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Abstract

Sampling from posterior distributions using Markov chain Monte Carlo (MCMC)1

methods can require an exhaustive number of iterations, particularly when the2

posterior is multi-modal as the MCMC sampler can become trapped in a local3

mode for a large number of iterations. In this paper, we introduce the pseudo-4

extended MCMC method as a simple approach for improving the mixing of the5

MCMC sampler for multi-modal posterior distributions. The pseudo-extended6

method augments the state-space of the posterior using pseudo-samples as auxiliary7

variables. On the extended space, the modes of the posterior are connected, which8

allows the MCMC sampler to easily move between well-separated posterior modes.9

We demonstrate that the pseudo-extended approach delivers improved MCMC10

sampling over the Hamiltonian Monte Carlo algorithm on multi-modal posteriors,11

including Boltzmann machines and models with sparsity-inducing priors.12

1 Introduction13

Markov chain Monte Carlo (MCMC) methods (see, e.g., Brooks et al. (2011)) are generally regarded14

as the gold standard approach for sampling from high-dimensional distributions. In particular,15

MCMC algorithms have been extensively applied within the field of Bayesian statistics to sample16

from posterior distributions when the posterior density can only be evaluated up to a constant of17

proportionality. Under mild conditions, it can be shown that asymptotically, the limiting distribution18

of the samples generated from the MCMC algorithm will converge to the posterior distribution of19

interest. While theoretically elegant, one of the main drawbacks of MCMC methods is that running20

the algorithm to stationarity can be prohibitively expensive if the posterior distribution is of a complex21

form, for example, contains multiple unknown modes. Notable examples of multi-modality include22

the posterior over model parameters in mixture models (McLachlan and Peel, 2000), deep neural23

networks (Neal, 2012), and differential equation models (Calderhead and Girolami, 2009).24

In this paper, we present the pseudo-extended Markov chain Monte Carlo method as an approach25

for augmenting the state-space of the original posterior distribution to allow the MCMC sampler26

to easily move between areas of high posterior density. The pseudo-extended method introduces27

pseudo-samples on the extended space to improve the mixing of the Markov chain. To illustrate28

how this method works, in Figure 1 we plot a mixture of two univariate Gaussian distributions (left).29

The area of low probability density between the two Gaussians will make it difficult for an MCMC30

sampler to traverse between them. Using the pseudo-extended approach (as detailed in Section 2), we31

can extend the state-space to two dimensions (right), where on the extended space, the modes are32

now connected allowing the MCMC sampler to easily mix between them.33

The pseudo-extended framework can be applied for general MCMC sampling, however, in this paper,34

we focus on using ideas from tempered MCMC (Jasra et al., 2007) to improve multi-modal posterior35

sampling. Unlike previous approaches which use MCMC to sample from multi-modal posteriors, i)36

we do not require a priori information regarding the number, or location, of modes, ii) nor do we37

need to specify a sequence of intermediary tempered distributions (Geyer, 1991).38
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Figure 1: Original target density π(x) (left) and extended target (right) with N = 2.

We show that samples generated using the pseudo-extended method admit the correct posterior of39

interest as the limiting distribution. Furthermore, once weighted using a post-hoc correction step, it is40

possible to use all pseudo-samples for approximating the posterior distribution. The pseudo-extended41

method can be applied as an extension to many popular MCMC algorithms, including the random-42

walk Metropolis (Roberts et al., 1997) and Metropolis-adjusted Langevin algorithm (Roberts and43

Tweedie, 1996). However, in this paper, we focus on applying the popular Hamiltonian Monte Carlo44

(HMC) algorithm (Neal, 2010) within the pseudo-extended framework and show that this leads to45

improved posterior exploration compared to standard HMC.46

2 The Pseudo-Extended Method47

Let π be a target probability density on Rd defined for all x ∈ X := Rd by48

π(x) :=
γ(x)

Z
=

exp{−φ(x)}
Z

, (1)

where φ : X → R is a continuously differentiable function and Z is the normalizing constant.49

Throughout, we will refer to π(x) as the target density. In the Bayesian setting, this would be the50

posterior, where for data y ∈ Y , the likelihood is denoted as p(y|x) with parameters x assigned a51

prior density π0(x). The posterior density of the parameters given the data is derived from Bayes52

theorem π(x) = p(y|x)π0(x)/p(y), where the marginal likelihood p(y) is the normalizing constant53

Z, which is typically not available analytically.54

We extend the state-space of the original target distribution eq. (1) by introducing N pseudo-samples,55

x1:N = {xi}Ni=1, where the extended-target distribution πN (x1:N ) is defined on XN . The pseudo-56

samples act as auxiliary variables, where for each xi, we introduce an instrumental distribution57

q(xi) ∝ exp{−δ(xi)} with support covering that of π(x). In a similar vein to the pseudo-marginal58

MCMC algorithm (Beaumont, 2003; Andrieu and Roberts, 2009) our extended-target, including the59

auxiliary variables, is now of the form,60

πN (x1:N ) :=
1

N

N∑
i=1

π(xi)
∏
j 6=i

q(xj) =
1

Z

{
1

N

N∑
i=1

γ(xi)

q(xi)

}
×
∏
i

q(xi), (2)

where γ(·) and Z are defined in eq. (1). In pseudo-marginal MCMC, q(·) is an instrumental distri-61

bution used for importance sampling to compute unbiased estimates of the intractable normalizing62

constant (see Section 2.2 for details). However, with the pseudo-extended method we use q(·) to63

improve the mixing of the MCMC algorithm. Additionally, unlike pseudo-marginal MCMC, we do64

not require that q(·) can be sampled from; a fact that we will exploit in Section 3.65

In the case where N = 1, our extended-target eq. (2) simplifies back to the original target π(x) =
πN (x1:N ) eq. (1). For N > 1, the resulting marginal distribution of the ith pseudo-sample is a
mixture between the target and the instrumental distribution

πN (xi) =
1

N
π(xi) +

N − 1

N
q(xi).

