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Abstract

This study considers a navigation method for finding the most preferable
radiotherapy plan from a discrete set using planner-defined clinical criteria.
The method is based on repeatedly solving an optimisation model to iden-
tify a plan that best satisfies the aspiration values set by the planner. During
navigation, the planner iteratively adjusts the aspiration values to match the
preference information learned from previous plans until the most preferable
plan is identified. The use of soft constraints to model aspiration values en-
ables navigation among a discrete set and allows the planner to freely specify
the aspiration values without producing an infeasible model. We demon-
strate the use of the model by applying it to a prostate cancer case. This
illustrates that improvements in optimisation criteria do not necessarily lead
to improvements in clinical criteria. Hence the method obviates the need to
simultaneously monitor both optimisation and clinical criteria in current nav-
igation systems. Instead, the direct use of clinical criteria for navigation aids
the planner to quickly identify the most preferable plan.
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1 Introduction

Radiotherapy treatment planning involves managing conflicting objectives re-

garding tumour control and the sparing of surrounding healthy structures. Man-

aging these conflicting objectives in radiotherapy treatment planning is not trivial

since the achievable trade-offs between the objectives are not clear. In the conven-

tional iterative planning practice, a planner experiments with the planning parame-

ters in order to generate a plan that satisfies a clinic specific protocol. As the effect

of changing the planning parameters is unknown a priori, this planning practice is

time consuming and without guarantee of finding the best plan available.

Multiobjective optimisation (MO) has been introduced to handle this planning

difficulty. Within the context of MO, three distinct approaches have been applied: a

priori approaches, a posteriori approaches and interactive approaches. An a priori

approach requires the planner to provide the preference information so that the in-

formation can be incorporated in the solution process to generate a preferable plan.

One example of an a priori approach is multiobjective goal programming, in which

a sequence of optimisations is conducted to achieve prioritised treatment goals pre-

defined by the planner in a step-wise manner (Falkinger et al., 2012; Breedveld

et al., 2009; Wilkens et al., 2007; Jee et al., 2007). An a posteriori approach aims

at producing a representative set of efficient plans that capture potential trade-offs

in optimisation objectives (Lin et al., 2016; Bokrantz and Forsgren, 2013; Shao

and Ehrgott, 2007; Craft et al., 2006). A plan is efficient if it cannot be improved

in any optimisation objective without deteriorating at least one other optimisation

objective. Given a representative efficient set, the planner can then explore possi-

ble trade-offs in optimisation objectives and select the most preferable plan from

the set. In an interactive approach, the planner iteratively adjusts preferences based

on the knowledge learned from the generated plans. One rare example of an in-

teractive method in radiotherapy treatment planning is proposed by Ruotsalainen

(2009), who uses a classification based method for the planning problem.

Given a set of treatment plans generated by an a posteriori approach, it can

be time consuming to examine the quality of every plan in the representative effi-

cient set. Instead, a navigation method that effectively guides the planner toward

the most preferable plan is needed (Allmendinger et al., 2016). Essentially, a nav-

igation method should allow the planner to move from one plan to another with

more desirable planning trade-offs until the most preferable plan is found. Desir-

able planning trade-offs can be expressed as a navigation query which specifies
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desirable improvements in certain planning criteria while allowing other criteria to

deteriorate. The existing navigation methods proposed for radiotherapy treatment

planning so far are based on solving multi-objective optimisation problems on the

convex hull of a set of efficient solutions generated by a sandwiching method. In

the method of Monz et al. (2008), the navigation query is specified as a constraint

in a single-objective optimisation problem which finds a plan that minimises the

maximum difference in objective function value relative to the current plan. Craft

and Monz (2010) propose a reference-point based navigation method designed for

multiple efficient sets arising from different beam orientations. The navigation

query is specified by changing the values of a reference point. The reference point

is projected to the representative non-dominated set(s) to identify a plan that best

satisfies the query. Craft and Richter (2013) propose a “2D-cut” navigation which

features the 2D trade-off curve of two chosen objectives while other objectives are

either relaxed or bounded by certain values. In all of these methods, navigation

queries are specified in terms of optimisation criteria, i.e., the objective functions

used in the optimisation to generate the representative efficient set. These criteria

are convex functions so that optimisation algorithms can be used to find an optimal

solution efficiently. Convex criteria along with a convex feasible set allow contin-

uous navigation of treatment plans. Note that in these navigation methods, while

optimisation criteria are used to steer the navigation process in the desired direc-

tion, clinical criteria, which are criteria used to evaluate plan quality in clinical

practice, are also continuously monitored.

