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Abstract

This paper treats the multiscale estimation of the integrated volatility oféan It
process immersed in high-frequency correlated noise. The multiscale structure
of the problem is modelled explicitly, and the multiscale ratio is used to quantify
energy contributions from the noise, estimated using the Whittle likelihood. This
problem becomes more complex as we allow the noise structure greater flexibility,
and multiscale properties of the estimation are discussed via a simulation study.

1 Introduction

The estimation of properties of continuous time stochastic processes, whose observation is immersed
in high frequency nuisance structure is required in many different fields of application, for example
molecular biology and finance. Various methods have been proposed to alleviate bias introduced
into the estimation from high frequency nuisance structure, see for example [1-4]. Commonly the
model of the observed process is as the process of int&gesuperimposed with noisg,, or

}/;5.; = Xti + €t;5 (1)

whereY;, is the observed procesX,, the unobserved component of interests, ands the mi-
crostructure noise effect. We modE}, the process of interest with a suitable stochastic differential
equation. For example, the Heston model is specified [5] by

dX, = (p— 1 )2)dt + 0ydBy,  dvy = k(o — ) dt + v/ >dW, @)
wherev; = o2, andB; andW; are correlated 1-D Brownian motions.

Our main objective is to estimate tirgegrated volatility (X, X)r of the 1t procesg X, }, from

the set of observationg, }. Different methods have been proposed for determining the properties

of X;,. An outstanding problem is proposing more robust inference methods. [3] has relaxed the
assumptions of [1], to include inference of processes with jumps. Another possible direction of de-
velopment is to include more complicated noise scenarios, namely allowing for correlation between
observations. The main issue with such relaxations, is that as the permitted struciyeod

e: become less stylized, it naturally becomes harder to separate energy due to the high frequency
nuisance component from the process of interest.

Sykulski et al. [4] have proposed inference for multiscale processes based on using the discrete
Fourier transform. Fourier domain estimators have also been used for estimating dgwsg-It
cesses, see [6], but the main innovation of Sykutskil. was to present a theoretical framework for
Harmonizable processes [7, 8] of interest, and an automatic procedure for estimating the nuisance
structure was proposed. The Whittle likelihood was used to estimate the energy level of the process
of interest, as well as the noise contamination. The method was shown to perform well under various
signal to noise scenarios, as well as path lengthg4dee
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The results of [4] or [1] are only appropriate when the noise is white. We shall in contrast in
this paper discuss possible extensions of the multiscale estimators to the case of more complicated
market microstructure, and illustrate the performance of the estimator in various noise scenarios.

2 Multiscale Estimation

In the absence of noise a suitable estimator of the integrated volgtiityX ) = fOT o2 dt, can be
specified from the quadratic variation of the procg€Bg}. In the presence of market microstructure
noise this is no longer true and it is necessary to employ a different estimation procedure. For ease
of exposition we denote the difference procégss— Z;, , by Ut(iz) whereZ = X, Y ore. The

Loeve spectrum [7,8] (ﬂft(f) will be denotedS?)( f, fx), and we note that the observed quadratic
variation can be rewritten as:

) Nl o2 N/2—1 2
X X)r = Y (") = X M) (3a)
i= k=—N/2
N 2 1 =y ,
SN (fsf) = [T IO = = 3 U el (3b)
VN =t

with fi = &. SO (fy, fx) is the periodogram estimator, see [9], and normally has a single argu-
ment because the covariance of the Fourier Transform at two fixed frequencies is asymptotically
equivalent to zero for a stationary process. We note directly from [4] that the bias of the estimator

= ()

(X, X), is conveniently expressed in the Fourier domain by the observation that

N/2—1 N/2—1

E{<ﬁ>§")}= S SN fi)ko? S 2sin(rfrAt)+O(N)+O (N0 (4)

k=—N/2 k=—N/2

The error terms follow from assumptions regarding the spectral properties of the pigcessl are
detailed in [4]. These assumptions determine the value &fis clear from eqn (4) that the influence
of the noise increases for larger frequencies, and that the relative magnittdé)gff., fx) to
o2 |2sin(r fr At)|? at frequencyfy, will determine the need for bias correctionfat

Sykulskiet al proposed to measure the average energyt(d(f) across frequencies, and determine

the energy oUt(E), using the form of the white noise spectrum. Desrﬂig) assumed harmonizable

and not necessarily stationary, with appropriate assumptions regarding the spectral correlation of the
process, it is appropriate to use the Whittle likelihood, see [10], to determine the relative energy of
the two processes across scales. Instead of using egn (3b) to estimate the spectral contributions of
the process of interest, a shrinkage estimata#@? ( fx, fx) was therefore proposed in [4]:

SO (fu, f; L) = LSV (fi, fr)- )

