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Abstract 

In this paper, we introduce a new form of describing fuzzy sets (FSs) and a new form of fuzzy rule-based (FRB) 

systems, namely, empirical fuzzy sets (εFSs) and empirical fuzzy rule-based (εFRB) systems. Traditionally, the 

membership functions (MFs), which are the key mathematical representation of FSs, are designed subjectively 

or extracted from the data by clustering projections or defined subjectively. εFSs, on the contrary, are described 

by the empirically derived membership functions (εMFs). The new proposal made in this paper is based on the 

recently introduced Empirical Data Analytics (EDA) computational framework and is closely linked with the 

density of the data. This allows to keep and improve the link between the objective data and the subjective 

labels, linguistic terms and classes definition. Furthermore, εFSs can deal with heterogeneous data combining 

categorical with continuous and/or discrete data in a natural way. εFRB systems can be extracted from data 

including data streams and can have dynamically evolving structure. However, they can also be used as a tool to 

represent expert knowledge. The main difference with the traditional FSs and FRB systems is that the expert 

does not need to define the MF per variable; instead, possibly multimodal, densities will be extracted 

automatically from the data and used as εMFs in a vector form for all numerical variables. This is done in a 

seamless way whereby the human involvement is only required to label the classes and linguistic terms. 

Moreover, even this intervention is optional. Thus, the proposed new approach to define and design the FSs and 

FRB systems puts the human “in the driving seat”. Instead of asking experts to define features and MFs 

correspondingly, to parameterize them, to define algorithm parameters, to choose types of MFs or to label each 

individual item, it only requires (optionally) to select prototypes from data and (again, optionally) to label them. 

Numerical examples as well as a naïve empirical fuzzy (εF) classifier are presented with an illustrative purpose. 

Due to the very fundamental nature of the proposal it can have a very wide area of applications resulting in a 
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series of new algorithms such as εF classifiers, εF predictors, εF controllers, etc. This is left for the future 

research.          

Keywords—membership functions, AnYa type fuzzy rule-based systems, empirical data analytics, naïve 

empirical fuzzy rule-based classifier, non-parametric. 

1. Introduction 

Fuzzy sets (FSs) theory and the fuzzy rule-based (FRB) systems have been defined over 50 years ago in the 

seminal paper by Professor Lotfi Zadeh [1] and now matured [2]. Since mid-1970s (Mamdani or Zadeh-

Mamdani) [3] and since mid-1980s (Takagi-Sugeno) [4] FRB systems started to be developed and are now 

widely applied. Although, there are other types of fuzzy systems (relational [5], etc.), one particular type that 

was introduced recently by Angelov and Yager [6] called AnYa deserves a special attention. Both Mamdani and 

Takagi-Sugeno type of FRB share the exact same antecedent (IF) part and only (although significantly) differ by 

the consequent (THEN) part. AnYa type FRB, however, has a quite different antecedent (IF) part.  

The main issue in the design of the FSs and FRB systems is how to define the MFs by which they are defined in 

first place. The traditional way of designing FSs, the subjective approach, has its own very strong rationale in 

the two-way process of: i) formalizing expert knowledge and representing it in a mathematical form through the 

membership functions (MFs), and ii) representing and extracting from data human-intelligible and 

understandable, transparent linguistic information in the form of IF …THEN… rules. In 1990s, in addition to 

the traditional subjective way of designing FSs, the so-called data driven design method started to be popular 

and was developed. Nonetheless, it is practically very difficult and controversial to define MFs both form 

experts and from data. This is also related to the more general issue of assumptions made and handcrafting that 

machine learning (including statistical methods) are facing and is now hotly researched.    

In this paper, a new approach is proposed to the way in which the FSs and FRB systems are being defined. We 

call such sets empirical fuzzy sets (εFSs) and such FRB systems - empirical fuzzy rule-based (εFRB) systems. 

The new approach is grounded at the recently introduced more general concept and a computational framework 

of Empirical Data Analytics (EDA) [7], [8]. In the next sections, we will recall the basics of FSs, FRB systems 

as well as EDA, and on this basis, we will futher introduce the εFSs and εFRB systems. We will demonstrate 

how εFSs and εFRB systems allow preserving the subjective specifics that FSs and FRB are strong with. At the 

same time, it will be shown how εFSs and εFRB systems can benefit from the vast amount of data that may be 

available. εFSs and εFRB systems will still allow extracting expert knowledge by questionnaires or other forms, 

but will make this much easier for the experts and not ambiguous (the experts will not be asked to define 



 

 

membership values or parameters, but only (optionally) the labels/names of the linguistic terms, classes (if 

any)). For example, if we choose a car, we can simply say which one we like (or possibly how much), but we do 

not need to define each feature (price, max speed, etc.) or specify why. Moreover, with the proposed εFSs and 

εFRB systems, one can tackle heterogeneous data and combine categorical (e.g. gender, occupation, number of 

doors) with continuous and/or discrete variables like price, max speed, size, etc. Further, in this paper, we will 

demonstrate how, on the basis of εFSs and εFRB systems, one can build empirical fuzzy classifiers (εF 

Classifiers), predictors (εF Predictors), controllers (εF Controllers), etc. Moreover, these can be evolving, not 

just fixed structure. This will allow studying the dynamic changes in human preferences as well as building 

more efficient recommendation systems where the only necessary input form the users is the preference (“likes” 

or “retweets” or “clicks”). 

