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The role of nonlinear dissipation in vibrational resonance (VR) is investigated in an inhomo-
geneous system characterized by a symmetric and spatially-periodic potential, and subjected to
non-uniform, state-dependent, damping and a bi-harmonic driving force. The contributions of the
parameters of the high frequency signal to the system’s effective dissipation are examined theoreti-
cally in comparison to linearly-damped systems, for which the parameter of interest is the effective
stiffness in the equation of slow vibration. We show that the VR effect can be enhanced by varying
the nonlinear dissipation parameters; and that it can be induced by a parameter that is shared by
the damping inhomogeneity and the system potential. Furthermore, we have apparently identified
the origin of the nonlinear-dissipation-enhanced response: we provide evidence of its connection to
an Hopf bifurcation, accompanied by monotonic attractor enlargement in the VR regime.
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I. INTRODUCTION

Nonlinear systems are ubiquitous in nature. Their
nonlinearity may arise in diverse ways, the most im-
portant example being, arguably, nonlinear damp-
ing/dissipation [1]. This is of particular interest on ac-
count of its wide occurrence and applications including,
for example, in plasma science [2, 3], Josephson junc-
tions [4–6], the Kramers oscillator [7], nanoelectrome-
chanical and nanomechanical systems [8–12], aerospace
structures [13], nonlinear suspension and isolation sys-
tems [14], the acoustic nonlinearity of an orifice [15], the
cochlear amplifier [16], and in the context of quantum in-
formation processing with microwave cavity modes [17].

In nonlinear and quasi-linear models, nonlinear dissi-
pation terms have been shown to influence the system
dynamics strongly, leading to emergent phenomena. For
instance, the stability of the equilibrium points may be
altered, giving rise to limit cycles or inducing bifurca-
tion sequences, chaos or other forms of complex dynam-
ics in certain parameter regimes [1]. Mogilevtsev et al.
[18] showed that nonlinear dissipation can be designed to
combat the effects of an arbitrarily strong linear loss, for
both finite-time intervals and stationary states. In the
context of so-called absolute negative mobility (ANM),
where particles can surprisingly move against a con-
stant bias, nonlinear systems with non-uniform space-
dependent damping in a symmetric potential have been
investigated in the presence of noise [19], with a peri-
odic force in place of noise [20]; and in a bi-harmonically
driven system [21]. Repeated dispersionless (coherent)
motion, as well as a ratchet effect, were reported in a
medium with a nonlinear friction coefficient [22, 23]. In
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addition, stochastic resonance [24] and the ratchet effect
have been described, based on the co-existence of two
dynamical states in parameter space [25]. More recent
studies revealed that the performance of an underdamped
ratchet can be substantially enhanced by an optimal com-
bination of asymmetry of the potential and system inho-
mogeneity [26]. These results underscore the roles played
by noise, bi-harmonic driving and damping inhomogene-
ity, or by their combination, in enhancing a system’s per-
formance and driving it into resonant states [27].

Traditionally, resonance implies a matching of frequen-
cies, e.g. between the natural frequency of an under-
damped oscillatory system and a periodic driving force,
giving rise to an enhanced response. More recently, how-
ever, the term is being used more broadly to describe
any case where the amplification or response of a system
can be optimised through the adjustment of a parame-
ter that is not necessarily a frequency [27]. In stochastic
resonance [28], for example, the parameter in question is
the noise intensity and only in special cases [29] is there
also any matching of frequencies. In fact, many different
kinds of external forces can induce resonances and the lat-
ter can manifest in a diversity of different forms, such as
chaotic resonance [30, 31], coherence resonance [32, 33],
parametric resonance [27], stochastic resonance [28, 34],
ghost resonance [35], vibrational resonance [36], autores-
onance [27] and anti-resonance [37].

