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Abstract

This paper treats the multiscale estimation of the integrated volatility of an Itô
process immersed in high-frequency correlated noise. The multiscale structure
of the problem is modelled explicitly, and the multiscale ratio is used to quantify
energy contributions from the noise, estimated using the Whittle likelihood. This
problem becomes more complex as we allow the noise structure greater flexibility,
and multiscale properties of the estimation are discussed via a simulation study.

1 Introduction

The estimation of properties of continuous time stochastic processes, whose observation is immersed
in high frequency nuisance structure is required in many different fields of application, for example
molecular biology and finance. Various methods have been proposed to alleviate bias introduced
into the estimation from high frequency nuisance structure, see for example [1–4]. Commonly the
model of the observed process is as the process of interestXti superimposed with noiseεti , or

Yti = Xti + εti , (1)

whereYti is the observed process,Xti the unobserved component of interests, andεti is the mi-
crostructure noise effect. We modelXt, the process of interest with a suitable stochastic differential
equation. For example, the Heston model is specified [5] by

dXt = (μ− νt/2) dt+ σtdBt, dνt = κ (α− νt) dt+ γν
1/2
t dWt, (2)

whereνt = σ2t , andBt andWt are correlated 1-D Brownian motions.

Our main objective is to estimate theintegrated volatility, 〈X,X〉T of the Itô process{Xt}, from
the set of observations{Yti}. Different methods have been proposed for determining the properties
of Xti . An outstanding problem is proposing more robust inference methods. [3] has relaxed the
assumptions of [1], to include inference of processes with jumps. Another possible direction of de-
velopment is to include more complicated noise scenarios, namely allowing for correlation between
observations. The main issue with such relaxations, is that as the permitted structure ofXt and
εt become less stylized, it naturally becomes harder to separate energy due to the high frequency
nuisance component from the process of interest.

Sykulski et al. [4] have proposed inference for multiscale processes based on using the discrete
Fourier transform. Fourier domain estimators have also been used for estimating noisy Itô pro-
cesses, see [6], but the main innovation of Sykulskiet al. was to present a theoretical framework for
Harmonizable processes [7, 8] of interest, and an automatic procedure for estimating the nuisance
structure was proposed. The Whittle likelihood was used to estimate the energy level of the process
of interest, as well as the noise contamination. The method was shown to perform well under various
signal to noise scenarios, as well as path lengths, see[4].

∗www.ecs.soton.ac.uk/people/as07r
†www.homepages.ucl.ac.uk/˜ucaksc0/
‡www.ma.ic.ac.uk/˜pavl/

1



The results of [4] or [1] are only appropriate when the noise is white. We shall in contrast in
this paper discuss possible extensions of the multiscale estimators to the case of more complicated
market microstructure, and illustrate the performance of the estimator in various noise scenarios.

2 Multiscale Estimation

In the absence of noise a suitable estimator of the integrated volatility,〈X,X〉T =
∫ T
0
σ2t dt, can be

specified from the quadratic variation of the process{Yt}. In the presence of market microstructure
noise this is no longer true and it is necessary to employ a different estimation procedure. For ease
of exposition we denote the difference processZti − Zti−1 by U (Z)ti whereZ = X, Y or ε. The

Loève spectrum [7,8] ofU (Z)ti will be denotedS(Z)(fk, fk), and we note that the observed quadratic
variation can be rewritten as:

〈̂X,X〉
(b)

T =

N−1∑

i=0

(
U
(Y )
ti

)2
=

N/2−1∑

k=−N/2

∣
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∣J (Y )(fk)

∣
∣
∣
2
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Ŝ(Y )(fk, fk) =
∣
∣
∣J (Y )(fk)

∣
∣
∣
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, J (Y )(fk) =
1
√
N

N−1∑

j=1

U
(Y )
tj
e−2πitjfk . (3b)

with fk = k
T
. Ŝ(Y )(fk, fk) is the periodogram estimator, see [9], and normally has a single argu-

ment because the covariance of the Fourier Transform at two fixed frequencies is asymptotically
equivalent to zero for a stationary process. We note directly from [4] that the bias of the estimator

〈̂X,X〉
(b)

T is conveniently expressed in the Fourier domain by the observation that

E

{

〈̂X,X〉
(b)

T

}

=

N/2−1∑

k=−N/2

S(X)(fk, fk)+σ
2
ε

N/2−1∑

k=−N/2

|2 sin(πfkΔt)|
2
+O(Nα)+O

(
N1−α

)
. (4)

The error terms follow from assumptions regarding the spectral properties of the processXt, and are
detailed in [4]. These assumptions determine the value ofα. It is clear from eqn (4) that the influence
of the noise increases for larger frequencies, and that the relative magnitude ofS(X)(fk, fk) to
σ2ε |2 sin(πfkΔt)|

2 at frequencyfk will determine the need for bias correction atfk.

