
Job Shop Scheduling with

Flexible Maintenance

Planning

Ivar Struijker Boudier, B.Sc.(Hons.), M.Res.

Submitted for the degree of Doctor of

Philosophy at Lancaster University.

July 2017



Abstract

This thesis considers the scheduling challenges encountered at a particular

facility in the nuclear industry. The scheduling problem is modelled as a

variant of the job shop scheduling problem. Important aspects of the con-

sidered problem include the scheduling of jobs with both soft and hard due

dates, and the integration of maintenance planning with job scheduling.

Two variants of the scheduling problem are considered: The first variant

makes the classic job shop assumption of infinite queueing capacity at each

machine, while such queueing capacity is non-existent in the second vari-

ant. Without queueing capacity, the scheduling problem is a variant of the

blocking job shop problem. For the non-blocking variant of the problem,

it is shown that good solutions can be obtained quickly by hybridising a

novel Ant Colony Optimisation method with a novel Branch and Bound

method. For the blocking variant of the problem, it is shown that a novel

Branch and Bound method can rapidly find optimal solutions. This Branch

and Bound method is shown to provide good performance due to, amongst

other things, a novel search strategy and a novel branching strategy.
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Chapter 1

Problem Introduction

This thesis presents research that addresses the scheduling challenges en-

countered by the National Nuclear Laboratory (NNL), a company in the

nuclear industry. The research in this thesis focuses on one particular NNL

facility, where challenging scheduling decisions are made on a daily basis.

These scheduling decisions determine where and when jobs are to be carried

out. The jobs usually require processing in a prescribed sequence of several

different locations at the facility. Each location can only process one job

at a time. Thus, it is of interest to schedule work in such a way as to most

efficiently use each location. An added complication is that each location

must be maintained from time to time. When a location is undergoing

maintenance, it cannot process regular jobs. It is therefore also of interest

to plan maintenance in such a way as to minimise interference with the pro-

cessing of jobs. This thesis develops several methods that simultaneously

schedule jobs and plan maintenance, with the objectives of completing each

4
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job by its respective due date and performing maintenance within desired

time intervals. As there is limited storage available at the facility, this the-

sis considers both the case where storage is available (Part II) and the case

where it is not (Part III).

This chapter continues with a brief introduction to NNL (Section 1.1).

This is followed by a more detailed description of their real-world schedul-

ing problem (Section 1.2). A basic model for the scheduling problem is

provided in Section 1.3. This chapter then concludes with an overview of

the remainder of the thesis (Section 1.4).

1.1 National Nuclear Laboratory

NNL provide technical support to all aspects of the nuclear industry. Their

key objective is to help to safeguard and develop nuclear expertise and

laboratories across a number of different sites. NNL identify the following

three core areas for their business:

• Waste management and decommissioning: Development and

application of techniques related to decommissioning nuclear facili-

ties.

• Fuel cycle solutions: Fuel cycle performance, technology develop-

ment, safety management and engineering services.

• Reactor operations support: This includes post irradiated exam-
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ination and the performance of fuel components and graphite.

1.2 A Real-World Problem

The work in this thesis was motivated by the scheduling challenges encoun-

tered at a particular NNL facility. This facility provides a range of services.

Examples of typical jobs performed at the facility include the examination

of reactor fuel and irradiated materials, the processing of radioactive waste,

and research into nuclear materials.

1.2.1 Facility Overview

The facility contains 13 shielded cells, known as caves. The caves are

designed to protect workers from the radioactive materials they are pro-

cessing. The workers cannot enter the caves. Any work must be carried

out using remotely controlled mechanical arms, known as MSMs (master-

slave-manipulators). Each cave has a number of workstations with such

mechanical arms. Caves are usually set up to accommodate the process-

ing of one particular type of job. It takes considerable time and effort to

modify the setup of a cave to accommodate a different type of job than

those it is currently serving. The NNL facility processes jobs for a number

of external customers. Some of these customers have long term leases for

the exclusive use of a designated cave. All of this means that each job has

to be processed in a specific cave and at a specific workstation.
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The caves are connected through a single transportation mechanism.

The transporter operates within a shielded corridor. Workers do not access

this corridor, but instead use remote controlled tools to operate the trans-

porter. Two caves serve as both entry and exit into the system. A typical

job will therefore enter the system at one of these two caves. The trans-

porter then moves the job to another cave, where the job is processed. The

transporter then moves the job to any other required caves. Eventually,

the job leaves the system again through one of the two entry/exit caves.

Transporter movements are of relatively short duration, compared to the

time jobs spend in the caves. However, the transporter is a very critical

part of the system, since jobs cannot be moved around without it.

1.2.2 Facility Maintenance

The jobs processed at the facility rely on a range of specialist equipment,

including the MSMs and the transporter. This equipment can break down

if it is not properly maintained. Such breakdowns cause delays and must

be fixed with corrective maintenance. Regular inspection and maintenance

of equipment is known as preventive maintenance. It keeps the equipment

running smoothly, and reduces the probability that a breakdown will occur.

NNL use maintenance software to schedule preventive maintenance, which

is generally of known duration. The regulations under which the facility

operates offer some flexibility with regards to when preventive maintenance

can be carried out. Generally, it can be delayed beyond its due date by
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16.67% of the maintenance interval, e.g. 61 days for yearly maintenance.

This provides a flexible time window during which maintenance can start.

If maintenance has not started by the end of this time window, then the

equipment must be shut down, due to strict safety regulations in the nu-

clear industry. When certain equipment is shut down, other parts of the

facility may also have to be put out of action, if there is a safety impact.

Due to output performance pressures, non-essential maintenance is not al-

ways carried out in a timely fashion. This can lead to reduced equipment

availability at a later stage, if a breakdown occurs.

When the research in this thesis started, the planning of regular jobs and

preventive maintenance at the facility was not properly integrated. Even

in the literature, it is not uncommon for researchers to focus either on the

scheduling of jobs, or on the planning of maintenance. The integration of

the two is much less researched. Therefore we set out to create a scheduling

method suitable for the NNL facility, which combines the scheduling of jobs

with the scheduling of flexible maintenance activities.

1.2.3 Scheduling Objectives

NNL use both long and short term schedules to plan the work at their

facility. The research in this thesis focuses on the 12-week plan. The

work at the facility is planned according to the following three important

objectives:
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1. Revenue: Jobs often provide a fixed financial reward upon comple-

tion. For some jobs, the full financial reward will only be paid out

if a specified deadline is met. If this deadline is missed, the job will

attract a reduced financial reward on completion. Some jobs have a

second deadline, the exceedance of which may result in a very large

financial penalty.

2. Reputation: Maintaining a good reputation with customers helps

to secure the long term flow of work. A good reputation may be

maintained by carrying out a certain amount of work for each cus-

tomer every year. Therefore it is sometimes important to prioritise

work that is not the most financially rewarding.

3. Reliability: Reliability refers to the overall availability of resources.

Reliability can be maintained by ensuring that maintenance activities

start within their flexible time windows.

Once a 12-week plan is in place, it will at some point need to be up-

dated. This can be in response to the availability of new work which needs

to be integrated in the schedule. New work often consists of jobs which had

been planned, but which had not yet been confirmed. Jobs are sometimes

confirmed with only a few weeks to go until the supposed start date. Some-

times there will be some actual new jobs to be included in the schedule. It

is possible for new work to arrive at the facility within a few weeks of the

initial enquiries from the customer. This means new work may appear into
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the middle of the 12-week plan. A schedule update is also required when

there is an unexpected breakdown, or when the actual processing times

have been markedly different from those anticipated.

Due to the uncertainties outlined above, the 12-week plan is regularly

updated. At the time the research presented in this thesis was started,

the updating was done manually by the planners. This is a challenging

task, as there can be many jobs on the 12-week plan. This thesis develops

scheduling tools which the planners can use to explore different scheduling

options for the 12-week plan.

1.3 Modelling the Real-World Problem

The real-world scheduling problem described in Section 1.2 must be mod-

elled in a way which captures all its critical aspects. Once the problem

is modelled, there will be a foundation on which solution methods can be

developed.

The problem at hand shares many similarities with the classic job shop

scheduling problem (JSSP). In a JSSP, a set of jobs must be scheduled for

processing on a set of machines. A job consists of one or more operations.

The operations within a job must be processed in a specified order. Each

operation must be processed on a specified machine. A basic example with

three jobs, each requiring three machines, is illustrated in Figure 1.3.1.

In the classic deterministic JSSP, each operation has a fixed and known



1.3. MODELLING 11

Job 1: Machine 1 Machine 2 Machine 3

Job 2: Machine 3 Machine 1 Machine 2

Job 3: Machine 3 Machine 2 Machine 1

Figure 1.3.1: In the classic job shop scheduling problem, jobs must

be processed on specified machines in a specified order.

processing time. Each machine can process at most one job at a time.

Once an operation has started, it cannot be interrupted. The JSSP is one

of the most notoriously difficult combinatorial optimisation problems (NP-

hard, Du and Leung (1990)), even for relatively small instances. JSSPs can

be found in the literature with various characteristics and setups that are

motivated by specific industrial settings (Pinedo, 2008).

A decision maker has to solve this scheduling problem by finding a se-

quence of operations on each machine that optimises some performance

indicator. Perhaps the most common objective function, at least in the lit-

erature, is the latest completion time of all the operations. This is known as

the makespan (Artigues and Feillet (2007); Rajendran and Ziegler (2004)).

The makespan objective aims to finish the entire set of work as quickly as

possible. This is suitable for scenarios in which a single set of jobs has to

be scheduled just once, and the overall completion time is all that matters.

However, in many applied scenarios this is not the case. Jobs often have
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their own individual deadlines. Production processes are often continu-

ously in motion, so that new work has to be integrated into the schedule

when the old schedule has not yet completed. One way to achieve this is

to create a new schedule, which includes all the new work and any unfin-

ished operations from the old schedule. If such a new schedule is created

with the makespan objective, there is nothing to prevent some of the old

unprocessed operations to be rescheduled at the end of the new schedule.

In the worst case, whenever rescheduling takes place, the same unfinished

job is repeatedly put at the end of the new schedule, and forever remains

unfinished. There are other objective functions which avoid this scenario,

by taking into consideration the deadlines of jobs. Examples of such ob-

jective functions include the maximum lateness (Mati et al., 2011; Pinedo,

2008) and the tardiness (Kuhpfahl and Bierwirth, 2016; Singer and Pinedo,

1998; Mattfeld and Bierwirth, 2004; Baker, 1984; Baker and Kanet, 1983;

Raman and Brian Talbot, 1993).

An initial model of NNL’s scheduling problem can be based on the

formulation of the job shop scheduling problem. Each operation requires

either a cave or the transporter. Hence, the caves and the transporter

represent the machines of the JSSP. It will be assumed that processing

times are of known and fixed duration. A precedence constraint is a job

which must be completed before another job can start. Each job may have

one or more precedence constraints. Each job may have an earliest starting

time, also known as a release date. Maintenance activities can be modelled
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as single operation jobs.

1.3.1 Novel Model Features

To model the work at the facility of interest, we have enhanced the classic

JSSP with a number of novel non-standard features. Jobs at the facility

attract a financial reward on timely completion. This reward is reduced

when the first due date is missed, and severely reduced when the second

due date is also missed. Each maintenance event is modelled as a single-

operation job. Maintenance activities have an earliest start time, and a

mandatory deadline by which the maintenance must have started. This

provides the planners with a flexible time window in which the maintenance

can start. To model this behaviour of the jobs and maintenance activities,

we introduce both soft and hard due dates as a novel feature in the model.

In the literature, hard due dates are sometimes referred to as deadlines. Job

due dates refer to the completion time of the job, whilst maintenance due

dates refer to the maintenance starting time. We have developed objective

functions which return a penalty score based on the number and type (soft

or hard, job or maintenance) of due dates which are missed (Equation 3.3.1,

Equation 3.3.2, Equation 8.4.1, Equation 8.4.2). Besides striving to meet

due dates, our objective functions simultaneously reduce overall tardiness.

The use of both soft and hard due dates does not mean our methods are

restricted to only schedule jobs with such due dates. Jobs which have no

due dates can still be included, by setting their due dates to infinity. This
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is a good option for non-urgent jobs: By setting the due dates to infinity,

the jobs will be integrated in the schedule, but only in such a way that they

don’t cause other jobs to miss their due dates. Jobs with only a soft due

date can be scheduled by setting the hard due date to infinity. Jobs with

only a hard due date can be included by setting their soft due date equal

to their hard due date.

Under the classic JSSP formulation, each machine has a queue with

infinite capacity. When one machine is finished with a job, the job can

then be put in a queue at the next required machine, even if that machine

is currently busy with another job, and even if other jobs are already waiting

for that machine. Part II of this thesis considers the case in which such

queueing capacity is indeed available. In Part III the scenario in which

there are no queues is investigated. In that case, jobs cannot queue at the

machine, and will have to wait on their previous machine until the next

machine becomes available. This effectively blocks the first machine for

use by other jobs. The scenario without queueing capacity is known as a

blocking job shop scheduling problem (Mascis and Pacciarelli, 2002).

Some jobs at the NNL facility can only start when multiple other jobs

come together on completion. This can be thought of as a number of jobs

merging into one. For example, consider a job which consists of the process-

ing of some radioactive materials. A second job consists of the preparation

of a storage flask for the materials. A third job is to fill the prepared flask

with the processed radioactive materials. This implies that the flask filling
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can only go ahead once the materials have been processed and the flask

has been prepared. The job merging feature is illustrated in Figure 1.3.2.

The reverse also happens: There are jobs which, on completion, allow a

number of other jobs to start. This can be thought of as a single job

splitting into many. In the non-blocking formulation of the problem, this

feature can be modelled with regular precedence constraints. However, this

is more complicated in the blocking case. The way merging and splitting

jobs are modelled under blocking conditions is an additional novel feature

(Section 8.7.2).

Job 1: M1 M2 M3

Job 2: M3 M1 M2

Job 3: M3 M2 M1

Figure 1.3.2: Job merging: Job 3 can only start once jobs 1 and 2

have been completed. Mk denotes machine k.

1.4 Thesis Structure

An overview of relevant existing scheduling methods is provided in Chap-

ter 2.

Part II of this thesis then develops novel exact, heuristic, and hybrid

scheduling methods for the novel job shop scheduling problem with flexi-
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ble maintenance, under the classic assumption of infinite queueing capacity

(non-blocking). The non-blocking scheduling problem is described and for-

mally defined in Chapter 3. A novel Branch and Bound algorithm for this

problem is presented in Chapter 4. This Branch and Bound method em-

ploys a novel variable ranking method to speed up the branching process.

While this exact method provides optimal solutions, it might require a long

computational time to reach optimality. As such, novel heuristic methods

have also been developed (Chapter 5). The computational experiments in

Chapter 6 show that the Branch and Bound method can be very effective,

especially when it is seeded with a good solution from one of the heuristic

methods.

Part III of this thesis develops exact and heuristic scheduling methods

for the novel blocking job shop scheduling problem with flexible mainte-

nance. The big difference with the problem dealt with in Part II is that

there is zero buffer capacity in the system. This means jobs have to remain

on their current machine after processing, until such a time that the next re-

quired machine is available. While the job waits to be moved, the machine

that it is occupying cannot be used by other jobs. This novel blocking

job shop scheduling problem with flexible maintenance is described and

formally defined in Chapter 8. The same chapter presents a novel adap-

tation of the alternative graph to model the problem. Under the blocking

constraint, it can be difficult to construct feasible schedules. Chapter 8

presents a novel schedule construction method for the blocking job shop,
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which is guaranteed to produce feasible schedules. Heuristic solution meth-

ods for the blocking problem are presented in Chapter 9. While heuristic

methods worked well for the non-blocking version of the problem discussed

in Part II, the heuristics presented in Part III generally struggle to produce

good solutions. In contrast to this, the Branch and Bound algorithm for

the block shop presented in Chapter 10 very quickly produces optimal solu-

tions. The proposed Branch and Bound method employs a novel branching

strategy, as well as a novel search strategy. The computational experiments

in Chapter 11 show that the Branch and Bound method outperforms the

heuristic methods, both in terms of running time and the quality of the

final solutions. Final conclusions on the work in this thesis, as well as

suggestions for future work, appear in Chapter 13. Details of the problem

instances that have been used in this thesis are presented in Appendix A.



Chapter 2

Literature Review

This chapter provides an overview of the job shop scheduling literature

and some frequently applied solution methods. Although much research

has been done in this area, we are not aware of any existing methods that

deal with the job shop scheduling problem with flexible maintenance and

double due dates. The methods proposed in this thesis were developed to

fill this gap in the literature. The scope of this literature review is in parts

somewhat wider than strictly essential, in order to give a sense of the wider

scheduling landscape that our own methods reside in. Scheduling problems

are discussed in Section 2.1, followed by the integration of job scheduling

and machine maintenance in Section 2.2. Various metaheuristic methods

are discussed in Section 2.3. An overview of Branch and Bound, an exact

solution method, is provided in Section 2.4.

18
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2.1 Scheduling

Scheduling is one of the most important operational features in many man-

ufacturing industries. There exist many types of scheduling problems. The

following illustrative example is based on Pinedo (2008). Suppose there is

a factory, containing a range of machines, producing a number of different

products. Each product has to pass through a number of machines, and

some machines will be needed in the manufacturing process of multiple

products. It is assumed that each machine can only work on a single job

at any one time. The scheduling problem then has a number of constraints

to consider, including:

• Machine availability: Each machine will have an availability asso-

ciated with it over the production period. A number of factors could

reduce this availability, such as scheduled maintenance, or the time

required for setup between the processing of two different products.

The setup time may depend on how similar the next product is to

the previous one.

• Machine demand: To produce one unit of a product, some produc-

tion time of the associated machines will be required. This production

time could be fixed (deterministic), or it may have some variability

(stochastic). This means that production is limited by the combina-

tion of machine demand and machine availability.
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• Materials: The raw materials for each product must be available at

the correct times.

• Job processing order: The order in which each product goes through

different machines is often important.

Scheduling problems can have a number of possible objectives. It may

be desired to minimise the makespan, which is the latest completion time

of all operations in the schedule. Some jobs may have due dates, e.g. a

time by which it is expected by the customer. In this case the objective is

to meet these due dates, or to minimise the expected exceedances of the

due dates. Often it is also desirable to minimise costs. These objectives

can be considered on their own, or together. Sometimes there are multiple

objectives. For example, one might wish to meet the due dates and simul-

taneously minimise the costs. Multi-objective scheduling deals with such

situations (Loukil et al. (2005)).

2.1.1 Scheduling Problem Classification

The widely used 3-field problem classification α|β|γ was introduced by Gra-

ham et al. (1979). In this classification, α describes the machine environ-

ment, β contains processing characteristics and constraints, and γ holds

the objective to be minimised. For a list of a large number of machine

environments, constraints, and other scheduling terminology, see Pinedo

(2008).
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2.1.2 Job Shop Scheduling Problem

The job shop scheduling problem (JSSP) in particular is one of the most

popular optimisation problems in both industry and academia. The tradi-

tional JSSP schedules n jobs to be processed on m machines. Each job is

required to pass through specified machines in a specified order. This order

can be different for each job. The problem can be expanded by considering

various different complications, based on the characteristics of particular

production facilities. For example, the flexible job shop is a generalisation

of the job shop, in which there may be multiple copies of each machine

(Pinedo, 2008). A job requiring a certain machine can then be processed

on the first machine of this type to be available. Various different charac-

teristics have been investigated in the literature (Pinedo, 2008), such as due

dates (Kuhpfahl, 2016; Mattfeld and Bierwirth, 2004; Kuhpfahl and Bier-

wirth, 2016; Yang et al., 2012), and flexibility and maintenance (Mokhtari

and Dadgar, 2015; Ma et al., 2010; Ruiz et al., 2007), amongst others.

Using the notation introduced in Section 2.1.1, the classic job shop

scheduling problem can be expressed as J | | Cmax. This problem involves

m machines and n jobs, with the objective of minimising the makespan,

Cmax. Additionally, there is no recirculation (i.e. each job requires each

machine once at most). This problem is NP-hard (van den Akker et al.,

2013), which means it cannot be solved in polynomial time by any known

algorithms.



22 CHAPTER 2. LITERATURE REVIEW

2.1.3 Job Shop Scheduling with Due Dates

Job Shop problems with due date objectives have been widely investigated

in the literature (Kuhpfahl, 2016; Mattfeld and Bierwirth, 2004; Kuhpfahl

and Bierwirth, 2016; Yang et al., 2012; Raman and Brian Talbot, 1993). A

recent overview of local search methods for the job shop scheduling prob-

lem with due dates can be found in Kuhpfahl (2016). A survey between

the interactions of sequencing priorities and assigning due dates has been

performed by Baker (1984), focusing on the average scheduling tardiness.

New dispatching rules were introduced in Baker and Kanet (1983) that

utilise modified due dates (job’s due date or its early finish time). The

proposed dispatching rules considered the mean tardiness objective. Ex-

perimental results indicate that they were very competitive compared with

other prominent dispatching methodologies that optimise the mean tardi-

ness of jobs. Moreover, the effect of various procedures that consider due

dates that depend on the expected job processing time, as well as on the

level of congestion in the considered shop, has been considered by Eilon

and Chowdhury (1976).

2.1.4 The Blocking Job Shop

Under the classic job shop formulation, it is implicitly assumed that each

machine has a queue with infinite capacity. If a job requires a machine

which is currently in use, the job can be stored in that machine’s queue. In
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certain systems such storage may not be available. The scenario without

queueing capacity is known as a blocking job shop scheduling problem.

When the processing of a job has finished on a machine, the job must

remain on that machine until the next required machine becomes available.

Thus, it blocks the machine that it is currently occupying from use by other

jobs. This may lead to what is known as deadlock (Mascis and Pacciarelli,

2002). Deadlock occurs when two or more jobs block each other in a circular

way, such that each of these jobs requires a machine currently occupied by

one of the other jobs in the deadlock circle. To resolve deadlock, some

authors allow for swaps. A swap is when all the jobs in the deadlock

circle move simultaneously (Mascis and Pacciarelli, 2002). If swaps are not

allowed, deadlock renders a schedule infeasible. Without swaps, it is not

always possible to complete a given partial schedule into a full solution. In

fact, just determining whether this is possible for a given partial solution

is a strongly NP-complete problem (Mascis and Pacciarelli (2002)). The

blocking job shop without swaps has received less attention from researchers

than the equivalent problem with swaps (Pranzo and Pacciarelli, 2016).

Part III of this thesis will consider blocking without swap in the context of

production processes, but there are also other situations in which blocking

can occur. In railway scheduling, for example, an entire section of track is

usually reserved exclusively for a single train, and a train cannot vacate its

current section of track until the next section becomes available. See, for

example, D’Ariano et al. (2007). Railway scheduling also presents a good
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example of the no-swap scenario, since it is physically impossible to swap

the positions of two trains, without using a vacant track for one train to

pass the other.

The job shop scheduling problem with blocking and no-wait constraints

is considered by Mascis and Pacciarelli (2002). They employ the alternative

graph (Mascis and Pacciarelli (2000)), an adaptation of the well-known

disjunctive graph (Roy and Sussmann (1964)), to model the problem. They

consider the case where jobs that block each other may be swapped, and

also the case where this is not possible. In the latter case, schedules must

be created in such a way that deadlock is avoided. Mascis and Pacciarelli

(2002) note that while in the standard (non-blocking) job shop formulation

a partial solution can always be extended into a feasible solution, there is

no such guarantee for partial solutions of a blocking job shop. There is

also no guarantee that, given a feasible solution for the blocking job shop

problem, an arc of the alternative graph can be replaced with its alternative

to create a new feasible schedule. This implies that local search methods

for the blocking job shop incur a greater computational cost than they do

in the non-blocking job shop. Mascis and Pacciarelli (2002) present some

schedule construction heuristics, with no guarantee of feasibility, as well as

a Branch and Bound method. The four heuristics presented by Mascis and

Pacciarelli (2002) are designed for minimising the makespan.

The job shop scheduling problem with blocking and no-wait constraints

is considered by Meloni et al. (2004). They also employ the alternative
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graph to model the problem. A rollout metaheuristic is implemented to

obtain feasible solutions by Meloni et al. (2004). The rollout method se-

quentially fixes all the decision variables in a given problem. At each iter-

ation, the most promising of the remaining decision variables is added to

the current partial solution. Meloni et al. (2004) describe three heuristics

for selecting the next variable. Each heuristic extends partial solutions by

iteratively selecting one of the remaining unselected arcs and adding it to

the current partial solution.

More recently, Pranzo and Pacciarelli (2016) propose an Iterated Greedy

(IG) algorithm for the job shop scheduling problem with blocking con-

straints. They consider the problem both with and without swaps allowed.

The IG algorithm iteratively destroys part of the current solution, and then

repairs it according to a local optimisation procedure.

2.1.5 Other Scheduling Problems

There are many other scheduling problems and solution approaches. In-

terested readers are referred to the book by Pinedo (2008), which covers a

large number of scheduling problems, both for deterministic and stochastic

problems.
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2.2 Integration of Job and Maintenance Sche-

duling

The scheduling scenarios and solution methods introduced in previous sec-

tions of this chapter often implicitly assume that machines and other equip-

ment are 100% reliable. In reality, this is not the case and equipment fail-

ures will occur. The breakdown of equipment at the NNL facility can in

some cases lead to severe disruption of the processing of jobs. For instance,

problems with the internal transportation mechanism may make it impos-

sible to move jobs in or out of the system for some time. A breakdown

of equipment at a single workstation may have a smaller impact on the

overall schedule. Regular maintenance can reduce the occurence of such

breakdowns. Maintenance planning should therefore be integrated into the

job scheduling process. Traditionally, the literature has often dealt with

scheduling as a stand-alone problem in which no consideration is given to

machine unavailability due to maintenance. Similarly, maintenance plan-

ning has often been considered without taking explicitly into account the

disruption it causes to the job schedule. The following sections review

existing work on the integration of maintenance and scheduling.

2.2.1 Preventive and Corrective Maintenance

The probability of equipment failure can often be reduced by periodically

carrying out preventive maintenance. This might take place either after a
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certain period of time, or after a number of completed jobs. Such mainte-

nance can be planned in advance. Ma et al. (2010) provide an overview of

the literature on deterministic scheduling problems with limited machine

availability. They consider availability constraints due to planned main-

tenance, or due to the previous schedule not having finished yet on all

machines. It is often assumed that the number of maintenances to be car-

ried out is known in advance. However, there is also the possibility that

a machine breaks down, which would require repairs, also known as cor-

rective maintenance (Batun and Azizoglu, 2009). It is often reasonable to

assume that the probability of a breakdown increases with the time since

the last preventive maintenance. It is usually assumed that preventive

maintenance returns a system to an ‘as new’ condition, whereas corrective

maintenance only returns the machine to the state it was in just prior to the

breakdown. Preventive maintenance helps to reduce the need for correc-

tive maintenance. This then leads to the question of how often preventive

maintenance should be carried out. If this is not done often enough, there

may be an unacceptably high number of breakdowns. However, if preven-

tive maintenance is carried out too often this will result in considerable

machine unavailability.

2.2.2 Single Machine Problems

Single machine scenarios do not capture the complexity of the NNL facility.

However, some papers on smaller problems do present interesting ideas
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and solutions methods which may be of use in more complex systems.

Some papers from the single machine literature are discussed next, before

considering more complex scenarios.

Machine Degradation Dependent Maintenance Time

Pan et al. (2010) integrate production scheduling and maintenance plan-

ning for a single machine, whilst also considering breakdowns. As machines

suffer increasing wear over time they become less reliable. This also means

that as time progresses the amount of preventive maintenance required

might increase. Therefore the maintenance durations depend on machine

degradation. Additionally, it is assumed that some jobs are more important

than others. The objective is to minimise the maximum weighted tardi-

ness. The authors explain how to calculate job completion times, taking

into consideration the machine failure rate and breakdowns. The expected

job completion time for the first job is the sum of the processing time of that

job, the expected time spent on preventive maintenance prior to starting

this job, and the expected time spent performing corrective maintenance.

The expected completion time of the first job is then used to calculate the

expected completion time of the second job, and so on. This iterative pro-

cedure is rather lengthy, so we refer to the original paper for the full details.

Unfortunately, Pan et al. (2010) then jump from their model presentation

to their computational results without providing solution methods for the

stated problem.
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Single Machine with Preventive Maintenance

Batun and Azizoglu (2009) consider a single machine, deterministic schedul-

ing problem with preventive maintenances. They assume known processing

times and non-resumable jobs, i.e. any job in progress when the machine is

stopped for maintenance will have to be completely restarted once mainte-

nance has been completed. It is also assumed that maintenance activities

have fixed starting times and known durations. The objective is to min-

imise flow time, also known as total completion time. This is the aggregate

of times that jobs spend in the system, which carries an inventory cost.