In what follows, we will focus on a form of vibrational
resonance (VR). In systems with linear damping, VR
has already been widely investigated [38–45] following an
early study by Landa and McClintock [36]. The results
have shed light on the contributions to the effective po-
tential of the various components of the high frequency
signal [27], as well as the roles played by system pa-
rameters such as delay and fractional order terms in the
induction, enhancement and control of VR [46–48, 48–
51]. However, relatively little attention has been paid
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to the possible contribution of nonlinear dissipation to
the occurrence of VR, as described very recently for a
prestressed beam fixed at both ends [52] and for a bi-
harmonically driven plasma [53]. VR is usually discussed
in terms of a slowly-driven system’s response to varia-
tions in the parameters of an imposed fast periodic signal.
It has been shown, however, that signal-enhancement or
-suppression is also possible through variation of the bi-
furcation parameters of the model in the presence of a
bi-harmonic drive, within appropriate parameter regimes
[53, 54]. This result suggests that internal parameters
like frictional inhomogeneity, or nonlinear dissipation,
may also play independent or contributory roles in the
occurrence of VR.

In this paper, we report the results of an investigation
of the role of frictional inhomogeneity in the enhance-
ment, control and induction of vibrational resonance in
a driven oscillator with a symmetric potential but non-
uniform and space-dependent dissipation. We validate
the occurrence of VR both analytically and numerically
and provide insights into its origin and into the govern-
ing mechanism. We provide clear evidence that VR can
be enhanced significantly within appropriate parameter
regimes by combining nonlinear dissipation parameters
with a bi-harmonic driving force. Furthermore, we show
that VR can be induced by a parameter that is shared
by the damping inhomogeneity and the system potential.
The rest of the paper is organized as follows: the model
is introduced and its applications discussed briefly in Sec.
II. In Sec. III, an analytic description of the resonance
behaviour of the system is presented using the method
of separation of motion. Numerical results in Sec. IV are
used to verify the theoretical analysis; and conclusions
are drawn in Sec. V.

II. THE MODEL

The model is a nonlinear dissipative system with a
symmetric periodic potential and a periodically-varying
friction coefficient, of the generalized dimensionless form

d2x

dt2
+ γ(x)

dx

dt
+
dV (x)

dx
= F cosωt+G cos Ωt. (1)

The system’s periodic potential V (x) is given by

V (x) = −
V0

k
cos kx, (2)

while the inhomogeneous damping term γ(x) takes the
form

γ(x) = γ0[1 − λ sin(kx+ φ)]. (3)

Using Eq. (2) and Eq. (3) in Eq. (1), the system can be
written explicitly as

ẍ+γ0[1−λ sin(kx+φ)]ẋ+V0 sin kx = F cosωt+G cos Ωt,
(4)

where the dots denote differentiation with respect to time
t. In Eq. (4), x, ẋ and ẍ refer to the spatial coordinate
of the system at time t, the friction term, and the iner-
tial term respectively. The parameter γ(x) characterizes
the system’s dissipation; the damping term is a func-
tion of γ0, λ, and φ which are respectively the amplitude
of the damping coefficient, the strength of the system
inhomogeneity, and the phase lag between the potential
and the damping coefficient which share the same period.
F cosωt is a weak periodic driving force of low frequency
ω and amplitude F ; while G cos Ωt is a fast periodic force
of high frequency Ω (Ω ≫ ω).

The system (4) represents an archetypical model of an
inhomogeneously-damped, one-dimensional, single parti-
cle evolving within a periodic potential under the influ-
ence of a bi-harmonic driving signal – each drive corre-
sponding to a separate, unbiased, external force. The
system can equally be adapted to apply to other phys-
ical applications such as Josephson junctions, plasmas,
phase-locked loops, or pendulums [19–21, 55, 56]. In a
Josephson junction set-up, for example, it describes the
one-dimensional motion of a charged particle subject to
a periodically-varying friction γ(x), where γ(x) is anal-
ogous to the ratio of the conductivities associated with
the Cooper-pair and quasiparticle tunneling respectively
([23] and references therein); and γ0 is a constant damp-
ing coefficient such that γ0 = v(ωjRC)−1 [4, 5] where ωj

is the Josephson frequency and R and C are respectively
the resistance and capacitance of the junction. In the spe-
cial case, λ = 0, k = 1, V0 = 1, the symmetry-breaking
requirement met by γ(x) – essential for achieving the
ratchet effect – is absent, and Eq. (4) then reduces to

ẍ+ γ0ẋ+ sinx = F cosωt+G cos Ωt, (5)

which is the well-known linearly-damped pendulum for
which VR has already been studied within a range of dif-
ferent parameter regimes [57]. In our analysis of VR in
the system (1), we focus on the overdamped regime in
which only periodic and quasiperiodic motions are ad-
missible.