Sykulskiet al proposed to measure the average energy ofU
(X)
t across frequencies, and determine

the energy ofU (ε)t , using the form of the white noise spectrum. DespiteU (X)t assumed harmonizable
and not necessarily stationary, with appropriate assumptions regarding the spectral correlation of the
process, it is appropriate to use the Whittle likelihood, see [10], to determine the relative energy of
the two processes across scales. Instead of using eqn (3b) to estimate the spectral contributions of
the process of interest, a shrinkage estimator ofS(X)(fk, fk) was therefore proposed in [4]:

Ŝ(X)(fk, fk;Lk) = LkŜ
(Y )(fk, fk). (5)

0 ≤ Lk ≤ 1 is referred to as the ‘multiscale ratio’ and its optimal form for perfect bias correction
whenεti is white noise is given by:

Lk =
S(X)(fk, fk)

S(X)(fk, fk) + σ2ε |2 sin(πfkΔt)|
2 . (6)

Of course this assumes perfect knowledge ofS(X)(fk, fk) and is not a realizable estimator. Instead
typical contributions ofS(X)(fk, fk) across frequencies were considered, and the multiscale ratio
replaced by a sort of average ratio correspondingto

Lk =
σ2X

σ2X + σ
2
ε |2 sin(πfkΔt)|

2 . (7)

The justification for this choice is discussed in Sykulskiet al. We estimate the parametersof Lk
by maximising a pseudo-likelihood namely the multiscale Whittle likelihood defined in parameter
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σ =
(
σ2ε σ2X

)

`(σ) = −
N/2−1∑
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log
(
σ2X + σ

2
ε |2 sin(πfkΔt)|

2)−
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σ2X + σ
2
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2 .

If
{
U
(X)
t

}
is a stationary process, then the full Whittle likelihood (withσ2X replaced by

S(X)(fk, fk)) will approximate the time-domain likelihood of the sample, under suitable regularity
conditions, see [11].

The bias corrected estimator of the integrated volatility for an estimatedL̂K sequence becomes

〈̂X,X〉
(m1)

T =

N/2−1∑

k=−N/2

Ŝ(X)(fk, fk; L̂k). (8)

In Sykulskiet al. it was shown that the estimates ofσ2X andσ2ε produced suitablêLk such that bias
corrected estimators ofS(X)(fk, fk) with suitable properties were defined. Unfortunately it is not
always reasonable to model the high frequency structure as white, and so more subtle modelling
needs to be used when the noise is more complicated.

3 Correlated Noise

A key issue is treating correlation in the error terms. A reasonable relaxation of modellingεti
as white would correspond toεti stationary. Stationary processes can be conveniently represented
in terms of aggregations of uncorrelated white processes, using the Wold decomposition theorem
[12][p. 187]. We may therefore write the zero-mean observationεti as

εti =

∞∑

j=0

θtjηti−tj , (9)

whereθt0 ≡ 1,
∑
j θ
2
tj
< ∞, and{ηtn} satisfiesE [ηtn ] = 0 andE [ηtnηtm ] = σ

2
ηδn,m. Common

practise would involve approximating the distribution by a finite number of elements in the sum, and
thus truncate eqn (9) toq ∈ Z. We therefore model the noise as a Moving Average (MA) process
specified by

εti = ηti +

q∑

k=1

θtkηti−k , (10)

and the spectral density function [9] ofεti takes the form:

S∗(f ;θ, σ2η) = σ
2
η

∣
∣
∣
∣
∣
1 +

q∑

k=1

θke
2iπfk

∣
∣
∣
∣
∣

2

. (11)

In this case our spectral model forεti changes to a Lòeve spectrum of

S(ε)(f, f) = S∗(f ;θ, σ2η)|2 sin (πfΔt) |
2. (12)

Two possible methods now exist for treating the nuisance function ofS∗(f ;θ, σ2η): we can use the
method of Sykulskiet al. directly without adjustment, assuming the variability ofS∗(f ;θ, σ2η) to
be moderate or we could adjust the methodology to encompass a parametric model for the noise,
replacingσ2ε |2 sin (πfΔt) |

2 by S∗(f ;θ, σ2η)|2 sin (πfΔt) |
2 when treating the frequency structure

of the micro structure noise.