Without maintenance, flow time is minimised on single machines by or-

dering jobs in increasing order of processing times (Pinedo, 2009). This

shortest job first principle still holds here for the machine activity periods

between maintenances, and so the problem remains to decide which jobs

should be carried out during each continuous stretch of machine availability.

An outline of how Batun and Azizoglu (2009) proceed is as follows:

1. Use one of two heuristics to construct an initial feasible solution which

will yield an upper bound on the optimal flow time. For example,

the improved shortest processing time heuristic orders the jobs from

shortest to longest processing time. This sequence is then divided into

batches which fit inside the machine availability windows. For all jobs

in all batches, starting from the first batch, the heuristic attempts to

exchange each job with longer jobs in later batches in order to reduce
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machine idle time. This has complexity O(n2).

2. A lower bound on the optimal flow time can be obtained by assum-

ing that jobs are resumable, in which case the shortest job first rule

minimises the total flow time. Lower bounds usually result from a re-

laxation of the problem and help determine the quality of the feasible

solutions found (Ben Ali et al., 2011).

3. A Branch and Bound algorithm is used to find the optimal solution.

The algorithm builds the feasible sequences by adding one job at a

time. It avoids any branches in which batches do not follow the short-

est job first rule within activity windows, since such branches cannot

produce an optimal solution. Nodes are also fathomed (abandoned)

when a new batch is started while any remaining jobs would have fit-

ted in the previous batch. Lower bounds for nodes can be calculated

using the shortest job first rule. Nodes are fathomed if this lower

bound exceeds the best known upper bound.

Batun and Azizoglu (2009) report that, depending on the ratio of the

maximum job length and machine operation windows, their algorithm solved

to optimality instances with between 35 and 80 jobs. The algorithm tended

to perform better as the difference in size of the processing times was re-

duced. Finally, they note their method could be extended by considering

machine breakdowns.
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Preventive Maintenance and Breakdowns

Wang (2013) considers a bi-objective single machine environment which re-

quires the integration of job scheduling and preventive maintenance plan-

ning. It is assumed that jobs have setup times which depend on the previous

job, that machines can suffer a breakdown with increasing probability as

time passes, and that machines can be restored to a good-as-new state by

performing preventive maintenance. Time to machine failure is modelled

by a Weibull distribution. A non-homogeneous Poisson process is used to

model the number of failures between each preventive maintenance. The

failure rate depends on the time the machine has been in use since the last

preventive maintenance. The two objectives are the minimisation of total

expected completion times, and minimisation of the expected number of

failures. Some compromise will have to be found, since the expected num-

ber of failures would be minimised by performing preventive maintenance

after each job, but this would cause considerable delays to the production

process. Wang (2013) uses genetic algorithms to find good solutions.

2.2.3 Two-machine Flow Shop with Preventive Main-

tenance

Flow shop problems are concerned with a system in which jobs have to pass

through a number of machines in a given order. This sequence of machine

visits is identical for all jobs. Allaoui et al. (2008) consider a two-machine
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flow shop problem, in which one machine requires preventive maintenance,

with the objective of minimising the makespan. This problem is NP-hard.

Without maintenance, the two machine flow job has an optimal solution

rule derived by Johnson (1954). Let pm,i denote the processing time of job

i on machine m. Allaoui et al. (2008) then state aforementioned rule as

follows:

Johnson’s Rule: “Divide the set of n jobs into two disjoint subsets,

S1 and S2, where S1 = {Ji : p1,i ≤ p2,i} and S2 = {Ji : p1,i > p2,i}.

Order the jobs in S1 in the increasing order of p1,i and those jobs in

S2 in the decreasing order of p2,i. Sequence S1 first, followed by S2”.

Allaoui et al. (2008) propose an algorithm that orders the jobs according

to Johnson’s Rule. It then inserts the maintenance at the end of each job

in turn and takes the solution with the shortest makespan. This solution is

optimal when all processing times on machine 1 are equal. When the single

preventive maintenance activity is carried out on machine 2, it is suggested

this is done at time zero to take advantage of the idle time on this machine

while the first job is processed by machine 1.

2.2.4 Job Shop Scheduling Integrated with Mainte-

nance Planning

While the papers discussed above present some interesting problems and so-

lution approaches, the complexity of the systems they describe is relatively
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trivial compared to the NNL facility under consideration in this thesis.

Ben Ali et al. (2011) consider a much more complex problem. They study

the simultaneous scheduling of production and maintenance tasks in a job

shop. Their multi-objective problem aims to minimise both the makespan

and the total maintenance cost. They actually consider two types of pre-

ventive maintenance: Block maintenance has to be carried out at fixed time

intervals of length T , while Age maintenance has to be carried out after the

machine has been used for a cumulative duration of time T . These T s can

have a different value for both types of maintenance. Their value can also

differ between machines. Machines do not necessarily have to be assigned

both types of maintenance, but this is possible if so desired. Maintenance

does not have to take place exactly every T time units, but can be planned

to occur slightly earlier or slightly later. This offers some flexibility which

is missing from algorithms in which the maintenance time is fixed. In order

to help find solutions where maintenance takes place reasonably close to

the required intervals, the maintenance cost function includes a penalty for

tasks which are scheduled to occur before or after some tolerance period

around time T . Maintenance costs do not incur a penalty if the mainte-

nance is scheduled to start within this tolerance period.

One challenge is to decide the size of the interval T between preventive

maintenances. If the interval between successive maintenances is increased,

the machine will degrade more over time and become more likely to suffer

a failure. Hence, increasing T means that the probability of requiring cor-
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rective maintenance is also increased. However, decreasing T means more

preventive maintenance periods will be required, which carries an increased

machine unavailability cost. Ben Ali et al. (2011) determine T by consider-

ing the mean time between failures and multiplying this by a parameter α

which balances the preventive and corrective maintenance costs. Another

complication may be that different parts of the same machine may require

maintenance at different intervals. Using optimal maintenance periods for

each individual part would very likely result in unacceptable downtime.

One option is to find the optimal maintenance period for each part, plan

grouped maintenances with period T , and then service all those parts which

are due nearest to the current maintenance slot at the same time. Ben Ali

et al. (2011) propose a Genetic Algorithm for solving their multi-objective

scheduling problem.

The work by Ben Ali et al. (2011) has some features which deal with

NNL’s requirements. It integrates job shop scheduling with preventive

maintenance planning. The flexibility for maintenance activities is also a

nice feature. Unfortunately, this method does not consider jobs with double

due dates, and as such is not directly applicable to the NNL facility.

2.2.5 Further Maintenance Literature

A flow shop problem where preventive maintenance is performed before a

specified amount of machine usage is considered by Ruiz et al. (2007). They

explore several methods, including PACO (Rajendran and Ziegler (2004)),
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an Ant Colony Optimisation method for the flow shop. Authors in Li

and Pan (2013) propose a hybrid chemical-reaction optimization (HCRO)

algorithm for solving the job-shop scheduling problem with fuzzy processing

times and flexible maintenance.

2.3 Metaheuristics

The job shop scheduling problem is one of the most notoriously difficult

combinatorial optimisation problems (NP-hard, Du and Leung (1990)),

even for relatively small instances. As such, metaheuristics are often used

to effectively and efficiently solve scheduling problems. Metaheuristics are

algorithms which allow the finding of good (near-optimal) solutions in short

computational time. A number of metaheuristics which are regularly used

to solve scheduling problems are reviewed in the following sections. Those

interested in general purpose heuristics for integer programming are re-

ferred to Glover and Laguna (1997a) and Glover and Laguna (1997b).

Scheduling problems can come with a variety of objectives. Common

objectives include minimisation of the production cost or minimisation of

the makespan. The number of potential solutions to a scheduling problem

is usually so large that evaluation of every possible schedule is simply not

feasible. This means it will not always be possible to solve problems to

optimality. Instead, many industrial applications focus on finding good,

near-optimal solutions in relatively short time. Many metaheuristics have
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been developed to solve such optimisation problems to near-optimality at

reduced computational cost. This means there is an optimality versus speed

trade-off.

Glover and Kochenberger (2003) define metaheuristics as “solution meth-

ods that orchestrate an interaction between local improvement procedures

and higher level strategies to create a process capable of escaping from local

optima and performing a robust search of a solution space”. Although it

may feel a little unsatisfactory to only get near-optimal results, this is ac-

tually incredibly useful in many real-world applications. A company which

needs to schedule its workload might only be willing/able to spend limited

processing time on obtaining a near-optimal solution, as opposed to waiting

many years to get an optimal result with small additional gain.

2.3.1 No Free Lunch Theorem

The No Free Lunch theorem (Wolpert and Macready, 1997) states that

given any pair of two algorithms, both will perform equally well when

averaged over all possible problems. This implies that if one algorithm, a1

say, outperforms another algorithm, a2 say, on average over a particular set

of problems, then a2 must outperform a1 over the set of all other problems,

on average. As such, there is no single general purpose algorithm available

to practitioners that will always give the best results. The best performance

can be obtained by tailoring algorithms to the problem of interest. The

methods developed in this thesis are therefore also tailored to the problems
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under consideration, in order to obtain good results.

2.3.2 Failings of Classical Methods

One of the big challenges of optimisation problems is the possible presence

of multiple local minima, as illustrated in Figure 2.3.1. Classical methods

can be unsuitable for finding the global minimum in such a scenario. The

gradient descent method, for example, starts from some intuitive (or arbi-

trary) starting point on the objective function. At each iteration, a small

step is taken downhill from the current position. If a lower point of the

objective function is found, then this will be the starting point for the next

iteration. If no nearby improvements exist, then a local minimum has been

found (Dréo et al., 2006). The problem with this method is that the local

Figure 2.3.1: Multiple local minima. Objective function with a single

variable (left) and two variables (right).
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minimum found depends on the starting position and that no other local

minima are explored. One improvement on this is to explore the solution

space from a number of starting positions, but this is computationally ex-

pensive and is not guaranteed to lead to an optimal solution, especially

when the number of local minima is large (Dréo et al., 2006). Some meta-

heuristics address this problem by occasionally accepting steps which result

in an increase of the value of the objective function.

2.3.3 Simulated Annealing

Optimisation by Simulated Annealing (SA) was first introduced by Kirk-

patrick et al. (1983), in the context of efficient electronic circuit board

design. Consider a number of computer chips which must be placed on a

circuit board, and consider that many of these chips will have to be con-

nected to each other. The problem of interest is then to place the chips in

such a way as to minimise the combined length of the links between chips.

One approach would be to choose some random starting configuration. At

each step, a random pair of chips swaps positions. If this swap results in

a reduction of overall chip connection distance, then the swap is accepted

and serves as the initial layout for the next iteration. This approach suffers

the drawbacks described in Section 2.3.2, in that it will converge on a local

minimum which may not be optimal. Simulated Annealing addresses this

problem by occasionally accepting moves which increase the value of the

objective function.
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More generally, Simulated Annealing chooses some random configura-

tion as an initial solution. At each step, some perturbation is made to the

existing solution. If this perturbation results in a reduction of the solu-

tion score, then it is accepted and replaces the current solution. Moves

which increase the value of the objective function are accepted accord-

ing to a probabilistic rule. The acceptance probability of an uphill move

depends on a temperature parameter, T , set by the user. Various tem-

perature reduction rules exist, but a common one is the simple geometric

rule Tk+1 = αTk. For high values of T , the acceptance probability of uphill

moves is high and configurations are able to escape from local minima. Pe-

riodically, T is decreased. The intensity of this cooling effect depends on

the cooling parameter α ∈ (0, 1). As T decreases, so does the acceptance

probability of uphill moves so that, eventually, the system converges to a

local minimum. Dréo et al. (2006) note that, “under certain circumstances,

Simulated Annealing probably converges towards a global optimum, in a

sense that it is made possible to obtain a solution arbitrarily close to this

optimum, with a probability arbitrarily close to unity”. See, for example,

Aarts and van Laarhoven (1985).

Simulated Annealing proceeds as follows (Dréo et al., 2006):

1. Choose an initial configuration.

2. Set an initial temperature, T0.

3. Modify the configuration. Define the change in objective function as
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∆E.

4. At temperature T , accept the modification with probability

α =


1 if ∆E ≤ 0

exp(−∆E/T ) if ∆E > 0

5. Continue to step (6) if in thermodynamic equilibrium. Otherwise,

return to step (3).

6. Stop if system is frozen. Otherwise, decrease T according to some

algorithm and return to step (3).

The thermodynamic equilibrium in step (5) refers to the system being

in some sort of balanced state for the given temperature. In practice, this

means the temperature is decreased after a predefined number of iterations.

The frozen state in step (6) can be said to have been reached once no

proposed moves have been accepted for a certain number of iterations,

usually spanning a few temperatures.

The efficiency and asymptotic convergence of Simulated Annealing de-

pend on the factors listed below, which must therefore be carefully chosen

(Eglese, 1990). The following suggested methods of choosing these param-

eters have been taken from Dréo et al. (2006), but there are many other

ways to set them:

• The starting temperature, T0. This could be chosen as a solution
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of

exp

(
−< ∆E >

T0

)
= τ0,

where < ∆E > is the average of 100 moves from some initial config-

uration, and τ0 depends on the quality of this initial configuration.

• The number of iterations at each temperature, N(T ). The tem-

perature could be changed when 12N moves are accepted, or when

100N moves have been attempted. Here, N denotes the degrees of

freedom of the problem.

• A temperature adjustment rule. A simple rule is a geometric

one, Tk+1 = αTk, for some 0 < α < 1.

• A stopping rule. One might choose to stop after three successive

temperature stages during which no proposed moves were accepted.

While the rules above may often work well, they are not perfect, and

in practice a trial-and-error approach is often used to optimise the param-

eters. Wright (2010) considered how to automate choosing the Simulated

Annealing parameters. They link the initial and final temperatures to the

percentage acceptance of worsening solutions (PAWS). Numerical experi-

ments on 100 and 200-city travelling salesperson problems (TSPs) indicated

that the best results were obtained when T0 was associated with a PAWS

value in the range (4, 8), for a random starting position. The corresponding

value of T0 could be derived by generating worsening moves from random
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starting positions and noting their values of increase in the objective func-

tion. The parameter T0 could then be set in such a way that between

4% and 8% of worsening moves will be accepted initially. Final tempera-

tures TN were associated with PAWS values in the range (0.02,0.1). Wright

(2010) conclude by noting that their experiments were conducted on ran-

domly generated Euclidean TSPs, and that further research is required to

investigate whether these conclusions also hold for other problems.

As Simulated Annealing is a very general approach to any combinato-

rial optimisation problem, it does not necessarily perform as well as some

problem-specific heuristics (Eglese, 1990). One disadvantage of Simulated

Annealing is that it has no memory and might therefore return to states

which it has already explored. Many variants of Simulated Annealing have

been developed in order to make it more efficient for particular problems,

and it is often desirable to tailor the parameters using knowledge of the

problem. We have adapted Simulated Annealing for two versions of the

job shop scheduling problem with flexible maintenance, in Section 5.3 and

Section 9.4.

2.3.4 Tabu Search

Tabu Search was first introduced by Glover (1986), although it did build

on existing ideas (Glover (1977);Glover et al. (1985);Glover and McMillan

(1986)). It has since been enhanced by others (Dréo et al., 2006). Like Sim-

ulated Annealing, Tabu Search explores the solution space by modifying an
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Create a starting solution.

This could be randomly generated.

Neighbourhood evaluation.

Evaluate some defined neighbourhood

surrounding the current solution.

Select a new solution.

Choose the best non-tabu solution in the

neighbourhood as the new current solution.

Remember the best solution found so far.

Stop?

Has the stopping

criterion been

reached?

Stop.

The best solution found

is the final solution.

No

Yes

Figure 2.3.2: Flowchart for the basic Tabu Search algorithm (based

on Glover (1990)).
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existing solution in an attempt to find a better solution. Unlike Simulated

Annealing, Tabu Search makes use of a memory function to avoid revisiting

solutions multiple times. Using the notation as given in Dréo et al. (2006),

let s denote a feasible solution, and let S denote the set of all feasible so-

lutions. Define N(s) ⊂ S to be the set of neighbouring solutions to s. In

the context of the computer chip placement problem (Section 2.3.3), for

example, this could be the set of solutions which differs from the current

solution by a swap in position of two chips. Tabu Search evaluates all solu-

tions in N(s) and takes the best solution in this neighbourhood to be the

new current solution. This is essentially a local search, which would suffer

the local minimum convergence issues discussed previously (Section 2.3.2).

In order to avoid getting stuck in such local traps, Tabu Search restricts

movement in the solution space by preventing a return to recently visited

solutions. If N(s) is large, it may be desirable to only consider some of its

elements, which could simply be a random subset (Dréo et al., 2006). The

flow of the basic Tabu Search is illustrated in Figure 2.3.2.

Tabu Search Memory

Tabu search utilises a short term memory, which seeks to prevent checking

the same solution twice within some defined period. Retaining a complete

record of all visited solutions can be memory intensive. Additionally, mark-

ing them as out-of-bounds for future visits may even prevent the optimal

solution being found. This is because the optimal solution could be located
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Figure 2.3.3: Permanent tabu status of already visited solutions can

prevent the optimum from being reached (illustration based on Dréo

et al. (2006)). The iteration path on the left prevents itself from ever

reaching the global optimum, while the path on the right does something

similar by getting trapped by previously visited solutions.

in an area of the solution space which might become inaccessible for the

algorithm once a number of solutions have been marked tabu (Dréo et al.,

2006). The algorithm might also lock itself into a local minimum, prevent-

ing the optimal solution from being found. These situations are illustrated

in Figure 2.3.3.

The issues associated with permanent memory described above can be

avoided by using a short term memory instead. For instance, one could re-

strict the search algorithm to only make moves to solutions which have not

been visited during the previous t iterations. Storing complete information
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on previously visited solutions can be computationally expensive, so some

methods simply store the most recent values of the objective function and

prevent moves to solutions with an identical value. There are some varia-

tions on this, but this introduces the problem of also preventing moves to

unvisited solutions which just happen to have the same value as a recently

visited solution (Dréo et al., 2006).

Alternatively, one might consider temporarily banning certain moves,

rather than specific solutions. For instance, if (i, j) represents swapping

components i and j, then performing this move twice in a row would re-

turn the algorithm to the current solution. Therefore, after (i, j) has been

performed, this move would be banned for a number of iterations (Dréo

et al., 2006). This does not actually prevent recently visited solutions from

being visited again, since nothing prevents components i and j returning

to their original positions in separate moves. For example, the successive

moves (i, j), (k, p), (i, p), (k, j), (k, i), (j, p) bring us back to the solution we

started with. In this situation, revisiting solutions can be prevented by

using the condition that components i and j cannot both return to the

position they occupied before move (i, j) (Dréo et al., 2006).

The size of the tabu memory should be carefully chosen. If the memory

is too short, the algorithm will get stuck in a ‘valley’ of the solution land-

scape. If the memory is longer, the process will instead be pushed out of

this valley and explore other regions of the solution space. If the memory

is too long, local minima may not be explored very well (Dréo et al., 2006).
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Stopping Criterion

Tabu Search requires a suitable stopping criterion in order to find a good

solution within a practical time limit. Gendreau (2003) notes that stopping

criteria are often based on one of the following:

• A predetermined length of computing time, or fixed number of itera-

tions;

• A certain number of iterations during which no improvements are

made;

• The achievement of a chosen threshold.

The threshold criterion would require a certain knowledge about possible

outcomes, since one would like to avoid setting a threshold which could not

possibly be reached, or which would be reached too easily.

2.3.5 Evolutionary Algorithms

Evolutionary Algorithms are based on natural evolutionary processes. The

basic idea is that we have a population of solutions to an optimisation

problem. This population then procreates and gives birth to a second

generation of solutions. If two (or more) solutions in the first generation are

combined to create a single new solution, then these original solutions are

called parents, and the generated solution is their offspring. The offspring

generation can then be used as parents for another generation, and so on
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(Dréo et al., 2006). In line with evolution, strong solutions should be more

likely to reproduce than weak solutions. It may be desirable to allow the

strongest existing solutions to not only reproduce, but also survive and be

part of the next generation. This is known as elitism. Additionally, some

offspring may be of poor quality and could be prevented from entering

the population (Dréo et al., 2006). It is also possible to allow solutions

to reproduce by mutation, which can allow for wider exploration of the

solution space than simple reproduction. If stronger solutions are more

likely to reproduce than weak solutions, there is a danger of convergence

to the strongest solution in the initial population, which is not likely to be

the global optimum solution.

If two strong solutions located near two separate local optima produce

offspring, there is a danger that this offspring could actually be of poor

quality. This is because, in the solution landscape, it can lie somewhere

on the mountain separating the two valleys where the good solutions live

(Dréo et al., 2006). This situation is illustrated in Figure 2.3.4. This is not

to say that parents with large separation should never be matched, as it is

always possible that their offspring will inhabit a third, unexplored valley.

There are various ways of creating offspring and mutations. Suppose

a solution can be expressed as a binary vector. Mutation can then take

place if there is a small chance for each bit to change from 0 to 1, or vice

versa. Mating, or crossover, is the producing of offspring by parents, by

exchanging part of their bit strings. For example, to produce a single child,
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the first half of one parent’s bit string could be combined with the second

half of another parent’s bit string. To produce two offspring, a number

of elements of the two parent bit strings could be swapped (Dréo et al.,

2006). It should be stressed that recombining solutions should be given

careful consideration: Most problems will carry a number of constraints,

and while the parents may abide by these constraints, their offspring may

well violate them. There are different types of Evolutionary Algorithms,

including the following (Jansen, 2013):

• Genetic Algorithms: First introduced by Holland (1975), genetic

algorithms are often concerned with solutions which can be expressed

as binary vectors. Crossover is the main method for producing off-

Figure 2.3.4: Parents from separate valleys can produce poorly per-

forming offspring (illustration based on Dréo et al. (2006)).
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spring. Mutation is less prevalent but provides some variation in the

search. Mutation can be easily implemented by changing the value

of random bits (Back, 1996).

• Evolutionary Strategies: These often focus on solutions which

can be expressed as real-valued vectors. New generations are usu-

ally produced by mutation, although recombining existing solutions

is also possible. Parent and child are compared in terms of fitness.

The stronger of the two survives to be part of the next generation

(Boussäıd et al. (2013);Back (1996)).

• Evolutionary Programming: This also considers real-valued vec-

tors as solutions and reproduction through mutation. One common

way of performing mutations is to add a random Gaussian number

to the solution. A tournament is used for selection: Parents and off-

spring are randomly paired up and the stronger solution ‘wins’ that

round. This is repeated a number of times, and solutions with the

largest number of wins form the next generation (Mallipeddi et al.

(2010);Back (1996)).

2.3.6 Other Metaheuristics

There are many other metaheuristics available. A survey is provided by

Boussäıd et al. (2013). Some other methods include:

• Swarm Intelligence: This actually includes a number of meta-
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heuristics, such as Ant Colony Optimisation, particle swarm opti-

misation, and bacterial foraging optimisation. The general idea be-

hind swarm intelligence is that a population of individuals that can

locally interact with each other and their environment can work to-

gether intelligently. This intelligent cooperation takes place without

there being any overall control, but does facilitate the performance

of complex tasks. Consider Ant Colony Optimisation as an example.

This randomly generates a number of initial solutions. Components

of these solutions are marked according to the quality of the solution.

Solution components which are marked strongly by multiple individ-

ual solutions are then more likely to be included when the next round

of solutions is created (Boussäıd et al., 2013). We have adapted Ant

Colony Optimisation for both the non-blocking and blocking versions

of the job shop scheduling problem with flexible maintenance, in Sec-

tion 5.2 and Section 9.2, respectively.

• Greedy Randomized Adaptive Search Procedure (GRASP):

This multi-start method builds an initial solution using a number of

components. At each step, a list of good candidate components is

generated based on the components already included in the solution.

A component is then randomly selected from the best components

in this list. Once the initial solution has been constructed, a local

search finds the local minimum nearest to this initial solution. This
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process is repeated many times. The final solution is then the best

one found during all the local searches (Festa and Resende, 2009).

• Iterated Local Search: Just as in GRASP, a local search is em-

ployed to find the local minimum from some starting solution. How-

ever, when a local minimum is found the algorithm does not restart

with a new random solution. Instead, the local minimum solution is

perturbed with the aim of ‘jumping’ to another valley in the solution

landscape. Local search is then again employed to find the local min-

imum of that valley, and so on (Hoos and Stützle (2004);Lourenço

et al. (2010)).

• Nested Partitions: The solution space is divided into regions by

fixing some of the decision variables. Sampling is used to determine

promising regions, which are then explored further. This can work

well when good solutions are clustered together in the solution space

(Shi and Ólafsson, 2009).

Sometimes parts of different metaheuristics are combined, possibly with

exact methods. Such algorithms are known as hybrid metaheuristics. Blum

et al. (2011) provide a survey of the literature on hybrid metaheuristics for

combinatorial optimisation. Hybrid methods for multi-objective combina-

torial optimisation are discussed by Ehrgott and Gandibleux (2008).
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2.3.7 Hyperheuristics

The No Free Lunch theorem (Section 2.3.1) illustrates the advantages that

can be gained by tailoring metaheuristics to the problem of interest. How-

ever, developing and tailoring metaheuristics is a time consuming process.

Practitioners may not have the time, or the experience, to develop brand

new metaheuristics for each problem they come across. Hyperheuristics

have been developed in an attempt to create general purpose solvers. Hy-

perheuristics solve the problem of which heuristic to use for a type of prob-

lem, rather than solving the problem directly (Burke et al., 2013). The

term hyperheuristic was first used by Cowling et al. (2001), and a survey

of methods can be found in Burke et al. (2013). They note that there are

two classes of hyperheuristic: heuristic selection and heuristic generation.

In heuristic selection, the hyperheuristic iteratively selects one heuristic

from a fixed set of heuristics that it has been equipped with. The selected

heuristic then solves the problem of interest. Finally, the hyperheuristic

uses the observed solution quality to learn about the effectiveness of the

selected heuristic. Hyperheuristics based on heuristic generation have ac-

cess to a set of smaller heuristic components. At each iteration, a subset of

these heuristic components is combined to generate a new heuristic. The

created heuristic then solves the problem of interest. Finally, the hyper-

heuristic uses the observed solution quality to learn about the effectiveness

of the generated heuristic. An example of a hyperheuristic in a scheduling
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context can be found in Vázquez-Rodŕıguez and Petrovic (2010). Their

hyperheuristic employs a genetic algorithm to find a good ordering of dis-

patching rules to be used during schedule creation.

2.3.8 Metaheuristics for the Job Shop

Various heuristic approaches have been successfully applied to address a

wide set of different job shop scheduling problem variations, such as Sim-

ulated Annealing (Kolonko, 1999; Yamada and Nakano, 1996), Genetic

Algorithms (Gonçalves et al., 2005), Evolutionary Algorithm (Tanev et al.,

2004), Tabu Search (Nowicki and Smutnicki, 1996; Pezzella and Merelli,

2000), Artificial Neural Networks (Fonseca and Navaresse, 2002), and other

approximation approaches (Jansen et al., 2005; Chen and Luh, 2003). For

example, the shifting bottleneck procedure was incorporated in the Simu-

lated Annealing algorithm for the job shop scheduling problem in Yamada

and Nakano (1996). A Genetic Algorithm solving a job shop with release

dates, due dates and tardiness objectives was proposed in Mattfeld and

Bierwirth (2004), while the authors in Yang et al. (2012) consider a Ge-

netic Algorithm for a job shop with due dates and deadlines, where due

dates are desired completion times, and deadlines are compulsory comple-

tion times. Recently, the authors of Kuhpfahl and Bierwirth (2016) look at

a job shop where the total weighted tardiness must be minimised. They use

the disjunctive graph model to define neighbourhoods in their local search

procedure. Moreover, a wide range of solution methods for the classical
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job shop problem has been studied. The Shifting Bottleneck procedure

by Joseph Adams (1988) is a very popular approach, which is often inte-

grated in other methods. It iteratively solves single-machine problems to

optimality, and re-optimises the operations on machines which were sched-

uled previously. For an overview of other approaches, the reader is referred

to Jain and Meeran (1999) and B lażewicz et al. (1996).