III. THEORETICAL ANALYSIS

Here, we employ the method of direct separation of the
dynamics into fast and slow motions. We thus obtain a
set of integro-differential equations, one of which is the
equation of slow motion of the system whose response
can be modulated by varying the parameters of the high-
frequency input drive. The response amplitude, Q given
as the ratio of the amplitude A to the frequency F is
obtained by solution of the equation for the slow motion.
Thus, we consider the solution x(t) of the system (4) as a
superposition of only the solutions χ(t) of slow evolution
with frequency ω and ψ(t) of the fast oscillations with
frequency Ω when Ω ≫ ω, in the form:

x(t) = χ(t) + ψ(t,Ωt). (6)
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χ(t) is periodic with period T = 2π
ω

while ψ is periodic in
the fast time τ = Ωt with period 2π and its mean value
with respect to fast time τ is given by

〈ψ〉 =
1

2π

∫ 2π

0

ψ dτ = 0. (7)

The next step is to derive a system of 2-coupled integro-
differential equations for the variables χ and ψ from the

differential equation (4), though the object of main in-
terest is of course the slow component. The first of these
equations is obtained by substituting Eq.(6) in Eq.(4) to
yield

χ̈+ ψ̈ + γ0[1 − λ sin(kχ+ φ) cos kψ − λ cos(kχ+ φ) sin kψ](χ̇+ ψ̇) + V0 sin kχ cosψ + V0 cos kχ sinψ

= F cosωt+G cos Ωt. (8)

By averaging both sides of Eq. (8) over the period of fast time [0, 2πΩ ], and noting that ψ is a rapidly-oscillating
periodic function of the fast time, so that we can then apply Eq.(7) to write

χ̈+ γ0[1 − λ sin(kχ+ φ)〈cos kψ〉 − λ cos(kχ+ φ)〈sin kψ〉]χ̇ + V0 sin kχ〈cos kψ〉 + V0 cos kχ〈sin kψ〉

= F cosωt+ 〈G cos Ωt〉. (9)

Simplifying Eq. (9) using the mean values,

〈G cos Ωt〉 = 0,

〈sin kψ〉 =
1

2π

∫ 2π

0

sin kψdτ = 0, (10)

〈cos kψ〉 =
1

2π

∫ 2π

0

cos kψdτ = J0(kψ0),

where ψ0 is the amplitude of the steady state solution of
ψ and J0(ψ0) is the zeroth-order Bessel function of the
first kind, gives

χ̈+ γ0[1 − λJ0(kψ0) sin(kχ+ φ)]χ̇

+ V0 J0(kψ0) sinkχ = F cosωt. (11)

Eq. (11) is the first of the set of coupled equations for
the variable χ. The equation for the fast motion ψ is
obtained by subtracting Eq. (11) from Eq. (8) and, by

using the inertial approximation ψ̈ ≫ ψ̇ ≫ ψ, can be ap-
proximated to that of a damped and periodically-driven
particle whose long-term solution is periodic in fast time
τ = Ωt by considering that ψ is rapidly oscillating:

ψ̈ + γ0ψ̇ = G cos Ωt, (12)

which has steady state solution

ψ = ψ0 cos(ωt+ θ) =
G

Ω
√

Ω2 + γ20
cos(ωt+ θ); (13)

sin θ =
−γ0

√

Ω2 + γ20
, cos θ =

−Ω
√

Ω2 + γ20
. (14)

ψo may be approximated by assuming Ω ≫ γ0, so that

ψ0 =
G

Ω2
. (15)

Eq. (11) can now be written as

χ̈ + γ0[1 − λJ0

(

kG

Ω2

)

sin(kχ+ φ)]χ̇

+ V0J0

(

kG

Ω2

)

sin kχ = F cosωt. (16)

Eq. (16) is the analytic expression that we seek for the
slow vibration, containing the parameters of the fast sig-
nal, and it will be used to compute the theoretical re-
sponse amplitude Q of the system at the lower frequency
ω by linearising it around the equilibrium points. Eq.
(16) can be considered as a forced slow motion of a par-
ticle of form

