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Abstract  

Electrically-generated cold atmospheric plasma is being intensively researched for 

novel applications in biology and medicine. Significant attention is being given to 

reactive oxygen and nitrogen species (RONS), initially generated upon plasma-air 

interactions, and subsequently delivered to biological systems. Effects of plasma 

exposure are observed to millimetre depths within tissue. However, the exact nature 

of the initial plasma-tissue interactions remains unknown, including RONS speciation 

and delivery depth, or how plasma-derived RONS intervene in biological processes. 

Herein, we focus on current research using tissue and cell models to learn more 

about the plasma delivery of RONS into biological environments. We argue this 

research is vital in furnishing an underpinning knowledge required to realise the full 

potential of plasma in biology and medicine.  
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Why the interest in cold atmospheric plasma in biological and medical 

sciences? 

Over the past two decades interest in the application of cold atmospheric plasma 

(herein referred to as plasma) in biology and medical sciences has been rapidly 

growing. There is significant optimism that plasma can be developed for a wide 

range of medical applications such as for the treatment of chronic wounds [1], 

cancers [2], dental decays [3] and dermatological indications [4]. In biotechnology, 

plasma is being investigated for enhancing cell transfection efficiency [5-7], stem 

cell differentiation [8] and tissue regeneration [9]. A number of plasma sources 

are being commercialized for medical use [10, 11]; these sources are being 

extensively characterized and optimized to ensure they can be applied safely to 

tissue [4, 10]. Significant progress in the applications of plasma has opened a new 

research field termed plasma medicine; with the core being the use of cold 

atmospheric plasma (as opposed to thermal plasma) to intervene in biological 

processes for improving medical outcomes. 

 

In parallel, plasma is being applied to animal and plant tissues to enhance the quality 

and value of foods (meats, fruits and vegetables) [12], improve seed germination and 

plant growth [13, 14] and treat plant disease [15]. Plasma is attractive as it is cost 

effective, does not necessarily change the edible qualities of food, increases food 

shelf-life and can be applied to packaged food [16, 17]. Moreover, plasma addresses 

food safety problems, such as the reduction of salmonella infections on egg shells in 

Europe [18]. 

 

Although plasma research (applied to tissues and cells) has advanced in Europe, 

South East Asia and USA, we argue that there is an urgent need almost to ‘double-

back’ and with a renewed focus on the fundamentals of how plasma interacts with 

tissues. This is a topic that we consider has been largely been overlooked 

worldwide: yet is crucial in both the context of health and disease in human tissue 

[19] and in the deactivation of microbes on food products [20, 21].   

 

The purpose of this Opinion Article is to put a unique focus on the speciation 

and transport of plasma-generated RONS in tissue and cells. We will argue 
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that such a focus will furnish vital underpinning knowledge that will help put 

plasma technologies on a firmer scientific footing. 

 

Plasma as a source of RONS 

Our starting point is that when plasma reacts with the ambient air, it generates a rich 

mixture of reactive oxygen species (ROS) and reactive nitrogen species (RNS), or 

collectively RONS, which are most likely to play the major role in the phenomenon 

described to date [22]. Although we readily acknowledge possible contributions from 

other plasma constituents, such as photons, metastables, charged species and 

strong electric fields [19, 23], these are outside the scope of this opinion article.  

 

In the context of human health, historically, RONS have been thought to be ‘bad’ and 

associated with free-radical ageing; but current thought now focuses on the role of 

RONS in a myriad of biological processes that are implicated in the protection and 

repair of cells and/or organisms [24]. And, whilst large doses of RONS to any 

cell/organism are no doubt ‘harmful’, the delivery of small doses of specific RONS 

could be beneficial in the treatment of a wide range of indications [22, 24].  For 

example, wound healing can be enhanced by small doses of exogenous H2O2, but 

higher doses delay wound healing [25]. The efficacy of plasma (when applied to 

tissue) is almost always linked to RONS that are naturally produced in vivo. And the 

argument follows that RONS regulate key biochemical pathways within intra- and 

intercellular environments, inducing chemical and physical changes in cells [22, 24].  

