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Abstract: With the high deforestation rates of global forest covers during the past decades, there is an 

ever-increasing need to monitor forest covers at both fine spatial and temporal resolutions. Moderate 

Resolution Imaging Spectroradiometer (MODIS) and Landsat series images have been used commonly 

for satellite-derived forest cover mapping. However, the spatial resolution of MODIS images and the 

temporal resolution of Landsat images are too coarse to observe forest cover at both fine spatial and 

temporal resolutions. In this paper, a novel multiscale spectral-spatial-temporal superresolution 

mapping (MSSTSRM) approach is proposed to update Landsat-based forest maps by integrating 

current MODIS images with the previous forest maps generated from Landsat image. Both the 240 m 

MODIS bands and 480 m MODIS bands were used as inputs of the spectral energy function of the 

MSSTSRM model. The principle of maximal spatial dependence was used as the spatial energy 

function to make the updated forest map spatially smooth. The temporal energy function was based on 

a multiscale spatial-temporal dependence model, and considers the land cover changes between the 

previous and current time. The novel MSSTSRM model was able to update Landsat-based forest maps 

more accurately, in terms of both visual and quantitative evaluation, than traditional pixel-based 

classification and the latest sub-pixel based super-resolution mapping methods. The results demonstrate 

the great efficiency and potential of MSSTSRM for updating fine temporal resolution Landsat-based 

forest maps using MODIS images.  

 

Keywords: Forest cover mapping, MODIS, Landsat, Updating, Spectral-spatial-temporal, 

Super-resolution mapping.  

 

  



 

1. Introduction 

Forest cover across the world is crucial for the delivery of certain ecosystem services, such as 

carbon storage, water supplies, biodiversity richness, and climate regulation (Foley et al., 2005). With 

increasing human disturbance and extreme climate on the world’s forest resources, global forest cover 

is undergoing changing rapidly, especially in the tropical domain, such as Amazon Basin (Malhi et al., 

2008), because of the agricultural expansion, rapid urbanization, and fuel-wood collection (Canadell 

and Raupach, 2008; Foley et al., 2005). This change of forest cover have a significant impact on the 

climate change, biodiversity loss and carbon cycle (Canadell and Raupach, 2008). As such, to provide 

greater understanding and improved management of global forest resources, there is an ever-increasing 

need to update forest cover information at both fine spatial and fine temporal resolutions. 

Field survey and photointerpretation techniques are traditional way used to monitor forest 

resources, but the critical constrain for them is the requirement of intensive human involvement (Gong 

et al., 1994). Fortunately, remote sensing technique could serve conveniently as a means to provide 

important satellite images for forest resources monitoring. At present, the most popular used remotely 

sensed images for forest cover mapping are perhaps the Landsat series and the MODIS images (Friedl 

et al., 2002; Jin et al., 2013; Xian et al., 2009). The former has a spatial resolution of 30 m, and in most 

cases, the spatial resolution of Landsat images make them suitable to observe the detailed spatial 

patterns of forest cover change. As a result, Landsat images have been used to produce various global 

products related to forest (or tree) cover, such as Hansen’s global high-resolution (30 m spatial 

resolution) forest cover change map of the 21st Century (Hansen et al., 2013), Kim’s global 

Landsat-based forest cover change from 1990 to 2000 (Kim et al., 2014), and Sexton’s global 30 m 

spatial resolution continuous fields of tree cover (Sexton et al., 2013). Generally, single Landsat 



 

satellite has a swath width of nearly 180 km and a minimum repeat frequency of 16 days. For most 

times, two Landsat satellites, such as Landsat-5 and Landsat-7 during 1999-2011 or Landsat-7 and 

Landsat-8 during 2013-present, are always available simultaneously, and the combined minimum 

repeat frequency of Landsat images could be shorten ideally to 8 days. It is, therefore, suggested to 

apply all available images provided by different Landsat satellites to have a timely monitoring of the 

forest cover change and forest disturbances (Hansen et al., 2016; Zhu et al., 2012). In real application, 

the combined minimum 8 days repeat frequency of two Landsat satellites images has a great potential 

to monitor most of the forest cover change and forest disturbances, but it often be markedly extended 

by the cloud cover (especially in rainforest areas) or duty cycle limitations (Hilker et al., 2009; Roy et 

al., 2008). At the local scale, Landsat images have a major obstacle for capturing accurate information 

about the short term forest cover change occurred through time, such as forest fires and deforestation. 

At the large scale, cloud free time-continuous Landsat datasets always cannot be collected with a short 

term interval, for example, the global Landsat image mosaics only available for the circa year of 1975, 

1990, 2000, 2005 and 2010.  

Compared with Landsat images, MODIS image has more frequent revisit coverage and wider 

swath scope. The revisit rate of MODIS image would be 1-2 days, and its swath width is more than 

2300 km, which are both absolutely superior to those of Landsat images. In this case, MODIS is more 

able to provide fine temporal resolution cloud-free images to monitor short term forest cover changes 

and disturbances happened at local scale, and to produce global time-continuous cloud-free MODIS 

image mosaics for each year since 1999. However, the major obstacle of MODIS images is that the 

finest spatial resolution is only 240 m, and is always insufficient to observe and monitor forest cover 

change with complex spatial patterns.  



 

In practice, forest cover patches are always smaller than the footprint of MODIS images and, as 

such, the coarse spatial resolution MODIS pixels are often mixed (Jin and Sader, 2005; Sexton et al., 

2013), especially for spatial heterogeneous areas (Keshava and Mustard, 2002). To reduce the negative 

effects of the mixed pixel problem in MODIS images, spectral unmixing method that aims to estimate 

the compositions of mixed pixels are often applied to extract sub-pixel forest cover information 

(Hansen et al., 2003; Keshava and Mustard, 2002; Lu et al., 2011; Tottrup et al., 2007). However, the 

sub-pixel spatial location of the forest cover within the mixed pixels is not provided by the spectral 

unmixing technique.  

Super-resolution mapping (SRM) is an approach aiming to produce finer spatial resolution land 

cover map from original coarse spatial resolution remotely sensed image by predicting sub-pixel spatial 

locations of different land covers within coarse pixels (Atkinson, 1997; Foody, 1998). Motivated by 

this, SRM is potentially able to increase the spatial resolution of the forest cover map produced from 

MODIS images. In general, the key of SRM is the definition of the spatial prior model that is used to 

guide the labeling of the sub-pixel land cover classes within the mixed pixel. The maximal spatial 

dependence principle is one of the most popular spatial prior models used for SRM. Algorithms, 

including pixel swapping (Atkinson, 2005) and sub-pixel/pixel spatial attraction (Ling et al., 2010; 

Mertens et al., 2006) are typical SRM methods based on the maximal spatial dependence principle. 