χ̈+ γeff χ̇+
dVeff

dχ
= F cosωt, (17)

where

Veff = −
V0

k
J0

(

kG

Ω2

)

cos kχ (18)

and

γeff = γ0

[

1 − λJ0

(

kG

Ω2

)

sin(kχ+ φ)

]

(19)

are the effective potential and the effective dissipation,
respectively. The effective potential, Veff(χ) is a function
of the parameters Ω and G, and its shape and number of
local minima and maxima are determined by the these
parameters. Fig. 1(a) plots Veff(χ) for G = 0, 100, 500
and 750, with k = 1, Ω = 13. It is clearly evident that,
for all G values, the depth of the well is reduced by in-
creasing the value of G while the shapes remain locally
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FIG. 1: [Color Online] The effective potential, Veff(χ) for: (a)
four values of G with k = 1 and Ω = 13; and (b) four values
of k with G = 300 and Ω = 13

the same in each case. However, the positions of the
maxima for G = 0 and 100 correspond to those of the
minima for G = 500 and 750. This remarkable change
occurs at G ≃ 405. Above and below this value of G,
the positions of the extrema remain unchanged as G is
varied. Fig. 1(b) shows the effective potential Veff(χ)
for k = 1, 1.5, 2.0 and 2.5. Variation in the k value
exerts a similar effect on the effective potential to that
exerted by G in Fig. 1(a), as would be expected from Eq.
(18). It is therefore reasonable to assume that for the
system (4), whose vibration can be completely described
by Eq. (16), the effect of varying the amplitude G of the
high frequency signal can be mimicked by appropriate
adjustment of the system parameter k. Consequently,
any optimisation of signal amplification or suppression
achievable through modulation of the parameters of the
fast driving force may equally be achieved by adjustment
of the system parameter k. Note that with k acting like
a coefficient for the ratio G

Ω2 in Eq. (18), amplification
of the system’s response (governed by the ratio of G and
Ω in VR [57]), can effectively be tuned to resonance for
fixed parameters of the fast periodic driving signal. This
means that the system’s response can be controlled ef-
fectively by adjustment of its dissipation term to drive
it into the resonant state. This fact will be of central
importance in what follows.

Next, linearization of the equation of slow oscillation
(16) around the equilibrium points (χ∗, χ̇∗) is carried out
using an appropriate approximation to obtain an analytic
response amplitude Q to be compared with the Q ob-
tained by computing the full equation of the system (4)
numerically in Sec. IV. By re-writing Eq. (17) as a set of
coupled first order differential equations without the ex-
ternal driving force in (χ, ζ = dχ

dt
), and then substituting

in (dχ
dt

= 0, dζ
dt

= 0) to obtain (0 = χ∗, 0 = VoJo sin kχ∗)

where Jo = Jo(kGΩ2 ), the equilibrium points around which
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FIG. 2: [Color Online] Dependence of the response amplitude
Q on the control parameter G for five values of λ (from bot-
tom to top against the ordinate axis, λ = 0, 0.9, 1.9, 3.5, 5.0).
Other parameters are: γ0 = 1.2, φ = 0.1, k = 1.0, F = 0.1,
ω = 0.65 and Ω = 13. Continuous curves represent the
numerically-computed Q from Eq. (29) using Eq. (25), while
the analytically calculated Q from Eq. (24) are indicated by
marker points and(or) broken lines.

slow oscillation occur are χ∗
min(max) = 2nπ, where n is

an integer. The system’s oscillation can be described in
terms of the deviation of slow motion χ from the equilib-
rium points χ∗ by using the deviation variable Y = χ−χ∗

in Eq. (16). The equation of motion then becomes

Ÿ + γ0[1 − λJ0 sin(kY + φ) cos kχ∗]Ẏ

+V0J0 sinkY cosχ∗ = F cosωt, (20)

For χ∗ = χmin(max), J0 cos kχ∗ = |J0| and Eq. (20) can
then be written as

Ÿ +γ0[1−λ|J0| sin(kY +φ)]Ẏ +V0|J0| sinkY = F cosωt.
(21)

For F ≪ 1, |Y | ≪ 1 and φ≪ 1, sin(kY + φ) ≈ (kY + φ)
and sin kY ≈ kY , so that Eq. (21) becomes

