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The Time Has Come: Toward Bayesian SEM Estimation in Tourism 

Research 

 

Abstract 

While the Bayesian SEM approach is now receiving a strong attention in the literature, tourism 

studies still heavily rely on the covariance-based approach for SEM estimation. In a recent 

special issue dedicated to the topic, Zyphur and Oswald (2013) used the term “Bayesian 

revolution” to describe the rapid growth of the Bayesian approach across multiple social science 

disciplines. The method introduces several advantages that make SEM estimation more flexible 

and powerful. We aim in this paper to introduce tourism researchers to the power of the 

Bayesian approach and discuss its unique advantages over the covariance-based approach. We 

provide first some foundations of Bayesian estimation and inference. We then present an 

illustration of the method using a tourism application. The paper also conducts a Monte Carlo 

simulation to illustrate the performance of the Bayesian approach in small samples and discuss 

several complicated SEM contexts where the Bayesian approach provides unique advantages. 

1. Introduction  

Over the last two decades, structural equation modelling (SEM) has become one of the most 

popular methodologies in tourism research. The method’s popularity stems from its ability to 

handle complicated relationships between latent and observed variables, which are highly 

common in tourism research (Reisinger and Turner, 1999). While relatively a complex method, 

the availability of several SEM software packages (e.g. AMOS, LISREL, Mplus) has certainly 

facilitated the widespread application of the method and brought it within the reach of the 

applied researcher (Assaf et al., 2016). Basically, SEM consists of two components. The first 

component, the “measurement equation”, is like a regression model between the latent and 

observed variables, while the second component, the “structural equation”, is a regression 

between the latent variables. With latent variables not being directly observed, one cannot use 

normal regression techniques to analyse the model.  

A traditional approach in estimating SEM has been, “the covariance based approach”, which 

focuses “in fitting the covariance structure of the model to the sample covariance matrix of the 

observed data” (Lee and Song, 2014, p.276). Most popular SEM software such as AMOS and 

LISREL rely heavily on the covariance-based approach. Though in many situations, this 

estimation method works fine and produces reliable estimates (Assaf et al., 2016), there are some 

complicated data structure and model assumptions where the “covariance based approach” will 

encounter “serious difficulties and will be unable to produce correct results for statistical 

inferences” (Lee and Song, 2014, p.277).  As recently highlighted by Assaf et al. (2016), one of 

the main motivations for using the Bayesian approach for SEM estimation is its flexibility to 

handle many complicated models and /or data structures. Importantly, the “covariance 

approach” based on estimation methods such as maximum likelihood (ML) or generalized least 

squares (GLS) is only asymptotically correct (viz. it only works according to statistical theory 

with large sample). Using software packages such LISREL or AMOS on small sample sizes 
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should be done with caution, as “it is well known that the statistical properties of the estimates 

and the goodness-of-fit test obtained from these approaches are asymptotically true only” (Lee 

and Song, 2004, p. 653).  

Our aim in this paper is to provide for the first time a thorough introduction of the Bayesian 

approach for SEM estimation. Despite the growing popularity of the Bayesian approach in 

related fields such as Marketing and Management, it has yet to receive strong attention in the 

tourism literature (Zyphur and Oswald, 2013). Apart from its ability to handle more complicated 

SEM models, the Bayesian approach introduces several important advantages: 1) it allows the 

inclusion of prior information in the analysis; 2) it is more robust to small sample sizes, 3) it 

provides more reliable formal model comparison statistics, 4) it “provides a better approximation 

to the level of uncertainty, or, conversely, the amount of information provided by the model” 

(Rossi and Allenby, 2003, p.306), and  5) It can be used with SEM models that include 

unobserved heterogeneity in the form of various random effects. 

It is surprising that despite these advantages there are very limited Bayesian SEM studies in 

tourism (Assaf et al., 2016). We aim in this paper to introduce tourism researchers to the power 

of the Bayesian SEM approach, and discuss how the method can address some of the main 

limitations of the covariance-based approach. We discuss several interesting contexts where the 

Bayesian approach can help SEM researchers overcome complex model situations. With the 

method not being well established in the tourism literature, we start first with a brief overview of 

the Bayesian approach, demonstrating its advantages and illustrating how the results can be 

presented and interpreted. We then discuss the Markov Chain Monte Carlo (MCMC) technique, 

the most common method for Bayesian estimation. We follow this with an illustration of a 

Bayesian SEM estimation using the Winbugs software. We also conduct a Monte Carlo 

simulation to illustrate the advantages of the Bayesian approach over the covariance-based 

approach in small samples, using a well-established tourism model. The paper concludes with a 

discussion of several complicated SEM contexts where the Bayesian approach can provide 

unique advantages. Our main goal is to encourage the use of Bayesian methods for SEM 

estimation in the tourism literature. 

 

2. Basic Illustration of SEM  

The basic linear SEM framework1 consists of the following measurement and structural 
equations:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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  = Λ + Θ    

                                                      (1) 

                                                           
1
 As most tourism researchers are now well familiar with SEM, we do not intend here to provide a 

detailed background of the method.   
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, 1,...,i N= ,                                     (2) 

where in (1), 
i
y  and 

i
x  are the observed variables which are the respective indicators of 

i
η , 

i
ξ , 

y
Λ . 

x
Λ  are loading matrices and 

i
ε , and 

i
δ  are random vectors of error measurements. Ψ , Φ , 

ε
Θ , and 

δ
Θ  are the covariance matrices of 

i
ζ , 

i
ξ , 

i
ε  and 

i
δ , respectively, usually assumed to be 

diagonal, and in (2), 
i
η is an endogenous latent vector, Β  and Γ  are matrices of regression 

coefficients,
i
ξ  is an exogenous latent vector, and 

i
ζ  is a random vector of error measurement, 

and  

From Bollen (1989, p. 325) we can find the implied covariance matrix of the model after 

collecting all unknown parameters into the vector ,dθ ∈Θ⊆ ℝ  where d  is the number of 

parameters and Θ  is the parameter space. We have: 

 ( ) ( ) ( )
( ) ( )

     
,

      
yy yx

xy xx

θ θ
θ

θ θ

 Σ Σ Σ =  Σ Σ  
                                            (3) 

where 

( ) ( ) ( ) ( )1 1

,
yy y y

I B I B
ε

θ
− − ′ ′ ′Σ = Λ − ΓΦΓ + Ψ − Λ +Θ   

                       (4) 

( ) ( ) 1

,
yx y x

I Bθ
−

′Σ = Λ − ΓΦΛ                                   (5) 

( ) ( ) 1

,
xy x y

I Bθ
− ′ ′ ′Σ = Λ ΦΓ − Λ   

                                    (6) 

( ) .
xx x x δ
θ ′Σ = Λ ΦΛ +Θ                                         (7) 

Based on these expressions the maximum likelihood criterion to be maximized (Bollen, 1989, 

p.335) is: 

( ) ( ) ( ){ }1log ( ) log | | ( ),
ML
F tr S S p qθ θ θ−=− Σ + Σ + + +                           (8) 
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where S  is the empirical covariance matrix, the last two terms can be omitted and a “quick” 

necessary condition for identification is ( )( )1
2

1 .d p q p q≤ + + +  Maximization of (8) is 

performed numerically in many commonly available software programs like AMOS, LISREL, 

Mplus etc. There are many situations where using this covariance based approach will encounter 

serious difficulties “for many complicated situations: for example, when deriving the covariance 

structure is difficult, or the data structures are complex” (Lee and Song, 2012, p.15). Our goal 

here is to elaborate on the Bayesian estimation of SEM, illustrating its advantages and its 

reliability in small samples. We also present several complicated data generating processes or 

models where the Bayesian approach presents some unique advantages.  

To set the framework for Bayesian SEM, we believe it is important to start first with description 

of the Bayesian approach. The literature currently lacks such description, not only within the 

context of SEM but within other modelling approaches. We focus on the basic ideas of Bayesian 

inference for both model estimation and model comparison.  

 

3.1. Brief Overview of the Bayesian Approach  

3.1.1. Basic Concepts 

The key difference between the “Bayesian approach” and the “sampling-theory or frequentist 

paradigm” is that in the latter one proceeds under the assumption that the coefficients are fixed 

but unknown. Uncertainty is introduced into the analysis because the data is viewed as one 

particular realization among many so there is sampling-variation in parameter estimates. In the 

Bayesian paradigm, the data is treated as fixed and statistical uncertainty comes from the 

stochastic nature of the parameters. More often than not, in the frequentist paradigm, the exact 

finite-sample distributions of estimators of parameters are unknown and one has to resort to 

asymptotic approximations for them. Such approximations can range from totally invalid to 

hardly acceptable. In the Bayesian paradigm, we can derive exact posterior distributions of the 

parameters given the data using Bayes’ theorem which combines the likelihood and the prior. 