For a fixed and specified value ofq, we may therefore estimate the parameters of the MA, using
the Whittle likelihood, but where nowσ2ε |2 sin (πfΔt) |

2 is replaced byS∗(f)|2 sin (πfΔt) |2. We
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thus get a multiscale likelihood1 given withσ =
(
σ2η σ2X

)
by

`(σ,θ) = −
N/2−1∑

k=1

log
(
σ2X + S

∗(fk;θ, σ
2
η) |2 sin(πfkΔt)|

2
)

−
N/2−1∑

k=1

Ŝ(Y )(fk, fk)

σ2X + S
∗(fk;θ, σ2η) |2 sin(πfkΔt)|

2 . (13)

and the augmented multiscale ratio is definedby

L
(a)

k =
σ2X

σ2X + S
∗(fk;θ, σ2η) |2 sin(πfkΔt)|

2 . (14)

If q is not assumed known, then model choice methods can also be applied to determine the value
of q, such as applying the modified Akaike AIC [12][p. 287], and adding2n(q + 2)/[n− q − 3] to
minus two times the log multiscale likelihood, and minimizing this objective function. Some care
must be applied as the Akaike AIC is known to overestimate the number of parameters, and BIC
or some other model choice method may be applied. For a chosen value ofq once we augment the
estimation ofσ2X andσ2ε with that of{θtk}, then we can estimate the noise spectrum and hence the
multiscale ratio. This will yield an augmented estimator of the integrated volatility, replacing the
parameters by their estimators in eqn (14), that we denote byL̂

(a)
k . Our new estimator then takes the

form

〈̂X,X〉
(a)

T =

N/2−1∑

k=−N/2

Ŝ(X)(fk, fk; L̂
(a)
k ). (15)

This form both takes the high frequency structure into account, and permits the high frequency
structure to be more dynamic than is the case of simple white noise nuisance structure.

4 Examples

We investigate the simple case of
εti = ηti + θ1ηti−1 , (16)

where thenS∗(f) = 1 + θ21 + 2θ1 cos(2πf). Clearly it is of interest to investigate the effect
of the variability ofS∗(f) on the multiscale estimation procedure. We note that settingθ1 = 0
recovers the white noise structure investigated in [4] and [1]. It is therefore of interest to compare
our estimators over a range of values forθ1 to study the effect of additional variability in the spectrum
of the nuisance structure in the estimation of the integrated volatility. This is not a full study of the
complete effects of complicated high-frequency structure superimposed on the process of interest:
this study is intended to demonstrate the adverse effects of a more dynamic nuisance structure, and
the potential of correcting for such effects using the multiscale structure of the process of interest.

We demonstrate the performance of our multiscale estimators of integrated volatility using the He-
ston model defined in eqn (2), with the same parameter values as used in [4] and [1], except this

time we generate the microstructure noise process by eqn (16). Our new estimator̂〈X,X〉
(a)

T ,
requires estimation of the parameters(σ2X , σ

2
ε , θ1) and this is done separately for each path us-

ing the MATLAB function fmincon on eqn (13). Figures 1(a) and 1(b) show the approximated
σ2X andS∗(fk; θ1, σ2η) |2 sin(πfkΔt)|

2 (in white) plotted over the periodogramŝS(X)(fk, fk) and

Ŝ(ε)(fk, fk) for one simulated path, whereθ1 = 0.5. The parameters(σ2X , σ
2
ε , θ1) seem to have

been approximated well, as the approximated spectral densities follow the shape of their respective
periodograms. Figure 1(c) shows the corresponding multiscale ratioL̂

(a)
k (in white) plotted over an

unrealizable estimate ofLk:

L̃k =
Ŝ(X)(fk, fk)

Ŝ(X)(fk, fk) + Ŝ(ε)(fk, fk)
. (17)

1Note that̀ (σ,θ) is not strictly speaking a likelihood, see the full discussion in Sykulski et al. [4], but can
for all intents and purposes be treated as such in this context.
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Table 1: Root Mean Square Error (RMSE) for the different estimators of the integrated volatility,
over different values ofθ1. The RMSEs are averaged over 7,500paths.