0 < Ly < lisreferred to as the ‘multiscale ratio’ and its optimal form for perfect bias correction
whene;, is white noise is given by:

L= ) ©
S(X)(fk, fk) + 0'62 ‘2 sm(wkat)\

Of course this assumes perfect knowledg&of) (., f) and is not a realizable estimator. Instead
typical contributions of5™)(f, fx) across frequencies were considered, and the multiscale ratio
replaced by a sort of average ratio corresponding

2
T = Ix . @)
0% + o2 |2sin(r fr At)|

The justification for this choice is discussed in Sykulskial. We estimate the parametess L,
by maximising a pseudo-likelihood namely the multiscale Whittle likelihood defined in parameter



N/2—1 N/2—1

Uo)=— > log (o + ol 2sin(nfut)]”) — >

k=1 k=1

S (fr, fr)
0% + o2 |2sin(n frL At))*

If {Ut(x)} is a stationary process, then the full Whittle likelihood (witf}. replaced by

S (fr, fr)) will approximate the time-domain likelihood of the sample, under suitable regularity
conditions, see [11].

The bias corrected estimator of the integrated volatility for an estimagedequence becomes

_ (m1) N/2—-1 R R
(X, X)p = > S (fu, frs Ln). (®)

k=—N/2

In Sykulskiet al. it was shown that the estimates®} ando? produced suitablé;, such that bias

corrected estimators &) (f, fx) with suitable properties were defined. Unfortunately it is not
always reasonable to model the high frequency structure as white, and so more subtle modelling
needs to be used when the noise is more complicated.

3 Correlated Noise

A key issue is treating correlation in the error terms. A reasonable relaxation of modslling

as white would correspond tg, stationary. Stationary processes can be conveniently represented
in terms of aggregations of uncorrelated white processes, using the Wold decomposition theorem
[12][p. 187]. We may therefore write the zero-mean observaijoas

€t, = Zet]‘nti*t]‘J (9)
7=0

whered;, = 1,3, 67, < oo, and{n,,} satisfiest [1;,] = 0 andE [;,7;,,] = 070,,». Common
practise would involve approximating the distribution by a finite number of elements in the sum, and
thus truncate eqn (9) t@ € Z. We therefore model the noise as a Moving Average (MA) process
specified by

q
€t, = Mt + Z etﬂlti,k, (10)
k=1
and the spectral density function [9] ef takes the form:

2

q
S*(f;0,00) = op |1+ > Ope®™I* (11)
k=1
In this case our spectral model far changes to a Léve spectrum of
SO, f) = S*(f;6,07)2sin (wfA) [ (12)

Two possible methods now exist for treating the nuisance functict of; 6, a,";): we can use the
method of Sykulsket al. directly without adjustment, assuming the variability$f(f; 6, 2) to

be moderate or we could adjust the methodology to encompass a parametric model ?or the noise,
replacingo? |2 sin (7 fAt) |* by S*(f;6,07)[2sin (x f At) |* when treating the frequency structure

of the micro structure noise.

For a fixed and specified value gf we may therefore estimate the parameters of the MA, using
the Whittle likelihood, but where now?|2 sin (7 fAt) |2 is replaced bys*(f)|2sin (7 fAt) |2. We



thus get a multiscale likelihootigiven withe = (02 0% ) by

N/2—-1
(0,0)=— 3 log (03( + % (fi:0,02) |2sin(7rkat)|2)
k=1

N/2-1

_ Z SO (fr, fi)
0% + S*(fi; 0,02) [2sin(r frAt)|*

k=1 n

13)
and the augmented multiscale ratio is defibgd

2
Y = X (14)

0% + 8*(fx;0,02) |2sin(r fr,At)[*

If ¢ is not assumed known, then model choice methods can also be applied to determine the value
of ¢, such as applying the modified Akaike AIC [12][p. 287], and addin¢g + 2)/[n — q — 3] tO

minus two times the log multiscale likelihood, and minimizing this objective function. Some care
must be applied as the Akaike AIC is known to overestimate the number of parameters, and BIC
or some other model choice method may be applied. For a chosen vajumoé we augment the
estimation ofo3, ands? with that of {6;, }, then we can estimate the noise spectrum and hence the
multiscale ratio. This will yield an augmented estimator of the integrated volatility, replacing the

parameters by their estimators in eqn (14), that we denofe?jBy Our new estimator then takes the
form
(@ N/2-1
X, X)p = > SO, fris L), (15)
k=—N/2
This form both takes the high frequency structure into account, and permits the high frequency
structure to be more dynamic than is the case of simple white noise nuisance structure.