The newly proposed approach of definition and design of FSs and FRB systems is very suitable for the current 

era of so-called big data. Indeed, there is an exponential growth in the scale and complexity of the data sets and 

streams being generated by sensors, people, society, industry, etc. This is being increasingly seen as an untapped 

resource, which offers new opportunities for extracting aggregated information to inform decision-making in 

policy and commerce. It also stretches the existing techniques because they were developed in the era when the 

data was not in so large scale and was assumed to be simple and available offline, not streaming and 

dynamically evolving in a possibly non-stationary manner. It is practically difficult to design a traditional fuzzy 

(or statistical, for that matter) model if we have a huge amount of unlabelled images, big data representing 

customer choices or preferences, etc. In contrast, the proposed εFSs and εFRB systems offer an efficient and 

data-centred (thus, empirical) tool that is clear and intuitive, yet not ad hoc, and can facilitate and empower the 

human experts and users instead of overloading or overwhelming them. The flowcharts of the traditional 

approaches and the proposed approaches for FRB system identification are presented in Fig. 1 for comparison. 

The remainder of this paper is organised as follows. Section 2 recalls the concepts of the FSs and FRB systems 

and the Empirical Data Analytic (EDA) frameworks. The proposed approach is described in section 3, two 

versions (objective and subjective) for FRB system identification are introduced in this section as well. A new 

type of FRB classifier is introduced in section 4, numerical examples and discussion are also presented. Finally, 

section 5 concludes the paper. 



 

 

                      

           (a) Traditional subjective approach                                   (b) Traditional objective approach 

      

                  (c) The proposed subjective approach                             (d) The proposed objective approach  

Fig.1. The flowcharts of the traditional approaches and the proposed approaches for system identification 

2. Theoretical Basis 

In this section, we will recall the theoretical basis needed for the proposed approach. 

2.1. Fuzzy Sets and Fuzzy Rule-Based Systems 

In this subsection, we will compare the Mamdani type [3],  Takagi-Sugeno type [4] and AnYa type FRB 

systems [6]. To begin with, let us start with an illustrative example.  

If we want to build a Mamdani type or Takagi-Sugeno type FRB system to divide hundreds of domestic dogs 

into three groups (“Small”, “Medium” and “Large”) based on their size in terms of length and weight, the 

following parameters are needed to be defined in order to build the antecedent (IF) parts of the fuzzy rules (FRs) 

[9]: 

i) the types of MFs, i.e. triangular type, Gaussian type, bell type, etc. 

ii) linguistic terms for each FR; 

iii) the area of influence for each FR, i.e. hyper-rectangle, -sphere, -ellipsoid (this is closely linked to 

the types of distance metric used); 

iv) the prototypes for the FSs; 

v) the parameters for the MFs. 

To classify the dogs into three groups, we firstly build three FRs expressed linguistically as follows: 

1Rule :      Length is Weight is Size isIF Short AND Light THEN Small   

2Rule :      Length is Weight is Size isIF Medium AND Medium THEN Medium   



 

 

3Rule :      Length is Weight is Size isIF Long AND High THEN Large  

Based on the data measured from the 600 domestic dogs (the distribution of the data samples is shown in Fig. 2, 

the data is synthetic), for the linguistic variable “Length”, we might interpret “Short” as “around 20 cm”, 

“Medium” as “around 37 cm” and “Long” as “around 54 cm”. For the linguistic variable “Weight”, “Light” 

could be interpreted as “around 15 kg”, “Medium” as “around 32 kg” and “High” as “around 48 cm”. After we 

select the type of MFs (for example, triangular and Gaussian) and decide other parameters, finally we obtain the 

FRB systems as depicted in Fig.3. 

 

                               (a) Distribution                                                                    (b) Frequency  

Fig.2. Distribution of the sizes of 600 domestic dogs 

 

(a) Triangular type MF                                                (b) Gaussian type MF 

Fig.3. Examples of Mamdani type and Takagi-Sugeno type FRB systems (the black asterisks are the prototypes) 

From the above example, one can see the following issues during the process: 

i) Defining a MF requires many ad hoc decisions; 

ii) MFs often differ significantly from the real data distribution 



 

 

In addition, the so-called “curse of dimensionality” may result from handcrafting traditional FRB systems for 

high dimensional problems because of the exponential growth of the number of FSs required. 

Alternatively, to design an AnYa type FRB system [6] with the same prototypes as being used in the previous 

example, one can easily form three data clouds and, based on them, derive three AnYa type FRs as follows. The 

visualization of the three data clouds, which are also the areas of influence of the three FRs, is provided in Fig.4. 

1Rule :       Length, Weight ~ 20 , 15 Size isIF cm kg THEN Small  

2Rule :       Length, Weight ~ 37 , 32 Size isIF cm kg THEN Medium  

3Rule :       Length, Weight ~ 54 , 48 Size isIF cm kg THEN Large  

 

Fig.4. AnYa type FRB system 

As one can see, the AnYa type FRB system [6] simplifies the process of designing MFs and FRs. They are 

uniquely defined by vectors representing the focal points of the non-parametric, shape-free data clouds 

consisting of data samples associated with the nearest focal points resembling Voronoi tessellation [10]. The 

data clouds are then used as the antecedent (IF) part of each AnYa type FR. This significantly reduces the 

efforts of human experts and, at the same time, largely enhances the objectiveness of the FRB system.  

To build the Mamdani type and Takagi-Sugeno type FRB systems, one needs to define a number of parameters 

as described at the beginning of this subsection, but for AnYa type, the only decision that human experts need to 

make is to find the focal points, which require much less efforts. This advantage makes the AnYa type FRB 

more competitive in high dimensional problems. In fact, the focal points can be identified in a fully autonomous, 

data-driven way using the technique for forming data clouds as described in [11]. The focal points identified via 



 

 

this approach require no user- and problem- specific parameters, namely no human involvement, and can 

objectively represent the local modes (peaks) of the data distribution 

From the comparison between the AnYa type and the traditional type FRB systems one can see that, although 

traditional MFs and FRB systems contain too many ad hoc choices and often require significant expertise, they 

have the advantage of the high interpretability.  The simplicity of the AnYa FRB systems significantly reduces 

the needs of human expertise and thus, enhances the objectiveness, but at the same time, the simplicity reduces 

the interpretability and leads to the loss of information. Therefore, in this paper, we will introduce a new type of 

FSs and FRB systems named, empirical fuzzy set (εFS) and empirical fuzzy rule based system (εFRB) to 

combine the advantages of the traditional type FRB with the recently introduced AnYa type FRB. 