However, optimisation criteria are nevertheless only surrogates used to gen-

erate treatment plans and are generally not relevant to plan evaluation (Li et al.,

2012). In this study, we show that the optimisation criterion values may not cor-

rectly reflect the plan quality and hence make navigation toward desired clinical im-

provement non-trivial. Instead, we propose a navigation method that uses planner-

specified clinical criteria to specify navigation queries. While many clinical cri-

teria are convex or can be reformulated as convex functions (see, e.g., Romeijn

et al. (2004); Hoffmann et al. (2008)), some clinical criteria are non-convex and

non-continuous, for example, the dose-volume (DV) criteria (Deasy, 1997; Llacer

et al., 2003) and treatment time (where changes in beam orientation and/or the

number of segments result in discrete changes in treatment time, see, e.g., Bortfeld

and Schlegel (1993). For a non-continuous set, continuous navigation, as imple-

mented in existing navigation models, is not applicable.

Instead, in this study we consider navigation on a discrete set of deliverable
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plans of which the beam orientation, segment shapes and segment weights have

been computed in a prior optimisation run. The clinical criterion values are ex-

tracted from the plans and form the underlying data for the navigation model. A

few studies propose navigation/decision support methods with such a set of plans.

Rosen et al. (2005) propose to fit the DV parameters of the target with the DV pa-

rameters of the critical organs using linear functions. Navigation is conducted by

changing the DV parameters for the critical organs among some control points in

a trial-and-error manner. Using this approach, the planner needs to explore all the

control points in order to find the most preferable plan.

Ehrgott and Winz (2008) propose a decision support system based on filtering

out plans with inferior criteria values. To conduct navigation in this method, the

planner needs to iteratively impose, relax or tighten filters. Ripsman et al. (2015)

propose a ranking based navigation system which ranks the plans according to

the sum of weighted criteria values where the weights of the clinical criteria are

assigned by the planner. However, the change of weight vector required to move

from one efficient plan to another is unknown and can only be discovered through

a trial-and-error process.

Our proposed method is inspired by data envelopment analysis (DEA), which

is a well known management science method for assessing the performance of a set

of decision-making units (DMUs) that convert inputs into outputs (Charnes et al.,

1978; Cooper et al., 2011). In an economic interpretation, the inputs represent

the cost we pay for producing the outputs. DEA has been applied to radiotherapy

treatment planning as a quality assessment tool (Lin et al., 2013). The idea is to

consider dose delivered to healthy organs (inputs) as the cost for delivering dose

to the cancerous cells (outputs). To utilise the DEA concept and allow intuitive

navigation, clinical criteria are categorised into inputs or outputs where decreases

in inputs and increases in outputs are considered favourable. In our navigation

method, the planner sets aspiration values for the clinical criteria and an optimi-

sation model is solved to identify a plan that best satisfies the aspiration values.

These aspiration values are specified as soft constraints for the optimisation model,

hence the planner can freely set the ideal clinical criterion values, without the risk

of generating an infeasible model. The planner can then inspect the plan identified

by the navigation method and iteratively adjust the aspiration values until the most

preferable plan is identified.

The contribution of this study is two-fold. Firstly, we propose a DEA based

navigation model that allows a decision maker to freely express his/her preferences
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in criterion values. As a consequence, the model can be applied to non-convex and

discrete sets without leading to infeasibility. Secondly, we propose a clinically ori-

ented navigation practice for radiotherapy treatment planning that allows planners

to intuitively identify the most preferable plan from a set, instead of identifying

the most preferable plan using optimisation criteria. In Section 2, we introduce the

proposed navigation method. In Section 3, we present a prototype implementa-

tion of the proposed model with regards to a prostate treatment planning problem.

Discussion and conclusion then follow in Section 4.

2 Method

We first explain our method using terminologies from DEA and MO, followed by

interpretation and illustration of our method.

2.1 Efficiency in navigation

Consider a set of n DMUs which are evaluated by the decision maker based on

a set of criteria. The criteria are categorised into I inputs and O outputs where

inputs are considered as costs to produce outputs. The performance of a DMU

is evaluated by comparing its inputs and outputs to the production possibility set,

i.e., a set of input-output combinations that is potentially attainable under a certain

production process.

Typically, the decision maker would prefer DMUs that are characterised as

efficient. A DMU is efficient if there is no indication in the production possibility

set that some of the DMU’s inputs or outputs can be improved without worsening

some of its other inputs or outputs.

The concept of efficiency is illustrated in Figure 1 in which the production pos-

sibility set is shown in grey. In the figure, DMUs A, B, C and D are considered

efficient since none of the other potentially attainable input-output combinations

show a lower or equal input value and simultaneously a higher or equal output

value than these DMUs. Other DMUs are considered inefficient since there are

potentially attainable input-output combinations (e.g. DMUs A, B, C and D) that

empirically suggest the inefficient DMUs can be improved in the input/output with-

out worsening the output/input.