We then use a post-hoc weighting step to convert the samples from the extended-target to samples66

from the original target of interest π(x). In Theorem 2.1, we show that samples from the extended67

target give unbiased expectations of arbitrary functions f , under the target of interest π.68
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Theorem 2.1. Let x1:N be distributed according to the extended-target πN . Weighting each sample69

with self-normalized weights proportional to γ(xi)/q(xi), for i = 1, . . . , N gives samples from the70

target distribution, π(x), in the sense that, for an arbitrary integrable f ,71

EπN

[∑N
i=1 f(xi)γ(xi)/q(xi)∑N

i=1 γ(xi)/q(xi)

]
= Eπ[f(x)] . (3)

The proof follows from the invariance of particle Gibbs (Andrieu et al., 2010) and is given in Section72

A of the Supplementary Material.73

2.1 Pseudo-extended Hamiltonian Monte Carlo74

We use an MCMC algorithm to sample from the pseudo-extended target eq. (2). In this paper, we use75

the HMC algorithm because of its impressive mixing times, however, a disadvantage of HMC, and76

other gradient-based MCMC algorithms is that they tend to be mode-seeking and are more prone to77

getting trapped in local modes of the target. The pseudo-extended framework creates a target where78

the modes are connected on the extended space, which reduces the mode-seeking behavior of HMC79

and allows the sampler to move easily between regions of high density.80

Recalling that our parameters are x ∈ X := Rd, we introduce artificial momentum variables ρ ∈ Rd81

that are independent of x. The Hamiltonian H(x,ρ), represents the total energy of the system as the82

combination of the potential function φ(x), as defined in eq. (1), and kinetic energy 1
2ρ
>M−1ρ,83

H(x,ρ) := φ(x) +
1

2
ρ>M−1ρ,

where M is a mass matrix and is often set to the identity matrix. The Hamiltonian now aug-84

ments our target distribution so that we are sampling (x,ρ) from the joint distribution π(x,ρ) ∝85

exp{H(x,ρ)} = π(x)N (ρ|0,M), which admits the target as the marginal. In the case of the86

pseudo-extended target eq. (2), the Hamiltonian is,87

HN (x1:N ,ρ) = − log

[
N∑
i=1

exp{−φ(xi) + δ(xi)}

]
+

N∑
i=1

δ(xi) +
1

2
ρ>M−1ρ, (4)

where now ρ ∈ Rd×N , and δ(x) is the potential function of the instrumental distribution eq. (2).88

Aside from a few special cases, we generally cannot simulate from the Hamiltonian system eq. (4)89

exactly (Neal, 2010). Instead, we discretize time using small step-sizes ε and calculate the state at ε,90

2ε, 3ε, etc. using a numerical integrator. Several numerical integrators are available which preserve91

the volume and reversibility of the Hamiltonian system (Girolami and Calderhead, 2011), the most92

popular being the leapfrog integrator which takes L steps, each of size ε, though the Hamiltonian93

dynamics (pseudo-code is given in the Supplementary Material). After a fixed number of iterations94

T , the algorithm generates samples (x
(t)
1:N ,ρ

(t)), t = 1, . . . , T approximately distributed according95

to the joint distribution π(x1:N ,ρ), where after discarding the momentum variables ρ, our MCMC96

samples will be approximately distributed according to the target πN (x1:N ). In this paper, we use97

the No-U-turn sampler (NUTS) introduced by Hoffman and Gelman (2014) as implemented in the98

STAN (Carpenter et al., 2017) software package to automatically tune L and ε.99

2.2 Connections to pseudo-marginal MCMC100

The pseudo-extended target eq. (2) can be viewed as a special case of the pseudo-marginal target of
Andrieu and Roberts (2009). In the pseudo-marginal setting, it is (typically) assumed that the target
density is of the form π(θ) =

∫
X π(θ,x)dx, where θ is some “top-level” parameter, and where x are

latent variables that cannot be integrated out analytically. Using importance sampling, an unbiased
Monte Carlo estimate of the target π̃(θ) is computed using latent variable samples x1,x2, . . . ,xN
from an instrumental distribution with density q(x) and then approximating the integral as

π̃(θ) :=
1

N

N∑
i=1

π(θ,xi)

q(xi)
, where xi ∼ q(·).
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The pseudo-marginal target is then defined, analogously to the pseudo-extended target eq. (2), as101

π̃N (θ,x) :=
1

N

N∑
i=1

π(θ,xi)
∏
j 6=i

q(xj), (5)

which admits π(θ) as a marginal. In the original pseudo-marginal method, the extended-target is102

sampled from using MCMC, with an independent proposal for x (corresponding to importance103

sampling for these variables) and a standard MCMC proposal (e.g., random-walk) used for θ.104

There are two key differences between pseudo-marginal MCMC and pseudo-extended MCMC. Firstly,105

we do not distinguish between latent variables and parameters, and simply view all unknown variables,106

or parameters, of interest as being part of x. Secondly, we do not use an importance-sampling-based107

proposal to sample x, but instead, we propose to simulate directly from the pseudo-extended target108

eq. (2) using HMC as explained in Section 2.1. An important consequence of this is that we can use109

instrumental distributions q(·) without needing to sample from them. In Section 3 we exploit this fact110

to construct the instrumental distribution by tempering.111

In summary, the pseudo-marginal framework is a powerful technique for sampling from models with112

intractable likelihoods. The pseudo-extended method, on the other hand, is designed for sampling113

from complex target distributions, where the landscape of the target is difficult for standard MCMC114

samplers to traverse without an exhaustive number of MCMC iterations. In particular, where the115

target distribution is multi-modal, we show that extending the state-space allows our MCMC sampler116

to more easily explore the modes of the target.117

3 Tempering targets with instrumental distributions118

In the case of importance sampling, we would choose an instrumental distribution q(·) which closely119

approximates the target π(·). However, this would assume that we could find a tractable instrumental120

distribution for q(·) which i) sufficiently covers the support of the target and ii) captures its multi-121

modality. Approximations, such as the Laplace approximation (Rue et al., 2009) and variational122

methods (e.g., Bishop (2006), Chapter 10) could be used to choose q(·), however, such approximations123

tend to be unimodal and not appropriate for approximating a multi-modal target.124