The first application of Ant Colony Optimisation (ACO) to the stan-

dard job shop problem with makespan objective was introduced in Colorni

et al. (1994). A hybridisation of ACO with a Taboo Search algorithm

was proposed to address the classical job shop problem in Huang and Liao

(2008). The method utilises a novel decomposition method motivated by

the shifting bottleneck procedure. The hybridisation achieves competitive

performance on a large set of traditional benchmark instances. ACO for

group shop scheduling was considered in Blum and Sampels (2004). This

is a more general formulation of scheduling problems that includes the

job shop and the open shop scheduling problems as special cases. The

methodology used incorporates a local search procedure to improve the

constructed schedules. A hybridisation with beam search was later pro-

posed by the same author to efficiently address the open shop scheduling

problem (Blum, 2005). Alternative solution representations used with ACO

were considered in Montgomery et al. (2006) and Montgomery (2007), to

tackle real-world job shop scheduling problems. The proposed representa-

tions assign alternative dispatching rules for each machine that heuristically
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determines the order of operations on the assigned machine. These repre-

sentations seem to be promising in terms of producing fast near-optimal

solutions when optimising processing times and job due dates. In addi-

tion, a knowledge-based model was employed in ACO to the flexible job

shop scheduling problem (Xing et al., 2010). The introduced model aims

to learn potential knowledge acquired from the optimisation procedure of

ACO, and subsequently uses it to guide the search towards more promising

areas. Experimental results on a large range of problem instances validated

its efficiency.

2.4 Branch and Bound

Branch and Bound (B&B) is an exact solution method, first introduced by

Land and Doig (1960). A survey of recent advances in B&B is presented

in Morrison et al. (2016). Branch and Bound has been applied to solve

a wide range of discrete optimisation problems. The advantage of B&B is

that it can provide exact solutions to scheduling problems. Its disadvantage

is that the required computational time can be much longer than that of

metaheuristics. This thesis proposes novel Branch and Bound methods for

the non-blocking and blocking variants of the job shop scheduling problem

with flexible maintenance, in Chapter 4 and Chapter 10, respectively. A

basic overview of the general B&B procedure is presented in Algorithm 1,

and described next.
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Algorithm 1 Pseudo code of a generic Branch and Bound algorithm.

1: Set initial incumbent solution

2: Initialise an empty solution stack

3: Initialise an empty solution and place this on top of the stack

4: while stack not empty do

5: Take a partial solution from the top of the stack

6: Select a non-fixed variable in the partial solution

7: Create one branch for each possible value of the variable

8: for all newly created branches do

9: if lower-bound of branch is no better than incumbent solution

then

10: Discard branch

11: else

12: if branch is complete then

13: Branch replaces incumbent solution

14: else

15: Branch is returned to the top of the stack

16: end if

17: end if

18: end for

19: end while

20: Return the optimal incumbent solution
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Suppose we wish to solve a discrete optimisation problem, and that we

are interested in finding a global minimum. Assume that it is possible to

calculate a lower bound for any given partial solution. Also assume we have

an incumbent solution, i.e. a best-so-far solution, which provides an upper

bound to the optimal solution. If an initial incumbent is not available, the

upper bound is set to infinity (Step 1). Starting with an empty solution

(Step 3), we select one of the decision variables (Step 6). For each of the

discrete values the selected decision variable can take, we create a new

partial solution with the variable fixed at that value (Step 7). This step is

known as branching, and the partial solutions are referred to as nodes. A

lower bound is then calculated for each node. For some problems the lower

bound can be improved by solving a linear relaxation of the integer/binary

problem with a fast solver. Following the branching operation, it may be

that one of the new nodes represents an infeasible solution, or that the

lower bound is no better than the best known solution. In either case, it

will not be possible to find a new incumbent solution on said branch, so it

need not be further investigated. The node can be abandoned (the node is

said to be ‘pruned’, or ‘fathomed’) (Step 10). If any of the nodes represents

a complete solution, it replaces the incumbent solution if it is strictly better

(Step 13), or is discarded otherwise. If any open nodes remain, select one to

branch on next. Repeat until no open nodes remain (Step 4). At this point,

the incumbent solution is proven to be the optimal solution (Step 20).

Branch and Bound methodologies have been successfully applied in the
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past to solve versions of the standard job shop scheduling problem to op-

timality (Brucker et al., 1994b; Artigues and Feillet, 2007; Brucker and

Thiele, 1996; Mascis and Pacciarelli, 2002). Fast Branch and Bound algo-

rithms were proposed in Brucker et al. (1994b) and Brucker and Thiele

(1996), to solve challenging problem instances of the general job shop

scheduling problem. The job shop scheduling problem with sequence-

dependent setup times was considered in Artigues and Feillet (2007), where

a Branch and Bound algorithm was applied to solve the makespan problem

to optimality. Moreover, Singer and Pinedo (1998) present two Branch and

Bound procedures for the job shop with the weighted tardiness objective.

One branching scheme fixes operations at each branching point. The other

branching scheme uses the disjunctive graph model to fix one disjunctive

arc at each branching point.





Part II

The Non-Blocking Job Shop

with Flexible Maintenance
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The chapters in this part of the thesis consider the non-blocking job shop

with flexible maintenance. The problem is described and formally defined in

Chapter 3. A Branch and Bound algorithm for this problem is presented in

Chapter 4. While this exact method provides optimal solutions, it usually

has a longer running time than the heuristic methods that are presented

in Chapter 5. The computational experiments in Chapter 6 show that

the Branch and Bound method can be very effective, especially when it is

seeded with a good solution from one of the heuristic methods.
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Chapter 3

Introduction to the

Non-Blocking Job Shop with

Flexible Maintenance

3.1 Problem Overview

The management of the work passing through the NNL facility described in

Section 1.2, can be modelled as a job shop scheduling problem (JSSP), with

a number of additional non-standard features based on the requirements of

the facility.

To briefly recap, the facility comprises shielded workstations, that pro-

cess sensitive and radioactive materials, handled remotely by expert work-

ers. The facility also contains a single transportation mechanism that con-

nects all workstations, and which transfers the materials across all work-
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stations. There are two workstations that both act as entry and exit points

for any materials. As such, given a material to be processed, it will have to

enter the system at one of these two workstations, and then be moved to

the appropriate workstation by the transporter. The materials then may

have to undergo further processing at other workstations, and eventually

leave the system through one of the two exit points.

The non-standard features faced by schedulers at the facility include:

flexible maintenance scheduling; jobs which merge into one, or split into

many; jobs with release dates; and jobs with precedence constraints. Ex-

isting research might not take into consideration all or most of such non-

standard features that are encountered in real-world scenarios. It is more

common to consider and study a single complication in isolation.

A crucial aspect of the considered JSSP is the maintenance programme

on all machines at the facility. In industrial scenarios, machine mainte-

nance is critical for the good functioning of the facility. However, machine

maintenance is often ignored in traditional job shop scheduling formula-

tions. Each workstation at the facility, as well as the transporter, has a

preventive maintenance program. These flexible maintenance activities are

required to start within a specified time window. The start and end of this

time window are the soft and hard due dates, respectively, for the start of

the maintenance activity. Due to strict safety regulations in the nuclear

industry, a machine must be shut down if its maintenance is not started

by the hard due date. In this thesis we integrate the planning of mainte-



3.2. PROBLEM NOTATION 65

nance with the planning of jobs. Each maintenance event is modelled as a

single-operation job.

Another feature motivated by the industrial setting is that some jobs can

only start when multiple other jobs come together on completion. There

are also jobs which, on completion, allow a number of other jobs to start.

This merging and splitting behaviour of jobs is modelled with precedence

constraints. There is infinite buffer capacity in the system. If a job requires

a machine that is currently busy, the job can wait for processing next to

its required machine.

Novel features of the problem under consideration include flexible main-

tenance, soft and hard due dates, and the integrated planning of mainte-

nance alongside the jobs planning procedure.

3.2 Problem Notation

More formally, we wish to schedule a set of n ≥ 1 jobs J = {Ji}1≤i≤n on

a set of m ≥ 1 machines M = {Mk}1≤k≤m. Each job Ji ∈ J consists of a

number of oi operations Ji = {Oij}1≤j≤oi to be processed in a given order.

Each operation Oij has to be carried out on a specified machine Mk ∈M.

Each operation has a positive deterministic processing time pij ∈ R+. Each

machine Mk can process only one operation at a time. The nature of the

operations makes them non-preemptive, i.e. once an operation has started

it cannot be interrupted. Each job Ji has a release date ri. Jobs can have
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precedence constraints, which enforce a strict ordering between two jobs.

For example, if Ji must be processed before Jj, the precedence constraint

is ci ≤ sj, where ci denotes the completion time of Ji and sj denotes the

starting time of Jj.

The merging of jobs is modelled with the help of precedence constraints.

Consider a set of three jobs, {Ji, Jj, Jk} say, which merge into a fourth job,

Jl. This would be modelled with the constraint max{ci, cj, ck} ≤ sl. This

type of constraint is known as an in-tree (Cheng and Sin, 1990). Similarly,

if job Ji splits into three other jobs, {Jj, Jk, Jk} say, this is modelled with

the constraint ci ≤ min{sj, sk, sl}. This type of constraint is known as an

out-tree (Cheng and Sin, 1990).

Let ci denote the scheduled completion time of job Ji. Each job has a

soft due date di, and a hard due date di. A tardiness penalty Ti is incurred

by Ji if its soft due date is violated, i.e. when di < ci. The size of the

penalty increases with the delay, and rises rapidly beyond the hard due

date. The motivation behind this is that, in reality, the financial reward

for a job is reduced if the soft due date is missed, and severely reduced

if the hard due date is missed. In addition to this, the linear part of the

penalty function that will be introduced in Section 3.3, ensures work is not

needlessly delayed when the due dates can be easily met. Completing work

sooner helps maintain a good reputation with clients.

Each maintenance activity is modelled as a single-operation job. A

flexible maintenance activity Ji receives a tardiness penalty based on its



3.3. OBJECTIVE FUNCTION 67

scheduled starting time, si. These flexible maintenance activities are re-

quired to start within the time window defined by their soft and hard due

dates. More formaly, for maintenance activities there is a hard constraint

which requires that si ∈ [di, di]. Maintenance can start no earlier than its

soft due date di. If maintenance has not started by its hard due date di,

the corresponding machine must be shut down. Therefore, missed hard due

dates for maintenance have to be penalised much more heavily than missed

hard due dates for jobs.

As mentioned previously, the objective function considered in this study

seeks to minimise the total tardiness penalty T , defined by T =
∑n

i=1 Ti.

Depending on the type of job (normal, maintenance), we employ two tar-

diness penalty functions with different characteristics, as described next in

Section 3.3.

3.3 Objective Function

Given that a regular job Ji has soft due date di, hard due date di (di ≤ di)

and, once scheduled, completion time ci, then job Ji incurs the following

tardiness penalty Ti:
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Ti =



0 if ci ≤ di,

ci − di if di < ci ≤ di,

(di − di) + 1010 + 100× (ci − di) if di < ci.

(3.3.1)

Intuitively, a job Ji will incur a penalty (tardiness) value only if its comple-

tion time ci exceeds the soft due date threshold di. The effect of the penalty

in that case has a linear trend proportional to its completion time (ci−di),

until the completion time reaches the hard due date (di < ci ≤ di). In the

case where the completion time exceeds the hard due date (di < ci) a very

large fixed penalty is incurred ((di − di) + 1010 + . . .). There is a slope

to help the optimisation process move towards more desirable solutions

(. . .+ 100× (ci − di)).

Given a flexible maintenance activity Ji, a different tardiness penalty is

incurred, as follows:

Ti =



0 if si = di,

si − di if di < si ≤ di+di
2
,

di+di
2
− di + 10×

(
si − di+di

2

)
if di+di

2
< si ≤ di,

di+di
2
− di + 10×

(
di − di+di

2

)
+

+1015 + 1000×
(
si − di

)
if di < si.

(3.3.2)
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In the maintenance tardiness penalty function, we add an extra case in the

piecewise function that essentially splits the time period between the soft

due date di and the hard due date di in half (di < si ≤ di+di
2
, di+di

2
< si ≤

di). The slope of the penalty function in the second time period is steeper

than in the first one, so that larger penalty values apply if the starting time

of the maintenance is closer to its hard due date. The aim here is to avoid

planning maintenance close to its hard due date when this can be avoided.

If maintenance were to be planned close to its hard due date, there is a

risk that a small delay would cause the hard due date to be missed, leading

to a mandatory shutdown. Similarly, a substantially larger penalty value

(. . . + 1015 + . . .) is incurred in the case where the starting time of the

maintenance exceeds its hard due date (di < si).

Figure 3.3.1 illustrates how the job and maintenance components of the

penalty function behave relative to each other. Due to the very large fixed

penalties at the hard due date, the Y-axis is not to scale.

These tardiness functions are designed to prioritise the various schedul-

ing objectives. The highest priority is placed on scheduling maintenance

tasks to start before their respective hard due dates, to avoid a mandatory

shut-down. The second highest priority is to schedule regular jobs to finish

before their respective hard due dates, to avoid substantial loss of rev-

enue. While we want to exploit the flexibility of the maintenance window,
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Figure 3.3.1: An illustrative comparison of how the soft and hard

due dates influence the job and maintenance components of the penalty

function. Y-axis not to scale.

a mandatory shut-down should be avoided at all costs. Therefore, the third

priority is to further reduce any remaining delay in maintenance, to below

the midway point of its respective maintenance window. The final priority

is then to reduce any remaining delays in either jobs or maintenance tasks.

3.4 Problem Classification

The overall objective function (Section 3.3) takes into account job and

maintenance tardiness, as well as weighted unit penalties for hard due date

violations. Let wtj denote a weight, where t indicates a type of tardi-

ness and where j indicates a job. Then, in terms of the widely used 3-field
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problem classification α|β|γ (Graham et al. (1979); Section 2.1.1), the prob-

lem considered here can be represented by J |prec, rj|ΣjwtjTj + ΣjwtjT j +

ΣjwujU j + ΣjwmjMj. The third field contains the objective, and can be

broken down as follows:

• Tardiness with respect to the soft due date, Tj, is penalised by ΣjwtjTj.

• Tardiness with respect to the hard due date, T j, is penalised by

ΣjwtjT j.

• A weighted unit penalty ΣjwujU j is incurred when hard due dates

are missed. Our implementation uses smaller weights for jobs than

for maintenance, as maintenance must never be scheduled beyond its

hard due date.

• Tardiness Mj with respect to the midpoint between the soft and hard

due date is penalised by ΣjwmjMj. This is only applied to mainte-

nance, i.e. the weights are zero for regular jobs. The purpose of this

is to discourage maintenance from being scheduled close to its hard

due date.

The problem defined above contains as a special case 1|rj|ΣTj. This

represents a problem with just one machine, in which the jobs have no

precedence constraints, the hard due dates are set to infinity, and wtj = 1.

It has been shown that 1|rj|ΣTj is unary NP-hard (Graham et al. (1979)).

Therefore the scheduling problem under consideration in the non-blocking
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part of this thesis is also NP-hard in the strong sense.

3.5 Solution Methods

To solve the considered problem, we have developed both exact and heuris-

tic optimisation algorithms that take into account the particular features of

the considered problem. Two exact algorithms are presented in Chapter 4:

one is a Branch and Bound (B&B) algorithm, the other is a hybridisation

of B&B with an Ant Colony Optimisation (ACO) algorithm. In the hy-

bridisation, ACO provides an initial upper bound to the B&B algorithm,

to reduce the required execution time. A number of heuristic methods to

address the same problem were also developed. These are presented in

Chapter 5. They include four ACO algorithms, and a Simulated Annealing

(SA) algorithm. The ACO algorithms incorporate different types of heuris-

tic information to efficiently search the optimisation space of the problem.

Initial experiments for part of this work were presented in Struijker Boudier

et al. (2015).

Thorough experimental comparisons and analysis on 100 constructed

problem instances are presented in Chapter 6. It will be shown that three

of the ACO algorithms usually find close-to-optimal solutions. Simulated

Annealing generally shows a similar performance to this, but occasionally

returns markedly worse results. The fourth ACO algorithm generally does

not perform well. The pure B&B algorithm also performs worse than the
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three best ACO algorithms. It found the optimal solution for 63 out of 100

test problems, and in many instances required many days of running time.

The hybrid B&B method, which starts with an initial upper bound obtained

by ACO, performed very well. It solved all test instances to optimality, in a

relatively short amount of time. This makes it a suitable choice to address

challenging real-world problems.



Chapter 4

Non-Blocking Job Shop: Exact

Methods

4.1 Introduction

This chapter presents a novel Branch and Bound (B&B) algorithm which

solves to optimality the non-blocking job shop scheduling problem with due

dates and flexible maintenance activities. This novel problem was defined

in Chapter 3. The initial motivation for the development of this B&B

algorithm was to obtain optimal solutions for our test problems. Knowing

the optimal solutions would make it possible to assess whether or not the

heuristic methods under development (see Chapter 5) were showing close-

to-optimal performance. However, it eventually became clear that the B&B

method is a useful algorithm in practice too. Our B&B algorithm employs

a novel variable ranking method to speed up the branching process. The

74



4.2. DISJUNCTIVE GRAPHS 75

algorithm also brings together some existing methods, such as Immediate

Selection and Strong Branching.

The computational experiments in Chapter 6 indicate that the B&B

algorithm can be very efficient, especially when hybridised with one of the

heuristic methods proposed in Chapter 5. Branch and Bound methodolo-

gies have been successfully applied in the past to solve other versions of the

job shop scheduling problem (Brucker et al. (1994b); Artigues and Feillet

(2007); Brucker and Thiele (1996); Mascis and Pacciarelli (2002)).

The B&B algorithm makes use of the widely used disjunctive graph rep-

resentation of the problem. An overview of the disjunctive graph is given

in Section 4.2. The complexity of the solution space under the disjunctive

graph model is discussed in Section 4.2.1. The main structural components

of the B&B algorithm follow in Section 4.3. This chapter then concludes

with a look at the complexity of the Branch and Bound algorithm (Sec-

tion 4.4).

4.2 Disjunctive Graphs

The disjunctive graph formulation of the job shop problem (Roy and Suss-

mann, 1964) is used to model the problem. It was introduced to address the

standard job-shop problem (Roy and Sussmann, 1964) and characterised

as an effective representation that has the ability to efficiently limit the

solution space of scheduling problems. In this representation, a complete
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job shop schedule can be represented by a directed acyclic graph (DAG).

The scheduling decision that has to be performed essentially is to define

an ordering over all operations that have to be processed on each machine.

In other words, precedence relations have to be fixed between all the op-

erations on each machine. In the disjunctive graph formulation this can

be performed by transforming undirected arcs, known as disjunctive arcs,

into directed arcs. A set of such “fixed” disjunctions is called a selection.

A selection defines a feasible scheduling solution if every disjunctive arc is

fixed and the resulting graph is acyclic (Roy and Sussmann, 1964; Brucker

et al., 1994b). Such a selection is called a complete selection. For a com-

plete selection (feasible schedule), the completion time of each job can be

measured as the length of the longest path from the source node to the

final operation of the respective job, plus the processing time of that final

operation.

For example, an incomplete schedule appears in Figure 4.2.1, where

two dummy nodes represent the source U and the sink V, respectively.

Each operation has a single node in the DAG, so that each node requires

a specified machine (A− C) and forms part of a job (1− 3). Directed job

arcs (represented by solid lines) determine the order in which the operations

of a single job are carried out. The job arcs have length identical to the

processing time of their origin node. Since the ordering of operations within

a job is fixed, the job arcs are also fixed. An arc of length zero leads from

the dummy source node to the first node of each job. The final node of
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U

Source

(B, 2)

(A, 1)

(A, 3)

(A, 2)

(B, 1)

(B, 3)

(C, 2) V

Sink

Figure 4.2.1: Directed graph representing a partial schedule for a job

shop with 4 machines (A − C) and 3 jobs (1 − 3). The graph depicts

all job arcs (solid lines). The disjunctive arcs for job B are displayed

as dashed lines. This figure is a modified version of the presented DAG

in Pinedo (2008).

each job has a job arc leading to the sink node. The length of these arcs

is determined by the processing time of their origin node. This forms the

basis of the disjunctive graph.

To complete the disjunctive graph, machine arcs must be added. If

two nodes require the same machine, then one of these nodes must be

served before the other. More generally, for all pairs of nodes which require

the same machine, a strict ordering must be established. This means a

completed graph must include exactly one directed machine arc between

every pair of nodes requiring the same machine. Since any two nodes

can only be ordered in two ways, there are two mutually exclusive directed

machine arcs between the nodes, known as a disjunctive pair of arcs. A valid

schedule must include exactly one arc from each disjunctive pair, in such
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a way that the resulting graph is acyclic. The length of the machine arcs

is also equal to the processing time of their origin node. In the completed

DAG, the starting time of any operation can be calculated as the longest

path from the starting node to the node corresponding to the operation.

Figure 4.2.1 illustrates all the disjunctive arcs for machine B, as dashed

lines. In any complete schedule, one arc will have been chosen from each

pair. Any selection which introduces a cycle to the graph is invalid.

Since exactly one arc must be chosen from each disjunctive pair, the job

shop problem can be formulated as a zero-one integer program. Each pair

of disjunctive arcs has an associated zero-one decision variable, which de-

termines which of the two arcs is selected. The proposed Branch and Bound

algorithm solves this zero-one integer program. The branching scheme of

our Branch and Bound algorithm branches on the disjunctive arcs. One

branch will be the partial solution with the first of the two arcs included,

while the other branch will have the second arc included instead. This is

similar to the arc insertion scheme proposed in Singer and Pinedo (1998).

4.2.1 Disjunctive Graph Complexity

If solutions are represented by binary variables relating to the disjunctive

arcs, the solution space generally increases exponentially with the number

n of operations to be scheduled. The strongest case for this exponential

growth is shown in Table 4.2.1. This table shows the case where there is

just one machine, each job consists of a single operation, and there are no
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Number of operations Number of variables Size of solution space

1 0 20

2 1 21

3 3 23

4 6 26

. . . . . . . . .

n
∑n−1

0=i i = (n−1)n
2

2
(n−1)n

2

Table 4.2.1: The size of the solution space, in terms of the number

of operations n, for a single machine scheduling problem modelled with

the disjunctive graph.

precedence constraints. In this case, each additional operation introduces

one pair of disjunctive arcs with each of the operations already present.

In other words, each kth operation introduces k − 1 additional decision

variables to the problem. In a more typical problem there will be some

precedence constraints. There are usually also some jobs which visit the

same machine more than once. Both of these situations reduce the total

number of decision variables.

A rather uninformative lower bound for the growth rate of the solution

space is zero. This is the case when the order of all jobs and operations is

completely defined by precedence constraints.
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For a somewhat more realistic example, assume there are no precedence

constraints, and that each job visits each machine at most once. Let nk

denote the number of operations to be scheduled on machine Mk, and let

m denote the total number of machines. The solution space S then has size

|S| =
m∏
k=1

2
(nk−1)nk

2 = 2
∑m

k=1
(nk−1)nk

2 (4.2.1)

In a fairly typical problem, at least in the literature, each of the |J | jobs

visits each of the m machines exactly once. There are no precedence con-

straints. This problem has n = |J |×m operations, and each machine must

process n
m

operations. This typical problem has
( n
m
−1)n
2

variables, and the

solution space has size

|S| = 2
∑m

k=1
( n
m−1) n

m
2 = 2

( n
m−1)n

2 (4.2.2)

The discussion above applies equally to the blocking job shop version of

the problem, which will be covered in Part III. In that case, alternative

arcs are used rather than disjunctive arcs.

4.3 A Novel Branch and Bound Algorithm

Branch and Bound is introduced in Section 2.4. One of the main factors

determining the efficiency of Branch and Bound is the ability to quickly

prune branches. We employ several techniques to speed up the pruning

process, including a novel ranking method for the decision variables. The

current section first describes the main structure of the developed Branch
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and Bound algorithm. This is followed by a discussion of the main compo-

nents of the algorithm.

The main structure of the algorithm is presented in pseudo-code in Al-

gorithm 2. An initial upper bound value has to be provided to the algorithm

by the user (Step 1). This can be accomplished by either incorporating a

heuristic method, or by generating and evaluating an initial solution by a

fast policy rule such as first-come-first-served. If no information is given,

the initial upper bound is set to infinity. The initial upper bound acts as

an initial best-known solution. The best-known solution is updated any

time a better solution is encountered. This allows any branch with a score

no better than the best-known solution to be pruned.

The algorithm starts with a single incomplete solution. This is built

by only including the job arcs from the disjunctive graph representation,

since the job arcs are fixed (Step 2). To complete the solution, exactly

one arc must be selected from each pair of disjunctive arcs. For a solution

to be feasible, its corresponding graph must be a directed acyclic graph.

In a partial schedule, the earliest starting time of each operation can be

calculated as the longest path to the associated node. Each time a machine

arc is fixed in the partial solution, the longest path to every node either

remains the same or is increased. Therefore, the schedule score cannot be

decreased by adding arcs, and any partial solution which has a score worse

than or equal to the best known solution can be discarded. The branching

scheme branches on the disjunctive arcs that have not yet been fixed in the
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Algorithm 2 Pseudo code of the developed Branch and Bound algorithm.

1: Input the value of the best-known solution

2: Create the partial solution with job arcs only

3: Perform Immediate Selection

4: Rank and sort the remaining decision variables

5: while at least one partial solution remains do

6: Perform Strong Branching on the single partial solution

7: while at least two partial solutions remain do

8: Select the most complete partial solution. Ties are broken by low-

est score.

9: if the current branching level is a multiple of k then

10: Perform Immediate Selection

11: if solution is now complete or no better than best-so-far then

12: Prune branch and restart while loop

13: end if

14: end if

15: Branch on the first non-fixed variable

16: end while

17: end while

18: Return optimal solution
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partial schedule.

Having created a partial solution, the algorithm applies the Immediate

Selection method (Step 3, described in Section 4.3.1, Carlier and Pinson

(1989)) to reduce the number of remaining unfixed disjunctive arcs. The

remaining variables are then ranked and sorted by a measure of criticality

(Step 4), as described in Section 4.3.3.

The algorithm follows a depth-first Branch and Bound strategy. At each

branching point, the lower scoring branch is investigated first, i.e., out of all

the partial solutions, the most complete one is branched in the next step.

Any ties are broken by the smallest lower bound. Branches are pruned as

soon as they are known to be either infeasible or no better than the best-so-

far solution. Whenever a single partial solution remains, Strong Branching

(Step 6, described in Section 4.3.2, Klabjan et al. (2001)) is applied to

select the next variable to branch on. Strong Branching is designed to

increase the lower bound of the solution score. In the case where at least

two partial solutions remain, the branching variable is the unfixed variable

with the lowest rank (Step 15).

Immediate Selection checks are frequently performed to identify fixable

variables (Step 10). The motivation behind this is to reduce the remaining

solution space. Each time a variable is fixed in the branching process, a

binding constraint might be imposed on some other unfixed variables. In

other words, some of the remaining variables can now only be fixed in one

way. Fixing these variables may then lead to even more variables also being
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restricted to particular values.

Although Immediate Selection can substantially decrease the total num-

ber of branching operations, with the possibility of speeding up the algo-

rithm, it carries a considerable computational cost. As such, a balance

between execution speed and computational cost has to be considered in

this step. After a manual fine-tuning process, we utilise the Immediate Se-

lection check every k = 15 branching levels, i.e., whenever there are k fixed

variables in a partial solution. A solution is complete when all variables

have been fixed on a branch. Complete solutions are compared against the

best-so-far solution. The newly completed solution replaces the best-so-

far solution if it is better, and is discarded otherwise. Finally, the Branch

and Bound algorithm returns the optimal solution found during the search

process (Step 18).

Notice that lower bounds of partial solutions could be improved through

a linear relaxation of the integer program. However, no linear relaxation

is used here, as it was found to be computationally expensive. The main

components of the algorithm are described in the following sections.

4.3.1 Variable Reduction: Immediate Selection

The Immediate Selection process is used to reduce the number of remain-

ing unfixed variables. It fixes variables outside of the branching process.

The Immediate Selection of disjunctive arcs was introduced by Carlier and

Pinson (1989). They identified pairs of nodes which can only be ordered in
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one way in the optimal solution. A number of different implementations of

Immediate Selection have been proposed in the literature (Brucker et al.,

1994a). In our Branch and Bound method, Immediate Selection has been

implemented as described below.

Let I denote the set of disjunctive arcs which have not yet been included

in the partial schedule. For each pair of disjunctive arcs (i, j), (j, i) ∈ I,

both orderings of the nodes i and j are investigated. If the ordering (i, j)

results in a solution no better than the current upper bound, arc (j, i) is

added to the solution, and vice versa. If both arcs cause the partial schedule

score to increase to at least the upper bound, then the partial schedule is

discarded, as it cannot be the basis of an improved upper bound. A similar

procedure was investigated with two variables tested simultaneously. This

turned out to be very computationally expensive, and hence it is not used

further in this work.

