
protected app, the scheduler will invoke different guards to
construct a totally different guarding net with different path.
Each time the application is executed, the structure of the
guarding net changes, so we call this kind of guarding net
with time diversity.

Time diversity was firstly presented by Christian Collberg,
and he believed that the time or space diversity is the necessary
condition to ensure software suffer lasting protection [1], [20].
The so-called time diversity refers that the program after

First Start Second Start X Start

...

...

Scheduling

Engine

Fig. 7: Dynamic guard network construction via scheduling engine: Each
time the app runs, the scheduling engine randomly selects a guarding net
structure that is completely different from the last boot from the guarding net
set generated from the static guarding net construction phase.

protection will execute different paths in different time [21].
Therefore, we can combine the conservation ideas of time

diversity to effectively combat the cumulative attack. Time
diversity in AppIS is reflected in that when the protected
program is executed at different times, the guarding net
structure is entirely different in the actual execution. When
the application detects an attack withdrawal, the guarding net
structure will change after app restarting, so that the previous
attack knowledge is no longer valid, so the attacker can not
accumulate enough attack knowledge to crack the application.
Due to the dynamic scheduling of the time diversity mod-
ule, the scheduling engine will select a completely different
guarding net structure every time the program is executed, so
no matter how many attacks the attacker had launched before,
the previous attack information can no longer be used for a
new round of attacks. Therefore they cannot accumulate either
attack information or attack progress and the attack failed.

A dynamic guarding net is shown in Fig.7. The scheduling
engine is responsible for randomly selecting one structure from
the guarding net collection. Therefore, every time you run the
app, there will be a totally different mesh structure constructed
in the protected app, that is to say, the guard net is changing
dynamically, so called dynamic guarding net.

VII. A FUTURE OPTIMIZATION BASED ON GUARDING
NET

In order to further enhance the protection strength, we
design a series of security modules integrated in a daemon
process in our AppIS, mainly three. The following is a detailed
description of these three modules.
• Dynamic encryption and decryption module: In order

to prevent the attacker through the static analysis to
obtain a collection of guarding net, you need to set up
dynamic encryption and decryption module. The guarding
net is usually stored in ciphertext in the program, and
will be performed a temporary decryption when needing,
finally the net will be encrypted for storage again after
protection.

• Environment detection module: Normally users run an
app on a real Android machine directly, only some of the
attackers will run it in the simulator for debugging. And
what is more, attributes of real machine and the simulator
is different in some ways. Based on this cognition, we

design an approach to identify the simulator by checking
the properties of the running environment.

• Anti-debugging module: Static analysis and dynamic
debugging are two important means of reverse engi-
neering. So in order to protect the main process of
AppIS from attackers debugging analysis, we add an anti-
debugging module to perform anti-debugging protection
for the scheduling engine. In this paper, this module
is mainly implemented based on the Ptrace mechanism.
Ptrace is a system call provided by Linux system to make
it possible that a parent process can access and manipulate
a child process. And the Android kernel is based on the
Linux kernel, so it inherits the Ptrace mechanism. Ptrace
mechanism only allows just one process to debug another
process. At present a lot of debugging tools adopt the
ptrace principle to carry on the debugging process. So we
can let our daemon process and main process add Ptrace
to each other so that other debugger cannot attached to
the main process.

VIII. EVALUATION

In this section, we will focus on the relevant settings
for evaluating the security and performance of AppIS to
validate its design and implementation. Firstly, we will give the
experiment setting and then we will use several case studies
to evaluate the effectiveness of the methodology. Finally, we
will demonstrate AppIS’s good compatibility by deploying the
system in different Android platforms.

A. Experimental environment

Our testbed is a personal computer with windows7 system,
equipped with different versions of Android prototype system.
To evaluate our design and implementation, we downloaded
several non-protected apps covering almost every category
from F-Droid, an open-source application repository. Mean-
while, we also developed our own app for test. The app
collection is as shown in TABLE I.

TABLE I: Information about App Collection Set.