A significant advantage of the pseudo-extended framework eq. (2) is that it permits a wide range of125

potential instrumental distributions. Unlike standard importance sampling, we also do not require126

q(·) to be a distribution that we can sample from, only that it can be evaluated point-wise up to127

proportionality. This is a simpler condition to satisfy and allows us to find better instrumental128

distributions for connecting the modes of the target. In this paper, we utilize a simple approach for129

choosing the instrumental distribution which does not require a closed-form approximation of the130

target. Specifically, we create an instrumental distribution by tempering the target.131

Tempering has previously been utilized in the MCMC literature to improve the sampling of multi-132

modal targets. Here we use a technique inspired by Graham and Storkey (2017) (see Section 3),133

where we consider the family of approximating distributions,134

Π :=

{
πβ(x) =

γβ(x)

Z(β)
: β ∈ (0, 1]

}
, (6)

where γβ(x) = exp{−βφ(x)} can be evaluated point-wise and Z(β) is typically intractable.135

We will construct an extended target distribution πN (x1:N , β1:N ) on XN × (0, 1]N with N pairs136

(xi, βi), for i = 1, . . . , N . This target distribution will be constructed in such a way that the marginal137

distribution of each xi is a mixture, with components selected from Π. This will typically make the138

marginal distribution more diffuse than the target π itself, encouraging better mixing.139

If we let q(x, β) = πβ(x)q(β) and choose q(β) = Z(β)g(β)
C , where g(β) can be evaluated point-wise140

and C is a normalizing constant, then we can cancel the intractable normalizing constants Z(β),141

q(x, β) =
γβ(x)g(β)

C
. (7)

The joint instrumental q(x, β) does not admit a closed-form expression and in general we cannot142

sample from it. However, we do not need to sample from it, as we instead use an MCMC algorithm143
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on the extended-target which only requires that q(x, β) can be evaluated point-wise, up to a constant144

of proportionality. Under the instrumental proposal eq. (7), the pseudo-extended target eq. (2) is now145

πN (x1:N , β1:N ) :=
1

N

N∑
i=1

π(xi)π(βi)
∏
j 6=i

q(xj , βj) (8)

=
1

ZCN−1

{
1

N

N∑
i=1

γ(xi)π(βi)

γβi
(xi)g(βi)

}
N∏
j=1

γβj
(xj)g(βj),

where π(β) is some arbitrary user-chosen target distribution for β. Through our choice of q(x, β),146

the normalizing constants for the target and instrumental distributions, Z and C respectively are not147

dependent on x or β and so cancel in the Metropolis-Hastings ratio.148

Related work on tempered MCMC149

Tempered MCMC is the most popular approach to sampling from multi-modal target distributions
(see Jasra et al. (2007) for a full review). The main idea behind tempered MCMC is to sample from a
sequence of tempered targets,

πk(x) ∝ exp {−βkφ(x)} , k = 1, . . . ,K,

where βk is a tuning parameter referred to as the temperature that is associated with πk(x). A150

sequence of temperatures, commonly known as the ladder, is chosen a priori, where 0 = β1 < β2 <151

. . . < βK = 1. The intuition behind tempered MCMC is that when βk is small, the modes of the152

target are flattened out making it easier for the MCMC sampler to traverse through the regions of low153

density separating the modes. One of the most popular tempering algorithms is parallel tempering154

(PT) (Geyer, 1991), where in parallel, K separate MCMC algorithms are run with each sampling155

from one of the tempered targets πk(x). Samples from neighboring Markov chains are exchanged156

(i.e. sample from chain k exchanged with chain k − 1 or k + 1) using a Metropolis-Hastings step.157

These exchanges improve the convergence of the Markov chain to the target of interest π(x), however,158

information from low βk targets is often slow to traverse up the temperature ladder. There is also159

a serial version of this algorithm, known as simulated tempering (ST) (Marinari and Parisi, 1992).160

An alternative approach is annealed importance sampling (AIS) (Neal, 2001), which draws samples161

from a simple base distribution and then, via a sequence of intermediate transition densities, moves162

the samples along the temperature ladder giving a weighted sample from the target distribution.163

Generally speaking, these tempered approaches can be very difficult to apply in practice often164

requiring extensive tuning. In the case of PT, the user needs to choose the number of parallel chains165

K, temperature schedule, step-size for each chain and the number of exchanges at each iteration.166

Our proposed tempering scheme is closely related to the continuously-tempered HMC algorithm167

of Graham and Storkey (2017). They propose to run HMC on a distribution similar to eq. (7) and168

then apply an importance weighting as a post-correction to account for the different temperatures.169

It thus has some resemblance with ST, in the sense that a single chain is used to explore the state170

space for different temperature levels. On the contrary, for our proposed pseudo-extended method,171

the distribution eq. (7) is not used as a target, but merely as an instrumental distribution to construct172

the pseudo-extended target eq. (8). The resulting method, therefore, has some resemblance with PT,173

since we propagate N pseudo-samples in parallel, all possibly exploring different temperature levels.174

Furthermore, by mixing in part of the actual target π we ensure that the samples do not simultaneously175

“drift away” from regions with high probability under π.176

Graham and Storkey (2017) propose to use a variational approximation to the target, both when177

defining the family of distributions eq. (6) and for choosing the function g(β). This is also possible178

with the pseudo-extended method, but we do not consider this possibility here for brevity. Finally, we179

note that in the pseudo-extended method the temperature parameter β can be estimated as part of the180

MCMC scheme, rather than pre-tuning it as a sequence of fixed temperatures. This is advantageous181

because using a coarse grid of temperatures can cause the sampler to miss modes of the target,182

whereas a fine grid of temperatures leads to a significantly increased computational cost of running183

the sampler.184
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4 Experiments185

We compare the pseudo-extended method on three test models. The first two (Sections 4.1 and 4.2)186

are chosen to show how the pseudo-extended method performs on simulated data when the target is187

multi-modal. The third example (Section 4.3) is a sparsity-inducing logistic regression model, where188

multi-modality occurs in the posterior from three real-world datasets. We compare against popular189

competing algorithms from the literature, including methods discussed in Section 3.190