The prior is indeed a distinguishing feature that quantifies a priori uncertainty in Bayesian analysis, 

and summarizes all knowledge that we have (from theory or previous studies) about the 

parameters before observing the data. There is no need to resort to asymptotic approximations 

when the data set is small and, therefore, we expect more precise statistical inferences. In 

addition, model selection and the whole inference apparatus become rather easy once we adopt 

the Bayesian approach. Of course, asymptotically, under any prior, the Bayesian posteriors 

converge to normal distributions with moments given by the usual ML quantities. 

To better understand how Bayesian analysis works, we start first with specifying the likelihood of 

the data, ( );L θ D , given an unobserved parameter “θ ” and the given data, D . In the frequentist 

approach, θ  is treated as unknown but fixed, while with the Bayesian approach θ  is treated as 

random (Kaplan and Depaoli, 2012). In addition, along with the likelihood, ( );L θ D  which 
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contains all the relevant sample-based information regarding the model parameters, the Bayesian 

approach also requires probability distribution representing prior beliefs about θ , say ( )p θ . 

Combining the likelihood and the prior distribution, Bayes’ theorem transforms the prior data 

beliefs into posterior (or after data) beliefs (Rossi and Allenbi, 2003):  

 ( ) ( ) ( )| ; .p L pθ θ θ∝D D                                                   (9) 

where ( )|p θ D  is known as the posterior distribution of θ , given the data. To be more precise, 

we have: 

 ( ) ( ) ( );
| ,

( )

L p
p

M

θ θ
θ =

D
D

D
                                                     (10) 

where  

 ( ) ( )( ) ; ,M L p dθ θ θ
Θ

= ∫D D                                                     (11) 

 

is known as the marginal or integrated likelihood or “evidence” and represents the normalizing 

constant of the posterior. The marginal likelihood is an important object as it represents the 

evidence of a given model, in the light of the data, after parameter uncertainty has been fully 

taken into account by integrating the parameter vector out in (11).  This represents a key 

difference to the traditional sampling approach (i.e. frequentist) “in which we consider the data 

as random and we investigate the behavior of test statistics over imaginary samples from the data 

generating process that yields ( );L θ D . The Bayesian would regard the sampling distribution as 

irrelevant to the problem of inference because “it considers events that have not occurred” 

(Rossi and Allenbi, 2003, p.305).  

The Bayesian approach (as shown in (9)) is also known for its ability to incorporate prior 

information, ( )p θ , in the estimation. This is a key advantage of the Bayesian approach, as in 

addition to the information provided by the data, one can obtain more accurate and reliable 

parameter estimates by incorporating some “genuine prior information” (Song and Lee, 2012).2 

Within the context of SEM, for instance, a researcher may have information from different 

sources, such as expert opinion, or result from past studies using similar data, that can be 

incorporated into the analysis. Such information may range from prior information about the 

estimates of factor loading from a previous tourism model to the level of correlation between 

two latent variables (e.g. satisfaction or return intention).  

Basically, there are two types of priors: informative and non-informative priors. Informative 

priors are used when a researcher has good knowledge about the prior distribution from 

previous studies, while non-informative prior is adopted when we are not in possession of 

                                                           
2 The argument that non-Bayesians do not use prior information is quite wrong. Choosing a model is prior 
information. Using instrumental variables also involves choices which are equivalent to prior information. Regarding 
the randomness of θ, the purpose of introducing a random variable is because we wish to learn about something 
unknown. The unknown quantity in statistical studies is the parameter, not the data. 
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enough prior information to help in drawing posterior inferences. Non-informative priors are 

also known as “vague” or “diffuse” priors. Some examples of non-informative prior 

distributions include the uniform distribution over some sensible range of value or the so-called 

“Jeffrey’s prior” (Kaplan and Depaoli, 2012). Basically, with the use of non-informative priors, 

Bayesian inference based on the posterior distribution (9) becomes less dependent on the prior 

distribution, ( )p θ , and more dependent on the  likelihood,   ( );L θ D . However, even in such 

case, Bayesian inference is still fundamentally different compared to the frequentist approach, 

because it is based directly on the posterior in (9) and not on hypothetical “infinite replication of 

the study (via sampling distributions) that never occurred” (Zyphur and Oswald, 2013, p. 4). 

The Bayesian approach has also several other advantages such as performing better in small 

samples, and providing more accurate statistics for goodness-of-fit and model comparison (Song 

and Lee, 2012). It can also handle more complicated structural equation models. Before 

elaborating further on these issues, we provide first some background on Bayesian inference 

using the Markov Chain Monte Carlo (MCMC) approach.   

 

3.1.2. Brief Overview of MCMC Estimation 

As the posterior (9) can be highly dimensional, researchers usually summarize information about 

the posteriors in terms of lower dimensional summary statistics such as the mean and standard 

deviation.  For example, if we have a regression of the form “
0 1 1

...
k k

y x xθ θ θ= + + + ”, the 

posterior mean 

 ( ( )1
[ ] | , ,...,

k
E p y x x dθ θ θ θ= ∫ ) and the posterior variance of 

1
θ  will be used to test 

hypotheses.  A challenge however is that both of these quantities require calculating some 

multidimensional integrals of the posterior distribution (Rossi and Allenbi, 2003). Historically, 

the computation of complicated integrations has put the Bayesian approach beyond the reach of 

many applied researchers (Coelli et al. 2005). Recent developments in powerful simulation 

algorithms, now provided through several software packages has, however, facilitated the 

estimation of posterior probability distribution for many models.  

One of these most powerful algorithms is MCMC.  It is “an iterative process where a prior 

distribution is specified and posterior values for each parameter are estimated in many iterations” 

(Zyphur and Oswald, 2013, p. 11). Hence, instead of computing the integrals analytically, one 

can use simulation-based methods. Specifically, in MCMC approach, we generate a long sample; 

say { }( ), 1,...,s s Sθ =  that converges in distribution to the posterior in (11). The normalizing 

constant ( )M D is not needed as the posterior expectation of an arbitrary vector function of the 

parameters, say ( )g θ , can be approximated accurately by: 

 ( ) ( )1 ( )

1
| .

S s

s
E g S gθ θ−

=
 
   ∑≃D                                               (12) 

 



7 

 

The marginal likelihood, ( )M D , can be approximated as a by-product. There are many ways to 

do this. One way is to use the Laplace approximation3. Since 

 ( ) ( ) ( )log ( ) log ; log | ,M L p pθ θ θ= + −D D D                                      (13) 

 

Notice that this is an identity in θ ∈Θ , , where dΘ⊂ ℝ  is the parameter space. Therefore, in 

principle, any specific θ , say θ  ,  may be used to obtain:  

 ( ) ( ) ( )log ( ) log ; log log | .M L p pθ θ θ= + −D D D                                    (14) 

 

Typically, for θ  we can use the posterior mean of θ . Both ( ) ( )log ;  and logL pθ θD  are 

known and can be easily computed. However,  ( )log |p θ D  is unknown. The Laplace 

approximation assumes that ( )|p θ D  can be approximated by a multivariate normal 

distribution around the mean and, therefore, we have the following simple expression: 

( ) ( ) ( ) 1
2 2

log ( ) log ; log 2 log ,dM L p Vθ θ π+ + +≃D D                             (15) 

 

where V  is the posterior covariance matrix of the parameter vector: 

 ( )( ) ( )( )1 ( ) ( )

1
| .

S s s

s
V E Sθ θ θ θ θ θ θ θ−

=

  ′′ = − − − −
  

∑≃D                          (16) 

 

The remaining problem is to implement MCMC, that is to draw a long sample; say 

{ }( ), 1,...,s s Sθ = , that converges in distribution to the posterior distribution whose density is in 

(11). One MCMC technique is the Gibbs sampler. To understand the Gibbs sampler it is, 

surprisingly, easier to start with the more general family of which the Gibbs sampler is a 

member; this family is known as the Metropolis-Hastings algorithm. The algorithm operates 

as follows. Suppose we have a starting value, say 
( )oθ  and the algorithm is currently at state s   

having 
( )sθ  as the current MCMC draw. The next draw is produced simply as follows. Given 

( )oθ  and 1,...,s S=  do: 

                                                           
3
 It is, perhaps, useful to mention that well-known model selection criteria such as the AIC and BIC are simply 

different asymptotic approximations to the marginal likelihood. 
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• Set ( 1) ( ) ,s s hθ θ+ = + ε  if 
( )
( )

( 1)

( )

|
min 1,  ,

|

s

s

p
u

p

θ

θ

+     ≥     

D

D
 where u  is a standard uniform 

random number and ( )~ 0,
d

N Vε , a d−variate normal distribution. 