4.3.2 Variable Branching: Strong Branching

The order in which the variables are branched on can have a very large im-

pact on the overall computational cost. Strong Branching aims to quickly

increase the score of a partial solution (Klabjan et al. (2001)). It does so by

branching on the variable with the largest score on its lowest scoring branch,

i.e. the variable with the largest guaranteed increase of the lower bound.

While Strong Branching reduces the overall number of branching opera-

tions, it is computationally expensive to evaluate the minimum increase in
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penalty score for each remaining variable at each branching point. In the

proposed algorithm, Strong Branching is performed at the very start of the

algorithm. Whenever the first variable has been permanently fixed, because

one of its two branches is pruned, the algorithm essentially restarts with

one fewer variable. Strong Branching is used whenever such a restart takes

place. At any other time, variables are branched in the order determined

by their rank, as described in the next section.

4.3.3 Branching Order: Variable Ranking

The Branch and Bound algorithm branches on a decision variable xij asso-

ciated with the pair of disjunctive arcs (i, j) , (j, i). The branching order of

the variables can have a substantial impact on the total running time of the

algorithm, because early pruning drastically reduces the remaining unex-

plored solution space. The likelihood of early pruning can be increased by

ordering the decision variables by some measure of criticality (Sadeh and

Fox, 1996; Grimes and Hebrard, 2015). When branching is performed on

the most critical decision variable, one of the branches can often be pruned

quickly. This requires some sensible measure of criticality. To determine

the criticality of each variable, we have developed a novel ranking procedure

based on two factors: The job urgency, and the busyness of the machines.

Our ranking procedure is as follows:
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• Job Ranking: Jobs are ranked based on slack. Slack is the non-

negative difference between the available processing time (the length

of time between the job release date and its soft due date) and the

required processing time (the sum of the processing times of all oper-

ations of the job). Slack is a non-negative quantity that equals zero

whenever the required processing time is greater than the available

time. More formally, let dj denote the soft due date of job j, and treq

the total processing time required by job j. The slack of job j is then

defined as follows:

slackj = max {0, dj − si − treq}

The motivation for ranking by slack is that jobs with less slack are

at greater risk of being scheduled in such a way as to miss their due

dates. Decision variables associated with such jobs should therefore

be considered to be more critical. The job with the least slack is given

a rank of 1, the job with the next least slack is given a rank of 2, and

so on. Jobs with equal slack values share the same rank.

• Machine Ranking: Machines are ranked based on the total demand

placed on them. The motivation behind this is that decision variables

associated with machines with high demand have less flexibility. In

the context of a partial schedule, the ordering of operations on a

busy machine is more likely to have an effect on job completion times

than the ordering of operations on a less busy machine. Demand is
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measured as the total processing time required on a machine. A rank

of value 1 is given to the machine with the highest demand, a rank

of value 2 is given to the machine with the second highest demand,

and so on. Machines with equal demand share the same rank.

Each decision variable is associated with at least two jobs, since it re-

lates to machine arcs which lead from one job to another. For each arc,

the two job ranks are summed to create a single job rank. This means

that if there are Rj unique job ranks {1, . . . , Rj}, then there are 2Rj − 1

possible combined job ranks {2, 3, . . . , 2Rj}. Because we will combine job

and machine ranks, this naturally presents the question of whether there

would be any benefit in scaling the machine ranks, as there are only 10 of

these in our test problems. Machine ranks were multiplied by 3, as this

was found to work well.

It now remains to combine the selected job and machine ranks into a

single rank for each variable. We have tried several ways of combining both

ranks, and found the following to work well empirically:

Minimum primary, maximum secondary: Variables are ranked

by the minimum of their job and machine ranks. Within these ranks, the

variables are then sorted by the maximum of their job and machine ranks.

Let r denote the variable rank, let rm denote the machine rank, Rm the

largest of the machine ranks, rj the job rank, and Rj the largest of the job
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ranks. Then

r = {(min (rm, rj)− 1)×max (Rm, Rj)}+ max (rm, rj) .

Once all the variables are ranked, an ascending order defines the criticality

of the variables, i.e., the smallest rank is considered the most critical. Any

remaining ties are broken based on the duration of the largest processing

time associated with the variable.

4.4 Branch and Bound Complexity

In the worst case, a Branch and Bound algorithm will have to explore the

entire search tree. The worst-case complexity of Branch and Bound algo-

rithms, for trees with a given depth d and branching factor B, is therefore

O(Bd) (Zhang and Korf, 1992). In practice, however, it is usually not nec-

essary to explore the entire tree. The average-case complexities of a number

of Branch and Bound problems are considered by Zhang and Korf (1992).

They show that, under certain conditions, depth-first Branch and Bound

algorithms can have a linear average-case complexity with respect to the

depth d of the branching tree. This is the case when the branching tree

is a uniform random tree, and when at each branching point the expected

number of child-nodes with score equal to the parent node is greater than 1.

However, these conditions do not hold for the branching trees under con-

sideration here. For our scheduling problem it was shown that the depth

of the search tree, i.e. the number of variables, increases polynomially with
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the number of operations in the scheduling problem (Section 4.2.1). There-

fore, even if a Branch and Bound algorithm with linear complexity could

be found for this problem, such an algorithm would still have complexity

O(n2), where n is the number of operations in the problem. The com-

putational experiments on different problem sizes presented in Section 6.6

provide additional insights on how the algorithm performs on both smaller

and larger problems.



Chapter 5

Non-Blocking Job Shop:

Heuristic Methods

5.1 Introduction

The advantage of exact methods, such as the Branch and Bound (B&B)

algorithm presented in Chapter 4, is that they solve combinatorial optimi-

sation problems to optimality. However, the disadvantage of exact methods

is that they often require a lot of time to guarantee that an optimal solution

has been found. In industrial settings this time is often not available. In

practice, it is often more desirable to quickly produce good solutions. This

is also the case at the facility introduced in Chapter 1, where production

schedules are updated several times per day. The planners at this facility

require a scheduling tool which produces a good schedule in a matter of

minutes. This need motivated the development of the heuristic methods

91
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presented in this chapter. These heuristics quickly provide near-optimal

solutions to the non-blocking job shop scheduling problem with due dates

and flexible maintenance activities, as defined in Chapter 3.

The main research outputs of this chapter are the Ant Colony Optimi-

sation (ACO) algorithms presented in Section 5.2. Simulated Annealing

(SA) was also implemented for comparison, in Section 5.3. The computa-

tional experiments in Chapter 6 show that, on average, ACO obtains better

results than SA, although the latter generally requires less running time.

Although the heuristic methods cannot prove optimality, some of the ACO

variants did manage to find optimal solutions in a short running time. It

will also be shown that much can be gained by using the ACO results to

obtain an initial upper bound for the B&B algorithm presented in Chap-

ter 4. Such hybridisation drastically reduces the running time of B&B, and

facilitates the finding of guaranteed optimal solutions in a short running

time.

5.2 Ant Colony Optimisation

Ant Colony Optimisation (ACO) (Dorigo and Stützle, 2004) is based on

the natural route finding behaviour observed in ants. Ants leave a trail of

pheromone as they travel between their nest and a food source, allowing

other ants to follow the same path. However, on the initial discovery of the

food source, a number of ants may have arrived there by different routes,
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some shorter than others. Other ants will follow the various pheromone

trails to the food source and deposit additional pheromone. The shorter

routes will be travelled more frequently, resulting in greater pheromone

deposits compared to the longer routes. This will encourage more ants

to follow the shorter route, until eventually most ants will be using the

shortest route. ACO algorithms mimic this natural phenomenon in order

to find good solutions to difficult problems.

In a scheduling context, an artificial ant can construct a schedule by vis-

iting all the operations to be scheduled exactly once. The order in which

the operations are visited then provides a topological ordering of all op-

erations, which defines a complete schedule. Each job has a number of

operations, which must be processed in a prescribed order. Some jobs also

have precedence constraints. Without additional guidance, ants could eas-

ily construct an infeasible route by visiting the operations of a job in the

wrong order. To guarantee feasibility of all constructed schedules, ants

will not choose to travel to a particular operation, but to a particular job.

Having chosen which job to visit next, the actual operation that is added

to the schedule is then defined to be the next unscheduled operation of

the chosen job. At every step, an ant can travel to every job, including

the one it is already at, except completed jobs, or jobs which have not yet

had their precedence constraints satisfied. A job is marked as completed as

soon as its final operation is added to the schedule. Jobs with precedence

constraints become available for scheduling as soon as all operations for all
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preceding jobs have been scheduled, but can start no earlier than the latest

completion time of all preceding jobs.

The path taken by each ant is governed by probabilistic rules. These

rules take into consideration two aspects: Information from previous sched-

ules, and heuristic information. The information from previous schedules

accounts for how rewarding it has been in the past to travel from the cur-

rent operation to each of the available jobs. The heuristic information is

often some kind of greedy rule, such as the length of time until each job

would be available for further processing. More specifically, the probabili-

ties with which an ant currently at operation i will move to job j depend

on the following:

• The pheromone level τij. Pheromone levels change over time de-

pending on the quality of the routes found by the ants. The pheromone

level τij will be higher if moving from operation Oi to job Jj has re-

sulted in relatively good schedules previously, and lower if such a

move has been associated with less efficient schedules.

• The heuristic information ηij. While pheromone levels consider

information across previous schedules, the heuristic information ac-

counts for the state of the current partial schedule. It is usually some

greedy rule. Four different types of heuristic information have been

considered in this thesis. They generally include a myopic measure,

“distance”, and/or a measure of urgency, “slack” (see Section 5.2.1).
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An ant currently at operation Oi will move to job Jj ∈ Ni with proba-

bility

pij =
τij

αηij
β∑

Jj∈Ni

τijαηijβ
, for Jj ∈ Ni, (5.2.1)

where Ni denotes the set of jobs available to the ant when it is at opera-

tion Oi, and parameters α and β determine how strongly pheromone levels

and heuristic information influence the transition probabilities. Initially all

pheromone levels are equal, so that the heuristic information will have the

greatest influence on guiding the ants in early iterations. Over time, the

pheromone levels start to reflect which moves have previously resulted in

good schedules, and the ants will eventually be guided more strongly by

the pheromone levels as time progresses.

An initial global pheromone level, τ0, must be set. For the travelling

salesman problem (TSP), a number of suggestions have been made for the

value of τ0 (Dorigo and Stützle, 2004). Most of these suggestions are in

part proportional to 1
Cnn , where Cnn is the value of the best solution found

by the nearest neighbour algorithm. As a rank-based pheromone updating

rule is used by the ACO algorithm presented in this chapter, the pheromone

level is initialised to closely follow this recommendation according to the

following formula:

τ0 =
0.5× w × (w − 1)

ρ× Cnn
,

where w is the number of schedules used in the pheromone updating proce-

dure, and ρ is the pheromone evaporation parameter. Attempts were made
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to create good schedules with a fast heuristic, e.g. first-come-first-serve, but

this often resulted in poor quality solutions. After some initial experimen-

tation, Cnn was fixed at the value of 150. This is somewhat larger than the

solution values for typical problems at the facility of interest, and therefore

gives an approximation to the values which could be produced by a fast

heuristic, if one had been available.

At each iteration of the algorithm, n ants visit all operations exactly

once, according to the previously described probabilistic rules. We use n =

100 ants. This is approximately equal to the total number of operations, as

recommended for TSP problems by Dorigo and Stützle (2004). Once the n

schedules have been constructed, the pheromone trails are updated. Firstly,

pheromone evaporation takes place according to the following formula:

τij ← (1− ρ)τij, ∀ (i, j), (5.2.2)

where ρ is the pheromone evaporation rate. The higher this rate, the

quicker the algorithm will converge. Lower values of ρ encourage more

exploration of the solution space. Evaporation affects all paths, irrespective

of whether ants have recently travelled along them. The result of this is

that the paths that are not used much will become less attractive to the

ants over time.

After evaporation, rank-based pheromone updating takes place (Bulln-

heimer et al., 1997). Out of the n schedules, the w − 1 best are selected

and ranked by due date penalty scores. The best schedule, i.e. that with
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the lowest total tardiness penalty (as defined in Section 3.2), is assigned

the lowest rank r = 1. The schedule with the largest penalty is given the

highest rank, r = w − 1. Let (i, j) denote the path from operation Oi to

job Jj. For each of the w − 1 iteration-best solutions, if (i, j) is part of

that solution, the corresponding pheromone level τij receives a pheromone

deposit. The amount of pheromone deposited depends both on the total

tardiness penalty of each schedule, P (r), and its rank r. More specifically,

τij ← τij +
w−1∑
r=1

(w − r) 1

P (r)
∀ (i, j) ∈ schedule r. (5.2.3)

An additional pheromone deposit is made on the paths of the best-so-far

schedule. If this schedule has total tardiness penalty P (bs), the pheromone

levels are updated as follows:

τij ← τij + w
1

P (bs)
∀ (i, j) ∈ best-so-far schedule. (5.2.4)

The previously mentioned operations are repeated until a specified stopping

criterion is reached, e.g. a fixed number of iterations. At that point, the

best-so-far schedule is returned as the preferred solution. The structure of

the ACO algorithm described in this section is presented in Algorithm 3.

Note that it was also tested whether imposing limits on the pheromone

levels was beneficial (Stützle and Hoos, 1997). Imposing limits promotes

exploration, with slower convergence as a tradeoff. No evidence was found

that this was beneficial for the considered problem.
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Algorithm 3 Pseudo code of the developed Ant Colony Optimisation al-

gorithm.

1: Initialise the pheromone matrix

2: while stopping criterion not met do

3: Construct n schedules

4: Rank schedules by lowest score

5: if schedule with rank 1 is better than best-so-far then

6: Schedule with rank 1 replaces the best-so-far schedule

7: end if

8: Global pheromone evaporation

9: Rank-based pheromone deposit on arcs of w-1 best schedules

10: Elitist pheromone deposit on arcs of best-so-far schedule

11: end while

12: Return the best-so-far solution.
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5.2.1 Heuristic Information

Four different heuristic information rules have been considered in this study.

These are mainly combinations of a myopic measure, “distance”, and a

measure of urgency, “slack”.

The distance from operation Oi to job Jj, distij, can be defined as the

length of time from the start of operation Oi, until the time at which the

next operation of job Jj could be started, given the restrictions imposed

by the current partial schedule. If a job’s precedence constraints have been

fulfilled, an operation can be started when all of the following three condi-

tions have been met: The preceding operation (if any) has been completed,

the required machine is available, and the job’s release date has been met.

Therefore we define distij to be the non-negative difference between the

latest of these three times, and the starting time of the operation most

recently added to the partial schedule. More formally, let si denote the

starting time of operation Oi, cj the completion time of the most recently

scheduled operation of job Jj (if any), mj the time at which the next ma-

chine required by job Jj finishes its most recently scheduled operation, and

rj the release date of job Jj. The distance from operation Oi to job Jj,

distij, is then defined as:

distij = max {0,max {cj,mj, rj} − si}

As each job is scored on its completion time, the heuristic information

should take into account how likely it is that each job will meet its soft
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due date. Jobs with a smaller ratio of available time to required processing

time are at greater risk of missing their soft due date. Let slack be defined

as the difference between the available remaining time to complete a job by

its soft due date, and the remaining processing time required to process all

unstarted operations of the job. Slack cannot be negative. More formally,

given that dj denotes the soft due date of job Jj, and treq the total processing

time required for all remaining unscheduled operations of job j, the current

slack of job Jj can be defined as follows:

slackj = max {0, dj − si − treq} .

The following types of heuristic information ηij have been considered:

• Myopic (ACOm): The myopic heuristic is based solely on the dis-

tance distij. It increases as the distance decreases, favouring jobs

which are available sooner. Since the distance can equal zero, this is

expressed as follows:

ηij = exp (−distij) . (5.2.5)

• Due date (ACOd): The due date heuristic is based on the slack

of each job j. It increases as slack decreases, favouring jobs with less

slack. Since slack can equal zero, this is calculated as follows:

ηij = exp (−slackj) . (5.2.6)

• Myopic and due date (ACOmd): The two previous heuristics

are combined here. The contribution of slack is weighted by the
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contribution of the distance. If slack is not weighted by the distance,

the algorithm has the undesirable property of jumping to jobs which

are not available for a long time, if their slack happens to be small.

The heuristic information is then as follows:

ηij = exp (−distij) {1 + exp (−slackj)} . (5.2.7)

• Myopic and due dates rebalanced (ACOmdb): This is a refine-

ment of the previous heuristic. The additional parameter, γ ∈ [0, 1],

adjusts the weight of the contributions of both parts of the heuristic:

ηij = exp (−distij) {(1− γ) + γ exp (−slackj)} . (5.2.8)

5.2.2 ACO Schedule Construction: An Example

This section contains a visualisation of the schedule construction process

of the ACO algorithms. For the purpose of this example, at each step the

next job scheduled will be the job which has the highest probability of being

scheduled. This probability will be assumed to depend both on distance

and slack.

Three unscheduled jobs are displayed in Figure 5.2.1 (top). Each job

consists of three operations. All jobs have the same due date at time

t = 18, illustrated by the dashed line. The earliest availability of each job

is indicated by the black triangles. Jobs 1 and 2 (J1 and J2) can start at

t = 0, while J3 is available from t = 5. The slack of each job is the distance

from the end of its final operation to the due date (dashed line). Initially,
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Figure 5.2.1: The unscheduled jobs (top). J2 has the highest proba-

bility of being scheduled (tied for smallest distance wtih J1, but smaller

slack than J1), and is scheduled first (bottom).
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J1 and J2 both have the smallest distance. However, J2 has less slack, and

is therefore more likely to be selected first. Thus, the first operation of J2

is added to the schedule first (Figure 5.2.1, bottom).

The next operation of J2 can now only start once its first operation

has completed. However, since J1 requires the same machine that J2 is

now being processed on, it will also have to wait at least until the first

operation of J2 has completed. After scheduling this first operation, J1

and J2 are again tied for smallest distance, with J2 still having the least

slack. This makes J2 the most likely job to be scheduled next, as happens

in Figure 5.2.2 (top).

This process continues in Figure 5.2.3, Figure 5.2.4 and Figure 5.2.5.

At each step, the distance and slack are combined according to the selected

heuristic information. At later iterations, pheromone information will also

start to play a role. This means that as the algorithm progresses, informa-

tion from past schedules will become increasingly influential in the schedule

construction process.
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Figure 5.2.2: J2 has its second operation scheduled (top). J1 has its

first operation scheduled (bottom).
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Figure 5.2.3: J3 has its first (top) and second (bottom) operations

scheduled.
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Figure 5.2.4: J1 has its second (top) and third (bottom) operations

scheduled.
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Figure 5.2.5: The schedule is completed by the additon of the third

operations of J1 (top) and J3 (bottom).
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5.3 Simulated Annealing

The final search algorithm that we have adapted for the considered job shop

scheduling problem is the well-known and widely used Simulated Annealing

algorithm. An overview of Simulated Annealing is provided in Section 2.3.3.

For the purpose of Simulated Annealing, schedules in our job shop prob-

lem are represented as a topological ordering of the job operations. In this

topological ordering, the operations are only identified by the identity of

the associated job. The identity of specific operations can then be deduced

from the topological ordering. For example, {J1, J2, J1, J2, . . .} indicates

that the first operation of job J1 goes before the first operation of J2,

which goes before the second operation of J1, which goes before the second

operation of J2, etc (Bierwirth, 1995). The problem of interest is then to

find a topological ordering which minimises the given objective function.

Two neighbourhoods have been considered to search the space defined

by the topological ordering of the nodes, namely 1-swap and 2-swap op-

erators. To update the incumbent solution, both of the search operations

are applied alternately. The 1-swap neighbourhood consists of all solutions

that can be created by randomly selecting a Job ID from the solution vec-

tor, and reinserting it at a random different location in the solution vector.

The 2-swap neighbourhood consists of all solutions that can be created

by swapping two different and randomly selected Job IDs in the solution

vector. One advantage of constructive heuristics, such as ACO, is that
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by construction the candidate solutions can be guaranteed to be feasible.

However, the modifications carried out by Simulated Annealing provide no

such guarantee. Some of the candidate solutions created by 1-swap and

2-swap might be infeasible. Whenever a candidate solution is found to be

infeasible, a new candidate is proposed from the same neighbourhood. This

is applied repeatedly until a feasible candidate solution is produced.

Given that the number of job operations is denoted by n, and the change

in objective function between the current solution and the proposed solution

by ∆E, the structure of the developed Simulated Annealing algorithm is

represented by Algorithm 4. This closely follows the proposed approach

in Dréo et al. (2006).

The temperature is reduced according to a simple geometric rule Tk+1 =

αTk, for some 0 < α < 1, when one of the cooling criteria is met. Hence

the temperature decreases quicker for smaller values of α. We use the

cooling criteria proposed in Dréo et al. (2006) to reduce the temperature

T . The temperature will be reduced every 12N accepted moves or when

100N moves have been attempted, where N denotes the total number of

operations over all jobs N =
∑n

i=1 oi. Note that the introduced parameters

have a substantial impact on the efficiency and asymptotic convergence of

simulated annealing (Eglese, 1990). Thus they have to be carefully chosen.
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Algorithm 4 Pseudo code of the developed Simulated Annealing algo-

rithm.

1: Set the initial temperature, T0.

2: Create an initial solution based on first-come-first-serve.

3: while termination criteria not met do

4: while cooling criteria not met do

5: if odd iteration then

6: Select a candidate solution from 1-swap

7: else

8: Select a candidate solution from 2-swap

9: end if

10: At temperature T , accept the candidate solution with probability

min
{

1, exp(−∆E
T

)
}

11: end while

12: Reduce the temperature: Tnew = α× Told.

13: end while

14: Return the best known solution.



Chapter 6

Non-Blocking Job Shop:

Hybridisation and

Computational Experiments

This chapter presents computational experiments, comparisons and anal-

ysis conducted to evaluate the performance of the proposed algorithms

for the job shop with flexible maintenance. These algorithms were intro-

duced in Chapter 4 and Chapter 5, and they solve the problem described

in Chapter 3. The algorithms have been tested across a wide set of prob-

lem instances. These test problems have been constructed in such a way

as to capture the main characteristics of the industrial facility described

in Chapter 1.

The Branch and Bound algorithm was initially developed to obtain

111
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optimal solutions for our test problems. This would make it possible to

assess the performance of the heuristic methods. However, it eventually

became clear that it would be beneficial to hybridise the exact and heuristic

methods, by seeding the B&B algorithm with upper bounds obtained by

one of the heuristic methods. The experimental results show that the ACO-

B&B hybrid algorithm finds optimal solutions within a practical timescale.

The problem instances used for the evaluation of the developed algo-

rithms are introduced in Section 6.1. The experimental design of the com-

putational experiments is discussed in Section 6.2. Parameter tuning results

appear in Section 6.3. The proposed exact Branch and Bound algorithm,

without any initial upper bound information, is analysed in Section 6.4.

This is compared against a hybrid approach, in which the proposed B&B

algorithm is seeded with an initial upper bound by a heuristic search algo-

rithm. Four variants of the proposed Ant Colony Optimisation algorithm,

as well as the adapted Simulated Annealing algorithm, are analysed in Sec-

tion 6.5. To conclude the experiments, the scalability of the best algorithms

across different problem sizes is investigated in Section 6.6.

6.1 Problem Instances

To the best of our knowledge, there are no established test problems for a

job shop with flexible maintenance activities and both soft and hard due

dates. This section provides an overview of the test problems we have
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developed. A fuller description of these appears in Appendix A. The

test problems are available at http://dx.doi.org/10.17635/lancaster/

researchdata/160.

Test problems should capture the typical job structure of jobs at the

facility described in Chapter 1. Jobs typically start and end at one of the

two combined entry/exit points, and must use the transporter to travel

between workstations. Every second operation of a job is therefore usually

a transporter operation. In order to assess the performance of the exact

and heuristic optimisation algorithms developed in this study, 100 such test

problems were randomly constructed, subject to a number of constraints

designed to include some typical features of the jobs processed at the facil-

ity.

The test instances were designed for a facility with 9 workstations (ma-

chine IDs 1-9) and one transporter (machine ID 0). Workstations 1 and 9

both serve as entry and exit points. Each test problem consists of 20 regular

production jobs, some with merges or splits. There are also 10 maintenance

activities, one for each workstation and the transporter. The total number

of operations in each test instance is 102. This is in the order of magnitude

of the sets of work being scheduled at the facility. Time is measured in

hours, assuming a 40 hour working week. Some jobs are released at time

0, and some jobs are released at time 40.

http://dx.doi.org/10.17635/lancaster/researchdata/160
http://dx.doi.org/10.17635/lancaster/researchdata/160
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6.2 Experimental Design

Each heuristic search algorithm was given 30 independent execution runs,

on each of the 100 test instances. Each execution run had a pre-defined

calculation budget of 150,000 schedule evaluations. Some initial experimen-

tation showed that this budget would be sufficient to obtain good quality

solutions within an acceptable running time. Once this budget is spent, the

best-so-far solution is returned as the final solution. The objective value

of this best solution is used to compare the performance of the algorithms.

The B&B algorithms are deterministic, and as such were executed only

once on each test problem, with no limit placed on the number of schedule

evaluations.

To highlight the general performance of the developed algorithms, the

experimental results are aggregated across all problem instances. Statistics

on their general performance are presented, in terms of objective values

of the best performing solutions, execution time required to reach the re-

ported result, statistics on the tardiness characteristics of the scheduled

jobs, and statistical measures that highlight various interesting aspects of

the behaviour of the proposed algorithms.

All algorithms considered in this chapter were implemented in C++

and compiled with the GNU g++ compiler under GNU/Linux running on

a cluster system equipped with Intel Xeon E5-2650v2 CPU of 2.6 GHz and

4 GB of RAM per processor. All experimental results reported in this study



6.3. PARAMETER TUNING 115

have been obtained under the same computing conditions.

6.3 Parameter Tuning

To facilitate fair comparisons across all search methodologies, and to avoid

manually tuning the hyper-parameters of all algorithms, we employ a well

known state-of-the-art off-line automatic hyper-parameter configuration

framework, the Sequential Model-based Algorithm Configuration (SMAC,

Hutter et al. (2011)). SMAC uses models based on collections of regression

trees, known as random forests, to select and evaluate promising parame-

ter configurations. Note that generally, the fine-tuned algorithms exhibit

considerable performance gains compared to their original (un-configured)

versions. In general, heuristic search algorithms with hyper-parameters

often exhibit parameter-dependent performance gains. Inappropriate or

thoughtless parameter configurations might lead to substantial deteriora-

tion of their performance. The first 10 problem instances were used to

fine-tune the parameters for all heuristic search methodologies. As each

test instance has a different optimal value, SMAC was used to find param-

eter values that minimise the average amount by which the optimal score

was exceeded.

The five ACO algorithm parameters listed in Table 6.3.1 influence the

performance of the algorithm. Hyperparameter optimisation was carried

out by SMAC to obtain the recommended values in the table. These are also
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Parameter Recommended value Range Parameter description

α 0.8 R≥0 Pheromone parameter

β 1.1 R≥0 Heuristic parameter

ρ 0.035 [0, 1] Evaporation parameter

w 4 Z>0 Rank parameter

γ 0.87 [0, 1] Heuristic weight

Table 6.3.1: Recommended values for the ACO parameters.

Figure 6.3.1: Estimated performance of the ACO algorithm, in terms

of average exceedance of the optimal solution, across values of α (a)

and β (b). Plot produced by FANOVA (Hutter et al., 2014).
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the values used for our computational experiments. An illustration of the

estimated interaction between parameters α and β is shown in Figure 6.3.1.

Regarding Simulated Annealing, SMAC was used to fine-tune the initial

temperature, T0, and the cooling parameter α. Generally good performance

was observed for values of the cooling parameter α in the range (0.15, 0.65),

and the initial temperature in the range (1, 10). For performance testing

on all 100 test instances, the value α = 0.49 was used, with an initial

temperature of T0 = 5.

6.4 Exact Methodologies: Branch & Bound

and Hybrid

Two Branch and Bound algorithms have been developed to optimally solve

the considered problem instances. These algorithms, BnB and BnB-UB,

are described in Chapter 4. The main difference between them lies in the

upper bound information that is provided to the algorithm. The first algo-

rithm, BnB, assumes that no initial upper bound information is available.

Therefore, the upper bound is set to infinity. The second approach, BnB-

UB, is a hybrid between a heuristic and the BnB algorithm. In this hybrid

approach, the considered heuristic is executed initially to acquire a good

upper bound estimation. The BnB-UB algorithm then proceeds with the

same algorithmic structure as the BnB algorithm. The heuristic method

used here to find an initial good upper bound is the Ant Colony Optimisa-
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tion algorithm with the balanced myopic and due date heuristic information

(ACOmdb, Section 5.2). ACOmdb was selected as it is the best perform-

ing of the ACO algorithms (Section 6.5). Any other good heuristic method

can be incorporated in such a hybrid method. Notice that this is common

practice in order to speed-up and improve the convergence performance of

Branch and Bound algorithms (Jourdan et al., 2009). The allowed exe-

cution time of both Branch and Bound algorithms has been restricted to

a hard time limit of twenty days, due to resource limitations. If an algo-

rithm exceeds this time limit it is stopped and recorded as an unsuccessful

execution.