All simulations for the pseudo-extended method use the tempered instrumental distribution and thus191

the pseudo-extended target is given by eq. (8). For each simulation study, we set π(β) ∝ 1, g(β) ∝ 1192

and use a logit transformation for β to map the parameters onto the unconstrained space. Additionally,193

we consider the special case of pseudo-extended HMC where β is fixed along a temperature ladder194

(akin to parallel tempering). The pseudo-extended HMC method is implemented within STAN 1195

4.1 Mixture of Gaussians196

Background: We consider a popular example from the literature (Kou et al., 2006; Tak et al., 2016),
where the target is a mixture of 20 bivariate Gaussians,

π(x) =

20∑
j=1

wj
2πσ2

j

exp

{
−1

2σ2
j

(x− µj)
>(x− µj)

}
,

and where {µ1,µ2, . . . ,µ20} are specified in Kou et al. (2006). We compare the pseudo-extended197

sampler against parallel tempering (PT) (Geyer, 1991), repelling-attracting Metropolis (RAM) (Tak198

et al., 2016) and the equi-energy (EE) MCMC sampler (Kou et al., 2006), all of which are designed199

for sampling from multi-modal distributions.200

Setup: We consider two simulation settings. In Scenario (a) each mixture component has weight201

wj = 1/20 and variance σ2
j = 1/100 resulting in well-separated modes with most modes more than202

15 standard deviations apart. In Scenario (b) the weights wj = 1/||µj − (5, 5)>|| and variances203

σ2
j = ||µj − (5, 5)>||/20 are unequal where the modes far from (5,5) have a lower weight with larger204

variance, creating regions of higher density between distant modes (see Figure 6 in the Supplementary205

Material).206

Results: Table 1 gives the root mean squared error (RMSE) of the Monte Carlo estimates, over207

20 independent simulations, for the first and second moments. Each sampler was run for 50,000208

iterations (after burn-in) and the specific tuning details for the temperature ladder of PT and the209

energy rings for EE are given in Kou et al. (2006). All the samplers perform worse under Scenario210

(a) where the modes are well-separated, the HMC sampler is only able to explore the modes locally211

clustered together, whereas the pseudo-extended HMC sampler is able to explore all of the modes212

with the same number of iterations (see Section C of the Supplementary Material for posterior213

plots). Under Scenario (b), there is a higher density region separating the modes making it easier214

for the HMC sampler to move between the mixture components. While not reported here, the HMC215

samplers produce Markov chains with significantly reduced auto-correlation compared to the EE and216

RAM samplers, which both rely on random-walk updates. We note from Table 1 that increasing the217

number of pseudo-samples leads to improved estimates, but at an increased computational cost. In218

the Supplementary Material we show that when taking account for computational cost, the optimal219

number of pseudo-samples is 2 ≤ N ≤ 5. Additionally, we can fix rather than estimate β and Table220

2 in the Supplementary Material shows that this can lead to a small improvement in RMSE if β221

is correctly tuned, but can also (and often does) lead to poorer RMSE if β is not well tuned. The222

conclusion therefore is that it is better to jointly estimate πN (x1:N , β1:N ) in the absence of a priori223

knowledge of an optimal β.224

1All simulation code is available to the reviewers in the Supplementary Material and will be published on
Github after the review process.
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Table 1: Root mean-squared error of moment estimates for two mixture scenarios. Results are
calculated over 20 independent simulations and reported to two decimal places.

Scenario (a) Scenario (b)
E[X1] E[X2] E

[
X2

1

]
E
[
X2

2

]
E[X1] E[X2] E

[
X2

1

]
E
[
X2

2

]
RAM 0.09 0.10 0.90 1.30 0.04 0.04 0.26 0.34

EE 0.11 0.14 1.14 1.48 0.07 0.09 0.75 0.84
PT 0.18 0.28 1.82 2.89 0.12 0.13 1.15 1.22

HMC 2.69 3.96 24.69 33.65 0.27 0.51 3.12 4.80
PE (N=2) 0.11 0.10 1.11 1.01 0.05 0.08 0.46 0.86
PE (N=5) 0.04 0.05 0.37 0.45 0.04 0.02 0.18 0.36

PE (N=10) 0.03 0.03 0.28 0.23 0.02 0.02 0.10 0.32
PE (N=20) 0.02 0.02 0.15 0.21 0.03 0.01 0.15 0.23

4.2 Boltzmann machine relaxations225

Background: Sampling from a Boltzmann machine distribution (Jordan et al., 1999) is a challenging226

inference problem from the statistical physics literature. The probability mass function,227

P (s) =
1

Zb
exp

{
1

2
s>Ws + s>b

}
, with Zb =

∑
s∈S

exp

{
1

2
s>Ws + s>b

}
, (9)

is defined on the binary space s ∈ {−1, 1}db := S , where W is a db × db real symmetric matrix and228

b ∈ Rdb are the model parameters. Sampling from this distribution typically requires Gibbs steps229

(Geman and Geman, 1984) which tend to mix very poorly as the states can be strongly correlated230

when the Boltzmann machine has high levels of connectivity (Salakhutdinov, 2010). HMC methods231

have been shown to perform significantly better than Gibbs sampling when the states of the target232

distribution are highly correlated (Girolami and Calderhead, 2011). Unfortunately, HMC is generally233

restricted to sampling on continuous spaces. Using the Gaussian integral trick (Hertz et al., 1991),234

we introduce auxiliary variables x ∈ Rd and transform the problem to sampling from π(x) rather235

than eq. (9) (see Section D in the Supplementary Material for full details).236

Setup: We let b ∼ N (0, 0.12) and set W = Rdiag(e)R>, with diagonal elements set to zero, and237

simulate a db × db random orthogonal matrix for R (Stewart, 1980). e is a vector of eigenvalues,238

with ei = λ1 tanh(λ2ηi) and ηi ∼ N (0, 1), for i = 1, 2, . . . , db. We set db = 28 (d = 27) and let239

(λ1, λ2) = (6, 2), as these settings have been shown to produce highly multi-modal distributions. We240

compare the HMC and pseudo-extended (PE) HMC algorithms against annealed importance sampling241

(AIS), simulated tempering (ST), and the continuously-tempered HMC algorithm of Graham and242

Storkey (2017) (GS). Full set-up details are given in the Supplementary Material.243

GS ST AIS HMC PE 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 1

100

[X]

GS ST AIS HMC PE 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

[XXT]

RM
SE

 (l
og

 sc
al

e)

Figure 2: Root mean squared error (log scale) of the first and second moment of the target taken
over 10 independent simulations and calculated for each of the proposed methods. Results labeled
[0.1-0.9] correspond to pseudo-extended MCMC with fixed β = [0.1− 0.9].