2.2. Empirical data analytics framework 

Empirical data analytics (EDA) framework [7], [8] is a recently introduced methodology for data analysis free 

from pre-defined parameters and assumptions. The main EDA quantities used in this paper include [7], [8]: 

i) Unimodal density; 

ii) Multimodal density. 

First of all, let us assume a collection of data samples of a data set/stream denoted by  
K
x   1 2, ,..., Kx x x (

T

,1 ,2 ,, ,...,i i i i dx x x   x ,  1,2,...,i K ), where K  is the number of the observed data samples; the subscript i  

indicates the time instance at which the thi  data sample was observed. More generally, we assume that some 

data samples in  
K

x  repeated more than once, namely,  ,i j i j  x x . As a result, the set of the sorted unique 

data samples is defined as    1 2, ,..., LL
u u u u  and the frequencies of occurrence are defined as  1 2, ,..., Lf f f , 

where 
1

L

i

i

f K


   and L ( L K ) is the number of unique data samples.  

i) Unimodal density  

Unimodal density indicates the main mode (peak) of the data distribution and plays an important role in the data 

analysis. The unimodal density of a particular data sample, denoted as ix  is defined as follows [7], [8]: 
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where  ,i jd x x  denotes the distance between ix and jx , which can be any type of distance metric. 



 

 

For Euclidean distance, the unimodal density takes a form of Cauchy function [8]: 
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and 
1

1 K

i

iK 

  x  is the global mean of  
K

x  and 
2
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i
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X
K 

  x  is the corresponding average scalar product.  

ii) Multimodal density 

The multimodal density [7], [8] of a unique data sample, 
iu  is defined as a weighted unimodal density by the 

corresponding frequencies of occurrence, expressed as: 
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Similarly,  
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 if the Euclidean type of distance is used. 

Multimodal density has the ability of disclosing the local modes of the data distribution directly from the data 

without using iterative searching algorithms [7], [8].  

It has to be stressed that the unimodal density and multimodal density are obtained from and only valid for the 

observed data samples. We also have to stress that unimodal density and multimodal density are not limited to 

the Euclidean type of distance; other types of distances can be considered as well, but in our paper, we would 

use the Euclidean distance in the visual examples for simplicity. 

3. The Proposed Approach 

In this section, we will introduce the proposed concepts of the empirical fuzzy sets (εFSs) and empirical fuzzy 

rule-based (εFRB) systems in detailed. Two system identification approaches ( i) objective and ii) subjective) 

will be described as well. 



 

 

3.1. εFSs and εFRB Systems 

The new concepts of the εFSs and εFRB systems are grounded at the recently introduced general computational 

framework of Empirical Data Analytics (EDA) [7], [8]. From the comparison in section 2.1 one can see that 

traditional FSs represented by MFs require large amount of expert knowledge and efforts to be built. While 

AnYa type FRB systems have the strong advantage of simplicity and objectiveness.  

Firstly, let us consider a m-dimensional vector of categorical variables, 1,..., mc c   c ; jc is the j
th 

 categorical 

variable of c  ( 1,...,j m , m is a non-negative integer);  , c x  is a particular data sample within the data 

set/stream; x  is the continuous and/or discrete part of   and c  is the categorical part;  1 2, ,..., m

i i i i
       is 

the vector of categorical variables of the i
th

 prototype; 
j

i  is the corresponding j
th 

categorical variable; the 

categorical variables can be gender, occupation, brand, etc.; the set of possible values of the j
th 

categorical 

variable is denoted by 
jcategory ; jc ,

j

i  can only take on one value from 
jcategory . Based on the AnYa type 

of FRB, we introduce the εFR in a general form as follows. 

     : ~ i ii iIF THEN IF THEN ClassRule c x prototype                                                   (6) 

The output of the categorical (IF) part in the proposed εFR is a Boolean (“true” or “false” only) expressed as: 
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At least one prototype is required for each category in order to build the εFR. For data that contains multiple 

categorical variables, i.e. 
1 ,..., mc c  , at least 

1

m
j

j

A a


  prototypes are needed, where  ja  is the cardinality of 

the set 
jcategory  

( 1,2,...,j m ). 

We further define the empirical membership function (εMF) of the εFR for the continuous and/or discrete part, 

x  in the form of unimodal density, which is derived automatically from the data cloud around the prototype: 
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where iS  is the support (number of members) of the i
th

 data cloud; ,i kx  denotes the thk  member within this data 

cloud, 1,2,..., ik S . If Euclidean type of distance is used, then   2

2

1
MF

1

i

i

i iX

 





x
x p

p

 ; here 

,1 ,2 ,, ,...,i i i i dp p p   p  is the prototype (centre) of the i
th

 data cloud;
iX  is the corresponding average scalar 

product. 

The degree of membership for   is defined as the product of the output of the categorical antecedent (IF) part 

and the output of the continuous and/or discrete antecedent (IF) part: 

     MFi i iB  c x                                                                                                                        (9) 

If there is no categorical variable in the data, the antecedent part of εFR is reduced to the vector form used by 

AnYa type FR (but with εMF): 

   : ~ i ii IF THENR Claul sse x prototype                                                                                      (10) 

in which the εMF is defined by equation (8). 