Apk Name Size Function Description Sample Source
CoolReader.apk 1525k A e-book reader app Third-party

CrackMe.apk 44k A login authentication cracking app Third-party
NISLContact.apk 1311k A communication tool for lab staff Independent writing

2048.apk 852k A puzzle game F-Droid

EPMobile.apk 2142k
A set of tools for electrophysiologists

and health care works F-Droid

ABCore.apk 1042k A wrapper for Bitcoin Core for Android F-Droid

APhotoManager.apk 1131k
Search photos in local media store

for viewing and maintenance F-Droid

aMetro.apk 2554k
aMetro shows the maps of transit systems all

over the world-subways, metro, buses, trains, and other. F-Droid

B. Case Study: CoolReader.apk

CoolReader is a e-book reader from third-party market. In
this section, we will show the details about how AppIS protects
CoolReader.

In app pre-processing stage, we use Androguard to get the
Function Call Graph gexf for CoolReader.apk. The apk has a
total of 204 APIs. Then a python script is exploited to obtain
the Key API as Goal (indegree + outdegree > 5). Fig.8(a)
shows the parsed gexf using Gephi, with a total of 30 key

APIs, colored red. Fig.8(b) is a detail view of Fig.8(a) with
some tags.

After the Goals are determined, it needs to get the calling
chain in which each Goal is, (for example, let Goal as the
center, have the maximum step size keep 5), then randomly
select a node on this calling chain to insert a protecting Guard.

Why choose to insert guards in the calling chain of the
goals?

The reason is that the guard in the calling chain can ensure
that the corresponding guards will be invoked to prevent some
guards can not be implemented at the appropriate time. For
example, B is often executed and A is not executed. As a
result, A-guard is often executed with B, which is obviously
not reasonable in considering the reliability and efficiency
of protection. In addition, random insertion can improve the
whole security.

After that, check whether the two call chains are crossed,
if they are, establish a mutual protection association between
the two guards.

And finally we call those guards who have not been guarded
by other guards isolated guards, and then continue to increase
the step size of the calling chain as well as continue the process
above until there is no isolated guard left.

Finally, we embed this guarding net into the original app in
the form of shared library. The final effect after protection is
shown in Fig.8(c), where the green node and the orange node
represent 30 goals, and the yellow node and the orange node
represent 27 guards.

C. Measurement Index

In order to make a fair evaluation of the effect of the system,
we choose the following indicators as evaluation criteria.
• Validity:Validity refers to the effectiveness of the pro-

tection effect, which is usually reflected in the degree of
safety of the protected application. As we all know, an
application’s security level is reflected in its ability to
withstand malicious attacks. So we will quantify the risk
of the attack to measure its effectiveness.

• Performance overhead: The performance overhead here
refers to the extra cost of performance, which includes
two aspects: the space cost and the time cost. For Android
app, the space overhead here is the size of app itself(or
the size of APK), while the time overhead is mirrored
in the app start time delay compared to the one before
protection.

• Correctness: Correctness means that the protected app
can be run correctly. Due to the serious fragmentation
in Android system, the correctness requires that the
protected app can be normally executed and compatible
with all the system version.

D. Validity

In order to objectively evaluate the effectiveness of AppIS,
we use Microsoft’s risk assessment model, named DREAD to
quantify the risk of attack.

TABLE II: DREAD rating for threats in AppIS.

Threat D R E A D Total Rating
Attacker obtains static guarding net
collection by reversing engineering. 3 1 1 3 1 9 Medium

Attacker launches
cumulative attack to AppIS. 2 1 1 2 1 7 Low

DREAD is an acronym for Damage Potential, Reproducibil-
ity, Exploitability, Affected users and Discoverability these five
words.

In AppIS, we consider the following two threats:

• Attacker obtains static guarding net collection by revers-
ing engineering.

• Attacker launches cumulative attack to AppIS.

TABLE II shows the DREAD rating for both threats. For
every threat, we use the DREAD model to calculate risk from
D(Damage Potential), R(Reproducibility), E(Exploitability),
A(Affected users) and D(Discoverability) these five aspects.
In DREAD model, every index’s values can be rated from 1-
3. So the result can fall in the range of 5-15. Just as TABLE II
shows, the overall ratings of the first threat is 9, which can be
treated as Medium risk; while the second threat can be treated
as Low risk.

As can be seen from the table above, AppIS is strong enough
against potential threats, which proves its validity.