 

But, the intervention of plasma-generated RONS in cellular processes 

assumes a priori the availability of RONS. This is quite an assumption considering 

the relatively short lifetime and diffusion distances and high reactivity of many 

plasma-generated RONS; e.g., the OH is calculated to have a lifetime of 10-9 

seconds with a diffusion distance of 0.009 micrometres within mammalian cells [26]. 

However, even before the plasma-generated RONS enter cells, the RONS need to 

traverse at least three major barriers at the (1) plasma-fluid, (2) tissue fluid-tissue 

and (3) tissue-cell (Figure 1) interfaces, before finally reaching the cell interior. 

During their passage through the physiological environment, RONS will face 

additional obstacles such as extracellular matrix (ECM) proteins and antioxidants. 
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Therefore, it is remarkable how plasma can essentially non-invasively destroy cells 

deep within biofilms [27] or cancerous tumours [28] when these cells may be 

buried tens of micrometres to even millimetres away from surfaces directly 

accessible to plasma.  

 

Computational modelling has been utilised to provide further insight into the plasma 

delivery of RONS into tissue fluid and tissue [29, 30]. These simulations determined 

that plasma can deliver O3, H2O2 and NOx to tissue covered with a thin liquid layer; 

but the presence of alkane-like hydrocarbons in physiological fluid can inhibit the 

delivery of ROS [29]. In biofilms, H2O2 and O2 can potentially quite deep to millimetre 

depths, whereas the penetration depth of other ROS such as O3 was limited to 5-40 

micrometres [30].  

 

To detect the plasma-generated RONS in aqueous solution, ESR [31, 32], LC-MS 

[33, 34] and UV-Vis [35-37] are often used. Usually ESR is used to measure short-

lived RONS in aqueous solutions treated by plasma (including the OH• with a lifetime 

of < 100 microseconds, ONOOH with lifetime of ~1 millisecond, and O2
- and HOO• 

with lifetimes < 10 seconds). However, the consensus is that the shorter-lived RONS 

rapidly decay in aqueous solution to give more stable longer-lived secondary RONS 

such as NO2
-, NO3

- and H2O2; these RONS have been readily detected by LC-MS, 

FT-IR, and UV-Vis analysis of plasma treated aqueous solutions.  

 

Aggregated, these data lead to a number of obvious questions: 

 What RONS, originating from plasma (or RONS produced downstream), are 

delivered into real biological targets (animal, food product, plant) and how far are 

they delivered?   

 How do these RONS interact with the various components of a real tissue, e.g. in 

an animal, tissue fluid, extracellular matrix, cell membranes and intracellular 

components.  

 

Herein, we describe the progress made to date in developing models to measure the 

sub-surface (deeper than the top few nanometers to millimeters) interactions of 

RONS in tissues, and in the later section in cells. In order to reach the surface of 

Comment [MP1]: Two comments here: 
first, “lifetime” is a bit ambiguous. Do you 
mean “half-life”? Second, can you include 
citations for these numbers?  
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and/or penetrate a target cell interior, we argue that three major interfaces must be 

breached (shown in Figure 1). In the case of more complex ‘targets’, such as cancer 

with an associated wound, there may be clotted blood, pus and wound debris (Figure 

1). 

 

Experimental and simulation studies clearly show that deeper within tissue fluid and 

tissue (millimetres below the surface) most of the RONS from the plasma-air 

interface are converted to more stable RONS with a longer half-time – usually H2O2, 

NO2
-, NO3

-, as well as O2 [35, 36, 38]. These RONS are produced in the liquid phase 

from chemical reactions with neighbouring RONS and also with the constituents of 

the tissue fluid and tissue. Plasma treatment can also stimulate the intracellular 

production of RONS, which may amplify the original RONS dosage delivered by 

plasma into tissue fluid and tissue [39, 40].  