In contrast to the Mamdani type and Takagi-Sugeno type FRB systems as presented in Fig. 3, the εMF is 

naturally in the form of a Cauchy function if Euclidean distance is used (see equations (2) and (5)). However, 

instead of manually selecting the Gaussian type MF or the triangular type MF and parameterising them, the εMF 

is derived from the data automatically based on the unimodal density of the data. Moreover, the proposed 

approach does not need to partition the data space with the manually defined shapes. Data samples will be 

attracted by the prototypes and form a number of shape-free data clouds around the prototypes automatically 

resembling Voronoi Tessellation [10], see Figs. 4 and 5. 

Unlike the MFs used in the Mamdani type and Takagi-Sugeno type FRB systems that are defined per feature, 

the εMFs are extracted from data in a vector form. Nonetheless, one still can draw (n+1) dimensional εMFs 

based on the particular n ( 1 n d  ) attributes of the data resembling the (n+1) dimensional probabilistic 

distributions [7], [8] (see Fig. 6(b)). The difference of the proposed εFSs from probability distributions is that 

εFSs have peaks (maxima) at which 1   and they can be linguistically interpreted as FSs, e.g. “Low”, 

“Medium”, “High”, etc., per variable based on projections or as “close to iprototype ” in AnYa. 

The proposed εFRB systems do not need to assume that the εMFs are in the form of continuous functions like 

the two tradition types of FRB systems in Fig. 3. The εMFs derived from data are in the discrete domain by their 

nature [7], [8]. However, if a certain variable is in the continuous domain based on common knowledge or prior 



 

 

assumption, its εMF can be in continuous domain as well. The transition from the discrete domain to the 

continuous one is only determined by the type of variables.  

For example, based on the measured data, we can only derive the discrete εMFs from the three data clouds 

shown in Fig. 4. However, considering that weights and lengths are from a continuous domain based on 

common knowledge, the continuous εMFs can also be derived. The εFRB systems with discrete and continuous 

εMFs per feature are presented in Fig. 5(a) and (b) respectively.  

  

(a) Discrete form                                                    (b) Continuous form 

Fig.5. The examples of discrete and continuous εFRB system 

Additionally, the (n+1) dimensional εMFs can be derived from either discrete variables or continuous variables 

or a combination of discrete and continuous variables. The (n+1) dimensional discrete and continuous εMFs of 

the same example given in Fig. 5 are shown in Fig. 6 (a) and (b) (n=2). If we consider the variable “Length” to 

be discrete and the variable “Weight” to be continuous, the 3D εMF derived from both continuous and discrete 

variables is depicted in Fig. 6(c).  



 

 

 

                                  (a) Discrete form                                                           (b) Continuous form 

 

(c) Discrete “length” and continuous “weight” 

Fig.6. Visualization of 3D εMFs 

Similar to the AnYa type FRB system, the proposed εFRB system is much more convenient and 

computationally simpler in high dimensional problems and it is unique in its ability to deal with problems 

containing categorical variables. This is thanks to the fact that only the prototypes are needed to be identified for 

the εFRB system (identified either by users or by the data-driven approach [11] ), and the system will derive 

εMFs from data clouds formed around the prototypes automatically. 

For a dataset containing A categories and d dimensional continuous and/or discrete variables, the experts need to 

define minimum 
dAT  MFs in order to design a highly descriptive Mamdani type or Takagi-Sugeno type FRB 

system, where T is the number of linguistic terms. However, to build an εFRB system with the same degree of 

descriptiveness, the experts needs to select T prototypes for each category ( AT prototypes in total), which is a 

huge improvement. For the above example, 3A  ; 3;T   2d  , but in realistic problems, d  may be much 



 

 

higher (dozens, hundreds or more), A  and T  can also be larger. Therefore, the improvement is in orders of 

magnitude. 

In the following two subsections, we will describe two approaches to identify the prototypes for the εFRB 

systems. The first one is using the newly introduced approach for forming data clouds [11], which is a 

nonparametric, entirely data-driven and objective method; the second one is based on human expertise. 

3.2. Objective εFRB System Identification  

In this subsection, we will describe the objective approach within the EDA framework for identifying the 

prototypes for the εFRB systems. The main procedure can be performed using the method for automatic 

formation of data clouds: 

Step1: The multimodal densities MMD  of all the data samples  
K

x are calculated using equation (5).  

For the specific example considered above, the multimodal densities MMD of the size of the 600 domestic dogs 

are depicted in Fig. 7 (a).  

Step2: Find the unique data sample 
*

1u  with the maximum multimodal density  *

1

MMD u . 

Step 3: Remove 
*

1u  from  
L

u  and put it into  
*

L
u , then set 

*

1u  as R
u . 

Step 4: Find the nearest unique data sample 
*

2u  to R
u , remove 

*

2u  from 
L

u  and send 
*

2u  to  
*

L
u . 

Step 5: Use 
*

2u  as the new R
u  and repeat Step 4 until  

L
u  become empty. 

Step 6: Rank the MMD  of   
*

L
u  according to their indexes from 1 to L. The ranked MMD  are depicted in Fig. 

7(b). 

 

                                        (a) Original
MMD                                                   (b) Ranked  

MMD  

Fig.7. The multimodal densities
MMD for the illustrative example 



 

 

Step 7: Find the local maxima of the ranked 
MMD  and use the corresponding unique data samples as prototypes, 

 p . The local maxima of the 
MMD are depicted in Fig.8. 

 

         (a) Local maxima identified from the ranked D
MM

       (b)  Data samples with the local maximum D
MM

 

Fig.8. The local maxima of the ranked 
MMD  for the illustrative example 

Step 8: Form data clouds from  
K

x  with  p  using equation (11): 

 
   arg min ;i i i K

cloud label


  
y p

x y x x                                                                                        (11) 

Step 9: Obtain the centres  
0

p  from the data cloud. 

Step 10: Calculate the multimodal densities MMD  of  
0

p  using equation (5). 

