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Abstract

Nowadays, the world is advancing rapidly toward small scale electronic de-

vices, eventually approaching the few nm length scale. The ultimate goal of this

thesis is to contribute to the understanding of nanotechnology by exploring the

electronic and thermoelectronic properties of systems containing two metallic

electrodes that are linked by single molecules.

Density Functional Theory (DFT), with combined Green’s functions quantum

transport calculations and Tight Binding Models (TB), are used in this study

together with in addition, experimental measurements which were carried out by

myself and several experimental collaborators. This work is divided into three

resulting chapters, covering electron transport through Crown-Ether-Bridged

Anthraquinones. Finally, Fullerenes and Endohedral Metallofullerenes (theoretical

and experimental results).
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mean conductance value is Ḡ = 0.05Go and the mean thermopower

is S̄ = −2µV/K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.12 Effect of pressure on Sc3N@C80 molecular junctions. a-c, Periodical

variations of the conductance G, thermopower S and power factor

GS2, respectively, as the STM tip advances and retracts during

three cycles. Each half cycle corresponds to less than 0.5 nm. Each

colour corresponds to a different molecule. d-f, the same effect of

pressure but on C60 . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xv



LIST OF FIGURES LIST OF FIGURES

6.13 Effect of pressure on Sc3N@C80 junctions as a function of tip dis-

placement. Periodical variations of the conductance G (a,d,g), the

thermopower S (b,e,h), and power factor GS2 (c,f,i) as a function

of the tip displacement. This is the same data as in Fig.6.12a-c and

the colours correspond to same three molecules detailed in the main

text (1, 2 and 3). For molecule 1 (red), compressing the molecule

results in S varying from+20µV/K to almost 0 µV/K; for molecule

2 (blue), S varies from +10µV/K to −5µV/K; and for molecule 3

(green), S varies from approximately 0 µV/K to −20µV/K. Each

half cycle corresponds to less than 0.5 nm. This representation is

directly equivalent to the plot of the theoretical calculations j-l. . . 139

6.14 (a) Charge transfer model for Sc3N@C80 (b) Rapid circular motion

of the Sc3N cluster inside the Ih C80 cage. . . . . . . . . . . . . . . 140

6.15 Binding energy as a function of rotation of Sc3N within the fixed

Ih − C80 cage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.16 Sc3N@C80 on a gold surface. Top panels: Orientation of the

Sc3N@C80 molecule with respect to the gold leads corresponds to

the defined angle (left) θ= 0◦ and (right) θ= 90◦. Lower panel:

Binding energy of Sc3N@C80 to gold as a function of molecule-

contact distance. The equilibrium distance is found to be approxi-

mately 2.3 A◦ from the minimization of the binding energy. . . . . . 142

6.17 Transmission curves, for C60 and Sc3N@C80 junctions, respectively.

Letters H and L indicate the HOMO and LUMO peaks of the

fullerene cages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.18 Wavefunctions of the HOMO − LUMO orbitals of the Sc3N@C80

molecule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.19 Rotation angles θ between 0◦ and 90◦ of the Sc3N@C80 molecule

with respect to the gold leads. . . . . . . . . . . . . . . . . . . . . . 146

xvi



LIST OF FIGURES LIST OF FIGURES

6.20 Transmission coefficient as a function of orientation. Zero bias

transmission coefficient T (E) versus electron energy E for rotation

angles θ between 0◦ and 180◦ of the Sc3N@C80 molecule with re-

spect to the gold leads. . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.21 Optimized geometries of Sc3N@C80 and C60 junctions. . . . . . . . 147

6.22 Transmission curves, T (E), for different z (C60). The Fermi level is

shifted from the position given by DFT and the black dotted line

indicates the true Fermi level as explained in the text. In this case,

EF = E0
F −0.165eV , chosen such as to present similar amplitude

variations as the experimental curves. . . . . . . . . . . . . . . . . . 147

6.23 Transmission coefficient as a function of orientation and tip sepa-

ration. Transmission curves, T (E), for three different orientations

(θ= 150◦, θ= 57◦, and θ= 63◦, respectively) and for different z. . . . 148

6.24 Thermopower as a function of orientation and tip separation. Ther-

mopower S versus orientation angle at a value of EF = 0.23 eV, for

different tip-substrate distances z. . . . . . . . . . . . . . . . . . . 148

6.25 Optimized geometries of Sc3N@C80 junctions. Four optimized ge-

ometries corresponding to tip-carbon distances of 2.7, 2.5, 2.3 and

2.1 Angstroms. They show that the C80 barely distorts over such a

range. In these simulations, the gold is not allowed to relax. . . . . 149

7.1 Schematic of a Tandem device . . . . . . . . . . . . . . . . . . . . . 160

xvii



LIST OF FIGURES LIST OF FIGURES

List of Abbreviations and Symbols

DFT Density Functional Theory

H Hamiltonian

LDA Local Density Approximation

GGA Generalised Gradient Approximation

LCAO Linear Combination of Atomic Orbital

ζ Basis function

SZ Single Zeta

SZP single Zeta Polarised

DZ Double Zeta

DZP Double Zeta Polarised

1D One dimension

EM Extended Molecule

PL Principal Layer

PBC Periodic Boundary Conditions

STM Scanning Tunneling Microscopy

NC Nitrogen Crown

OC Oxygen Crown

AQOC Anthraquinone with oxygen atoms

AQNC Anthraquinone with nitrogen atoms

BE Binding Energy

T (E) Transmission curve

Complexes Ligand+ Ion

BF−4 Counter Ion

PF−6 Counter Ion

Sandwich Two Ions and one ligand

TCNE Tetracyanoethylene

TTF Tetrathiafulvalene

S Thermopower or Seebeck coefficient

xviii



LIST OF FIGURES LIST OF FIGURES

∏
Peltier coefficient

ZT Figure of merit

P Power factor

C60 Buckminsterfulleren

Ih icosahedral (isomer)

Sc3N@C60 Endohedralmetallofulleren

TNT Trimetallic Nitride template method

HOMO Highest Occupied Molecular Orbital

LUMO Lowest Unoccupied Molecular Orbital

NMR Nuclear Magnetic Resonance

BSSE Basis Set Superposition Error

Voc Voltage open circuit

1



Chapter 1

Introduction

1.1 Motivation

1947 was the breakthrough in an electronic world when Shockley and his

co-workers built the first transistor at Bell laboratories. Since then the door has

been opened for communications and modern technology to kick off. Throughout

the past 70 years the transistor has been the fundamental building block in most

electronic devices and is recognised as one of the most important inventions of

the previous century. In this time the size of the transistor has been dramatically

reduced from a few centimetres to tens of nanometres. The reduction in the size

of transistor has followed the path of Moore’s law [1], which predicts the doubling

in the number of transistors on an integrated circuit every eighteen months.

This process enables industrials factories to produce smaller, faster and more

energy efficient devices. As this trend approaches the nano-scale, conventional

manufacturing of transistors will become problematic as a result of this large

reduction in size. The electronics industry will therefore be forced to change

from conventional semiconducting materials and methods, to newer approaches

and exotic materials [2]. From a spectrum of possibilities, molecular electronics

could be a solution to this problem, providing the required reduction in size and

flexibility of design.

The idea of using a molecule as an electrical device started in 1970s. The

2



1.1. MOTIVATION CHAPTER 1. INTRODUCTION

theoretical prediction by Aviram and Ratner [3] showed that a single molecule

could be used as a rectifier. However, it was not until 1997 when Reed et

al [4] first measured the current through a single phenyl-dithiol molecule using a

mechanically control label break-junction, that molecular electronics took off.

One of the major problems in electronic devices is the amount of waste heat

produced by their transistors. This is not just a problem for small personal

devices, the combined electricity consumption of IT systems (communication

networks, personal computers, data centres, etc.) was 900 TWh in 2012, or 4.6%

of global electricity use, and this figure is set to double by 2025 [5].

To meet this challenge, research labs around the world are aiming to create

high-performance thermoelectric materials and devices, which can convert this

waste heat back into electricity. The thermopower (or Seebeck coefficient) S of

a material is defined as S = − M V/ M T , where V is the voltage difference

generated between the two ends of the junction when a temperature difference T

is established between them. In addition to the goal of maximising S, there is a

world-wide race to develop materials with a high power factor P = S2G , and high

thermoelectric efficiency, which is expressed in terms of a dimensionless figure

of merit ZT = PT/κ, where T is the average temperature, G is the electrical

conductance and κ is the sum of the electronic and phononic contribution to

the thermal conductance. In addition there is a need for thermopowers of both

positive and negative signs, so that materials with thermopowers of opposite

signs can be organised in tandem to boost the thermovoltage. The difficulty in

thermoelectrics research is that S and G usually work against each other in a

given bulk material, with high S usually accompanied by low G [6].

A key strategy for improving the thermoelectric properties of inorganic materials

has been to take advantage of nanostructuring which leads to quantum confine-

ment of electrons, suppression of parasitic phonons and enhanced thermoelectric

performance. For example, nanostructured materials such as PbSeTe/PbTe-based

quantum dot superlattices with ZT of v2 were realised over a decade ago [7].

3
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However lack of further improvement since that time suggests that new strategies

are needed. Since nanostructuring underpins the current state of the art for

inorganic thermoelectrics, it is natural to examine the thermoelectric performance

of single- or few-molecule junctions as a stepping stone towards the design of

new high-performance organic materials, because the single-molecule building

blocks of organic materials offer the ultimate limit of electronic confinement, with

energy-level spacings which are orders of magnitude greater than kBT at room

temperature. The ability to measure thermopower in single-molecule junctions

is relatively new and the thermoelectric properties of only a few molecules have

been measured. More than one of these were a recent measurement by ourselves

of the thermopower of C60. [8–10]

The key to enhancing the thermoelectric performance lies in taking advan-

tage of resonances in the electronic density of states, (associated with the discrete

spectrum of molecular levels), because (loosely) the thermopower is proportional

to the slope of the density of states at the Fermi energy of the electrodes. In C60

and all single molecules measured to date, the Fermi energy is far away from any

molecular energy levels and there currently exists no experimental evidence of the

effect of resonant transport on thermoelectric properties.

To reveal this evidence, I have investigated the thermopower and power factor

of the endohedral fullerene Sc3N@C80. This was chosen because our density

functional theory predicted that the Sc3N within the fullerene cage would

create a sharp resonance near the Fermi energy. Remarkably, through a joint

experimental and theoretical study, we have demonstrated that the energetic

location of this resonance and hence the sign of the thermopower can by tuned by

applying pressure. This means that we have identified the worlds first example of

a pressure-dependent bi-thermoelectric material, which can exhibit both positive

and negative thermopower.

4



1.2. OUTLINE CHAPTER 1. INTRODUCTION

1.2 Outline

My thesis will report a study of the electrical and thermoelectrical properties of

different types of molecules and compare theory results with experimental results.

To start with, Chapter 2 gives an introduction to Density Function Theory,

the Hohenberg-Kohn theorems and the Kohn-Sham ansatz. It also describes

the functional forms of the exchange and correlation energy in the local density

approximation, and the generalized gradient approximation. The SIESTA code

(which is the main DFT code used in this work) is introduced, whereby the finer

details of the calculations are described, such as the use of pseudopotentials and

the type of basis sets. Finally, the Basis Set Superposition Error (BSSE) is used

to find the optimum distances between molecules and electrodes and to calculate

the magnitude of binding energies.

Chapter 3 describes how to construct the Green’s function of a molecular device,

consisting of a scattering region connected to semi-infinite electrodes (leads) from

the Hamiltonian and scattering matrices obtained from DFT simulations. The

central result shows how the electron transmission coefficient is related to the

retarded Green’s function of the system. This method is adopted in the Gollum

code; a first principles quantum transport code, developed at Lancaster and

Oviedo Universities. Gollum is applied (chap.5, chap.6 and chap.7) to obtain the

electron transport through single molecule systems.

Chapter 4 gives a brief introduction to the theory of quantum transport, including

the transmission coefficient T (E), the Landauer formula and scattering formalism,

thermoelectric coefficients such as thermopower, conductance and power factor.

Chapter 5 starts by giving a brief details about crown ethers, their names,

types, properties, size and applications. Sensing and thermoeclectic properties

are covered for two types of crown ethers AQ-bridged crown ether (AQOC) and

AQ-daza-bridged crown ethers (AQNC). Three sizes of crown are investigated

(12C4, 15C5 and 18C6) for the two types of crown ethers, and the bindings of

three cations (Li+, Na+ and K+) within the crown is explored. In addition, a

5
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donor (TTF), and acceptor (TCNE) molecules are used to see their effect on the

electrical and thermoelectrical properties.

Chapter 6 deals with fullerenes and endohedral metallofullerenes. It describes

a joint theoretical and experimental study. It begins with a brief description

of fullerenes and endohedrals, the production of Sc3N@C80,- the main molecule

studied- and possible applications of fullerenes and endohedrals. A detailed study

of the conductance and thermopower Sc3N@C80 is carried out, investigating the

role of pressure to create a bi-thermoelectric material. The theoretical model

explains the experimental results through the localization of an orbital on the

central Sc3N inside the cage.
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Chapter 2

Density Functional Theory

In order to understand the transport of electrons through organic molecular wires,

we need to understand the electronic properties of the isolated molecule. More

specifically, solving the many body Schrodinger equation to find the eigenvalues,

eigenfunctions, Hamiltonian and overlap matrices that can be used to calculate

the electron scattering matrix. Solving such an equation for any system with more

than a few electrons proves impossible. However, a number of other techniques

can be employed to reduce the complexity of the problem. One type involves

first-principles ab− initio methods that are based on a purely theoretical formal-

ism, while another employs semi-empirical methods that fit various parameters to

experimental data. This thesis uses ab − initio methods to provide a consistent

systematic method of calculating the electronic structure [1–4].

Density functional theory (DFT) is a well-known ab− initio technique, which can

efficiently deal with systems containing large numbers of atoms. As the focus of

this study is on the electronic properties of large molecules, DFT is a sensible

choice to obtain eigenvalues and a Hamiltonian efficiently, taking advantage of

modern computational power and numerical techniques. In practice DFT is an

approximate method, however, there are lots of examples where the theoretical

calculations agree with experimental results [5], however, caution needs to be ap-

plied when interpreting results produced using this method. Here I will summarise

the main details of DFT and introduce the DFT code SIESTA [6].
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CHAPTER 2. DENSITY FUNCTIONAL THEORY

2.1 Many - body Hamiltonian

In solid state physics the final target is to find a solution to the time-independent,

non-relativistic Schrodinger equation

ĤΨ(r1, ...., rN , R1, ...., RM) = EΨ(r1, ...., rN , R1, ...., RM) (2.1)

where Ĥ is the Hamiltonian operator of a system consisting of M nuclei and N

electrons, ri is the position of the i− th electron, and RI the position of the I− th

nucleus. Molecules are an excellent example of the complexity of a many body

system. Systems consisting of one or two particles can be solved analytically and

numerical methods can solve systems an order of magnitude higher. However,

larger systems are almost impossible to solve due to the computational time and

memory requirements of the calculations. This can be appreciated by looking

at the general many body Hamiltonian of a molecule containing N interacting

electrons (lower case) and M nuclei (upper case) as shown in the following equation

(2.2)

Ĥ =
N∑
i=1

− 5
2
i

2mi

+
M∑
I=1

− 5
2
I

2MI

+
1

2

N∑
i 6=j

e2

4πεo | ri − rj |
+

1

2

M∑
I 6=J

e2ZIZJ
4πεo | RI −RJ |

−
NM∑
iI=1

ZIe
2

4πεo | ri −RI |
(2.2)

where:

mi the mass of the i− th electron

MI the mass of the I − th nuclei

εo the dielectric constant of vacuum

e the charge of the electron

ZI the atomic number of the I − th nucleus. In the equation, the first and second

terms are the kinetic energies of the electrons and nuclei respectively, the third is

the electron-electron interaction (half for double counting), the fourth the nuclei-
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CHAPTER 2. DENSITY FUNCTIONAL THEORY

nuclei interactions, and finally the electron-nuclei interactions. Unlike the simple

hydrogen atom, solving the Schrodinger equation with this Hamiltonian is im-

possible as the interaction terms cannot be directly uncoupled and independently

solved. An approximation has to be applied to enable a separation of the nucleon

and electron degrees of freedom to reduce the size of the problem. That can be

achieved through the Born-Oppenheimer approximation.

2.2 Born - Oppenheimer approximation

The electron structure adiabatically follows the changes of nuclear configuration

as electrons are lighter than nuclei. The solution of the Schrodinger equation (2.1)

with the many-body Hamiltonian (2.2) is a wave function that depends on the

coordinates of all the electrons and nucleons i.e 3N + 3M variables. To find such

a wavefunction is impossible at first, but Born and Oppenheimer [7] demonstrated

that it is possible to divide the Hamiltonian into independent nucleon and effec-

tive electron pairs, so as to solve the equation independently. As the mass of the

electron is significantly smaller than that of the nucleons their velocities are much

higher, the electronic structure adiabtically follows the changes of the nuclear con-

figuration. Therefore, the nuclei wavefunction can be assumed to be independent

of the electron’s position. With this idea in mind, the solution of (2.1) can be

written as the product of an independent nuclei χ and electron wavefunction Φ

Ψ(ri, RI) = χ(RI)Φ(ri, RI)

11



CHAPTER 2. DENSITY FUNCTIONAL THEORY

inserting this formula into equation (2.2)gives:

χ(RI)
∑
i

(− ~2

2mi

52
i )Φ(ri, RI) +

∑
I

(− ~2

2MI

52
I)χ(RI)Φ(ri, RI)

+χ(RI)
1

2

1

4πεo

∑
i,j,i6=j

e2

| ri − rj |
Φ(ri, RI) +

1

2

1

4πεo

∑
I,J,I 6=J

e2ZIZJ
| RI −RJ |

χ(RI)Φ(ri, RI)

− 1

4πεo

∑
i,I

ZIe
2

| ri −RI |
χ(RI)Φ(ri, RI) = Eχ(RI)Φ(ri, RI)

(2.3)

In equation (2.3) the second term can be expanded by using the product rule of a

differential operator

52
I [χ(RI)Φ(ri, RI)] = χ(RI)52

I Φ(ri, RI) + 25I χ(RI)5I Φ(ri, RI)

+Φ(ri, RI)52
I χ(RI)

(2.4)

The first term in equation (2.4) depends on the variation of the electronic wave-

function as a function of the nuclei positions, which is taken to be zero, as the

nuclei are seen as stationary within the relaxation time of the electrons. The

second term represents the electron-phonon interaction which can be canceled by

assuming low temperatures. Then we are left with a single term, and substituting

that into the full Schrodinger equation yields

{
ĤeΦ(ri, RI) +

∑
I

Φ(ri, RI)(−
~

2MI

∇2
I) +

1

2

1

4πεo

∑
I,J,I 6=J

e2ZIZJ
| RI −RJ |

Φ(ri, RI)

}
χ(RI) = EΦ(ri, RI)}χ(RI)

(2.5)

where

Ĥe =
∑
i

(− ~
2mi

∇2
i ) +

1

2

1

4πεo

∑
i 6=j

e2

| ri − rj |
− 1

4πεo

∑
iI

e2ZI
| ri −RI |

= T̂ + V̂ee + ˆVNe}

(2.6)
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(2.6) is an effective Hamiltonian, that describes the electron’s motion in a con-

stant positive background potential caused by the stationary nuclei, and is defined

through the following Schrodinger equation

Ĥeφ = Eeφ

Multiplying (2.5)by Φ∗ summing over all i and integrating over the electron posi-

tion, the nuclei Schrodinger equation

ĤNχ = ENχ

can be obtained, with the nuclei Hamiltonian ĤN containing only the kinetic and

interaction terms of the nuclei

ĤN =
∑
I

(− ~2

2MI

∇2
I) +

1

2

1

4πεo

∑
I 6=J

e2ZIZJ
| RI −RJ |

+ Ee(RI)

The total energy of the system is simply the sum of the two energies

E = Ee + EN

Thus, the Born-Oppenheimer approximation allows the electron and nuclei degrees

of freedom to be separated. The general method in solving the system of electrons

and nuclei is to first solve the electron Hamiltonian using either the Density Func-

tional Theory, Hartree, Hartree-Fock or other quantum mechanical methods, and

then treating the nucleon equation as classical equations of motion. A DFT based

method for solving only effective electron Hamiltonian will be described later in

this chapter.
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2.3 Hohenberg - Kohn theorems

Density functional theory describes the method of solving the effective electron

Schrodinger equation defined by He in (2.6). It is based on two theories constructed

originally by Hohenberg and Kohn [8], that show there is unique ground state

density of the system no which refers to a minimum of the total energy functional.

The Hohenberg-Kohn theorems state that for system of interacting particles in an

external potential:

1- The external potential is uniquely defined (except for a constant) by the ground

state particle density no and is considered a functional of the density.

2- The density can be used to minimize variationally a total energy functional with

the global minimum corresponding to the ground state density.