4 Examples

We investigate the simple case of

€, = M, + 9177ti_17 (16)
where thenS*(f) = 1 + 07 + 26, cos(2rf). Clearly it is of interest to investigate the effect
of the variability of S*(f) on the multiscale estimation procedure. We note that sefting: 0
recovers the white noise structure investigated in [4] and [1]. It is therefore of interest to compare
our estimators over a range of valuesffoto study the effect of additional variability in the spectrum
of the nuisance structure in the estimation of the integrated volatility. This is not a full study of the
complete effects of complicated high-frequency structure superimposed on the process of interest:
this study is intended to demonstrate the adverse effects of a more dynamic nuisance structure, and
the potential of correcting for such effects using the multiscale structure of the process of interest.

We demonstrate the performance of our multiscale estimators of integrated volatility using the He-
ston model defined in eqn (2), with the same parameter values as used in [4] and [1], except this

. . . —— (a)
time we generate the microstructure noise process by eqn (16). Our new estiaf§, ,

requires estimation of the parametérs,, o2, 6,) and this is done separately for each path us-
ing the MATLAB function fmincon on eqgn (13). Figures 1(a) and 1(b) show the approximated

0% andS*(fi;61,07) |2 sin(m f, At)|? (in white) plotted over the periodogran$$¥)( f, fx) and

S©(fy, fi) for one simulated path, whets = 0.5. The parameteréos?, o2, 6;) seem to have
been approximated well, as the approximated spectral densities follow the shape of their respective

periodograms. Figure 1(c) shows the corresponding multiscaleﬁé"ﬂdin white) plotted over an
unrealizable estimate df}:

i SOV (fi, i) _
S(X)(fkafk) + S(G)(fk)fk)

'Note thaté(e, 8) is not strictly speaking a likelihood, see the full discussion in Sykulski et al. [4], but can
for all intents and purposes be treated as such in this context.

(17)




Table 1: Root Mean Square Error (RMSE) for the different estimators of the integrated volatility,

over different values of,. The RMSESs are averaged over 7,5GQhs.

— —— (s1) —— (m1) — (@) —
RMSE{} <X7X>T <X7X>T <X7X>T <XaX>T <X7X>T
0, =—1 351 x1072[4.82x10"%[735x107° [ 1.52 x 107 ° | 1.46 x 10~?
61 =—075 ] 271 x1072 | 3.62x107* | 7.14x107° | 1.56 x 107° | 1.44 x 10~°
0, =—0.5 | 2.05x1072 | 242%x107* | 6.40x 107% | 1.57 x 107% | 1.44 x 10~°
61 =—-025]1.54x1072 | 1.21 x 10~* | 4.58 x 107° | 1.60 x 107° | 1.44 x 10~°
0, =0 1.17x1072 | 1.67x107° | 1.61 x 1075 | 1.62x 1075 | 1.43 x 1075
01 = 0.25 951 x1073 | 1.22x 1074 | 1.18 x 1074 | 1.67 x 107° | 1.45 x 107°
;=05 8.78 x 1073 | 2.41 x 10™% | 4.67 x 10~% | 1.70 x 1075 | 1.43 x 10~°
6; =0.75 951 x1073 | 3.62x 1074 | 213 x 1073 | 1.74 x 107° | 1.44 x 1075
0, =1 1.17x1072 | 482x107% | 9.82x 1073 | 1.67 x 1075 | 1.45 x 1075

Our multiscale ratio provides a good estimatdfoand will remove the noise microstructure from

the correct frequencies by shrinkage. Figure 1(d) shﬁ\gﬁ%s (fx, fx); the energy has been
shrunk at frequencies affected by the microstructure noise and the spectrum is a good approximation

to §(X)(fk,fk), which in turn should lead to a good approximation of the integrated volatility,

compare with Figure 1(a). Figures 2(a) and 2(b) show two more estimated multiscalafr,gﬁ%ids

white), but this time withg; = —0.5 andé; = 1 respectively. The multiscale estimator appears to
correctly detect the correlation of noise in the process, as well as the magnitude of the signal to noise
ratio. Note that fod; = —0.5 we shrink the estimated lewe spectrum at an increasing rate for high
frequencies, whilst fof; = 1 we shrink in a highly non-monotone fashion across frequencies.

We investigate the performance of our new estimator against the estimators developed in [4] and
[1] using Monte Carlo simulations. A range of values frare used to investigate the effect of
correlated noise. For each value &3f we generated 7,500 simulated paths. Table | displays the
results of our simulation, where the errors are calculated using a Riemann sum approximation on

——— (a)
the X, process (see [4] for details). Along with the performance of our new esﬂr(]ﬂth)

(eqn (8)) and the

S
best un-biased estimator developed in [1;, X )(Tl). Naturally we do not aim to compare our
estimator for correlated noise structure with that of [1, 4], as these were not developed for correlated
noise, but more include these to show the necessity of treating correlation in the microstructure.
Furthermore, had our Whittle estimators been sufficiently poor, then the variability of the estimated
multiscale ratio would have made our proposed procedure unsuitable. We also include for reference,

(egn (15)), we include the performance of the estimator from <[A’] X>

. . : —— (b) . .
the biased estimator in eqn (3d)¥, X),. (the quadratic variation ol;) and the unobservable
unbiased estimator

N—-1

-8 )

=0

(18)

the quadratic variation o, which in some sense is the best estimator that can be achieved.