Step 11: Find out the centres satisfying the following condition and denote them as  
1

p  : 

         
  1

max | ,
NMM MM MM

i ii

i

IF D D D

THEN is a member of

     
  

p q q p p

p p

                                                              (12) 

where  
0i p p ;  

N

i
p  is the collection of data clouds whose centres are neighbouring to ip : 

    N

j i j i
IF R THEN  p p p p                                                                                              (13) 

here  
0j p p ; 1R






 
  

 
;   is the average Euclidean distance between any pair of centres;   is the 

corresponding  standard deviation of the distances between the centres. 

Step 12: Set  
1

p  as  p . 

Step 13: Repeat Step 8 – Step 12 until  p  is not changing any more. 



 

 

Step 14: Form data clouds from  
K

x  using  p . 

 

       (a) The identified prototypes (red asterisks)                (b) The data clouds formed around the prototypes 

Fig. 9. The final results 

If now we consider the example used several times earlier, there are eight prototypes identified from the data 

and eight data clouds are formed around them. Based on the eight data clouds, eight εMFs are built, the εMFs 

are also depicted in Fig. 10 in a 3D form.  

 

(a) Discrete form                                                          (b) Continuous form 

Fig. 10. Visualization of 3D continuous εMFs 

As it has been stated in section 3.1, when the data contains categorical variables, the εFRB system requires at 

least one prototype for each category. Therefore, the data will be split per category and processed separately. 

This is very different from the traditional approaches, which ignore the real differences between categorical 

variables. This is, however, very convenient for parallelization. 



 

 

The common practice for the traditional machine learning approaches to process categorical variables is to map 

them to different integer numbers. For example, one may use digit “1” to represent job category “worker”, “2” 

to represent job category “teacher”, “3” to represent “policeman”, etc. Alternatively, one can use the 1-of-C 

encoding method [12] to map the categorical variables into a series of orthogonal binary variables like using 

“001” to represent job category “worker”, “010” to represent “teacher”, “100” to represent “policeman”, etc. 

However, no matter what kind of mapping is used, the encoding process always minimises the true differences 

between the data from different categories. This minimization is more obvious in high dimensional problems. In 

many cases, data from different categories are inconsistent and, in fact, incomparable. The best way for handling 

different categories is to process them separately and thus, avoid the interferences between each other. 

Therefore, in the proposed approach, if the data contains A  categories, the data is divided into A  groups based 

on their categories and used to form data clouds separately [11]. To be more specific, let us use the real climate 

dataset (temperature and wind speed) measured in Manchester, UK for the period 2010-2015 [13] for 

illustration. This dataset contains 479 samples obtained during the winter and 459 samples during the summer.  

As the dataset contains data samples from two categories (“winter” and “summer”), we firstly separate the two 

categories and then, form the data clouds using the technique described in [11] to find the prototypes from each 

category. As we can see from Fig.11, there are 21 prototypes identified from the 479 “winter” data samples and 

24 prototypes identified from the 459 “summer” data samples.  

 

                                 (a) Winter                                                                         (b) Summer 

Fig.11. Prototypes identified from the data samples from the two categories (the black asterisks are the 

prototypes) 

Using the identified prototypes, 45 data clouds in total for both categories resembling Voronoi tessellation [11] 

are automatically formed around these prototypes. After deriving εMFs from these data clouds, the structure of 



 

 

the εFRB system is identified based on the εFRs built upon the data clouds. The 3D visualization of the εMFs 

derived from data is depicted in Fig. 12. We also tabulate the εFRs in Table I for a better illustration. 

 

                               (a) Temperature                                                                    (b) Wind speed 

Fig.12. 3D visualization of the εMFs 

Table I. εFRs derived automatically from the real climate dataset  

Class εFR 

Winter 

  

  

  
 

6.2453 17.4340

0.6667 22.0000

3.3333 6.0833

Winter

IF

OR

OR

THEN

x ~

x ~

x ~

 

Summer 

  

  

  
 

19.8776 11.5102

28.0000 7.8333

16.1136 12.0682

Summer

IF

OR

OR

THEN

x ~

x ~

x ~

 

3.3. Subjective εFRB System Identification 

As it was stated in section 1, εFRB systems allow the subjective specifics that FSs and FRB systems are strong 

with to be easier incorporated and formalized. Instead of handcrafting a Mamdani type [3] or a Takagi-Sugeno 

type [4]  FRB systems with significant efforts, experts will only need to select a number of most typical samples 

as prototypes to build εFSs around them. The εMFs will then be generated automatically from the data. 

Optionally, the human experts can also help to define the labels/names of the linguistic terms, classes (if any).  

In this subsection, we will use real climate dataset [13] to show how to build an εFRB system based on human 

expertise.  



 

 

 

                      (a) Three data clouds in 2D                                               (b) 3D εMFs 

Fig.13. The εFRB system formed with the subjective approach 

As it was mentioned in section 3.2 the real climate dataset contains two categories “winter” and “summer”.  In 

order to build a highly descriptive εFRB system, for each category, one needs to select minimum one prototype 

in order to form at least one data cloud. For example, if we select two typical data samples 1prototype =

8 ,25oC mph 
   and 2prototype = 2 ,10oC mph 

   measured in winter as the prototypes of the “winter” category, 

and one typical data sample 3prototype = 20 ,11oC mph 
   measured in summer as the prototype of the 

“summer” category. In this way, three data clouds are formed around the selected prototypes by the data 

samples associated with each one of these prototypes. They form Voronoi tessellation [11] and εFSs around 

these prototypes. The εFRB system with the three prototypes is visualized in a 3D form in Fig. 13. 