The two theorems can be be simply derived by applying a restriction that the

system is non-degenerate, however a more general analysis has been performed by

Levy [9] and Leib [10] which lead to the same conclusions.

The first theorem can be realised by considering two hypothetical Hamiltonians Ĥ1

and Ĥ2 which contain two different external potentials (V1 and V2) that produce

the same ground state density no(r). These Hamiltonians form the Schrodinger

equations in

Ĥ1ψ1 = E1ψ1,

Ĥ2ψ2 = E2ψ2

As ψ2 is not the ground state wavefunction of Ĥ1 the equality in (2.7) holds for

non-degenerate systems (Levi Lieb’s derivation does not use this assumption).

〈ψ1 | Ĥ1 | ψ1〉 < 〈ψ2 | Ĥ1 | ψ2〉 (2.7)
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The second term can be rewritten in terms of the eigenvalues E2 of Ĥ2 and external

potentials.

〈ψ2 | Ĥ1 | ψ2〉 = 〈ψ2 | Ĥ2 | ψ2〉+ 〈ψ2 | Ĥ1 − Ĥ2 | ψ2〉

= E2 +

∫
[V1(r)− V2(r)]no(r)d

3r}
(2.8)

When (2.8) is substituted back into (2.7) and the whole procedure is repeated for

the term 〈ψ2 | Ĥ2 | ψ2〉 (i.e 〈ψ2 | Ĥ2 | ψ2〉 < 〈ψ1 | Ĥ2 | ψ1〉 ),two inequalities in

(2.9) are produced.

E1 < E2 +

∫
[V1(r)− V2(r)]no(r)d

3r

E2 < E1 +

∫
[V2(r)− V1(r)]no(r)d

3r

(2.9)

Finally, adding together the two expressions in (2.9) produces the contradicting

inequality E1 + E2 < E1 + E2, showing that there can not be two external po-

tentials differing by more than a constant which lead to the same non-degenerate

ground state particle density. Therefore each different external potential is defined

uniquely by a unique ground state density.

In the same way, the second term can be understood in a similar way [11], which

links to the minimisation of a total energy functional. The first Hohenberg-Kohn

theorem states, that the density can uniquely determine the external potential,

which determines the Hamiltonian, which is used to find the wavefunctions of the

system. This, therefore means that the wavefunction is a functional of the density.

Thus, the expectation value E of the system Hamiltonian Ĥe is also a functional

of the density.

〈Φ[n] | Ĥe | Φ[n]〉 = 〈Φ[n] | T̂ | Φ[n]〉+ 〈Φ[n] | Vee | Φ[n]〉+ 〈Φ[n] | VNe | Φ[n]〉

The ground state energy can be found by applying the variational principle to

minimise this expectation value with respect to the wavefunction φ of the effective
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electron Hamiltonian.

E = m
Φ
in(〈Φ | Ĥ | Φ〉) = m

n|Φ
in

(
F [n] +

∫
Vext(r)n(r)d3r

)
︸ ︷︷ ︸

where

E[n] = F [n] +

∫
Vext(r)n(r)d3r

F [n] = 〈Φ | T̂ | Φ〉+ 〈Φ | V̂ee | Φ〉 ≡ T [n] + Eint[n]

describes the kinetic energy and electron-electron interaction energy functionals

respectively. Here, the minimisation is carried out with respect to the density,

corresponding to the system wavefunction Φ which is equivalent to minimising

with respect to the wavefunction alone. If the density does not correspond to the

ground state, the corresponding wavefunction is not the ground state wavefunction

and therefore the expectation value will not correspond to the ground state energy

of the system.

2.4 Kohn - Sham equations and self consistency

Kohn and Sham solved the interacting system problem by mapping the interact-

ing system in an external potential onto a set of fictitious single particle, non-

interacting systems containing a new effective potential Veff (r) [12]. This can

then be solved directly. The new effective electron potential can be identified by

comparing results from a non-interacting system to that of an interacting system.

The full energy functional of a non-interacting system can be written in terms of

the external potential and the energy functional consisting of the non-interacting

kinetic energy functional only Fni[n] = Tni[n]

where Tni[n] = 〈Φni[n]| | T̂ | Φni[n]〉 is the kinetic energy functional evaluated for
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a non-interacting wavefunction

Eni[n(r)] = Fni[n(r)] +

∫
Vext(r)n(r)d3r (2.10)

following from the Hohenberg-Kohn theories, the ground state density will corre-

spond to the minimum of the energy functional or equivalently where the functional

derivative δ
δn(r)

of Eni[n(r)] is zero. The density is under the additional constraint

that it has to be normalized to the number of electrons N in the system

∫
n(r)d3r = N (2.11)

It is now possible to minimize (2.10) with respect to the density under the con-

straint (2.11), which produces the Euler equation

δ

δn(r)

{
Tni[n] +

∫
Vext(r

′
)n(r

′
)d3r

′ − ε[
∫
n(r

′
)d3r

′ −N ]

}
= 0

that is

δTni[n]

δn(r)
+ Vext(r)− ε = 0, (2.12)

with the Lagrange multiplier ε corresponding to the Schrodinger equation

(
− ~2

2mi

52
i +Vext(r)

)
φi = εiφi (2.13)

For the fully interacting system, instead of the energy functional Fni[n] in (2.10)

an extended term F [n] comes up, that contains two extra energy functionals

F [n] = Tni[n] + EH [n] + Exc[n],

corresponding to the interacting T [n], and the interaction between the electrons.

The electron-electron interaction has been split into two terms, the Hartree func-
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tional EH

EH [n] =
1

2

1

4πεo

∫
n(r)n(r

′
)

| r − r′ |
d3rd3r

′
,

and the exchange-correlation functional Exc. The former stems from the classi-

cal Hartree potential which includes an electron self-interaction term. The latter

includes all other many body effects, and is defined explicitly as

Exc[n] = T [n]− Tni[n] + EH [n] + Eee[n]. (2.14)

following the minimization procedure as before for the non-interaction system, the

functional derivative of the different functionals is taken

δ

δn(r)

{
Tni[n] +

∫
Vext(r

′
)n(r

′
)d3(r

′
) +

1

2

1

4πεo

∫
n(r

′
)n(r

′′
)

| r − r′ |
d3r

′
d3r

′′

+Exc[n]− α[

∫
n(r

′
)d3r

′ −N ]

}

This leads to the modified Euler equation for the interacting system

δTni[n]

δn(r)
+ VKS(r)− εKS = 0, (2.15)

which looks like that of the non-interacting system (2.12), with a different external

potential, namely the Kohn-Sham potential VKS(r) defined by the equation

VKS(r) =
1

4πεo

∫
n(r′)

| r − r′ |
d3r

′
+ Vxc(r) + Vext(r).

Which means (2.15) corresponds to a set of single particle, non-interacting

Schrodinger equations in the presence of an effective single electron potential VKS,

which includes the many-body effects. The total energy functional can be found

in terms of the eigenvalues of the Kohn-Sham equations. This is achieved by

comparing (2.13) with the eigenvalues of

(
− ~2

2mi

52
i +VKS(r)

)
ψKSi = εKSi ψKSi
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This means that three terms have to be subtracted to get the total energy

E[n] =
∑
i

εi −
1

2

1

4πε0

∫
n(r)n(r

′
)

| r − r′ |
d3r

′
d3r −

∫
Vext(r)n(r)d3(r)− Exc[n]. (2.16)

In the Kohn-Sham formalism no approximation have been assumed, so (2.16) is

exact if the exchange-correlation functional is known exactly. As a result of the

Hohenberg-Kohn theorems the ground state density can be found by carrying out

a self-consistent cycle shown in figure 2.1.

Figure 2.1: Schematic of the self consistent DFT cycle starting from an initial
density ni(r), which is used to calculate the Kohn-Sham potentialVKS, Hamiltonian
Ĥe and wavefunctions {ΨKS

i } of the system. This allows a new density ninew(r) to
be calculated, and the cycle is repeated until convergence is achieved

where the electron density is expressed as

n(r) =
∑
i

fi | ΨKS
i (r) |2

with fi being the occupancy of the orbital, which can be 1 for half filled orbitals,

0 for empty orbitals and 2 for an orbital with two electrons on it.

This shows that if the density is known, the energy functional is fully determined.

An arbitrary starting density can be diagonalized to find the eigenfunctions, which

in turn can be used to find the density. The procedure is repeated until the output

density and the input densities are equivalent within a predetermined tolerance.

The Kohn-Sham approach clearly shows that a complicated many body system

can be mapped onto a set of simple non-interacting equations exactly if the ex-

change correlation functional is known. Due to the formulation of the theory,

only groundstate quantities are correctly calculated such as: groundstate energy,
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groundstate density, the ficticious Kohn-Sham eigenvalues and the groundstate

electron geometry. Therefore, DFT cannot be used to calculate higher energetic

states correctly such as the lowest unoccupied orbital of a molecule, and thus

underestimates band gaps in semiconductors. It is important to note that DFT

remains an approximate technique of finding these ground state properties, as the

exchange-correlation functional is not known exactly, so approximations have to

be made.

2.5 Exchange and correlation

The exchange-correlation functional Exc[n] contains all of the complicated, many

body parts of the electron-electron interaction and is therefore quite complex in

itself. An exact form is unknown, but numerous approximations have been made

to various degrees of accuracy in an attempt to obtain comparable results with

experimental data.

These approximations range from the local density approximation (LDA) [12],

where the exchange-correlation functional depends only on the density, to the

more complicated generalised gradient approximations (GGA)of various degrees

of accuracy, where the exchange-correlation functional depends on both the den-

sity and its gradients, to the even more complex, and specific, but for certain

systems far more accurate hybrid functionals, e.g. B3LYP [13–16] and HSE [17],

or to even functionals with van der Waals interactions included [18]. In this sec-

tion, I will derive some relations which this exchange-correlation functional must

obey and explain how these functionals are constructed.

The exchange-correlation functional is defined as the difference between the inter-

acting and non-interacting minimised values of the kinetic plus electron interaction

functionals (2.14). If a parameter λ is introduced such that λ = 1 corresponds

to the full interacting system, and λ = 0 to the non-interacting system, then the

exchange-correlation functional Exc[n] can be written in terms of the difference

between the interacting and non-interacting systems (where EH is the Hartree
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functional) as shown in (2.17).

Exc[n] = 〈ψλ | T̂ + λV̂ee | ψλ〉λ=1 − 〈ψλ | T̂ + λV̂ee | ψλ〉λ=0 − EH [n] (2.17)

If λ is taken to be continuous then the first two terms in (2.17) can be simplified

into an integral fictitiously representing the adiabatic turning-on of the electron-

electron interaction.

Exc[n] =

∫ 1

0

d

dλ
〈ψλ | T̂ + λV̂ee | ψλ〉dλ− EH [n] (2.18)

The equation can be further simplified by applying the Hellmann-Feynman the-

orem [19]. This shows that if a Hamiltonian depends on a parameter λ, then

any normalised eigenstate φλ which also depends on that parameter, the following

equation holds.

d

dλ
〈φλ | Ĥλ | φλ〉 = 〈φλ |

Ĥλ

dλ
| φλ〉

This can be applied to equation (2.18) to produce

Exc[n] =

∫ 1

0

〈φλ | V̂ee | φλ〉dλ− EH [n]

Before proceeding we need to define a joint probability of finding an electron in a

volume d3r and another in volume d3r
′

P (r, r
′
) = ρλ(r, r

′
)d3rd3r

′

where the reduced density matrix is defined by

ρλ(r, r
′
) = N(N − 1)

∫
d3r...

∫
d3rN \ φλ(r, r

′
, r3....., rN\2

Using this the new form of the exchange-correlation functional is

Exc[n] =

∫ 1

0

∫
d3r

∫
d3r

′ 1

2

1

4πε0

ρλ(r, r
′
)

| r − r′ |
dλ− EH [n] (2.19)
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Thus, the groundstate value of the two-body operator V̂ee is represented in a much

more convenient way. Using basic statistical theory, the density matrix can be

expressed as the product of two terms

ρλ(r, r
′
) = n(r)nλ2(r|r′)

with n(r) being the probability of finding an electron at r, and nλ2(r|r′) being the

conditional probability of finding an electron at r
′

given that there is one at r.

This conditional probability can be viewed as the averaged electron density at r
′

given that there is an electron at r. These two densities have the normalisation

conditions ∫
d3rn(r) = N (2.20)∫

d3r
′
nλ2(r

′ |r) = N − 1 (2.21)

Finally, n2 can be seperated into two terms nλ2 (r
′|r) = n(r

′
)+nλxc(r, r

′
) a single par-

ticle probability and a new conditional probability called the ”exchange-correlation

hole”, nλxcwhich must have the normalisation condition in order to satisfy equations

(2.20) and (2.21). ∫
d3r

′
nλ2(r, r

′
) = −1 (2.22)

Therefore the initial reduced density matrix is simplified to

ρλ(r, r
′
) = n(r)n(r

′
) + n(r)nλxc(r, r

′
)

Substituting the above equation into (2.19), the classical Hartree terms are can-

celed to reduce the exchange-correlation functional to

Exc[n] =

∫ 1

0

dλ

∫
d3r

∫
d3r

′ 1

2

1

πε0

n(r)nλxc(r, r
′
)

| r − r′ |

=

∫
d3r

∫
d3r

′ 1

2

1

πε0

n(r)nxc(r, r
′
)

| r − r′ |

(2.23)
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Where we have defined the coupling-constant averaged hole density as

nxc(r, r
′
) =

∫ 1

0

nλxc(r, r
′
)dλ

This equation shows that the exchange-correlation energy equals the electrostatic

interaction between each electron and the coupling-constant averaged exchange-

correlation hole that surrounds it. This ”hole” is created due to three effects:

1- The Pauli exclusion principle.

2-The unphysical self-interaction correction (i.e. such that one electron cannot

interact with itself.)

3- The Coulomb repulsion, the first two effects contribute to the exchange, and

the third to the correlation. It is worthwhile to note that if DFT was exact, then

self interaction effects would not be present.

In order to have an accurate exchange-correlation functional, a suitable form of

the exchange-correlation hole must be known. There is a considerable area of

research into finding different forms of the exchange-correlation hole, however I

will summarise the approach used by the local density approximation (LDA).

2.5.1 Local Density Approximation

The simplest approximation of the exchange-correlation functional is the local den-

sity approximation (LDA) which was first introduced by Kohn and Sham [12].

They showed that for a system with a relatively slowly varying density, the

exchange-correlation hole in (2.23) can be approximated to be dependent only

on the local density n(r). The exchange-correlation functional in this case can be

expressed in terms of the exchange-correlation energy per electron in a uniform

electron gas εunixc [n(r)] with a density n(r).

Exc[n(r)] ≈ ELDA
xc [n(r)] =

∫
n(r)εunixc [n(r)]d3r
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The idea is to assume that the inhomogeneous electron density is smooth enough,

that in the vicinity of a point the electron density can be seen as constant. εunixc

can then split into a sum of the exchange εunix and correlation εunic energies

εunixc [n(r)] = εunix [n(r)] + εunic [n(r)]

which can be found separately. Analytical expressions for the exchange term are

well known [20]

εunix [n(r)] = −3

4

(
3n(r)

π

) 1
3

The form of the correlation term cannot be found by analytical means. Rather,the

correlation term needs to be parameterised and then fitted to Monte-Carlo sim-

ulations at different densities. There have been a number of calculations on this

matter, however, the most accurate results lie with the parametrisation by Ceper-

ley and Alder [21] or Perdew and Zunger [22]. The resulting exchange-correlation

potential produces relatively accurate results for systems with well behaved den-

sities.

The main problem with the LDA is the spurious ”self-interaction” error. In

Hartree-Fock theory the self-term in the Hartree term (i.e one electron interacting

with its own potential) is cancelled out by the non-local exchange term, however in

LDA this term is only partially cancelled. This partial cancellation can therefore

produce large errors in systems where electrons are localised close together, how-

ever this effect is reduced in systems where there is delocalised electrons. Despite

this, LDA produces relatively accurate results even for non-homogeneous systems

because

1- The exchange-correlation hole always obeys the normalisation rule (2.22).

2- The exact shape of the exchange-correlation hole does not have to be correct as

the exchange-correlation functional can be shown to depend only on it’s spherical
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average, i.e. (2.23) can be transformed with R = r − r′

Exc =

∫
d3rn(r)

∫
d3r

′ 1

2

1

4πε0

nxc(r, r
′
)

| r − r′ |
=

1

ε0

∫
d3rn(r)

∫ ∞
0

1

2
R2 1

R
dR

∫
Ω

nxcdΩ

This concludes the brief derivation of the core components of DFT. In essence it

is possible to now solve the Schrodinger equation for a fully interacting system as

long as a suitable exchange-correlation functional is defined.

2.6 SIESTA technique

From a large number of DFT codes and methods, the SIESTA [23](Spanish Ini-

tiative for Electronic Simulations with Thousands of Atoms) numerical code was

chosen to perform all electronic structure calculations in this thesis. SIESTA

is designed to perform efficient calculations on large systems consisting of thou-

sands of atoms by utilising methods such as a linear combination of atomic orbital

(LCAO)basis, norm-conserving pseudopotentials and use of a periodic supercell.

This section will briefly describe the importance of these methods and how they

are implemented within the code.

2.6.1 Norm-conserving pseudopotentials

By defining an exchange-correlation functional within the Kohn-Sham formal-

ism, it is possible to split a large interacting problem into a large effective non-

interacting problem. From a physical viewpoint, this vastly simplifies the problem.

However, in typical systems of molecules which contain many atoms, the calcula-

tion is still very large and has the potential to be computationally intensive. In

order to reduce the number of electrons, one can introduce pseudopotentials which

effectively remove the core electrons from an atom. Pseudopotentials were first in-

troduced by Hans Hellmann in 1935 [24] and since then methods have evolved

from creating not so realistic empirical pseudopotentials [25, 26] to more realistic

ab-initio pseudopotentials [27].
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The electrons in an atom can be split into one of two types: core and valence, where

core electrons lie within filled atomic shells and the valence electrons lie in partially

filled shells. Core electrons are spatially localized close to the nucleus, so when

atoms are brought together mostly only their valence electron states will overlap.

This allows the core electrons to be removed and replaced by a pseudopotential,

such that the valence electrons still feel the same screened nucleon charge as if the

core electrons were still present. This reduces the number of electrons in a sys-

tem dramatically and in turn reduces the time and memory required to calculate

properties of molecules, that contain a large number of electrons. In the SIESTA

code a special type of ab-initio pseudopotential, called the norm-conserving pseu-

dopotential [28]is implemented.

To generate pseudopotentials, the Kohn-Sham formalism can be used to solve the

many electron problem for a single atom. From the single atom solutions one can

calculate the pseudopotential that can replace the effect of the core electrons. It

has to be noted, that for general use an assumption has to be made, that if the

atom is not alone in vacuum, but in a complex environment surrounded by other

atoms, then the pseudopotential is still applicable.

Let’s take the wavefunction of a single valence electron state in an arbitrary, spher-

ically symmetric potential (like an atom). This can always be split into a radial

and an angular part, ψAEn|m(r) = RAE
nl (r)Ylm(θ, ϕ), where Ylm(θ, ϕ) is the spherical

part and is a spherical harmonic function. The subscript AE refers to ’all-electron’

wavefunction. The radial part RAE
nl is the solution to the radial Schrodinger equa-

tion (2.24)

[
− 1

2r

d2

dr2
+
l(l + 1)

2r2
+ V AE

nl (r)

]
RAE
nl (r) = εAEnl R

AE
nl (r) (2.24)

where V AE
nl is the usual Coulomb potential, which includes all interactions with

the remaining core and valence electrons in the atom. To reduce the size of the

system, it is possible to remove the core electrons and replace the all-electron

potential in (2.24) by a pseudopotential V PS, such that the valence electrons feel
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the same interactions as if they were still present. By doing this, the solutions

to (2.24) will be changed to the radial pseudo-wavefunction RPS
nl . The method

of finding this pseudopotential is to first construct the pseudo-wavefunctions RPS
nl

from the all-electron RAE
nl wavefunctions, and then calculate the pseudopotential

by inverting the radial Schrodinger equation (2.24)

V PS
nl = εPSnl −

l(l + 1)

2r2
+

1

2r

1

RPS
nl (r)

d2

dr2
(rRPS

nl (r)) (2.25)

So, how is the radial part of the pseudowavefunction determined? There is no set

answer to this, however there are a number of different ways of parameterising the

pseudo-wavefunction. In SIESTA, the Troullier-Martins method [29,30] is applied,

where the pseudo-wavefunction is defined below the cut-off radius rc as a function

of a polynomial in r2

p(r) = a0 + a2r
2 + a4r

4 + a6r
6 + a8r

8 + a10r
10 + a12r

12

as shown in equation (2.26).

RPS
nl =

 RAE
nl r > rc

rlep(r) r < rc

(2.26)

For the resulting pseudopotential to be classified as norm-conserving, the following

rules must be obeyed by radial part of the pseudo-wavefunction:

1. Above some cut-off radius rc the pseudo-wavefunction and all-electron wave-

function should be equal.