Results: We can analytically derive the first two moments of the Boltzmann distribution (see Section244

D of the Supplementary Material for details), and in Figure 2 we give the RMSE of the moment245

approximations taken over 10 independent runs. These results support the conclusion that better246

exploration of the target space leads to improved estimation of integrals of interest. Additionally, we247

note that fixing β can produce lower RMSE for PE as we reduce the number of parameters that need248

to be estimated. However, fixing β poorly (e.g. β = 0.1 in this case) can lead to an increase in RMSE,249
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Figure 3: Log-predictive densities on held-out test data (random 20% of full data) for two cancer
datasets comparing the HMC and pseudo-extended HMC samplers, with N = 2 and N = 5. For the
case of fixed β = [0.25, 0.5, 0.75], the number of pseudo-samples N = 2.

whereas estimating β as part of the inference procedure gives a balanced RMSE result. Further250

simulations are given in the Supplementary Material which includes plots of posterior samples and251

the effect of varying the number of pseudo-samples. When taking into account the computational252

cost, the RMSE is minimized when 2 ≤ N ≤ 5, which corroborates with the conclusion from the253

mixture of Gaussians example (Section 4.1).254

4.3 Sparse logistic regression with horseshoe priors255

Background: We apply the pseudo-extended approach to the problem of sparse Bayesian inference.256

This is a common problem in statistics and machine learning, where the number of parameters to be257

estimated is much larger than the data used to fit the model. Taking a Bayesian approach, we can use258

shrinkage priors to shrink model parameters to zero and prevent the model from over-fitting to the259

data. There are a range of shrinkage priors presented in the literature (Griffin and Brown, 2013) and260

here we use the horseshoe prior (Carvalho et al., 2010), in particular, the regularized horseshoe as261

proposed by Piironen and Vehtari (2017). From a sampling perspective, sparse Bayesian inference262

can be challenging as the posterior distributions are naturally multi-modal, where there is a spike at263

zero (indicating that variable is inactive) and some posterior mass centered away from zero.264

Setup and results: Following Piironen and Vehtari (2017), we apply the regularized horseshoe prior265

on a logistic regression model (see Section E of the Supplementary Material for full details). We266

apply this model to three real-world data sets using micro-array data for cancer classification (prostate267

data results are given in Section E of the Supplementary Material, see Piironen and Vehtari (2017)268

for further details regarding the data). We compare the pseudo-extended HMC algorithm against269

standard HMC and give the log-predictive density on a held-out test dataset in Figure 3. In order270

to ensure a fair comparison between HMC and pseudo-extended HMC, we run HMC for 10,000271

iterations and reduce the number of iterations of the pseudo-extended algorithms (with N = 2 and272

N = 5) to give equal total computational cost. The results show that there is an improvement in273

using the pseudo-extended method, but with a strong performance from standard HMC, which is274

not surprising in this setting as the posterior density plots (given in the Supplementary Material)275

show that the posterior modes are close together. As seen in Scenario (b) of Section 4.1, the HMC276

sampler can usually locate and traverse between modes that are close together. The RMSE for the277

pseudo-extended method can be improved using a fixed β, but as noted in the previous examples, β278

is not known a priori and fixing it incorrectly can lead to poorer results.279

5 Conclusion280

We have introduced the pseudo-extended method as a simple approach for augmenting the target281

distribution for MCMC sampling. We have shown that the pseudo-extended method can be applied282

within any general MCMC framework to sample from multi-modal distributions, a challenging283

scenario for standard MCMC algorithms, and does not require prior knowledge of where, or how284

many, modes there are in the target. We have shown that a natural instrumental distribution for285

q(·) is a tempered version of the target, which has the added benefit of automating the choice of286

instrumental distribution. Alternative instrumental distributions, and methods for estimating the287

temperature parameter β, are worthy of further investigation.288
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Supplementary Material: Pseudo-Extended Markov Chain Monte357

Carlo358

A Proof of Theorem 2.1359

We start by assuming that x1:N are distributed according to the extended-target πN (x1:N ). Assuming360

there exists a measurable function, f , we define the expectation of the function over the extended-361

target as EπN

[∑N
i=1 f(xi)γ(xi)/q(xi)∑N

i=1 γ(xi)/q(xi)

]
, where γ(x) is the unnormalized target density eq. (1) and q(x)362

is the instrumental distribution (discussed in Section 2). Using the density for the pseudo-extended363

target eq. (2), it follows that364

EπN

[∑N
i=1 f(xi)γ(xi)/q(xi)∑N

i=1 γ(xi)/q(xi)

]
=

∫ ∑N
i=1 f(xi)γ(xi)/q(xi)∑N

i=1 γ(xi)/q(xi)
πN (x1:N )dx1:N

=

∫ ∑N
i=1 f(xi)γ(xi)/q(xi)∑N

i=1 γ(xi)/q(xi)

1

Z

{
1

N

N∑
i=1

γ(xi)

q(xi)

}∏
i

q(xi)dx1:N

=
1

ZN

∫ { N∑
i=1

f(xi)
γ(xi)

q(xi)

}
×
∏
i

q(xi)dx1:N

=
1

N

∫ N∑
i=1

f(xi)π(xi)
∏
j 6=i

q(xj)dx1:N

=
1

N

N∑
i=1

∫
f(xi)π(xi)dxi

∏
j 6=i

q(xj) = Eπ[f(x)]

B Pseudo-extended Hamiltonian Monte Carlo algorithm365

Algorithm 1 Pseudo-extended HMC

Input: Initial parameters x(0)
1:N , step-size ε and trajectory length L.

for t = 1 to T do
Set yt−1 ← xt−11:N {for notational convenience}
Sample momentum ρ ∼ N (0,M)
Set y1 ← yt−1 and ρ1 ← ρ
for l = 1 to L do

ρl+ 1
2
← ρl + ε

2∇ log πN (yl)

yl+1 ← yl + εM−1ρl+ 1
2

ρl+1 ← ρl+ 1
2

+ ε
2∇ log πN (yl+1)

end for
With probability,

min
{

1, exp[HN (yt−1,ρt−1)−HN (yL+1,ρL+1)]
}

set xt1:N ← yL+1

end for
Output: Samples {xt1:N}Tt=1 from πN (x1:N ) and Eπ[f(x)] is calculated using eq. (3).