As one can see, compared with defining the linguistic terms, prototypes, MFs, etc., one by one, the εFRB system 

only requires the prototypes to be defined, which is much simpler and easier. Instead of building mathematical 

models and handcrafting the whole FRB system piece by piece, the human experts/users only need to select few 

typical data samples as prototypes, and then the proposed method can autonomously build the εFRB system 

based on these prototypes. In this case, the prototypes have a clear meaning that: prototype1-cool and windy day; 

prototype2-cold and quiet day; prototype3-warm and quiet day. The simplification in terms of human 

involvement of the proposed approach can play a very important role in the collaboration between computer 

scientists and experts from different areas. 

Alternatively, after the εFRB system has been identified via the objective approach as described in section 3.2, 

the experts can get involved to further improve the descriptiveness of the system, which also saves a lot of 

efforts and time compared with handcrafting as in the traditional FRB system. 



 

 

The convenience of the proposed approach may significantly influence the recommendation systems used by 

retailers. Let us use an example of buying a house. Of course, there are many visible and hidden factors to be 

considered before buying a new house, i.e. price, the distances to the city centre, schools and main roads, the 

environment, the safety conditions, the neighbourhood, house floor area, etc. To simplify this problem, we only 

consider four visible factors/features, i) price, ii) house floor area, iii) distance to the city centre and iv) distance 

to the schools. 

 

Fig.14. The triangular type MFs of the traditional FRB system 

If the estate agency wants to build a recommendation system using traditional FRB systems, the estate agents 

need to build a number of FSs to categorize the houses based on different features, i.e. prices which may be 

“economic”, “moderate” and “luxury”, distance to city centre which may be “near”, “medium” and “far”, etc. 

(presented in Fig. 14). Building these FSs requires a lot of efforts and is subjective (different for each user). 

Different estate agents as well as different customers may have different perceptions of the four features. For 

example, an elderly customer may think that a house 1 km away from the city centre is at a medium distance.  

However, a young customer may think that such a house requiring only 10 minutes’ walk to the city centre can 

be perceived as being close/near. Alternatively, a single customer may think that a 70 m
2
 house is “big”, but a 

couple with five children may think that this house is too “small”. Moreover, the preference may not be 

smoothly monotonic, it is not clear how many linguistic terms to use each time (three or more or less). In short, 

the handcrafted FRB systems are difficult to design and use. This may be the main reason that they are still not 

widely accepted. 



 

 

In contrast, when the εFRB system is used instead, the estate agent only needs to ask customers to select one or 

more houses they are most satisfied with. These houses can be any real houses in this city regardless whether 

they are for sale or not. These may also be imaginary, ideal houses as well. A family with five children may 

select one house that has large area and is very close to the schools, not far from the city centre and not 

expensive. A retired elderly couple may select a medium size house with luxury decoration and far away from 

the city centre and schools. A young couple may select a small economic house close to the city centre. 

Then, the selected houses can be used as prototypes to form the data clouds based on the four normalized 

variables from all the available for sale houses in the database. The εMFs derived from the data clouds formed 

around the prototypes are visualized in Fig. 15. 

 

Fig. 15.  Visualization of the εMFs based on four normalized attributes of houses 

 (black asterisks represent the prototypes). 

Based on the degrees of similarity of each available for sale house to the prototypes, the estate agent can easily 

make a list of recommended houses for each couple. All of this is achieved by asking the couples a simple 

question: “Can you, please, tell me the most satisfactory house in the city you have seen?”  Similarly, each 

customer could also rank order few preferred houses, e.g. i) best; ii) good; iii) definitely no, etc. 

As we can see from the above example, there is no need for any deliberately defined parameters or unnecessary 

efforts, the εFRB recommendation system only needs the users to give some examples of whatever they think 

are the best as the prototypes, which can be real or virtual. Then the system will automatically form the data 

clouds based on the prototypes and calculate the degrees of membership for all the available products. The 

recommendation list can then be generated based on the degrees of membership. This process is user-specific, 

but at the same time, is also objective and data-driven.  



 

 

4. Empirical Fuzzy Classifier 

In this section, we will describe a new type of classifier based on the εFRs, named empirical fuzzy (εF) 

classifier and conduct numerical experiments to demonstrate the performance of the proposed classifier. The 

proposed εF classifier is very close to the concept of Naïve Bayes classifiers which perform classification based 

on the dominant per class likelihood expressed by a pre-defined (usually, Gaussian) pdf. It performs the 

classification based on the degree of membership of the εFRs (equation (9)) following the well-known “winner 

takes all” principle. However, other principles i.e. “few winners take all”, “fuzzily weighted”, “average” can 

also be considered depending on the specific problem. 

As εFRs can be derived by both, the objective and subjective approaches, without losing generality, we use the 

objective approach as being described in section 3.2 for the εFRB system identification. Assuming that there 

have been N  εFRs automatically derived from data using the technique for forming data clouds [11]. When 

applied to a new, unlabelled, unseen sample x , its label is given as: 

  
1,2,..,

arg max MFi
i N

class label


  x                                                                                                          (14) 

That is, the class label of x  is decided by the label of the prototype that has higher membership degree. 

To evaluate the performance of the proposed approach, three numerical examples based on benchmark datasets 

are conducted in this paper. The following algorithms were used in the comparison: 

i) SVM classifier with Gaussian kernels [14], [15]; 

ii) SVM classifier with 4
th

 Order Polynomial kernel [15]; 

iii) Naïve Bayes classifier [16]; 

iv) Decision tree classifier [17]; 

v) eClass0 classifier [18]. 

The comparison is based on the following criteria: 

i) Confusion matrix of the classification results; 

ii) Average accuracy after 10 times Monte Carlo experiments; 

iii) Average training time after 10 times Monte Carlo experiments (in seconds). 