RPS
nl = RAE

nl r > rc

2. The pseudo-wavefunction should be smooth and nodeless to produce a smooth

pseudopotential. This is done by making RPS
nl and its first four derivatives contin-

uous at the cut-off radius.
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3. The eigenvalues of the pseudo and all electron wavefunctions should be equal.

εPSnl = εAEnl

4. The charge enclosed inside rc should be equal for both all-electron and pseudo

wavefunctions. ∫ rc

0

| rRPS
nl (r) |2 dr =

∫ rc

0

/rRAE
nl (r)/2dr

The resulting pseudopotential can be found by substituting equation (2.26) into

the inverted Schrodinger equation (2.25)

V PS
nl =

 V AE
nl r > rc

εPSnl + (l+1)p
′
(r)

r
+ 1

2
(p
′
(r) + p

′′
(r)) r < rc

Therefore, the pseudopotential can be determined if the coeffcients in (2.26) are

known. These are found from seven conditions found in points 1, 2 and 4, with

the additional constraint that the second derivative of the pseudopotential is zero.

If these conditions are satisfied, the resulting pseudopotential will be smooth and

nodeless, producing a rapid convergence of calculations [30].

The pseudopotential obtained in this way is called ”screened pseudopotential”,

because it includes effects from both core and valence electrons. In order to make

it transferable to other environments (i.e. used in molecules), one has to partition

off any screening from the valence electrons. This can be done by making the

assumption, that the exchange-correlation potential is additive and separable into

core and valence terms. Then by subtracting the Hartree and exchange-correlation

potentials due to the presence of the valence electrons the following ion potential

is obtained

V ion
nl (r) = V PS

nl (r)− VH [nPS]− Vxc[nPS] (2.27)

where nPS is the valence part of the full self-consistent charge density. Note

that this potential depends on the exchange-correlation functional, so in general
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pseudopotentials for the different approximations for the exchange-correlation are

not the same (like e.g. for LDA and GGA).

2.6.2 Localized basis

One of the most important features of the SIESTA code is the type of basis func-

tions used in the calculations. Looking back at the self-consistent cycle in Figure

2.1, it can be seen that in order to find the wavefunctions, the Hamiltonian has to

be diagonalized. This process involves the inversion of a large matrix whose com-

putation time scales with the number of non-zero elements. Therefore, for efficient

calculations the Hamiltonian is required to be sparse with many zeros. As men-

tioned before SIESTA utilizes a Linear Combination of Atomic Orbital (LCAO)

basis set, whose elements are constrained to be zero after some defined cut-off ra-

dius, and are constructed from the orbitals of the atoms. The former produces the

required sparse form of the Hamiltonian, as the overlap between basis functions is

reduced, and the latter allows even a minimal size basis set to produce properties

close to that of the studied system (unlike for plane wave basis sets). The simplest

basis set for an atom is called a single − ζ basis, which corresponds to a single

basis function ψn|m(r) per electron orbital (i.e. 1 for s, 3 for p,... etc.)

ψn|m(r) = φ1
nl(r)Ylm(θ, ϕ)

In this case each basis function consists of a product of one radial wavefunction

φ1
nl and one spherical harmonic Ylm. The radial part of the wavefunction is found

by using the method proposed by Sankey [31], where the following Schrodinger

equation is solved for the atom placed inside a spherical box

[
1

2r

d2

dr2
+
l(l + 1)

2r2
+ V ion

nl (r)

]
rφ1

nl(r) = (εnl + δE)rφ1
nl(r) (2.28)

Here, the radial wavefunction is under the constraint to vanish at a cut-off radius

rcut. This constraint produces an energy shift δE within the Schrodinger equation
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such that the eigenfunction’s first node occurs at rcut.

For higher accuracy basis sets (multiple− ζ) additional radial wavefunctions can

be included for each electron orbital. The additional radial wavefunctions {φinl}

for i > 1 are calculated using a split-valence method. This involves defining a split

valence cut-off ris for each additional wavefunction, so it is split into two piecewise

functions: a polynomial below the cut-off, and the previous basis wavefunction

above it as shown in the equation

φinl(r) =

 rl(a1 − blr2) r < ris

φi−1
nl ris < r < ri−1

s

The additional parameters are found at the point ris, where the wavefunction and

its derivative are assumed continuous.

Further accuracy (multiple− ζpolarized) can be obtained by including wavefunc-

tions with different angular momenta corresponding to orbitals which are unoccu-

pied in the atom. This is done by solving (2.28) in an electric field such that the

orbital is polarized or deformed due to the field (see [23] for details), so a different

radial function is obtained. This is now combined with the appropriate angular de-

pendent spherical harmonic, which increases the size of the basis. Table 2.1 shows

the number of basis orbitals for a selected number of atoms of single − ζ(SZ),

single− ζ polarised (SZP), double− ζ (DZ) and double− ζpolarized (DZP) basis

sets.
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Table 2.1: Table showing the number of radial basis functions per atom for three
elements as used within the SIESTA for different degrees of precision. For clarity

the specific orbitals are listed next to each number, with – representing the
polarization of that orbital.

Electron Hamiltonian

The electron Hamiltonian generated by SIESTA is the same as in Kohn-Sham

formalism and includes the local and non-local parts of the pseudopotential

Ĥ = T̂ +
∑
I

V̂ KB
I +

∑
I

V̂ I
loc(r) + V̂H(r) + V̂xc(r) (2.29)

Here T̂ is the kinetic energy operator, V̂ I
loc and V̂ KB

I are the local and non-local

parts of the pseduopotential for atom I, VH and Vxc the Hartree and exchange-

correlation potentials. The first two terms in (2.29) are calculated using two centre

integrals in k-space. These are defined by

〈ψ1|Ô|ψ2〉 =

∫
ψ∗1(k)Ôψ2(k)e−ik.Rdk

which is a Fourier transforms in k-space with ψα corresponding to either the basis

orbitals (for Q̂ = T̂ ) or the Kleinmann-Bylander pseudo-potential projectors (for

Q̂ = V KB
I ). The final three terms in (2.29) are calculated on a three-dimensional

real space grid with a fineness 4x controlled the a grid-cut off energy εc which

is equivalent to a plane-wave cut off εc = 1
2
π2

∆x
. Within all of our calculations we

chose a cut-off energy of 200 Ry which proves to provide sufficient accuracy.

This Hamiltonian is used within the self consistent procedure explained in Section

2.4 to find the ground state density of the system. In order to facilitate conver-
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gence, SIESTA has additional options of mixing the density matrix in each cycle.

In particular the method of Pulay mixing [32], where the new density is mixed not

just with the old density, but a linear combination of the previous n densities.

2.7 Some preparation for SIESTA

In this section, I will briefly summarise the procedure and necessary steps that will

be required to obtain acceptable results of the DFT code. Firstly, I will start with

building the geometry configuration of the system in order to obtain the optimum

configuration. An appropriate pseudopotential must be generated, for each atom

in that system, in case the system is periodic, then the lattice vectors should be

defined. To make a balance between the accuracy, computational time, as well

as memory, we should choose the right basis set for each atom in the system, the

smaller basis the less memory and time calculations it will take.

Regarding setting the computational parameters, such as the density convergence

tolerance, grid fineness, and Brillouin zone sampling for the k-space integral in the

case of periodic systems, these parameters control the accuracy of the numerical

procedures and so there is a trade off between the speed of the computation and

numerical accuracy. The other type of computational parameters are the conver-

gence parameters, like the so called Pulay parameters, which are responsible for

accelerating or maintaining the stability of the convergence.

2.7.1 SIESTA calculations

During the calculation, SIESTA generates the initial charge density based on non-

interacting atoms. Since the pseudopotentials are known, it is easy to generate this

and the total charge density will be the sum of the atomic densities. In addition to

that, the iteration is started by calculating the Hartree potential and the exchange

correlation potential. Since the density is represented in real space, the Hartree

potential is obtained by solving the Poisson equation with a multi-grid [33, 34],
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or fast-Fourier transform method [35], and the exchange-correlation potential is

obtained by performing the integrals given in the section 2.5.1. The full iteration

cycle is described on Figure 2.1. The iteration process ends when the necessary

convergence criteria are reached. As a result the ground state Kohn-Sham or-

bitals are obtained and the ground state energy for a given atomic configuration.

For structural optimization, the procedure described above is in a loop, which is

controlled by, e.g., the conjugate gradient method for finding the minimal ground

state energy and the corresponding atomic configuration, with the help of DFT,

one can obtain an approximation of the electronic structure of the typical molec-

ular systems described in my results.

2.8 Basis Set Superposition Error (BSSE)

The Basis Set Superposition Error (BSSE) was shown for the first time by

Kestner [36] for the calculation of a Helium dimer and by Jansen and Ros [37] in

1969, for the protonation of carbon monoxide. The term BSSE was introduced by

Liu and McLean in 1973 [38], and it is still being studied and reviewed.

BSSE is present in all molecular electronic structure calculations in which orbitals

are approximated by expansion in terms of analytic basis functions centered on

different points (usually the nuclei) that are dependent on the geometry of the

system being studied. The error arises when two chemical fragments, A and B,

approach to form the AB super-molecule. The description of fragment A within

the complex can be improved by the functions of fragment B and vice versa, while

such an extension is not possible in the calculation of the isolated fragments.

Consequently, in the process A + B−→ AB, the total energy decreases due

to two factors, first the stabilization of the system due to the fragments inter-

action and the improvement in the individual atomic description. This second

effect (BSSE) is an artifact, which causes an unphysical overestimation of the

interaction energy. These errors have been mainly discussed in studies of weak
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interactions, such as Van der Waals interactions, and more recently in studies of

intramolecular interactions [40,41]. However, let us recall that A and B fragments

can be atoms as well as polyatomic species, that is, the BSSE is also present in

every chemical bond, as well as it is in weakly bounded dimers. The conventional

way to correct for BSSE is based on the Boys - Bernardi [41] counterpoise (CP)

scheme. Using the CP correction scheme one has to recalculate the monomers

in the basis of the whole supermolecule for every geometrical arrangement. For

example, in the case of two interacting monomers A and B, the uncorrected

binding or interaction energy 4E can be calculated as

4E = EAB
AB − EA

A − EB
B (2.30)

where EAB
AB is the total energy of the complex and EA

A and EB
B are the total

energies of the monomers.

This chapter has shown the formalism behind DFT along with details of

the DFT code SIESTA which is used in all electronic structure calculations

in this thesis. This is the first step in all my transport calculations, however

the Hamiltonian extracted is still only of the isolated molecule. In order to

understand the transport properties of the molecule it has to be connected to

semi-infinite leads which in theory produces an infinite problem. The next chapter

will introduce the second step in my transport calculations which enables the

reduction of a infinite problem to that of a finite system through the retarded

Green’s function.
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Chapter 3

Green’s functions method

The previous chapter introduced the DFT method for the calculation of the elec-

tronic structure of an isolated molecule. The next step is to connect this iso-

lated molecule to semi-infinite leads and compute the probability of transmission

through the system. This is carried out by using the Green’s function scattering

formalism.

In this chapter I will first introduce the simplest form of a retarded Green’s func-

tion for a one dimensional tight binding chain, and show how it is similar to the

wavefunction of a system. I will then show how the Green’s function is directly

related to the transmission coefficient across a scattering region by presenting a

simple example of a one dimensional lattice where the periodicity is broken at a sin-

gle connection. The methods used in solving this simple example will then be used

in deriving the transmission coefficient of a general scattering region connected to

two general, semi-infinite periodic electrodes.

3.1 Green’s function of an infinite 1D chain

The first step in solving this problem is to calculate Green’s function of an infinite

one dimensional tight binding chain as shown in Figure 3.1. The Schrodinger

equation for that system is

Ĥ|Ψ〉 = E|Ψ〉 (3.1)
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CHAPTER 3. GREEN’S FUNCTIONS METHOD

Figure 3.1: Tight-binding approximation of a one-dimensional periodic lattice with
on-site energies εo and hopping parameters γ

where Ĥ is the Hamiltonian and |Ψ〉 the wavefunction which is expanded in an

appropriate one dimensional orthogonal localized basis set

|Ψ〉 =
∑
z′∈Z

ψz′ |z
′〉 (3.2)

where |z′〉 denotes the basis of the site z
′
. Substituting this back into (3.1) and

multiplying the equation with |z〉 gives

∑
z′

Hz,z′ψz′ = Eψz (3.3)

Here

Hz,z′ = 〈z|Ĥ|z′〉 (3.4)

the form of the Hamiltonian matrix is

H =



. . . γ

γ εo γ

γ εo γ

γ εo γ

γ εo γ

γ
. . .


(3.5)

where γ and εo are real numbers, and represent the hopping parameters and the

on-site energies respectively. Considering the periodic structure of the matrix, the

following equation for every z ∈ Z can be written as
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γψz+1 + εoψz + γψz−1 = Eψz (3.6)

Using the Bloch-theorem ψz+n = eiknψz where −π ≤ k < π and n ∈ Z, the

Schrodinger equation (3.6) can be solved to obtain the following dispersion relation

E(k) = εo + 2γcos(k) (3.7)

and the wavefunction for the z − th site

ψz =
eikz√
v

(3.8)

which has been normalized by the group velocity

}v =
∂E

∂k
= −2γsin(k) (3.9)

It is important to note, that for a given energy there are two wavefunctions that

satisfy (3.1) and their k and v have opposite signs. The wavefunction with positive

group velocity is called a right moving wave and with negative group velocity it is

called a left moving wave. With the choice of γ < 0 the right moving waves have

k = +| k| and the left moving waves have k = −|k|. Since only their signs are

different, for convenience I restricted k and v to be positive and explicitly add the

sign there if I wanted to distinguish between the left and right moving waves. The

Green’s function of this system is defined by the equation

(E − Ĥ)ĝ = Î (3.10)

which can be transformed into a matrix equation by using the basis set defined

above

(EI −H)g∞ = I (3.11)

where g∞ is the matrix form of the Green’s function and I is the identity matrix.
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Formally the solution could be written as the inverse of the EI−Hmatrix, however

this matrix is infinite. Furthermore, this equation itself is not enough to determine

the Green’s function, since the system is only described completely by including

the boundary conditions as well. The retarded Green’s function, the one we need,

as it will be clear later, belongs to the boundary condition for outgoing waves.

Therefore one has to set the boundary of this open system so that the waves are

propagating outwards to infinity, namely at positive infinity we have a propagating

wave that goes in the positive direction and at negative infinity a propagating wave

that goes in the negative direction.

Substituting the explicit form of the Hamiltonian (3.5) into (3.11) for a given z′

−γg∞
z−1,z′

+ (E − εo)g∞z,z′ − γg
∞
z+1,z′

= δz,z′ (3.12)

equation (3.12) is a Schrodinger equation, except for z = z
′
. To obey the retarded

boundary conditions the following solutions are assumed

g∞
z,z′

=

 A−e−ik(z−z′ ) z < z
′

A+eik(z−z′ ) z > z
′

(3.13)

By substituting this ansatz into (3.12) and using the definition of the group

velocity the amplitudes are expressed as

g∞
z,z′

= A+ = A− =
1

i~v
(3.14)

This way the retarded Green’s function for the one dimensional chain has the

following form

g∞
z,z′

=
eik|z−z

′ |

i~v
(3.15)
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3.2 Green’s function of a semi-infinite 1D chain

Figure 3.2 shows the Green’s function of a semi-infinite lead. Our aim is to attach

the leads to the scatterer, so we are going to show the Green’s function of a semi-

infinite lead.

Figure 3.2: One dimensional semi-infinite tight-binding chain with εo on-site en-
ergies and γ hopping parameters, left: for the left lead, right: for the right lead.

The equations for the Green’s function of the left semi-infinite lead are the

same as for the infinite lead, but with z, z
′ ≤ 0, with the terminating point z = 0

γgL−1,z′
+ (E − εo)gL0,z′ = δz′ ,0 (3.16)

This is the same as (3.12) with the condition that gL
1,z′

= 0, hence the problem is

the same as in the infinite case, but with an additional boundary condition. With

adding a left going wave to (3.15) this condition can be satisfied

gL
z,z′

= g∞
z,z′

+Be−ikz (3.17)

furthermore gL
z,z′

is only sensible if z, z
′ ≤ 0 and B can be determined from the

gL
1,z′

= 0 condition. Since a left going wave was added, this Green’s function is

still a retarded Green’s function. Finally it takes the form

gL
z,z′

=
eik|z−z

′ | − eik(2−z′−z)

i~v
(3.18)

Similarly one can derive the Green’s function of the right semi-infinite lead, which

is
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gR
z,z
′ =

eik|z−z
′ | − eik(z+z

′
)

i~v
(3.19)

and in this case the formula is only true for z, z
′ ≥ 1. At the termination point

gl = gL00 =
eik

γ
(3.20)

where gl is the left surface Green’s function, and for this simple system it’s the

same as the right surface Green’s function

gr = gR11 =
eik

γ
(3.21)

3.3 Green’s function of two 1D semi-infinite

chains brought together

In this section I used different coupling and on-site parameters for the leads, and

Figure 3.3 illustrates the system. The Hamiltonian matrix for our system is

Figure 3.3: Two semi-infinite 1D chains brought together

Ha =



. . . γL

γL εL γL

γL εL α

α εR γR

γR εR γR

γR
. . .


(3.22)
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CHAPTER 3. GREEN’S FUNCTIONS METHOD

where the parameters are real numbers. One can introduce a decoupled Hamilto-

nian matrix, which is similar to Ha, but with α = 0

h∞a =



. . . γL

γL εL γL

γL εL 0

0 εR γR

γR εR γR

γR
. . .


(3.23)

The corresponding Green’s functions are defined by:

(EI −Ha)Ga = I (3.24)

and

(EI − h∞a )g∞a = I (3.25)

Since the decoupled system consists of two independent semi-infinite leads, their

Green’s function can be written as g∞a = gL∞a ⊕ gR∞a , where gL∞a gR∞a are the

Green’s functions of the semi-infinite leads. With this decoupled Green’s function

the Green’s function of the coupled system can be expressed using Dyson’s equation

Ga = ((g∞a )−1 − Va)−1 (3.26)

where Va = Ha−h∞a is the coupling matrix. (3.26) can be rewritten into a recursive

form

Ga = g∞a + GaVag∞a (3.27)

Although this is an infinite form, we can utilize the fact that the coupling matrices

are almost completely zero, except around the scatterer. This allows us to truncate
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the calculations to 2× 2 matrices using

Va =

0 α

α 0


(3.28)

which is the (2× 2) nonzero submatrix of the coupling matrix, and defining

ga =

gL∞00 0

0 gR∞11



=

gl 0

0 gr


(3.29)

This way the (2× 2) submatrix of the full Green’s function is

Ga = ga +GaVaga (3.30)

Rearranging this obtains

Ga = [(ga)
−1 − Va]−1 (3.31)

which is

=

Ga,00 Ga,01

Ga,10 Ga,11



=

g−1
l −α

−α g−1
r


−1

= 1
g−1
l g−1

r −α2

g−1
r α

α g−1
l


(3.32)

One could also express the other elements of Ga, but as we will see later, knowing

this block is sufficient for the transport calculations.
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3.4 Green’s function of a single impurity be-

tween 1D chains

To explore more about this method I calculated the Green’s function for a single

impurity between the semi-infinite chains, depicted on Figure 3.4 The Hamiltonian

Figure 3.4: Tight-binding chain with a single scatterer

matrix for this system is

Hb =



. . . γL

γL εL α

α ε1 β

β εR γR

γR

. . .