• Otherwise, set 
( 1) ( )s sθ θ+ = , and repeat the previous draw. 

 

This is known as the Random Walk Metropolis-Hastings algorithm, V  can be any matrix (for 

example the covariance matrix from ML or an identity matrix) and h  is a positive constant, 

which we select by trial-and-error so that approximately ¼ of all draws are finally accepted. The 

reader familiar with the Simulated Annealing method of maximization will, certainly, notice the 

similarities. 

Another version known as the Independence Metropolis-Hastings algorithm results if we draw a 

candidate 
cθ  from a (convenient) distribution with density, say ( )g θ , called the importance, 

proposal or candidate-generating density . Then we proceed as follows: 

• Draw a candidate  
cθ  from a distribution whose density is ( )g θ . 

• Set ( 1) ,s cθ θ+ =  if 
( ) ( )
( ) ( )( ) ( )

| /
min 1,  ,

| /

c c

s s

p g
u

p g

θ θ

θ θ

     ≥     

D

D
 where u  is a standard uniform 

random number. That is, accept the candidate. 

• Otherwise, set 
( 1) ( )s sθ θ+ = , and repeat the previous draw. 

 

The Gibbs sampler operates by drawing random numbers from the posterior conditional 

distribution of each parameter given the rest. For example if 
1 2
, ,..., ,

d
θ θ θ θ

′ =     the Gibbs 

sampler draws random numbers from the following distributions: 

1 2 3
| , ,..., , ,

d
θ θ θ θ D  

2 1 3
| , ,..., , ,

d
θ θ θ θ D  

(.  .  .)  

1 2 1
| , ,..., , .

d d
θ θ θ θ − D  

 

Therefore, we have to draw from the posterior conditional distribution with density 

( )( )
| , ,  1,...,

m m
p m dθ θ

−
=D , where 

( )m
θ
−

 denotes the parameter vector θ  with the exception 

of parameter 
m
θ . It is interesting to note that any element can, in fact, be a vector.  If we repeat 
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this process a large number of times, we obtain a sample { }( ), 1,...,s s Sθ =  which converges in 

distribution to (11). However, the MCMC sample is not i.i.d., as we have autocorrelation. This is 

evident as, for example, ( )

1

sθ  and ( 1)

1

sθ − cannot be independent. If the autocorrelation is high 

then, effectively, the Gibbs sampler (or any other MCMC scheme) will not explore the posterior 

thoroughly in a small number of iterations (say 5,000 or 10,000). Interestingly, the Gibbs sampler 

does not involve tuning constants like h  or the selection of importance densities so, in this 

sense, it is automatic and involves only the requirement that one can obtain (easily) random 

drawings from each posterior conditional distribution. 

3.1.3. Bayesian Model Comparison 

It is common in SEM to compare between different competing models, and to ensure the model 

fits the data well.  The Bayesian approach offers more reliable statistics for goodness-of-fit and 

model comparison (Lee and Song, 2012). For instance, the model fit indices and model 

comparison tools (e.g. chi-square, RMSEA, etc.) associated with the covariance-based approach 

have only asymptotic justification and perform poorly in some complicated modelling 

conditions. Hence, we expect them to deliver misguided conclusions in small or moderate 

samples. 

We elaborate here on three of Bayesian fit statistics that are very common within the context of 

Bayesian SEM: the Bayes factor, the Deviance information Criterion and the Posterior predictive 

p-value. The Bayes factor has been shown to be highly reliable and has many nice statistical 

properties (Lee and Song, 2012).  It has been also extensively adapted within the context of 

SEMs (Assaf et al. 2016). To introduce the concept of Bayes factor, suppose ( );L θ D  is the 

likelihood function of the model where D  denotes all available data on x  and y . Denote 

[ ] ( ), ; 1,..., ,  , Dd
i i i i ix y i N D x y= = ≡ ∈ℝD . We assume the data are in deviations about their 

means to simplify notation. The likelihood function of the SEM is: 

 ( ) ( )
( )

( ) ( ){ }2
/2 1

1
2 1

; 2 exp .
N p q

N N

i ii
L D Dθ π θ θ

+ −− −

=
′= Σ − Σ∑D                    (17) 

The posterior is” ( ) ( ) ( )| ;p L pθ θ θ∝ ⋅D D  where ( )p θ  is the prior.  

In this context, model comparison becomes easy. If we have two models, say I and II with 

marginal likelihoods ( )
I

M D  and ( )
II

M D , then the Bayes factor in favor of model I and against 

model II is simply: 

 
( )

.
( )

I

II

M
BF

M
=

D

D
                                                                      (18) 
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If BF > 1 then model I is preferred to model II, in the light of the data. For a number of models, 

say 1,2,...,J   we can obtain marginal likelihoods,  1 2
( ), ( ),...., ( )

J
M M MD D D

. In turn, we 

can define posterior model probabilities as follows: 

 ( )
1

( )
model | .

( )

j

j J

jj

M
P j

M ′′=

Π ≡
∑

D
D

D

                                             (19) 

Posterior model probabilities can be used for model selection but also for model averaging. For 

example, if we are interested in parameter 
1
θ  and its marginal posterior densities across models 

are ( ) ( ) ( )1 1 2 1 1
| , | ,..., | ,

J
p p pθ θ θD D D  the model-averaged posterior, which accounts for model 

uncertainty is: 

 ( ) ( )* 1 11
| | .

J

j jj
p pθ θ

=
= Π∑D D                                       (20) 

Typically, we are interested in Bayes factors but also first and second order posterior moments of 

the parameter vector θ  or a vector function ( ) ( ) ( )1
,..., .

M
g g gθ θ θ

′ =     Generically, the 

posterior expectation of ( )g θ  is:  

 ( ) ( )| ( | ) .E g g p dθ θ θ θ
Θ

  =   ∫D D                                                 (21) 

Another highly popular Bayesian model comparison tool is the Deviance Information Criterion 

(DIC), see Spiegelhalter et al. (2002).  It is less computationally involved than the Bayes factor 

and has been used extensively in the field of SEM (Lee and Song, 2012). For example, if we have 

a competing model 
k

M , with a vector of unknown parameter 

     ( )k k
DIC D dθ= +  (22)  

where  
 

 
          (23) 

 
 

and kd  here is the effective number of parameters in 
k

M . Hence, as shown, the calculation of 

DIC involves simulating 
( ){ }, 1,...,
j

k
j Jθ =  from the posterior distribution. The Winbugs 

( ) ( ){ }2 log , |
k

k k k
D E p Y M Y

θ
θ θ= −
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software we describe can be used to compute DIC. Models with smaller DIC are considered to 

have a better fit.  

Finally, the posterior predictive p-value focuses on the predictive ability of the model in that 

there “should be little, if any, discrepancy between data generated by the model, and the actual 

data itself” (Lee and Song, 2014, p.277).  To illustrate, assume that ( )| ,D Y θ Ω  is the 

discrepancy measure between the hypothesized model 
o

M and the hypothetical replicate data  

repY  , the posterior predictive p-value is given by: 

   { } ( )0( ) Pr | , | , | ,rep

B
p Y Y D Y Y Mθ θ= Ω ≥ Ω  (24)  

 
 
A model is considered a good fit if the posterior predictive p-value is close to 0.5. For more 

details refer to Lee and Song (2012). 

4.  Monte Carlo Experiment 

We provide in Appendix 1 more specific details the Bayesian estimation of a general SEM. 

Specifically, we provide more details about the priors and posterior distribution and how 

Bayesian inferences are derived. As the tourism literature lacks such description, we believe this 

is essential to further describe the Bayesian theorem within the context of SEM4. 

Before presenting the estimation of a full Bayesian SEM example, we discuss first the results of a 

Monte Carlo experiment which we conducted to emphasize the power of the Bayesian approach 

in small samples. As mentioned above, the covariance based approach (i.e. LISREL, AMOS) 

approach to SEM estimation is only asymptotically true. In other words, it requires large sample 

to make valid statistical inferences. We conduct here a Monte Carlo simulation to compare 

between Bayesian and covariance approaches across both small and moderately large sample 

sizes.  