Case Study: Security Evaluation of CoolReader after
AppIS protection

The following Fig.9 shows the entire protecting flow
of CoolReader under AppIS protection. In the event of
an attack, the guards pre-deployed in libnativeSec.so will
begin to monitor the key API in real time, such as the
onPrepareDialog() function, to calculate the integrity of

its hash value, and when the hash value is not matched, a
warning is issued and drop out.

Fig.8(c) is the guarding map after AppIS protection of
Fig.8(a), (b). Zoom in on its part, the yellow guard Lcom/b-
n/reader/SQLDBUtil;bookMarkInsert(Ljava/lang/String;I)V
is responsible for protecting the two green goals, while
the yellow node itself is protected by orange nodes. This
cascading interlocking protective mesh can effectively prevent
repackaging and tampering attack.

AppIS’s own security issues: As the core algorithm
of AppIS is implemented with C++ in native layer, so
the attacker is difficult to perform static analysis. Even
if the attacker tried to directly remove the .so to bypass
AppIS, that is also not feasible, because of its internal
implementation function antiDeleteSo() . Additionally, it has
deleteCallPointinJava () to delete the native call point in Java

layer. For the defense of dynamic debugging, as mentioned in
Section VII, AppIS uses the ptrace mechanism to prevent an
attacker from using IDA Pro for dynamic debugging, which
is the most commonly used reverse tool for an attacker.

(a) FCG of original
CoolReader.apk

(b) FCG with key API tag. (c) FCG of AppIS protected
CoolReader.apk

(d) Partial magnification of (c)

Fig. 8: Funtion Call Graph Comparison before and after AppIS protection observed by Gephi: (a)The red node indicates the key api to be protected.(c)The
green node and the orange node represent 30 goals,and the yellow node and the orange node represent 27 guards.

public void onPrepareDialog (int id, final Dialog
dialog);

public void setFontColor (final Dialog dialog);

public void setBackroundPic (final Dialog
dialog);

public Dialog onCreateDialog (int id);

onPrepareDialog

setFontColor

{"Lcom/bn/reader/ReaderActivity; ","onPrepareDialog",8718},

{"Lcom/bn/reader/ReaderActivity;","setFontColor",16375},

{"Lcom/bn/reader/ReaderActivity;","setBackgroundPic",11816},

...

static JNINativeMethod methods[] = {

{"ab76","()V",(void*)native_76},

{"ab39","()V",(void*)native_39},

{"ab40","()V",(void*)native_40},

{"ab41","()V",(void*)native_41},

...

};

JNIEXPORT jstring JNICALL native_76(JNIEnv*
env, jobject object)
{

LOGD("[+]native_76");
int ivSize = 4;
int a[4]={11,12,14,15};
nativeMethodIV();
retStr(ivSize,a);

}

setBackgrounfPic

onCreateDialog

public native void ();

public native void ();

public native void ();

public native void ();

...

static {

 System.loadLibrary(" ");

 }

}

ab40

ab41

ab76

nativeSec

ab39

int (){

if (miv[m].hashValue==hashValue)

 LOGD("It's safe for %s

%s",className,pMethName);

 else

 LOGD("Tamper on %s %s",className,pMethName);

}

int (){

 ();

 ();

}

checkIntegrityofJavaAPI

nativeMethodIV

antiDeleteSo

deleteCallPointinJava

Generate

Goals
Determin guards and implement in

native via JNI

(a)A unprotected app named CoolReader

(b)Goal APIs list determined by python script

(c)Trigger in Java and implement in native

(d)Binding list of guards

Binding

Start

protection

(e)protected CoolReader using AppIS

\src

\jni

\jni

AppIS reinforcement section

saved in shared library

libnativeSec.so

Fig. 9: The details about AppIS protecting process: The red box indicates the key API to be protected, the green box represents the safety protection

section of AppIS, and the blue box denote the shared .so library where the core algorithm of AppIS will eventually be packaged.

E. Performance and Correctness

In this section, we place emphasis on performance evalu-
ation and correctness evaluation. For the performance evalu-
ation, we use two evaluation criteria, including the size and
startup time of the protected application. For the correctness
evaluation, we conduct a compatibility test.