In this study, we mainly consider a production possibility set referred to as the

free disposal hull, which is formed by a set of DMUs with the assumption of free

disposability, i.e., each DMU can consume extra inputs while producing the same
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Figure 1: Illustrating the concept of efficiency. DMUs A, B, C and D are considered
efficient while other DMUs are inefficient

levels of outputs or produce less outputs with the same levels of inputs. In Figure 1,

the free disposal hull formed by the DMUs is shown in grey. The boundary of the

production possibility set, illustrated by the dashed lines in Figure 1, is referred to

as the production frontier. The production frontier consists of input-output com-

binations that cannot be further improved in at least one of the inputs or outputs.

For example, DMU G cannot be improved further in input while improvement in

output is achievable.

2.2 Identifying efficient DMUs using aspiration values

Given a large set, it can be impractical for the decision maker to examine each

candidate DMU. Instead, the decision maker can propose a set of aspired criterion

values (or aspiration values) and identify a DMU that best satisfies the aspiration

values. In this subsection, we propose a model that allows the decision maker

to perform such a task while at the same time ensuring efficiency of the DMU

identified by the model.

Let x ∈ RI
> and y ∈ RO

> represent the aspiration values for the inputs and out-

puts, respectively. In addition, let the criterion values of the n DMUs be grouped

into the input matrix X ∈RI×n
≥ and the output matrix Y ∈RO×n

≥ in which the ith col-
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umn of X and Y contains the criterion values of the ith DMU. Note that (xT ,yT )T

is an arbitrary point specified by the decision maker and DMUs are actual points

from the dataset.

Once the decision maker specifies the aspiration values, the following model is

solved to identify a DMU that best satisfies (xT ,yT )T :

max β + ε
(
eT s− + eT s+ ) (1a)

s.t. Xλ ≤ (1−β )x− s− (1b)

Y λ ≥ (1+β )y+ s+ (1c)

eT
λ = 1 (1d)

λ ∈ {0,1}n (1e)

s+,s− ≥ 0, (1f)

where β ∈ R, λ ∈ {0,1}n,s− ∈ RI,s+ ∈ RO are the decision variables. Vector e

represents a vector of ones of appropriate dimension and ε > 0 is a very small num-

ber. In practice, there is no need to determine the value of ε . Instead, model (1) can

be implemented using a 2-step lexicographic optimisation, as described in Section

2.3.

Proposition 1. Model (1) is always feasible.

Proof. Let j∗ ∈ {1, . . . ,n} and let λ j∗ ∈Rn be a vector with a one in the j∗th entry

and zeros in the other entries. Clearly λ j∗ satisfy constraints (1d) and (1e). By

setting λ = λ j∗ and re-arranging the variables, constraints (1b) and (1c) can be

equivalently expressed as

β ≤
Xi, j∗− xi + s−i

−xi
, i = 1, . . . , I

β ≤
Yo, j∗− yo− s+o

yo
, o = 1, . . . ,O. (2)

Let s−∗ and s+∗ be zero vectors of dimension I and dimension O, respectively

and let β j∗ := min
{

Xi, j∗− xi

−xi
,
Yo, j∗− yo

yo
: i = 1, . . . , I,o = 1, . . . ,O

}
. It is obvious

that β = β j∗ ,s− = s−∗,s+ = s+∗ satisfy (2) and thus (β j∗ ,λ
j∗ ,s−∗,s−∗) is a feasible

solution of (1).

Model (1) can be interpreted as a mechanism that adjusts the aspiration values
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to identify a best matching DMU. The adjusted aspiration values are expressed as

the right-hand side of constraint (1b) and (1c), i.e., (1−β )x−s− and (1+β )y+s+.

Constraints (1d) and (1e) specify that only one element in vector λ can have a value

of 1 with the rest of the elements having a value of zero. Thus, essentially, the

model specifies that there must be one DMU with inputs and outputs better than

or equal to the adjusted aspiration values. Since the production possibility set of

model 1 is defined by the free disposal hull of the set of DMUs, the efficient DMU

identified by the model must be one of the existing DMUs.

Two types of adjustments are used in the model: directional and additive. Di-

rectional adjustment is inspired by Chambers et al. (1996, 1998). The directional

distance constraints Xλ ≤ (1−β )δx and Y λ ≥ (1+β )δy allow the decision maker

to specify a direction (−δxT ,δyT )T for the adjustment of the aspiration values. In

model (1) the direction is specified as (−xT ,yT )T and β represents the magnitude

of adjustment in the specified direction. As model 1 is always feasible (Proposi-

tion 1), the decision maker can choose the aspiration values (−xT ,yT )T freely even

if the values are outside of the production possibility set.

The other mechanism, additive adjustment, adjusts the individual aspiration

values through s− and s+. In contrast to directional adjustment, which adjusts

all criteria simultaneously, additive adjustment applies to each input/output inde-

pendently and the adjustment only improves the aspiration values. Since the cost

coefficient for additive adjustment, ε , is a very small value, additive adjustment is

applied to the aspiration values with a lower priority than directional adjustment.