Besides the spatial prior model, another key problem for SRM is the method used to deal with 

spectral information included in the original coarse spatial resolution multispectral image. Presently, 

there are two kinds of approaches can be used for the utilization of spectral information within the 

observed remotely sensed multispectral image. For the first type, spectral unmixing is performed first 

for the original multispectral image, and the generated proportional images are then used as the input of 



 

a SRM analysis, and this kind of SRM is called as spatial-based SRM (Atkinson, 2005; Ge, 2013; Ge et 

al., 2009; Ling et al., 2014a; Ling et al., 2013; Ling et al., 2014b; Mertens et al., 2006; Tatem et al., 

2002; Wang et al., 2014; Zhong et al., 2015). It is noteworthy that the spatial-based SRM model also 

utilizes the spectral information, but not directly, as it is disposed in the separated spectral unmixing 

model. In contrast, an alternative type of SRM method, spectral-spatial-based SRM, uses directly the 

original remotely sensed images as input to produce the fine spatial resolution land cover map (Zhang 

et al., 2015). Various algorithms, such as Markov random field based SRM (Kasetkasem et al., 2005; Li 

et al., 2012a), linear unmixing model based SRM (Ling et al., 2012) and supervised fuzzy c-means 

based SRM (Li et al., 2012b), all belong to this class of SRM method.  

The results of spatial-based SRM rely greatly on the accuracy of the proportional images 

generated by spectral unmixing (Ling et al., 2012); but unfortunately, spectral unmixing is still an open 

problem. Compared with spatial-based SRM algorithms, spectral-spatial-based SRM operates directly 

with the original remotely sensed image and are able to reduce the uncertainty of spectral unmixing to 

some extent. Moreover, there is always a dilemma for spatial-based SRM to handle the spectral and 

spatial information simultaneously, and the input proportion images generated by spectral unmixing 

can only focus on a single spatial scale. Therefore, spatial-based SRM cannot deal directly with 

multispectral or hyperspectral images that are represented at multiple resolutions. By contrast, 

spectral-spatial-based SRM can use remotely sensed images with multiple scales as input and take full 

advantages of the available spectral information. 

When a MODIS image is available, the abovementioned SRM algorithms, including spatial-based 

and spectral-spatial-based SRM, can thus be used readily to produce a fine spatial resolution (e.g. 

Landsat-based) forest cover map. For this case, the spatial-based and spectral-spatial-based SRM 



 

algorithms are applied with mono-temporal remotely sensed images. Although this “mapping then 

comparison” approach is instinctive, it does not take full advantage of all available prior information, 

especially the temporal prior information included in the previous fine spatial resolution forest cover 

maps. To overcome this shortcoming, an alternative SRM approach was proposed to focus on updating, 

which means to update a previous fine spatial resolution forest cover map with a coarse spatial 

resolution remotely sensed image. Given the storage of large amount of Landsat series images during 

1972 to now, the previous fine spatial resolution forest cover map can be produced readily from these 

historical Landsat images. 

Ling et al. (2011) first developed a sub-pixel land cover change mapping (SLCCM) rule by 

comparing the current and previous coarse spatial resolution fraction land cover map, and to 

incorporate the temporal prior information within the previous fine spatial resolution land cover map 

into the updated fine spatial resolution land cover map. Based on the framework of SLCCM, some 

other updated-based spatial-temporal SRM approaches were proposed recently (He et al., 2016; Li et 

al., 2017; Li et al., 2015; Li et al., 2014b; Wang et al., 2016; Wang et al., 2015; Wu et al., 2017; Xu and 

Huang, 2014; Zhang et al., 2017). However, the inputs of these updated-based spatial-temporal SRM 

are coarse spatial resolution proportion images generated by spectral unmixing, and only consider the 

spatial and temporal prior information. Similar to the spatial-based SRM, the spatial-temporal SRM 

method also does not take the spectral information of the original coarse spatial resolution remotely 

sensed image into account, such that the uncertainty of spectral unmixing will greatly impact the 

corresponding results.  

Given that spectral, spatial and temporal information all have an important role in the SRM; it is 

of great interest to consider integrating of all of them together in the SRM model. Motivated by this, Li 



 

et al. (2014a) first proposed a spectral-spatial-temporal SRM model, namely the spatial-temporal 

Markov Random Field SRM method (STMRF), to deal with the spectral, spatial and temporal prior 

information simultaneously. The STMRF model is organized by solving a maximization problem that is 

composed of three key terms including spectral, spatial and temporal energy function. The STMRF 

model has also been applied to produce Landsat-based forest maps by using a coarse spatial resolution 

MODIS image and a previous Landsat-based forest map as input (Li et al., 2014a). However, it still has 

great potential to be further improved for updating fine spatial resolution forest maps with MODIS 

images in real applications. First, the spectral energy function of STMRF is based only on a single 

spatial scale remotely sensed image. MODIS multispectral imagery has seven bands, where bands 1-2 

have a spatial resolution of 240 m and bands 3-7 have a spatial resolution of 480 m. Since STMRF is 

based on only a single scale, bands 1-2 are often degraded to 480 m, and then combined with bands 3-7 

to be used as the input. However, spatial information within 240 m bands 1-2 would be lost during the 

degrading process. To take full advantage of the MODIS imagery, both the 480 m bands and 240 m 

bands of MODIS image should be utilized simultaneously. Second, the temporal energy function of 

STMRF aims only to make the updated fine spatial resolution forest map similar to the previous fine 

spatial resolution forest map. However, forest cover change certainly may exist between the updated 

and previous forest maps. In this case, the result of STMRF is sensitive to the forest cover change 

through time, and the changed pixels in the previous fine spatial resolution land cover map would have 

a serious negative impact on the updated fine spatial resolution land cover map. To have a better 

performance, the land cover changes between the updated and previous forest maps should be 

considered in the STMRF model.  

This paper proposes a multiscale spectral-spatial-temporal SRM model (MSSTSRM) which can 



 

be applied to update Landsat-based forest maps from multiscale MODIS images. Compared with the 

STMRF, the proposed MSSTSRM model includes innovation in terms of the spectral energy function 

and temporal energy function. The spectral term in the MSSTSRM model is based on a multiscale 

model, and both the 480 m and 240 m bands of MODIS image are utilized as the inputs of spectral 

energy function. The temporal term in the MSSTSRM model is based on a multiscale spatial-temporal 

neighborhood model, in which not only the sub-pixel scale spatial-temporal neighborhood system used 

to make the updated fine spatial resolution land cover map consistent with the previous land cover map, 

but also the coarse-pixel scale spatial-temporal neighborhood system used to incorporate the land cover 

change information is taken into account. As a result, the proposed MSSTSRM is able to take full 

advantage of the spectral, spatial and temporal prior information within the multiscale MODIS images 

and the previous Landsat-based forest maps. 