B.1 One-dimensional illustration366

Consider a bi-modal target of the form (see Figure 1 (left)),367

π(x) ∝ N (−1, 0.1) +N (1, 0.02).
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If there are N = 2 pseudo-samples, the pseudo-extended target eq. (2) simplifies to368

π(x1:2) ∝ γ(x1)q(x2) + γ(x2)q(x1),

and for the sake of illustration, we choose q(x) = N (0, 2).369

Density plots for the original and pseudo-extended target are given in Figure 1. On the original370

target, the modes are separated by a region of low density and an MCMC sampler will therefore only371

pass between the modes with low probability, thus potentially requiring an exhaustive number of372

iterations. On the pseudo-extended target, the modes of the original target π(x) are now connected373

on the extended space π(x1,2). The instrumental distribution q has the effect of increasing the density374

in the low probability regions of the target which separate the modes. A higher density between the375

modes means that the MCMC sampler can now traverse between the modes with higher probability376

than under the original target.377

2 0 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Standard HMC

2 0 2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pseudo­extended HMC

Figure 4: 10,000 samples from the target (left) and extended target (right) using HMC sampler

In Figure B.1, density plots of the original target are overlayed with samples drawn from the original378

and pseudo-extended targets using the HMC algorithm, respectively. After 10,000 iterations of the379

HMC sampler on the original target only one mode is discovered. Applying the same HMC algorithm380

on the pseudo-extended target, and then weighting the samples (as discussed in Section 2), both381

modes of the original target are discovered and the samples produce a good empirical approximation382

to the target.383

C Mixture of Gaussians384

The pseudo-extended sampler with tempered instrumental distributions (Section 3) performs well385

in both scenarios, where the modes are close or far apart. For the smallest number of pseudo-386

samples (N = 2), the pseudo-extended HMC sampler performs equally as well as the competing387

methods. Increasing the number of pseudo-samples leads to a decrease in the standard deviation388

of the moment estimates. However, increasing the number of pseudo-samples also increases the389

overall computational cost of the pseudo-extended sampler. Figure 5 measures the cost of the pseudo-390

extended sampler as the average mean squared error (over 20 runs) multiplied by the computational391

time. From the figure we see that by minimizing the error relative to computational cost, the392

optimal number of pseudo-samples, under both scenarios, is between 2 and 5. We also note that393

Figure 5 suggests that the number of pseudo-samples may be problem specific. In Scenario (a),394

where the modes are well-separated, increasing the number of pseudo-samples beyond 5 does not395

significantly increase the cost of the sampler, whereas under Scenario (b), using more than 5 pseudo-396

samples (where the mixture components are easier to explore) introduces a significant increase in the397

computational cost without a proportional reduction in the error.398

We ran the HMC and pseudo-extended HMC (N = 2) samplers under the same conditions as in Kou399

et al. (2006) and Tak et al. (2016), for 10,000 iterations. Figure 6 shows the samples drawn using400

standard HMC and pseudo-extended HMC. In Sscenario (a), where the modes are well-separated,401

the HMC sampler is only able to explore the modes locally clustered together, whereas the pseudo-402

extended HMC sampler is able to explore all of the modes, for the same number of iterations. Under403

Scenario (b), the weights and variances of the mixture components are larger than under Scenario404

(a), as a result, there is a higher density region separating the modes making it easier for the HMC405

sampler to move between the mixture components. Compared to the pseudo-extended HMC sampler,406

the HMC sampler is still not able to explore all of the modes of the target.407
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Figure 5: Average mean squared error (MSE) (given on the log scale) of the first and second moments
taken over 20 independent simulations for varying number of pseudo-samples N , where MSE is
scaled by computational time (CT) and plotted as MSE× CT.
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Figure 6: 10,000 samples drawn from the the target under scenario (a) (left) and scenario (b) (right)
using the HMC and pseudo-extended HMC samplers.

The results of Table 1 show that all of the samplers, with the exception of HMC, provide accurate408

estimates of the first two moments of the target. Under Scenario (a), the HMC sampler produces409

significantly biased estimates as a result of not exploring all of the modes of the target (see Figure 6),410

whereas under Scenario (b), while still performing worse than the other samplers, the HMC estimates411

are significantly less biased as the sampler is able to explore the majority of modes of the target. The412

RAM and EE samplers perform equally well with PT showing the highest standard deviation of the413

moment estimates under both scenarios. Under some of the simulations, PT did not explore all of the414

modes, and as discussed in Kou et al. (2006), parallel tempering has to be carefully tuned to avoid415

becoming trapped in local modes.416

A special case of the pseudo-extended framework is to fix rather than estimate β. This has417

the advantage that there are now fewer parameters to estimate, resulting in less Monte Carlo418

variation. Table 2 provides extended RMSE results, similar to those from Table 1, where419

β ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. These results show that there is the potential for420

an improved pseudo-extended sampler (in terms of RMSE), if β is well-tuned a priori. However,421

without prior knowledge about the target distribution, it is unlikely that β can be appropriately tuned422

and would therefore require several independent MCMC chains, akin to PT, or an adaptive method to423

tune β during the MCMC sampling.424
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Table 2: Root mean-squared error of moment estimates for two mixture scenarios. The first row
corresponds to the results for pseudo-extended MCMC when β is estimated and the remaining cases
are for fixed β = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. Results are calculated over 20 independent
simulations and reported to two decimal places with bold font indicating the lowest RMSE in each
column.