Descriptive statistics on the performance of both Branch and Bound al-

gorithms across all problem instances considered in this work are presented

in Table 6.4.1. The mean (µ), median (m), and standard deviation (σ)

of the considered performance measures are provided, to capture the main

characteristics of the performance value distributions. The best performing

cases are highlighted with boldface font.

Table 6.4.1 reports for each algorithm the average (µs), median (ms) and

standard deviation (σs) values for the objective value of the best solution

found by the algorithm. BnB-UB shows the best performance, with an

average objective value of 32.03, compared to an average of 1013 for BnB.

The high average score for BnB indicates that, on average, the solutions it

finds within the time limit are of poor quality.

The average, median and standard deviation values for the execution
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BnB BnB-UB

Mean objective value, µs 10.00E+13 32.03

Median objective value, ms 36.72 17.87

St.dev. objective value, σs 30.15E+13 34.51

Mean execution time (seconds), µt 262947.322 3082.692

Median execution time (seconds), mt 56167.377 10.148

St.dev. execution time (seconds), σt 430822.598 10319.805

On time (%), µo 82.17 87.70

After soft due date (%), µs 17.07 12.30

After hard due date (%), µh 0.77 0.00

Average distance, µdopt 10.00E+13 0.00

Percentage of success, Success 63 100

Table 6.4.1: Experimental results on the performance of the developed

exact methodologies with (BnB-UB) and without (BnB) upper bound

information, across all considered problem instances.
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time (µt/mt/σt) required to find that best solution, in terms of CPU Wall-

clock time measured in seconds, are also displayed in Table 6.4.1. Note

that this is the total time until the best solution was first encountered,

and not the total algorithm running time until completion or time-out.

BnB-UB also performs best under this measure, as it required an average

of 3083 seconds to find the best solution, compared to 262947 seconds for

BnB. This shows that without a good initial upper bound, the algorithm

running time is much longer.

In addition, to highlight the tardiness of the scheduled jobs, the average

percentage of jobs that finish on time (µo), finish between soft and hard due

dates (µs), and after the hard due dates (µh), are also shown in Table 6.4.1.

BnB-UB again shows the best performance, with 87.7% of jobs starting on

time, compared to 82.2% of jobs starting on time for BnB. This shows

that BnB-UB is more successful at completing jobs by their soft due dates,

compared to BnB.

Finally, Table 6.4.1 reports success percentages of the algorithms across

all problem instances (Success), and the average distance (µdopt), in terms

of the difference between the best solution found by the corresponding

algorithm and the optimal solution of the problem at hand. BnB-UB finds

the optimal solution in all cases, while BnB only achieves this 63% of the

time.

It can be observed that the hybrid algorithm, BnB-UB, exhibits supe-

rior performance gains against BnB in terms of all performance measures
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reported in the tables. It is worth noting that the incorporated heuristic,

ACOmdb, provides very good upper bounds for the branch and bound al-

gorithm, since it is able to find the global optimum solution in 87% of the

times. In the remaining cases, it is close to the global optimum solution

in terms of objective value. The provided upper bound values have av-

erage distance from the optimum µdUB
= 0.415, median value mdUB

= 0,

and standard deviation σdUB
= 1.666, where dUB is defined as the distance

between the upper bound (UB) found by the heuristic and the global op-

timum (fopt), dUB = UB − fopt.

BnB-UB exhibits the best average (µs) and median (ms) performance in

terms of solution quality across all problem instances, whilst BnB’s perfor-

mance deviates greatly from the global optimum solutions (µdopt =10.00E+13).

This high mean value is due to hard due date violations, which are penalised

very severely (Section 3.3).

To assess whether quality performance differences between the two al-

gorithms across all problem instances are statistically significant, we em-

ploy an exact Wilcoxon-Pratt signed-rank statistical test (Pratt’s method

was used to handle ties and the zero cases) (Hollander et al., 2013). A

non-parametric statistical significance test is employed since the considered

samples do not follow a normal distribution, as verified by the Shapiro-Wilk

normality test (Royston, 1982). The null hypothesis of the Wilcoxon-Pratt

signed rank test states that the compared samples are independent samples

from identical distributions with equal median values, against the alterna-
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tive hypothesis which states that one of the samples produces either lower,

or higher median performance values. Here, we apply a 5% significance

level, α = 0.05. The statistical test strongly suggests that there are signifi-

cant differences in performance between the two algorithms (Z = −6.0318,

p-value =1.455E-11).

Regarding the execution time of the algorithms, BnB-UB is able to

locate the global optimum solutions within less than an hour, on average

(µt = 3082.692 seconds), and in 50% of the time in about 10 seconds or

less, as reported in Table 6.4.1. On the other hand, BnB takes on average 3

days to successfully locate the global optimum solution for a given problem

instance, which is not adequate for the considered industrial facility.

The optimal solutions do not schedule jobs after the hard due dates,

whilst 88% of the jobs are scheduled on time, and about 12% of the jobs

are scheduled between the soft and the hard due dates. Notice that the

schedules found by BnB for the non-optimal cases contain jobs whose com-

pletion time exceeds the hard due date limit.

Overall, the hybrid BnB-UB algorithm successfully solves all problem

instances to optimality. The incorporated search methodology, ACOmdb,

greatly enhances the proposed Branch and Bound method by providing

upper bound values which are either optimal or close-to-optimal. This

hybridisation achieves a great speed-up of BnB-UB’s execution time. The

combination of fast running time and good solution quality make this a

viable method for application in demanding industrial settings.
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6.5 Search methodologies: ACO & SA

This section analyses the performance of the proposed heuristic search

methodologies, in terms of solution quality and speed. The four Ant Colony

Optimisation (ACO) variants and the adapted Simulated Annealing (SA)

algorithm are compared against each other. These methods are described

in Section 5.2 and Section 5.3. The considered ACO variants differ mainly

in the type of heuristic information that they employ in their pheromone

updating rules. The following four ACO variants are compared:

• ACOm: ACO algorithm with myopic heuristic information, as de-

scribed in Equation 5.2.5.

• ACOd: ACO algorithm with due date heuristic information, as de-

scribed in Equation 5.2.6.

• ACOmd: ACO algorithm with a combination of the myopic and due

date heuristics, as described in Equation 5.2.7.

• ACOmdb: ACO algorithm with a rebalanced combination of the

myopic and due date heuristic information, as described in Equa-

tion 5.2.8.

The performance in terms of solution quality and its distance from the

global optimum solution is investigated first. Note that all problem in-

stances have been solved to optimality by BnB-UB (Section 6.4). Therefore

the optimal solutions can be used to measure the quality of the solutions
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located by the heuristic algorithms. The performance of the considered

search algorithms is summarised by descriptive statistics of the objective

values, as well as graphical illustrations of their performance.

Table 6.5.1 exhibits descriptive statistics on the overall performance of

the algorithms over all problem instances, in terms of the objective value

of the best solution attained by the corresponding algorithm. Specifically,

for each algorithm and each problem instance, the objective value of the

best solution found by the algorithm is measured. The results are then

aggregated over all problem instances. The mean (µs), median (ms), and

standard deviation (σs) of the final objective values are reported. Two

distance measures from the global optimum solution, davg and dbest, are

also reported.

Let fi(x
?) denote the objective value of the global optimum solution

x?, for the i-th problem instance. Let µis be the average objective value

of the best solutions obtained by an algorithm over its execution runs, for

the i-th problem instance. Then, for a given problem instance i out of N ,

the overall average distance of the objective value from the global optimum

solution is given by diavg = fi(x
?) − µis. The quantity davg then denotes

the overall average distance of the objective value from the global optimum

solution over all problem instances, so that davg = 1
N

∑N
i=1 d

i
avg.

Similarly, dbest denotes the overall average distance between the best

solution found by an algorithm and the objective value of the global opti-

mum solution. Hence, dbest = 1
N

∑N
i=1 d

i
best = 1

N

∑N
i=1 fi(x

?)− bis, where bis
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Algorithm µs ms σs davg dbest

ACOd 50.46E+8 404.15 90.05E+8 50.46E+8 13.00E+8

ACOm 35.37 23.62 35.78 3.34 0.99

ACOmd 34.33 21.64 35.32 2.30 0.50

ACOmdb 33.99 20.83 35.69 1.96 0.39

SA 10.66E+7 24.00 10.27E+8 10.66E+8 1.34

Table 6.5.1: Descriptive statistics on the performance of the developed

search algorithms across all considered problem instances, in terms of

mean (µs), median (ms) and standard deviation (σs) of the objective

values. davg denotes the average difference between the average solution

found by the algorithm and the global optimum score. dbest denotes the

average distance between the best solution found by the algorithm and

the global optimum.

denotes the best solution obtained by an algorithm over all its execution

runs for the i-th problem instance.

Intuitively, davg captures the average robustness of the algorithm on

producing solutions close to the global optimum, while dbest denotes the

ability of the algorithm to produce a very good solution. Lower values of

davg and dbest indicate better performance. The best result obtained across

all algorithms are highlighted in boldface font.

Figure 6.5.1 illustrates the distributions of the solution quality found by
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Figure 6.5.1: Box-plots of the objective values for all the heuristic

algorithms over all the problem instances and runs (y-axis in log10 scale)

the considered algorithms. Note that in all figures that illustrate boxplots,

we highlight the mean value of the observed measure with a red diamond

point.

Both Table 6.5.1 and Figure 6.5.1 suggest that three out of four ACO

variants (ACOm, ACOmd, and ACOmdb) seem to be the most promising

search algorithms. ACOmdb shows the best performance across all consid-

ered measures. ACOmdb is able to locate solutions very close to the global

optimum. Its average score is only 1.96 points above optimal. ACOm and

ACOmd perform similarly and closely follow ACOmdb. However, ACOd
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generally does not create good schedules. It is the worst performing algo-

rithm in this chapter. Although SA performs similar to the ACO variants,

in some cases it is not able to find a good quality solution. This has a

major impact on its overall performance.

The davg and dbest metrics show that ACOmdb is the most promising

algorithm. It converges on solutions which are, on average, very close to

optimal. ACOm and ACOmd behave similarly. The schedules produced

by SA are, on average, far away from the optimal solution. This is mostly

due to a few instances in which SA performs very poorly. However, the

best solution produced by SA for each problem is, on average, not much

worse than the best solutions produced by ACOmdb, ACOmd and ACOm.

Finally, ACOd generally creates poor quality solutions. It has the worst

performance in this chapter. The distributions of davg and dbest, for each al-

gorithm and across all problem instances, are demonstrated in Figure 6.5.2.

The outliers observed in the boxplot for SA explain its poor performance

in terms of mean solution score. The distribution shapes of these boxplots

further indicate that ACOmdb has the best performance in this chapter.

The tardiness of jobs is considered next, in terms of the average per-

centages of the jobs scheduled on time (µto), between the soft and the hard

due dates (µts), and after the hard due dates (µth). The relevant results are

summarised in Table 6.5.2 and Figure 6.5.3. ACOd can be seen to be the

worst performing algorithm under this tardiness measure. ACOmdb shows

the best performance, closely followed by ACOmd, ACOm, and SA. Note
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Figure 6.5.2: Box-plots of the davg and dbest measure values for all

the heuristic algorithms over all the problem instances and runs (y-axis

in log10 scale)
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Figure 6.5.3: The distributions of the number of the jobs scheduled

on time, between the soft and the hard due dates and after the hard

due dates, across all heuristics.
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Algorithm µto µts µth

ACOd 39.85 58.47 1.68

ACOm 86.42 13.58 0.00

ACOmd 86.71 13.29 0.00

ACOmdb 86.88 13.12 0.00

SA 86.61 13.35 0.04

Table 6.5.2: Average percentages of the jobs scheduled on time (µto),

between the soft and the hard due dates (µts), and after the hard due

dates (µth).

that for SA, a small proportion of jobs (µth = 0.04%) exceed their hard due

dates. This drastically reduces the performance of the SA algorithm.

Furthermore, to assess whether there exist statistically significant dif-

ferences in the observed performance between at least two algorithms over

all considered problem instances, the Friedman rank sum test (Hollander

et al., 2013) was employed on the objective values obtained by the algo-

rithms. The Friedman rank sum test strongly suggests that there exist

significant differences in performance between the considered algorithms

(p-value ≤ 0.00001, χ2 = 7544.452). In order to identify these differences,

a pairwise post-hoc analysis was performed. For the post-hoc analysis,

a pairwise Wilcoxon-signed rank test was employed on the objective value

samples. The obtained p-values (p) are reported in Table 6.5.3. In addition,
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ACOd ACOm ACOmd ACOmdb

p pbonf p pbonf p pbonf p pbonf

ACOm 0.0000 0.0000 – – – – – –

ACOmd 0.0000 0.0000 0.1480 1.0000 – – – –

ACOmdb 0.0000 0.0000 0.0149 0.1495 0.3062 1.0000 – –

SA 0.0000 0.0000 0.2239 1.0000 0.0101 0.1010 0.0004 0.0041

Table 6.5.3: Post-hoc statistical analysis for all pairwise combinations

of the considered search algorithms across all the problem instances

and executions (p: p-value from Wilcoxon-singed rank test, and pbonf :

p-value from the Bonferroni correction method)

to alleviate the problem of having Type I errors in multiple comparisons

with a higher probability, the Bonferroni correction method was applied.

The adjusted p-values, pbonf , are also reported in Table 6.5.3. A 5% signif-

icance level (α = 0.05) is used for all statistical tests. It can be observed

that the performance differences between ACOmdb and the majority of the

compared algorithms are significant. All algorithms differ significantly with

ACOd. There is no significant evidence that ACOmdb performs differently

than ACOmd, or that ACOmd performs differently than ACOm.

The overall success percentage for each heuristic is shown in Table 6.5.4.

This is the percentage of times that the optimal solution was found across

all test runs for a given problem instance. The mean (µSuc.), median (mSuc.),

and standard deviation (σSuc.) of these percentages are reported. It can be
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Algorithm µSuc. mSuc. σSuc.

ACOd 0.00 0.00 0.00

ACOm 36.53 20.00 37.78

ACOmd 45.93 43.33 38.35

ACOmdb 57.67 71.67 38.83

SA 49.60 48.33 37.34

Table 6.5.4: The mean (µSuc.), median (mSuc.), and standard devia-

tion (σSuc.) of the success percentages, for all the heuristic algorithms,

over all problem instances.
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Figure 6.5.4: Box-plots of the distribution of the success percentages

for all the heuristic algorithms over all the problem instances.
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seen that ACOmdb performs the strongest, with a median success rate of

72%. This table also shows the very poor performance of ACOd, which

never found any of the optimal solutions. Boxplots of the success rates ap-

pear in Figure 6.5.4. These suggest that SA and ACOmd perform similarly

under this measure, with ACOm performing a little worse than both.

Finally, Figure 6.5.5 and Table 6.5.5 show the overall execution times

required by the algorithms to reach the reported quality of solutions, across

all problem instances. The average (µt), median (mt), and standard de-

viation (σt) of the algorithms’ execution times are reported, measured in

seconds. Although the ACO variants are fast enough for producing high

quality solutions in the industrial environment of interest, the execution

time of SA is substantially smaller. This is not unexpected, since SA is a

single point search algorithm, while ACO utilises a population of solutions.

It is worth mentioning that SA might be a suitable heuristic for quickly

seeding the B&B approaches developed in this work.

The experimental results reported in this section show that ACOmdb

generally has the best performance of the tested heuristic methods. This is

shown by several measures, including the average distance of its solutions

from the global optimum, and the percentage of jobs scheduled before their

respective soft due dates. Out of the ACO algorithms presented, ACOmdb

also required the least time to find its solutions, on average. Simulated

Annealing required even less computing time, but did not always perform

quite as well in terms of the quality of the solutions found. Based on its



134 CHAPTER 6. COMPUTATIONAL EXPERIMENTS

Algorithm µt mt σt

ACOd 51.64 46.89 22.37

ACOm 33.89 25.24 27.57

ACOmd 51.94 35.55 50.48

ACOmdb 29.36 19.45 30.53

SA 2.20 1.76 1.39

Table 6.5.5: Execution times in seconds required by the developed

algorithms to reach the reported solution quality across all problem

instances.
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Figure 6.5.5: Overall execution times: box-plots of the execution time

(in seconds) required by each algorithm to reach the reported solution

quality over all the problem instances
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superior solution quality and user friendly running time, ACOmdb is the

preferred algorithm in the specific industrial context of this thesis.

6.6 Scalability Analysis

The test problems used for the computational experiments contained 102

operations. This is typical for the workload at the facility for which these

algorithms were developed. For applications in other areas the workload

and number of machines could be larger or smaller. The performance of

the best algorithms was therefore also investigated with larger and smaller

test problems. The test instances used in this scaling study contained the

following number of operations and machines (machine count in brackets):

64 (6), 82 (8), 102 (10), 122 (12), 140 (14), 160 (16), 178 (18), and 204

(20). While there are countless different options for scaling the number of

operations and machines, here it was decided to scale the number of ma-

chines roughly proportional to the number of operations. For each problem

size, 100 different test instances were created. The other properties of the

test instances were the same as before, so that jobs can only enter/exit

the system at two locations, and must travel on the transporter between

locations. Scaling was investigated for the two best performing algorithms,

ACOmdb and B&B-UB.
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6.6.1 Scaling: ACO

The best performing ACO algorithm, ACOmdb, solved each of the test

problems 30 times. All parameters were fixed at the same values as during

the computational experiments: α = 0.8, β = 1.1, ρ = 0.035, w = 4, and

γ = 0.87. The number of ants was set to 100. The stopping criterion was to

terminate after 150,000 schedule evaluations. Figure 6.6.1 shows boxplots

of the observed running times, both on the original scale (upper plot) and

on a log scale (lower plot). The x-axis is to scale. It can be seen that the

running times increase non-linearly with the number of operations.

6.6.2 Scaling: Branch and Bound

The best performing B&B Algorithm, BnB-UB, solved each of the 800

test problems (100 test instances for each of the 8 problem sizes). The

initial upper bounds were taken as the best known upper bounds from the

ACOmdb scaling experiments. A time limit of one day (86400 seconds)

was set, at which point any unfinished runs were terminated. This means

some of the observations have censored running times, since all that is

known is that the algorithm would take more than 86400 seconds to find

the optimal solution. For each of the test problem instances, the number

of instances confirmed to have been solved to optimality within the time

limit is displayed in Table 6.6.1. It can be seen that as the problem size

increases, the success rate decreases.
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Figure 6.6.1: ACOmdb running times until the final solution was

found, across varying problem sizes (x-axis to scale).
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Problem Size (operations) 64 82 102 122 140 160 178 204

Solved to optimality (%) 100 99 99 77 67 44 21 2

Table 6.6.1: BnB-UB success rates across problem instance sizes. Suc-

cess is measured as having found and confirmed an optimal solution

within 1 day.

The algorithm running times are displayed in Figure 6.6.2, both in reg-

ular values (upper plot) and logged values (lower plot). The log-scale plot

suggests that running times increase considerably with problem size. The

medians for the three largest test problems were not observed, and as such

it is difficult to see exactly how the running times behave beyond the first

five problem sizes. A possible confounding factor for larger problem sizes,

is that the initial upper bound possibly is not as tight as it is for some

of the smaller test problems. This would be a contributing factor to the

increase in running times with problem size. However, without knowledge

of the optimal solutions, it is not possible to confirm this.
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Figure 6.6.2: BnB-UB running times until the optimal solution was

confirmed, across varying problem sizes (x-axis to scale). Some data is

censored, since runs were terminated after one day (86400 seconds).



Chapter 7

Non-Blocking Job Shop:

Conclusions

The work in Part II was motivated by the real life scheduling challenges

encountered at a facility in the nuclear power industry, as introduced in

Chapter 1. The work at the facility was modelled as a job shop scheduling

problem with flexible maintenance, due dates, release dates, and precedence

constraints (Chapter 3). Both exact and heuristic solution methods for

this problem were developed and presented, including Branch and Bound

(Chapter 4), Ant Colony Optimisation (Chapter 5), and Simulated Anneal-

ing (Chapter 5). A hybrid method incorporating ACO and B&B was also

proposed.

Thorough experimental results, comparisons and analysis on 100 prob-

lem instances provide strong evidence that the proposed algorithms produce

optimal or near-optimal solutions, within a short running time (Chapter 6).
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Specifically, experimental results showed that the ACO algorithm on its

own finds good solutions, often optimal, in short computational time. The

cooperation between the developed Branch and Bound algorithm and the

Ant Colony Optimisation algorithm resulted in a very effective algorithm,

which optimally solves the considered problem, within acceptable running

time for the industrial problem under consideration. The hybridisation

successfully locates optimal solutions on all problem instances. The upper

bound information seeded by the ACO algorithm substantially decreases

its execution time, making it a valuable and suitable solution to optimally

solve challenging real-world scenarios. A scalability analysis showed that

running times increase with problem size.

Due to limited storage capacity at the facility of interest, it was desir-

able that the methods presented in Part II were further developed to be

applicable in a blocking job shop. In the blocking job shop, there is no

storage capacity at the machines. When an operation is completed by a

machine, the materials cannot be moved to the next required machine un-

til the required machine is no longer occupied by any other jobs. Solution

methods for the blocking job shop scheduling problem with flexible main-

tenance and both soft and hard due dates are developed and presented in

the next part of this thesis (Part III).





Part III

The Blocking Job Shop with

Flexible Maintenance
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The chapters in this part of the thesis consider the blocking job shop

with flexible maintenance. The big difference with the problem dealt with

in Part II is that there is zero buffer capacity in the system. This means

jobs have to remain on their current machine after processing, until such a

time that the next required machine is available. While the job waits to be

moved, the machine that it is occupying cannot be used by other jobs. The

problem is described and formally defined in Chapter 8. Heuristic solution

methods for this problem are presented in Chapter 9. While heuristic

methods worked well for the non-blocking version of the problem discussed

in Part II, the heuristics presented in this part generally struggle to produce

good solutions. In contrast to this, the Branch and Bound algorithm for the

block shop presented in Chapter 10 very quickly produces optimal solutions.

The computational experiments in Chapter 11 show that the Branch and

Bound method outperforms the heuristic methods, both in terms of running

time and the quality of the final solutions.
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Chapter 8

Introduction to the Blocking

Job Shop with Flexible

Maintenance

8.1 Blocking Job Shop

The job shop scheduling algorithms presented in Part II were tested at the

NNL facility for which they were developed. Many of their modelling as-

pects, such as the flexible maintenance windows, and the soft and hard due

dates, were found to model the real-world setting very well. However, at

this point it also became clear that the algorithms were producing sched-

ules which, if implemented, would lead to storage problems. In some cases

this was due to space limitations. In some other cases, the materials be-

longing to different jobs could not be stored in the same area due to other
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considerations, such as differing levels of radioactivity.

Under the classic job shop formulation, it is implicitly assumed that

there is ample storage capacity between machines. More specifically, it is

assumed that each machine has a queue with infinite capacity. Consider

the situation where an operation is finished, and the next machine required

by the job is not yet available. Under the assumption of infinite queue-

ing capacity, the materials of the job can immediately be stored in the

queue of the next required machine. The machine on which the job was

just processed then immediately becomes available again to other jobs. In

practice, queueing capacity will always have some limit. However, as long

as this limit is unlikely to be reached under normal operating conditions,

the assumption of infinite queueing capacity may be quite reasonable for

modelling purposes.

After further consultation with the planners at the NNL facility, it was

decided that their scheduling problem should be modelled under the as-

sumption that there is no storage capacity inside the facility. This changes

the scheduling problem to a variant of the blocking job shop scheduling

problem. Machines have no queues within a blocking job shop. To illus-

trate how this scenario differs from the classic job shop formulation, let us

consider an operation which has just finished processing on machine M1. It

is not the final operation of the job, and as such the materials require fur-

ther processing on another machine, M2, say. Without queueing capacity

at M2, there are two possible outcomes:
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1. If machineM2 is available, the materials are moved there immediately.

The next operation of the job can start, and machine M1 is now

available again to other jobs.

2. If machine M2 is busy, the materials have nowhere to go and must

stay on machine M1, despite not requiring further processing there.

The materials effectively block machine M1 for use by other jobs,

until such a time at which machine M2 becomes available.

At first glance, it may appear that the blocking effect will simply in-

troduce some delays to the schedules. However, the problem is much more

complicated than that. In fact, many schedules produced under the clas-

sic job shop assumption of infinite queues will be entirely infeasible in

the blocking case, even if the starting times of operations are adjusted to

account for delays introduced by machine blocking. The infeasibility en-

countered is a result of what is known as deadlock (Mascis and Pacciarelli,

2002). Deadlock occurs when two or more jobs block each other in a circu-

lar way, such that each of these jobs requires a machine currently occupied

by one of the other jobs in the deadlock circle. In the simplest case, such

a deadlock circle consists of two jobs blocking each other. Consider, for

example, one job on machine M1, and another job on machine M2. Each

job has finished processing on its current machine. The job on machine

M1 needs to go to machine M2, and the job on machine M2 needs to go

to machine M1. In this scenario, neither job can move. More generally,
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this situation can occur for any number n of jobs and machines. Deadlock

occurs when the job on machine M1 is waiting for machine M2, the job on

machine M2 is waiting for machine M3, ..., the job on machine Mk is wait-

ing for machine Mk+1, ..., and finally, the job on machine Mn is waiting for

machine M1. To resolve deadlock, some authors allow for swaps. A swap is

when all the jobs in the deadlock circle move simultaneously (Mascis and

Pacciarelli, 2002). Due to the single transportation mechanism at the NNL

facility, simultaneous movement of jobs is not an option here. Swaps will

not be allowed in our problem formulation, and deadlock will have to be

avoided at the scheduling stage.

8.2 Problem Overview

The management of the work passing through the NNL facility described

in Section 1.2, can be modelled as a blocking job shop scheduling problem

(BJSSP), with a number of additional non-standard features based on the

requirements of the facility.

To briefly recap, the facility comprises shielded workstations, that pro-

cess sensitive and radioactive materials, handled remotely by expert work-

ers. The facility also contains a single transportation mechanism that con-

nects all workstations, and which transfers the materials across all work-

stations. There are two workstations that both act as entry and exit points

for any materials. As such, given a material to be processed, it will have to
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enter the system at one of these two workstations, and then be moved to

the appropriate workstation by the transporter. The materials may then

have to undergo further processing at other workstations, and eventually

leave the system through one of the two exit points.

The non-standard features faced by schedulers at the facility include:

flexible maintenance scheduling; jobs which merge into one, or split into

many; jobs with release dates; jobs with precedence constraints; and an

absence of storage space within the system. Existing research might not

take into consideration all or most of such non-standard features that are

encountered in real-world scenarios. It is more common to consider and

study a single complication in isolation.

The major difference between the problem presented here and the prob-

lem dealt with in Part II, is that there is zero storage capacity in the system.

This means jobs have to remain on their current machine after processing,

until such a time that the next required machine is available. While the

job waits to be moved, the machine occupied by the job cannot be used by

other jobs.

A crucial aspect of the considered BJSSP is the maintenance programme

on all machines at the facility. In industrial scenarios, machine mainte-

nance is critical for the good functioning of the facility. However, machine

maintenance is often ignored in traditional job shop scheduling formula-

tions. Each workstation at the facility, as well as the transporter, has a

preventive maintenance program. These flexible maintenance activities are



150 CHAPTER 8. INTRODUCTION

required to start within a specified time window. The start and end of this

time window are the soft and hard due dates, respectively, for the start of

the maintenance activity. Due to strict safety regulations in the nuclear

industry, a machine must be shut down if its maintenance is not started

by the hard due date. In this work we integrate the planning of mainte-

nance with the planning of jobs. Each maintenance event is modelled as a

single-operation job.

Another feature motivated by the industrial setting is that some jobs can

only start when multiple other jobs come together on completion. There

are also jobs which, on completion, allow a number of other jobs to start.

This merging and splitting behaviour is modelled with our novel adaptation

of the alternative graph, introduced in Section 8.7.2.

Novel features of the problem under consideration include the blocking

aspect, flexible maintenance, soft and hard due dates, and the integrated

planning of maintenance alongside the jobs planning procedure.

8.3 Problem Notation

More formally, we wish to schedule a set of n ≥ 1 jobs J = {Ji}1≤i≤n on

a set of m ≥ 1 machines M = {Mk}1≤k≤m. Each job Ji ∈ J consists of a

number of oi operations Ji = {Oij}1≤j≤oi to be processed in a given order.