Hence, the adjustment of aspiration values in model (1) can be considered as a

two step process where directional adjustment is conducted first, followed by ad-

ditive adjustment. Directional adjustment moves a point to the production frontier

where at least one input or one output cannot be further improved. The point on

the production frontier is then adjusted by individual input/output through additive

adjustment of s+ and s−. Additive adjustment ensures that the adjusted aspiration

values equal the criterion values of one of the DMUs (since ε(eT s−+ eT s+) is

maximised in the objective function, making constraints (1b) and (1c) binding). In

addition, the DMU corresponding to the adjusted aspiration values must be effi-

cient (Proposition 2).

Proposition 2. The DMU selected by the optimal solution of model (1) must be

efficient.

Proof. If the selected DMU is not efficient, there must be another DMU from the
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Figure 2: Illustration of model (1) with points A, B, C and D representing DMUs
and points a, b and c representing aspiration values

set with better input/output values. Thus the adjusted aspiration values can be

further improved, resulting in a better objective function value, which is contrary

to the optimality of the solution.

Figure 2 illustrates the use of model (1), in which a two-criterion problem with

one input and one output is considered. In the figure, points A, B, C and D represent

a set of efficient DMUs and points a, b and c each represent a set of aspiration val-

ues specified by the decision maker. Note that aspiration points are arbitrary points

specified by the decision makers and may not be within the production possibility

set, as shown by point b. Directional adjustment of aspiration values moves points

a and b to points a∗ and b∗. Notice that directional adjustment is determined by

the corresponding aspiration values. Directional adjustment cannot be applied to

point c as the point is already on the production frontier. Additive adjustment is

then applied to points a∗, b∗ and c to identify the corresponding efficient DMUs.

The values of β , s− and s+ for points a, b and c are shown in Table 1.

Directional adjustment, which can be specified as β (−xT ,yT )T , allows the mul-

tiple inputs and the multiple outputs of the aspiration values to remain in the same

proportion after adjustment. This is illustrated in Figure 3a where a two-criterion

problem with only inputs is considered. In the figure, directional adjustment only
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Table 1: Optimal β , s− and s+ values for the adjustment of points a, b and c in
Figure 2

Point a(6,3) b(4,10) c(7,10)
β 0.5 -0.2 0
(s−,s+) (0, 3.5) (1.8, 0) (0, 2)
Identified DMU B B C

moves aspiration points d and e along the corresponding ray emanating from the

origin (shown in the dotted line) where any point on the ray has the same pro-

portion in inputs as the corresponding aspiration values. Hence model (1) can be

interpreted as a two step mechanism. The first step finds a point on the production

frontier such that the point has criterion values in the same proportion among in-

puts and among outputs as the aspiration point. The second step then improves the

adjusted aspiration point such that it equals one of the efficient DMUs.

By replacing the binary constraint of (1e) on λ , with convexity constraints,

∑
n
i=1 λi = 1 and 0 ≤ λi ≤ 1 ∀i = 1, . . . ,n, model (1) can be applied to a convex set

where a convex combinations of inputs and outputs of existing DMUs are consid-

ered attainable. This convexity assumption is used in previous navigation methods

where a convex combination of plans (or precisely, bixel intensities) is also a valid

plan (Monz et al., 2008; Craft and Monz, 2010; Craft and Richter, 2013). Model (1)

under convexity assumption is illustrated in Figure 3b where aspiration values rep-

resented by points d and e are adjusted to efficient points d∗ and e∗. The convexity

constraints correspond to the variable returns to scale assumption in the DEA con-

text. Similarly, the constant returns to scale assumption in DEA can be facilitated

by replacing (1e) with non-negativity constraints, λi ≥ 0 ∀i = 1, . . . ,n.

2.3 Implementation

Determining the value of ε can be non-trivial in practice. Instead of solving model (1)

directly, one can solve model (3) and (4) sequentially to get the same optimal so-

lution without defining ε . Model (3) maximises β solely, without considering s−

and s+, to obtain the optimal β value β ∗. Model (4) maximises eT s−+ eT s+ with

the β value in the constraint set equal to β ∗.
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(a) (b)

Figure 3: Illustration of directional adjustment for a two-input problem (a) with the
assumption of free disposal hull (b) with the assumption of convexity.

β
∗ := maxβ

s.t. Xλ ≤ (1−β )x

Y λ ≥ (1+β )y

eT
λ = 1

λ ∈ {0,1}n.

(3)

max eT s−+ eT s+

s.t. Xλ ≤ (1−β
∗)x− s−

Y λ ≥ (1+β
∗)y+ s+

eT
λ = 1

λ ∈ {0,1}n

s+,s− ≥ 0.

(4)

Proposition 3. Models (3) and (4) are always feasible.