Ÿ +γ0[1−λ|J0|(kY +φ)]Ẏ +V0|J0|kY = F cosωt. (22)

Clearly, the damping term in system (22) consists of

both linear γ0[1 − λφ|J0|]Y and nonlinear [γ0λk|J0|]Y Ẏ
contributions. By neglecting the nonlinear damping
term, an approximate damped and periodically forced
linear equation of the form

Ÿ + γLẎ + ω2
rY = F cosωt (23)

is obtained; where the linear damping coefficient is γL =
γ0(1 − λφ|J0|), the resonant frequency is ωr =

√

V0|J0|k
and its steady state solution Y (t) which describes the
ultimate behaviour of the system in the long-time limit
t → ∞ is Y (t) = AL cos(ωt + Φ); AL = F√

S
, S = W 2 +

γ2Lω
2 and W = ω2

r −ω
2. The response amplitude is given



5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.25  0.5  0.75  1  1.25  1.5

Q

λ

λlim=1.3

Numerical
Theory

FIG. 3: [Color Online] Comparison between theory and nu-
merics for the dependence of the response amplitude Q on the
coefficient of nonlinear dissipation λ for G = 15. Other pa-
rameters are: γ0 = 1.2, φ = 0.85, ω = 0.65 and Ω = 13. The
continuous curve (red) represents the numerically-computed
Q from Eq. (29) using Eq. (25), while the theoretically cal-
culated Q from Eq. (24) is indicated by the broken line with
marker points in blue.

by the factor Q which is defined as the ratio between the
output and the forcing signals:

Q =
AL

F
=

1
√

W 2 + γ2Lω
2
. (24)

In Eq. (24), Q is maximum when S is minimum, i.e. at
resonance W = 0 or ωr = ω. Note that the damping
term γL is a function of the fast motion parameters G
and Ω and other parameters (k, λ, φ) of the damping in-
homogeneity. The implication is that in the system (23),
considerable variation in the system’s response can in-
deed be achieved by varying certain parameters of the
damping term. From the theoretical response amplitude,
we deduce that the value of λ corresponding to Qmax is
given as λmax = 1

φ|J0| . Thus, for λ > λmax, the system’s

response, Q diminishes.

IV. NUMERICAL RESULTS

To compute the system’s response to the biharmonic
forcing, a convenient approach is to express Eq. (4) as a
system of two first-order autonomous ordinary differen-
tial equations (ODEs):

dx

dt
= y,

dy

dt
= −γ0[1 − λ sin(kx+ φ)]ẋ − V0 sinkx

+F cosωt+G cos Ωt. (25)

Numerical integration of Eq. (25) is performed in the
overdamped regime using a fourth-order Runge-Kutta

scheme with step size ∆t = 0.01 over a simulation time
interval Ts = nT with T = 2π

ω
being the period of

the oscillation where ω is the low frequency input sig-
nal and n(= 1, 2, 3...) is the number of complete oscilla-
tions. We used zero initial conditions, a relaxation time
of 100T and fixed the values of the potential amplitude
and drive parameters at V0 = 1, F = 0.1, ω = 0.65 and
Ω = 13. These choices ensure that the system is in the
overdamped regime in which only periodic or quasiperi-
odic motion is admissible. The other parameters, γ, λ,
φ are chosen within a regime so as to optimize the emer-
gence of VR for n = 200.

A. Occurrence of VR

Our main objective here is to solve for the response
amplitude at frequency ω, because it provides an idea of
how the low frequency signal is amplified by the high
frequency signal, thereby characterizing VR. The re-
sponse is computed from the amplitudes Bs and Bc of
the Fourier spectrum of the output signal, where Bs and
Bc are

Bs =
2

nT

∫ nT

0

x(t) sinωtdt (26)

Bc =
2

nT

∫ nT

0

x(t) cosωtdt.