Each operation Oij has to be carried out on a specified machine Mk ∈M.

Each operation has a positive deterministic processing time pij ∈ R+. Each
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machine Mk can process only one operation at a time. The nature of the

operations makes them non-preemptive, i.e. once an operation has started

it cannot be interrupted. Each job Ji has a release date ri. Jobs can have

precedence constraints, which enforce a strict ordering between two jobs.

For example, if Ji must be processed before Jj, the precedence constraint

is ci ≤ sj, where ci denotes the completion time of Ji and sj denotes the

starting time of Jj.

The merging of jobs is modelled with the help of precedence constraints.

Consider a set of three jobs, {Ji, Jj, Jk} say, which merge into a fourth job,

Jl. This would be modelled with the constraint max{ci, cj, ck} ≤ sl. This

type of constraint is known as an in-tree (Cheng and Sin, 1990). In the

blocking environment, the machine on which the merge takes place must

be reserved for said merge as soon as the first of the various materials

arrives. This can be modelled with our novel adaptation of the alternative

graph, as presented in Section 8.7.2. The splitting of jobs can be modelled

with precedence constraints alone. If job Ji splits into three other jobs,

{Jj, Jk, Jk} say, this is modelled with the constraint ci ≤ min{sj, sk, sl}.

This type of constraint is known as an out-tree (Cheng and Sin, 1990).

As defined above, let ci denote the scheduled completion time of job Ji.

Each job has a soft due date di, and a hard due date di. A tardiness penalty

Ti is incurred if the soft due date is violated, i.e. when di < ci. The size of

the penalty increases with the delay, and rises rapidly beyond the hard due

date. The motivation behind this is that, in reality, the financial reward
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for a job is reduced if the soft due date is missed, and severely reduced if

the hard due date is missed. In cases where all due dates can be met, a

small penalty proportional to the completion time of each job ensures work

is not needlessly delayed. Completing work sooner helps maintain a good

reputation with clients.

Each maintenance activity is modelled as a single-operation job. A

flexible maintenance activity Ji receives a tardiness penalty based on its

scheduled starting time, si. These flexible maintenance activities are re-

quired to start within the time window defined by their soft and hard due

dates. More formally, for maintenance activities there is a hard constraint

which requires that si ∈ [di, di]. Maintenance can start no earlier than its

soft due date di. If maintenance has not started by its hard due date di,

the corresponding machine must be shut down. Therefore, a missed hard

due date for maintenance has to be penalised much more heavily than a

missed hard due date for jobs.

As described previously, the objective function considered in this study

seeks to minimise the total tardiness penalty T , defined by T =
∑n

i=1 Ti.

Depending on the type of job (normal, maintenance), we employ two tar-

diness penalty functions with different characteristics, as described next in

Section 8.4.
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8.4 Objective Function

Given that a regular job Ji has soft due date di, hard due date di (di ≤ di)

and, once scheduled, completion time ci, then job Ji incurs the following

tardiness penalty Ti:

Ti =



0.01× ci if ci ≤ di,

0.01× ci + 103 + ci − di if di < ci ≤ di,

0.01× ci + 103 + (di − di) + 106 + 10× (ci − di) if di < ci.

(8.4.1)

Each job gets a small penalty equal to 0.01 times its finishing time. This

ensures that even if a job finishes on time, its completion time is minimised

further, as long as this doesn’t delay other jobs. The small linear penalty

also helps constructive algorithms make better decisions. This is especially

true in the early stages of schedule construction, when no due dates are

violated, and the partial solution score would otherwise be zero. There is a

fixed penalty of 103 for any job that exceeds its soft due date di. Jobs that

exceed their soft due date also incur a linear penalty equal to the delay,

ci − di, until the completion time reaches the hard due date (di < ci ≤ di).

In the case where the completion time exceeds the hard due date (di < ci),

a very large fixed penalty is incurred (· · ·+ 106 + . . .), while there is a slope

to help the optimisation process to move towards more desirable solutions

(. . .+ 10× (ci − di)).
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Maintenance activities don’t incur a large fixed penalty when they ex-

ceed their soft due date. This allows their flexible maintenance window to

be used if needed. Given a flexible maintenance activity Ji, with starting

time si, the following tardiness penalty is incurred:

Ti =



0.01× si if si = di,

0.01× si + si − di if di < si ≤ di,

0.01× si + di − di + 109 + 100×
(
si − di

)
if di < si.

(8.4.2)

In the maintenance tardiness penalty function, a substantially larger

fixed penalty value (109) is incurred in the case where the starting time

of the maintenance exceeds the hard due date (di < si). With a gradi-

ent of 100, the slope beyond the hard due date is also much steeper for

maintenance.

Figure 8.4.1 illustrates how the job and maintenance components of the

penalty function behave relative to each other. Due to the very large fixed

penalties at the hard due date, the Y-axis is not to scale.

These tardiness functions are designed to prioritise the various schedul-

ing objectives. The highest priority is placed on scheduling maintenance

tasks to start before their respective hard due dates, to avoid a manda-

tory shut-down. The second highest priority is to schedule regular jobs to

finish before their respective hard due dates, to avoid substantial loss of
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Figure 8.4.1: An illustrative comparison of how the soft and hard

due dates influence the job and maintenance components of the penalty

function. Y-axis not to scale.

revenue. Next, regular jobs should be completed by their soft due date, if

at all possible. The final priority is then to reduce any remaining delays in

maintenance tasks. Should it be possible to meet all soft due dates, then

the small penalty of 0.01 times the completion time minimises the mean

completion time.

8.5 Problem Classification

The overall objective function (Section 8.4) takes into account job and

maintenance tardiness, as well as weighted unit penalties for due date vio-

lations. Let wtj denote a weight, where t indicates a type of tardiness and
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where j indicates a job. Then, in terms of the widely used 3-field problem

classification α|β|γ (Graham et al. (1979); Section 2.1.1), the problem con-

sidered here can be represented by J |prec, rj, block|ΣjwcjCj + ΣjwtjTj +

ΣjwtjT j + ΣjwujUj + ΣjwujU j. The third field contains the objective, and

can be broken down as follows:

• ΣjwcjCj is the weighted completion time Cj, or starting time in the

case of maintenance.

• Tardiness with respect to the soft due date, Tj, is penalised by ΣjwtjTj.

• Tardiness with respect to the hard due date, T j, is penalised by

ΣjwtjT j.

• A weighted unit penalty ΣjwujUj is incurred when soft due dates are

missed. For maintenance, this weight is zero.

• A weighted unit penalty ΣjwujU j is incurred when hard due dates

are missed. Our implementation uses different weights for jobs than

for maintenance.

8.6 Complexity of the Blocking Job Shop

The problem defined in Section 8.5 contains as a special case 1|rj|ΣCj. This

is the case when there is just one machine, the jobs have no precedence

constraints, due dates are set to infinity, and wcj = 1. As there is only a

single machine, blocking cannot occur. It has been shown that 1|rj|ΣCj is
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unary NP-hard (Graham et al. (1979)). Therefore the scheduling problem

considered in this part of the thesis is also NP-hard in the strong sense.

More generally, the standard job shop problem is a special case of the

blocking job shop problem. Therefore the blocking job shop is at least as

complex as the standard job shop problem. To see this, consider a blocking

job shop problem in which each job only has a single operation. Precedence

constraints are present between some jobs, so that chains of single operation

jobs are formed. Since there are no blocking constraints from one job to the

next, one such chain of single operation jobs behaves exactly the same as a

sequence of operations in a single job in the standard job shop scheduling

problem. Thus, the standard job shop scheduling problem is a special case

of the blocking job shop problem, making the latter as least as complex as

the former.

8.7 Alternative Graph

To model the blocking job shop problem we use an adaptation of the alter-

native graph (Mascis and Pacciarelli, 2000), which itself is an adaptation of

the well-known disjunctive graph (Section 4.2; Roy and Sussmann (1964)).

The alternative graph can be used to model a blocking job shop prob-

lem with linear jobs. In this representation, a complete blocking job shop

schedule can be represented by a directed acyclic graph (DAG).
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8.7.1 Traditional Alternative Graph

The disjunctive graph was introduced in Section 4.2, to model the non-

blocking job shop problem. There, the disjunctive arcs defined an ordering

over all operations that have to be processed on each machine. In the alter-

native graph, pairs of alternative arcs are used to define this ordering. Both

arcs within a pair belong to the same machine. Each pair of alternative

arcs determines the order in which a given machine serves two specified

jobs. To model the blocking aspect, alternative arcs originate not directly

from the operation they are associated with, but from the next operation in

the same job. This ensures that the corresponding machine is not released

until the next operation has started, i.e. until the completed operation no

longer blocks the machine. Alternative arcs usually have length zero. The

exception to this is when they are associated with the final operation of a

job. In that case, the alternative arc has its origin at this final operation,

and its length is equal to the processing time of that operation. Alternative

arcs point directly to the node in the other job that requires the relevant

machine. A feasible schedule must contain exactly one arc from each pair,

in such a way that no cycles exist in the completed graph. The starting

time of each operation is then determined by the longest path from the

source to the corresponding node in the graph.

An illustrating example appears in Figure 8.7.1, which shows a sin-

gle pair of alternative arcs for two operations that both require machine
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Figure 8.7.1: One pair of alternative arcs (dashed) associated with

operations (A, 1) and (A, 2). Figure modified from Pinedo (2008).

A. This particular pair of alternative arcs determines whether machine A

serves operation (A, 1) before it serves operation (A, 2), or vice versa. If, for

example, operation (A, 1) is served first, the alternative arc with its origin

at (B, 1) is selected. This ensures that operation (A, 2) can only commence

once both of the following have happened: Job 1 has completed processing

on machine A, and job 1 has started processing on machine B.

Our particular problem contains one further complication that is not

captured by the alternative graph, namely the merging and splitting of

jobs. The following sections introduce our adaptation of the alternative

graph, which facilitates these aspects.
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8.7.2 Alternative Graph Adaptation: Merging with

Blocking

A merge takes place when two or more jobs which previously existed in-

dependently, come together and continue as a single job. Consider, for

example, some radioactive materials that eventually need to be stored in

a flask. The materials will undergo processing on one machine, while the

flask is prepared on another machine. Once these separate jobs have been

completed, the material is put into the flask at a third location. In the

non-blocking case this was simply modelled with precedence constraints,

so that the flask filling job could not start until the two pre-merge jobs

had been completed. In the blocking case, however, the merging location

must be considered reserved, or pre-blocked, as soon as either the material

or the flask arrives there. The actual flask filling job will not commence

until both have arrived. In addition to this pre-blocking, it must also be

ensured that the machine of the first pre-merge job to finish is released for

other work as soon as the material is moved to the merging location. We

have developed a novel adaptation of the alternative graph to achieve this,

as described next.

The following example illustrates the merging of two jobs in our block-

ing environment. Consider two jobs, job 1 and job 2, which merge into a

third job, job 3. The grey nodes in Figure 8.7.2 represent the operations of

the three jobs directly involved in this merge. The white nodes represent
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Machine C alternative arc 1

Machine A alternative arc
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Machine C alternative arcs 2 (paired)

(3,C) has dummy operations for pre-blocking

Figure 8.7.2: Operation (1, A) belongs to job 1 and requires machine

A. The graph depicts job arcs (solid lines) and alternative arcs (dashed

lines). The two dummy operations for (3, C) ensure pre-blocking of

machine C takes places as soon as either job 1 or job 2 arrives at machine

C. They also allow machines A and B to be released as soon as the

materials on them have been moved to machine C.
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operations that belong to jobs not involved in the merge. Each node dis-

plays a number, indicating the job it belongs to, and a letter corresponding

to the machine required by the operation. Fixed job arcs are depicted as

solid straight arrows, and the dashed arcs represent alternative arcs. Jobs

1 and 2 merge into job 3. The merge takes place on machine C. Job 4 is

another job which requires machine C, so the choice of alternative arcs will

determine whether machine C processes job 3 before job 4, or vice versa.

More precisely, the choice of alternative arcs for machine C is between the

single arc with its origin at (3, D), or the linked pair of arcs originating

at (4, D). This pair of linked arcs leads to two dummy nodes with zero

processing time. The starting time of each dummy operation represents

the moment at which the material of the corresponding preceding machine

was moved to machine C. This means that as soon as either job 1 or job

2 completes and sends its materials to machine C, machine C is reserved

exclusively for use by operation (3, C). This operation will start processing

as soon as the materials from both preceding jobs have arrived. While this

example described the merging of two jobs, this method can be used in the

same way to model the merging of any number of jobs.

Note that in the case where one job splits into two or more jobs, regu-

lar alternative arcs will ensure the original machine remains blocked until

the last materials have been moved from there. In this case the machine

required for the final operation of the job will have one alternative arc of

length zero from the first node of each dependent job.
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In the blocking job shop, some consideration must be given as to how

to record completion times when jobs merge. When jobs do not merge, the

machine of the final operation of a job becomes available again as soon as

that final operation is completed. However, when jobs merge, the materials

of pre-merge jobs may continue to block the machine of the final pre-merge

operation, until they can be moved to the machine on which the jobs merge.

Therefore, each of the jobs to be merged will be scored on the starting time

of the dummy operation linking it to the dependent job. This is because

that is the time at which the machine used by the final pre-merge operation

becomes available again to other jobs.

8.7.3 Alternative Graph Adaptation: Arcs

In the traditional alternative graph (Section 8.7.1), alternative arcs are

mutually exclusive pairs of machine arcs. In our novel adaptation of the

alternative graph, some pairs of alternative arcs now contain two or more

arcs on one side of the alternative. More specifically, in our adaptation, the

origin, destination, length, and number of alternative arcs are determined

as follows:

• All operations Oij of job Ji that are not the final operation of Ji,

spawn alternative arcs with origins at the subsequent operation of

the same job, Oi{j+1}. These arcs have length zero.

• If job Ji does not split or merge into another job, its final operation
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Oioi spawns alternative arcs with origins directly at this final opera-

tion Oioi . These arcs have length pioi , which is the processing time of

the final operation Oioi .

• If job Ji splits into a set Jsplit of s jobs, so that Jsplit = {Jj}1≤j≤s,

then its final operation Oioi spawns sets of alternative arcs from the

first operation Oj1 of each job Jj ∈ Jsplit created by the split. These

arcs have length zero. For instance, if the final operation of Ji is per-

formed on machine Mk, then, for each other operation in the schedule

requiring machine Mk, a set of alternative arcs points to that opera-

tion, one arc from each first operation Oj1 of each job Jj ∈ Jsplit. This

ensures that machine Mk is not released until all the jobs created by

the split have started processing.

• If job Ji merges into another job, Jm say, a dummy operation Oi{oi+1}

is appended to its sequence of operations (Figure 8.7.2). The process-

ing time of these dummy nodes equals zero, i.e., pi{oi+1} = 0. The re-

source requirement for dummy node Oi{oi+1} is the machine on which

the merge will take place, i.e. the machine required by Om1. These

dummy nodes do not spawn alternative arcs. Note that in this case,

the final physical operation of the job, Oioi , spawns its alternative

arcs with origins at the dummy operation Oi{oi+1}, with length zero.

• Let Jm be a job created by a merge of other jobs. When the destina-

tion of an alternative arc would normally have been the first operation



8.7. SCHEDULE CONSTRUCTION 165

Om1 of Jm, a set of alternative arcs is created. This set contains one

arc for each dummy operation Oi{oi+1} associated with the merge.

The arcs point towards the dummy operations preceding Om1, rather

than directly to Om1 (Figure 8.7.2). The length of these arcs is de-

termined by their origins, as described above.

Some operations to be scheduled on the same machine already have their

relative ordering imposed by the job arcs and precedence constraints. Al-

ternative arcs are omitted in those instances.

8.7.4 Alternative Graph Complexity

Under the alternative graph formulation, the blocking job shop schedul-

ing problem can be expressed as a 0-1 integer programme. Each pair of

alternative arcs is represented by a binary decision variable. The value of

this binary decision variable determines which of the two alternative arcs

is included in the solution. The number of variables in this binary vari-

able formulation grows polynomially with the number of operations in the

problem. This was shown for the disjunctive graph in Section 4.2.1, and

the same reasoning applies here.
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8.8 Blocking Job Shop Schedule Construc-

tion

These sections introduce a novel schedule construction method, which deals

with infeasibility problems associated with the blocking job shop prob-

lem. For the non-blocking version of the scheduling problem in Part II,

metaheuristics, such as Ant Colony Optimisation (ACO, Section 5.2), were

used to quickly obtain near-optimal solutions to the problem. These near-

optimal solutions were then used as upper bounds by a Branch and Bound

algorithm (Section 4.1), to obtain the optimal solution. This heuristic-

exact hybrid approach was found to work well. Therefore it is natural to

investigate the performance of similar approaches for the blocking job shop

problem. ACO involves the rapid creation of many schedules. As it turns

out, the schedule construction method used in the non-blocking case often

leads to infeasible schedules when applied to the blocking job shop prob-

lem. The problem of infeasibility is discussed next, in Section 8.8.1. This is

followed by the presentation of our novel schedule construction procedure,

in Section 8.8.2. Our novel schedule construction method guarantees to

produce feasible schedules in the blocking job shop.

8.8.1 Schedule Construction: Infeasibility

Constructive algorithms for traditional job shop scheduling problems can

be designed in such a way that every constructed schedule is feasible. This
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is the case for the schedule construction phase of the ant colony algorithm

presented in Section 5.2. It was specifically designed to guarantee feasibil-

ity of the produced solutions. This guaranteed feasibility makes it possible

to rapidly create large numbers of solutions. Many metaheuristics, includ-

ing ACO, require a large number of solutions to be created to work well.

However, in the case of the blocking job shop, it is not always possible to

complete a given partial schedule into a full solution. In fact, just deter-

mining whether this is possible for a given partial solution is a strongly

NP-complete problem (Mascis and Pacciarelli (2002)).

The open question is then whether it is possible to adapt the ACO

method proposed for the blocking case. One approach would be to create

schedules as before, and discard any that are found to be infeasible. This

procedure could be repeated until the required number of feasible schedules

is created. Unless each attempt is successful, this approach will take more

time than the non-blocking ACO. However, the non-blocking version of the

algorithm had a short running time, so some additional running time might

be acceptable.

Some initial experimentation with a blocking version of the ACO algo-

rithm showed that it is actually very challenging to create feasible sched-

ules in a blocking environment. The schedule creation process adds one

operation at a time to the back of the existing partial schedule, as in the

non-blocking case. In early iterations of the algorithm, the percentage of

schedule creation attempts that led to feasible solutions was generally less
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than 1%. In later iterations this percentage slowly increased. Overall, this

made the algorithm very slow.

One particular challenge for constructive algorithms in a blocking envi-

ronment is the time wasted between infeasibility being a fact, and its de-

tection. In fact, a partial schedule which only contains two operations may

already be impossible to complete, unbeknownst to the algorithm. To see

this, consider two jobs, J1 and J2, which follow identical paths through the

system, but in opposite directions. J1 requires machines M1 →M2 →M3,

and J2 requires machines M3 → M2 → M1. Suppose now that the first

operation of J1 is added to the partial schedule first, on machine M1, and

that the first operation of J2 is added second, on machine M3. It is now

inevitable that these two jobs will end up blocking each other in a deadlock

situation. Infeasibility is a fact. The difficulty is that, without additional

checks, the algorithm will not be aware of this unavoidable deadlock. Bliss-

fully unaware, the schedule construction process continues building on the

doomed partial schedule. There is nothing to stop it adding many opera-

tions belonging to other jobs to the partial schedule, before the inevitable

deadlock is eventually encountered. This wastes valuable computational

time.

If the partial schedule is represented by an alternative graph (Sec-

tion 8.7), feasibility checks can be performed. This can be done by perform-

ing repeated Immediate Selection checks (Section 4.3.1), until each variable

has been checked once since the last variable was fixed, and testing whether
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the alternative graph of the partial solution contains any cycles. Unfortu-

nately, this has a high computational cost, and it gives the algorithm an

undesirably long running time. In the absence of feasibility checks, much

time is spent attempting to complete partial schedules which are impossible

to complete. This also carries a high computational cost. In conclusion, the

computational costs are high both when feasibility checks are performed,

and when they are not.

8.8.2 Schedule Construction: Guaranteed Feasibility

We have developed a novel schedule construction method that guarantees

feasibility of the partial schedule at certain intervals in the construction

process. These ‘safe points’ are partial schedules which are guaranteed to

have at least one feasible extension. Whenever infeasibility is encountered

beyond one of these safe points, the schedule construction algorithm reverts

to the last encountered safe point, and continues from there. The previous

section highlighted the high computational costs incurred both when feasi-

bility checks are employed, and when they are not. The method introduced

in this section avoids these inefficiencies.

An overview of the schedule construction procedure appears in Algo-

rithm 5. Initially, our schedule construction method creates a topological

sorting of all the jobs to be scheduled, subject to their precedence con-

straints (Step 1). This topological sorting determines the order in which

the jobs will be inserted into the partial schedule. A safe point is reached
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Algorithm 5 Schedule construction procedure for the blocking job shop.

Feasibility of the final schedule is guaranteed.

1: Create topological sorting J (s) of all jobs Ji ∈ J

2: for all jobs Ji ∈ J (s) do

3: while Ji not completely scheduled do

4: for all operations Oij ∈ Ji do

5: Insert Oij into the partial schedule, either randomly or according

to some heuristic rule

6: if partial schedule infeasible then

7: Remove all operations of Ji from the partial schedule

8: Break for-loop

9: end if

10: end for

11: end while

12: end for

13: Return the feasible solution
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whenever the partial schedule contains only complete jobs (Step 2). The

first job in the sorting will always be added first. The algorithm proceeds

by sequentially scheduling all the operations of the first job (Step 4). This

causes no problems, since a single job cannot cause deadlock on its own.

The partial schedule now contains all the operations of the first job. As-

suming there are no merging or splitting jobs, feasibility is now guaranteed.

This is because in the topological sorting, all remaining jobs come after the

job that is already scheduled. Therefore, a feasible schedule can always be

found by appending the remaining jobs to the partial schedule, in topolog-

ical order.

Next, the operations of the second job are added to the partial sched-

ule. The operations can be inserted at any point, subject to any precedence

constraints. The insertion points are selected by the metaheuristic employ-

ing this schedule building method (Step 5). At this stage infeasibility may

occur, if the operations of the second job are inserted in such a way that

leads to deadlock with the first job (Step 6). If deadlock occurs, the algo-

rithm reverts back to the partial schedule containing only the operations

of the first job, and continues from there (Steps 7 and 8). Feasibility of

the partial schedule is once again guaranteed once all the operations of the

second job have been added to the partial schedule (Step 11).

This process continues until the schedule is complete. Whenever dead-

lock is encountered during the insertion of the operations of the (k + 1)th

job, the algorithm reverts to the partial schedule containing the first k jobs.
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From that point, a feasible extension is guaranteed to exist.

The topological sorting schedule construction approach described above

could fail when some of the jobs to be scheduled contain splits or merges.

Consider, for example, the case where two jobs, J1 and J2, merge into a

third, J3. The merge takes place on machine Mmerge. A topological sorting

may then be J1, J2, J3. Recall that the final operation of jobs which merge is

a dummy operation on Mmerge (see Section 8.7.2). This means that when J1

is completely scheduled, the scheduled operations on Mmerge are as follows:

[ . . . , O1,o1 , O1,o1+1, . . . ] (8.8.1)

Since the first operation of J3, O3,1, must immediately follow the dummy

operation O1,o1+1, the partial schedule containing the sequence in Equa-

tion 8.8.1 implies the following sequence on Mmerge:

[ . . . , O1,o1 , { O1,o1+1, O3,1}, . . . ] (8.8.2)

Thus, J1 blocks Mmerge until J3 starts. Suppose that J2 contains an opera-

tion, O2,j say, which also requires Mmerge. The feasibility guarantee depends

on the possibility of appending O2,j to the end of the current partial sched-

ule. However, the precedence constraints require that O2,j is scheduled

before O3,1. Thus it would not be possible to append O2,j to the end of the

sequence in Equation 8.8.2, and it can no longer be guaranteed that a feasi-

ble extension exists. There may even be a fourth job, J4, with no precedence

constraints with respect to the other three jobs. Suppose J4 also requires

Mmerge. The following would be a valid topological sorting: [J1, J2, J4, J3].
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However, if J4 is appended to the partial schedule containing only J1 and

J2, it will not be able to use Mmerge, since this has already been reserved for

J3. Of course, by chance it may sometimes be possible to insert the relevant

operation of J4 earlier in the schedule. However, the guaranteed feasibility

through appending to the back of the schedule no longer exists. To resolve

this, the schedule construction algorithm treats all the jobs associated with

a merge (or split) as a single job. This means these jobs are put together,

uninterrupted, in the topological sorting. There is a safe point before all

operations of such a group have been inserted, followed by a safe point after

all the operations of the group have been inserted. There are no safe points

within such a group, as it was shown that feasibility cannot be guaranteed

there. In the preceding example there would be a group, G1 say, such that

G1 = [J1, J2, J3]. A valid topological sorting would then be either [G1, J4]

or [J4, G1].

There is one other case in which the topological sort cannot guarantee

feasibility. Consider the set of jobs shown in Figure 8.8.1. J1 and J2 initially

merge into J3, which in turn splits into J4 and J5. This combination of a

merge followed by a split will cause jobs 1-5 to be put into a single group in

the topological sorting. There is one other job, J6, which must be preceded

by J1, and which itself preceeds J4. However, J1 and J4 will be put in the

same group, and it will not possible to find a topological sorting when J6

must simultaneously be scheduled before and after the group. This can be

resolved by including J6 in the group of jobs 1-5.
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J1

J6

J3

J2

J4

J5

Figure 8.8.1: Jobs 1-5 are bound by merges and splits, and as such will

appear as a single group in the topological sorting. Job 6 has precedence

constraints with two jobs in this group, which makes it impossible to

find a topological sorting, unless J6 is absorbed in the group.

The guaranteed feasibility schedule construction method presented above,

is incorporated in the Ant Colony and Rollout algorithms presented in Chap-

ter 9.



Chapter 9

Blocking Job Shop: Heuristic

Methods

9.1 Introduction

This chapter presents a number of heuristic methods that attempt to solve

the blocking job shop problem with flexible maintenance, as described in

Chapter 8. For the non-blocking variant of this problem, a number of

heuristic methods were shown to perform very well (Chapter 5). This makes

the adaptation of these algorithms for the blocking problem a logical first

step.

A novel Ant Colony Optimisation (ACO) variant for the blocking job

shop is presented in Section 9.2. This is followed by a Rollout algorithm in

Section 9.3. Finally, a Simulated Annealing (SA) algorithm is presented in

Section 9.4. The computational experiments in Chapter 11 show that these

175



176 CHAPTER 9. HEURISTIC METHODS

heuristic methods provide better solutions, in terms of the total tardiness

penalty T , than those provided by a topological sorting (Section 8.8.2) or a

topological sorting followed by a local optimisation routine (Section 9.3.1).

SA usually outperforms both ACO and the rollout method, in terms of the

overall tardiness penalty T . The trade-off is that SA has a larger median

running time (286 seconds) than ACO (206 seconds) and the rollout method

(168 seconds). All of the heuristics struggle to find solutions that are close-

to-optimal.

9.2 Ant Colony Optimisation for the Block-

ing Job Shop

Ant Colony Optimisation was shown to be a well performing solution

method for the non-blocking variant of our scheduling problem (Section 5.2).

It is therefore of interest to investigate whether ACO also performs well in

the blocking case.

Ant Colony Optimisation (ACO) (Dorigo and Stützle, 2004) is based

on the natural route finding behaviour observed in ants. Ants leave a

pheromone trail as they travel between their nest and a food source, allow-

ing other ants to follow the same path. However, on the initial discovery

of the food source, a number of ants may have arrived there by differ-

ent routes, some shorter than others. Other ants will follow the various

pheromone trails to the food source and deposit additional pheromone.
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The shorter routes will be travelled more frequently, resulting in greater

pheromone deposits compared to the longer routes. This will encourage

more ants to follow the shorter route, until eventually most ants will be

using the shortest route. ACO algorithms mimic this natural phenomenon

in order to find good solutions to difficult problems.

9.2.1 Schedule Construction

It was discussed in Section 8.8.1 that schedule construction under the block-

ing constraint often leads to infeasibility. To reduce the number of times

that infeasibility is encountered, the ACO algorithm for the blocking case

will use the novel guaranteed feasibility schedule construction method pre-

sented in Section 8.8.2.