Scenario (a) Scenario (b)
E[X1] E[X2] E

[
X2

1

]
E
[
X2

2

]
E[X1] E[X2] E

[
X2

1

]
E
[
X2

2

]
β N=2 0.11 0.10 1.11 1.01 0.05 0.08 0.46 0.86

N=5 0.04 0.05 0.37 0.45 0.04 0.02 0.18 0.36
N=10 0.03 0.03 0.28 0.23 0.02 0.02 0.10 0.32
N=20 0.02 0.02 0.15 0.21 0.03 0.01 0.15 0.23

β = 0.1 N=2 0.91 1.31 9.96 12.43 0.03 0.04 0.34 0.40
N=5 0.65 0.70 7.30 7.19 0.01 0.03 0.19 0.36

N=10 0.70 0.61 7.87 6.35 0.01 0.01 0.18 0.21
N=20 0.69 0.49 7.84 5.68 0.01 0.01 0.19 0.15

β = 0.2 N=2 2.46 3.79 20.28 30.67 0.03 0.04 0.32 0.55
N=5 2.71 4.08 22.20 32.33 0.01 0.03 0.25 0.29

N=10 2.67 4.01 21.91 31.97 0.01 0.01 0.22 0.18
N=20 2.73 4.05 22.26 32.21 0.01 0.01 0.17 0.22

β = 0.3 N=2 2.55 4.22 21.34 32.25 0.05 0.08 0.51 0.81
N=5 2.52 3.96 20.97 31.22 0.02 0.02 0.28 0.25

N=10 2.64 4.09 21.74 32.37 0.01 0.03 0.13 0.32
N=20 2.72 4.16 22.34 32.57 0.01 0.02 0.17 0.20

β = 0.4 N=2 2.59 3.71 21.03 30.99 0.05 0.11 0.55 1.16
N=5 2.41 3.54 19.88 29.93 0.02 0.05 0.31 0.49

N=10 2.52 3.76 20.72 31.17 0.02 0.04 0.25 0.36
N=20 2.73 4.13 22.37 32.51 0.02 0.02 0.18 0.22

β = 0.5 N=2 2.54 3.90 20.96 31.57 0.07 0.13 0.75 1.48
N=5 2.38 3.93 20.03 31.41 0.03 0.07 0.39 0.76

N=10 2.27 3.83 19.41 30.97 0.03 0.05 0.34 0.56
N=20 2.36 3.85 20.12 31.34 0.02 0.03 0.19 0.35

β = 0.6 N=2 2.76 4.06 23.05 31.90 0.10 0.19 1.09 1.92
N=5 2.45 4.01 20.46 31.87 0.06 0.10 0.70 1.00

N=10 2.35 3.77 19.63 31.00 0.05 0.07 0.63 0.73
N=20 2.12 3.60 18.04 30.73 0.03 0.05 0.34 0.54

β = 0.7 N=2 2.50 4.12 20.85 31.98 0.15 0.25 1.75 2.76
N=5 2.68 4.00 21.88 32.08 0.08 0.14 0.86 1.47

N=10 2.65 4.13 21.91 32.44 0.06 0.11 0.67 1.11
N=20 2.67 4.01 21.97 32.10 0.04 0.07 0.52 0.81

β = 0.8 N=2 2.59 4.02 21.17 32.16 0.30 0.52 3.52 5.88
N=5 2.71 3.97 21.94 31.75 0.10 0.16 1.25 1.91

N=10 2.74 4.11 22.39 32.46 0.10 0.13 1.34 1.66
N=20 2.73 4.13 22.37 32.51 0.04 0.07 0.38 0.67

β = 0.9 N=2 2.66 4.01 21.51 31.94 0.32 0.44 3.85 5.12
N=5 2.77 4.07 22.48 32.30 0.15 0.27 1.73 2.96

N=10 2.73 4.13 22.38 32.49 0.14 0.19 1.67 2.28
N=20 2.74 4.09 22.42 32.41 0.07 0.13 0.87 1.49

HMC 2.69 3.96 24.69 33.65 0.27 0.51 3.12 4.80

D Boltzmann machine relaxation derivations425

The Boltzmann machine distribution is defined on the binary space s ∈ {−1, 1}db := S with mass426

function427

P (s) =
1

Zb
exp

{
1

2
s>Ws + s>b

}
, Zb =

∑
s∈S

exp

{
1

2
s>Ws + s>b

}
, (10)

where b ∈ Rdb and W is a db × db real symmetric matrix are the model parameters.428
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Following the approach of Graham and Storkey (2017) and Zhang et al. (2012), we convert the429

problem of sampling on the 2db discrete space to a continuous problem using the Gaussian integral430

trick (Hertz et al., 1991). We introduce the auxiliary variable x ∈ Rd which follows a conditional431

Gaussian distribution,432

π(x|s) =
1

(2π)d/2
exp

{
−1

2
(x−Q>s)>(x−Q>s)

}
, (11)

where Q is a db × d matrix such that QQ> = W + D and D is a diagonal matrix chosen to ensure433

that W + D is a positive semi-definite matrix.434

Combining eq. (10) and eq. (11) the joint distribution is,435

π(x, s) =
1

(2π)d/2Zb
exp

{
−1

2
x>x + s>Qx− 1

2
s>QQ>s +

1

2
s>Ws + s>b

}

=
1

(2π)d/2Zb
exp

{
−1

2
x>x + s>(Qx + b)− 1

2
s>Ds

}

=
1

(2π)d/2Zb exp
{

1
2Tr(D)

} exp

{
−1

2
x>x

} db∏
k=1

exp
{
sk(q>k x + bk)

}
,

where {q>k }
db
k=1 are the rows of Q. The key feature of this trick is that the 1

2s
>Ws term cancel.436

On the joint space the binary variables s variables are now decoupled and can be summed over437

independently to give the marginal density,438

π(x) =
2db

(2π)d/2Zb exp
{

1
2Tr(D)

} exp

{
−1

2
x>x

} db∏
i=k

cosh(q>k x + bk),

which is referred to as the Boltzmann machine relaxation density, which is a Gaussian mixture with439

2db components.440

We can rearrange the terms in the Boltzmann machine relaxation density to match our generic target
π(x) = Z−1 exp{−φ(x)}, eq. (1), where

φ(x) =
1

2
x>x−

db∑
k=1

log cosh(q>k x + bk),

and the normalizing constant is directly related to the Boltzmann machine distribution

logZ = logZb +
1

2
Tr(D) +

d

2
log(2π)− db log 2.