(3.33)

The method of calculating the Green’s function is very similar to the previous

derivation. In this case the Green’s function of the decoupled system, (i.e. when

α = β = 0, can be written as g∞b = gL∞⊕ gm⊕ gR∞, where gm = (E− ε1)−1 is the

Green’s function of the decoupled scatterer and it is a 1× 1 matrix. The coupling

matrix is also similarly defined Vb = Hb − h∞b , where h∞b is the Hamiltonian of

the decoupled system. Based on the logic of the previous derivation the truncated

matrices can be written up directly and are the following 3 by 3 matrices now

gb =


gl 0 0

0 gm 0

0 0 gr


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(3.34)

Vb =


0 α 0

α 0 β

0 β 0


(3.35)

and finally the important subpart of the Green’s function takes the form

Gb =


g−1
l −α 0

−α E − ε1 −β

0 −β g−1
r


−1

(3.36)

3.5 Green’s function of a general scatterer be-

tween semi-infinite 1D chains

Following the same logic one can express the Green’s function for a general

scatterer between semi-infinite 1D chains. The corresponding tight-binding model

is depicted on Figure 3.5 The Hamiltonian matrix now has the following block

Figure 3.5: Tight-binding chains with a general scatterer

matrix form

H =


Hl HLM 0

H†LM HM HMR

0 H†MR HR


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(3.37)

where HM is an N by N matrix, HLM is an ∞ × N and HMR is an N × ∞

matrix, and N denotes the number of sites in the scatterer. In principle HLM and

HMR are infinite, but they only have a 1 × N and N × 1 block that is defined

to be nonzero, which will be denoted by HLM and HMR. The Green’s function

of the decoupled system the system (with HLM = HMR = 0) can be written as

g∞ = gL∞⊕ gM ⊕ gR∞, where gM = (EI −HM)−1. As previously, it is possible to

construct the truncated matrices.

g =


gl 0 0

0 gM 0

0 0 gr


(3.38)

V =


0 HLM 0

H†LM 0 HMR

0 H†MR 0


(3.39)

Now the (3 × 3) superscript denotes the 3 blocks inside. Substituting the blocks

(3.38) and (3.39) into Dyson’s equation yields the truncated Green’s function

G =


GLL GLM GLR

GML GMM GMR

GRL GMR GRR



G =


g−1
l −HLM 0

−H†LM EI −HM −HMR

0 −H†RL g†r


−1

(3.40)

where the matrix elements are themselves matrices with the corresponding dimen-

sion.
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3.6 Green’s function of a general system

3.6.1 Green’s function of an infinite periodic system

Previously, the Green’s function of a one-dimension chain was calculated. At this

point, I extended this to examine a general procedure to produce the Green’s

function of an arbitrary periodic system. So, assuming we have a periodic infinite

lead in the z direction, and consisting of both slices of intra-Hamiltonians, H0 and

inter-Hamiltonian elements, H1, as shown on Figure 3.6.

The Hamiltonian describing this lead is

Figure 3.6: A general infinite periodic lead

H =



. . . H1

H†1 Ho H1

H†1 Ho H1

H†1 Ho H1

H†1 Ho H1

H†1
. . .



(3.41)

Therefore, at a point z along the periodic direction, the Schrodinger equation can

be written in terms of the energy E and the wavefunction |ψz〉, the same as in the
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case of the 1D chain.

Ho|ψz〉+H1|ψz+1〉+H†1|ψz−1〉 = E|ψz〉 (3.42)

The system considered is infinitely periodic in the z direction only and is finite in

both x and y directions. This means, that any unit cell z, the wavefunction |ψz〉

can be represented in Bloch form

|ψz〉 =
1√
νk
eikz|φk〉 (3.43)

consisting of a product of a propagating plane wave, and a wavefunction |φk〉 in

the perpendicular direction to transport. The latter has M degrees of freedom

and is therefore a 1 ×M dimensional vector. This can be substituted back into

(3.42), where the dependence on the position z drops out, leaving a set of modified

Schrodinger equations

(Ho +H1χ+H†1χ
−1)|φk〉 = E|φk〉 (3.44)

where χ = eik.

In normal band structure calculations, the Hamiltonian on the left hand side of

(3.44) is diagonalized for a given k value to find the M energy eigenvalues Ei(k)(i =

1....M) and the corresponding set of eigenvectors |φk〉. The method employed here

was the opposite, for a given energy value E, all complex values of k will be obtained

by finding the allowed values of χ. This can be done by rearranging (3.44) into

the form

[−H−1
1 (Ho − E)−H−1

1 −H
†
1χ
−1]|φk〉 = χ|φk〉 (3.45)

where χ now represents the eigenvalues of the new matrix. Defining |ωk〉 = χ−1|φk〉

and substituting this into equation (3.45), an equivalent eigenvalue equation is
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formed −H−1
1 (Ho − E) −H−1

1 H†1

I 0


|φk〉
|ωk〉

 = χ

|φk〉
|ωk〉


(3.46)

which can be solved numerically. Once this is solved, it gives a set of 2M eigen-

values, and the wavefunctions |φk〉 can be identified as the top M components of

each eigenvector.

If Ho is Hermitian, then these eigenvalues can be divided into two sets: those which

are propagating or decaying right as z →∞, and those which are propagating or

decaying left as z → −∞. Left/right propagating states correspond to real values

of k, whereas states decaying as z → ±∞ correspond to complex values of k. If k

is real, there exist pairs of solutions corresponding to right k and left k̄ propagating

states, which either have positive v+ or negative v− group velocities, respectively.

These real k-vectors identify open scattering channels, and in this case, k = −k̄.

The channel velocities are given by

ν+ =
1

~
∂E(k)

∂k
> 0 (3.47)

ν− =
1

~
∂E(k̄)

∂k̄
< 0 (3.48)

Imaginary solutions of k can again be paired and if k is a solution, then k∗ is also

a solution. A summary on the sorting of the states can be found in Table 3.1.

Table 3-1: Sorting the eigenstates into left and right propagating or decaying

states.

It is now possible to construct the Green’s function for this general infinitely
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periodic system. As we demonstrated before, the Green’s function is related to

the wavefunction of the system, and in this case will take the form

Gz,z′ =


∑M

l=1 |φkl〉eikl(z−z
′
)〈Wkl| z ≥ z

′∑M
l=1 |φk̄l〉e

¯ikl(z−z′ )〈Wk̄l| z ≤ z
′

(3.49)

where the vectors 〈Wkl| and 〈Wk̄l| and have to be determined. For an infinitely

periodic system the Green’s function should be continuous at the point z = z
′
,

which produces the continuity condition

M∑
l=1

|φkl〈Wkl| =
M∑
m=1

|φk̄m〈W ¯km| (3.50)

Equation (3.49) can be substituted back into the defining equation for the Green’s

function

(EI −H)G = I (3.51)

Obtaining

(E −Ho)Gz,z +H1Gz,z+1 +H†1Gz,z−1 = 1 (3.52)

which can be expanded at a point z and simplified considerably if only the nearest

slice interactions are included

M∑
l=1

[(E −Ho)|φkl〉〈Wkl |+H1|φkl〉eikl〈Wkl |+H†1|φk̄l〉e
¯ikl〈Wk̄l |] = 1 (3.53)

After some manipulation and the use of the Schrodinger equation from (3.44), it

was possible to reduce (3.53) further to
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M∑
l=1

H†1[|φkl〉e−ikl〈Wkl | − |φk̄l〉e
¯−ikl〈Wk̄l |] = −1 (3.54)

Before proceeding, it is important to note that in normal band structure calcula-

tions the wavefunctions corresponding to a given choice of k are all orthogonal.

However, wavefunctions corresponding to different choices of k are not necessarily

orthogonal, because the operator on the left side of (3.44) does not necessarily

commute with itself for different choices of χ. Hence the solutions of (3.46) for

a fixed energy and different k need not be orthogonal. In this case a dual basis

can be defined |φ̄kl〉 which is orthonormal to the basis |φkl〉 and these two together

form a complete basis in the Hilbert space

〈φk̄l|φ̄ ¯km〉 = δk̄l ¯km (3.55)

〈φkl|φ̄km〉 = δklkm (3.56)

M∑
l=1

|φk̄l|φ̄k̄l〉 = I (3.57)

M∑
l=1

|φkl|φ̄kl〉 = I (3.58)

By defining this dual basis it is now possible to express 〈Wkl | as a superposition

of 〈Wk̄l |, and vice versa by manipulating equation (3.50)

〈Wkl | =
M∑
l=1

〈φ̄kl|φ ¯km〉〈Wk̄m| (3.59)

〈Wk̄l | =
M∑
l=1

〈φ̄k̄l|φkm〉〈Wkm| (3.60)

(3.60) can be substituted into equation (3.54) and simplified to produce the two

equations

55



CHAPTER 3. GREEN’S FUNCTIONS METHOD

〈Wkl | =
M∑
m=1

〈φ̄km|V−1 (3.61)

〈Wk̄l | =
M∑
m=1

〈φ̄k̄m|V−1 (3.62)

which show the vectors 〈Wkl | and 〈Wk̄l | in terms of the basis and dual basis func-

tions with

V−1 =
M∑
l=1

H−1
1 (|φkl〉e−ikl〈φ̄kl| − |φk̄l〉e−̄ikl〈φ̄k̄l|) (3.63)

The Green’s function for the infinite periodic system can now be written by sub-

stituting the |W 〉 vectors back into equation (3.49)

Gz,z′ =


∑M

l=1 |φkl〉eikl(z−z
′
)〈φ̄kl|ν−1 z ≥ z

′∑M
l=1 |φk̄l〉e

¯ikl(z−z′ )〈φ̄k̄l|ν−1 z ≤ z
′

(3.64)

3.6.2 Green’s function of a semi-infinite periodic system

In this section I am going to construct the Green’s functions for the left and right

semi-infinite periodic systems. This is carried out in a similar fashion to that of

the one-dimensional example, where the semi-infinite Green’s function was derived

directly from the infinite system’s Green’s function.

The left lead is defined by the periodic system extending from z = −∞ to the

last Hamiltonian slice at z = zo − 1, and the right lead is defined by the periodic

system extending from z = ∞ to its last Hamiltonian slice at z = zo + 1. From

these boundary conditions, the left and right lead Green’s functions (GL, GR) are

constrained to be zero at the point z = zo

GL
zo,z

′ = GR
zo,z

′ = 0 (3.65)
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To obey these constraints as in the one dimensional example a wavefunction can

be added to the infinite system’s Green’s function (3.64). First we will add a left

moving wavefunction with amplitude Λl(z
′
, zo) to the left lead side

GL
z,z′

= Gz,z′ +
M∑
l=1

|φk̄l〉eīklzΛl(z
′
, zo) (3.66)

The amplitude Λl(z
′
, zo) is found by applying the constraint (3.65)at the point

z = zo
M∑
l=1

|φkl〉eikl(zo−z
′
)〈φ̄kl |ν−1 +

M∑
l=1

|φk̄l〉e
ik̄lzoΛl = 0 (3.67)

Therefore

Λl = −
M∑
m=1

e−ik̄lzo〈φ̄k̄m|φkl〉e
ikl(zo−z

′
)〈φk̄l |V

−1 (3.68)

Substituting this into equation (3.66) produces the Green’s function of the left

semi infinite lead

GL
z,z′

= [
M∑
l=1

|φkl〉eikl(z−z
′
)〈φ̄kl | −

M∑
l,m=1

|φk̄l〉e
ik̄l(z−zo)〈φ̄k̄m|φkl〉e

ikl(zo−z
′
)〈φ̄kl |]V−1

(3.69)

This can be repeated in exactly the same manner for the right lead, by adding a

right moving wavefunction. This leads to the Green’s function of the right semi-

infinite lead

GR
z,z′

= [
M∑
l=1

|φk̄l〉e
ik̄l(z−z

′
)〈φ̄k̄l | −

M∑
l,m=1

|φkl〉eikl(z−zo)〈φ̄km|φk̄l〉e
ik̄l(zo−z

′
)〈φ̄k̄l |]V

−1

(3.70)

The final step in this analysis is to extract the surface Green’s function evaluated

at each end point z = z
′

= zo for the left and right leads. This can be simplified

using the completeness relations (3.55) (3.56) (3.57) (3.58) and yields
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GL = GLzo,zo = [I −
M∑

l,m=1

|φk̄m〉e
−ik̄m〈φ̄k̄m|φkl〉eikl〈φ̄kl |]V−1 (3.71)

GR = GRzo,zo = [I −
M∑

l,m=1

|φkm〉eikm〈φ̄km|φk̄l〉e
−ik̄l〈φ̄k̄l |]V

−1 (3.72)

3.6.3 Including a scattering region

As before, the first step was to set the couplings HLM and HMR to zero, thus the

truncated Green’s function gtr across the uncoupled device is

gtr =


GL 0 0

0 (EI −HM)−1 0

0 0 GR


(3.73)

Here, the Green’s function of the isolated scatterer is calculated directly from the

equation (EI −HM)GM = I. Turning on the couplings to the scattering region is

again done by introducing the truncated perturbation Γtr

Γtr =


0 HLM 0

H†LM 0 HMR

0 H†MR 0


(3.74)

Using equations (3.73) and (3.74) in Dyson’s equation yields the truncated block

Gtr of the full retarded Green’s function of the system

Gtr = (g−1 − Γtr)−1 =


GL GLM GLR

GML GM GMR

GRL GRM GR


(3.75)
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3.7 Obtaining the transmission coefficients

From equation (3.75) one can see, that if we want to calculate any part of Gtr

we need to invert a matrix the size of the lead’s surfaces plus the size of the

scatterer (due to Dyson’s equation). This is computationally very intense, and as

the Fisher-Lee formula [1] expresses the transmission and reflection coefficients as

a function of the surface Green’s functions only, the Green’s functions between

two internal points in the scatterer are not needed.

To overcome this, it is possible to substitute the full Hamiltonian of the system by

an effective Hamiltonian, that couples the surface sites directly. Let us consider

the Schrodinger equation

∑
j

HijΨj = EΨi (3.76)

Separating the l − th degree of freedom from (3.76) obtains

HilΨl +
∑
j 6=l

HijΨj = EΨi (i 6= l) (3.77)

HllΨl +
∑
j 6=l

HllΨj = EΨl (i = l) (3.78)

(3.78) and Ψl is

Ψl =
∑
j 6=l

HljΨj

E −Hll

(3.79)

Inserting (3.79) into (3.76) results in the following effective Schrodinger equation

∑
j 6=l

[HijΨj +
HilHljΨj

E −Hll

] = EΨi (i 6= l) (3.80)

where the number of degrees of freedom is decreased by one compared to (3.76).

We can hence introduce a new effective Hamiltonian Heff as
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Heff
ij = Hij +

HilHlj

E −Hll

(3.81)

In this way we are able to use Gauss elimination to remove any unwanted degrees

of freedom from the Hamiltonian (it is also called decimation). Now the original

scattering problem with the Hamiltonian H can be reduced into this effective

Hamiltonian

Heff =

HL Vc

V†c HR


(3.82)

where Vc is the new effective coupling Hamiltonian. Using Dyson’s equation again,

for the truncated Green’s function we get

Gtr
eff =

(GL)−1 Vc

V †c (GR)−1


=

G00 G01

G10 G11


(3.83)

And finally the generalization of the Fisher-Lee relation [1, 2] assuming that the

states are normalized to carry unit flux- gives the matrix elements for the trans-

mission amplitude t̂ from the left lead to the right lead as

thl = φ̄†khG01VLφkl
√
|νh
νl
| (3.84)

φkh is a right moving state vector in the right lead, φkl is a right moving state

vector in the left lead, νh and νl are the corresponding group velocities and VL is V

defined by (3.63) for the left lead. The matrix elements of the reflection amplitude

in the left lead r̂ read

rhl = φ̄†kh(G00VL − I)φkl

√
|νh
νl
| (3.85)
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Similarly for particles coming from the right

t
′

hl = φ̄†khG10VRφk̄l

√
|νh
νl
| (3.86)

r
′

hl = φ̄†kh(G11νR − I)φk̄l

√
|νh
νl
| (3.87)

The scattering matrix, SC built up from transmission and reflection coefficients in

such a manner is unitary. Finally, the total observable transmission coefficient for

the system can be found by adding all channels

T (E) =
M∑

lm=1

|tlm|2 =
M∑

lm=1

t∗lmtlm = T r(t̂†t̂) (3.88)

This chapter has demonstrated that by using the Green’s function scatter-

ing approach a potentially infinitely sized problem can be reduced to a finite

problem, that can then be solved numerically. In later chapters this procedure will

be demonstrated by implementing the DFT code SIESTA [3] and the transmission

coefficient will be calculated using the Gollum code [4].
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Chapter 4

Theory of Quantum Transport

Chapter 3 introduced Green’s function scattering formalism for different systems.

In this chapter, I will describe electron transport and the transmission coefficient

T (E). Thermoelectric coefficients such as thermopower S, the Peltier coefficient

Π, thermal conductance κ and figure of merit ZT are all introduced in this chapter

before being used in Chapters 5, 6 and 7.

4.1 Single electron transport

A mixture of scattering theory and a Green’s function techniques will be used

in this thesis to describe the electric transport and thermoelectric properties of

nanoscale organic molecule systems trapped between two gold electrodes.

As was mentioned in the previous chapter on DFT, our approach is subject to the

Born-Oppenheimer approximation, that describes the electron system only. The

problem which has to be solved is still a complicated many electron problem of a

system in nonequilibrium. This kind of problem is difficult and cannot be solved

in general, because we have to describe the electron transport by time-dependent

many-body wavefunctions of the whole system.

To avoid this kind of hurdle, we are going to use the single electron picture of

electron transport, similar to the replacement of the many particle problem in

the density functional theory chapter by a single-particle Kohn-Sham formalism.
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This means treating the electronic transport as that due to many independent

single-electrons. Moreover, we will assume that the single-particle states in the

Kohn-Sham formalism actually describe these independent single-electrons.

In the same way, in analogy to standard band structure calculations of solids in

equilibrium -in which in many cases the Kohn-Sham single particle eigenvalues and

eigenstates can be successfully interpreted as the elementary excitation of the sys-

tems. We will use the same procedure in the electronic transport and assume that

the effects of the atomic arrangement, of the electronic (self-consistent) charge

density and single-particle potential on the current can actually be modeled by

this approach. Clearly this is a simplification by introducing a number of approx-

imations, which in some cases makes the results only applicable to main trends

in quantum transport. However in many cases these are enough to sufficiently

explain the underlying phenomena, while in other cases these can be made more

accurate using a number of techniques (like using different exchange-correlations

functionals in DFT, correcting for self-interaction and image charge effects [1],

etc.).

It is worth mentioning, that there are many effects which restrict the validity of

the single-electron transport approach. For instance, electron-electron scattering

effects of different conducting electrons are not calculated nor are interactions

with the lattice beyond the static approximation, i.e. electron phonon scattering,

screening and charging effects or many particle interactions in magnetic systems.

However, if these processes are sufficiently weak, then the single-particle approx-

imations in terms of the Kohn-Sham states will provide reasonable results. This

approach of this description does not include any processes by which the single

particle energy of the states carrying the current is changed, therefore only elastic

transport can be described, and it corresponds to the limit in which the mean-free

path of the electrons is much larger than the system size. In the single particle

picture the description in terms of the Kohn-Sham wavefunction will hold only on

length scales shorter than this length scale, since these processes not included in
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the model will lead to the scattering destroying the phase coherence of the single-

electron states involved.

It is important to mention, that there are many cases this description of the elec-

tron current in terms of single-particle physics is not accurate due to quantum

many-body effects. For instance, the Kondo-effect, in which a two level quantum

scatterer, embedded in a metallic environment leads to conductance abnormalities

at low temperatures, or correlation effects like Coulomb blockade [2].

4.2 Transmission coefficient

As mentioned in previous chapter, the main property of nanoscale system calcu-

lated in this work is the transmission coefficient T (E). This is the probability

for an electron to pass from one lead to the other and it can easily be related to

the electronic property such as conductance G and thermal properties such as the

thermopower.

To calculate T (E), and from it the thermoelectric properties we need to set up a

systematic picture for the whole system, as shown in Figure 4.1

Figure 4.1: A general scattering region (described by HM) attached to leads, made
up from infinite slices of H0 connected by H1. The scattering region, also called
the Extended Molecule (EM) already contains part of the leads.

Based on a thermodynamic view, the system is designed with bulk electrodes

(reservoirs)in thermal equilibrium with a central region (Molecules). The central

region includes a part of the electrodes to form a so-called extended molecule

(EM), µL and µR, are chemical potentials for the left and right electrodes and
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they are able to exchange electrons with the EM, this situation refers to zero-bias.

However, µL and µR are not equal when a bias is applied, leading to a flow

of current. The method for establishing the steady state is to adiabatically

switch on the coupling between the electrodes and the EM [3–5]. The probes

of current-voltage maintain local charge neutrality, as they are usually made of

good metals. Therefore, the effect of an external bias voltage will produce a rigid

shift of the whole spectrum, for example, of all the on-site energies, which will

lead to a nontrivial potential profile over the EM, that needs to be calculated

self-consistently. To avoid the discontinuity of the potential profile (and the

generation of spurious scattering) a set of boundary conditions must be applied,

so that the resulting self-consistent electrostatic potential matches that of the

leads at the boundaries of the EM. Therefore, in order to achieve a good match of

the electrostatic potential, several layers of the electrodes are usually included in

the EM. Their number ultimately depends upon the screening length of the leads,

but in most situations, between two and four-atomic planes are sufficient [6]. It

is good practice to include a few layers of the leads in the extended molecule,

because the surfaces of the electrodes usually reconstruct, which might undergo

additional geometrical changes when bonding to the nanoscale device, e.g. when

molecules adsorb to metallic surfaces.

To model the macroscopic sized electrodes in an appropriate way, we are going

to use infinitely long leads with infinite cross-sections, with a finite scattering

region in between them, but this would result in an infinite Hermitian matrix H.

Here we are assuming, that the electrodes are semi-infinite defect-free crystalline

metals, in this case H will have a regular periodic structure and a unit cell along

which the direction of the transport can be defined. It is convenient to introduce

the concept of a principal layer (PL), which is defined as the smallest cell that

repeats periodically in the direction of transport, constructed in a way to interact

only with the nearest-neighbor PL′s. This means that all the matrix elements

between atoms belonging to two nonadjacent PL′s vanish, resulting in a rather
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sparse H. For example, in a linear chain of hydrogen atoms described by a

nearest-neighbor tight-binding model, one atom forms the unit cell. However, if

nearest and next-nearest-neighbor elements are included, then the PL will contain

two atoms, etc. This gives us a way to overcome the infinite size of the problem.