 

Delivery of RONS into tissue – the gap in our knowledge 

Leading experts in plasma biotechnology have argued that plasma stimulates tissue 

sub-surface by cell-to-cell communication – whereby only surface cells are directly 

exposed to the plasma (or effluent) and any subsurface effects are transmitted from 

these cells [41-43]. This explanation fits with biological theory. But it still cannot 

explain how the RONS reach the surface layer of cells in the first place. What is 

perhaps a little underappreciated is that in open wounds (Figure 1) there are major 

physical barriers to traverse, comprising congealed blood and pus from infections. 

For further information, refer to figures 1-4 in reference [44]. 

 

In this opinion article, we are concerned with the transport of more stable RONS into 

tissue and these RONS interacting with the first ‘physical barrier’ of the cell (i.e. the 

phospholipid cell membrane). This is not to minimise the importance of, for example, 

RONS-DNA interactions – which could have significant implications for the safety of 

plasma treatments (e.g. chromosomal stability and genotoxicity [45, 46]) – but are 

outside of the scope of this article. 

 

Delivery of RONS into tissue models 

One first step toward modelling RONS penetration and delivery into tissue was a 

simple experiment using a plasma jet and a gelatin target with embedded 
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phospholipid vesicles [47]. The vesicles encapsulated a self-quenched dye that 

when released (upon vesicle destruction) resulted in a clear fluorescence switch-on. 

These very first data showed that a plasma jet could interact (disrupt) phospholipid 

cell membranes at least several hundred micrometres below soft hydrated material. 

A second follow-up study showed that the spatial surface distribution and penetration 

depth of plasma-generated RONS was very similar to the patterns observed for 

vesicle destruction [48]; and prolonged treatment enabled ROS to be delivered to 

millimetre depths in the gelatin target by the plasma jet. Apart from two initial studies 

by Fridman and colleagues using agarose tissue models [49, 50], there do not 

appear to have been any earlier similar studies on tissue penetration. 

 

This was surprising because in the development of any new medical therapy, usual 

questions asked at some point (and often asked by the regulator) concern: 

 

 What are the active species?  

 What is the mode of action?   

 What are the safe doses?   

 

These questions need to be addressed in the development of any new medical 

therapies. In plasma medicine, knowledge of the plasma-phase species is important, 

but knowledge of those delivered into any biological system is vital.   

 

A subsequent development to the approach described above used gelatin and 

agarose model targets with either embedded chemical reporters, or simply as films 

through which plasma-generated RONS traverse, to measure RONS speciation and 

delivery into and through tissues [36, 37, 48, 51-54]. In the latter case, UV-Vis 

spectroscopy was used to identify RONS that traverse the targets. Gelatin was 

chosen because it consists of collagen, which is a major protein in skin, bone and 

connective tissue [55]; gelatin also provides a barrier to H2O2 (when spotted as 

solution on top of the gelatin surface) and potentially to other RONS [48]. Agarose 

was chosen because it has been widely utilised to mimic different tissue types (e.g. 

skin, liver, brain) [56, 57] and has been utilised as a tissue model for studies in 
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radiotherapy and neuroscience [58, 59]. The physicochemical properties of gelatin 

and agarose can easily be tailored for specific applications.  

 

Experiments with the tissue models have revealed the key RONS delivered into 

tissue (speciation) and likely relative (but not absolute) concentrations (doses) and 

depths of delivery. From these findings it is clear that plasma treatment can induce 

physical and chemical modifications deep within tissue to millimetre depths. Since 

our earlier studies, other groups have started utilising gelatin and agarose tissue 

models with different plasma sources and also observed relatively deep penetration 

of RONS to millimetre depths [60, 61].  

 

However, whilst they are useful for gaining new insights into plasma-tissue 

interactions, these models are relatively poor mimics of real animal tissues, lacking 

proteins, enzymes, antioxidants, cells, or a heterogeneous structure (e.g. skin layers: 

epidermis, dermis, hypodermis). And current tissue models do not mimic the 

gelatinous-like structure of biofilms. Building in these ‘features’ of real tissues would 

provide much more robust models to explore the plasma delivery of RONS into 

tissue. Very realistic 3D models of mammary glands [62] and the extracellular matrix 

[63, 64] have been developed in recent years; future plasma medicine research 

should adopt these models.   