2. Study area and methods 

2.1 Study area and dataset 

From the early 21st century to now, the rainforests in Amazon basin are undergoing continuous 

reducing due to the severe deforestation and integrated farming (Almeida et al., 2009; Morton et al., 

2005). Monitoring the forest cover change in Amazon basin is, therefore, becoming an increasing 

important research body. It is noteworthy that the Mato Grosso State of Brazilian Amazon Basin is one 

of the worst-hit places that suffered forest logging, and in this research, two study sites in this state 

were chosen. 

For the first study site, it was designed to validate the performance of MSSTSRM approach on 

forest map updating with strong forest cover change and long-time interval. The Landsat Enhanced 

Thematic Mapper Plus (ETM+) image (Path: 226, Row: 069) acquired on 23 July 2001 was used to 



 

produce the previous subarea Landsat-based forest map, and the Landsat Operational Land Imager 

(OLI) image (Path: 226, Row: 069) acquired on 23 July 2015 was used to produce the current reference 

subarea Landsat-based forest map. The subarea forest maps covering the first study site have a spatial 

size of 800 × 800 pixels (covering 24 km × 24 km area), and the central geographical coordination is 

12 34 6 S    and 55 25 54 W   . The MODIS/Terra Surface Reflectance Daily L2G Global composites of 

240 m MOD09GQ and 480 m MOD09GA images (the Terra MODIS tile: h12v10) acquired on 22 July 

2015 were used to generate the subarea coarse spatial resolution images for the proposed MSSTSRM 

approach. 

To validate the performance of the proposed MSSTSRM approach on forest map updating with 

weak forest cover change but short-time interval in real application, the second study site located at the 

geographical coordination of 12 36 30 S    and 55 50 39 W    was chosen. The Landsat ETM+ image 

(Path: 226, Row: 069) acquired on 01 August 2010 was used to produce the previous subarea 

Landsat-based forest map, which has a spatial size of 2400 × 2400 pixels and covers 72 km × 72 km 

area. The MOD09GQ and MOD09GA images (the Terra MODIS tile: h12v10) acquired on 17 July 

2010 were used to generate the subarea coarse spatial resolution images for the proposed MSSTSRM 

approach, and the Landsat ETM+ image (Path: 226, Row: 069) acquired on the same day (17 August 

2010) was used to produce the corresponding reference subarea Landsat-based forest map. Moreover, 

during 01 July 2010 and 17 July 2010, another three time-series MOD09GQ and MOD09GA images 

acquired on 06, 10 and 15 August 2010 were used as the coarse spatial resolution images for 

MSSTSRM to update the time-series Landsat-based forest maps. 

All of the abovementioned Landsat ETM+ and OLI images were obtained from the USGS Earth 

Explorer (http://earthexplorer.usgs.gov), while the MODIS composites of MOD09GQ and MOD09GA 

http://earthexplorer.usgs.gov/


 

were obtained from the NASA’s Earth Observing System Data and Information System (EOSDIS, 

http://reverb.echo.nasa.gov/reverb). The original MODIS images and Landsat images have different 

Geographic Reference Systems, and there are two ways for them to achieve the same Geographic 

Reference Systems. The first widely used way is to reproject the MODIS images into the same 

Geographic Reference System of the original Landsat images, and the second is to reproject the 

Landsat images into the Geographic Reference System of MOD09GQ and MOD09GA images. The 

second way is based on the Landsat pixel, and the reprojecting error is also based on the Landsat pixel, 

which would be lower than the reprojecting error based on the MODIS pixel. Therefore, in order to 

make the MODIS images avoiding the reprojecting error based on MODIS pixel, all of the original 

Landsat images used in this paper were reprojected into the same Geographic Reference System of the 

original MOD09GQ and MOD09GA products. 

2.2 Methods 

2.2.1 MSSTSRM model objective function 

Suppose that the original multiscale MODIS images are 
480Y  and 

240Y  at current time cT , 

where current time cT  refers to the updating date. 
480Y  represents the 480 m MODIS images and 

240Y  represents the 240 m MODIS images. Each band of 
480Y  contains N  pixels, and then each 

band of 
240Y  has 4 N  pixels, because each pixel in 

480Y  contains 2 2  pixels in 
240Y . The 

previous fine spatial resolution land cover map is defined as pT
X  at previous time 

pT  with spatial 

resolution R  and k  land cover classes. The output of MSSTSRM is a fine spatial resolution land 

cover map cT
X  at cT  with spatial resolution R  and k  land cover classes. The scale factor 

between cT
X  and 

480Y  is defined as z , and each pixel in 
480Y  is divided into 2z  fine pixels in 

cT
X . The scale factor between cT

X  and 
240Y  is defined as / 2z , and each pixel in 

240Y  is divided 

http://reverb.echo.nasa.gov/reverb


 

into 2 / 4z  fine pixels in cT
X .  

A general spectral-spatial-temporal SRM framework (MSSTSRM) is proposed here to find the 

solution of the fine spatial resolution land cover map cT
X . In this framework, spectral, spatial and 

temporal goal functions are integrated to form a united optimization function E  that is expressed as  

Min  spectral S spatial T temporalE E E E      .                     (1) 

where 
spectralE  is the spectral energy function and aims to make the fine spatial resolution land cover 

map cT
X  constrained to the original MODIS multiscale images 

480Y  and 
240Y , respectively. 

spatialE  is the spatial energy function, and is used to incorporate the spatial smoothness information into 

cT
X . 

temporalE  is the temporal energy function, which aims to incorporate the temporal information 

within the previous pT
X  into cT

X . S  and T  are two trade-off parameters used to balance the 

contributions of the three terms. The class label of one fine pixel in updated cT
X  is determined by the 

combination of minimum values of the three different terms. The flowchart of the proposed MSSTSRM 

modeling process is shown in figure 1, and more details about it are presented in the following sections. 

2.2.2 Spectral energy function 

The spectral energy function 
spectralE  is used here to describe the matching degree between the 

observed image pixel spectra of the MODIS multiscale images and the synthetic image pixel spectra 

calculated from the fine spatial resolution land cover map cT
X . In this paper, the least square error 

method was utilized (Ling et al., 2012) to minimize the spectral value difference between the synthetic 

pixels and the observed pixels at both scales of 480 m MODIS image 
480Y  and 240 m MODIS image 

240Y , respectively. Therefore, the spectral energy function 
spectralE  is described as an integrated 

multi-objective spectral energy function of MODIS images 
480Y  and 

240Y , and is formulated as 

480 240

spectral spectral spectralE E E  ,                           (2) 



 

where 480

spectralE  is the spectral energy function for 480 m MODIS image 
480Y , and 240

spectralE  is that of 

240 m MODIS image 
240Y . 