The table shows that the new estimator performs remarkably well under different val@iesliof

fact the RMSE of the estimator is very close to that of the unobservable quadratic variation, the best
measure in the absence of market microstructure. The loss of efficiency by the more flexible model
whenf; = 0is marginal whilst wher; = 1 the RMSE has decreased by a factor of a 500 compared

to [4], and by a factor of 30 compared to [1], whilstif = —1 the RMSE has decreased by a factor

of a 5 compared to [4], and by a factor of 30 compared to [1]. The small and consistent RMSE is due
to the successful bias removal of the augmented multiscale estimator, where the low mean square
error of the estimators db%, o2, 61), ensures that the bias in the estimate@\®spectrum of the
process of interest is removed efficiently. Figure 3 shows the distribution of the estimates of these
parameters over the 7,500 simulated pathgfoe 0.5; the estimation procedure is unbiased and
has reasonably low variance.



The estimators{X,X>(T1) and (X, X); K are inconsistent when additional structure is permitted

in the noise. We stress that these are estimators based on assumptions of white noise, and their
strong performance in this instana® (= 0) is apparent. As we move away from white noise,
<X,X>(T1) and <X,X>(T ' overcompensate for the noise wh@&nin near minus one and under-
compensate whe#, is near one. This happens because as the valdecbinges, taking values
between minus one and one the spectral properties of the noise process change quite markedly with
the appropriate shrinkage factor changing form in a corresponding fashion. For negative values of
6, the multiscale ratio, and smaller positive valuegpthe augmented multiscale ratio is decreas-

ing at higher frequencies, whilst whén approaches one the multiscale ratio is not monotone (see

. = (m1) . .
Figures 1(c), 2(a) and 2(b)}.X, X'),,  seems to still perform well for negative values (note how
the spectral form of the noise process is still largely the same shape) but performs disastrously for

positived; values, due to the larger energy at lower frequencies that the estimator fails to remove.
—— (s1) . . . .
<X,X>T1 suffers equivalent loss of performancefasmoves away from zero in each direction;

for such a time-domain estimator to perform better in these instances, the optimal subsampling rate
of the estimator would have to be re-calibrated to incorporate the correlated noise. Nevertheless, all

the estimators perform better than the noise polluted and biased estimator of the quadratic variation
—— (b)

onY;, (X, X), .

5 Conclusions

This paper has proposed extending the multiscale estimation methods of SykutdHor inte-

grated volatility to include the case of stationary high frequency nuisance structure. It was found
that naively applying estimators designed for the case of uncorrelated noise did not perform well.
By modelling the nuisance structure as a Moving Average process, better bias correction could be
applied at each frequency, and this substantially improved our estimator of the integrated volatility.
Despite greater flexibility, the performance of the estimator did not deteriorate in terms of mean
square error, which could have been a possible outcome. Note that the multiscale methods did not
include parametric modelling dfX;} only approximating its multiscale nature. Future avenues of
investigation includes rigorous model choice procedures, and the application of Bayesian estimation
methods to naturally incorporate the multiscale ratio by Hierarchical modelling. Multiscale mod-
elling shows great promise for designing inference methods for continuous time processes, by the
increase in precision and power from investigating properties directly scale-by-scale.
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Figure 1: (a) The periodogram of a realisatior[lﬁfy) (solid line), (b) of a realisation dﬁt(e) (solid

line) with the Whittle estimates superimposed (white solid line), (c) the estimdig vbm the raw
periodograms of the unobserved processes (solid line) with the Whittle estimateperimposed
(white solid line) and (d) the bias corrected estimator of the periodogrdvﬂ)é)f, usingfk. 0, =

0.5 in this example. Notice the different scales in the four figures. Estimated spectra are here plotted
on a linear scale for ease of comparison to the effect of appl§ing
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Figure 2: The estimate af, from the raw estimated spectra of the unobserved processes (solid

line) with the Whittle estimat@ (white solid line) superimposed for (&) = —0.5 and (b)d; = 1.
Notice the non-monotone structure of the multiscale ratio in the second case.



400|

200 300

100 200|

(@) X (b) x (©)

Figure 3: Histograms showing the distribution of the estimators of the paramelﬁgsfmr (@o%,
(b) o2 and (c)¢; (where the true value @ is 0.5) over 7,500 simulated paths.
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