Proof. Let j∗ ∈ {1, . . . ,n} and let λ j∗ ∈ Rn be a vector with one in the j∗th entry

and zeros in the other entries and let

β j∗ := min
{

Xi, j∗− xi

−xi
,
Yo, j∗− yo

yo
: i = 1, . . . , I,o = 1, . . . ,O

}
.
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Following the proof of Proposition 1, it is easy to see that λ j∗ and β j∗ constitute

a feasible solution for model (3). Consequently, given β ∗ and λ ∗ that satisfy con-

straints in model (3), constraints in model (4) will always be satisfied by s+ and s−

equal to zero vectors.

2.4 Navigation mechanism with hard constraints

While the use of soft constraints in model (1) allows a decision maker to freely ex-

press the aspiration values, soft constraints do not allow exploration of alternative

DMUs. In practice, changing the aspiration values may result in identifying the

same DMU and the changes in (one or more) aspiration values required to iden-

tify an alternative DMU are not trivial. Instead, alternative DMUs can be accessed

through the use of hard constraints. In this subsection, we illustrate the use of hard

constraints in navigation. For convenience, we express the hard constraints for

inputs only since extending the constraints to outputs is trivial.

Let the ith DMU be the DMU currently identified by the navigation system

and let e j ∈ RI be a vector with one in the jth entry and zeros in all other entries.

Constraint (5a) or (5b) can be added to model (1) in order to move from the current

DMU to an alternative DMU where the kth input criterion is improved by εk or

worsened by εk, respectively:

eT
k Xλ ≤ Xk,i− εk, (5a)

eT
k Xλ ≥ Xk,i + εk. (5b)

In our implementation (see Subsection 3.3), εk is the step size of the criterion slider

bar defined as 1% of the value range of the kth input criterion, i.e., εk = 0.01×(
max{Xk, j : j ∈ I}−min{Xk, j : j ∈ I}

)
.

While navigating, the decision maker may only be interested in DMUs with a

certain set of input criteria, L , better than or equal to certain values. This can be

achieved by constraints of the form

eT
l Xλ ≤ bl, ∀l ∈L , (6)

where vector b records the upper bounding values for input criteria l ∈L .

Model (1) with constraints (5) and (6) forms the complete navigation model

for this study. Notice that when hard constraints are imposed, soft constraints (1b)

and (1c) still apply. That is, the navigation model still relies on the directional ad-
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justment and the additive adjustment to identify an efficient DMU, although now

the production possibility set is restricted by the hard constraints. In other words,

the navigation mechanism still finds a DMU that best matches the aspiration values

among DMUs that satisfy the hard constraints. Notice that the navigation model

can be infeasible when one or more hard constraints exclude all DMUs from the

feasible set. When infeasibility occurs, the decision maker will have to accept that

the hard constraint(s) cannot be satisfied and should consider weakening the con-

straint(s) in order to find a solution. In our implementation, the hard constraints can

only be imposed one at a time (by pressing a slider bar arrow button or by clicking

a constraint check box, see Subsection 3.3). When a new hard constraint is added,

model (1) with user-specified constraints of (5) and (6) is solved. Hence if a new

constraint results in an infeasible model, the decision maker will be immediately

notified.

3 Application to radiotherapy treatment planning

We apply the proposed navigation method to a prostate radiotherapy treatment

planning problem. In section 3.1, we describe how a database of plans is gener-

ated. We present the clinical criteria used in this case study in Section 3.2. Section

3.3 presents the graphical user interface of the proposed navigation system and

demonstrates the functionality of the system.

3.1 Database plan generation

The formulation used to generate treatment plans is based on the model of Holder

(2003), as shown in (7). The dose deposition matrix A ∈ Rm×n, which represents

the dose delivered to the m voxels from the n bixels under unit intensity, is parti-

tioned and re-ordered into sub-matrices according to the structure type of the voxel,

i.e., AT ∈ RmT×n, AC ∈ RmC×n and AN ∈ RmN×n for planning target volume (PTV)

T with mT voxels, for critical organs C with mC voxels and for normal tissue N

with mN voxels, respectively. Variables x ∈ Rn represent the radiation intensity

of the n bixels. Dose lower bounds for the tumour are denoted as LBT ∈ RmT

and upper bounds for the tumour, critical organs and normal tissue are denoted

as UBT ∈ RmT , UBC ∈ RmC and UBN ∈ RmN , respectively. Variables α ∈ RmT ,

β ∈RmC and γ ∈RmN are the one-sided dose deviations from tumour lower bounds,

critical organ upper bounds and normal tissue upper bounds, respectively.
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min
(

1
mT

eT
α ,

1
mC

eT
β ,

1
mN

eT
γ

)
s.t. LBT −α ≤ AT x≤UBT

ACx≤UBC +β

ANx≤UBN + γ

0≤ x,α,β ,γ

(7)