Let 
480 ( )y i  be a column observed spectral pixel vector located at the thi pixel in MOD09GA 

image 
480Y , and 

240 ( )y j  be a column observed spectral pixel vector located at thj  pixel in 

MOD09GQ image 
240Y . For the 480 m 

480Y , we assume that 480M  is the signature matrix denoted 

by 
480 480 480

1 2, , , km m m   , where 
480

im  is a column vector represented by the signature of the thi  

land cover class, and it is indeed the endmember values for the thi  land cover class and collected by 

using the Pixel Purity Index algorithm (Chang and Plaza, 2006). 
480 480 480 480

1 2[ , , , ]T

i kP p p p  is a 

1k   land cover proportion column vector associated with 
480 ( )y i , where 

480 480 480

1 2, , , kp p p  are the 

proportion values for the different land cover classes in 
480 ( )y i . Assuming that the spectra is a linear 

mixture of the target signature, and then the synthetic spectra 
480 ( )S i  for MODIS image 

480 ( )y i  can 

be represented as 

480 480 480 480( ) i iS i M P e   ,                           (3) 

where 
480

ie  is the estimation errors for pixels 
480 ( )y i  in the linear spectral mixture model. For the 

240 m MODIS image 
240y , let 

240 240 240 240

1 2, , , kM m m m     be the signature matrix and 
240

im  be a 

column vector represented by the signature of the thi  land cover class, and 

240 240 240 240

1 2[ , , , ]T

j kP p p p  be a 1k   land cover proportion column vector associated with 
240 ( )y j . 

Similar to that of synthetic spectra 
480 ( )S i  shown in equation (3), the synthetic spectra 

240 ( )S j  for 

MODIS image can be represented as 

240 240 240 240( ) j jS j M P e   ,                           (4) 

where 240

je  is the estimation errors for pixels 
240 ( )y j  in the linear spectral mixture model.  

Since 
480 ( )y i  and 

240 ( )y j  are the observed spectral information within the original MODIS 



 

images, and the synthetic spectrums 
480 ( )S i  and 

240 ( )S j  should thus be consistent to them. In this 

section, the least square error estimator is applied to describe the spectral signature difference between 

the observed spectral pixel values 
480 ( )y i  and 

240 ( )y j  and the synthetic image pixel spectra 
480 ( )S i  

and 
240 ( )S j  calculated from the updated fine spatial resolution land cover map cT

X . The spectral 

energy functions 480

spectralE  and 240

spectralE  based on the least square error estimator aim to achieve a 

minimum difference between observed spectrum and synthetic spectrum, and they can thus be 

expressed as  

480 480 480 480 480( ( )) ( ( ) ( )) ( ( ) ( ))i T

spectral lE k a y i S i y i S i   ,                  (5) 

240 240 240 240 240( ( )) ( ( ) ( )) ( ( ) ( ))j T

spectral lE k a y j S j y j S j   ,                 (6) 

where ( )i

lk a  is the land cover class label for the thl  sub-pixel 
i

la  in coarse pixel 
480 ( )y i , and 

( )j

lk a  is the land cover class label for thl  sub-pixel 
j

la  in coarse pixel 
240 ( )y j . 

Therefore, according to equations (2), (5) and (6), the total spectral energy function 
spectralE  for 

the updated fine spatial resolution land cover map cT
X  is written as 

480 480 480 480 240 240 240 2401
( ( ) ( )) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

2

T T

spectral

i j

E y i S i y i S i y j S j y j S j        . (7) 

2.2.3 Spatial energy function 

The spatial energy function 
spatialE  is based on the current predicting fine spatial resolution land 

cover map cT
X . It is always based on a certain spatial prior model, and aims to describe the spatial 

distribution of fine pixels cT
X . Among various spatial prior models, the maximum spatial dependence 

model is the most widely used, due to its efficiency and simplicity. The maximum spatial dependence 

model is based on the principle that the class label of the target fine pixel is similar to the class labels of 

the spatially neighboring fine pixels (Atkinson, 2005), and then spatialE  can be formulated as  

2

1

( ( ), ( )) ( , )
v

N z

spatial

l v N

E k l k v D l v


 

   ,                         (8) 



 

1   ( ) ( )
( ( ), ( ))

0  ( ) ( )

if k l k v
k l k v

if k l k v



 


.                           (9) 

The target class label ( )k l  at time cT  is spatially dependent on the neighboring sub-pixel class 

labels ( )k v  in the corresponding neighboring system vN  at current time cT . ( , )D l v  is the weight 

of a neighboring fine pixel v  which spatially contributes to the central fine pixel l  within the 

sub-pixel neighborhood system vN . In general, ( , )D l v  is calculated as  

( ( , )/ )( , ) d v lD l v e  ,                              (10) 

where D(v,l) is the geometric distance between the central fine pixel l  and its neighboring fine 

pixel v , and   is the nonlinear parameter of the distance decay model.  

2.2.4 Temporal energy function 

The temporal energy function 
temporalE  is used here to incorporate the spatial pattern information 

within the previous fine spatial resolution land cover map pT
X  into the fine spatial resolution land 

cover map cT
X . To link pT

X  and cT
X , a spatial-temporal dependence model is applied (Ling et al., 

2014c). Based on the spatial-temporal neighbor system as shown in figure 2(a), the spatial-temporal 

dependence model assumes that the class label of a fine pixel l  in cT
X  is determined by the class 

labels of the neighboring fine pixel 
pv  centered at fine pixel 

pl  in pT
X , where fine pixel 

pl  

shares the same location as that of the target fine pixel l . Based on the sub-pixel spatial-temporal 

dependence model, 
temporalE  is then formulated as 

2

1

( ( ), ( )) ( , )
T

p vp

N z

temporal p p

l v N

E k l k v D l v


 

   ,                   (11) 

1   ( ) ( )
( ( ), ( ))

0  ( ) ( )

p

p

p

if k l k v
k l k v

if k l k v



 


,                        (12) 

where ( )k l  is the class label of the target fine pixel at cT , ( )pk v  is the class label of the temporal 

neighboring pixels at 
pT , and 

p

T

vN  is the fine pixel temporal neighboring system shown in figure 2(a). 



 

( , )pD l v  is the weight of a temporal neighboring fine pixel 
pv  spatially contributing to the 

central fine pixel l  within the fine pixel temporal neighborhood system 
p

T

vN . In general, ( , )pD l v  is 

calculated as 

( ( , )/ )
( , ) pd v l

pD l v e


 ,                             (13) 

where ( , )pd v l  is the geometric location distance between the central fine pixel l  and its temporal 

neighboring fine pixel 
pv , and   is the nonlinear parameter of the distance decay model.  

The spatial-temporal dependence model shown in equation (11) considers only that the target fine 

pixel at cT  is dependent on the temporal neighboring fine pixels at 
pT , and the class label of the 

target fine pixel should be similar to the class labels of the temporal neighboring fine pixels. In practice, 

however, land cover change may occur between time 
pT  and cT ; in this case, the class label of the 

target fine pixel at cT  would not be similar to the temporal neighboring fine pixels at 
pT . Therefore, 

the temporal land cover change information should also be considered in the spatial-temporal 

dependence model shown in equation (11).  