However, we still have the infinite cross section to deal with, and we have

two approximations we can use to overcome this problem. The first option

is using leads with a finite cross section. In this case, no periodic boundary

conditions in the transverse direction are required and the whole system is quasi

one dimensional. However, special care must be taken when choosing the cross

section of the electrodes in order to avoid quantum confinement effects. It is

also worth noting, that leads with very small cross section make the use of the

Landauer formula for transport [7] questionable. As a rule of thumb the linear

dimension of the cross section should be several times the Fermi wavelength

of the material forming the leads, and there should be several open scattering

channels. The second option is to use periodic boundary conditions (PBC). In

this case the system is repeated periodically in the transverse direction, meaning

that the EM is also repeated periodically. Clearly, quantum confinement effects

are eliminated, but one should be particularly careful in order to eliminate the

spurious interaction between the mirror images of the EM. Therefore large unit

cells must be employed even in this case. However, from a formal point of view

the use of periodic boundary conditions does not change the problem setup, but

it can only be used with parallel leads.

In (4.1) H0 is a N × N matrix describing all interactions within a PL, where N

is the total number of degrees of freedom (basis functions) in the PL. Similarly

H1 is the N × N matrix describing the interaction between two PL′s. In the

same way HM is the M ×M matrix describing the EM and HLM (HRM) is the

N × M(M × N) matrix containing the interaction between the last PL of the

left-hand side (right hand side) lead and the EM.
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H =



. . . H1

H−1 Ho H1

H−1 Ho HLM

HML HM HMR

HRM Ho H1

H−1 Ho H1

H−1
. . .


(4.1)

Since H is hermitian, H−1 = H†1, HML = H†LM and HMR = H†RM . In this case H

has the same structure as the Hamiltonian of a one-dimensional chain, but with

blocks as elements instead of single values. The overlap matrix S has exactly the

same structure of H. Therefore we will adopt the notation S0, S1, SLM , SRM , and

SM for the various blocks of S, in complete analogy with their Hamiltonian coun-

terparts. Here the principal layer, defined by H, is used for both the S and the H

matrices, even though the range of S can be considerably shorter than that of H.

Figure 4.2: A plane wave impinging on a potential barrier. The wave is par-
tially reflected with a probability amplitude r, and partially transmitted with a
probability T = |t|2

In the case of periodic boundary conditions (in the transverse direction) all the

matrices (H0, H1, etc.) now depend on the transverse k vector used, and the infi-

nite problem transforms into a collection of k -dependent quasi-one-dimensional

problems. Now that we have set up the problem, we will use equilibrium Green’s
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function techniques based on the scattering approach to solve the quantum trans-

port problem.

4.3 Landauer formula and scattering formalism

There is an important and simple way to link or match the theoretical calculations

with experimental measurements. The Landauer formula is a key formula for using

the electron transmission coefficients obtained from the scattering formalism, to

determine experimental quantities such as current or conductance. It is applicable

for ballistic mesoscopic or phase coherent systems where the electrons can flow

freely between scatterers.

Let us consider the following theoretical quasi one-dimensional transport model

(Figure 4.3), a scatterer connected to two perfect and very long leads, which

are contacted to two infinite electron reservoirs that have infinitesimally different

chemical potentials µL − µR = δE > 0. This small chemical potential difference

will drive the electrons from the left side to the right, through the leads and the

scatterer. In fact, the reservoirs set the boundary conditions for the lead-scatterer-

lead system: electrons can flow from left to right with energy µ = µL ≈ µR.

Figure 4.3: Schematics of one dimensional lead-scatterer-lead arrangement and the
electron reservoirs with µL (left) and µR(right) chemical potential.

Let us examine the case when there is only one open channel, i.e. only one propa-

gating wavefunction that satisfies the boundary condition. This means that only

one electron can travel through at once (two if one consider the spin). The incident

current, i.e., the current that would flow without scattering, and is proportional
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to the velocity and the number of electrons within δE energy range, can formally

be written as:

δI = eν
∂n

∂E
δE

where
∂n

∂E
is the density of states and ν the group velocity in the lead at µ energy.

Since the system is considered one-dimensional, we can write

∂n

∂E
=

1

2π

∂k

∂E
=

1

νh

and by this we obtain the simple relation

δI =
2e

h
δE =

e2

h
δV

δV is the voltage bias that corresponds to the δE chemical potential difference.

This relation is remarkable because it tells us that if we measure the conductance of

a perfect lead with one open channel then we would get
e2

h
. Since a channel is either

open and conducting, or closed and not conducting, then without scattering there

is no lower finite conductivity than
e2

h
. This conductance quantum corresponds

to a resistance of 6.54 kΩ, which is a typical macroscopic resistance in an electric

circuit. If we introduce a scatterer, there will be some electrons that will be

reflected with probability R, and some which will be transmitted by a probability

T . The current traveling through the scatterer to the right lead will be

δI =
e2

h
T δV

T is the transmission coefficient of the scatterer (see equation (3.88)), and the

conductance is explicitly given by the Landauer formula

δI

δV
= G(µ) = G0T (µ)
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where G0 =
2e2

h
= 7.74809 ×10−5S is the conductance quantum and T (µ) is the

transmission coefficient written as a function of the contact chemical potential.

The factor 2 in G0 is introduced to take into account the spin degeneracy, and in

the case of multiple channels this can be written as

G =
2e2

h

∑
Tn

.

The complete scattering process is described by the S matrix

S=

r t
′

t r
′



where t, t
′

are the transmission amplitude matrices from left to right and right to

left, and r, r
′

are the matrices, which contain the reflection amplitudes in the left

and the right lead.

4.4 Thermoelectric coefficients

When there is a temperature difference δT and a potential drop ∆V = ∆µ/e

(e= -/e/) across one system, this leads to a flow of heat current Q̇ and charge

I. In linear response, both currents are related to the temperature and potential

differences through the thermoelectric coefficients G,L,M and K [9, 10]

 I

Q̇

=

G L

M K


4V
4T



where

4V =
µL − µR

e
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and

4T = TL − TR

In the absence of a magnetic field L and M , are related by an Onsager relation (T

is temperature)

M = −LT

Rearranging the above equations, gives the current relations in terms of the mea-

surable thermoelectric coefficients: electrical resistance R = 1/G, thermopower S,

Peltier coefficient Π and the thermal conductance κ can be write4V
Q̇

=

 1/G −L/G

M/G K − LM/G


 I

4T

=

R S

Π κ


 I

4T


(4.2)

S is defined as the potential drop due to a temperature difference in the absence

of an electrical current

S ≡ -

(
4V
4T

)
I=0

=
L

G

(4.3)

The Peltier coefficient Π can be defined as the heat transferred purely due to the

charge current in the absence of a temperature difference

Π ≡ -

(
Q̇

I

)
4T=0

= -
M

G
= - ST

(4.4)

the thermal conductance κ is defined as the heat current due to the temperature

drop in the absence of an electric current

κ ≡
(
Q̇

4T

)
I=0

= K(1 +
S2GT

K
)
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By looking at the value of S or Π we can have an idea of how well the device will

act as a heat driven current generator or a current driven cooling device. Finally

we can defined the figure of merit ZT

ZT =
S2GT

κ
(4.5)

According to classical electronics, ZT is derived by finding the maximum induced

temperature difference produced by an applied electrical current in the presence

of Joule heating. Let’s consider a current carrying conductor placed between two

heat baths with temperatures TL and TR, and electrical potentials VL and VR

respectively. The thermoelectric figure of merit can be defined by finding the

maximum induced temperature difference of the conductor due to an electrical

current. Defining Q̇ the flux heat from bath L to R, then from equation (4.2)

Q̇ = ΠI + κ4T

The heat transfer makes the left bath cool and the right bath heat, with increasing

4T . The amount of Joule heating can be expressed as Q̇J = RI2. which is

proportional to the electrical resistance and the square of the current. This Joule

heating will also affect the temperature difference induced by the heat transfer,and

therefore in the steady state case

ΠI − κ4T =
RI2

2

By rearranging above formula, 4T is

4T =
1

κ
(ΠI − RI2

2
) (4.6)
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Equation (4.6) shows how 4T depends on I. To find the maximum temperature

difference we differentiate (4.6) with respect to the electric current

∂4T
∂I

= Π− IR = 0

Finally by writing back I = Π/R and substituting eq. (4.4) into eq. (4.6), for the

maximum of the temperature difference we obtain

(4T )max =
Π2

2κR
=
S2T 2G

2κ

Therefore

(4T )max
T

=
S2TG

2κ
=

1

2
ZT

The outcome is a dimensionless number that can be used to characterize the ”ef-

ficiency” of a molecular device.

4.4.1 Generalized formula for the thermoelectric coeffi-

cients

In order to calculate all thermoelectric coefficients we need to know Q̇, so we can

write a formula for the total heat current on one of the electrodes as the difference

of the left- and right-going heat currents on the same electrodes. The heat current

on the left electrode is, where the fL(E)fR(E) terms cancelled out during the

derivation, we obtain

Q̇L = Q̇+
L − Q̇

−
L =

2

h

∫ ∞
−∞

dET (E)((E − µL)fL(E)− (E − µR)fR(E))

where Q̇−LQ̇
+
L is the total heat current moving to the right or left on the left

74



CHAPTER 4. THEORY OF QUANTUM TRANSPORT

electrode. To keep it simple we are going to define the general current Ip, which

will represent the charge current if p = 0 or the heat current if p = 1, (e = -|e|).

Ip =


I

e
p = 0

Q̇ p = 1

The general formula for the current is

Ip =
2

h

∫ ∞
−∞

dET (E)((E − µL)pfL(E)− (E − µR)pfR(E)) =
2

h

∫ ∞
−∞

dET (E)A(E)

(4.7)

Assuming the below quantities

µ =
µR + µL

2

and

T =
TR + TL

2

rewrite the top and bottom reservoir’s Fermi distributions in terms of these with

∆µ = µL − µR and ∆T = TL − TR, giving

µL = µ+
∆µ

2
, TL = T +

∆T

2

µR = µ− ∆µ

2
, TR = T − ∆T

2

Thus, the left and right Fermi distributions become

fL(E) =

(
1 + e

E−µ−(Mµ/2)
kB(T+(MT/2))

)−1
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fR(E) =

(
1 + e

E−µ+(Mµ/2)
kB(T−(MT/2))

)−1

Expanding equation (4.7) in a Taylor series to linear order in M V and M T yields

Ip = Ip|∆T=0
∆µ=0

+
∂Ip

∂∆µ
|∆T=0
∆µ=0

∆µ+
∂Ip

∂∆T
|∆T=0
∆µ=0

4T

=
2

h

∫ ∞
−∞

dET (E)

[
A(E)|∆T=0

∆µ=0
+
∂A(E)

∂∆µ
|∆T=0
∆µ=0

∆µ+
∂A(E)

∂∆T
|∆T=0
∆µ=0

4T

]
(4.8)

The first term in the Taylor expansion is zero, and the two remaining terms reduce

down to the derivatives of the two Fermi distribution functions

∂A(E)

∂∆µ
|∆T=0
∆µ=0

= −(E − µ)p
∂f(E)

∂E

∂A(E)

∂∆T
|∆T=0
∆µ=0

= −(E − µ)p+1

T

∂f(E)

∂E

where f(E) =

(
1 + e

E−µ
kBT

)−1

is the Fermi distribution function. Substituting

these terms into the Taylor expansion (4.8) and writing the chemical potential in

terms of the applied electrical bias M µ = e M V the currents in the linear regime

can be written

Ip =
2e

h

∫ ∞
−∞

dET (E)(E − µ)p(−1)
∂f(E)

∂E
∆V

+
2

h

∫ ∞
−∞

dET (E)
(E − µ)p+1

T
(−1)

∂f(E)

∂E
∆T
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We can obtain the thermoelectric coefficients G,L,M and K from above equation

G =
2e2

h

∫ ∞
−∞

dET (E)(−1)
∂f(E)

∂E
(4.9)

L =
2e

h

∫ ∞
−∞

dET (E))
(E − µ)

T
(−1)

∂f(E)

∂E
(4.10)

M =
2e

h

∫ ∞
−∞

dET (E)(E − µ)(−1)
∂f(E)

∂E
(4.11)

K =
2

h

∫ ∞
−∞

dET (E)
(E − µ)2

T
(−1)

∂f(E)

∂E
(4.12)

It should be noted, that the integrals in above equations (4.9)-(4.12) look like the

nth central moments Ln of a probability function P(E) which can be defined as:

P (E) = −T (E)
∂f(E)

∂E

However, P (E) is not a real probability distribution function, since

∫ ∞
−∞

dEP (E) 6= 1

Let’s define Ln as a quantity

Ln ≡
∫ ∞
−∞

dE(E − µ)nP (E) = 〈(E − µ)n〉 (4.13)

By substituting (4.13) into equations (4.9)- (4.12), the measurable thermoelectric

coefficients can be written as

G =
2e2

h
Lo
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S = − 1

\e \ T
L1

Lo

Π =
−1

\e\
L1

Lo

κ =
2

hT
(L2 −

L2
1

Lo
)

Normalizing all functions such that L̃n = Ln/L0, the integrals L̃n are now the

central moments of a true probability distribution function:

L̃n =

∫ ∞
−∞

dE(E − µ)nP̃ (E) =

∫ ∞
−∞

dE(E − µ)n
P (E)∫∞

−∞ dEP (E)
(4.14)

Since ∫ ∞
−∞

dEP̃ (E) = 1

Therefore, the thermoelectric coefficient formulas can be reduced to

G =
2e2

h
Lo

S = − 1

eT
L̃1

Π =
1

e
L̃1

κ =
2

hT
Lo(L̃2 − L̃2

1)

and the Figure of merit (4.5) can be expressed

ZT =
L̃2

1

L̃2 − L̃2
1

In this case L̃1 is the expectation value Ē of the distribution, and L̃2 − L̃2
1 is its

variance σ2. This therefore means that both the thermopower and figure of merit

are all determined by the shape of the probability distribution ˜P (E), instead of
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its absolute magnitude, for instance:

S = − 1

eT
Ē

ZT =
Ē2

σ2
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Chapter 5

Crown Ethers

5.1 Introduction

Crown ether is a general name for macrocyclic polyethers containing ethylene

bridges separating electronegative oxygen atoms. They typically contain a central

electron rich hydrophilic cavity which range in diameter from 1.2-6.0 A◦. The

hydrophilic cavity is ringed with electronegative binding atoms such as oxygen,

nitrogen, sulphur etc. (Figure 5.1), and are surrounded by a belt of −CH2 groups

enabling a structure which is flexible and exhibits hydrophobic behaviour.

Figure 5.1: 12-Crown-4, red oxygen atoms, blue nitrogen, yellow sulfur, gray car-
bon and white hydrogen

The hydrophobic exteriors allow them to solubilize ionic materials into non-

aqueous solutions. Macrocyclicpolyethers create more stable complexes than open

chains because the cation is completely surrounded by a cyclic macrocycle. Thus,

when the inorganic cation fits into the cavity of a crown ether or is sandwiched
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between two crown ether molecules, it becomes a lipophilic species.

5.2 Types of Crown Ethers

There are three types of crown ethers:

1- Coronands: Cyclic compounds. Coronands containing oxygen as donor atoms

are called crown ethers, those containing oxygen and nitrogen as donor atoms

are called diaza-crown ethers, and others containing oxygen and sulphur as donor

atoms are called thio-crown ethers. (see Figure 5.1)

2- Cryptands : Macropolycyclic polyethers and are classified into bicyclic, tricyclic

and tetracyclic. (see Figure 5.2)

3- Podands: Open chain compounds and are characterized by lacking ring and

bridge structures (again in Figure 5.2) [1, 2].

Figure 5.2: Topology and classification of crown ethers, (D: dononr atom, B:
bridgehead atom and _: chain segment without donor atom).

5.3 Nomenclature of Crown Ethers

The IUPAC names for the crown ethers are highly complex and therefore an ad-

hoc naming system has been invented. These names are based on the number and

types of hydrocarbon rings, the total number of atoms in the ring, the class name

’crown’ and the number of oxygen atoms in the polyether ring, e.g., 1,4,7,10,13,16-

hexaoxa cyclooctadecane is designated as 18C6. Here, ”18” indicates the total
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number of atoms in the polyether ring while ”6” denotes the number of donor

oxygen atoms in the polyether ring. Additional substituents like dibenzo or dicy-

clohexano are written first, e.g. Dibenzo-18-Crown-6, Dicyclohexano-18-Crown-6.

The significant change to the basic crown ether system is the replacement of the

oxygen donor atoms by nitrogen or sulfur atoms to get a much easier ligand for

binding to transition metals [3].

5.4 Properties of Crown Ethers

Different groups of crown ethers are characterized by their different properties,

for example colour, solubility, melting point and characteristic absorption peaks.

Crown ethers with aromatic side rings are colourless crystalline compounds. The

saturated crown ethers are colourless, viscous liquids or solids of low melting point

which are much more soluble in all solvents than their aromatic precursors.

Complexing with a cation brings about distinctive changes in the absorption band,

generally by the appearance of a second peak at about 280 nm, with a changed

absorbance of the main band. The molar absorptivity of these compounds varies

from 1.2 - 8.4 × 10−3 cm−1mole−1. The infrared spectra of aromatic as well as

aliphatic crown ether shows the presence of ether linkages by a strong broad band

around 1230 cm−1 for aromatic-O-aliphatic and a band at 1100 cm−1 for aliphatic-

O-aliphatic group [4–7].

5.5 Size Fitting of the Cation

The size of the cation and the cavity diameter of the crown ether are of great im-

portance for ”Size-fitting” or ”Size-matching”. If the size of the cation matches the

cavity diameter of the crown ether,the metal ion is trapped (Figure 5.3). Smaller

cations are strongly solvated and more energy is required for desolvation (selected

data are shown in table 5.1). However, larger cations are unable to attract the

ligand. The selectivity of metal ions for crown ethers can not always be ascer-
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tained on the basis of the size of the cation as well as on the cavity diameter

of crown ether. Thus, 15C5 shows maximum affinity for potassium in methanol,

even though the diameter of sodium ion is closer to the cavity diameter of 15C5.

Sometimes, the complex forms with a relatively smaller ion in comparison with the

cavity diameter of the crown ether, due to a large electrostatic stabilization energy

e.g, extraction of gallium from hydrochloric acid medium in the 18C6 [8–11].

Figure 5.3: ”Host-guest” complexes formed from crown ethers and ions of alkaline
metals.

Table 5.1: Diameters of crown ether cavities and alkali metal ions [12]

5.6 Crown Ethers Applications

Crown ethers have divers applications in multiple fields:

1- Industry (purification, condensation, separation, recovery and removal of salts

and rare metals, noble metals, and heavy metals and separation of isotopes).

2- Electrochemistry (ion transport, non-aqueous electrolysis).

3- Organic chemistry (reaction mechanisms and kinetics, organic synthesis, par-

ticularly as a phase transfer catalysis in polymerization).
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4- Analytical chemistry (ion-selective electrodes, polarography and metal assay).

5- Environmental chemistry (capture and removal of harmful metal ions, treat-

ment of nuclear waste).

6- Biochemistry and biophysics (ionophore models).

7- Drugs and agrochemical (removal of harmful metal ions or supply of essential

metal ions and in cancer treatment). [13–16]

5.7 Selectivity of Crown Ethers

It is well known that crown ethers have high binding constants, that are achievable

with alkali metals. Ligands are only found when the correct macrocycle is used

for a given metal ion. For the alkali metals, which are hard cations, hard donor

atoms are needed, so suitable macrocycles are the original crown ethers and their

derivatives. The various factors influencing complex stability include:

1-The ring cavity size, being big enough to accommodate the ion.

2- Number of donor atoms in the ligand.

3- The donor atoms being held by the backbone with limited flexibility in positions

suitable to match the shape of the coordination sphere [17–21] .

5.8 Binding energy

The most important feature for metal ions selectivity with crown ethers is the

binding energy (M E), which according to the counterpoise method (described in

chapter two) is given by

BindingEnergy(M E) = EAB
AB − EAB

A − EAB
B (5.1)

The selectivities of crown ethers for alkali metal cations complexation have been

studied in the gas phase for oxygen crown (OC) for different sizes 12C4 and 15C5

with three alkali metals Li+ , Na+ and K+ (Figure 5.4).
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Figure 5.4: Fully optimized minimum energy structure of complex 15C5 with Li+

or Na+ or K+ (left to right)

Our calculations show Li+ binds strongly with both small and large cavity ring

size in gas phase (see table 5-2). These results do not agree with general selectiv-

ity rules (size-fitting). It is worth mentioning that for the small size ring cavity

(12C4), the ions do not fit inside the cavity. For instance, Li+ sits above the

centre by 1.5 Ao, whereas with relatively large size (15C5), Li fits exactly inside

the cavity (distance’s column in table 5-2).