To set up the Monte Carlo experiment: In connection to (1) – (2) suppose we are given actual 

data on 
i
x  and 

i
y ( 1,...,i N= ) and we perform the traditional covariance based approach using 

maximum likelihood (ML) to find θ̂ . To proceed with a realistic Monte Carlo experiment, we 

treat θ̂ as the true parameter vector and we generate a set of data { }( ) ( ) ( ), , 1,...,r r r

i i
x y i N= =D  

for replications 1,...,r R= . To generate 
i
η  we use the reduced form: 

( ) ( )1

,  1,..., .
i i i

I B i Nη ξ ζ
−

= − Γ + =  

                                                           
4 To reduce the amount of technical details we have moved the Bayesian description of the linear SEM to 
Appendix 1 
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The generation of 
i
ξ  and 

i
ζ  is straightforward. Given 

i
η  we can easily generate 

i
y  and 

i
x  for 

each replication of the Monte Carlo experiment. 

For each generated data set we perform again ML and we also perform Bayesian analysis using 

the MCMC algorithm in Appendix 25. For the MCMC algorithm the number of draws is set to 

6,000S =  of which we discard the first 1,000 to mitigate the impact of start-up effects. Our 

starting value is always the ML estimator θ̂ . Whenever Geweke’s (1993) convergence diagnostic 

indicates non-convergence, we take another 2,000 iterations and look again at Geweke’s statistic.  

We use flat priors on all parameters, we assume all covariance matrices are diagonal, and we 

repeat the Monte Carlo experiment for 10,000R=  replications. In the 10,000 replications we 

found non-convergence in 322. In all of them taking another 5,000 iterations was sufficient. In 

the vast majority, however, 1,000 – 2,000 additional draws were found enough. We implement 

ML using a standard Gauss-Newton algorithm with analytic gradient and Hessian, which is also 

of use in the GC – MCMC algorithm. For ML we set the maximum number of iterations to 500; 

if the limit is exceeded we generate another data set to perform ML but Bayesian MCMC analysis 

is performed anyway with the data set where ML failed to converge. We believe this gives to ML 

a fair advantage. The number of iterations was exceeded in 812 cases out of the 10,000. 

To perform the Monte Carlo experiment we relied on a well-established model on lodging brand 

equity (Figure 1), previously published in Hsu et al. (2012).  The model and items used for 

measurement are well discussed in their paper, so we do not intend to reiterate them here. Based 

on Figure 1, the ξ s in our case are perceived quality, brand awareness, brand image, 

management trust, and brand reliability. Τhe η s are brand loyalty and brand choice intention. 

For ξ s we have 16 indicators. For example loyalty is measured through three indicators (BL1, 

BL2, BL3), intention through three indicators (BR1, BR2 and BR3), etc6. All observed variables 

are on a Likert scale (1-7). To generate the data for a specific replication we use the following 

strategy: 

a) We estimate the model by maximum likelihood (ML) assuming all covariance matrices are 
diagonal. 

b) Using the estimated parameters we generate , , ,
i i i i

x yη ξ  as described above. 

                                                           
5
 As the Gibbs sampler is, typically, hard to converge to the posterior if the data are highly correlated or 

under anomalies are at work, an alternative is to use techniques that utilize first- and second-order 

derivative information from the log posterior. The algorithm we use is not unlike the Random Walk 

Metropolis-Hastings algorithm but it performs much better as it uses first and second derivative 

information from the posterior.  It is the Girolami and Calderhead (2011, GC) algorithm, see Appendix 

B. 

 
6
 For more details about these indicators refer to Hsu et al. (2012). 
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c) Since the data is continuous we transform to Likert scale using the minimum and maximum 
values of the continuous data. The covariance matrix is recomputed using the new ordinal 
data. 
 

The results for both the structural and measurement models across different sample sizes are 

presented in Table 1. We tried both small sample sizes (N=75, 150) as well as moderately large 

sample sizes (N=200, and 300) which we consider typical in empirical studies. In each case, we 

show the root mean square error (RMSE) of each parameter estimate for both ML and Bayesian 

approaches, where a smaller RMSE indicates a better performance.  

The results clearly indicate that there is a significant gain from the Bayesian approach across all 

sample sizes. For instance, we do not observe any single instance were the Bayesian approach 

generate larger RMSE. This comes to support previous findings from the literature that the 

Bayesian approach outperforms the traditional covariance based approach, particularly for small 

sample size (e.g. Lee and Song, 2004). We also believe that such finding is critically important for 

the tourism literature as it would eliminate the need to continuously collect large samples of data.  

5. Bayesian Estimation of SEM: A Model of Social Exchange Theory (SET) 

As we discussed before, Bayesian inference in SEM requires, first, deriving the conditional 

posteriors, and then setting up the MCMC procedure (as explained in 3.1.2) to simulate from the 

conditional posteriors and obtain statistical inferences. This can be still highly challenging for the 

applied researcher and requires some heavy computer coding. Fortunately, now certain SEM 

software packages provide Bayesian inference in SEM. However, these can be highly inflexible in 

terms of adjusting the prior distribution of the SEM parameters, or in terms of estimating more 

advanced version of SEMs. We encourage tourism researchers to use the Winbugs software, 

which is very useful for a wide range of statistical models including SEM. The advantage of the 

Winbugs software is that it helps the researcher “really concentrate on building and refining an 

appropriate model without having to invest large amounts of time in coding up the MCMC 

analysis and the associated processing of the results” (Griffin and Steel, 2005, p.164). The 

algorithm in Winbugs has been mainly developed using MCMC, and the software necessitates 

only coding the model and the prior so it requires a much smaller investment on part of the 

user.. 

We do not intend here to provide a detailed description of the Winbugs software as this has been 

provided in several textbooks on the topic (Ntzoufras, 2008), but we describe here its main 

outputs as part of our application. We also provide the Winbugs code we used to estimate the 

model in order to guide future tourism applications using the software. Winbugs provides some 

useful convergence diagnostics, as well as some model comparison tools such as DIC. 

Our illustrative application is a SET model published by Jeong and Oh (in press) who used the 

model to examine the prevalent business-to-business (B2B) relationship between destination 

management companies (DMCs) and meeting planners (MPs). While Jeong and Oh provide an 
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extensive review and background on both the illustrative model and the DMC-MP B2B 

relationship, we briefly recapitulate them here for the purpose of introducing our illustration. In 

general, DMCs and MPs work closely to attract various event and meeting businesses to target 

destinations (Sautter & Leisen, 1999). DMCs are typically destination-bound and serve MPs with 

local knowledge and resources needed to execute events, while MPs bring to DMCs an extensive 

market coverage beyond the DMC’s location. These two business entities have often formed 

both formal and informal partnerships over a long period of time, which may afford both 

partners an opportunity to build mutual dependence and trust and, hence, qualify an exemplary 

setting for SET applications.  

 

Following a thorough review of key variables of SET by Lambe, Wittman, and Spekman (2001), 

Jeong and Oh (in press) proposes a SET model to examine the B2B relationship between DMCs 

and MPs (see Figure 2). For the purpose of our illustration in this paper, however, we reanalysed 

the same model from the perspective of MPs in particular. The model closely follows Morgan 

and Hunt’s (1994) trust-commitment framework that has been widely used to explain B2B 

relationships. Jeong and Oh’s proposed model additionally included the concept of relationship 

satisfaction as another key mediating variable to enrich the model’s explanatory power. This SET 

model aims to predict the relationship partners’ long-term as well as short-term commitment to 

the focal relationship. Thus, both trust and relationship satisfaction mediate the effects of the 

four independent latent variables (communication quality, opportunistic behavior, financial 

dependence, and social dependence) on relationship commitment and propensity to leave the 

relationship (see Anderson & Narus, 1990; Claycomb & Franwick, 1997; Gundlach et al., 1995; 

Morgan & Hunt, 1994; Nevin, 1995). For additional background including the conceptual 

definitions, variable operationalizations, and the theoretical relationships in the model, refer to 

Jeong and Oh (in press).  

 

All model variables were operationalized as latent variables measured with the multiple items that 

were extracted from previous studies and a series of preliminary studies (Jeong & Oh, in press). 

Except for propensity to leave and relationship commitment, all the other variables were 

anchored on a 5-point Likert scale. Three items, operationalized each on a 5-point ‘very 

dissatisfactory-very satisfactory,’ ‘terrible-delightful,’ and ‘of low/high value’ scale, measured the 

partner’s overall satisfaction with the current DMC-MP business relationship. Propensity to 

leave was a three-item battery measuring the partner’s intention to leave the current relationship 

in the next six months, one year, or two years, on a very low-very high likelihood scale. Table 2 

summarizes the measurement items and Jeong and Oh provides more detail.  After deleting all 

missing values, the final sample included 101 observations.  