RMSE{∙} 〈̂X,X〉
(b)

T 〈̂X,X〉
(s1)

T 〈̂X,X〉
(m1)

T 〈̂X,X〉
(a)

T 〈̂X,X〉
(u)

T

θ1 = −1 3.51× 10−2 4.82× 10−4 7.35× 10−5 1.52× 10−5 1.46× 10−5

θ1 = −0.75 2.71× 10−2 3.62× 10−4 7.14× 10−5 1.56× 10−5 1.44× 10−5

θ1 = −0.5 2.05× 10−2 2.42× 10−4 6.40× 10−5 1.57× 10−5 1.44× 10−5

θ1 = −0.25 1.54× 10−2 1.21× 10−4 4.58× 10−5 1.60× 10−5 1.44× 10−5

θ1 = 0 1.17× 10−2 1.67× 10−5 1.61× 10−5 1.62× 10−5 1.43× 10−5

θ1 = 0.25 9.51× 10−3 1.22× 10−4 1.18× 10−4 1.67× 10−5 1.45× 10−5

θ1 = 0.5 8.78× 10−3 2.41× 10−4 4.67× 10−4 1.70× 10−5 1.43× 10−5

θ1 = 0.75 9.51× 10−3 3.62× 10−4 2.13× 10−3 1.74× 10−5 1.44× 10−5

θ1 = 1 1.17× 10−2 4.82× 10−4 9.82× 10−3 1.67× 10−5 1.45× 10−5

Our multiscale ratio provides a good estimate toLk and will remove the noise microstructure from
the correct frequencies by shrinkage. Figure 1(d) showsL̂

(a)
k Ŝ

(Y )(fk, fk); the energy has been
shrunk at frequencies affected by the microstructure noise and the spectrum is a good approximation
to Ŝ(X)(fk, fk), which in turn should lead to a good approximation of the integrated volatility,
compare with Figure 1(a). Figures 2(a) and 2(b) show two more estimated multiscale ratiosL̂

(a)
k (in

white), but this time withθ1 = −0.5 andθ1 = 1 respectively. The multiscale estimator appears to
correctly detect the correlation of noise in the process, as well as the magnitude of the signal to noise
ratio. Note that forθ1 = −0.5 we shrink the estimated Loève spectrum at an increasing rate for high
frequencies, whilst forθ1 = 1 we shrink in a highly non-monotone fashion across frequencies.

We investigate the performance of our new estimator against the estimators developed in [4] and
[1] using Monte Carlo simulations. A range of values forθ1 are used to investigate the effect of
correlated noise. For each value ofθ1 we generated 7,500 simulated paths. Table I displays the
results of our simulation, where the errors are calculated using a Riemann sum approximation on

theXt process (see [4] for details). Along with the performance of our new estimator̂〈X,X〉
(a)

T

(eqn (15)), we include the performance of the estimator from [4],̂〈X,X〉
(m1)

T (eqn (8)) and the

best un-biased estimator developed in [1],̂〈X,X〉
(s1)

T . Naturally we do not aim to compare our
estimator for correlated noise structure with that of [1,4], as these were not developed for correlated
noise, but more include these to show the necessity of treating correlation in the microstructure.
Furthermore, had our Whittle estimators been sufficiently poor, then the variability of the estimated
multiscale ratio would have made our proposed procedure unsuitable. We also include for reference,

the biased estimator in eqn (3a),̂〈X,X〉
(b)

T (the quadratic variation onYt) and the unobservable
unbiased estimator

〈̂X,X〉
(u)

T =
N−1∑

i=0

(
U
(X)
ti

)2
(18)

the quadratic variation onXt, which in some sense is the best estimator that can be achieved.

The table shows that the new estimator performs remarkably well under different values ofθ1. In
fact the RMSE of the estimator is very close to that of the unobservable quadratic variation, the best
measure in the absence of market microstructure. The loss of efficiency by the more flexible model
whenθ1 = 0 is marginal whilst whenθ1 = 1 the RMSE has decreased by a factor of a 500 compared
to [4], and by a factor of 30 compared to [1], whilst ifθ1 = −1 the RMSE has decreased by a factor
of a 5 compared to [4], and by a factor of 30 compared to [1]. The small and consistent RMSE is due
to the successful bias removal of the augmented multiscale estimator, where the low mean square
error of the estimators of(σ2X , σ