Initially, the schedule is completely empty. Operations are added to the

schedule one at a time. The order in which operations are added is fixed

in advance by a topological sorting. A safe point is reached whenever the

partial schedule contains only complete jobs. Whenever the addition of an

operation results in an infeasible partial schedule, the schedule construction

algorithm reverts to the most recent available safe point. For each opera-

tion, the scheduling decision to be taken is where to insert the operation

in the sequence of operations already scheduled on the required machine.

Job precedence constraints are checked to determine the earliest possible

insertion point. The actual insertion point of the operation is determined

by rolling a weighted die. These weights are based on two aspects: The



178 CHAPTER 9. HEURISTIC METHODS

pheromone levels, which contain information on how rewarding it has been

in the past to insert the node at each available index, and heuristic infor-

mation based on the quality of the scores of the partial schedules created

by inserting the operation at each available index. More specifically, the

probability with which operation i will be inserted at index j depends on

the following:

• The pheromone level τij. Pheromone levels change over time de-

pending on the quality of the routes found by the ants. The pheromone

level τij will be higher if inserting operation i at index j has resulted

in relatively good schedules previously, and lower if such a move has

been associated with less efficient schedules.

• The heuristic information ηij. While pheromone levels consider

information across previous schedules, the heuristic information ac-

counts for the state of the current partial schedule. It is usually some

greedy rule. Here, the heuristic information is based on the score of

the extended partial schedule, the Extended Schedule Score, resulting

from insertion of operation i at index j, as follows:

ηij =
1

Extended Schedule Score
(9.2.1)

Let Ni denote the set of available insertion indices. Operation i will

then be inserted at index j ∈ Ni with probability

pij =
τij

αηij
β∑

j∈Ni

τijαηijβ
, for j ∈ Ni . (9.2.2)
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The parameters α and β determine how strongly pheromone levels and

heuristic information influence the transition probabilities. Initially all

pheromone levels are equal, so that the heuristic information will have the

greatest influence on schedule construction in early iterations. Over time,

the pheromone levels start to reflect which moves have previously resulted

in good schedules, and the schedule construction will eventually be guided

by the pheromone levels as time progresses.

In the non-blocking case, we were able to explore the performance of

several types of heuristic information, based on slack and distance (Sec-

tion 5.2.1). Slack and distance were used to select the next operation to

be appended to the schedule. However, in the blocking case, the next

operation is determined in advance by the topological sorting. Addition-

ally, operations are inserted into the schedule, rather than appended to

it. Therefore, slack and distance are not useful heuristic measures in the

blocking context. The only usable heuristic information we found was based

on the scores of the partial schedules created by inserting the operation at

each available index, as specified in Equation 9.2.1. Other alternatives were

explored, including heuristics based on the increase in schedule score result-

ing from insertion at each available point, but these resulted in very poor

performance. Such heuristics regularly failed to find any feasible solutions.
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9.2.2 Pheromone Updating

ACO algorithms require an initial global pheromone level, τ0. For the trav-

elling salesman problem, a number of suggestions have been made for the

value of τ0 (Dorigo and Stützle, 2004). Most of these suggestions are in

part proportional to 1
Cnn , where Cnn is the value of the best solution found

by the nearest neighbour algorithm. As a rank-based pheromone updating

rule is used by the ACO algorithm presented in this chapter, the pheromone

level is initialised to closely follow this recommendation according to the

following formula:

τ0 =
0.5× w × (w − 1)

ρ× Cnn
, (9.2.3)

where w is the number of schedules (or the rank) used in the pheromone

updating procedure, and ρ is the pheromone evaporation parameter. In the

current problem context, poor quality solutions tend to have a few hard

due date violations. Recall that each hard due date violation of a job incurs

a fixed penalty of 106 (Section 8.4). As such, Cnn was fixed at the value of

2× 106, to approximate the order of magnitude for poor solutions.

At each iteration of the algorithm, n ants visit all operations exactly

once, according to the previously described probabilistic rules. In the non-

blocking case, we used n = 100 ants (potential schedules). That is approx-

imately equal to the total number of operations, as recommended for TSP

problems by Dorigo and Stützle (2004). However, schedule construction is

much slower under the blocking constraint. Therefore it was of interest to
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test whether the algorithm can perform well with fewer schedules per iter-

ation, and n was treated as an additional parameter. Once the n schedules

have been constructed, the pheromone trails are updated. Firstly, global

pheromone evaporation takes place according to the following formula:

τij ← (1− ρ)τij, ∀ (i, j), (9.2.4)

where ρ is the pheromone evaporation rate. The higher this rate, the

quicker the algorithm will converge. Lower values of ρ encourage more ex-

ploration of the solution space. Evaporation affects every path, irrespective

of whether ants have recently travelled along them. The result of this is

that the paths that are not used much will become less attractive to the

ants over time.

After evaporation, rank-based pheromone updating takes place (Bulln-

heimer et al., 1997) and, if activated by the user, elitist updating. If elitist

updating is active, then out of the n schedules, the w− 1 best are selected

and ranked by schedule score. The best schedule, i.e. that with the lowest

total tardiness penalty (as defined in Section 8.4), is assigned the lowest

rank r = 1. The schedule with the largest penalty is given the highest

rank r = w − 1. Let (i, j) denote a ‘path’ taken by an ant from operation

i to index j. The inclusion of this path (i, j) in a solution specifies that

operation i is inserted at index j on its required machine. The quantity τij

is the corresponding pheromone level. For each of the w − 1 iteration-best

solutions, if (i, j) is part of that solution, it receives a pheromone deposit.
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The amount of pheromone deposited depends both on the total tardiness

penalty of each schedule, P (r), and its rank r. More specifically, if elitist

updating is active, the following deposits are made:

τij ← τij +
w−1∑
r=1

(w − r) 1

P (r)
∀ (i, j) ∈ schedule r. (9.2.5)

An additional elitist pheromone deposit is then made on the arcs of the

best-so-far schedule. If this schedule has total tardiness penalty P (bs), the

pheromone levels are updated as follows:

τij ← τij + w
1

P (bs)
∀ (i, j) ∈ best-so-far schedule. (9.2.6)

The binary parameter e determines whether elitist updating is to take place

(e = 1) or not (e = 0). If elitist updating is disabled, the additional deposit

in Equation 9.2.6 for the best-so-far schedule is not made. In that case,

the w iteration-best solutions are used for updating the pheromones. The

iteration-best schedule is still assigned rank r = 1, but the schedule with

the largest penalty now has rank r = w. The updating equation then

becomes

τij ← τij +
w∑
r=1

(w − r) 1

P (r)
∀ (i, j) ∈ schedule r. (9.2.7)

The previously mentioned operations are repeated until a specified stopping

criterion is reached, e.g. a fixed number of iterations. At that point, the

best-so-far schedule is returned as the preferred solution. The structure of

the ACO algorithm described in this section is presented in Algorithm 6.
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Algorithm 6 Pseudo code of the developed Ant Colony Optimisation al-

gorithm.

1: Initialise the pheromone matrix (Equation 9.2.3)

2: while stopping criterion not met do

3: Construct n schedules (Section 9.2.1)

4: Rank schedules by lowest score

5: if schedule with rank 1 is better than best-so-far then

6: Schedule with rank 1 replaces the best-so-far schedule

7: end if

8: Global pheromone evaporation (Equation 9.2.4)

9: Rank-based pheromone deposit on arcs of w−1 (w if non-elitist) best

schedules (Equations 9.2.5 and 9.2.7)

10: if elitist updating active then

11: Elitist pheromone deposit on arcs of best-so-far schedule (Equa-

tion 9.2.6)

12: end if

13: end while

14: Return the best-so-far solution.
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9.2.3 ACO Parameters

All parameters that influence the performance of the ACO algorithm are

listed in Table 9.2.1. In order to optimise the performance, the parame-

ters were fine-tuned with SMAC (Section 6.3, Hutter et al. (2011)). The

first 10 problem instances (Section 11.1) were used to fine-tune the param-

eters. The results obtained with SMAC show that the parameter values

recommended in Table 9.2.2 perform best. Many configurations within the

recommended ranges perform similarly.

The computational experiments in Chapter 11 show that the perfor-

mance of the ACO method presented above is not very encouraging. Com-

pared to three existing rollout methods (Meloni et al. (2004), Section 9.3),

it outperforms just one (SMCP) with respect to solution quality, but not

with respect to running time. Our ACO method is outperformed by the

remaining two rollout methods (AMCC, SMSP), both in terms of solution

quality and running time required.

9.3 A Rollout Algorithm for the Blocking

Job Shop

The job shop scheduling problem with blocking and no-wait constraints

is considered by Meloni et al. (2004). They employ the alternative graph

(Mascis and Pacciarelli (2000); Section 8.7), an adaptation of the well-
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Parameter Type Range Parameter description

α continuous R≥0 Pheromone parameter

β continuous R≥0 Heuristic parameter

ρ continuous [0, 1] Evaporation parameter

w integer Z>0 Rank parameter

n integer Z>0 Number of ants

e binary {0, 1} Elitist pheromone updating?

Table 9.2.1: The block shop ant colony optimisation parameters.

Parameter Recommended Value Recommended Range

α 0.823 [0.7, 1.27]

β 0.613 [0.56, 0.85]

ρ 0.334 [0.18, 0.53]

w 3 [2, 4]

n 75 [60, 78]

e 0 0

Table 9.2.2: Recommended values and ranges for the block shop ant

colony optimisation parameters.
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known disjunctive graph (Roy and Sussmann (1964); Section 4.2), to model

the problem. A rollout metaheuristic is implemented to obtain feasible so-

lutions by Meloni et al. (2004). The rollout method sequentially fixes all the

decision variables in a given problem. At each iteration, the most promising

of the remaining decision variables is added to the current partial solution.

Meloni et al. (2004) note that extending a partial solution of a blocking job

shop into a complete solution is not always possible. They describe three

heuristics for selecting the next variable to be fixed. Each heuristic extends

partial solutions by iteratively selecting one of the remaining unselected

arcs and adding it to the current partial solution. The three rollout heuris-

tics use different methods to select one of the remaining decision variables,

as follows:

1. Avoid Maximum Current Completion time (AMCC), identifies the

alternative arc that would increase the makespan the most, and then

selects its alternative. Any ties are broken by selecting the pair of

arcs with the smaller minimum increase.

2. Select Most Critical Pair (SMCP), selects the pair of arcs with the

largest minimum increase in the makespan. From this pair, the arc

with the smaller increase in makespan is selected. Meloni et al. (2004)

mention no tie breaking rule. In our implementation, ties are broken

by maximum largest increase in penalty score.

3. Select Max Sum Pair (SMSP), selects the pair of arcs with the great-
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est combined increase in makespan, and out of these two selects the

arc with the smallest increase in makespan. Meloni et al. (2004)

mention no tie breaking rule. In our implementation, ties are broken

by selecting the pair with the smallest minimum increase in penalty

score.

We have implemented the three above heuristics for the blocking job

shop with due dates and flexible maintenance, in order to compare their

performance against our own algorithms. Note that Meloni et al. (2004)

were concerned with minimising the makespan, whereas we are concerned

with minimising the tardiness penalty. Thus, in order to obtain a descrip-

tion of our implementation, replace “makespan” with “tardiness penalty”

in the heuristic descriptions above.

One disadvantage of the rollout methods by Meloni et al. (2004) is that

they require a large number of schedule evaluations. At each iteration,

both alternatives of each pair of arcs have to be evaluated. Therefore,

if a problem consists of n alternative arcs, one of which will be fixed at

each iteration, then the total number of schedule evaluations is 2
∑n

i=1 i =

n (n+ 1). Our typical test problems have approximately 1050 alternative

arcs, requiring in excess of 1.1 million schedule evaluations. In an attempt

to reduce the number of schedule evaluations required, we created two

rollout algorithms with a predetermined variable selection order. This order

is determined by the order of the variables in the problem representation.
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Thus, at each iteration, it is only necessary to do two schedule evaluations,

one for each of the two alternative arcs. This was tested in two different

ways:

1. Random: Each variable is fixed in turn, randomly, at 0 or 1. If the

first choice is infeasible, the other option is selected instead.

2. Minimum score: Each variable, in turn, is evaluated at both values.

The selected value is that which results in the partial schedule with

the lower score.

Both methods struggled to find feasible solutions. The random method

is not deterministic, and was therefore repeated a large number of times.

Out of 100,000 schedule creation attempts, only 3 resulted in a feasible

solution. This number is far too small to be useful, either on its own or as

part of a different metaheuristic.

9.3.1 Rollout with Guaranteed Feasibility

To overcome the infeasibility issues outlined above, we have developed a

novel rollout method which incorporates our guaranteed feasibility proce-

dure presented in Section 8.8.2. Our rollout method uses the machine based

model of the problem. In this model, the operations on each machine are

ordered in the way that they are to be processed. Once each machine has

all its operations ordered, this completely defines the schedule.
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The rollout procedure is detailed in Algorithm 7. It starts with an empty

schedule (Step 2). Operations are added one at a time. The order in which

operations are added is fixed in advance by a topological sorting. When

this topological sorting is determined, the byproduct is an initial schedule

based on this sorting (Step 1). For each operation (Step 4), the scheduling

decision to be made is where to insert it in the sequence of operations

already scheduled on the required machine. If there is only one feasible

insertion point (Step 5), the operation is inserted there and the algorithm

moves on to the next operation. When there are multiple available insertion

points, a partial solution is created for each feasible insertion point (Step 9).

From our guaranteed feasibility schedule creation method, we know that

a partial solution can be feasibly completed whenever only complete job

groups have been scheduled. The temporary partial solution on each branch

is then checked for feasibility (Step 11), by systematically checking whether

the remaining nodes in the current job group can be feasibly added to the

partial schedule. If this is not possible, there is no feasible extension on

this branch and it is discarded. If there is only one remaining branch,

this is accepted as the new partial schedule. If multiple branches remain,

each branch is randomly completed c times (Step 12). One of the branches

is then selected as the new partial schedule (Step 15). This can be done

according to one of three policies:

1. Select the branch with the minimum penalty score.
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Algorithm 7 Pseudo code of the developed rollout algorithm.

1: Create an initial solution based on topological sorting of the jobs.

2: Create empty solution

3: while unscheduled operations remain do

4: Select the next operation to be scheduled

5: if single feasible insertion point available then

6: Insert operation

7: Return to Step 3

8: else if multiple feasible insertion points available then

9: Create a branch for each insertion point

10: for each branch do

11: Check branch for feasibility

12: Complete branch c times

13: end for

14: end if

15: Partial schedule on most promising branch is retained

16: if partial schedule is no better than the incumbent then

17: Break while-loop

18: end if

19: end while

20: Return the best-so-far solution.
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2. Select the branch with the smallest mean penalty score.

3. Select the branch with the smallest mean of the log penalty scores.

This option was included because the fixed penalties for due date

violations have a very strong influence on the mean penalty score.

Any complete solution encountered during the rollout procedure is com-

pared against the best-so-far solution, and replaces this if it is better. There

is also the option to apply a local optimisation routine, based on single-

operation swap, to improve any complete solutions. If this local optimisa-

tion is activated, each operation, in turn, is removed from the sequence of

operations on its respective machine. Every schedule that can be created

by reinserting the operation at each possible position on this machine is

evaluated. The operation is then returned into the schedule at the place

with the minimum schedule score. This continues until no improvement

has been found for an entire cycle through all the operations.

9.3.2 Rollout Parameters

The parameters listed in Table 9.3.1 influence the performance of the roll-

out algorithm. In order to optimise the performance, the parameters were

fine-tuned with SMAC (Section 6.3, Hutter et al. (2011)). Each rollout

run was terminated after five minutes. This is the same time limit that

was given to other methods for parameter optimisation, and therefore pro-

vides a fair comparison. The results obtained with SMAC show that the
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Parameter Type Range Parameter description

c integer Z>0 Number of schedules per branch

l binary {disabled, enabled} Local optimisation

s categorical min,mean,meanlog Branch selection parameter

Table 9.3.1: The blocking job shop rollout parameters.

Parameter Recommended Value Recommended Range

c 30 [20,100]

l Enabled Enabled

s minimum minimum

Table 9.3.2: Recommended values and ranges for the blocking job

shop rollout parameters.

parameter values recommended in Table 9.3.2 give the best performance.

Performance was clearly better with local optimisation enabled. Select-

ing the branch with the minimum value gave, on average, a slightly better

performance than the other options. With these two parameters fixed, per-

formance of the algorithm does not vary much over the number of times

each branch is completed, with values for c over the range [20, 100] giving

similar performance.

The computational experiments in Chapter 11 show that the perfor-
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mance of the rollout method presented above is not very encouraging.

While it outperforms the SMCP method of Meloni et al. (2004), with re-

spect to solution quality, it also requires more running time. Our method

is outperformed by AMCC and SMSP, both in terms of solution quality

and running time required.

9.4 Simulated Annealing for the Blocking

Job Shop

We have developed another heuristic solution method for the blocking job

shop problem with flexible maintenance, based on Simulated Annealing

(SA). An overview of SA is provided in Section 2.3.3. In this section, the

blocking job shop is modelled as a sequence of operations on each machine.

The main ingredient of SA is the perturbation mechanism. Here, we employ

two types of perturbation, namely the Single Operation Reschedule, and

the Job Group Reschedule.

9.4.1 Perturbation: Single Operation Reschedule

The first type of Simulated Annealing perturbation is the Single Operation

Reschedule. A single operation is selected, at random and with equal prob-

ability. This operation is removed from the sequence of operations on its

respective machine. Precedence constraints are used to determine the ear-
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liest and latest potential reinsertion points in this sequence. The operation

is then randomly reinserted within this range. Due to the blocking con-

straint, the resulting schedule may be infeasible. In that case, the random

reinsert is repeated until a feasible insertion point is found. Reinsertion in

the original location is possible, and has the same probability of reinser-

tion at any other point in the sequence. This provision is needed for those

occasions when reinsertion is only feasible at the original position.

While the simplicity of the Single Operation Reschedule is attractive,

its drawback is that it is not always able explore the entire solution space.

To see this, consider two identical jobs, J1 and J2. Both jobs first require

machine M1, and then machine M2. In a blocking job shop, such identical

jobs cannot overtake each other. In any valid solution, J1 either precedes J2

on both machines, or follows it on both machines. A single operation swap

can only change the order of the jobs on one of the machines. However,

this will result in an infeasible schedule, in which one job is overtaken by

another. This means it is impossible to reach that part of the solution

space in which the order of jobs J1 and J2 is swapped.

9.4.2 Perturbation: Job Group Reschedule

The Job Group Reschedule is a perturbation used to ensure that the entire

solution space can be explored. In the Job Group Reschedule, one complete

job group is selected for rescheduling, with random and equal probability.

Recall that a job group contains all jobs connected through merges and
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splits (Section 8.8.2). Here, a single job without any merges or splits is

also considered to be a job group. All the operations in the selected job

group are removed from the schedule. The operations are then randomly

reinserted into the sequences on their respective machines. Again, some

reinsertions may not be feasible, due to the blocking constraints. When-

ever an attempted reinsertion leads to infeasibility, all operations in the

selected job group that are already reinserted are once again removed from

the schedule, and the reinsertion process is restarted. Once all operations

have been successfully returned into the schedule, this is the new proposed

schedule. Again, there is no guarantee that the new proposed schedule is

not identical to the old one. This is intentional, since there may be occa-

sions where the selected job(s) cannot be returned to any position other

than the original one.

9.4.3 Algorithm Structure

Given that the number of job operations is denoted by n, the change in

objective function between the current solution and the proposed solution

by ∆E, and that g is the interval at which the Job Group Reschedule

perturbation is used, the algorithmic structure of the developed Simulated

Annealing algorithm follows Algorithm 8. This closely follows the proposed

approach in Dréo et al. (2006).
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Algorithm 8 Pseudo code of the developed Simulated Annealing algo-

rithm.

1: Set the initial temperature, T0

2: Create an initial solution based on topological sorting of the jobs

3: while termination criteria not met do

4: while cooling criteria not met do

5: if iteration is not a multiple of g then

6: Select a candidate solution from Single Operation Reschedule

7: else

8: Select a candidate solution from Job Group Reschedule

9: end if

10: At temperature T , accept the candidate solution with probability

min
{

1, exp(−∆E
T

)
}

11: end while

12: Reduce the temperature: Tnew = α× Told

13: end while

14: Return the best known solution
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9.4.4 Simulated Annealing Parameters

The performance of the SA algorithm depends on a number of parameters,

shown in Table 9.4.1. The cooling parameter α lies in the range (0, 1).

The initial temperature, T0 > 0, must be set. Let n denote the number of

operations to be scheduled. Cooling is triggered when either k × n moves

have been accepted, or l×n moves have been attempted, whichever happens

first (for k ≤ l). Note that moves only count as accepted if the value of

the accepted solution is different from the incumbent solution it replaces.

This is because solutions with equal value are always accepted and the

algorithm sometimes repeatedly jumps back and forth between solutions

of equal quality. Finally, the Job Group Reschedule takes place at every g

iterations.

The parameters were optimised with SMAC (Hutter et al. (2011)). Each

Simulated Annealing run was terminated after five minutes. This is the

same time limit that was given to other methods for parameter optimisa-

tion, and therefore provides a fair comparison. The results obtained with

SMAC show that the parameter values recommended in Table 9.4.2 give

the best performance.

The computational experiments in Chapter 11 show that the perfor-

mance of the Simulated Annealing method presented above is not very

encouraging. While it outperforms the SMCP method of Meloni et al.

(2004), as well as our own Rollout and ACO methods, with respect to solu-
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Parameter Type Range Parameter description

α continuous (0, 1) Cooling rate

T0 continuous R≥0 Initial temperature

k integer Z>0 Acceptance based cooling trigger

l integer Z>0 Attempt based cooling trigger

g integer Z>0 Group reschedule interval

Table 9.4.1: The block shop Simulated Annealing parameters.

Parameter Recommended Value Recommended Range

α 0.88 [0.2,0.89]

T0 656924 [600000, 850000]

k 107 [80, 125]

l 250 [240, 450]

g 2 [2, 4]

Table 9.4.2: Recommended values and ranges for the block shop Sim-

ulated Annealing parameters.
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tion quality, it also requires more running time. Our Simulated Annealing

method is outperformed by AMCC and SMSP, both in terms of solution

quality and running time required.



Chapter 10

Blocking Job Shop: Exact

Methods

10.1 Introduction

For the non-blocking variant of the job shop scheduling problem with flex-

ible maintenance, Branch and Bound (B&B) was shown to perform well

when hybridised with heuristic methods (Chapter 4). Since the heuristic

methods developed for the blocking job shop in Chapter 9 generally showed

a disappointing performance, it is of interest to investigate whether exact

methods offer a suitable alternative. This chapter presents a novel B&B

method which solves to optimality the blocking job shop problem with flex-

ible maintenance. This problem is described in Chapter 8. The proposed

B&B method employs a novel branching strategy (Section 10.4.2), as well

as a novel search strategy (Section 10.6.5). The computational experiments

200
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in Chapter 11 show that the proposed Branch and Bound method clearly

outperforms almost all tested heuristic methods, both in terms of running

time and solution quality. Only the heuristics based on Topological Sorting

have a shorter running time, but these are not suitable alternatives due to

the poor quality solutions they produce.

The Branch and Bound method was first introduced by Land and Doig

(1960). A survey of recent advances in B&B is presented in Morrison et al.

(2016). Branch and Bound has been applied to solve a wide range of discrete

optimisation problems. A basic overview of the general B&B procedure is

presented in Section 2.4.

An overview of the proposed Branch and Bound method is given in

Section 10.2. The heuristic presented in Section 10.3 provides an initial

upper bound. Existing and novel branching strategies are discussed in Sec-

tion 10.4. This is followed by a discussion of existing and novel search

strategies in Section 10.6. The algorithm parameters, and their recom-

mended values, are presented in Section 10.8. The chapter then concludes

with a sensitivity analysis of the B&B parameters in Section 10.9.

10.2 Branch and Bound for the Blocking Job

Shop with Flexible Maintenance

One of the main factors determining the efficiency of Branch and Bound

is the ability to quickly prune branches. We employ several techniques to
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speed up the pruning process, including a novel ranking method for the

decision variables, as well as a novel node selection procedure. The cur-

rent section first describes the main structure of the developed Branch and

Bound algorithm. This is followed by a discussion of the main components

of the algorithm.

The Branch and Bound algorithm presented here uses the novel mod-

ification of the alternative graph described in Section 8.7 to model the

scheduling problem. Recall that alternative arcs determine the order in

which two operations will be processed on the same machine. Each pair

of mutually exclusive alternative arcs has a corresponding binary decision

variable xi. If xi = 0, then the first of these two alternative arcs is included

in the solution. The other arc is included when xi = 1.

The main structure of the algorithm is shown in Algorithm 9. The

best-known solution is updated any time a better solution is encountered,

which allows any branch with a score (lower bound) no better than the

best-known solution to be pruned. An initial incumbent solution is created

through topological sorting followed by local optimisation (Step 1). This

solution serves as an initial upper bound. The algorithm then creates a

single incomplete solution. This is built by only including the job arcs from

the alternative graph representation, since the job arcs are fixed (Step 2).

To complete the solution, exactly one arc must be selected from each pair of

alternative arcs. For a solution to be feasible, its corresponding graph must

be a directed acyclic graph. In a partial schedule, the earliest starting time
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Algorithm 9 Pseudo code of the developed Branch and Bound algorithm

for the blocking job shop with flexible maintenance.

1: Use a fast heuristic (topological sorting with local optimisation) to

obtain the first incumbent solution

2: Create a partial solution with job arcs only

3: Perform Immediate Selection (Section 10.5)

4: Rank and sort the remaining decision variables (Section 10.4.2)

5: while at least one partial solution remains do

6: Reset gradient-based sort origin (Section 10.6.5)

7: Perform Strong Branching on the single partial solution (Sec-

tion 10.4.1)

8: Regular Immediate Selection

9: Reset the count that triggers solution stack reordering

10: while at least two partial solutions remain do

11: if stack reorder-threshold reached then

12: Reorder the solution stack (Section 10.6.5)

13: end if

14: Take a partial solution from the top of the stack

15: if the current branching level is a multiple of m then

16: Perform Immediate Selection

17: if solution is now complete or no better than best-so-far then

18: Prune branch and restart while loop

19: end if

20: end if

21: Branch on the first non-fixed variable

22: end while

23: end while

24: Return optimal solution
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of each operation can be calculated as the longest path to the associated

node. Each time a machine arc is fixed in the partial solution, the longest

path to every node either remains the same or is increased. Therefore,

the schedule score cannot be decreased by adding arcs, and any partial

solution which has a score worse than or equal to the best known solution

can be discarded. The branching scheme branches on the alternative arcs

that have not yet been fixed in the partial schedule. Branches are pruned

as soon as they are known to be either infeasible or no better than the

best-so-far solution.

The partial solutions, or open branches, are stored in a stack. Each time

branching takes place, the two newly created branches are placed on top

of the stack. The solution with the lower score is placed on the stack last.

Then, the branch on top of the stack is selected next for further branching.

Thus, the algorithm partly follows a depth-first Branch and Bound strategy.

At certain intervals, the stack is reordered according to one of several search

strategies (Section 10.6). This prioritises exploration of promising parts of

the solution space which would possibly be left unexplored for much longer

by a pure depth-first search procedure.

Having created a partial solution, the algorithm applies the Immediate

Selection method (Step 3, described in Section 10.5, Carlier and Pinson

(1989)) to reduce the number of remaining unfixed alternative arcs. The

remaining variables are then ranked and sorted by a measure of criticality

(Step 4), as described in Section 10.4.2.
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The solution stack now contains a single partial solution (Step 5). The

origin used by the gradient sort search strategy is updated at this point

(Step 6, Section 10.6.5). Whenever the stack only contains a single solution,

Strong Branching is applied (Step 7, Section 10.4.1, Klabjan et al. (2001)).

Any solutions which are not pruned are returned to the top of the solution

stack, with the solution with the smaller lower bound being returned last.

Strong Branching is always followed by regular Immediate Selection (Step 8,

Section 10.5) on all solutions in the stack (at most two). The count which

triggers a stack reordering is also reset to 0 when only a single solution is

present in the stack (Step 9). Whenever two or more solutions remain in the

stack, regular branching takes place, but only after checks are performed to

see whether stack reordering or Immediate Selection are due to take place.

Before regular branching takes place, the stack is reordered (Step 12)

if during the previous f regular branching operations stack ordering has

not taken place, and the incumbent solution has not been replaced. If

more than one of the search strategies (Section 10.6.5) are active, the next

reordering method is selected according to the round-robin principle.

A partial solution is taken from the top of the stack (Step 14). If

this partial solution contains a multiple of m fixed variables, it undergoes

Immediate Selection (Step 16). The motivation behind this is to reduce the

remaining solution space. Each time a variable is fixed in the branching

process, a binding constraint might be imposed on some unfixed variables.