To show the experiment results, we have chosen two popular
reinforcement suppliers to reinforce the experimental object as
reference samples.

At the beginning of the experiment, we separately measured
the size and startup time of each application in the collection
of applications. Later, respectively, these applications will be
input to AppIS, Bangcle and 360 to protect. After protection,
we again counted the respective sizes and startup times of
these applications. At the same time, we calculated the result
of (protectedappsize)/(originalappsize) and the percentage
of growth rate in the start time for each application. Fig.10
shows the comparison result in space overhead after protection.
The data in this figure reveals one key point about AppIS, that
it, compared to the Bangcle and 360 protection, the extra space

costs brought by AppIS can be very smaller, which indicated
that AppIS can minimize the negative impact of protection on
the original application.

COOLREADER

CRACKME

NISLCONTACT
2048

EPMOBILE

ABCORE

APHOTOMANAGER

AMETRO
0

5

10

15

20

P
ro

te
ct

ed
 a

p
p

 s
iz

e/
o

ri
g

in
al

 a
p

p
 s

iz
e

AppIS

Bangcle

360

Fig. 10: Space overhead comparison on file size (KB) of AppIS, Bangcle and
360.

Fig.11 shows the startup time difference of the original app,
the app protected by AppIS, Bangcle, 360 to check the time
overhead. In this paper, for each sample app, we test its startup
time for 100 times and then calculate the average value. In

COOLREADER

CRACKME

NISLCONTACT
2048

EPMOBILE

ABCORE

APHOTOMANAGER

AMETRO
0

50

100

150

200

S
ta

rt
u

p
 t

im
e

g
ro

w
th

 r
at

e(
%

)

AppIS
Bangcle
360

Fig. 11: Time overhead comparison on startup time (ms) of AppIS, Bangcle
and 360.

general, our AppIS brings less time overhead than other two
protection schemes according to Fig.11.

Compatibility: due to the various Android system version,
influence caused by the differences between the versions on the
normal execution of the application determines the feasibility
of the protection scheme. Therefore, in order to verify the
feasibility of the AppIS protection scheme, we have chosen
four mainstream Android system version, that is Android4.0,
4.4, 5.0, 6.0, for testing the compatibility of the apps. And the
experimental results shows that our system can be compatible
with most versions.

IX. CONCLUSION

With the rapid growth of Android apps, security issues
have become increasingly prominent, in order to improve the
Android apps own security, app anti-tamper protection has
become an urgent issue. This paper based on the Android
platform, puts forward a high-performance and scalable anti-
repackaging protection, named AppIS. It can protect app from
two aspects of static and dynamic, and effectively enhance
the app’s own security. In addition, the validity and feasibility
of the method are verified by the combination of theory and
experiment.

In this paper, the implemented AppIS protection scheme
can greatly improve the Android app security and the strength
against repackaging and cumulative attack, however, there are
still some deficiencies need to improve.

The first one reflects in the evaluation of the protection
scheme effectiveness. This paper makes a quantitative eval-
uation about the risk value of the same threat before and
after protection, and measures the effectiveness from the point
of view of the risk rating. However, the risk assessment of
DREAD risk assessment model has some subjective factors,
and it is easy to cause errors. Therefore, we should carry out
sufficient attack experiments to further evaluate the effective-
ness.

The second deficiency lies in the security of the time
diversity module. This paper uses a dynamic guarding net with
time diversity to enhance the dynamic protective effect. How-
ever, during the implementation of the system prototype, the
concrete realization of the time diversity module is completed
by the guarding net collection and daemon process. Therefore,
how to effectively protect the guarding net collection and
daemon process from being debugged and cracked by attackers

is a concern of us. Meanwhile, because this problem is not the
main problem need to be solved in this paper, this paper only
puts forward three basic strengthening measures, and the more
advanced solutions still need further improvement.

REFERENCES

[1] C. Collberg, “The case for dynamic digital asset protection techniques,”
2011.

[2] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Security and Privacy, 2012, pp. 95–109.

[3] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting
cloned applications on android markets,” in European Symposium on
Research in Computer Security, 2012, pp. 37–54.