We consider three optimisation criteria: average one-sided dose deviation from

the tumour dose lower bounds (criterion 1), average one-sided dose deviation from

the rectal dose upper bounds (criterion 2) and average one-sided dose deviation

from the bladder upper bounds (criterion 3). Other clinically relevant structures

are involved in the formulation as constraints, e.g., voxels of the prostate are given

a lower bound and an upper bound and voxels of the femur heads are given struc-

ture specific upper bounds. Model (7) can be equivalently reformulated with bixel

intensity variables x replaced by segment intensity variables x̄ and dose deposition

matrix for bixels A replaced by dose deposition matrix for segments Ā (where each

column of Ā represents the dose deposited to the voxels for a particular segment

under unit intensity). The reformulated model is then solved with column gen-

eration integrated in the revised normal boundary intersection (RNBI) procedure

(Shao and Ehrgott, 2007, 2016; Lin et al., 2016).

The RNBI procedure computes a representative set of non-dominated points for

multiobjective linear programmes (MOLPs) (Shao and Ehrgott, 2007, 2016). The

procedure constructs a set of equidistant reference points in the criterion space.

For each reference point, a RNBI subproblem is solved to obtain the intersection

point between the half-line emanating from the associated reference point and the

feasible set, as illustrated in Figure 4. A RNBI subproblem of a reference point q

corresponding to the reformulation of model (7) is shown in model (8). Model (8)

is solved with the (single-objective) column generation technique, which iteratively

generates columns that improve the current solution. The column generation tech-

nique essentially generates segments (represented by columns of Ā) that potentially

improve the current plan (Preciado-Walters et al., 2004; Romeijn et al., 2004). As

a result, plans generated by column generation are readily deliverable, without the

need to go through segmentation, which deteriorates plan quality (Rocha et al.,

2012; Craft and Richter, 2013). In addition, one can also indirectly control the

number of segments used in a treatment by terminating the column generation pro-
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Figure 4: Illustration of the RNBI method. A simplex (S) that encloses the feasible
set (Y) in the objective space is first created and a set of equidistant reference points
is placed on the non-dominated set of S. For each reference point, a RNBI subprob-
lem is solved to obtain the intersection point between the half-line emanating from
the reference point and Y

cess when appropriate. For further details on column generation RNBI and its

application to radiotherapy treatment planning, readers are referred to Lin et al.

(2016).

min t

s.t. q1 + t =
1

mT
eT

α

q2 + t =
1

mC
eT

β

q3 + t =
1

mN
eT

γ

LTT −α ≤ ĀT x̄≤UBT

ĀCx̄≤UBC +β

ĀN x̄≤UBN + γ

0≤ x̄,α,β ,γ, t

(8)
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In the case study, 17 reference points (excluding reference points leading to

an infeasible RNBI subproblem) are used in the RNBI method. During the column

generation process, a solution is separately recorded in the database when the num-

ber of segments used in a treatment plan exceeds 40, 50, 60, 70, 80, 90 and 100.

The column generation process terminates when a treatment plan consists of more

than 100 segments. The plan generation step results in 119 radiotherapy treatment

plans for the prostate treatment planning problem.

3.2 Navigation criteria as inputs and outputs

Once the plan database is ready, the planner specifies the navigation criteria to be

used in evaluating plan quality. The navigation criteria, in terms of inputs and

outputs, used for this planning problem are shown in Table 2. Left femur head

and right femur head are abbreviated as LFH and RFH, respectively. Generalised

equivalent uniform dose is abbreviated as gEUD. We denote the dose of which the

associated iso-dose volume contains v% of the volume as Dv.

For dose conformity, we use the conformity index (CI) proposed by Lomax and

Scheib (2003)

CI =
V(T,d)

Vd
, (9)

where V(T,d) is the d Gy isodose volume of the target and Vd is the d Gy isodose

volume of the total patient volume. The CI value is considered as an output as

higher values of CI are preferable (with a maximum value of 1). For target dose

homogeneity, we use the homogeneity index (HI) proposed by Yoon (2007)

HI =
√

∑
i∈IT

(Di−Dmean)2× vi

V
, (10)

where IPTV is the index set for the target voxels and Di and vi are the dose and

volume of voxel i ∈ I, respectively. Dmean is the mean dose and V is the volume of

the target. Essentially, (10) measures the standard deviation of dose in the target

volume. Hence HI is considered as an input in DEA terminology, because smaller

dose deviation in the target is considered preferable.

It can be seen from Figure 5 that optimisation criteria may not correctly reflect

the quality of clinical criteria. Ideally, a clinical criterion value, if considered as

a function of optimisation criterion values, should be either strictly increasing or

strictly decreasing. That is, an improvement in the optimisation criterion value

should always lead to an improvement in the clinical criterion value. However,
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Table 2: Navigation criteria used in the planning problem in terms of inputs and
outputs.