2
ε , θ1), ensures that the bias in the estimated Loève spectrum of the

process of interest is removed efficiently. Figure 3 shows the distribution of the estimates of these
parameters over the 7,500 simulated paths forθ1 = 0.5; the estimation procedure is unbiased and
has reasonably low variance.
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The estimators〈̂X,X〉
(s1)

T and 〈̂X,X〉
(m1)

T are inconsistent when additional structure is permitted
in the noise. We stress that these are estimators based on assumptions of white noise, and their
strong performance in this instance (θ1 = 0) is apparent. As we move away from white noise,

〈̂X,X〉
(s1)

T and 〈̂X,X〉
(m1)

T overcompensate for the noise whenθ1 in near minus one and under-
compensate whenθ1 is near one. This happens because as the value ofθ changes, taking values
between minus one and one the spectral properties of the noise process change quite markedly with
the appropriate shrinkage factor changing form in a corresponding fashion. For negative values of
θ1 the multiscale ratio, and smaller positive values ofθ1 the augmented multiscale ratio is decreas-
ing at higher frequencies, whilst whenθ1 approaches one the multiscale ratio is not monotone (see

Figures 1(c), 2(a) and 2(b)).̂〈X,X〉
(m1)

T seems to still perform well for negativeθ1 values (note how
the spectral form of the noise process is still largely the same shape) but performs disastrously for
positiveθ1 values, due to the larger energy at lower frequencies that the estimator fails to remove.

〈̂X,X〉
(s1)

T suffers equivalent loss of performance asθ1 moves away from zero in each direction;
for such a time-domain estimator to perform better in these instances, the optimal subsampling rate
of the estimator would have to be re-calibrated to incorporate the correlated noise. Nevertheless, all
the estimators perform better than the noise polluted and biased estimator of the quadratic variation

onYt, 〈̂X,X〉
(b)

T .

5 Conclusions

This paper has proposed extending the multiscale estimation methods of Sykulskiet al for inte-
grated volatility to include the case of stationary high frequency nuisance structure. It was found
that naively applying estimators designed for the case of uncorrelated noise did not perform well.
By modelling the nuisance structure as a Moving Average process, better bias correction could be
applied at each frequency, and this substantially improved our estimator of the integrated volatility.
Despite greater flexibility, the performance of the estimator did not deteriorate in terms of mean
square error, which could have been a possible outcome. Note that the multiscale methods did not
include parametric modelling of{Xt} only approximating its multiscale nature. Future avenues of
investigation includes rigorous model choice procedures, and the application of Bayesian estimation
methods to naturally incorporate the multiscale ratio by Hierarchical modelling. Multiscale mod-
elling shows great promise for designing inference methods for continuous time processes, by the
increase in precision and power from investigating properties directly scale-by-scale.

References

[1] L. Zhang, P. A. Mykland, and Y. Ait-Sahalia, “A tale of two time scales: Determining inte-
grated volatility with noisy high-frequency data”,J. Am. Stat. Assoc., vol. 100, pp. 1394–1411,
2005.

[2] G. A. Pavliotis and A. M. Stuart, “Parameter estimation for multiscale diffusions”,J. Stat.
Phys., vol. 127, pp. 741–781, 2007.

[3] J. Fan and Y. Wang, “Multi-scale jump and volatility analysis for high-frequency financial
data”, J. of the American Statistical Association, vol. 102, pp. 1349–1362, 2007.

[4] A. Sykulski, S. C. Olhede, and G. Pavliotis, “Multiscale inference for high-frequency
data”, Tech. Rep. 290, Department of Statistical Science, University College London,
arxiv.org/abs/0803.0392, 2008.

[5] Heston, “A closed form solution for options with stochastic volatility with applications to bond
and currency options”,Review of Financial Studies, vol. 6, pp. 327–343, 1993.

[6] M. E. Mancino and S. Sanfelici, “Robustness of fourier estimators of integrated volatility in
the presence of microstructure noise”, Tech. Rep., University of Firenze, 2006.
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line) with the Whittle estimates superimposed (white solid line), (c) the estimate ofLk from the raw
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(white solid line) and (d) the bias corrected estimator of the periodogram ofU
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0.5 in this example. Notice the different scales in the four figures. Estimated spectra are here plotted
on a linear scale for ease of comparison to the effect of applyingLk.
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line) with the Whittle estimatêLk (white solid line) superimposed for (a)θ1 = −0.5 and (b)θ1 = 1.
Notice the non-monotone structure of the multiscale ratio in the second case.
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