To integrate the temporal land cover change information between cT
X  and pT

X , a novel 

multiscale spatial-temporal dependence model is proposed in this section. The multiscale 

spatial-temporal dependence model assumes that the class label of the target fine pixel l  is determined 

by the integrating contributions of temporal neighboring fine pixel 
pv  shown in figure 2(a) and 

temporal neighboring coarse pixels 
pV  and V shown in figure 2(b). Specifically, the multiscale 

spatial-temporal dependence model is built at both the sub- and coarse-pixel scales. The sub-pixel scale 

is based on the traditional spatial-temporal neighbor system shown in figure 2(a), and is used to make 

cT
X  similar to pT

X . On the other hand, the coarse-pixel scale is based on the coarse-pixel 

spatial-temporal neighbor system shown in figure 2(b), and is used to incorporate the land cover change 



 

information between cT
X  and pT

X . Therefore, by applying the multiscale spatial-temporal 

dependence model, the temporal energy function 
temporalE  is expressed as 

2

1

( ( ), ( )) ( , ) ( , )
p

T
p vp

N z
T

temporal p p V V

l v N

E k l k v D l v N N 


 

    ,                 (14) 

where ( , )
p

T

V VN N  is the temporal land cover change indicator value, and it is calculated based on the 

coarse pixel neighboring systems VN  and 
p

T

VN  as shown in figure 2(b). Specially, VN  is the coarse 

pixel neighboring system of fine pixel l  and 
p

T

VN  is the coarse pixel neighboring system of fine pixel 

pl . VN  and 
pVN  have the same window size of w . ( , )

p

T

V VN N  is described as 

2

, 1

6
( , ( )) ( , ( ))

( , )

w

p

w

V Vp

p

p V k l p V k l
w w

T

V VN N e











 ,                        (15) 

where ( , ( ))p V k l  and ( , ( ))pp V k l  are the proportion values of land cover class ( )k l  for the coarse 

pixels V  in VN  and 
pV  in 

pVN , respectively. Specially, the coarse pixel 
pV  and V  are based on 

the proportion images calculated from the previous fine spatial resolution land cover map pT
X  and 

current predicted fine spatial resolution land cover map cT
X  by using spatially averaging filter. 

2.2.5 Model optimization and accuracy assessment 

The Iterative Conditional Model (ICM) (Besag, 1986) is used here to minimize the global energy 

function shown in (1) iteratively, and the implementation process is formulated as: 

1) Extract the endmember spectra for different land cover classes, and obtain the coarse spatial 

resolution proportion images by using soft classification, such as linear spectral unmixing model. 

The current fine spatial resolution land cover map is then initiated in terms of the generated 

proportion images. 

2) Update the sub-pixel class labels of the entire image in terms of equation (1) by integrating the 

spectral, spatial and temporal energy functions shown in equations (2), (8) and (11), respectively, 



 

and the class label of the sub-pixel that contributes to the minimal energy is accepted as the class 

label. 

3) The iteration is terminated when less than 0.1% of the total number of sub-pixels is changed after 

two consecutive iterations; otherwise, return to Step (2). 

4) Obtain the final fine spatial resolution forest map by labeling the sub-pixels which do not belong to 

forest as non-forest labels in the resultant fine spatial resolution land cover map. 

Four popular methods, including support vector machines (SVM) classification based on the 

MODIS 480 m image (SVM480), SVM based on the MODIS 240 m image (SVM240), Markov 

random field based SRM (MRFSRM) (Kasetkasem et al., 2005) and spatial-temporal Markov Random 

Field based SRM (STMRF) (Li et al., 2014a), were used as the comparison methods to validate the 

proposed MSSTSRM. For the assessment indices, the Kappa value, overall accuracy, producer’s 

accuracy, user’s accuracy, omission error and commission error were used in the experiments to assess 

the accuracy of the proposed MSSTSRM against other algorithms. The omission error and commission 

error were used to assess the categorical-level accuracy, whereas the overall accuracy and Kappa value 

were used to assess the map-level accuracy. All the accuracy values were measured at the sub-pixel 

scale which is identical to the spatial resolution of the reference map. 

3. Experimental results 

3.1 Experiment implementation 

In the first study site, the subarea Landsat ETM+ and OLI images shown in figure 3(a)-(b) were 

used to produce the previous and current reference fine spatial resolution forest maps shown in figure 

4(a)-(b) by applying the support vector machines (SVM) classifier, due to its superiority in remote 

sensing image classification (Mountrakis et al., 2011). In the second study site, since there are stripes in 



 

the Landsat ETM+ SLC-off images shown in figure 7(a)-(b), general remote sensing image 

classification method, such as SVM, cannot be used to produce the forest map. Therefore, the previous 

and current reference fine spatial resolution forest maps covering the second study site (see figure 

8(a)-(b)) were generated by digitizing manually the Landsat ETM+ image shown in figure 7(a)-(b) with 

the help of Google Earth Map. Moreover, SVM classifier was also used to produce the 240 m and 480 

m coarse spatial resolution forest maps (see figure 4(d)-(e) and figure 8(d)-(e)) for both of the two 

study sites from the MOD09GQ and MOD09GA images (see figure 3(c)-(d) and figure 7(c)-(d)). 

During the SVM classification processing, training samples of three land cover classes, including forest, 

grass, bare land, were randomly collected from the Landsat and MODIS images by artificial visual 

interpretation with the help of Google Earth Map, and the grass and bare land were combined into the 

non-forest in the final resultant forest map. 

For the SRM methods of MRFSRM, STMRF and the proposed MSSTSRM, endmembers of 

different land covers should be collected first. It is noted that the non-forest is indeed composed of 

many different land cover classes with varied spectral features, and the intra-class spectral variance of 

the non-forest class is high. Therefore, by using the Pixel Purity Index algorithm (Chang and Plaza, 

2006), three land cover classes, including forest, grass, bare land were used, and the corresponding 

endmember spectral features were chosen for the two study sites. Since the spatial resolutions of 

MOD09GQ and MOD09GA are different, endmembers were then collected individually from them. 

Since MRFSRM and STMRF are based on the 480 m MOD09GA image, endmembers of the three land 

cover classes were collected from the original 480 m MOD09GA image with seven bands. For the 

proposed MSSTSRM approach, endmembers of the three land cover classes were collected 

individually from the 240 m MOD09GQ and 480 m MOD09GA images and used as the inputs of 



 

different classifications. 

3.2 Experiment results and analysis 

3.2.1 The first study site 

For the first study site, the updated forest maps of four classification methods are shown in figure 

4, and the corresponding forest error maps generated by comparing with the reference forest map (see 

figure 4(b)) are shown in Figure 5. Specially, figure 4(c) shows the differences between the previous 

fine spatial resolution forest map at 
pT  (see figure 4(a)) and the current reference fine spatial 

resolution forest map at 
pT  (see figure 4(b)). Indeed, figure 4(a) is the forest cover change map 

between figure 4(a) and figure 4(b), and the change ratio is 21.94%. 