Conventionally, the amplitude is given by,

A =
√

B2
s +B2

c . (27)

and the phase shift as,

Φ = tan−1

(

Qs

Qc

)

. (28)

The response amplitude is thus given as

Q =
A

F
=

√

B2
s +B2

c

F
. (29)

We begin by examining the dependence of frictional
inhomogeneity on the occurrence of VR. Shown in Fig. 2
is the response amplitude Q as a function of the ampli-
tude of the high frequency signal, for five values of the
dissipation parameter λ. The values of Q calculated ana-
lytically from Eq. (24) (marker points and dashed lines)
are compared with numerical values (continuous curves)
computed from Eq. (29) for λ = 0, λ = 0.9, λ = 1.9,
λ = 3.5 and λ = 5.0. Note that the case for λ = 0,
reproduced here for comparison and consistency was re-
ported earlier by Rajasekar et al. [57]. Whereas at lower
values of λ (0, 0.9, 1.9), the agreement is excellent; as λ
becomes large (e.g., λ =3.5 and 5.0, as shown) the theo-
retical and numerical results no longer agree so well, al-
though the essential features of the curves, including the
shape and trend remain in good agreement. In order to
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FIG. 4: [Color Online] Dependence of the response amplitude
Q on the control parameter G for four values of phase shift:
from bottom to top φ = 0, 0.1, 0.3 and 0.5. Other parameters
are: γ0 = 1.2, λ = 0.9, k = 1.0, F = 0.1, ω = 0.65 and
Ω = 13. The continuous and dashed curves represent the
numerically-computed Q from Eq. (29) using Eq. (25), while
the corresponding analytically calculated Q from Eq. (24) are
indicated by marker points (solid shapes) of the same colour.

ascertain the limit of validity of the theoretical approach,
we plot in Fig. 3 the numerical and theoretical response
curves, Q both as functions of the nonlinear dissipation
coefficient, λ, where λlim denotes the theoretical limit of
validity. For λ < λlim = 1.3, the curves are in excellent
agreement, whereas for λ > λlim = 1.3, the deviation
of the numerical Q from the theoretical Q grows. This
discrepancy may be attributed to the approximation of
the damping term in Eq. (22) where we had dropped the

nonlinear component of the damping, [γ0λk|J0|]Y Ẏ to
obtain the linear equation given by Eq. (23). Intuitively,
the low dissipation regime of λ for which agreement ex-
ist corresponds to the experimentally significant regime
where better device response could be obtained at high
frequency signals [58]. In general, low dissipation is de-
sirable, since it allow for more device efficiency and sen-
sitivity, as well as less susceptibility to mechanical noise
and wear [59]. A remarkable feature is the occurrence
of multi-resonance for varying G in the presence of the
slow signal even when the system is linearly damped [57],
that is, for λ = 0 as shown Fig. 2. However, the increase
in the strength of the nonlinear dissipation coefficient λ
produces a monotonic enhancement in the system’s re-
sponse at each resonance point. Here, resonances occur
for small values of Qmax for ω = 0.65, Ω = 13, F = 0.9,
k = 1 and φ = 0.1. Moreover, the trend of Q curves
for the nonlinearly damped system (λ > 0) compared
with the linearly damped system(λ = 0) shows that as
the strength of nonlinearity is increased, the differences
between maxima of the response amplitude is magnified
and the effect becomes more evident at lower values of
G.

Further evidence for the possibility of enhancing Qmax

by variation of a dissipation parameter is presented in
Fig. 4, for the response amplitude(s) Q as a function of
the amplitude of the high frequency signal for four val-
ues of phase shift φ, between the nonlinear dissipation
and the periodic potential (φ = 0, φ = 0.1, φ = 0.3
and φ = 0.5). The numerically-computed Q from Eq.
(29) using Eq. (25) (continuous and broken curves) and
their corresponding analytically-calculated Q from Eq.
(24) (solid shapes) are in agreement as clearly depicted
by the close proximities of the location of the point mark-
ers (analytic values) to their corresponding (of the same
colour) continuous lines. Monotonic enhancement in the
system’s response to modulation of the amplitude of the
fast drive at resonance, similar to the effects produced by
variation of λ is observed within a good choice of values
of the driving signal parameters ω, Ω and F . The value
of Qmax increases with increasing φ, with the effect being
more pronounced at low G. Since the damping is non-
linear at φ = 0, the response curve at φ = 0 bears close
resemblance to the behavior of Q at very weak values of
the parameter λ shown in Fig. 2. For φ > 0 presented in
Fig. 4, increasing the phase difference φ produces a signif-
icant monotonic increase in Qmax - the effect being more
pronounced at lower values of the amplitude G of fast
drive. Though multi-resonance is produced by varying G
in the presence of the slow signal, the system’s response
at resonance can be enhanced or suppressed by adjust-
ment of the phase φ. This shows that the dissipation
parameters can indeed be used to control the system’s
response at resonance: the dissipation parameters λ and
φ are evidently able to control the resonance, as shown
in Figs. 2 and 4.