 

Concomitant with RONS delivery, plasma jets were also shown to oxygenate the 

tissue models [36, 52, 54]. Tissue oxygenation with a plasma jet has also been 

observed in vivo by Collet and colleagues, who have shown that a plasma jet 

induces tissue oxygenation in live mice [65]. This result suggests that plasma jets 

can counteract hypoxia, a phenomenon that impedes healing in chronic wounds and 

increases resistance of cancer cells to radiation and cytotoxic drugs [66].  

 

However, as noted above, we expect that gelatin would present a barrier to H2O2 

[48], and by inference to other RONS. Therefore, an important question arises: what 

is the ‘force’ that is responsible for the plasma delivery of RONS across what should 

be an impenetrable barrier? We argue electric fields from the plasma jet have an 

important role. One study observed that plasma jets deliver RONS onto the surface 

of gelatin tissue models in a star-shaped pattern [48]. Similar star-shaped patterns 
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were observed for plasma surface streamers across insulators as measured by 

Pockels sensing and seen in Litchenberg figures [67]. Recently, it was shown that 

a relatively small electric field of 20 V cm−1 can significantly enhance the plasma 

delivery of RONS into a gelatin tissue model [60]. These results indicate that electric 

fields facilitate the plasma delivery of RONS into real biological tissue. However, the 

data is still relatively sparse, so the results are obviously far from conclusive and 

much further work is needed to understand mechanisms that drive plasma-

generated RONS deep into tissues.  

 

Crossing the cell membrane barrier 

The phospholipid membrane provides a barrier to exogenous RONS. Understanding 

plasma-generated RONS interactions with cell membranes is vital to developing a 

fuller mechanistic picture of how plasma potentially stimulates cells. Broadly, one of 

two events can occur when RONS encounter the cell membrane: (i) RONS can react 

with the cell membrane, or (ii) RONS cross the cell membrane (Figure 2). With 

renewed interest and research dedicated towards elucidating the molecular 

mechanisms of lipids in their contribution to diseases, there is growing optimism that 

new and more effective approaches can be obtained to prevent and cure diseases 

such as cancers [68]. 

 

Computer simulation experiments have improved our understanding of plasma 

interactions with cell membranes. For example, molecular dynamic simulations have 

shown that reactions of RONS with the cell membrane lead to lipid peroxidation, 

enhancing the ingress of further RONS (Figure 2) [69]. Electric fields from plasma 

can also act in synergy with plasma-generated RONS increasing membrane 

permeability [70]. Cholesterol in healthy cell membranes can significantly reduce the 

ingress of RONS, which is particularly important for targeted cancer therapy because 

cancer cells generally have a lower percentage of cholesterol in their cell membrane 

[69].  

 

Computer simulations have been supported by experiments with models of cell 

membranes [71-74]. Other results showed that plasma can directly deliver RONS 

across phospholipid membranes in simple buffers and in proteinaceous solutions 

required for in vitro cell culture [75-77]. These studies tailored the vesicle diameter to 
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mimic eukaryotic and prokaryotic cells and observed that due to the large differences 

in the surface area:volume ratio, plasma delivers a higher dosage of RONS into 

prokaryotic cells, which is important for decontamination of wounds infected with 

bacteria [75]. 

 

Whilst these approaches have yielded valuable insights into how lipids and 

cholesterol in cell membranes react with and influence the ingress of RONS into the 

cell interior, there are a number of clear limitations in current simulations. These 

include: 

 Real cell membranes are made up of many different lipids (rather than one or two 

typically used in computational and experimental models). In fact, eukaryotic cells 

synthesise thousands of different lipids [78]. 