Inputs Outputs

PTV HI PTV D95
Rectum gEUD PTV CI
Rectum D5
Bladder D50
Bladder D25
LFH D10
RFH D10
Number of segments

Figures 5a to 5c show that this is not the case. Thus when conducting navigation

with optimisation criteria, it is necessary to also monitor the values of the clinical

criteria in order to ensure attainment of a clinically acceptable plan.

3.3 Graphical user interface

A screen shot of the navigation system is shown in Figure 6. Three main compo-

nents are used to conduct navigation: a criterion slider, an aspiration slider and a

constraint check box. The value range of each slider is limited by the maximum

and minimum of the corresponding criterion over all plans in the database. The

minimum and maximum criterion values are also shown in the left and right text

boxes under the corresponding aspiration slider. The user can use either the slider

or the middle text box below each slider to change the corresponding criterion or

aspiration value. When any of the aspiration values change, model (1) is updated

accordingly and solved to obtain a plan that best satisfies the aspiration values.

When the value of a criterion slider is changed, a hard constraint of the form of

equation (5a) or (5b) is imposed on model (1) and the model is solved to obtain

a plan that best satisfies the aspiration values under the hard constraint. If a cur-

rent plan is replaced by an alternative plan, the values of the criterion sliders are

changed to the values of the alternative plan. When a constraint check box is acti-

vated, a hard constraint of the form of (6) is added into model (1). The left and right

text boxes below each criterion slider show the minimum and maximum feasible

values for the corresponding criterion subject to existing hard constraints. When

a criterion value of the current plan equals to the criterion’s minimum/maximum

feasible values with respect to the hard constraints, the background colour of the

17



(a) PTV D95 against tumour dose deviation(b) Rectum gEUD against rectum dose devi-
ation

(c) Bladder D25 against bladder dose devia-
tion

Figure 5: Plots showing that optimisation criterion values may not be appropriate
quality indicators for clinical criteria.

corresponding text box will change to red, indicating further decrease/increase in

the criterion value is not possible (unless one or more constraints are relaxed). If an

aspiration value is/is not satisfied by the corresponding criterion value, the back-

ground colour of the criterion text box appears green/red. Similarly, the “Feasibil-

ity” text box shown on the top-left corner indicates if a navigation step is feasible

(with green background colour) or not (with red background colour).

The navigation system is implemented in MATLAB and the optimisation mod-

els are solved with Gurobi. Clinical criterion values are calculated with CERR

(Deasy et al., 2003). Experimenting with the prototype shows that the optimisation

problem can be solved in real time for a dataset consists of 10000 plans. Addi-

tionally, we note that the optimisation model can also be solved analytically by

enumerating over all possible λ vectors and find the β and slack variables that re-
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Figure 6: Screen shot of the navigation system showing plan 5 with a set of aspira-
tion values and constraints.
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sults in an optimal objective value. However, an advantage of implementing the

model as a mathematical program is that the model can be easily adopted to other

assumptions of the production possibility set, e.g., constant returns to scale and

variable returns to scale.

3.4 Demonstration of the navigation system

To demonstrate the use of the navigation system, we show a sequence of navigation

steps. The navigation steps are composed of the following actions:

a Enter aspiration values

b Click on the right arrow of PTV D95 criterion value slider bar

c Click on rectal D5 constraint check box

d Click on bladder D25 constraint check box

The action(s) performed and the plan identified in each step are shown in Table

3. Action(s) in brackets represent action(s) imposed from previous steps. The

aspiration values used and criterion values of plans identified by the navigation

system from the steps are shown in Table 4.

Table 3: Action(s) in each of the navigation step and the identified plan

Step Action(s) Plan ID

1 a 5
2 (a), b 66
3 (a), c, d 5
4 (a, c, d), b infeasible
5 (a, c, d), d, b 9
6 (a, c, b), b 26
7 (a, c, b, b), b 60

In step 1, aspiration values for each criterion are set and the navigation system

identifies plan 5 as the most preferable plan. All the criterion values of plan 5

achieve the corresponding aspiration values except for PTV D95. Thus in step 2,

action b is used to find a plan with an improved PTV D95 value, which results

in plan 66 being identified. Although plan 66 achieves the PTV D95 aspiration

value, many of the criterion values become worse than the corresponding aspiration

values. In particular, we want to achieve the aspiration values for rectum D5 and
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Table 4: Aspiration values used and plans identified by the navigation steps in
Table 3. Criterion values worse than the corresponding aspiration values are shown
in bold.