 

Before presenting the Bayesian results, we note that we attempted to estimate the model first 

using the traditional covariance based approach with Mplus. However, the model did not 

converge due, most likely, to the small sample size (or more precisely, a small sample relative to 

the number of parameters). We show below that MCMC converged well with this model and 

resulted as well in a strong model fit. This comes to further support the results from our 

simulation that the Bayesian approach performs better than the traditional approach in small 

sample sizes. The correlation matrix between all latent variables and the Bayesian results for the 

measurement model are presented in Tables 2 and 3, respectively.  Before discussing the results, 
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we first checked the convergence of MCMC chains using Winbugs (Figure 3). For example, as 

shown in the convergence plots of some model parameters the chains have mixed well after few 

thousands iteration in each case.   

 

 

With the Bayesian approach, we report results in terms of the posterior distribution. For 

instance, the posterior mean and the posterior SD are presented in Table 2. The loadings were all 

statistically significant at the 5% level, as noted by the low standard deviation7.  The results from 

the structural model are presented in Table 4. For each relationship, we show the posterior mean 

and standard deviation, as well as 90% and 95% higher posterior densities.  Figure 4 also 

presents the plots of the empirical posterior distributions for some these relationships. 

 As shown, except the impact of communication quality on relationship satisfaction, all other 

relationships are significant at either the 5% or the 10% level. The results seem to be also 

theoretically sound. Communication quality had a significant, positive relationship with trust 

whereas opportunistic behaviour was negatively related to both trust and relationship 

satisfaction. As expected, a significant, positive relationship existed between financial 

dependence and trust. Although the effect of social dependence on trust was “insignificant”,8 its 

effect on relationship satisfaction was significant and positive supporting the research hypothesis 

of interest. Trust was a significant, negative antecedent of propensity to leave but a positive 

determinant of relationship commitment. Finally, relationship satisfaction had a significant 

negative association with propensity to leave and a significant positive association with 

relationship commitment. 

To ensure the validity of our hypothesis tests, and to confirm the Bayesian model is performing 

well with this small sample size, we also assessed the overall fit of the model using the posterior 

predictive p-value. For example, we found that the posterior predictive p-value is 0.58 which 

confirms that the model fits the data well. We also compared the model in Figure 2 against 

another competing model, which allows also for direct relationships between communication 

quality, opportunistic behaviour, social dependence, financial dependence and   propensity to 

leave and relationship commitment respectively.  

                                                           
7
 With Bayesian, it is more appropriate to look at the prediction intervals to assess significance. We 

confirmed that all these loadings are “significant” in the sense of footnote 8. 
8 “Insignificant” in the Bayesian paradigm means that the so-called 95% highest-posterior-density-interval 
(HPDI) does not include zero. We use the term for brevity as there is no such thing as “statistical 
significance” in the Bayesian paradigm. Moreover, “significant” in the Bayesian paradigm means that the 
95% HPDI oes not include zero. 
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Using the DIC and Bayes factor (see section 3.1.3) we showed that the model in Figure 2 

generally outperforms this competing model. For instance, the Bayes factor in favor of our 

model was 8.12 (see equation 18), indicating a significantly better performance than the 

competing model9. 

 

 

6.  Other Potential Extensions SEM using the Bayesian Approach 

So far we have only discussed examples of linear SEM applications. In this section, we briefly 

outline other extensions of SEM where the Bayesian approach has proven to be highly powerful. 

We believe it is important to shed light on these models to encourage more advanced SEM 

applications in tourism research. Unfortunately, the heavy reliance on the covariance based SEM 

approach creates limitations in estimating some of these models. 

6.1. Finite Mixture SEM 

A well-known estimation problem that has been ignored in tourism research is the issue of 

unobserved heterogeneity (Assaf et al. 2016). Assuming that the data are always homogenous 

may more often than not lead to biased and wrong conclusions. The problem with assuming 

homogeneity can be illustrated by taking an example on customer satisfaction. Consider the 

relationship between customer satisfaction and causes of customer satisfaction (e.g. service 

effectiveness, service quality, and promotion). Suppose that in the data there are three distinct 

groups of customers. What distinguishes these groups is that their level of customer satisfaction 

is determined differently. Some customers may find that service effectiveness is the most 

important (labelled as group g = 1), whereas other customers (g = 2) may find that service 

quality is the key to their satisfaction level. The satisfaction of the last group of customers (g = 3) 

is mostly determined by promotion. Hence, failing to understand this heterogeneity would lead 

researchers to analyse these data as if they were homogeneous. The goodness-of-fit indices 

would not reveal that the model was incorrectly specified and the researcher would not be 

alerted to the unaccounted heterogeneity in the model. Furthermore, the structural parameter 

estimates would be seriously biased. In other words, not accounting for unobserved 

heterogeneity has the same implications as misspecification in regression analysis. In case 

heterogeneity exists an important extension to the linear SEM is the finite mixture SEM which 

can be written as:                                            

( )( ),
| , ~ ,

i i i m g i g
I g N

ηη
η ξ ξ θ= Π Ω ,                                                   (25) 

                                                           
9
 As indicated in (18), if Bayes factor > 1 then model I is preferred to model II. 
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where ( ) ( ) ( )1 1

,g g gηη
θ

− − ′Ω = Ι−Β Ψ Ι−Β ,  and 
i
I  represents a discrete random variable taking 

values in { }1,...,G , with probabilities ( )| ,
i i g

P I g ξ π= =
1

1,..., ,  0,  1
G

g gg
g G π π

=
= ≥ =∑ . Here, g 

denotes the particular group and can take values 1,2,…,G where G denotes the number of 

groups. We refer the reader to Assaf et al (2016) and Lee and Song (2012) for more details about 

this model.   While the finite mixture model can be estimated using the covariance-based (i.e. 

traditional) approach, the Bayesian approach is better suited to correctly identify the number of 

groups in the data (Richardson and Green, 1997). As highlighted by Lee and Song (2012), using 

the traditional estimation method in estimating finite mixture SEMs can be problematic in terms 

of identifying the number of groups due to non-regularity problems10. 

 

6.2. Non-parametric and Semi-Parametric SEMs 
 

Both non-parametric and semi-parametric SEMs have also been heavily ignored in the tourism 

literature, despite being more appropriate in handling non-normal data. The fact that traditional 

SEMs also assume that the latent variables follow a normal distribution can be also be 

problematic. As the latent variables are unobserved, it is impossible to check whether this is a 

valid assumption.  One way to relax this assumption, and avoid having spurious statistical results 

is to use the semi-parametric or non-parametric SEM, where again, the Bayesian approach has 

been shown to be highly powerful.  For some detailed studies on the topic refer to Lee and Song 

(2008), and Song et al. (2009). 

 

6.3. SEMs with Continuous and Ordered Categorical Variables 
 
The Bayesian approach also offers high flexibility in handling models with continuous and 

ordered categorical variables. Most SEM applications in tourism are often based on the use of 

Likert scale data, where satisfying normality can be an issue. For instance, to claim normality of 

these Likert scale data we need most answers to be in the middle category.  However, in some 

cases, this requirement is not satisfied.  

The common approach is to treat all observed variables as continuous data coming from a 

normal distribution. However, this can lead to spurious results if the distribution of these 

observed variables does not follow, approximately, a normal distribution (for example, when 

most respondents select categories at both ends). An arguably better way to analyze such type of 

data is to treat them as observations that come from a latent continuous distribution with a 

threshold specification. So far, we have never seen such approach adopted in the tourism 

literature. For example, if we have left skewed data, the threshold approach for analyzing such 

                                                           
10

 The Bayesian finite mixture model can also be estimated using the Winbugs software (see Assaf et al. 

2016 for coding details). 
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type of data is “to treat the ordered categorical data as manifestations of an underlying normal 

variable y ”(Song and Lee, 2012, p.87).  

1
,    if 

m m
z m yα α += ≤ ≤       (26) 

where 'sα are the thresholds, z  is the observed ordered categorical variable, and 'm s represent 

the observed values for z .  

Analysing such a model is not trivial and involves computing multiple complicated integrals. A 

multistage method using generalized least square (GLS) has been proposed in the literature to 

analyse (26). However, other studies (Shi and Lee, 2000) have discussed the problem of reaching 

an optimal solution with such approach. With the Bayesian approach one can handle more 

effectively (26).  Using the idea of data augmentation in MCMC one can simply augment the 

observed data with the latent continuous measurement corresponding to these ordered 

categorical variables in the posterior analysis. In other words, one can treat the underlying 

continuous measurement as missing data or parameters, and then one can augment them with 

the observed data in the posterior analysis. Hence, the model that is based on the complete 

dataset becomes one with continuous variable.  For more discussion on the topic, refer to 

Dunson (2000), Lee and Song (2014) and Lee and Song (2012). 