Converting a discrete problem onto the continuous space does not automatically guarantee that441

sampling from the continuous space will be any easier than on the discrete space. In fact, if the442

elements of D are large, then on the relaxed space, the modes of the 2db mixture components will443

be far apart making it difficult for an MCMC sampler to explore the target. Following Zhang et al.444

(2012), for the experiments in this paper we select D by minimizing the maximum eigenvalue of445

W + D which has the effect of decreasing the separation of the mixture components on the relaxed446

space.447

Finally, the first two moments of the relaxed distribution can be directly related to their equivalent448

moments for the Boltzmann machine distribution by449

E[X] =

∫
X
x
∑
s∈S

π(s|x)P (s)dx =
∑
s∈S

[∫
X
xN (x|Q>s, I)dxP (s)

]
= E

[
Q>S

]
= Q>E[S] ,

E
[
XX>

]
=
∑
s∈S

[∫
X
xx>N (x|Q>s, I)dxP (s)

]
= E

[
Q>SS>Q + I

]
= Q>E

[
SS>

]
+ I.
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Figure 7: Two-dimensional projection of 10, 000 samples drawn from the target using each of the
proposed methods, where the first plot gives the ground-truth sampled directly from the Boltzmann
machine relaxation distribution. A temperature ladder of length 1,000 was used for both simulated
tempering and annealed importance sampling.

For the MCMC simulation comparison given in Section 4.2, we compare our pseudo-extended450

(PE) method against HMC, annealed importance sampling (AIS), simulated tempering (ST) and451

the Graham and Storkey (2017) (GS) algorithm. For the setting where dB = 28 we can draw452

independent samples from the Boltzmann distribution eq. (9), if dB where any large, then this would453

not be possible. We run each of the competing algorithms for 10,000 iterations and for PE, we454

test N = {2, 5, 10, 15, 20} (see Figure 8) but in Figure 7 we only plot the results for N = 5. For455

ST and AIS, both of which require a temperature ladder βt, we used a ladder of length 1,000 with456

equally-spaced uniform [0, 1] intervals.457

In the simulations, all of the algorithms were hand tuned to achieve optimal performance with a458

temperature ladder of length 1,000 used for both simulated tempering and annealed importance459

sampling. The final 10,000 iterations for each algorithm were used to calculate the root mean squared460

errors of the estimates of the first two moments, taken over 10 independent runs, and are given in461

Figure 2. The multi-modality of the target makes it difficult for the standard HMC algorithm to462

adequately explore the target, and as shown in Figure 7, the HMC algorithm is not able to traverse463

the modes of the target. The remaining algorithms perform reasonably well in approximating the first464

two moments of the distribution with some evidence supporting the improved performance of the465

pseudo-extended algorithm and simulated tempering approach.466

As noted in the mixture of Gaussians example (Section 4.1), increasing the number of pseudo-samples467

improves the accuracy of the pseudo-extended method, but at a computational cost which grows468

linearly withN . When choosing the number of pseudo-samples it is sensible thatN increases linearly469

with the dimension of the target. However, taking into account computational cost (Figure 8), a470

significantly smaller number of pseudo-samples can be used while still achieving a high level of471

sampling accuracy.472

E Sparse logistic regression plots473

We consider the following logistic regression model for data y ∈ 0, 1,

Pr(Y = y) = py(1− p)1 − y,
where

p =
1

1 + exp(z>x)
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Figure 8: Average mean squared error (MSE) (given on the log scale) taken over 10 independent
simulations with varying number of pseudo-samples N , where the MSE is scaled by computational
time as MSE× CT

and z are covariates. In this setting our parameter of interest x is the model coefficient, and recalling474

that x = (x1, . . . , xd), we can define a regularized horseshoe prior (Piironen and Vehtari, 2017) on475

each of the coefficients as,476

xj |λj , τ, c ∼ N (0, τ2λ̃2j ), λ̃2j =
c2λ2j

c2 + τ2λ2j
,

λj ∼ C+(0, 1), j = 1, . . . , d,

where c > 0 is a constant (for which we follow Piironen and Vehtari (2017) in choosing) and C+ is a477

half-Cauchy distribution. To give an indication of how this prior behaves, when τ2λ2j << c2, the478

coefficient xj is close to zero and the regularized horseshoe prior (above) approaches the original479

horseshoe (Carvalho et al., 2010). Alternatively, when τ2λ2j >> c2, the coefficient xj moves away480

from zero and the regularizing feature of this prior means that it approaches N (0, c2).481

Figure 9 gives the posterior density plots for a random subset of the model parameters for each482

dataset. We can see from these plots that the posteriors are mostly uni-modal with some posterior483

mass centered at zero. This is a common trait of horseshoe and similar priors for inducing sparsity,484

where the point-mass at zero indicates that the variable is turned-off (mass at zero), or contains some485

positive posterior mass elsewhere. We also note that, unlike the examples given in Sections C and486

4.2, the posterior modes are close together. For this reason, it is unsurprising that the HMC algorithm487

is able to accurately explore the posterior space, and as a result, produce accurate log-predictive488

estimates (as seen in Figure 3). Additionally, see Figure 10 for log-predictive results on the prostate489

dataset.490
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Figure 9: Plots of marginal posterior densities for a random subsample of variables. Each column
represents a different variable and each row is a different MCMC sampler, HMC, PE-HMC (N=2)
and PE-HMC (N=5), respectively
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Figure 10: Log-predictive density on held-out test data (random 20% of full data) for the prostate
cancer dataset comparing the HMC and pseudo-extended HMC samplers, with N = 2 and N = 5.
For the case of fixed β = [0.25, 0.5, 0.75], the number of pseudo-samples N = 2.
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