For the result of SVM based on MOD09GA (see figure 4(d)), the boundaries were mapped as 

jagged squares; meanwhile, numerous spatial details, especially the small-sized forest features, were 

lost and more forest pixels in the reference forest map were incorrectly mapped as non-forest pixels 

shown in the forest error map of figure 5(a) (blue pixels). This is because the classification rule of SVM 

is undertaken at the pixel scale, and the spatial resolution of MOD09GA is too coarse to provide 

spatially smooth boundaries and represent the spatial detail of forest cover. Compared with the result of 

SVM480, SVM based on the MOD09GQ produced a forest map (see figure 4(e)) with more spatial 

detail and the jagged boundaries are smaller than that of SVM480; however, many non-forest pixels in 

the reference forest map are incorrectly mapped as forest pixels (the red pixels in figure 5(b)) in the 

result of SVM240. The reason for this is that the MOD09GA image has only two bands, which are 

insufficient to distinguish forest pixels from the other land covers. For the result of MRFSRM, as 

shown in figure 4(f), jagged boundaries as shown in the results of SVM480 and SVM240 are spatially 

smooth and greater spatial detail is incorporated, and this is due to the sub-pixel based classification 



 

rule of SRM. Compared with figure 5(a), fewer forest pixels were incorrectly mapped as non-forest 

(blue pixels), but more non-forest pixels were incorrectly mapped as forest (red pixels) in the forest 

error map of MRFSRM (see figure 5(c)). 

SVM and MRFSRM cannot utilize the spatial-temporal information of the previous fine spatial 

land cover map in the model processing, and the results are always limited in spatial detail. Compared 

with MRFSRM, a temporal energy function is added in the model processing of STMRF, and the result 

of STMRF (see figure 4(g)) contains more spatial detail, especially the small-sized linear forest 

features. However, more non-forest pixels in the reference forest map were mapped as forest pixels (red 

pixels) as shown in figure 5(d). This occurs because that STMRF is a global model and only considers 

the sub-pixel temporal link between the previous and current fine spatial resolution forest maps, and 

then cannot deal with the local forest cover change of temporal information as shown in figure 4(c). To 

take advantage of the multiscale MODIS images, the proposed MSSTSRM is based on a multiscale 

model, and both the MOD09GA and MOD09GQ were used as the inputs. The result of MSSTSRM, as 

shown in figure 4(h), has more spatially smooth boundaries, and greater spatial detail is exploited. 

Moreover, more of the forest pixels are correctly mapped than those of the SVM, MRFSRM and 

STMRF methods, as shown in the forest error maps (see figure 5(e)). The result of MSSTSRM is more 

similar to the reference forest maps shown in figure 4(b). This is because MSSTSRM not only benefits 

from the abundant spectral information in MOD09GA, but also the useful spatial detail in MOD09GQ; 

on the other hand, the useful spatial-temporal information within the previous fine spatial resolution 

forest map is also incorporated efficiently into the result of MSSTSRM. Compared with the result of 

STMRF, the forest cover change temporal information was reduced greatly in the result of MSSTSRM, 

suggesting that the proposed approach is more able to balance the temporal and spatial information 



 

within the previous fine spatial resolution forest map than STMRF. 

The statistical accuracies are listed in table 1. SVM480 results have the smallest Kappa, OA, PA 

and UA values, and the RMSE values are the largest, because the spatial resolution of MOD09GA is 

too coarse. Compared with the results of SVM480, the results of SVM240 has higher Kappa, OA, PA 

and UA values, and this is because MOD09GQ has a finer spatial resolution than that of MOD09GA. 

Compared with SVM based on the MOD09GA image, the MRFSRM result is based on the MOD09GA 

image and has larger Kappa, OA, PA and UA values, and smaller RMSE; however, the improvement is 

not significant, which are lower than those of SVM240. By incorporating the temporal information into 

the STMRF model processing, the accuracy for the results of STMRF based on MOD09GA is better 

than those of MRFSRM, but it is still weaker than that of SVM240. The reason behind this is that 

STMRF is not able to balance the temporal change information between the previous and current fine 

spatial resolution forest maps. By contrast, the updated forest map produced by the proposed 

MSSTSRM has the largest Kappa and OA, PA and UA values, and lowest RMSE. Table 1 also lists the 

computing time of different classification methods. MSSTSRM is developed from the STMRF, but it 

has more complex spectral and temporal energy functions and requires more time to be completed, 

especially when the study area is large. 

The trade-off parameter T  plays an important role in the performance of the proposed 

MSSTSRM. As shown in figure 6 and table 2, when T  is 0 the result is limited in spatial detail, such 

as missing the narrow linear forest features, and the accuracy value is the lowest. This is because there 

is no temporal information incorporated into the result when T  is 0. With an increase of T , more 

spatial detail is exploited, and some of the boundaries become spatially smooth and the corresponding 

accuracy values also have an increase, which shows the advantages of integrating the temporal 



 

information. However, with a continued increase of T , the impact of the temporal information within 

the previous fine spatial resolution forest map will become stronger, and the temporal change 

information as shown in figure 4(c) potentially has a negative contribution to the result. The temporal 

information within the previous forest map should provide a positive influence on the final forest map 

at the current time with a suitable value of T ; however, many changed forest features between the 

previous and current time provide a negative influence on the final forest map if the value of T  is set 

too large. On the other hand, trade-off parameter S  plays an important role to provide spatial 

smoothness prior information for the proposed MSSTSRM. Figure 7 shows the MSSTSRM results with 

different values of S , and table 3 lists the accuracy values of the corresponding results. When S  is 

0, the spatial energy function would not provide any contribution to the solution of the final result, 

many isolated pixels and patches appear around the boundaries and the accuracy values are the lowest. 

With the increase of S , the isolated patches were gradually eliminated, and achieved fine statistical 

accuracies. However, when S  is 80, some forest features are over-smoothed, and the corresponding 

accuracy become decreasing. Therefore, to obtain an optimal result with the proposed MSSTSRM 

approach, the trade-off involved in parameters T  and S  should be considered comprehensively. 