6.4. Transformation SEMs 

When the data is highly non-normal, even non-parametric and semi-parametric SEM can face 

some challenges (Lee and Song, 2012). As indicated above, satisfying normality is the one the 

main assumptions of SEMs. Fortunately, some transformation models have been developed in a 

Bayesian framework to address highly skewed data. The idea is to use a transformation SEM 

defined by: 

                              ( )i i i
f y µ ω ε= +Λ +  (27) 

where ( ).j
f  is a transformation function that can be used to generate a normal distribution or to 

address extreme skewness so that the resulting model meets the normality assumption in SEM.  

With the Bayesian approach  ( ).j
f  can be approximated using Bayesian P-splines (see Lee and 
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Song, 2014 and Lee and Song, 2012 for more details)11. In some cases even Box-Cox 

transformations may suffice. 

7. Concluding Remarks  

The aim of this paper was to provide a comprehensive introduction of the Bayesian approach for 

SEM estimation. Despite receiving a strong attention across other related fields, the use of the 

Bayesian approach is still highly limited in the tourism literature. We highlighted in this paper the 

power of the Bayesian approach and discussed its distinctive difference from the traditional 

covariance-based approach to SEM estimation. 

Overall, we believe there are five main reasons why tourism researchers might select the Bayesian 

approach for SEM estimation. First, some complicated models such as the ones discussed in the 

previous section are harder to converge with traditional methods (e.g. mixture models; non-

normal models, etc.), and some models are not even possible to estimate. Bayesian statistics can 

also help in model identification and result in more accurate parameter estimates (Depaoli, 2013; 

2014).12 Second, “many scholars prefer Bayesian statistics because they believe population 

parameters should be viewed as random” (Depaoli and van de Schoot, 2015, p.3). Third, with 

the Bayesian approach one can prior information into the estimation. Fourth, as highlighted 

several times above, the Bayesian statistics is not based on large samples and hence may generate 

reasonable results even with small to moderate sample sizes. This was also reinforced by the 

results of our Monte Carlo simulation. Fifth, and finally, the Bayesian approach offers more 

accurate and less sensitive fit statistics and model comparison tools. 

Despite all these advantages, the main goal should not be understood as encouraging some naïve 

applications of the Bayesian approach, or even using the Bayesian approach in the interest of 

“mathematistry”. We understand that most researchers in tourism are usually more comfortable 

using the frequentist approach for SEM estimation. As indicated by Depaoli and van de Schoot 

(2015), using the Bayesian approach without good knowledge of the method can be dangerous, 

                                                           
11 In addition to the models discussed in this section, we note that the Bayesian approach can also handle 

effectively latent curve and longitudinal data. Traditionally, most traditional longitudinal SEMs have 

focused on univariate observed variables measured over repeated periods of time. The field has been slow 

in developing more advanced longitudinal models, probably because the covariance matrix of observed 

and latent variance involved in different time periods can be complicated (Lee and Song, 2012). Recently 

some more advanced Bayesian models have been developed for analyzing longitudinal data, which relaxes 

the univariate assumption. This is an interesting topic for future research. 

 
12

 One simple example is linear regression y=Xβ+u, when X is collinear or even singular. Then the matrix X’X 
cannot be inverted or, if it can be inverted, standard errors will be very large. A simple normal prior yields the 
estimator b=(X’X+gI)-1X’y where g is related to prior information. In the frequentist approach this is known as 
“ridge regression”: One mechanically adds a small constant, g, to the cross-products matrix to make it better 
behaved. However, there is a clear Bayesian interpretation of this mechanical procedure. 
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particularly in terms of interpreting the Bayesian features and / or results. The Bayesian 

approach can also be sensitive to the selection of appropriate priors –but this is an empirical 

matter. From here, conducting sensitivity analysis to check whether the results are stable across 

prior choices becomes essential (Assaf et al. 2016). There are also other important steps that 

should be checked when using the Bayesian approach- we refer the reader to the study of 

Depaoli and van de Schoot (2015) for more details. 
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Figure 1. A Customer-Based Lodging Brand Equity Model 
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Table 1. Monte Carlo results, RMSE of parameters 

 Ν=75 Ν=150 Ν=200 Ν=300 

parameter MLE Bayes MLE Bayes MLE Bayes MLE Bayes 

From perceived quality 

PQ1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

PQ2 0.321 0.158 0.225 0.114 0.173 0.093 0.155 0.087 

PQ3 0.244 0.141 0.189 0.112 0.145 0.095 0.132 0.076 

From brand awareness 

BA1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

BA2 0.222 0.132 0.187 0.082 0.144 0.077 0.129 0.054 

BA3 0.250 0.137 0.210 0.097 0.152 0.081 0.133 0.071 

From brand image 

BI1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

BI2 0.278 0.112 0.213 0.115 0.157 0.091 0.132 0.083 

BI3 0.302 0.130 0.225 0.109 0.176 0.085 0.145 0.074 

BI4 0.244 0.132 0.212 0.125 0.194 0.098 0.173 0.095 

From management trust 

MT1 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 

MT2 0.344 0.141 0.188 0.081 0.133 0.065 0.101 0.055 

MT3 0.289 0.137 0.203 0.087 0.136 0.071 0.100 0.062 

From brand reliability 

BR1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

BR2 0.303 0.144 0.271 0.188 0.210 0.103 0.173 0.087 

BR3 0.278 0.115 0.213 0.175 0.184 0.102 0.172 0.088 

From brand loyalty 

BL1 0.317 0.286 0.283 0.214 0.210 0.165 0.188 0.111 
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BL2 0.385 0.277 0.317 0.220 0.265 0.171 0.210 0.133 

BL3 0.322 0.220 0.288 0.201 0.215 0.177 0.178 0.130 

From brand choice intention 

BC1 0.310 0.244 0.282 0.211 0.265 0.189 0.231 0.164 

BC2 0.303 0.271 0.285 0.212 0.271 0.187 0.214 0.171 

BC3 0.289 0.214 0.277 0.210 0.273 0.188 0.221 0.168 

To Brand Loyalty 

Perceived Quality 0.442 0.228 0.371 0.187 0.315 0.122 0.280 0.084 

Brand Awareness 0.389 0.187 0.313 0.144 0.288 0.115 0.265 0.087 

Brand Image 0.335 0.165 0.285 0.132 0.211 0.105 0.189 0.085 

Management Trust 0.401 0.213 0.387 0.154 0.222 0.115 0.277 0.086 

Brand Reliability 0.423 0.357 0.388 0.132 0.285 0.106 0.255 0.087 

To brand choice intention 

Brand Loyalty 0.515 0.314 0.473 0.289 0.412 0.233 0.380 0.215 

variance 

parameters(a) 

0.345 0.285 0.312 0.217 0.296 0.180 0.275 0.164 

Notes: For Bayes MCMC analysis we use flat priors on all coefficients. Zero entries correspond to 
coefficients normalized to unity. (a) Reported is the average RMSE of all variance parameters in the SEM. 
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Figure 2.  Proposed Model of Social Exchange Theory and an Extension 
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Table 2. Measurement Model Results 

Measures (abbreviated) 
 

 
Posterior 

Mean 
Posterior 

S.D 
Communication Quality    
   This major BUSINESS partner … communicates well their expectations 
about our firm performance 

 1.000 
 

   … frequently discusses with us the business ideas that can benefit 
mutually 

 1.277 0.162 

   … is good at notifying us about potential business opportunities  1.407 0.175 
   … is helpful in providing feedback on our performance  1.254 0.162 
Opportunistic Behavior    
   Sometimes this major BUSINESS partner… promises to do things 
without actually doing them later. 