Criteria Aspiration Plan 5 Plan 66 Plan 9 Plan 26 Plan 60

PTV D95 74 73.18 75.83 73.78 73.93 74.13
PTV CI 0.6 0.77 0.59 0.67 0.67 0.65
PTV HI 1.7 1.62 1.32 1.80 1.80 1.81

rectum gEUD 67 63.54 68.05 64.83 64.35 63.68
rectum D5 74 73.03 76.18 73.63 73.28 73.13

bladder D50 45 36.13 35.58 41.93 41.93 44.43
bladder D25 65 63.53 67.68 66.43 65.33 66.18

LFH D10 35 15.78 17.58 7.98 8.33 9.23
RFH D10 35 28.63 8.23 15.68 18.68 19.73

nSegment 70 40 72 42 50 70

bladder D25. This can be specified with actions c and d. It is not surprising that plan

5 is identified by step 3 since from step 1 we know plan 5 is the most preferable

plan for the given aspiration values while at the same time satisfying the rectum

D5 aspiration value and bladder D25 values. A screen shot of step 3 is shown in

Figure 6. In step 4, one may attempt to find a plan with a better PTV D95 by

conducting action b. However, it can be seen on Figure 6 that the PTV D95 of the

current plan has reached the maximum feasible value under current constraints and

action b would only lead to an infeasible model unless at least one of the constraints

on rectum D5 or bladder D25 is relaxed. In step 5, we relax the constraint on

bladder D25 and try to improve PTV D95 through actions d and b, respectively. An

improvement in PTV D95 is achieved, as shown by plan 9, although the aspired

PTV D95 value is still not achieved. Further improvement in the PTV D95 value is

attempted in steps 6 and 7, resulting in plans 26 and 60, respectively. Plan 60 shows

that the aspired PTV D95 value is achieve at the cost of sacrificing the aspiration

values for the inhomogeneity index and bladder D25.

4 Discussion and conclusion

The benefit of MO in radiotherapy treatment planning has been demonstrated in

several studies (Thieke et al., 2007; Hong et al., 2008; Craft et al., 2012; Wala

et al., 2013; Chen et al., 2015). The MO based planning approach adopted in clin-

ical practice uses linear interpolation of fluence maps as an approximation of the
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efficient set. By doing so, one can quickly generate a large number of plans with

modest computational expense. However, limitations are also encountered by this

planning approach. Firstly, plans generated through interpolation are not truly ef-

ficient and may be further improved (Bokrantz and Miettinen, 2015). The quality

of these plans is sacrificed in order to reduce the computational expense. Sec-

ondly, linear interpolation of fluence maps does not consider plan delivery. Thus,

a plan selected from the efficient set needs to go through the segmentation step,

which can significantly deteriorate the plan quality (McGarry et al., 2014; Rocha

et al., 2012). To address this issue, Salari and Unkelbach (2013), Craft and Richter

(2013) and Fredriksson and Bokrantz (2013) have proposed navigation methods

for deliverable plans. These methods rely on the interpolation of segmented plans

and/or segments to find deliverable plans, which neglect plan improvement poten-

tial (as stated in the first limitation). Thirdly, linear interpolation cannot be applied

to plans with different beam angle configurations, thus plans generated from inter-

polation are subjected to the same beam angle configuration. However, the best

beam angle configuration to achieve different treatment trade-offs can be different

(see, e.g., Cabrera et al. (2016)). Excluding the search of different beam angle con-

figurations in the plan generation process may prevent the best-quality plans to be

found. Overall the effect of these limitations may lead to the generation of plans

with considerable improvement potential.

An alternative MO practice is to generate a finely-sampled discrete representa-

tion of the efficient set in which each plan is given freedom in beam angle config-

uration, segment sets and segment intensities in order to attain a specific trade-off

in treatment goals. Plan generation with this approach can be computationally ex-

pensive, especially for problems with many optimisation criteria. However, recent

advancements of high performance computing, such as Jia et al. (2014), Tian et al.

(2015) and Ziegenhein et al. (2013), alleviate this potential drawback. To further

reduce the computational expense, one can also consider a two-stage planning prac-

tice where in the first stage, a coarser sample of the efficient set is generated and

navigation is used to identify a close-to-ideal plan, followed by fine-tuning (see,

e.g., Otto (2014); Ziegenhein et al. (2014)) of the dose distribution in the second

stage.

The navigation method proposed in this study best facilitates the latter MO

practice where navigation is conducted on a discrete set of plans. A distinct feature

of the proposed navigation model, compared to previous navigation models, is its

ability to navigate among a discrete set through the use of soft constraints. This
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allows a planner to use any criteria, including the commonly used dose-volume

criteria, which are known to be non-smooth, for navigation. Instead of using opti-

misation criteria, which may not perfectly correlate with clinical evaluation criteria,

the use of clinical criteria enables the planner to assess plan quality and conduct

navigation (including setting constraints) in a more intuitive manner. The knowl-

edge derived from the navigation steps can then be used to form new preferences

and the iterative process of navigation and forming new preference continues until

the most preferable plan is identified.
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