 Different healthy cell types have membranes that differ significantly in 

composition. The variability in cell membranes is further complicated in diseased 

cells, where membrane composition can change with disease status, e.g. in 

cancer cells [68]. 

 Eukaryotic cells possess internal membranes that encase their nucleus and 

organelles with each membrane being different in composition and function. This 

further increases the complexity of the cell membrane properties that present a 

barrier to RONS (i.e. nuclear and organelle membranes). 

 Cell membranes are dynamic and can self-repair. 

 Real cell membranes contain proteins and are decorated by complex sugars. 

 Cell membranes contain channels that actively move molecules in and out 

(Figure 2), such as aquaporins [79]. 

  

Some of this complexity could be readily incorporated into synthetic cell membranes, 

such as more complex lipid compositions. Other features, e.g. the decoration by 

complex sugars, would require considerably more thought about how to achieve. 

Further aspects, such as ion channels, may not be technologically achievable at this 

point in time and we would consider, at least for present, it would perhaps be better 

to progress to real cells.  

 

Are plasma-generated RONS really intervening in biological processes? 
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One significant challenge we have already highlighted is to demonstrate that it is 

indeed the plasma-generated RONS (or its progeny) that ultimately ‘intervenes’ in a 

biological pathway, whether intra- or intercellular, to bring about some upstream 

medical outcome. In this respect, more sophisticated tissue models (e.g. with 

embedded cells) and models of cell membranes could be very powerful. Adapting 

the method of Gorbanev and colleagues [80], using isotopically labelled reagents in 

either the gas feed, or ambient atmosphere, it should be possible to determine both 

the origin and final fate of specific RONS, from the plasma into individual cells.  

 

Eventually, pre-clinical models will be required to validate any results generated with 

the tissue/cell models. But we argue that tissue/cell models will always remain 

important tools in plasma medicine research because they enable more time and 

cost effective experimentation and reduce the number of animal experiments, which 

would also eliminate unnecessary animal suffering. 

 

Concluding remarks and future directions 

A better understanding of plasma-tissue/cell interactions will enable us to develop 

plasma applications that are safer, more robust and effective. Simple models of 

tissue and cells will aid in developing this understanding. Future research with these 

models could address some important questions (see Outstanding Questions). In 

answering these questions, the potential immediate impacts include: 

1. Plasma medicine and health – the long term goal (and major impact) is the use of 

plasma to synthetically generate RONS that intervene in known biological processes 

associated with disease or tissue regeneration. 

2. Food manufacturing – outside of medicine, a likely impact would be the use of 

RONS to enhance food manufacturing (meats, fruits and vegetables). 

 

In summary, developing synthetic models to mimic the chemical, physical and 

biological architecture of biological tissue remains a great challenge. But tissue 

models do offer advantages compared to experimentation with cells and animals 

including simpler, faster and more cost-effective experimentation, and avoid growing 

ethical concerns associated with animal experimentation. Incorporation of living cells 

into the tissue models is a logical next step to understand the role of cell-to-cell 

signalling in the plasma treatment of diseased tissue. Perhaps even more pertinent, 
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is the use of tissue models to unravel the role of electric fields in the delivery of 

RONS into tissue. Understanding how to effectively harness electric fields in plasma 

medicine should facilitate the development of more effective plasma medical 

technologies.  
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Figure 1 (Key Figure). Cold atmospheric plasma jet delivery of RONS into a 

cancerous tumour with an associated wound. The plasma-generated RONS need to 

traverse at least three major interfaces before reaching the interior of a cancer cells 

(from top to bottom): (1) plasma-fluid, (2) tissue fluid-tissue and (3) tissue-cell. 

Cancerous tumours are often associated with ulcerous wounds consisting of 

congealed blood and pus that present an additional obstacle to RONS. 
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Figure 2. Mechanisms by which plasma-generated RONS can cross a cell 

membrane barrier to reach the cell interior. In order from left to right: through a 

passive diffusion process, or through a membrane channel, or through pores 

generated by lipid oxidation. Strong electric fields (not shown on the illustration) from 

the plasma jet may further facilitate RONS ingress by inducing cell membrane pore 

formation. 
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TRENDS BOX 

 Physical effects of plasma can be seen to depths of several hundred 

micrometres within tissue. 