Table 5-2: Binding energy (M E) for different size of OC .

Despite the fact that our results do not agree with these size-matching rules, they

do agree with previous DFT studies. For instance, David [22] has found three

cations (Li+, Na+ and K+) fit one size (15C5). In the same way, Yahmin re-

ported that there are two cations (Li+ and Zn2+), which fit 12C4, two years later

the same researcher reported Na+ and Cd2+, fit 15C5 [23,24].

The reason for the disagreement between theory and experiment is because the

calculations are performed in the gas phase, while most of the experimental mea-
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surements are performed in solutions. So to improve our calculations we recalculate

the binding energies in aqueous solution Figure 5.5 shows an example for 15C5

+Li+.

Figure 5.5: Fully optimized minimum energy structure of complex (15C5 + Li+)
in vicinity of water

Table 5− 3 shows results of the binding energy with a water solution. The values

of M E have increased for Li+ and K+ in the vicinity of solvent for small cavity

ring, whereas they have decreased for all ions within the large cavity ring. The

selectivity to the alkali ions still does not agree with the size-fitting rules for both

cavity sizes.

Table 5-3: Binding energy (M E) for different size of OC in vicinity of water.

To benchmark my results with experimental measurements, the size-fitting selec-

tivity concept does not always apply. Doubt has arisen about the validity of this
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concept [25], and there are many experimental measurements that do not agree

with the size-fitting concept, here I am going to refer to three studies. Luke has

found K+, fits (12C4) and Na+, fits both (15C5) and (18C6) [26]. Costaa has

done many studies on two cavity size (18C6)and (21C7), in 2002 he reported that

Li+ fits both of them, and in 2005 he reported another cation Mg2+ to fit those

cavities size [27, 28].

5.9 Structure of Molecular Wires

After studying the binding energy for OC (two size 12C4 and 15C5). I shall now

study two types of crown ethers that attached to other units. The structure of

each one consists of three parts:

1- Central unit Anthraquinone (the three rings with two pendant oxygen/nitrogen

atoms).

2- Pendant group linked to the central unit which is the crown ether.

3- Two arms (alkyl chains that terminated with thiol anchor groups.

I call these mixture (Anthraquinone Crown-Ether-Bridged) (AQC), and the two

types of crowns are oxygen crown (OC), diaza-crown (NC, aza=N). So the final

labeling is AQOC or AQNC, as shown in the chemical sketch (5.6)

Figure 5.6: Molecular wires containing ether bridges. left AQOC, right AQNC
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5.10 Controlled Shifting of Transmission Reso-

nances

To calculate the electronic properties and the electrical conductance of these

molecules (AQOC and AQNC) placed between gold electrodes, I use the SIESTA

implementation of density functional theory (DFT) [29], combined with the

GOLLUM code [30], which is a newly developed quantum transport code. The

optimum geometry of the isolated molecule was first calculated using DFT, with

all forces on atoms relaxed to a tolerance of 0.01 eV/Ang. In all calculations, a

double-zeta-plus-polarization (DZP) basis set, with norm-conserving pseudopo-

tentials was employed and the Hamiltonian and overlap matrices were calculated

on a real space grid defined by a plane wave cutoff of 200 Ry. After calculating

the optimum geometry of the molecular wire, it was attached to gold electrodes

as shown in the example of Figure 5.7. After removing the hydrogen atoms from

the terminal thiol groups, the equilibrium distance between the S atom and a

top atom on the surface of the gold electrode was found to be 2.3 Ao (using a

counterpoise method (Chap.2). The gold electrodes consist of tip comprising

seven layers of (111) gold with each layer containing 12 gold atoms, connected

thereafter to semi-infinite gold leads. A Hamiltonian describing this structure is

generated using SIESTA and then GOLLUM is used to calculate the zero bias

transmission coefficients T (E) describing electrons of energy E passing from one

electrode to the other via the molecular wire. The electrical conductance is then

related to the transmission through the Landauer formula.

Figure 5.7: Geometry of the molecular junction containing AQOC(12C4) and
AQNC(12C4) molecular wire attached between two gold electrodes
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Figure 5.8: Transmission coefficient AQNC (12C4, 15C5 and 18C6)

Figure 5.8 shows the transmission curves for the AQNC molecule, it is clear that

the conductance has increased with increasing the cavity size. We see that the

HOMO-LUMO gap is constant for all three molecules, therefore the increase in

conductance is due to the shifting of the LUMO resonance closer to Fermi energy.

The LUMO resonance for (12C4) is at 0.31 eV while (15C5) has shifted to 0.26

eV, and for the larger ring (18C6) the shifting is much bigger, to about 0.18

eV from the Fermi energy. This shifting can be attributed to an increase in the

number of oxygen atoms in the ring.

We see the same behavior in Figure 5.9 for the AQOC based crown ether. Here

the difference is the AQOC molecule has an anti-resonance in the HOMO-LUMO

gap, this anti-resonance has been shifted from -0.58 eV (12C4) to -0.92 eV (18C6).

Again the increase in conductance is due to the increase in the number of oxygen

atoms shifting the LUMO, but also shifting the position of the anti-resonance.

Anti-resonances are very important feature in in quantum interference, as they

open up the possibility of controlling quantum transport and may be a useful tool

in the design of molecular sensors. The anti-resonance here is due to the different
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transmission paths an electron can take.

Figure 5.9: Transmission coefficient AQOC (12C4, 15C5 and 18C6)

5.11 Sensing Mechanism

As was mentioned previously, crown ethers are ideal molecules, to accommodate

alkali cations in their cavity. Figure 5.10 shows a simple diagram of sensing

mechanism. Molecule backbone places between the drain and source. A pendant

group attached to the molecule backbone and this part is responsible for sensing a

target cation for example. In my case the the molecule backbone is Anthraquinone

with alkyl linkers to thiol anchors while the pendant group is the crown ether,

which will sense the target analyte.

To demonstrate sensing, I examined the effect of varying the positions of the Li+

cation (and its counter ion PF−6 ), by placing the Li+ at 245 different positions

above the cavity AQOC (12C4), as shown Figure 5.11. In each case I computed

the binding energy and the transmission coefficient T (E).
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Figure 5.10: Diagram of sensing mechanism

Figure 5.11: Sampling the cation (Li+ ion) position in the vicinity of AQOC
(12C4) cavity. (For clarity the alkyl arms and electrodes are not shown.)

To find what is the most favourable binding position the difference in total

energy with the (Li+ and PF−6 ) at different positions was calculated as shown

in Figure 5.12 below. This shows that the strongest binding for (Li+ and PF−6 )

occurs at position 88 which corresponds to the Li+ cation being located in the

middle of the cavity about 1.5 Ao above the crown (as shown in Figure 5.11 above.
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Figure 5.12: Binding energy of AQOC (12C4) as a function of Li+ position

The transmission coefficients T (E) for these most favourable binding positions

are shown in Fig 5.13)
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Figure 5.13: Transmission curves, the black dotted line is the transmission curve
for the optimum binding of (Li+ and PF−6 ) to AQ (12C4). The yellow curves
show the transmission coefficient for a selection of the 245 possible configurations
of the 245 possible configurations of (Li+ and PF−6 ) bound to AQ (12C4), whose
binding energies are shown in Fig 5.12. The green curve shows the ensemble-
averaged transmission < T (E) >, obtained by averaging the 245 yellow curves
weighted by a Boltzmann factor.

To examine the role of fluctuations, from the 245 transmission curves and their

corresponding binding energies Ei , I computed the average transmission curve

< T (E) > defined by

< T (E) >=
N∑
i=1

Ti(E)ρi (5.2)
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where ρi is the Boltzmann factor

ρi = Ae−βEi (5.3)

and

A =
N∑
i=1

e−βEi (5.4)

The resulting < T (E) > is shown as the green line in Fig 5.13, which is rather

close to the most energetically-favourable transmission curve (black-dotted line)

and demonstrates that the difference between this and the bare transmission is

not washed out by fluctuations.

To further investigation sensing, calculations are also carried out with three alkali

ions, Li+, Na+ and K+ to form so-called complexes (ligand + ions). To form

these complexes we need to add a counter ion in addition to the ion (to maintain

neutral charge). PF−6 and BF−4 are used as a counter ions, these counter ions

are negatively charged whereas cations are positively charged as shown in Figure

5.14.

Figure 5.14: Counter ions left BF−4 and PF−6 right

Here I am going to focus on one crown size in two different crown ether molecules,

these are AQOC (15C5) and AQNC (15C5) Figure 5.15.
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Figure 5.15: Complexes left AQOC (15C5) and AQNC (15C5) right

In Figure 5.16 (AQNC and AQOC) there are four curves one for the bare

molecule (black) and the rest complexes (red, blue and green). Bare LUMO res-

onance at 0.26 eV has shifted to towards Fermi energy by capturing an ion. For

example, K+ ion causes a shifting to 0.06 eV, shifting the LUMO resonance means

increasing the conductance (bare 10−7, with ions 10−6 at predict EDFT
F =0, and

could be up 10−4 with slight shift in Fermi, i.g EDFT
F =0.05 for K+) . The sensing

in AQNC is bigger than AQOC and different ion causes different sensing (Top

panel Figure 5.16).

Lower panel Figure 5.16 shows how we could shift the resonance by trapping ions

inside the cavity of the crown and that resulting shift causes an increase in the con-

ductance. We see that the nature of the ion causes different amounts of shifting.

This is due to different binding geometry and charging effects.
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Figure 5.16: Transmission coefficient curves. Top panel AQNC, Lower panel
AQOC, both trapped (15C5) Li+, Na+ and K+

The next step is to construct complexes which include two alkali ions K+ with

ligands to form a so-called sandwich (Figure 5.17), the ions lie above and below

the crown ether.

Adding another ion with its counter ion results in more shifting to the left of the

LUMO resonance, toward low energy for both complexes as shown in Figures 5.18

and 5.19. The bare LUMO resonance for AQNC has shifted from 0.26 eV to 0.06

eV for one ion and to 0.04 eV for two ions.
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Figure 5.17: Sandwich (two ions, above and beneath the ligand) AQOC (15C5),
BF−4 counter ion

Although G is roughly the same for one and two ions at the DFT predicted Fermi

energy EDFT
F =0, but could be different with slight shift in Fermi, and again the

difference between the bare case and with two ions is still large (Figure 5.18).

Figure 5.19 the bare LUMO resonance (AQOC) shifted from 0.11 eV to 0.07 eV

when there is one ion K+ and the second K+ has increased the shift to 0.04 eV.

In this case (AQOC) the difference is clear between one and two ions. This opens

up the possibility to control the shifting of the resonance, and the behaviour is

similar for all these types of ion Li+, Na+ and K+, and different cavity sizes.

Figure 5.18: Transmission coefficient sandwich AQNC (15C5), blue one ion (K+

and red two ions (2K+)
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Figure 5.19: Transmission coefficient sandwich AQOC (15C5), blue one ion (K+

and red two ions (2K+)

To test the role of the counter ion in the transport calculation, I used both

BF−4 and PF−6 complexed with Li+ ion, in this calculation for AQOC (15C5).

Both counter ions yield the same result as shown in Figure (5.20). Therefore the

nature of the counterion is unimportant.
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Figure 5.20: Transmission coefficient for AQOC (15C5) with PF−6 (black) counter
ion and BF−4 (red) when complexed with Li+ ion

5.12 Doping of crown ethers with donor and ac-

ceptor molecules

Previously, I have shown that complexing with ions can enhance the conductance.

Now, I show how this can be improved further by investigating the effect of

forming complexes with molecular donors and acceptors. Tetracyanoethylene

(TCNE), is an example of an acceptor and tetrathiafulvalene (TTF) is a donor

molecule that I have employed in this study, Figure 5.21 shows the structure of

TTF and TCNE.

Figure 5.21: Fully relaxed structure of TTF and TCNE
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Figure 5.22: Optimum geometry of AQOC 15C5 with TTF (Top) and TCNE
(Bottom)

Here, I placed in the proximity TTF to AQOC (15C5) and TCNE attached to the

same ligand (AQOC), then I relaxed them to obtain the optimum geometries and

connect them to two gold leads, as shown in Figure 5.22. Figure 5.22 shows the

formation of a charge transfer complex (optimum geometry). To investigate this

shift due to the presence of TCNE, I evaluate the charge transfer from AQOC

15C5 backbone to the TCNE molecule using a Mulliken analysis. I find that the

TCNE molecule gains 0.21 electrons from the AQOC molecular wire, and it is

this transfer of charge which shifts the LUMO resonance a way from the Fermi

energy to high energies.

While the charge has gained by AQOC from TTF is 0.28 e− (the electrons go in

the opposite direction of TCNE). For AQNC no optimum geometry added (same

like AQOC), but the transmission curves showed at lower panel of Figure 5.23.
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Figure 5.23: Transmission coefficient AQOC (15C5) + TTF and TCNE (Top),
and AQNC + TTF and TCNE (Bottom)
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Figure 5.23 Top panel shows the transmission curves in three cases, bare

molecule AQOC (15C5), bare with TCNE (red) and bare with TTF (blue). It

shows that we have control of shifting the LUMO resonance (around 0.075 eV )

either to the left or to the right depending on using donor or acceptor molecule. It

is clear TCNE has shifted the resonance towards high energy (accepting charge),

whereas TTF caused shifting in opposite way (donating charge).

Looking at the curves in Figure 5.23 AQNC (15C5), the lower panel shows the

same behavior, however, the shifts are much bigger and it is about 0.25 eV to the

right and 0.17 eV to the left. Looking at curves in top and bottom we can say in

general TCNE molecule has decreased the conductance (for AQNC), in contrary

TTF has increased the conductance around Fermi level, but of course, if we speak

about the case when we are on resonance (Fano), that is not correct. It is worth

mentioning, TCNE has caused a resonance close to the Fermi and that is well

known effect for TCNE molecule (both AQNC and AQOC).

5.13 Discriminating sensing of cations in crown-

ether-bridged anthraquinones

As it was mentioned before, a crown ether is a molecule, which can accommodate

a preferred cation in its hollow. Here, I will examine charge transfer for the six

molecules (two types of molecules (AQOC and AQNC), with three different size

12C4, 15C5 and 18C6), the room temperature electrical conductance and some

selected binding energies.

For the AQOC molecule, Figure 5.24a shows the transmission coefficient T (E) for

the 3 different-size ether bridges, for energies close to the DFT-predicted Fermi

energy (0 eV), which for these series of molecules lies close to the LUMO resonance.

The smallest bridge (12C4) has the LUMO resonance at E-EF = 0.16 eV and as the

bridge size is increased the LUMO resonance shifts closer to the Fermi energy and

thus the conductance is increased. The size of the HOMO-LUMO gap decreases as
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the number of atoms in the bridge is increased, leading to the largest bridge (18C6)

having the highest conductance. To investigate the sensing properties of the wire,

a lithium ion and PF−6 counter ion (the distance of the counter ion from the ion is

2.35 Ao) is brought into close proximity to the ether bridge. The optimum binding

location is found to be at a distance of 1.5 Ao above the centre of the crown-ether

ring and the binding energy is -0.77 eV. The transmission coefficient T (E) in the

presence of the lithium is given by the dashed line in Fig 5.24a and shows that the

LUMO resonance is shifted by 0.1 eV to E-EF = 0.07 eV and T (EF ) conductance

increases from 8.68 × 10−7 G0 (bare case) to 3.6 × 10−5 G0, which is over an order

of magnitude increase.

Figure 5.24: Zero bias transmission coefficient, T (E) of AQOC for different cavity
sizes (12C4, 15C5 and 18C6) plus alkali Li+ (a). Ligand (12C4) with different
alkalis Li+, Na+ and K+ (b)

To investigate this shift due to the presence of an analyte, I evaluate the charge

transfer from the lithium ion to the AQOC (12C4) wire using a Mulliken analysis.

Here we find that the Li+ ion donates 0.160 electrons to the molecular wire, and

it is this transfer of charge which shifts the LUMO resonance towards the Fermi

energy.

Figure 5.24b shows the effect of different metal ions on AQOC (12C4). The Na+

ion is found to sit a distance 2.50 Ao above the crown and shifts the LUMO

resonance to 0.08 eV, which is a greater shift than for lithium. The charge transfer

in this case is also greater with 0.172 electrons transferred. The binding energy
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is calculated to be -0.40 eV. For K+, the resonance shifts even further to 0.07 eV

with a charge transfer of 0.193 electrons (ion distance = 2.50 Ao, binding energy

=-0.56 eV ). This shows that the charge transfer increases with the size of the

alkali ion, leading to a difference in the calculated conductance for each type of

analyte. The data for the charge transfer for all ions and the six different types of

molecular wires is shown in Table 5-4.

Table 5-4: The non-bracketed numbers show the total number of electrons trans-
ferred from the alkali ion to the complex ligands and PF−6 counterions. The
numbers in brackets show the number of electrons transferred to the crown ether,
with the remainder transferred to the PF−6 .

I now repeat the above analysis for the second type of crown-ether bridge. Figure

5.25a shows that for the AQNC molecular wires, increasing the size of the crown

again reduces the HOMO-LUMO gap and shifts the LUMO resonance closer to

the Fermi energy. For the smallest crown, the LUMO lies at E-EF = 0.33 eV,

so for this wire, the Fermi energy is furthest from the LUMO, leading to a low

transmission coefficient of T (EF ) = 7.1 × 10−8. Adding the lithium ion (dotted

line) shifts the LUMO resonance by 0.2 eV to E-EF = 0.11 eV, which is a greater

shift than that produced in the AQOC (12C4) wire. The charge transfer (Table

5-4) for this case is 0.172 electrons. Figure 5.25b shows the transmission for the

Na+ and K+ ions, and again the K+ produces the largest shift.
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Figure 5.25: Zero bias transmission coefficient, T (E) of AQNC for different cavity
sizes (12C4, 15C5 and 18C6) plus alkali Li+ (a). Ligand (12C4) with different
alkalis Li+, Na+ and K+ (b)

Figure 5.26 shows the room temperature electrical conductance (in units of the

conductance quantum G0=2e2/h = 77 nanoSiemens) of all six molecular wires

when the three different ions are added. Compared with the bare wire, the change

in conductance increases in the order K+ > Na+ > Li+. With the greatest change

in conductance occurring for the largest crown (18C6), where there is an increase

of over two orders of magnitude. These results clearly show that that the response

of these wires to analyte binding is analyte specific and can therefore be used to

discriminate between analytes.
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Figure 5.26: The change in conductance, T (E) calculated at EF = 0eV for six
molecules and three ions (Note: AQOC and AQNC written in short OC and NC
on X-axis)

5.14 Thermoelectric properties of crown-ether-

bridged anthraquinones

After studying the sensing capabilities of crown-ether-bridged anthraquinones,

I now examine the possibility of using analyte binding to modify their thermo-

electric properties. The thermopower (or Seebeck coefficient) S of a material

or nanoscale device is defined as S = − M V/ M T , where M V is the voltage

difference generated between the two ends of a junction when a temperature

difference M T is established between them, here I am using the same molecules

AQOC and AQNC (Figure 5.7).

As is stated in chapter 4, thermopower S is related to the gradient of the

transmission curve. I have discussed, adding a cation to the ligand has shifted the

LUMO resonance towards Fermi energy (EF ), which means the slope at EF has

been modified and this leads to S changing. The amount of this change depends

on the effect of the cation.

To begin with, Figure 5.27 shows the effect of adding three alkali cations (Li+,

Na+ and K+), to both ligands (AQOC and AQNC).
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Figure 5.27: The change in thermopower S for different cation compared with the
bare (ligand). Top panel AQOC and lower panel AQNC (12C4)

Figure 5.27 Top panel shows the effect of accommodating the Li+ ion. I find S ≈

-500 (µV/K) at low temperature and decreases with increasing T , in case of Na+

and K+ have less influence at low temperature. Figure 5.27 Bottom panel shows

the thermopower for AQNC ligand. The Figure shows that K+ increases S for a

wide range of temperatures.
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To maximise S, my aim is to modify systematically the structures of AQOC

and AQNC, by complexing them with combinations of alkali cations and the donor

TTF or the acceptor TCNE.

Ln(T ) =

∫ ∞
−∞

dE(E − EF )nT (E)(− df

dE
) (5.5)

From a mathematical viewpoint, equation (5.5) tells us that the coefficient L1 and

hence S is maximised by creating an asymmetric T (E) in the vicinity of the Fermi

energy, because L1 vanishes when T (E) is a symmetric function of (E − EF ).

This is achieved when T (E) possesses a sharp maximum located within a few kBT

either above or below the Fermi energy. Chemically, our challenge is to identify

optimum combinations of dopants which deliver this feature.