4.1. Wine Dataset [19] 

The wine dataset came from a chemical analysis of wines grown in the same region in Italy but derived from 

three different cultivars. The analysis contains 178 wine samples of three classes (class 1 consists of 59 samples, 

class2 consists of 71 samples and class 3 consists of 48 samples) with 13 attributes: 1) Alcohol; 2) Malic acid; 



 

 

3) Ash; 4) Alkalinity of ash; 5) Magnesium; 6) Total phenols; 7) Flavonoids; 8) Neoflavanoid phenols; 9) 

Proanthocyanins; 10) Colour intensity; 11) Hue; 12) OD280/OD315of diluted wines; 13) Proline. Due to the 

high dimensionality, all the data samples are normalized by their norms in advance: 


x

x
x

                                                                                                                                                 (15) 

We use the first 60% of the data samples of each class as the training set and use the rest of the dataset as the 

validation set. The classification results are tabulated in Table. II. For a better illustration, the εMFs of the first 4 

attributes derived from the training samples are visualized in a 3D form per type per feature in Fig. 16. 

Table. II Classification results on the wine dataset 

Method 
True 

Class 

Predicted 
Accuracy Method 

True 

Class 

Predicted 
Accuracy 

1 2 3 1 2 3 

εF
a 

1 20 4 0 

0.7324 
Naïve 

Bayes 

1 21 3 0 

0.9437 2 1 22 5 2 0 27 1 

3 3 6 10 3 0 0 19 

SVM-G
b 

1 0 24 0 

0.3944 
Decision 

tree 

1 24 0 0 

0.9718 2 0 28 0 2 2 26 0 

3 0 19 0 3 0 0 19 

SVM-P
c 

1 18 6 0 

0.6479 eClass0 

1 21 1 2 

0.6479 2 0 28 0 2 1 12 15 

3 0 19 0 3 2 4 13 
a the proposed εF classifier b the SVM classifier with Gaussian kernel; c the SVM classifier with polynomial kernel 

 

Fig. 16. The 3D visualization of the εMFs for the first 4 attributes of the wine dataset 

Then, we conduct 10 Monte Carlo experiments by training the classifiers with randomly selected 60% of the 

data samples of each class and using the rest for validation. The average overall accuracies of the classification 

results obtained by the six classifiers are depicted in Fig. 17 and the corresponding average amounts of time 

consumption (in seconds) for training are presented in Fig. 18. 



 

 

 

                               Fig.17. Overall accuracy                              Fig.18. Average training time (in seconds) 

4.2. Banknote Authentication Dataset [20] 

Banknote authentication dataset was extracted from images that were taken from genuine and forged banknote-

like specimens. Wavelet Transform tool was used to extract features from the images [21]. This dataset contains 

1372 samples and each sample has four attributes:  

1)  variance of the wavelet transformed image;  

2) skewness of the wavelet transformed image;  

3) curtosis of the wavelet transformed image;  

4) entropy of the image. 

and one label: class (0 or 1). 762 of the data samples are in class 0 and 610 samples are in class 1.  

We use the first 60% of the data samples of each class (152 samples from class 0 and 122 samples from class 1) 

as our training set and use the rest of the dataset as the validation set. The classification results obtained by the 

six classifiers are presented in Table III. The εFRs derived from the training data are presented as examples in 

Table IV for a better interpretability.  

10 Monte Carlo experiments are also conducted on this dataset for further comparison. The average overall 

accuracies of the six classifiers are depicted in Fig. 19 and the corresponding average time consumption (in 

seconds) required for the training is presented in Fig. 20. 

Table. III Classification results on the banknote authentication dataset 

Method 
True 

Class 

Predicted 
Accuracy Method 

True 

Class 

Predicted 
Accuracy 

0 1 0 1 

εF
 0 302 3 

0.9945 
Naïve 

Bayes 

0 278 21 
0.8725 

1 0 244 1 43 201 

SVM-G
 0 305 0 

1.0000 
Decision 

tree 

0 302 3 
0.9891 

1 0 244 1 2 241 

SVM-P
 

0 239 66 0.8561 eClass0 0 261 44 0.9144 



 

 

1 13 231 1 3 241 

 

Table. IV  The εFRs derived from the banknote authentication dataset 

Class εFR 

0 

  

  

  

  
 

3.1229 -4.5316 4.4032 -0.1095

3.1019 2.9954 0.7296 0.3001

0.7350 5.8760 1.5374 -0.2825

1.7877 7.2335 -0.3137 -2.3080

0

IF

OR

OR

OR

THEN Class

x ~

x ~

x ~

x ~

 

1 

  

  

  

  
 

-1.2555 -0.8157 1.1531 0.5117

-1.4167 -6.0412 5.5654 0.5516

-1.9863 -8.9029 8.8260 -0.3372

-3.7914 -6.9420 10.9737 -0.4656

1

IF

OR

OR

OR

THEN Class

x ~

x ~

x ~

x ~

 

 

 

                               Fig.19. Overall accuracy                             Fig.20. Average training time (in seconds) 

4.3. Tic-Tac-Toe Endgame Dataset [22] 
The Tic-Tac-Toe Endgame dataset contains a complete set of possible board configurations at the end of tic-tac-

toe games. The target concept of this dataset is “winning for x”. This dataset contains 958 data samples with 

nine attributes and one class label [22]: 

1) top-left-square: {x, o, b} 

2) top-middle-square: {x, o, b}  

3) top-right-square: {x, o, b}  

4) middle-left-square: {x, o, b}  



 

 

5) middle-middle-square: {x, o, b}  

6) middle-right-square: {x, o, b}  

7) bottom-left-square: {x, o, b}  

8) bottom-middle-square: {x, o, b}  

9) bottom-right-square: {x, o, b}  

10) Class: {positive, negative} 

In this experiment, we encode “x” as “1”, “o” as “5” and “b” as “3”. Obviously, all the variables are in the 

discrete domain. The data samples are normalized by their norms before classification using equation (15). 

The dataset is divided into two parts. We use the first 60% samples of each class for training, and the rest of 

them for validation. The classification results of the proposed classifier and the five comparative classifiers are 

tabulated in Table V. 