3.2.2 The second study site 

For the second study site, the original Landsat false color images and mutilscale MODIS images 

are shown in figure 8, and the resultant forest maps and corresponding forest error maps produced by 

different classification methods are shown in figure 9. In this study site, the time gap between the 

previous and current forest maps is 16 days, and the forest cover changes shown in figure 9(c) are 

much smaller than that shown in the first study site. For clearer visual comparison between the different 

results, five zoomed subareas of the produced forest maps and forest error maps are also shown in 



 

figure 9. Similar trends as shown in the first study site can also be observed in this study site. SVM 

results based on MOD09GA and MOD09GQ have jagged boundaries, and numerous spatial details are 

missing. MRFSRM result has spatially smooth boundaries, but it still lacks amount of spatial detail 

information about forest cover. Since STMRF cannot deal with the forest cover changes through time, 

many non-forest pixels were incorrectly mapped as forest (red pixels). Compared with the other 

classification results, MSSTSRM produced a fine spatial resolution forest map with more spatially 

smooth boundaries and greater spatial detail, and the number of mis-classifications (red and blue pixels 

in figure 9(m)) within the forest error map was greatly reduced. The result of MSSTSRM is more 

similar to the reference forest map as shown in figure 9(a); and for the statistical accuracies listed in 

table 4, MSSTSRM not only has the largest Kappa, OA, PA and UA values, but also the smallest 

RMSE, which demonstrates the efficiency of the proposed approach in real application. 

As shown in table 5, during 01 August and 17 August 2010, there are two scenes of Landsat 

ETM+ images (no Landsat TM images), but there are five cloud-free MOD09GA and MOD09GQ 

images covering the second study sites, and the false color Landsat ETM+ and MOD09GA images are 

presented in figure 10(a)-(e). Only based on the forest maps extracted from the Landsat ETM+ images 

shown in figure 10(a) and figure 10(j), the gradual forest cover change information between 01 August 

and 17 August 2010 was lost. By contrast, the MOD09GA images acquired on 6, 10 and 15 August 

2010 can supplement the missing forest cover information, but its spatial resolution is too coarse to 

observe the forest cover spatial detail. The proposed MSSTSRM approach was, therefore, applied to 

update the 30 m forest maps shown in figure 10(g)-(i) from the MOD09GA and MOD09GQ images 

acquired on 6, 10 and 15 August 2010. Compared with the MOD09GA images as shown in figure 

10(b)-(d), the corresponding updated 30 m forest maps present much spatial detail about the forest 



 

covers, especially the gradual fine spatial resolution forest cover change detail as clearly shown in the 

zoomed areas. 

4. Discussion 

4.1 Repeat frequency 

Single Landsat satellite image has a minimal repeat frequency of 16 days, and the combined two 

Landsat satellites images would have an ideal repeat frequency of 8 days, but it is still beyond the 

requirement of some special forest cover mapping situations, which was demonstrated in the 

experiment for the second study site. Moreover, in real situation, because of the duty cycle gap of 

different Landsat satellites, such as Landsat-5 and Landsat-7 or Landsat-8 and Landsat-7, the 

synthetical repeat frequency can be hardly shorten from 16 days to 8 days. For the proposed 

MSSTSRM approach, the repeat frequency of the updated Landsat-based forest map is basically relied 

on the MODIS images, and is, therefore, having a great potential to produce ideally daily 

Landsat-based forest map in real applications. 

It is noted worthy that Sentinel-2A satellite lunched at 23 June 2015, and it has a repeat frequency 

of 10 days. Moreover, with the recently lunched (07 March 2017) Sentinel-2B satellite, the minimal 

synthetical repeat frequency of the Sentinel-2A and Sentinel-2B satellites would be shorten to 5 days. 

Motivated by this, the Sentinel-2 images can also be used together with the Landsat-7 and Landsat-8 

images to have an expected repeat frequency monitoring of the forest cover. However, there is no 

Sentinel-2A and Sentinel-2B dataset before 2015, and thus historic forest cover monitoring cannot 

benefit from it. Therefore, there is an urgent need for the proposed MSSTSRM to update Landsat-based 

forest maps with high repeat frequency before 2015. On the other hand, it is of great interest to further 

improve MSSTSRM to fuse Landsat and Sentinel-2 images, and have a finer spatial and temporal 



 

resolution monitoring of the forest cover. 

4.2 Error sources 

When applying the MSSTSRM model, there are two major error sources that could impose a 

considerably negative effect on the updated Landsat-based forest map. The first is the error caused by 

endmember selection. Generally, endmember selection is a common but challenging problem in the 

field of supervised classification of remotely sensed images (Bateson and Curtiss, 1996; Dennison and 

Roberts, 2003). Given that the collection of endmember spectra is a time-consuming task and is always 

empirical, if the endmembers were selected too less, forest cover features would have high risk to be 

confused with other land covers; otherwise, it would be difficult to fully recognize the forest cover 

features. MSSTSRM is indeed a supervised classification method, and the error of endmember 

selection would affect directly the performance of MSSTSRM. The second is the estimation of 

parameter values of the two trade-off parameters S  and T . From the above experiment, it can be 

found that S  and T  have an important impact on the performance of the proposed MSSTSRM 

approach. In future research, a more automatic method will be explored for estimating the trade-off 

parameters S  and T  which balance the contributions of the spatial and temporal terms in 

MSSTSRM. 

5. Conclusion 

To achieve fine spatial and temporal resolution forest maps, in this paper, a novel multiscale 

spectral-spatial-temporal SRM (MSSTSRM) method was proposed to update Landsat-based forest map 

from current MODIS images and previous Landsat forest maps. The proposed MSSTSRM method 

involves solution of a multiobject optimization problem, composed of three key terms: spectral, spatial 

and temporal energy functions. Considering that MODIS images have two different spatial resolution 



 

bands, the spectral energy function in MSSTSRM is based on a multiscale model, and both of the 240 

m bands and 480 bands of the MODIS image are used as inputs. For the spatial energy function, 

MSSTSRM is based on the maximal spatial dependence model to provide spatially smooth information. 

To deal with the temporal change information between the previous and current fine spatial resolution 

forest maps, the temporal energy function in MSSTSRM not only considers the sub-pixel 

spatial-temporal neighbor system, but also the land cover change information within the coarse-pixel 

spatial-temporal neighbor system. Experiments demonstrated that the proposed MSSTSRM approach is 

able to produce updated Landsat-based forest maps with the greatest visual and quantitative accuracy 

compared with three benchmark methods, and can produce time-serious Landsat-based forest maps 

with finer repeat frequency than that of Landsat image, which was demonstrated in the results shown in 

figure 9.  
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Table 1. Kappa, overall accuracy (OA), RMSE, Producer’s accuracy (PA) and User’s accuracy (UA) of 

the resultant forest maps generated by the different methods for the first study site. 

    
 

  PA UA  

Time/s   Kappa OA RMSE forest non-forest forest non-forest 

SVM480 0.7290 86.77% 0.2789 88.26% 85.77% 80.63% 91.59% 0.3 

SVM240 0.8259 91.63% 0.1528 89.72% 92.91% 89.47% 93.09% 0.3 

MRFSRM 0.7576 88.35% 0.2083 85.47% 90.29% 85.52% 90.25% 501.4 

STMRF 0.7740 88.99% 0.2059 90.48% 87.99% 83.49% 93.23% 624.8 

MSSTSRM 0.8741 93.868% 0.1272 96.31% 92.23% 89.27% 97.39% 1146.8 

Notes: SVM480 means SVM based on 480 m MOD09GA image, and SVM240 means SVM based on MOD09GQ image.  