To fully explore the range of accessible thermopowers, I have computed the ther-

mopowers of AQOC and AQNC after binding to different combinations of K+,

Li+ or Na+ cations and complexation with TCNE and TTF. To maintain charge

neutrality both PF−6 or BF−4 were again used as counter ions. The predicted ther-

mopowers and electrical conductances were found to be the same for both counter

ions. In what follows I label each complex (AQOC and AQNC) as either bare (ie

1 or 2 alone), TTF (i.e 1 or 2 with a single adsorbed TTF), TCNE (i.e 1 or 2 with

a single adsorbed TCNE), TCNE+K (ie 1 or 2 with a single adsorbed TCNE, a

single bound K+ and its counter ion PF6−), TCNE+2K (ie a for AQOC or b for

AQNC with a single adsorbed TCNE, two bound K+s and their two counter ions

PF−6 ), etc.

Figure 5.28 shows that the thermopower S of all such combinations is negative

over a wide range of temperature and that the optimum combination of dopants

depends on the temperature range of interest. The thermopowers of both 1 and 2

are negative and at room temperature are optimised by binding with TTF alone,

achieving thermpowers of -600 µV/K and -285 µV/K respectively. At much lower

temperatures, which are relevant to cascade coolers, I find that for 1, a combination
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Figure 5.28: Thermopower as function of temperature for complexes of AQOC (a)
and AQNC (b)(12C4)

of TTF and 2Na+ yields a maximum thermopower of -710 µV/K at 70K, whereas

a combination of TTF and 2Li+ yields a maximum thermopower of −600µV/K

at 90K. For 2, we find that TTF doping yields a maximum thermopower of -800

µV/K at 90K, whereas at 50K, the largest thermopower of -600 µV/K) is obtain

by a combination TTF and 2K+ doping.
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To highlight correlations between the thermopower and electrical conductance,

Figure 5.29 shows plots of thermopower versus electrical conductance at four

different temperatures: 250, 300, 350 and 400 K. For all curves apart from

bare case (AQNC) in Figure 5.29 b, the temperature increases from the bottom

(250K) to the top (400K). These curves show that for most of the complexes, the

thermopower becomes increasingly negative with decreasing temperature apart

from the bare 2 (AQNC). The 1-TTF has the highest thermopower of -640 µV/K

at 250K, which is higher than any single-molecule thermopower measured to date.
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Figure 5.29: Thermopower as function of conductance for complexes of AQOC (a)
and AQNC (b)(12C4)

In practice, the dimensionless figure of merit ZT = (P/κ)T is difficult to

measure experimentally, because the thermal conductance of a single molecule is

not directly accessible. However the numerator of ZT (ie the power factor P ) is

accessible and is defined as P = S2σ, where σ is the electrical conductivity. The

notion of conductivity is not applicable to transport through single molecules,

but to compare with literature values for bulk materials, we define σ = GL/A,

where L and A are equal to the length and the cross-sectional area of the molecule
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respectively. In what follows, the values L = 2.45nm and A = 7.44nm2 are used.

From the results of Figure 5.29, the power factors P = S2GL/A for each of the

studied complexes are shown in Figure 5.30.

Figure 5.30: Power factor as function of temperature for complexes of AQOC (a)
and AQNC (b)
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Figure 5.30b reveals that for 2 (AQNC) complexation with TTF and with

TTF +Li+ yields the highest and next-highest power factors respectively,

whereas complexation with TCNE has the lowest. Figure 5.30a shows that for 1

(AQOC), complexation with TTF + 2Na+ and TTF + 2Li+ yield the highest

and next-highest power factors respectively, while complexation with TCNE +

2Li+ yields the lowest. In all cases, these reflect the positions of transmission

resonances relative to the Fermi energy.

The thermoelectric properties of a series of molecular wires have been calculated

in the presence of one or two alkali cations and in the presence of acceptor

(TCNE) and donor (TTF ) molecules. Due to charge transfer between the

host and adsorbates, complexation produces a shift in the LUMO transmission

resonances, resulting in orders of magnitude variation in both the thermopower

and power factor. In the case of TTF the resonance shifts away from the Fermi

energy, leading to a decrease in the value of S, while for TCNE, the resonance

shifts closer to the Fermi energy, causing the thermopower to increase. At

room temperature I find that AQOC doped with TTF possesses the largest

calculated thermopower of -640 µV/K, which is higher than any single-molecule

thermopower measured to date. At room temperature, we obtain power factors

of 73µW/m.K2 for 1+TTF+2Na+ and 90 µW/m.K2 for AQNC + TTF. These

compare favourably with power factors of other organic materials, whose reported

values range from 0.016 µW/m.K2 and 0.045 µW/m.K2 for polyaniline and

polypyrole respectively [31], to 12 µW/m.K2 for PEDOT:PSS [32] and (12

µW/m.K2 for C60/Cs2Co3Dph−BDT [33].
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This chapter has demonstrated thermoelectric and sensing properties of crown-

ether-bridged anthraquinones for two types of crown ether AQOC and AQNC. This

study has investigated three size crowns for each type 12C4, 15C5 and 18C6. So in

total there are 6 molecules, each one of these have sensed with three alkali cations

Li+, Na+ and K+ and then adopt with either donor and acceptor.
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Chapter 6

Fullerenes and Endohedral

Metallofullerenes

6.1 Introduction

This chapter is divided into two parts: an experimental part and a theoretical

part. I will introduce fullerenes and endohedralfullerenes and then provide a brief

description of the STM and associated measurements of the conductance G, ther-

mopower S and power factor P for both C60 and Sc3N@C80. The second part

starts with answering the question of whether the Sc3N rotates inside the cage.

After finding the binding energy for Sc3N@C80 on gold, I calculate their collec-

tive parameters G,S and P . Finally comparing the theory with experiment, I

introduce a new concept of ”bi-thermoelectricity”.

6.1.1 Fullerenes

The possibility of making large hollow carbon cages was first suggested in 1966

by Jones [1], and in 1970 Osawa predicted the existence of C60 [2]. It was Kroto

and co-workers who first discovered C60 in 1985, when they investigated the mass

spectra of laser evaprated carbon in a helium atmosphere [3], and a short time af-

ter that a fairly symmetric truncated isosahedral structure for C60 was suggested
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(Figure 6.1).

Figure 6.1: Buckminsterfullerene (C60)

The symmetric structure was confirmed from 13C nuclear magnetic resonance

(NMR) experiments. Due to lack of materials most of the research on fullerenes

were theoretical studies [4, 5]

The second striking discovery in the fullerene field was accomplished in 1990 by

Kratschmer, Huffman and their groups. They announced an easy way to pro-

duce macroscopic quantities of fullerenes (C60, C70 and other empty-cages)from

the vaporization of inexpensive graphite rods in a helium atmosphere [5]. With

this invention, scientists opened the door to large scale fullerene research, which

spread out into physics, chemistry and material science [6].

6.1.2 Endohedral Metallofullerenes

Due to the fact that fullerenes are empty molecules, it was foreseeable that it might

be possible to accommodate atoms inside the cage. One week after the discovery of

C60, the Kroto’s group [7] observed the first endohedral metallofullerene, La@C60,

in the mass spectrum of a sample prepared by laser vaporization of a LaCl2 im-

pregnated graphite rod. The symbol @ is used to mark the atoms in the interior

of the fullerene cage. To prove that metal atoms were encapsulated inside the

buckyball Smalley and his group [8] found that both C60 and La@C+
60 complexes

did not react with H2, O2, NO, and NH3. This showed that the reactive metal
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atoms were protected from the surrounding gases and were indeed trapped inside

closed fullerene cages.

Much work has been done in the following years on endohedral metallofullerenes:

Chai et al. employed high temperature laser vaporization of La2O3/graphite com-

posite rods and the corresponding contacted arc technique to produce macroscopic

quantities of lanthanofullerenes [9]. The major lanthanofullerene was La@C80 due

to its relatively high stability. Two and three metal atoms, can also be encaged

into a fullerene. For instance, Shinohara et al [10], produced and isolated a series

of scandium metallofullerenes (Sc@C80, Sc@C82, Sc2@C84 and Sc3@C84) in macro-

scopic quantities . In recent years, group 3 metals (Scandium, Yttrium and Lan-

thanum) and most lanthanide metals have been trapped inside the larger fullerenes,

such as C80, C82, C84 etc., to provide mono-, di- and trimetallofullerenes [11] Sev-

eral metal carbide endohedral fullerenes were also synthesized, such as Sc2C2@C84

and Sc3C2C80 [12, 13].

6.1.3 Trimetallic Nitride Endohedral Metallofullerenes

In 1999 Stevenson and co-workers [14] produced a four-metallic-atom icosahedrally

Ih symmetrical endohedral fullerene, Sc3N@C80 (Figure 6.2 right).

Figure 6.2: Ih isomer (C80), Sc3N@C80

The new molecule was produced by a trimetallic nitride template method

(TNT)(vaporizing graphite rods packed with Sc2O3 in a Kratschmer-Huffman gen-

erator under He/N2 atmosphere). The TNT method opened the way to produce
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a variety of new trimetallic nitride endohedral metallofullerenes with different en-

capsulated metals and carbon cages, for example: Sc3N@C80(Figure 6.2 right) or

A3N@C2n (A = Y,Gd, Tb,Dy,Ho,Er, Tm, and Lu) [15]. What is more, a mix-

ture of TNT molecules have been synthesized recently, such as: ErxSc(3−x)N@C80,

CeSc2N@C80 and four atoms ScY ErN@C80 [16, 17].

6.1.4 Production of Sc3N@C80

To produce Sc3N@C80 in a macroscopic amounts, a Kratschmer-Huffman gener-

ator is used (Figure 6.3) [6]. This generator consists of an evaporation chamber,

which is linked to a pump system and a gas inlet. In arc vaporization of graphite

rods [18,19], two graphite rods are kept in close, but not direct contact. A voltage

is applied across the two graphite rods by a DC power supply, which is used to

maintain the arc discharge between them. A gap of approximately 4 mm is deter-

mined to attain maximum brightness of the plasma. The carbon soot generated in

the arc is condensed onto a water-cooled stainless steel cylinder. The buckyballs

are subsequently obtained by extracting the crude soot with organic solvents, such

as toluene. This technique allows an efficient evaporation of carbon, and a very

high yield [20].

Figure 6.3: Apparatus used to produce fullerenes by arc vaporization of graphite
rods [6]
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6.2 Geometry and Electronic Properties of

Fullerenes

6.2.1 Electronic Properties of Hollow Cage Fullerenes

Buckminsterfullerenes are carbon clusters containing an even number of carbon

atoms in the form of an empty ball. The cage is made by pentagonal and hexagonal

rings and they are defined by Cn, where n indicates the number of carbon atoms.

Buckminsterfullerene C60 is the most plentiful fullerene and Ih is the most stable

C60 isomer. D5h is the next stable isomer for C70. Increasing the number of

carbons results in increasing the number of isomers,C60,C70 and C76 have one

isomer whereas C78 has five and seven for C80 and so on.

Theoretical calculations showed that the LUMO and LUMO+ 1 levels of C60 are

triply degenerate molecular orbitals. Thus, C60 is predicted to be electronegative,

i.e it is able to accept up to six electrons [21–23].

6.2.2 Electronic Properties of Trimetallic Nitride Endohe-

dral Metallofullerenes

C80 has seven isomers,which have the following point group symmetry Ih, D3,

D2, D5h, D5d and two C2v. However, many authors refer to them only as a

particular nomenclature of letters [24]. Out of all these isomers, only two have

been prepared and characterized as pristine structures: these are D2 [25] and

D5d [26] (See Figure 6.4).

Based on the LUMO-HOMO gap study and 13C NMR analysis of the C80

fullerene [27, 28], the D2 isomer is the most stable of the 7 possible isomers.

However,theoretical calculations and NMR analysis, suggest that the least stable

isomer Ih turns out to be the most favorable structure when one or more metallic

atoms are encapsulated inside the fullerene cage (Figure 6.5 ).
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Figure 6.4: Six isomers of C80

Figure 6.5: An example of stable isomer Gd@C82

The explanation for that is the charge is transferred from the internal metal

atoms to the cage, making the whole structure more stable. The Ih isomer has

only two electrons in the four-fold degenerate HOMOs, so it can easily accept

six more electrons from the metallic atoms to compose a stable closed shell

electronic structure with a large HOMO-LUMO gap. The electronic structure can

be described as (M3+)2C80 (M=metallic atom) [27].

The metallofullerene family, Sc3−nMnN@Cm (M = Y, Sc and lanthanides, n =
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0−3,m = 68, 78, 80) is produced in relatively high yields by the TNT method [15].

Sc3N@C80 is a representative member of this family and its yield even exceeds

the empty-cage C84. Sc3N@C80 has been thoroughly studied by many researchers

around the world theoretically, and experimentally by 13C, NMR and X-ray

diffraction. It is widely accepted that the charge distribution in (Sc3N)6+@Ck

metallofllerenes may be formally described as (Sc3N)6+@C6−
k . Many theoretical

calculations on Sc3N@C80 have proposed that the inorganic part Sc3N transfers

six electrons to the cage , which resulting in a closed shell electronic structure

which is described as (Sc3N)6+@C6−
80 [29].

The C13 NMR spectrum of Sc3N@C80 shows only two lines with an intensity ratio

of 3:1. The ScNMR spectrum displays a single symmetric line. The information

from NMR experiments indicated the Sc3N
6+ is not fixed inside the C80 Cage

(this point is going to be discussed in more details later).

The positive charges on scandium are very effective for electrostatic attractive in-

teraction with the negatively charged nitrogen and carbon cage. In order to avoid

severe electrostatic repulsions between the scandium atoms, the Sc3N prefers to

adopt a planar shape in Sc3N@C80 in order to increase Sc-Sc distance [30].

6.3 Applications of Fullerenes and Endohedral

Fullerenes

Endohedral metallofullerences have attracted a wide interest, due to their func-

tional characteristics and potential applications in many areas of research, for in-

stance, biomedical science and nanomaterials [31]. In past years, metallofullerene-

doped nanotubes (’peapods’) have also attracted experimental attention due to

their structural and electronic properties [32–34] and have been proposed as a pos-

sible self-assembled quantum computing architecture. Additionally, recent experi-

mental studies of Gd@C82 in single-walled carbon nanotube ((Gd@C82)@SWNT )

peapods have shown novel transport behavior [35].
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One of the attractive properties of fullerenes intrinsic to their closed-cage structure

is the possibility of using them as robust containers for other species. A range of

bare, exohedral, and endohedral fullerene derivatives have been assessed for the

ability to achieve an increased VOC (Voltage open circuit) in polymer heterojunc-

tion solar cells [36].

6.4 Experimental measurements of single-

molecule conductance and thermopower

The following work was carried out by myself and in collaboration with the group

of Professor Nicols Agrat (Departamento de Fsica de la Materia Condensada, Uni-

versidad Autnoma de Madrid, Madrid, Spain). I will start with a brief description

of the STM method, and then I will present our experimental work on C60 and

Sc3N@C80. I will then show the theoretical calculations. The results presented

here were published in the following paper:

”Rincn-Garca, Laura, Ali K. Ismael, Charalambos Evangeli, Iain Grace, Gabino

Rubio-Bollinger, Kyriakos Porfyrakis, Nicols Agrat, and Colin J. Lambert.

”Molecular design and control of fullerene-based bi-thermoelectric materials.” Na-

ture materials, Vol.15, Issue3, P254 (2015)”.

6.5 Scanning Tunneling Microscopy (STM)

The Nobel Prize in physics was given to Binnig and Rohrer in 1986 for their inven-

tion of the scanning tunneling microscope (STM) [37], where a voltage difference

is applied between a sharp tip and flat surface separated by a vacuum barrier.

Quantum theory predicts electrons can tunnel through this classically forbidden

vacuum region between sample and tip, yielding a tunneling current which is sensi-

tive to the tip-sample separation as well as the electronic properties of the sample.

STM has been used for many purposes, such as studying atomic and electronic
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structure of conductive surfaces, the dispersion relation between metallic surface

states [38], and probing the electronic structure of highly correlated materials like

high-TC superconductors [39]. STM tip can be used to manipulate the positions of

atoms and molecules on conductive surfaces [40]. STM has been used to determine

the vibrational [41] and magnetic [42] structure of several systems at the atomic

scale and there have been many other useful uses of STM.

6.6 Basic Principle of Scanning Tunneling Mi-

croscopy

When a sharp atomic scale metal tip is brought into close proximity to the sample

of interest, a small voltage Vb between the tip and the sample, causes electrons to

tunnel between the sample and the tip. The exponential decay of the wavefunctions

(tip and sample) into the vacuum gap requires the distance between them to be

roughly 10 Ao so that there is a sufficient overlap to measure a tunneling current

I in the range of 1 nA (for Vb = 1 V).

In this section I am going to give a brief description of the STM used in this study.

Figure 6.6 illustrates the set up of the STM. A sharp metallic tip that is typically

made of Au (but can be a number of different metals) is fitted onto a piezoelectric

transducer. The tip is brought close to a conductive sample using coarse-motion

piezoelectric motors.
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Figure 6.6: Diagram of a STM tip scanning an Au(111) surface. The Au(111)
surface is revealed to have a herringbone reconstruction pattern as well as atomic
step edges [43]

A bias Vb is applied between the sample and the tip and the tip is slowly brought

closer to the sample by applying a voltage across the z-axis of the piezoelectric

transducer. The current passing through the tip I is continuously monitored, and

once it reaches a certain setpoint value (typically a fraction of a nA) the tip is

held at a constant height above the surface. The absolute value of the tip height is

never known for sure, but it is typically estimated to be ∼ 5Ao above the surface

for a current of a fraction of a nA. A topographic image of the surface, can be

produced by raster scanning the STM tip back and forth across the surface via

application of x and y-axis biases to the piezoelectric transducer. The tip voltage

is kept constant and the current is continuously monitored.

I ∼ exp[−2(λ2 + k2)
1
2 |z|] (6.1)

where λ is decay rate in vacuum (λ2 =
√

2mΦ̄/~), Φ̄ is the average value of the

work functions of the tip and sample, k-vector and z tip-surface distance.

The current has a strong exponential dependence on the distance from the tip to
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the surface, as shown in equation (6.1), and this dependence allows for a feedback

circuit to detect minute changes in the tip height and apply a corrected z-bias

to the transducer to bring the STM tip back to the correct height. Figure 6.7

shows example for a topographic image. This kind of image shows that the STM

can detect sub-Ao height changes in the surface, thus revealing the topographic

structure produced by single atoms.

Figure 6.7: Example of topographic images, left image at low temperature

6.7 Experimental Method (STM)

One of the main aims of this thesis is to theoretically model experimental conduc-

tance measurements on molecular junctions. What follows is a brief introduction

to the techniques used in these types of experiment.

6.7.1 Substrate preparation, experimental setup and tech-

nique

Endohedral fullerenes are deposited using the drop casting technique from a very

dilute (10−7 − 10−8M) 1,2,4-trichlorobenzene solution. Specifically, a drop of the

solution is left on an annealed gold surface for about 3 minutes, and then is blown

off with dry nitrogen and allowed to dry overnight. Once the sample is dry, we

mount it on a homebuilt STM and let it stabilize for about one hour in order to
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minimize the thermal drift. Using this procedure we are able to deposit isolated

molecules both on terraces and step edges and forming small islands, as shown in

Fig. 6.8b-d. The molecules at the steps are generally more stable under scanning.

Figure 6.8: Scanning tunnelling microscope images and tunnelling spectroscopy.
a, Schematic of the endohedral fullerene Sc3N@C80 used in this work; notice the
Sc3N in the centre of the fullerene cage. b-d STM images of the molecules on
atomically flat (111) Au surfaces showing preferential adsorption at step edges
(b), islands (c) and isolated molecules (d). e,f IV characteristics (e) and differ-
ential conductance (f) in tunnelling regime on two different molecules, presenting
opposite rectifying behaviour.

In order to measure the thermopower of the molecular junctions, we have modified

our STM setup by adding a surface mount 1 kΩ resistor which acts as a heater

to the tip holder while the substrate was maintained at room temperature. Two

thermocouples connected to the tip and sample holders were used to monitor

the resulting temperature difference, which was set to approximately 40 K in the

herein reported experiments; the sample is maintained approximately at 298 K

(room temperature). We found that the temperature stabilized in about 15-30

minutes and the thermal drift increased, making it necessary to use fast imaging to

locate the isolated molecules. The thermopower of molecular junctions is measured
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during the approach and the retraction of the STM tip to the molecule as described

in Fig.6.9.

Figure 6.9: Technique for the simultaneous measurement of conductance and ther-
mopower. a, b, Tip displacement z and applied bias voltage ∆V at the molecular
junction, respectively, as a function of time. The bias voltage is maintained at a
fixed value ∆V0 during the tip motion (in blue in a) and every few picometers it is
swept between ±∆V0 while the tip is stationary (in red in a). In the experiments,
the bias voltage ∆V0 was set to 6-10 mV and the tip was stopped every 15 − 25
pm. In each approaching-separating cycle, 50 − 100 I − V traces are acquired.
c, Experimental I − V curves showing the voltage offset due to the temperature
difference.