Considering that the system’s potential and dissipation
are both periodic in k, it implies that resonance can be
induced by adjustment of the parameter k. The roles
played by the ratio of the parameters of the fast signal
in the occurrence of VR [57] can be performed/enhanced
by k in a multiplicative fashion based on the ratio kG

Ω
in Eq. (16), even when the parameters of the fast signal
are fixed. Finally, for fixed values of G and ω, and with
variation of k, the system can be driven into resonance
as shown in Fig. 5 for three values of G, namely, G =
250, G = 350 and G = 650. We have plotted in Fig. 5
the analytic response (filled circles) as obtained from Eq.
(24) superimposed on the numerical response (Eq. (29))
obtained from Eq. (25) (curves) to demonstrate the good
agreement. In addition, multiple resonance peaks occur
at larger values of G as observed in Fig. 5.

Exploring the VR landscape in parameter space gives
a convenient view of the range of system parameters for
which one can achieve a strong system response, which
is significant for experimental applications. Fig. 6, shows
the response Q as a function of both the dissipation pa-
rameter λ and the amplitude G of the fast signal in the
parameter range: (λ,G) ∈ ((0.0, 3.0), (0.0, 500)), with
φ = 0.85, and other parameters fixed as before. Fig. 6
shows in red and green the regimes of strong resonance
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tude G and the dissipation parameter λ for a phase shift of
φ = 0.85. Notice that small values of G also produce some
low peaks in the regime marked in deep blue; while the largest
peaks occur at higher G and lower λ.

that can be obtained with weak dissipation (typically,
λ < 2.0) and high amplitudes of the fast signal (typi-
cally, G > 200). Elsewhere, however, weak resonances
peaks can also appear and are indicated in blue.

B. Origin and mechanism of VR

We can now seek to understand the origin and mech-
anism of VR by exploring the underlying dynamics and,

in particular, the bifurcation structure and attractors in
Poincaré section. Proceeding as before, we calculated
the time-asymptotic motion of the system (25), visualiz-
ing the trajectories as a series of points in (x, v) phase-
space, where v = ẋ; and recording only one point per
period of the external drive, i.e. a point is plotted when
ωt = δ+n 2π where δ is the Poincaré phase. Using a pa-
rameter of the nonlinear dissipation, in this case λ, as the
bifurcation parameter we first examine the bifurcation
structure. It is well known that in nonlinear systems, res-
onance curves are closely linked to the underlying bifur-
cation structure [27, 53, 60, 61]. In particular, Koz lowski
et al. [61] and Roy-Layinde et al. [53] have shown that
symmetry-breaking (sb) bifurcations occur between res-
onances. Here, we report a new dynamical transition
mechanism associated with resonance. Fig. 7 shows the
forward bifurcation diagram (dotted red) obtained by in-
creasing the value of λ from 0 to 4, the corresponding nu-
merically computed response curve Q (dashed blue line),
and the maximal Lyapunov exponent λmax (green line)
for G = 15. There is a clear and striking correlation be-
tween the Q plot and λmax at λthr ≈ 1.30 just before the
Hopf bifurcation takes place for increasing λ. Preceding
the Hopf bifurcation transition point, H (i.e. λ ≈ 1.66),
the system appears to be in a quiescent state wherein
the strength of periodic nonlinear dissipation is incapable
of exciting it into resonance. Within this regime, λmax

changes values from λmax < 0 (periodicity) to λmax ≈ 0
(quasiperiodicity), at λthr ≈ 1.30 - a threshold dissipa-
tion above which the system is excited into resonance,
thereby signaling the onset of VR as shown, with the first
resonant peak appearing at λ ≈ 1.85 and in the neigh-
bourhood of the Hopf bifurcation; and thereafter, several
resonance peaks emerges. Evidently, for λ > λthr ≈ 1.30,
Q first increases exponentially, and then experiences a
sudden jump at the Hopf bifurcation point, H . Thus,
the jump in Q signalling VR clearly originates from the
Hopf bifurcation, thereby strongly suggesting that VR is
linked to the bifurcation of the attractors.