 

 

Table 2. Kappa, overall accuracy (OA), RMSE, omission error and commission error of the resultant 

forest maps generated by the proposed MSSTSRM with different values of T  for the first study site.  

T   Kappa OA RMSE 
Omission 

Errors 

Commission 

Errors 

0 0.8490 92.72% 0.1329  8.20%  9.76% 

50 0.8641  93.41% 0.1278  6.59%  10.15%  

100 0.8703  93.69% 0.1279  4.34%  10.62%  

150 0.8692  93.63% 0.1334  3.81%  11.15%  

400 0.8448  92.38% 0.1745  2.99%  14.15%  

 

 

 

 

Table 3. Kappa, overall accuracy (OA), RMSE, omission error and commission error of the resultant 

forest maps generated by the proposed MSSTSRM with different values of S  for the first study site.  

S   Kappa OA RMSE 
Omission 

Errors 

Commission 

Errors 

0 0.8529 92.82% 0.1444  4.30%  12.42% 

20 0.8644  93.40% 0.1335  4.29%  11.26%  

40 0.8709  93.71% 0.1292  3.86%  10.62%  

60 0.8741  93.89% 0.1272  3.69%  10.93%  

80 0.8713  93.73% 0.1316  3.75%  10.97%  

 

 



 

Table 4. Kappa, overall accuracy (OA), RMSE, Producer’s accuracy (PA) and User’s accuracy (UA) of 

the resultant forest maps generated by the different methods for the second study site. 

        PA UA  

Time/s   Kappa OA RMSE forest non-forest forest non-forest 

SVM480 0.7648 91.12% 0.2307 96.25% 77.18% 91.98% 88.33% 2.7 

SVM240 0.8096 92.94% 0.1689 98.51% 77.81% 92.35% 95.04% 2.7 

MRFSRM 0.7785 91.50% 0.1881 95.55% 80.47% 93.01% 86.93% 2906.5 

STMRF 0.8283 93.45% 0.1652 97.28% 83.05% 93.98% 91.82% 3489.8 

MSSTSRM 0.9359 97.51% 0.0970 99.11% 93.17% 97.53% 97.47% 6566.6 

Notes: SVM480 means SVM based on 480 m MOD09GA image, and SVM240 means SVM based on MOD09GQ image.  

 

 

 

 

Table 5. Available Landsat TM, Landsat EMT+, MOD09GA, MOD09GQ images for the second study 

site between 01 August and 17 August 2010. 

Time 
Landsat TM 

(P226R69) 

Landsat ETM+ 

(P226R69) 

MOD09GA 

(h12v10) 

MOD09GQ 

(h12v10) 

1-Aug-2010  ✓ ✓ ✓

6-Aug-2010   ✓ ✓

10-Aug-2010   ✓ ✓

15-Aug-2010   ✓ ✓

17-Aug-2010  ✓ ✓ ✓

      Notes:  means unavailable, ✓ means available. 
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Figure 1. Flowchart of the proposed MSSTSRM approach. 
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Figure 2. Multiscale spatial-temporal neighbor system of the proposed MSSTSRM approach. (a) 

Sub-pixel neighbor system with window size 6; (b) Coarse-pixel neighbor system with window size 3. 

Axes X and Y are spatial coordinates, and T is the temporal index.  

 

 

 

  



 

 

Figure 3. Original Landsat subarea images and multiscale MODIS band images for the first study site. 

(a) Previous false color Landsat-7 ETM+ image (RGB: 5-4-3); (b) Current reference false color 

Landsat-8 OLI image (RGB:6-5-4); (c) Current MOD09GA band 7 image; (d) Current MOD09GQ 

band 1 image. 

 

  



 

 

Figure 4. Forest maps obtained by different classification methods for the first study site. (a) Previous 

fine spatial resolution forest map; (b) Current reference fine spatial resolution forest; (c) Forest cover 

change map between (a) and (b); (d) Forest map generated by SVM with MOD09GA image; (e) Forest 

map generated by SVM with MOD09GQ image; (f) Forest map generated by MRFSRM with 

MOD09GA image; (g) Forest map generated by STMRF with MOD09GA image; (h) Forest map 

generated by MSSTSRM with both MOD09GA and MOD09GQ images.  

 

  



 

 

Figure 5. Forest error maps for the results of different methods by comparing with the reference forest 

map of the first study site. (a) Forest error map of the SVM480 result; (b) Forest error map of the 

SVM240 result; (c) Forest error map of the MRFSRM result; (d) Forest error map of the STMSRF 

result; (e) Forest error map of the MSSTSRM result.  

  



 

 

Figure 6. Updated forest maps and corresponding forest error maps generated by the proposed 

MSSTSRM approach with different values of trade-off parameter T  values (where S  is 80 for all 

the cases). 

  



 

 

Figure 7. Updated forest maps and corresponding forest error maps generated by the proposed 

MSSTSRM approach with different values of trade-off parameter S  values (where T  is 140 for all 

the cases). 

 

  



 

 

Figure 8. Original subarea Landsat images and multiscale MODIS band images for the second study 

site. (a) Previous false color Landsat-7 ETM+ image (RGB: 5-4-3); (b) Current false color Landsat-7 

ETM+ image (RGB:5-4-3); (c) Current MOD09GA band 7 image; (d) Current MOD09GQ band 1 

image. 

 

  



 

 

Figure 9. Forest maps and corresponding forest error maps obtained by different classification methods 

for the second study site. (a) Previous fine spatial resolution forest map; (b) Current reference fine 

spatial resolution forest map; (c) Forest cover change map between (a) and (b); (d) and (i) Forest map 

and forest error map generated by SVM with MOD09GA image; (e) and (j) Forest map and forest error 

map generated by SVM with MOD09GQ image; (f) and (k) Forest map and forest error map generated 

by MRFSRM with MOD09GA image; (g) and (l) Forest map and forest error map generated by 

STMRF with MOD09GA image; (h) and (m) Forest map and forest error map generated by MSSTSRM 

with both MOD09GA and MOD09GQ images. 

 

  



 

 

Figure 10. Time-series Landsat and MODIS multispectral images and forest maps. (a) Landsat-7 ETM+ 

false color image acquired on 01 August 2010 (RGB: 5-4-3); (b)-(d) MOD09GA false color images 

acquired on 06, 10 and 15 August 2010 respectively (RGB: 7-2-1); (e) Landsat-7 ETM+ false color 

image acquired on 17 August 2010 (RGB: 5-4-3); (f) and (j) 30 m forest maps extracted from 

Landsat-7 ETM+ images acquired on 01 and 17 August 2010; (g)-(i) 30 m forest maps updated from 

MOD09GA and MOD09GQ images acquired on 06, 10 and 15 August 2010 by using the proposed 

MSSTSRM.  

 

 