6.7.2 Thermal circuit

By heating the tip we not only establish a temperature difference between the tip

and the substrate but also a temperature gradient across the tip-connecting lead,

which gives rise to an additional thermoelectric voltage. The equivalent circuit

for measuring the thermopower is shown in Fig.6.10. Considering the equivalent
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circuit, we can write (6.2)

I

G
= Vbias − S(Th − Tc)− Slead(Tc − Th) = Vbias − S∆T + Slead∆T (6.2)

where Vbias is the bias voltage, S is the thermopower of the junction, Slead is the

thermopower of the tip− connecting lead, Tc is the temperature of the substrate

and Th = Tc + ∆T is the temperature of the tip. The tip − connecting lead is a

copper wire, so Slead = SCu = 1.83µV/K [44]. From equation (6.2) and for I = 0,

the temperature-dependent voltage offset Vth of the I − V curve is given by

Vth = S∆T − Slead∆ = (S − Slead)∆ (6.3)

Figure 6.10: Equivalent thermal circuit of the setup for the determination of the
thermopower. The substrate and body of the STM are at ambient temperature Tc
while the tip is heated to a temperature Th = Tc+∆T above ambient temperature.
S is the thermopower of the molecular junction and Slead is the thermopower of
the tip− connecting lead. Vbias is the bias voltage applied to the junction.
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6.8 Experimental results

Figure 6.11a-b show examples of conductance G (in blue) and thermopower S (in

green) curves measured on two different junctions while the tip approaches to

touch the Sc3N@C80 molecule. It was found that the conductance of Sc3N@C80

behaves similarly to the case of C60 junctions with a jump-to-contact signalling

the first-contact as the tip atoms touch the molecule. Typical values for the

first-contact conductance are smaller by a factor of three when compared to C60

(as shown in Fig. 6.11d).

Figure 6.11: Thermopower and conductance simultaneous measurements. a,b,
Conductance, G (blue), and thermopower, S (green), simultaneously acquired
while approaching individual Sc3N@C80 molecules. For the molecule in a, the
thermopower is always negative, while for that one in b, it is always positive. In
these measurements the temperature difference was M T ' 40K.Go = (2e2)/h,
where e is the electron charge, and h is Plancks constant, is the conductance quan-
tum. The portion of the thermopower trace highlighted in yellow corresponds to
molecular contact with the tip. c, Schematic representation of the experimental
setup. The tip is heated to a temperature Th above ambient temperature Tc, while
the substrate is maintained at Tc. d,e, Conductance G and thermopower S at
first-contact histograms of Sc3N@C80 (in blue and green, respectively) compared
to C60 (in grey). For the Sc3N@C80 histograms, the mean conductance value is
Ḡ = 0.05Go and the mean thermopower is S̄ = −2µV/K.

The thermopower at first-contact of Sc3N@C80 molecules, in contrast to C60, can

be positive, negative, or close to zero depending on the selected molecule (Fig.
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6.11a-b), resulting in a broad histogram centred around zero, as shown in Fig.

6.11e. The next step is to investigate the variation of thermopower as the tip

advances after the first contact, compressing the Sc3N@C80 molecule. The tip

was positioned on a selected isolated molecule and performed small amplitude

(< 0.5nm) compression (approach-retraction) cycles, always maintaining contact

with the molecule. In these cycles a variable pressure is exerted on the molecule

by the STM tip.

Figure 6.12: Effect of pressure on Sc3N@C80 molecular junctions. a-c, Periodical
variations of the conductance G, thermopower S and power factor GS2, respec-
tively, as the STM tip advances and retracts during three cycles. Each half cycle
corresponds to less than 0.5 nm. Each colour corresponds to a different molecule.
d-f, the same effect of pressure but on C60

In Fig.6.12a-b, we present the simultaneous variations of G and S measured

during three cycles for three different molecules. The periodic nature of these

curves indicates that, in response to the pressure, the junction, i.e., the molecule

and the gold electrodes, deforms elastically. Larger amplitude (> 0.5nm) cycles

destroy this periodicity indicating the onset of plastic deformation (atomic

rearrangements) in the gold electrodes [45]. Taking into account previous results
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for gold contacts [46] and the fact that fullerene molecules are much stiffer than

gold [47], we can safely assume that most of the elastic deformation corresponds

to the electrodes and that the maximum pressure at the junction during our

measurements is about 4 GPa [45].

The traces shown in Fig. 6.12a-c correspond to three molecules with differ-

ent behaviours: the red traces correspond to a molecule which showed large

positive thermopower at first contact (molecule 1); the blue traces, to a molecule

with small positive thermopower (molecule 2); and the green traces, to a molecule

with almost zero thermopower (molecule 3).

We observe that for all molecules both the conductance and thermopower vary

monotonically with pressure: the conductance increases and the thermopower de-

creases, becoming more negative, as the tip presses the molecule. This behaviour

of the conductance is to be expected, since pressing will result in an increased

coupling and consequently in a larger conductance. However, the behaviour of

the thermopower is most unusual: very large variations are observed and even

a change in sign for molecule 2 (bi-thermoelectric). This extreme sensitivity of

thermopower of molecular junctions to pressure had never been reported and has

a marked effect on the power factor, GS2, as shown in Fig. 6.12c. For molecule

1, the power factor decreases with compression, while for molecule 2, it increases

reaching values of around 5 fW/K2. In contrast, for molecule 3, GS2 remains

small during the whole cycle.

For C60 Fig. 6.12d-f the conductance is higher comparing Sc3N@C80, whereas

the thermopower is always negative and this is due to C60 has no resonance in its

transmission curve, as we will see in theory part (see Fig 6.17). Power factor is

roughly double than Sc3N@C80.
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6.8.1 Pressure variation with tip displacement of the con-

ductance, the thermopower, and the power factor of

Sc3N@C80 junctions

Figure 6.13 left panel shows the effect of pressing Sc3N@C80 by the tip, and the

right panel is the theoretical modeling for the same process which shows the same

trend. The following section provides details of the theoretical modeling.

Figure 6.13: Effect of pressure on Sc3N@C80 junctions as a function of tip dis-
placement. Periodical variations of the conductance G (a,d,g), the thermopower S
(b,e,h), and power factor GS2 (c,f,i) as a function of the tip displacement. This is
the same data as in Fig.6.12a-c and the colours correspond to same three molecules
detailed in the main text (1, 2 and 3). For molecule 1 (red), compressing the
molecule results in S varying from+20µV/K to almost 0 µV/K; for molecule 2
(blue), S varies from +10µV/K to −5µV/K; and for molecule 3 (green), S varies
from approximately 0 µV/K to −20µV/K. Each half cycle corresponds to less
than 0.5 nm. This representation is directly equivalent to the plot of the theoret-
ical calculations j-l.
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6.9 Theoretical modeling of thermopower

switching

Here, I calculate the parameters G, S and P for the molecules C60 and Sc3N@C80.

Firstly, I need to know whether Sc3N rotates inside C80 cage and what is the

binding energy of Sc3N@C80 on gold. Then I will use this information to initiate

calculations the G, S and P .

6.10 Does Sc3N rotate inside the cage?

Some experimental studies have proposed that the metallic part Sc3N cluster ro-

tates rapidly inside the cage (see Figure 6.14). NMR experiment data suggest

that the Sc3N
6+ rotates inside the negatively charged cage [15], the electrostatic

potential map of C6−
80 showed almost concentric circles with no clear minima [32].

This indicates that the encapsulated metal cluster Sc3N
6+ is not fixed at specific

internal bonding sites but can freely rotate inside the C80 Cage (Figure 6.14b), as

found for La2@C80 [48].

Figure 6.14: (a) Charge transfer model for Sc3N@C80 (b) Rapid circular motion
of the Sc3N cluster inside the Ih C80 cage.

To test whether the Sc3N
6+ rotates inside the cage when the Sc3N@C80 is attached

to gold electrodes, the optimum geometry of the isolated molecule Sc3N@C80 was
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calculated using DFT, with all forces on atoms relaxed to a tolerance of 0.01

eV/Ang. A double-zeta-plus-polarization (DZP) basis set, with norm-conserving

pseudopotentials was employed and the Hamiltonian and overlap matrices were

calculated on a real space grid defined by a plane wave cutoff of 200 Ry. After

calculating the optimum geometry of the molecular wire, it was attached to gold

electrodes.

I calculated the energy barrier to rotate the metallic part Sc3N inside the cage

using the BSSE method (2.8). Figure 6.15, shows the resulting energy versus rota-

tion angle and demonstrates that the energy barrier is more than 10 times bigger

than 25 meV and therefore the Sc3N is locked in position at room temperature.

Figure 6.15: Binding energy as a function of rotation of Sc3N within the fixed
Ih − C80 cage.

6.11 Binding energy of Sc3N@C80 on gold

To calculate the optimum binding distance for a Sc3N@C80 molecule between two

gold (111) surfaces I use DFT and the counterpoise method, which removes basis

set superposition errors (BSSE) (See 2.8). The binding distance z is defined as the

distance between the gold surface and the C80 cage at the closest point. Here the

Sc3N@C80 molecule is defined as monomer A and the gold electrodes as monomer

B.
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Since there are many orientations for the Sc3N@C80 to orientate itself with re-

spect to a gold substrate, I selected the most favourable two configurations and

calculated their binding energy. The angle θ defines the orientation of the Sc3N

molecule within the cage with respect to the gold surface. θ= 0◦ corresponds to

the plane of this molecule being perpendicular to the gold surface (Fig.6.16 top

left) and θ= 90◦ (Fig.6.16 top right) is when the plane of the Sc3N molecule lies

parallel to the gold surface. Figure 6.16 shows that the highest binding energy

when the metallic part is parallel to the face of the electrode.

Figure 6.16: Sc3N@C80 on a gold surface. Top panels: Orientation of the
Sc3N@C80 molecule with respect to the gold leads corresponds to the defined
angle (left) θ= 0◦ and (right) θ= 90◦. Lower panel: Binding energy of Sc3N@C80

to gold as a function of molecule-contact distance. The equilibrium distance is
found to be approximately 2.3 A◦ from the minimization of the binding energy.

The ground state energy of the total system is calculated using SIESTA and is

denoted EAB
AB , with the parameters defined in section 2.8. Here the gold leads con-
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sist of 3 layers of (111) gold consisting 25 atoms. The energy of each monomer is

then calculated in a fixed basis, which is achieved through the use of ghost atoms

in SIESTA. Hence the energy of the individual Sc3N@C80 in the presence of the

fixed basis is defined as EAB
A and for the gold is EAB

B . The binding energy is then

calculated using the following equation (6.4), (See chapter 2)

BindingEnergy = EAB
AB − EAB

A − EAB
B (6.4)

Figure 6.16 shows that for an orientation θ= 0◦ the optimum binding distance z

is 2.5 A◦ and the binding energy is approximately 1.6 eV . For an angle of θ= 90◦

the value of z is approximately 2.4 A◦ and has a binding energy of 1.8 eV .

6.12 Comparison between Fullerenes and Endo-

hedral Fullerenes

As previously mentioned, a fullerene is just a cage of carbon atoms, whereas endo-

hedralfullerene is a cage with a metallic part encapsulated inside the cage. Here,

I am going to make a comparison between C60 and Sc3N@C80 in terms of their

transmission coefficients (Figure 6.17).

The main difference between their transmission curves is the resonance present

in the case of the endohedral fullerene close to LUMO. This resonance is due to

the metallic part Sc3N inside the cage, whereas in C60 case we can see a smooth

HOMO-LUMO gap, as shown in Figure 6.17.
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Figure 6.17: Transmission curves, for C60 and Sc3N@C80 junctions, respectively.
Letters H and L indicate the HOMO and LUMO peaks of the fullerene cages.

6.13 Frontier Orbitals of the Sc3N@C80 Molecule

Extra evidence to support the view that the LUMO resonance of Sc3N@C80 is

due to the Sc3N is found in the frontier of the orbitals. From Figure 6.18, we can

see there is no weight on the cage Ih for both LUMO and LUMO+1, whereas it is

clear there is a weight on the scandium atoms. In comparison the HOMO orbitals

show no weight inside the cage.
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Figure 6.18: Wavefunctions of the HOMO − LUMO orbitals of the Sc3N@C80

molecule.

6.14 Transmission coefficient as a function of ori-

entation of the Sc3N@C80 molecule

In this part, I am going to focus on the effect of changing the orientation of the

endohedral fullerene and the application of external pressure on the fullerene cage.

The idea is to cover the two cases, when the scandium atoms have the shortest

distance from the gold electrodes (θ= 0◦), and the longest distance at θ= 90◦ this

for rotation. For compression is to see whether Sc3N@C80 is going to deform.

6.14.1 Rotating

Figure 6.19 shows the definition of the orientation angle of the Sc3N molecule

for θ= 0◦ and 90◦. Figure 6.20 shows the individual transmission coefficients

T (E) for various angles as the molecule is rotated through 180◦, for identical tip

separations of z=2.3 A◦ at each electrode. The DFT-predicted Fermi energy E0
F

is close to the LUMO resonance and the effect of rotation causes this peak to shift
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and broaden. In the case of θ= 90◦ the resonance is narrowest and shifted furthest

to the left. This is because at this orientation the scandium atoms are furthest

from the gold surfaces and as the LUMO is located mainly on these atoms (Fig.

6.18) the coupling to the leads is weakest for this geometry.

Figure 6.19: Rotation angles θ between 0◦ and 90◦ of the Sc3N@C80 molecule with
respect to the gold leads.

Figure 6.20: Transmission coefficient as a function of orientation. Zero bias trans-
mission coefficient T (E) versus electron energy E for rotation angles θ between 0◦

and 180◦ of the Sc3N@C80 molecule with respect to the gold leads.
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6.14.2 Pressing

Figure 6.21 illustrates the pressing of the two molecules C60 and Sc3N@C80 in

between the electrodes, which is achieved by varying the distance between the

electrodes to make tip-molecule separation z decreases from 2.7◦ to 2.1◦. Figure

6.21 shows that C60 and Sc3N@C80 barely distort at 2.1◦ (the shortest z). In

these simulations, the gold is not allowed to relax.

Figure 6.21: Optimized geometries of Sc3N@C80 and C60 junctions.

Figure 6.22: Transmission curves, T (E), for different z (C60). The Fermi level is
shifted from the position given by DFT and the black dotted line indicates the
true Fermi level as explained in the text. In this case, EF = E0

F −0.165eV , chosen
such as to present similar amplitude variations as the experimental curves.

Figure 6.22 shows the effect of pressure on C60 molecular junction. From Figure

6.22, we can see the thermopower is always negative, i.e the gradient of T (E) is

positive at EF .
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To elucidate the origin of the bi-thermoelectric effect (change in the sign of

S, mentioned in the experimental part, see Fig.6.12b) of the endohedral fullerene

junctions I have chosen three different orientations (θ= 150◦, θ= 57◦, and θ= 63◦,

for different z, as shown in Figure 6.23

Figure 6.23: Transmission coefficient as a function of orientation and tip separa-
tion. Transmission curves, T (E), for three different orientations (θ= 150◦, θ= 57◦,
and θ= 63◦, respectively) and for different z.

Figure 6.24 shows the thermopower S evaluated at room temperature for orien-

tation angles of θ from 0◦ to 180◦ and at four different tip separations z from 2.7

(D=13.6A◦) to 2.1 A◦ as shown in Fig.6.25

Figure 6.24: Thermopower as a function of orientation and tip separation. Ther-
mopower S versus orientation angle at a value of EF = 0.23 eV, for different
tip-substrate distances z.
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Figure 6.25: Optimized geometries of Sc3N@C80 junctions. Four optimized ge-
ometries corresponding to tip-carbon distances of 2.7, 2.5, 2.3 and 2.1 Angstroms.
They show that the C80 barely distorts over such a range. In these simulations,
the gold is not allowed to relax.

In Figure 6.24 the value of the Fermi energy is EF = E0
F +0.23eV , where E0

F is

the DFT-predicted value of EF . This value of EF has been optimized to give the

best agreement with the experimental measurements. This plot shows how the

behaviour of the thermopower is sensitive to the orientation of the Sc3N molecule

within the cage. At low and high angles, i.e. less than 50◦ and greater than 130◦

the thermopower is positive, while between these angles it is negative. As the

tip is moved closer to the molecule the value of the thermopower decreases at all

angles, and at certain angles such as approximately 60◦ the sign of S goes from

positive to negative. The general pressing causes the thermopower to become

more negative occurs at all angles. If we choose three angles i.e θ= 150◦, θ=

57◦, and θ= 63◦ as seen in Figure 6.23, which shows that at three angles we get

excellent agreement with the experimental values shown in Figure 6.12.
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In conclusion, I have demonstrated a new concept of bi-thermoelectricity,

in which the sign and magnitude of the thermopower of a given material can be

tuned. This effect was realised by identifying a molecule with a transmission

resonance close to the Fermi energy, whose energetic location is sensitive to

orientation and pressure. In this chapter, I demonstrated bi-thermoelectricity

in Sc3N@C80, but more generally the effect should be present in any material

with orientation-dependent and pressure-dependent transmission resonances,

which can be caused to pass through the Fermi energy. For the future, if

appropriate templating strategies could be implemented, which select appropriate

orientations of such molecules, then single-material, nanoscale tandem devices

with alternating-sign thermopowers could be realised.
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Chapter 7

Summary and Suggestions for

Further Research

7.1 Summary

In this thesis, I have presented the theoretical methods that I used to model single

molecule junctions. These include Density Functional Theory (DFT), Green’s

functions quantum transport calculations and Tight Binding Model (TB). The

theoretical work has focused on providing insight into possible new features in

molecular transport with the aim of designing new single molecule devices. The

thesis was carried out with the additional aim of modelling and understanding

experimental measurements.

This work is divided into two results chapters: Crown-Ether-Bridged An-

thraquinones and Fullerenes and Endohedral Metallofullerenes (theory calcula-

tions and experiment measurements). The properties of several molecules have

been calculated, with some of them being measured experimentally. One of the

goals was to demonstrate how the theoretical methods are able to understand and

explain the experimental results for both electronic conductance and thermoelec-

tric properties.

In the crown ether calculations (Chapter 5), I investigated two kinds of molecular
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scale devices based on AQ-crown-ether- bridged and Diaza-AQ-crown-ether-

bridged, each type having three different cavity size. The six molecules accommo-

dated three different sized cations (Li+, Na+ and K+). Moreover, a donor (TTF)

or acceptor (TCNE) was put beneath the anthraquinone part to form complexes.

The ability of sensing was tested for the six bare molecules and their complexes.

It was shown that the conductance changes when the ions bind leading to the

design of a possible molecular sensor. This was achieved through the mechanism

of charge transfer from the ion to the molecule.

The second part of Chapter 5 dealt with the thermoelectric properties for the

same six molecules and their complexes, including thermpower (S) and power

factor (P), and created a map of S versus G. It has shown that thermoelectric

properties can be tailored by modifying the nature of the complex.

In Chapter 6 I used C60 and Sc3N@C80 as examples of fullerenes and endohedral

metallofullerenes. The electronic conductance (G), was calculated for both

molecules for different rotating angles and squeezing pressure. S and P were

calculated as a function of rotating and pressing the molecule. The experimental

measurements I carried out on these molecules show an excellent agreement be-

tween the theory and experiment. The nature of the bi-thermoelectric behaviour

contributes to the localized orbital within the cage which is sensitive to the

junction geometry.

7.2 Suggestions for Further Research

This thesis has opened up many potential future research directions. For instance,

in the case of crown ethers, it would be useful to focus on the ability of crown-ether-

based molecular wires for discriminating sensing of alkali-metal ions, especially for

ring cavities that have sulfur atoms. The design of new molecules which could

attract bigger cations and form complexes such as sandwich (two crowns with

cation) is a possibility that could also be explored. These studies would show
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that the response of each molecular wire to analyte binding is different, and the

range of responses from a collection of such wires constitutes a unique fingerprint

that further increases the ability of such wires to discriminate between different

analytes.

The key to enhancing thermoelectric performance lies in taking advantage of res-

onances in the electronic density of states (associated with the discrete spectrum

of molecular levels) because the thermopower is loosely proportional to the slope

of the density of states at the Fermi energy of the electrodes. In C60 and all sin-

gle molecules measured to date, the Fermi energy is far away from any molecular

energy levels and there currently exists no experimental evidence of the effect of

resonant transport on thermoelectric properties.

One interesting direction of study would be assessing the transport properties of

a single atom inside a cage as a further example of endohedral metallofullerenes,

examining also the phononic part due to the rattling atom inside the cage. The

calculations of the thermopower in this thesis have focused on the electrical con-

tribution. The contribution of phonons may play an important role in the design

of efficient devices (i.e maximising ZT ), so the theoretical method should be ex-

panded to include this contribution. Exohedral fullerenes are another promising

type of molecules, especially in trying to use P-type and N-type to form the tandem

devices that increased the generated voltage as shown in Figure 7.1.
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Figure 7.1: Schematic of a Tandem device
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