 Plasma-derived RONS are likely to be delivered millimetres into tissues. 

 Speciation reveals that RONS delivered by plasma into tissue fluid and tissue 

are predominately stable secondary RONS – e.g. H2O2, NO2
- and NO3

-. 

 The plasma generation of RONS within a hydrated target is influenced by the 

target matrix that can enhance or reduce the RONS concentrations and act as 

a reservoir RONS. 

 It is likely that the concentration of these plasma-derived RONS exceeds 

hundreds of micromoles, even at depths of several millimetres within tissue. 

 Oxygen concentration at the time of plasma treatment significantly influences 

RONS generation within a hydrated proteinaceous target. 
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OUTSTANDING QUESTIONS BOX 

 What are the kinetics and mechanisms in the transport of plasma-derived 

RONS into tissues and cells? And what proportion of these RONS originate 

from the plasma-phase versus secondary RONS? 

 Can we tailor plasma to deliver specific RONS to targeted depths and specific 

sites within tissue? 

 How does the biological target influence the speciation and depth in the 

plasma delivery of RONS? Do biological targets ‘quench’ RONS, or provide a 

reservoir/further source of secondary RONS? 

 Can we eventually describe plasma treatment in terms of a RONS dose 

(similar to a medical drug)? 

 Does plasma elevate intracellular RONS directly through the 

delivery/generation of RONS into cells, or indirectly through the modification 

of the extracellular matrix? 

 What is/are the responsible force(s) for the transport of primary or secondary 

plasma-derived RONS in tissue? Can we manipulate these to obtain more 

effective therapies? 

 How does the composition of the cell membrane influence the ingress of 

plasma-derived RONS into the cell interior? How important is the cell 

membrane composition compared to cell ion channels? 

 Can plasma-derived RONS cross internal cell membrane barriers?  

 Does the membrane surface area:cell volume ratio influence RONS ingress? 

This is particularly important for plasma decontamination of wounds infected 

with small organisms (e.g. bacteria).  

 

 

 

 

 

 

 

 



21 
 

 

GLOSSARY 

Aquaporins Channels found on the cell membrane that help 

facilitate the passage of H2O2 into and out of the cell 

Cell transfection  

Cold atmospheric plasma Electrical plasma in the form of a partially ionized gas 

operated at atmospheric pressure without 

considerably heating the background gas above 

ambient temperature 

Biofilms Groups of adherent microorganisms (e.g. bacteria 

cells) forming colonies surrounded by a polymeric 

matrix 

Cell-to-cell communication  

ESR Electron spin resonance 

Free-radical ageing  

H2O2 Hydrogen peroxide 

HOO• Hydroperoxyl radical 

LC-MS Liquid chromatography mass spectrometry 

Litchenberg figures  

NO2
- Nitrite 

NO3
- Nitrate 

NOx Nitrogen oxides 

O2 Molecular oxygen 

O2
- Superoxide 

O3 Ozone 

OH Hydroxyl radical 

ONOOH Peroxynitrous acid 

Plasma jet Cold atmospheric plasma typically formed in a 

dielectric tube with a flowing inert gas (e.g. helium or 

argon). The tube is open-ended enabling the plasma 

to extend into the ambient atmospheric giving a ‘jet-

like’ appearance.  

Plasma medicine Use of cold atmospheric plasma to induce a physical 
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or chemical change in tissue fluid, tissue or cells to 

induce a desired biological response or treat a 

disease. 

Pockels sensing  

RNS Reactive nitrogen species 

RONS Reactive oxygen and nitrogen species 

ROS Reactive oxygen species 

Stem cell differentiation  

Tissue regeneration  

Tumours Abnormal masses of tissue growth, which can be 

benign or cancerous 

UV-Vis Ultra-violet visible spectroscopy 

  

  

 

 

 