[4] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of ”piggybacked” mobile applications,” in ACM Conference
on Data and Application Security and Privacy, 2013, pp. 185–196.

[5] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,
“Mobile-sandbox: having a deeper look into android applications,” in
ACM Symposium on Applied Computing, 2013, pp. 1808–1815.

[6] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon:evaluating android
anti-malware against transformation attacks,” in ACM Sigsac Symposium
on Information, Computer and Communications Security, 2013, pp. 329–
334.

[7] M. Grace, S. Zou, S. Zou, S. Zou, and X. Jiang, “Riskranker: scalable
and accurate zero-day android malware detection,” in International
Conference on Mobile Systems, Applications, and Services, 2012, pp.
281–294.

[8] K. O. Elish, D. Yao, B. G. Ryder, and X. Jiang, “A static assurance
analysis of android applications,” 2013.

[9] A. Aldini, F. Martinelli, A. Saracino, and D. Sgandurra, “Detection
of repackaged mobile applications through a collaborative approach,”
Concurrency & Computation Practice & Experience, vol. 27, no. 11,
pp. 2818–2838, 2015.

[10] M. Zhang and H. Yin, “Semantics-aware android malware classifica-
tion,” in Android Application Security. Springer, 2016, pp. 19–43.

[11] Y. Peng, J. Liang, and Q. Li, “A control flow obfuscation method for
android applications,” in Cloud Computing and Intelligence Systems
(CCIS), 2016 4th International Conference on. IEEE, 2016, pp. 94–98.

[12] A. Chawdhary, R. Singh, and A. King, “Partial evaluation of string
obfuscations for java malware detection,” Formal Aspects of Computing,
vol. 29, no. 1, pp. 33–55, 2016.

[13] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. H.
Jakubowski, “Oblivious hashing: A stealthy software integrity verifica-
tion primitive,” in Information Hiding, International Workshop, Ih 2002,
Noordwijkerhout, the Netherlands, October 7-9, 2002, Revised Papers,
2002, pp. 400–414.

[14] H. Y. Chen, T. W. Hou, and C. L. Lin, Tamper-proofing basis path by
using oblivious hashing on Java. ACM, 2007.

[15] M. Jacob, M. H. Jakubowski, and R. Venkatesan, “Towards integral
binary execution: implementing oblivious hashing using overlapped
instruction encodings,” in The Workshop on Multimedia & Security,
2007, pp. 129–140.

[16] H. Chang and M. J. Atallah, “Protecting software code by guards,” in
Revised Papers from the ACM CCS-8 Workshop on Security and Privacy
in Digital Rights Management, 2001, pp. 160–175.

[17] R. H. Niazi, J. A. Shamsi, T. Waseem, and M. M. Khan, “Signature-
based detection of privilege-escalation attacks on android,” in Informa-
tion Assurance and Cyber Security, 2016, pp. 44–49.

[18] P. Faruki, V. Laxmi, A. Bharmal, M. S. Gaur, and V. Ganmoor, “An-
drosimilar: Robust signature for detecting variants of android malware,”
Journal of Information Security & Applications, vol. 22, no. 11, pp.
66–80, 2015.

[19] Z. Wang and F. Wu, “Android malware analytic method based on
improved multi-level signature matching,” in International Conference
on Information Science and Technology, 2015, pp. 93–98.

[20] C. Collberg, J. Davidson, R. Giacobazzi, Y. X. Gu, A. Herzberg, and
F.-Y. Wang, “Toward digital asset protection,” IEEE Intelligent Systems,
vol. 26, no. 6, pp. 8–13, 2011.

[21] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in IEEE Symposium on Security & Privacy, 2007,
pp. 231–245.

	Introduction
	Background And Related Work
	Attack Model
	AppIS Overview
	Key Ideas
	Overall Architecture of AppIS

	Constructing Static Guarding Net on Android
	Guards construction
	Guarding Net Construction
	Guarding Net Construction Algorithm
	Safety Weakness: Not Against Cumulative Attack

	Dynamic Guarding Net: An approach against cumulative attack
	A Future Optimization Based on Guarding Net
	Evaluation
	Experimental environment
	Case Study: CoolReader.apk
	Measurement Index
	Validity
	Performance and Correctness

	Conclusion
	References