    1.000 
 

   … gets information from us and contacts our vendors directly later  1.040 0.156 
   … works with my BUSINESS and our competitors simultaneously to 
maximize own benefits 

 1.203 0.187 

   … tends to treat my BUSINESS as one tentative option while 
considering other BUSINESS as alternatives 

 1.295 0.189 

Financial Dependence    
   The relationship with this major BUSINESS partner … is built upon 
frequent business transactions 

 1.000 
 

   … is motivated mainly by collaborative business opportunities    
   … is based on mutual financial gains  1.036   0.226 
Social Dependence    
   … is based largely on a shared feeling of being “on the same boat” for 
our respective businesses 

 1.000 
 

   … embraces our close friendship in its center  
  

   … is built rather on our personal networking and acquaintance  1.118 0.263 
Trust    
   In our relationship, this major BUSINESS partner … can be trusted  1.000 

 
   … can be counted on to do what is right  0.903 0.102 
   … has high integrity     0.954 0.102 
   … is a very reliable business partner     0.979 0.114 
   … is consistent in the manner the partner conducts the business with my 
BUSINESS 

     0.978 0.110 

Relationship Satisfaction    
   The overall relationship with this major BUSINESS partner has been … 
very dissatisfactory – very satisfactory 

 1.000 
 

   … terrible – delightful   0.951 0.129 
   … of no value – of very high value  0.921    0.122 
Propensity to Leave    
   The chances of terminating the relationship with this major BUSINESS 
partner … within the next six months?  

 1.000 
 

   … within the next one year?     1.159 0.105 
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   … within the next two years?  0.863 0.105 
Relationship Commitment    
   The relationship with this major BUSINESS partner … is something we 
are very committed to 

 1.000 
 

   … is something my BUSINESS intends to develop more in the future     1.022 0.103 
   … deserves my BUSINESS’ maximum effort to maintain  0.959 0.138 
   … is something that my BUSINESS will continue devoting necessary 
resources to strengthen 

 0.932 0.102 

Note: All items were measured on a 5-point scale; the relationship satisfaction items were anchored on the three 
scale labels directly, the propensity to leave items on a very low - very high scale, and all the other construct items 
on a strongly disagree – strongly agree Likert scale. 
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Table 3. Correlation Matrix 

  

MP Group α ρη AVE 1 2 3 4 5 6 7 8 

1. Communication Quality 0.91 0.94 0.78 1.00 
       

2. Opportunistic Behavior 0.88 0.92 0.74 -0.42 1.00 
      

3. Financial Dependence 0.73 0.88 0.79 0.38 -0.14 1.00 
     

4. Social Dependence 0.71 0.87 0.77 0.27 -0.17 0.28 1.00 
    

5. Trust 0.95 0.96 0.83 0.52 -0.47 0.41 0.30 1.00 
   

6. Relationship Satisfaction 0.87 0.92 0.79 0.49 -0.43 0.30 0.42 0.66 1.00 
  

7. Propensity to Leave 0.91 0.94 0.85 -0.23 0.57 -0.26 -0.05 -0.54 -0.50 1.00 
 

8. Relationship Commitment 0.88 0.92 0.74 0.45 -0.31 0.40 0.40 0.65 0.61 -0.36 1.00 
α = Cronbach’s alpha of internal consistency; ρη = composite reliability; AVE = amount of variance extracted. 
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Figure 3. MCMC Convergence for Some Model Parameters 
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Table 4. Structural Model Results  

Path 
 

Mean SD 
95% 

HPD Interval 
90% 

HPD Interval 

Communication Quality � Trust 0.25 0.15 -0.04, 0.54 0.00,  0.49 

Communication Quality � Relationship Satisfaction 0.22 0.15 -0.08, 0.52 -0.02, 0.46 

Opportunistic Behavior � Trust -0.30 0.12 -0.55, -0.06 -0.51, -0.10 

Opportunistic Behavior � Relationship Satisfaction -0.22 0.12 -0.47, 0.03 -0.43, -0.01 

Financial Dependence � Trust 0.33 0.19 -0.01, 0.77 0.04,  0.67 

Financial Dependence � Relationship Satisfaction 0.30 0.19 -0.04, 0.71 0.00,  0.62 

Social Dependence � Trust 0.37 0.23 -0.02, 0.87 0.02,  0.78 

Social Dependence � Relationship Satisfaction 0.39 0.23 -0.01, 0.88 0.05,  0.80 

Trust � Propensity to Leave -0.43 0.13 -0.75, -0.11 -0.70, -0.16 

Trust � Relationship Commitment 0.49 0.14 0.22, 0.78 0.26,  0.73 

Relationship Satisfaction � Propensity to Leave -0.49 0.18 -0.87, -0.13 -0.81, -0.19 

Relationship Satisfaction � Relationship Commitment 0.49 0.15 0.20, 0.80 0.25,  0.75 

HPD stands for higher posterior density 
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Figure 4.  Posterior Densities of Some Model Parameters 
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APPENDIX 1: Full Description of a Bayesian Linear SEM 

 

In line with Bayes’ theorem in (9), we can write for example the posterior distribution of the 
SEM in (2) as follows: 
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where ( , , , , , , , )
y x

p B
ε δ

Λ Λ Γ Θ Θ Ψ Φ  denotes the prior and the rest denotes the likelihood. The 

term /2|| ||NI B−  is the so-called Jacobian of transformation that we need when we have to 

find the joint distribution of 
i
η  from the distribution of 

i
ζ  given B, Γ and 

i
ξ ). To proceed, first 

we write (1) in the form  

 
 

 

 

where , , , , .
            

i y i iz

i i i hh

i x i i

y
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x

ε

δ

η ε
ω ε

ξ δ

         Λ Θ           = Λ = = = Θ = = Θ            Λ Θ                  
  

We will indicate the type and nature of prior information, as need arises. Most common priors 
that can be used, here include normal and Wishart (multivariate versions of gamma) distributions 
because they are conditionally conjugate– that is they match the functional forms of the 
posterior conditional distributions 

We can write each equation in the form: 

    , 1,..., ,z

ih h ih ih
z h p qλ ω ε′= + = +   (A1.2)     

  

  
where 

h
λ  is the hth row of matrix Λ. Apparently not all elements of 

y
Λ  and 

x
Λ  are nonzero 

and, therefore, 
h
λ contains only the nonzero elements with the corresponding elements in 

ih
ω  . 

In this form it is clear that the conditional posterior distributions of 
h
λ  is as follows: 

    ( ) 1ˆ| . ~ , ,
h h h hh h h h

N Vλ λ λ
− ′ + Θ Ω Ω +     (A1.3)

  

where ( ) 1ˆ
h h h h h

zλ
−

′ ′= Ω Ω Ω , 
h ih

ω Ω =     after deleting the columns which correspond to zero 

elements of 
h
λ , and 

h
λ , 

h
V denote the prior mean and covariance matrix of 

h
λ . 

( ), ~ 0, ,z z

i i i i p q
z Nω ε ε += Λ + Θ
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The posterior conditional of 
hh
Θ  is: 

               (A.4) 

 

where ,N Q  are prior parameters and 2

N N
χ +

 denotes the chi-square distribution with the 

indicated degrees of freedom. 

To derive the posterior conditional distributions of Β, Γ we first consider their joint posterior 
conditional distribution: 
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where ( , )p B Γ  is a prior and the term /2|| ||NI B−  is the so-called Jacobian of transformation 

that we need when we need to find the joint distribution of 
i
η  from the distribution of 

i
ζ  (given 

B, Γ and 
i
ξ ). Suppose β  and γ  are vectors that denote the non-zero elements of B and Γ 

respectively. Suppose the priors are  

 ( ) ( )~ , , ~ , .N V N V
β γ

β β γ γ   

 

Conditionally on the nonzero elements of B, we can write the posterior conditional distribution 
of  Γ as follows: 

 

                     (A.6) 

 

where  ( ) .
i i

I Bψ η= −  This is in the form of a multivariate regression model whose analysis 

has been taken up in detail by Zellner (1971, pp. 224-233). 

The posterior conditional distribution of  B is:  
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where * .
i i i
η η ξ= −Γ  Due to the presence of the Jacobian term this distribution is not in any 

known family and, therefore, a use a Metropolis-Hastings algorithm to provide random draws. 

 

The posterior conditional distribution of Ψ  is: 

 

                                                               (A.8) 

 

where ( )( )* *

1

N

i i i ii
S B Bη η η η

=

′= − −∑  and ,N S hI=  are prior parameters. In particular, S  

is a diagonal matrix and we set its parameter to 0.001h =  along with 1N = , choices that 

impose minimal prior information on Ψ . This is in the form of a Wishart distribution, see 
Zellner (1971, pp. 389-390 ). 

We next turn attention to the posterior conditional distributions of the latent variables. 