We also conduct 10 Monte Carlo experiments by randomly selecting 60% of the data samples of each class for 

training the classifiers and using the rest for validating the classifiers. The average overall accuracy and the time 

consumption (in seconds) of the training process of the six classifiers are depicted in Fig. 21 and Fig. 22, 

respectively.  

Table. V. Classification results on the Tic-Tac-Toe endgame dataset 

Method 
True 

Class 

Predicted 
Accuracy 

positive negative 

εF
 positive 176    74 

0.7937 
negative 5   128 

SVM-G
 positive 176 74 

0.6475 
negative 61 72 

SVM-P
 positive 136 114 

0.6658 
negative 14 119 

Naïve Bayes 
positive 179 71 

0.6292 
negative 71 62 

Decision tree 
positive 250 0 

0.7337 
negative 102 31 

eClass0 
positive 183 67 

0.6136 
negative 81 52 



 

 

 

                               Fig.21. Overall accuracy                             Fig.22. Average training time (in seconds) 

4.4. Letter Recognition Dataset [23] 

This dataset contains 20000 character images consisting of large numbers of black-and-white rectangular pixels 

displaying the 26 capital letters (from “A” to “Z”) of the Latin alphabet used in English language. Each image 

has been converted into 16 primitive numerical attributes as follows: 1) x-box: horizontal position of the box; 2) 

y-box:  vertical position of the box; 3) width: width of the box; 4) height: height of the box; 5) onpix: total 

number of pixels that are “on”; 6) x-bar: mean value of x of the pixels that are “on” in the box; 7) y-bar: mean 

value of y of the pixels that are “on” in the box; 8) x2bar: mean value of the x variance; 9) y2bar:mean value of 

the y variance;  10) xybar: mean value of the x,y correlation;  11) x2ybr: mean value of the x·x·y; 12) xy2br: 

mean value of the x·y·y;  13) x-ege: mean edge count from left to right;  14) xegvy: correlation of x-ege with y;  

15) y-ege: mean edge count from bottom to top;  16) yegvx: correlation of y-ege with x. The 16 attributes have 

been scaled to fit into a range of integer values from 0 through 15.  

In this experiment, we, firstly, normalized the data samples by their norms before classification using equation 

(15). Then, the first 60% of the data samples of each class were used as a training set and the rest were used as a 

validation set. The confusion matrix of the result obtained by the proposed approach is depicted in Fig. 23. The 

εMFs of the 3
rd

 and 4
th

 attributes (width and height), derived from the training samples are visualized in a 3D 

form per type per feature in Fig. 24 as an illustrative example. 



 

 

 

Fig. 23. The confusion matrix of the classification result of the letter recognition dataset 

 

(a) εMF of  the 3
rd

 attribute- width 

 



 

 

(b) εMF of  the 4
th

 attribute- height 

Fig. 24. The 3D visualization of the εMFs of the letter recognition dataset 

Same as the previous three benchmark problems, 10 Monte Carlo experiments are conducted by randomly 

selecting 60% of the data samples of each class for training the classifiers and using the rest for validating the 

classifiers. The average overall accuracy and the time consumption (in seconds) of the training process of the six 

classifiers are depicted in Fig. 25 and Fig. 26, respectively.  

     

                               Fig.25. Overall accuracy                                  Fig.26. Average training time (in seconds) 

4.5. Discussion 

From the four numerical examples in subsection 4.1, 4.2, 4.3 and 4.4 we can see, that the proposed approach has 

a very good performance in the four benchmark classification problems. In addition, it has very high 

computational efficiency. In contrast, the SVM classifier with a Gaussian kernel [14], [15] shows quite good 

results in the complicated problems, i.e. letter recognition and banknote authentication problems, but its 

computational efficiency is very low. The SVM classifier with a Polynomial kernel [15] is comparable with the 

proposed approach in terms of accuracy, however, it requires more time for training. Unlike the SVM 

classifiers, the proposed εF classifier has a very high transparency and clear interpretability. The naïve Bayes 

classifier [16] is the fastest one due to its simplicity and its performance is very high on the simpler problems, 

i.e. wine dataset. The classification accuracy of decision tree classifier [17] is lower than the proposed classifier 

in the complicated problems, but its training process is slightly faster. eClass0 classifier [18] is an FRB 

classifier.  It is very efficient, but it only shows good result in the simplest problem (wine dataset). The most 

important advantages of εFSs are their transparency and objectiveness as well as the ability of dealing with 

categorical data naturally and seamlessly (see Figs. 16 and 24). 



 

 

5. Conclusion  

In this paper, we introduce a new form of describing fuzzy sets, named εFSs and a new form of FRB systems, 

named εFRB grounded at the Empirical Data Analytics (EDA) framework. The proposed approach touches the 

fundamental question of how to build a FRB system. Two approaches (subjective and objective) for identifying 

εFRB systems are described in this paper. Through a number of illustrative examples, we demonstrate that the 

proposed approach is a powerful alternative for scientists working with FRB systems in various fields and it has 

a strong potential. 

Compared with the traditional FSs and FRB systems, the proposed approach has the following significant 

advantages: 

i) The εFSs are derived in a transparent, data-driven way without prior assumptions 

ii) Effectively combines the data- and human- derived models; 

iii) It has very strong interpretability and high objectiveness; 

iv) The involvement of human experts is significantly facilitated and can be bypassed. 

Numerical examples in this paper have demonstrated the high performance of the εF classifier, but the 

applications of the proposed approach include, but are not limited to classification, control, prediction.  

As a future work, we will detail the evolving εFRB systems, predictors and apply it to various problems, i.e. 

high frequency trading, image classification, aircraft control, etc. We will also prove stability conditions for the 

εFRB systems. 
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