To complete the picture, Fig. 8 illustrates the dynam-
ical mechanism accompanying the bifurcation leading to
VR, which shows the dynamics emerging from a peri-
odic orbit for λ = 0 to enlarged quasiperiodic orbits as
λ increases. We have plotted the orbits for five different
values of λ to illustrate that further increase in λ leads to
a monotonic increase in the attractor size for other values
of λ > 0. It is precisely the growth in attractor size of the
attractor with λ that is responsible for the occurrence of
VR, as characterized by the monotonic enhancement of
peaks seen in Fig. 2 for increasing values of λ.

V. CONCLUDING REMARKS

We have investigated the role of nonlinear dissipation
in relation to VR in an inhomogeneous system charac-
terized by a symmetric, spatial, periodic potential and
subjected to non-uniform state-dependent damping and



8

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  0.5  1  1.5  2  2.5

x,
 Q

,λ
m

ax
 

λ

λthr

H

FIG. 7: [Color Online] The bifurcation diagram (dotted red)
of the displacement, x, the corresponding response curve Q

(blue) and maximal Lyapunov exponent, λmax, (green) for
G = 15. The other parameters are fixed as follows: γ0 = 1.2,
k = 1.0, φ = 0.85, V0 = 1.0, F = 0.1, ω = 0.65, and Ω = 13.

-4

-2

 0

 2

-2 -1  0  1  2  3

v

x

λ = 0
λ = 1.35
λ = 1.4
λ = 1.5
λ = 2.0

FIG. 8: [Color Online] Transition from periodicity to
quasiperiodicity accompanying the onset of VR with vari-
ation of the dissipation parameter λ: periodic orbit for
λ = 0 (red), monotonic quasiperiodic attractor enlargement
for λ = 1.35(green), 1.4(blue), 1.5(magneta), and 2.0 (cyan).
The other parameters are fixed at: G = 15, γ0 = 1.2, k = 1.0,
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a bi-harmonic signal. The contributions from both the
parameters of the frictional inhomogeneity and from the
fast signal in the resonant state were first identified based
on the computed effective potential and the effective dis-
sipation terms, from which we deduced that these could

be employed to induce and control resonances in a similar
manner to the roles played by delay terms reported ear-
lier [46, 62]. In contrast to the case of linearly damped
systems, where the effective stiffness is the parameter
of interest, we examined theoretically and confirmed nu-
merically the contributions of the parameters of the high
frequency signal to the system’s effective dissipation. We
found that, within an appropriate parameter regime, VR
can be significantly enhanced by varying the nonlinear
dissipation parameters; and that it can be induced by a
parameter that is commonly shared by the damping in-
homogeneity and the system potential. Scanning the sys-
tem in the (λ,G) two-parameter plane, we found that the
regions of optimal resonance corresponds to low values of
dissipation (λ < 2.0) and high values of the fast signal
amplitude (G > 200); while elsewhere weak resonances
occur. The underlying dynamics revealed that the origin
of the nonlinear-dissipation-enhanced resonance could be
linked to monotonic attractor enlargement arising from
a Hopf bifurcation taking place near the onset of VR.

We remark that certain features of vibrational reso-
nance have potential industrial applications including for
output filtering, control and enhancement, signal detec-
tion, extraction or separation, noise reduction, or high-
lighting specific elements of a signal. More specifically,
advanced technological applications exhibit better per-
formance and efficiency when ratchet-like devices such
as sensors, nonlinear mixers, filters, atomic scale imaging
and amplifiers are operated in resonant modes – possibil-
ities that can be fully explored in the near future. In
controlling the motion of tiny particles in nanoscience or
micro or macroscale oscillators [27], one could explore the
optimal choice of dissipation parameters and of the fast
input signals functioning as controllers, in order to dic-
tate the direction of particle transport and maximise the
flux. Finally, we comment that our model could imme-
diately be realised experimentally in an electronic circuit
including a Josephson junction with its external drives
modeled as input voltage/current sources.
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