Regarding 
i
ξ  we have the following sources of information: 
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Therefore, the posterior conditional distribution is: 
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To understand this result we must remind the reader the following result known as Theil’s mixed 
estimation. Suppose we have a linear model of the form 

( ),  ~ 0, ,y X u u Nβ= + Ω  

and prior information has the form  

( )~ , ,N Vβ β  

 

which by a “fiducial” argument13 we can write as: 

                                                           
13 Fiducial inference originally due to Fisher is an approach that starts from the Bayesian results and solves in terms 
of certain quantities of interest, for example sample mean, sample variance, regression coefficients. We do not wish 
to go into the intricate details here. 
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( ),  ~ 0, .I e e N Vβ β= +  

 

Here, we have two pieces of information which we can write jointly as: 
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The Generalized Least Squares (GLS) estimator in this model is: 
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Theil called this the “mixed estimator” (when 
2IσΩ=  ) but it turns out to be the mean of β  

(conditionally on Ω ) in the Bayesian analysis of the linear model. The conditional covariance 

matrix of β  is simply  ( ) ( ) 1
1 1ˆcov .

GLS
X X Vβ

−
− −′= Ω +   

 

Regarding 
i
η  we have the following sources of information: 

( )
,

,
i y i i

i i i

y

I B

η ε

η ξ ζ

= Λ +

− = Γ +
 

from which we have: (A.10) 
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APPENDIX 2: Winbugs Code for Application 1 

model { 
 for(i in 1:N){ 
  #measurement equation model 
  for(j in 1:P){ 
   y[i,j]~dnorm(mu[i,j],psi[j]) 
   e[i,j]<-y[i,j]-mu[i,j] 
   r[i,j]<-e[i,j]/y[i,j] 
     } 
  #Communication Quality 
  mu[i,1]<-xi[i,1]+alp[1] 
  mu[i,2]<-lam[1]*xi[i,1]+alp[2] 
  mu[i,3]<-lam[2]*xi[i,1]+alp[3] 
  mu[i,4]<-lam[3]*xi[i,1]+alp[4] 
  #Opportunistic Behavior 
  mu[i,5]<-xi[i,2]+alp[5] 
  mu[i,6]<-lam[4]*xi[i,2]+alp[6] 
  mu[i,7]<-lam[5]*xi[i,2]+alp[7] 
  mu[i,8]<-lam[6]*xi[i,2]+alp[8] 
  #Financial Dependence 
     mu[i,9]<-xi[i,3]+alp[9] 
  mu[i,10]<-lam[7]*xi[i,3]+alp[10] 
     #Social Dependence 
     mu[i,11]<-xi[i,4]+alp[11] 
  mu[i,12]<-lam[8]*xi[i,4]+alp[12] 
     #Trust 
     mu[i,13]<-xi[i,5]+alp[13] 
  mu[i,14]<-lam[9]*xi[i,5]+alp[14] 
  mu[i,15]<-lam[10]*xi[i,5]+alp[15] 
     mu[i,16]<-lam[11]*xi[i,5]+alp[16] 
  mu[i,17]<-lam[12]*xi[i,5]+alp[17] 
     # Relationship Satisfaction 
  mu[i,18]<-xi[i,6]+alp[18] 
  mu[i,19]<-lam[13]*xi[i,6]+alp[19] 
  mu[i,20]<-lam[14]*xi[i,6]+alp[20] 
  # Propensity to Leave 
  mu[i,21]<-eta[i,1]+alp[21] 
  mu[i,22]<-lam[15]*eta[i,1]+alp[22] 
  mu[i,23]<-lam[16]*eta[i,1]+alp[23] 
  # Relationship Commitment 
  mu[i,24]<-eta[i,2]+alp[24] 
  mu[i,25]<-lam[17]*eta[i,2]+alp[25] 
  mu[i,26]<-lam[18]*eta[i,2]+alp[26] 
  mu[i,27]<-lam[19]*eta[i,2]+alp[27] 
   
  #structural equation model 
  xi[i,1:4]~dmnorm(u[1:4],phi[1:4,1:4]) 
  xi[i,5]~dnorm(nu1[i],psd) 
  nu1[i]<-gama1*xi[i,1]+gama2*xi[i,2]+gama3*xi[i,3]+gama4*xi[i,4] 
  xi[i,6]~dnorm(nu2[i],psd) 
  nu2[i]<-alpha1*xi[i,1]+alpha2*xi[i,2]+alpha3*xi[i,3]+alpha4*xi[i,4] 
  eta[i,1]~dnorm(nu3[i],psd) 
  nu3[i]<-eta1*xi[i,5]+eta2*xi[i,6] 
  eta[i,2]~dnorm(nu4[i],psd) 
  nu4[i]<-theta1*xi[i,5]+theta2*xi[i,6] 
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} #end of i 
  
 #priors on intercepts 
  #priors on intercepts 
 for(j in 1:27){alp[j]~dnorm(0.03, 1)} 
  
 
 #priors on loadings and coefficients 
 lam[1]~dnorm(0.9,psi[2]) 
 . 

gama1~dnorm(0.9, psd) 
 gama2~dnorm(0.9, psd) 
 gama3~dnorm(0.9, psd) 
 gama4~dnorm(0.9, psd) 
 alpha1~dnorm(0.9, psd) 
 alpha2~dnorm(0.9, psd) 
 alpha3~dnorm(0.9, psd) 
 alpha4~dnorm(0.9, psd) 
 eta1~dnorm(0.9, psd) 
 eta2~dnorm(0.9, psd) 
 theta1~dnorm(0.9, psd) 
 theta2~dnorm(0.9, psd) 
 
 #priors on precisions 
 for(j in 1:P){ 
  psi[j]~dgamma(10, 10) 
  sgm[j]<-1/psi[j] 
 } 
 psd~dgamma(10, 1) 
 sgd<-1/psd 
 phi[1:4,1:4]~dwish(R[1:4,1:4],4) 
 phx[1:4,1:4]<-inverse(phi[1:4,1:4]) 
  
} #end of model 
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APPENDIX 3: Markov Chain Monte Carlo 

We use a Girolami and Calderhead (2011, GC) algorithm to update draws for a parameter θ . 

The algorithm uses local information about both the gradient and the Hessian of the log-

posterior conditional of θ  at the existing draw. A Metropolis test is again used for accepting the 

candidate so generated but the GC algorithm moves considerably faster relative to our naive 

scheme previously described. The GC algorithm is started at the first-stage GMM estimator and 

MCMC is run until convergence. It has been found that the GC algorithm performs vastly 

superior relative to the standard Metropolis-Hastings algorithm and autocorrelations are much 

smaller.  

Suppose ( ) ( )log DL pθ θ= |  is used to denote for simplicity the log posterior of θ . Moreover, 

define:  

 ( ) ( )est cov log Dpθθ θ∂
∂= . |G , (A3.1) 

the empirical counterpart of:  

 ( ) ( )2

log Do YE pθ θ θθ θ∂
′| ∂ ∂= − |G  (A3.2) 

The Langevin diffusion is given by the following stochastic differential equation:  

 ( ) ( ){ } ( )1
2d t L t dt d tθθ θ= +∇ Bɶ , (A3.3) 

where  

 ( ){ } ( ){ } ( ){ }1L t t L tθθ θ θ θ−= − ⋅∇∇ Gɶ , (A3.4) 

 

is the so called “natural gradient” of the Riemann manifold generated by the log posterior. The 

elements of the Brownian motion are:  

 ( ){ } ( ) ( ){ } ( ){ } ( ){ }1 1 2 1 1 2

1

K

i ij
j

t d t t G t t dt
β

θθ θ θ θ
 − − / − /∂  

∂   =

=| | | |∑G B G G  (A3.5) 

 ( ){ } ( ) .
i

t d tθ +  
G B  

 

The discrete form of the stochastic differential equation provides a proposal as follows:  

 
2 1 2 1 1

2 1

o

j

Ko o o o o
ii ji ij

L θ θε
θ θθ θ θ ε θ θθ

 
 
 

 ∂ − − −          
          ∂  =           

= + ∇ − ∑
G

G G Gɶ  

 { }2 1 1 1
2 1

tr
o

j

K o o o o

j ij i

θε
θθ θ ε θ ξ
 
 
 

 ∂ − − −        
        ∂=           

+ +∑
G a

G G G  

 ( ) 1o o o

i i

µ θ ε ε θ ξ
 −  
  

   
= , + G , 
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where oβ  is the current draw and ε is a constant determined by trial-and-error so that 

approximately ¼ of all draws are eventually accepted. The proposal density is:  

 2 1 ,o o
Kq N

θ
θ θ θ ε θ   −  

    
    

| = , Gɶ ɶ  (A3.6) 

and convergence to the invariant distribution is ensured by using the standard form Metropolis-

Hastings probability:  

 
( ) ( )
( )

min 1 .
D

D

o

o o

p q

p q

θ θ θ

θ θ 
 
 

 | ⋅, | , 
| ⋅, |  a

ɶ ɶ

ɶ
 (A3.7) 

 