In other words, some of the remaining variables can now only be fixed in
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one way. Fixing these variables may then lead to even more variables also

being restricted to particular values. If the partial solution is now no better

than the incumbent solution, it is discarded (Step 18), and the while loop

restarts. Otherwise, the partial solution is returned to the top of the stack.

If the solution is complete, a comparison with the best-so-far solution is

performed. The solution replaces the best-so-far solution if it is better,

otherwise it is discarded.

The partial solution at the top of the stack now undergoes regular

branching (Step 21), on the first unfixed variable, i.e. the variable with

the highest rank. During regular branching, the algorithm follows a quasi-

depth-first branching strategy. At each branching point, the lower scoring

branch is investigated first. Due to Constant Immediate Selection this is

not entirely a depth-first search: Two solutions born from the same node

may end up having a different number of additional variables fixed by the

Constant Immediate Selection process (Section 10.5.1).

Finally, the Branch and Bound algorithm returns the optimal solution

found during the search process.

10.3 Initial Upper Bound

Branch and Bound algorithms perform better with lower upper bounds,

since this facilitates quicker pruning. If no initial upper bound is available,

it has to be set to infinity. In order to obtain a better initial bound, it may
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be possible to create an initial incumbent solution with some fast heuristic.

This idea is demonstrated in Maslov et al. (2014), who note that “almost

none of the existing exact algorithms apply” this approach of obtaining an

initial solution with some heuristic method. We use a specialised heuristic

to find an initial upper bound.

The initial incumbent solution is created in two steps. Firstly, a so-

lution is created based on a topological sorting of the jobs. Secondly, a

local optimisation routine is applied to improve the quality of this initial

incumbent solution.

1. Topological sorting: The topological sorting schedule construction

method closely follows the guaranteed schedule construction method

that was introduced in Section 8.8.2. The main difference here is

that jobs are never inserted into the partial schedule, but are always

appended to it. Initially, a topological sorting of all the jobs is cre-

ated, subject to their precedence constraints. Starting with an empty

schedule, a full schedule is then created by appending all operations

of each job in turn, in topological order. The intuition is that this

aims to have at most one job in the system at any given time, so that

no deadlock can occur. In reality there probably will be more than

one job in the system at times, since a job can start its first operation

as soon as its first required machine is vacated for the final time by

all preceding jobs. Whenever jobs split or merge there will also be
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more than one job in the system. In that case, the topological sorting

will be based on groups of jobs, as described in Section 8.8.2.

2. Local optimisation: The schedule based on topological sorting of

the jobs will most likely be of very poor quality. We apply a local

optimisation routine, based on single-operation swap, to improve this

initial schedule. Every schedule that can be created by reinserting

the operation at a different position on this machine is evaluated.

The operation is then returned into the schedule at the place with

the minimum schedule score. This continues until no improvement

has been found for an entire cycle through all the operations. This

local optimum is then passed to the Branch and Bound routine as its

first incumbent solution.

10.4 Branching Strategies

The branching strategy determines the branching order of the variables.

The order in which the variables are branched on can have a very large

impact on the overall computational cost. It is important to use a branching

strategy which quickly finds a close-to-optimal solution, to facilitate faster

pruning. Various existing branching strategies can be found in Achterberg

et al. (2005) and Morrison et al. (2016), some of which are summarised next,

in Section 10.4.1. Recently, the development of better branching strategies

was identified as an open research direction by Morrison et al. (2016). A
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novel branching strategy is presented in Section 10.4.2.

10.4.1 Existing Branching Strategies

The aim of Strong Branching is to quickly increase the score of a partial

solution (Klabjan et al. (2001)). It does so by branching on the variable

with the largest score on its lowest scoring branch, i.e., it selects the variable

with the largest guaranteed increase of the lower bound. While Strong

Branching reduces the overall number of branching operations required, it

is computationally expensive to evaluate the minimum increase in penalty

score for each variable at each branching point (Achterberg et al. (2005)).

In our algorithm, Strong Branching is performed whenever the solution

stack contains just a single partial solution. At any other time, variables

are branched on in the order determined by their rank, as described in

Section 10.4.2.

For integer optimisation problems in which it is possible to solve the

linear relaxation of the problem, a common approach is to select the variable

which is most fractional in the relaxed solution. The intuition here is that

forcing the most fractional variable to be integer will have the greatest effect

on the other remaining variables in the problem. According to results in

Achterberg et al. (2005), there is no evidence that this most infeasible first

rule performs better than selecting variables at random.

Pseudo-cost branching, first introduced by Benichou et al. (1971), learns

about the effects of each variable during the branching process. This in-
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formation is then used to estimate which variables have the greatest effect

on the objective function. One weakness of pseudo-cost branching is that

in the early stages there is either no or very little information available for

each variable. Hybrid methods between strong branching and pseudo-cost

branching try to overcome this by employing strong branching initially, and

then pseudo-cost branching once enough information is available. This is

the idea behind reliability branching, introduced in Achterberg et al. (2005),

in which strong branching is applied to each variable initially. Once enough

information is available for a variable, pseudo-cost branching is used in-

stead.

More recently, Khalil et al. (2016) present a general purpose method for

ranking the variables during the branching process. Their method learns

which variables in the current problem are most effective at closing the gap

between the current bound and the best known solution. The variable with

the current highest rank can then be selected at each branching operation.

10.4.2 Novel Branching Strategy: Variable Ranking

The branching strategies described previously must constantly update the

estimated effect of branching on each variable, which carries a compu-

tational cost. We have developed a novel branching strategy that uses

problem instance specific information to create a predetermined branch-

ing order. Since our solution method is tailored to a specific problem, we

can gain an advantage by using knowledge about our problem to rank the
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variables, in advance of the branching process. We have investigated two

variable ranking methods, using both job and machine related information.

Initially, for both methods, job and machine ranks are calculated as follows:

• Job Ranking: Jobs are ranked based on slack. Slack is the non-

negative difference between the available processing time (the length

of time between the job release date and its soft due date) and the

required processing time (the sum of the processing times of all oper-

ations of the job). Slack is a non-negative quantity that equals zero

whenever the required processing time is greater than the available

time. More formally, let dj denote the soft due date of job j, and treq

the total processing time required by job j. The slack of job j is then

defined as follows:

slackj = max {0, dj − si − treq}

The motivation for ranking by slack is that jobs with less slack are

at greater risk of being scheduled in such a way as to miss their due

dates. Decision variables associated with such jobs should therefore

be considered to be more critical. The job with the least slack is given

a rank of 1, the job with the next least slack is given a rank of 2, and

so on. Jobs with equal slack values share the same rank.

• Machine Ranking: Machines are ranked based on the total demand

placed on them. The motivation behind this is that decision variables

associated with machines with high demand have less flexibility. In
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the context of a partial schedule, the ordering of operations on a

busy machine is more likely to have an effect on job completion times

than the ordering of operations on a less busy machine. Demand is

measured as the total processing time required on a machine. A rank

of value 1 is given to the machine with the highest demand, a rank

of value 2 is given to the machine with the second highest demand,

and so on. Machines with equal demand share the same rank.

Each decision variable is then assigned a rank, by combining the ma-

chine and job ranks associated with it. Let r denote the variable rank, let

rm denote the machine rank, and rj the job rank. Recall that each decision

variable determines which of two alternative machine arcs is included in

the solution. A machine arc imposes an ordering on two nodes of different

jobs. This means that each variable has two different jobs associated with

it, and hence two job ranks, r
(1)
j and r

(2)
j , say. Its combined job rank rj is

then calculated in one of three ways:

rj =
r

(1)
j + r

(2)
j

2
, (10.4.1)

rj = min
(
r

(1)
j , r

(2)
j

)
, (10.4.2)

rj = max
(
r

(1)
j , r

(2)
j

)
. (10.4.3)

The variable’s machine rank rm is simply the rank of the associated ma-

chine. Before the job and machine ranks are combined, both are normalised.

Let Rj and Rm denote the largest job and machine rank, respectively. The
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job ranks are then normalised as

rj ← 1− rj − 1

Rj

, (10.4.4)

and the machine ranks are normalised as

rm ← 1− rm − 1

Rm

. (10.4.5)

All job and machine ranks now lie within the range (0, 1]. Note that 0 is

excluded from this, to allow scaling, and that 1 is now the highest rank.

Let b ∈ [0, 1] be a balancing parameter. The job and machine ranks are

then weighted by the balancing parameter:

rj ←(1− b)× rj , (10.4.6)

rm ←b× rm . (10.4.7)

Finally, each variable has its weighted job and machine ranks trans-

formed into a single variable rank r, according to one of the two following

methods:

• Weighted Sum: The variable rank r is given by

r = rm + rj . (10.4.8)

The effect of summing the two ranks is illustrated in Figure 10.4.1,

for the case where there are five ranks of each type, and b = 0.5.

The highest rank is in the top-right corner, and the combined rank

decreases with each diagonal towards the bottom-left.
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Figure 10.4.1: This heat-map illustrates the effect of combining job

and machine ranks through the weighted sum method, for balance pa-

rameter b = 0.5.

Figure 10.4.2: This heat-map illustrates the effect of combining job

and machine ranks through the maximum-primary, minimum-secondary

method, for balance parameter b = 0.5.
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• Maximum primary, minimum secondary: Variables are assigned

a primary rank, which is the maximum of their weighted job and ma-

chine ranks, and a secondary rank, which is the minimum of their

weighted job and machine ranks, as follows:

rprimary = max (rm, rj) , (10.4.9)

rsecondary = min (rm, rj) . (10.4.10)

Variables are then ordered by rprimary, with ties broken by rsecondary.

The effect of this approach on the final rank is illustrated in Fig-

ure 10.4.2, for the case where there are five ranks of both types, and

b = 0.5. The highest rank is still in the top-right, but now ranks

first decrease along both the horizontal and vertical line, and then

according to an inverted L-shape towards the bottom-left.

When b = 0, the final rank is only based on job ranks. When b = 1

(see Figure 10.4.3), the final ranks are only based on machine ranks. In

these two special cases, the weighted-sum and max-min methods will return

identical rankings.

10.5 Immediate Selection

Early experimental versions of our Branch and Bound algorithm employed

a depth-first search strategy. During depth-first search, the algorithm starts

with a single partial solution, selects a variable to branch on, and returns
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Figure 10.4.3: When b = 1, the weighted-sum and max-min ranking

methods return identical final rankings.

the new partial solutions to the top of the solution stack. It then takes

the next partial solution to branch on from the top of the solution stack,

which will be one of the solutions that was just returned to the stack.

Infeasible branches are discarded. This implies that, whenever a branch

returns no feasible solutions, the algorithm back-tracks up the search tree

until a node with open branches is encountered, and continues from there.

A drawback of this is that thrashing may occur (Kumar (1992)). Thrashing

is the repeated encountering of infeasibility due to the same reason. For

example, consider that the second and third branching variables, x2 and x3

say, have been assigned particular values, which result in another variable

further down the tree, x103 say, always leading to infeasibility, no matter

what value is assigned to x103. Infeasibility will be detected any time x103
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is reached, but the algorithm won’t be able to associate this with the two

branching variables near the top of the tree. The algorithm will simply

backtrack, and continue its decent from another branch. If the backtrack

did not go high enough, i.e. back to x3, infeasibility will be detected again

and again each time x103 is reached. Thrashing can be very computationally

expensive. One of the methods we employ to reduce this cost is known as

Immediate Selection.

The Immediate Selection process is used to reduce the number of re-

maining unfixed variables. It fixes variables outside of the branching pro-

cess. The Immediate Selection of disjunctive arcs was introduced by Carlier

and Pinson (1989). They identified pairs of nodes which can only be ordered

in one way in the optimal solution. A number of different implementations

of Immediate Selection have been proposed in the literature (Brucker et al.,

1994a). In the context of the blocking job shop, Immediate Selection has

been employed by Mascis and Pacciarelli (2002). We employ Immediate

Selection in a similar way, as described below.

Let I denote the set of alternative arcs which have not yet been included

in the partial schedule. For each pair of alternative arcs (i, j), (k, l) ∈ I,

each arc is tested in turn. If the inclusion of arc (i, j) results in a solution

no better than the current upper bound, arc (k, l) is added to the solution,

and vice versa. If both arcs cause the partial schedule score to increase

to at least the upper bound, then the partial schedule is discarded, as it

cannot be the basis of an improved upper bound.
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10.5.1 Constant Immediate Selection

Another way to reduce instances of thrashing and speed up the search pro-

cess is what we call Constant Immediate Selection. Consider the binary

variables x and y. When x = 0, y can take any value. However, when

x = 1, the only feasible value for y is 1. Fixing y = 1 may in turn impose

restrictions on other variables. To take advantage of this, at the start of

the algorithm a list is created for each variable xi, listing all other vari-

ables that can be fixed if a particular value is assigned to xi. To construct

the Constant Immediate Selection list, a directed acyclic graph represent-

ing a partial solution is created. This graph contains all job arcs, all job

precedence constraint arcs, but no machine arcs. Any combination of two

machine arcs which would create a circle in this graph is recorded, and

their feasible alternatives are added to the Constant Immediate Selection

list. This process is quick, as it does not involve any schedule evaluations.

Each time a variable is fixed during the Branch and Bound process, any

unfixed variables on its Constant Immediate Selection list are also fixed.

This is a recursive procedure, so that Constant Immediate Selection is per-

formed for any variables fixed by Constant Immediate Selection. It may be

that infeasibility is detected during this process. In that case, the partial

solution is discarded.

A similar procedure, referred to as static implications, is used by D’Ariano

et al. (2007), and later by Pranzo and Pacciarelli (2016).



10.6. SEARCH STRATEGIES 219

10.6 Search Strategies

The search strategy of a Branch and Bound algorithm determines the way

in which the branching tree is explored. More specifically, it governs the

order in which the nodes are selected for branching. A summary of search

strategies is provided in Khalil et al. (2016). The following sections de-

scribe several search strategies. A novel search strategy is then proposed

in Section 10.6.5.

10.6.1 Breadth-first Search

A well known search strategy is breadth-first search, in which all nodes

at the current level of the tree are branched on before descending to the

next level of the tree. This has a large storage requirement, which makes

it unsuitable for many problems. Another drawback is that when upper

bounds are based on complete solutions, as is the case for our scheduling

problem, this bound cannot be updated until the entire tree has been ex-

plored (Morrison et al. (2016)). For these reasons, breadth-first search is

not a suitable search strategy for our scheduling problem.

10.6.2 Depth-first Search

During depth-first search, all partial solutions, i.e. the open branches, are

stored on a single stack. Initially, the stack contains a single solution with

no fixed variables. Whenever branching takes place, a solution is taken
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from the top of the stack. This solution is branched, and the resulting

partial solutions are returned to the top of the stack. This means the

next branching operation takes place on one of the most recently created

leaves of the tree, which causes the algorithm to move further down the

tree. When a dead-end is reached, due to a solution being complete or

infeasible, the algorithm back-tracks up the tree until the first open branch

is encountered. This open branch is then explored further, according to the

same rules. One advantage of depth-first search is that the number of open

branches is relatively small compared to other search strategies, so that

it has a relatively small memory requirement. Another advantage is that

complete solutions are obtained quicker, with the resulting tighter upper

bounds assisting the pruning process.

10.6.3 Best-first Search

The best-first search selects the next leaf to branch on as the leaf represent-

ing the most promising partial solution. In the context of our scheduling

problem, this would be the problem with the minimum lower bound. The

advantage of this strategy is that no time is spent exploring regions which

are worse than the optimal solution. The drawback of this strategy is that

it leads to many open branches, and therefore has a large memory require-

ment.



10.6. SEARCH STRATEGIES 221

10.6.4 Cyclic Best-first Search

The cyclic best-first search is described in Kao et al. (2008), where it is

called distributed best first search. It is a hybrid between depth-first search

and best first search. This search strategy cycles through all the levels of

the search tree. At each level, the best node is expanded, and its children

are stored at the next level. At most one node is expanded at each level

during each cycle.

10.6.5 Novel Search Strategy: Stack Reordering

Morrison et al. (2016) identify three potential research directions for Branch

and Bound algorithms. The first research direction they identify asks:

“How can the search strategy be tailored for different problems?”. This

section presents a novel search strategy developed for our problem. Dur-

ing initial development of the Branch and Bound algorithm, a depth-first

search strategy was used. One restriction of depth-first search is that some

promising regions of the solution space may not be explored for some time.

It is therefore of interest to consider how to better explore the search space,

while retaining the small memory requirements of depth-first search. Some

experimentation indicated that it could be beneficial to occasionally re-

order the solution stack. This can lead to additional promising regions

of the search tree being investigated sooner, whilst maintaining some of

the desirable properties of the depth-first approach. The following four
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reordering policies were tested:

1. Completeness: Most complete solution on top of the stack.

2. Score: Smallest score on top of the stack.

3. Random: Random ordering of the stack.

4. Gradient: Smallest gradient on top of the stack, as calculated next.

In its basic form, we define the gradient to be the total tardiness score di-

vided by the partial solution completeness. The completeness is the number

of fixed variables in a partial solution. Therefore,

gradient =
score

completeness
. (10.6.1)

The gradient is a measure of how much the score has increased, on average,

with each variable that has been fixed. The intuition is that this could

be somewhat representative of average score increases for the remaining

variables, thus making solutions with smaller gradients more attractive.

Consider the following two examples as an illustration of how this works:

1. There are two solutions with equal score. The first solution has 20%

of its variables fixed, and the other has 80% of its variables fixed. The

more complete solution appears more promising, as the less complete

solution is likely to have increased in score by the time it reaches

80% completion. Therefore, the more complete solution will be given

priority by the gradient sort.
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2. There are two solutions of equal completeness, but with different

scores. In that case, the solution with the lower score appears more

promising and will be given priority by the gradient sort.

The gradient defined in Equation 10.6.1 is based on an implied origin at

[0, 0]. However, it would be more sensible to use the most recent common

predecessor of all remaining partial solutions as the origin. We therefore

define the most common predecessor solution as the origin, and calculate

the gradient as

gradient =
score− {common origin score}

completeness− {common origin completeness}
(10.6.2)

In practice, this means the origin is updated whenever only a single

solution remains in the stack.

Parameter f determines how often stack reordering is triggered, i.e.

after f consecutive branching operations during which no new incumbent

solution has been found. When two or more reordering methods are active,

the round-robin method is used to determine the type of reordering to

employ next. Partial solutions are still taken from, and returned to, the

stack according to the (quasi) depth-first search strategy. The sensitivity

analysis in Section 10.9 shows that, in the context of our test problems,

our novel search strategy based on stack reordering outperforms depth-first

search.
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10.7 Branch and Bound Complexity

It was shown that the depth of the Branch and Bound tree increases polyno-

mially with the number of operations (Section 4.2.1). As such, any Branch

and Bound algorithm will at best have polynomial complexity, even if an

algorithm could be found which has a linear complexity in relation to tree

depth. See Section 4.4 for a discussion on the complexity of the Branch

and Bound algorithm for the non-blocking case. The same arguments apply

here. The computational experiments on different problem sizes presented

in Section 11.4 provide additional insights on how the algorithm performs

on both smaller and larger problem instances.

10.8 Parameter Tuning

The Branch and Bound method presented in this chapter has a number of

parameters that need to be set before running the algorithm. These values

should be carefully chosen, as they have a strong influence on the efficiency

of the algorithm. With a good set of parameter values, the algorithm will

often only require a few seconds to complete, whereas with the wrong set

of parameter values the algorithm might never finish.

The Branch and Bound parameters, including their type and permitted

range, are shown in Table 10.8.1. As some of the parameters are contin-

uous, or integers with infinite range, there are infinitely many permitted

parameter configurations. This means neither trial-and-error nor complete
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Par. Type Range Parameter description

b continuous [0, 1] Machine and job ranking balance

c binary {0, 1} Constant Immediate Selection

d binary {0, 1} Immediate Selection duration

j categorical avg, max, min Job rank combination type

f integer Z>0 Solution stack resorting interval

m integer Z>0 Immediate Selection interval

r categorical sum, max-first-min-second Rank combination type

Table 10.8.1: The blocking job shop Branch and Bound parameters.

enumeration of the parameter space are viable parameter tuning options.

In order to optimise the performance of the algorithm, the parameters

were fine-tuned with SMAC (Section 6.3, Hutter et al. (2011)). The test

instances for the blocking job shop are described in Section 11.1. The first

10 of these test instances were used in the parameter optimisation process.

As Branch and Bound is an exact method, the aim of the parameter opti-

misation was to discover a configuration which minimises the running time

of the algorithm. The first part of the algorithm, all the way through to the

initial local optimisation procedure, is not affected by the choice of parame-

ters. The algorithm running time was therefore measured from the moment

of the first branching operation. Some initial experimentation showed the

potential of some configurations to achieve average running times of less

than 10 seconds. With this in mind, a hard time limit of 300 seconds was
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imposed on individual algorithm runs. This is the same time limit that was

given to other methods for parameter optimisation, and therefore provides

a fair comparison. If after 300 seconds the algorithm had not terminated,

the result was reported as a time-out, and a penalty score of 3000 (i.e. ten

times the cut-off limit) was returned.

The results obtained with SMAC show that the parameter values rec-

ommended in Table 10.8.2 perform very well. Many similar configurations

within the recommended ranges also perform well.

Parameter Recommended Value Recommended Range

b 0.99 0.99

c 1 {1}

d 1 {1}

j any any

f 147 [100, 500]

m 6 {3, 4, . . . , 11}

r any any

Table 10.8.2: Recommended values and ranges for the blocking job

shop Branch and Bound parameters.



10.9. SENSITIVITY ANALYSIS 227

10.9 Sensitivity Analysis

All Branch and Bound parameters were subjected to sensitivity analysis, in

order to better understand their effect on the algorithm running time. The

sensitivity analysis investigated one parameter at a time, with the remain-

ing parameters fixed at their recommended values (Table 10.8.2). For each

parameter in turn, each of the first 10 test instances were evaluated over a

range of valid parameter values. Although the algorithm is deterministic,

runs were replicated 30 times at each parameter configuration. This was

necessary to account for small natural variations in running times.

In the case of continuous or integer parameters, it was necessary to de-

cide over which range of values, and at what increments, to evaluate the

algorithm performance. Knowledge from the parameter tuning process, as

well as some manual experimentation, was used to set these ranges. This

was done in such a way as to keep the tested ranges reasonably large. Indi-

vidual algorithm runs had a time limit of 300 seconds. Since the parameters

only affect the branching process, the running time was measured from the

start of the branching process. This excludes the time taken to load the

data, perform various pre-processing operations and find the initial solution

based on the topological sorting. These pre-processing operations typically

required less than one second of time. Any runs still active after 300 seconds

returned their best-so-far solution. The sensitivity analysis was performed

on a computer cluster with 2.6GHz Intel Ivy Bridge processors, with 4GB
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RAM available for each process.

The sensitivity analysis results are reported in the following sections.

At each parameter value, the results have been averaged over all runs for

all test instances. The ‘optimality zone’ in the graphs indicates the largest

continuous range of the parameter in which all final solutions were optimal.

10.9.1 Rank Balance Parameter b

Sensitivity analysis was performed for the rank balance parameter b, on the

range [0, 1] with increments of size 0.01. The final solutions in the range

[0.36, 1] were always optimal (Figure 10.9.1). The best performance with

respect to running time was observed in the range [0.91, 0.99] (Figure 10.9.2

Figure 10.9.1: Proportion of non-optimal results produced by the

Branch and Bound algorithm over the range of b.
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Figure 10.9.2: Mean running time of the Branch and Bound algorithm

for the blocking job shop over the range of b.

Figure 10.9.3: Mean running time of the Branch and Bound algorithm

for the blocking job shop over the upper half of the range of b.



230 CHAPTER 10. BLOCKING JOB SHOP: EXACT METHODS

and Figure 10.9.3). Throughout this range, the mean running time was

approximately 3.53 seconds. The performance at b = 1 is worse, at 5.52

seconds. When b = 1, the final rank is completely determined by the

machine rank. For values of b just below 1, the balance between job and

machine ranks is such that the final rank is based on machine ranks first,

with ties broken by job ranks. The range of b in which the final rank is

determined by machine ranks first, with ties broken by job ranks, depends

on the number of jobs and machines in the problem. For our test problems,

this range happens to be [0.91, 1). This is the range in which the best

performance was observed. Therefore we recommend that the final rank

should be determined by machine rank first, with ties broken by job rank.

We have used b = 0.99 in our computational experiments.

10.9.2 Immediate Selection Interval Parameter m

Sensitivity analysis was performed for the Immediate Selection interval pa-

rameter m, on the range [1, 100] with increments of size 1. The average

running time was less than 5 seconds on the range [3, 11] (Figure 10.9.4).

The best observed mean running time was 3.53 seconds, at m = 6. There-

fore we use m = 6 in our default configuration. Solutions in the range

[1, 37] were always optimal (Figure 10.9.5).
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Figure 10.9.4: Mean running time of the Branch and Bound algorithm

for the blocking job shop over the range of m.

Figure 10.9.5: Proportion of non-optimal results produced by the

Branch and Bound algorithm over the range of m.



232 CHAPTER 10. BLOCKING JOB SHOP: EXACT METHODS

10.9.3 Stack Reordering Parameter f

Sensitivity analysis was performed for the stack reordering interval param-

eter f . As the effect of this parameter is best shown when f is plotted on

a log scale, the range was set to [exp(0), exp(16)], i.e. [1, 8886111], with

constant increments on the log scale. Good performance with respect to

running time (less than 5 seconds on average) was observed in the range

[100, 500] (Figure 10.9.6). The best observed mean running time was 3.53

seconds, at f = 147. Solutions in the range [20, 984609] were always opti-

mal (Figure 10.9.7). In fact, almost all solutions for values of f above this

range were also optimal. The graph in Figure 10.9.6 flattens out for higher

values of f . This plateau represents the region in which each test problem

is solved before a single reordering takes place. Reordering was done by

score and by gradient, alternately.

For lower values of f , performance worsens due to a number of factors.

There is a computational cost associated with reordering the stack. Addi-

tionally, between calls to the reordering function, the algorithm performs

a depth-first search. This tends to keep the number of solutions in the

stack small. If the stack is frequently reordered, the number of solutions

in the stack tends to increase, which also affects the computational cost

associated with reordering the stack.
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Figure 10.9.6: Mean running time of the Branch and Bound algorithm

for the blocking job shop over the range of f .

Figure 10.9.7: Proportion of non-optimal results produced by the

Branch and Bound algorithm over the range of f .
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10.9.4 Constant Immediate Selection Parameter c

Sensitivity analysis was performed for the Constant Immediate Selection

parameter c. This binary parameter determines whether Constant Im-

mediate Selection is employed (c = 1) or not (c = 0). The boxplots in

Figure 10.9.8 (left) show some overlap. To assess whether the difference in

time performance between the two parameter values across all problem in-

stances is statistically significant, a Wilcoxon rank sum test was employed.

A non-parametric test is employed since the results do not follow a normal

distribution, as verified by the Shapiro-Wilk normality test. The null hy-

pothesis of the Wilcoxon rank sum test states that the compared samples

are independent samples from identical distributions with equal median

values, against the alternative hypothesis which states that one of the sam-

Figure 10.9.8: Spread of the mean B&B running time over binary

parameters c (left) and d (right).
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ples produces either lower, or higher median performance values. Here,

we apply a 5% significance level, α = 0.05. The statistical test strongly

suggests that there are significant differences in performance between the

two parameter values (W = 83730, p-value < 0.0001). With mean running

time 3.53 seconds, c = 1 generally performs better than c = 0. Therefore

we use c = 1 as our default value. All solutions found with each of the two

settings were always optimal.

10.9.5 Immediate Selection Duration Parameter d

Sensitivity analysis was performed for parameter d. This binary parameter

determines whether Immediate Selection ends after a single pass over all

the variables (d = 1), or whether it continues until each variable has been

checked once since the last variable was fixed (d = 0). The boxplots in Fig-

ure 10.9.8 (right) show quite some overlap, with d = 1 performing slightly

better on average. To assess whether the difference in time performance be-

tween the two parameter values across all problem instances is statistically

significant, a Wilcoxon rank sum test was employed. A non-parametric test

is employed since the results do not follow a normal distribution, as verified

by the Shapiro-Wilk normality test. The null hypothesis of the Wilcoxon

rank sum test states that the compared samples are independent samples

from identical distributions with equal median values, against the alterna-

tive hypothesis which states that one of the samples produces either lower,

or higher median performance values. Here, we apply a 5% significance
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level, α = 0.05. The statistical test strongly suggests that there are signif-

icant differences in performance between the two parameter values (W =

65051, p-value < 0.0001). Hence, we use d = 1 as our default value. All

solutions found with each of the two settings were always optimal.

10.9.6 Job Rank Combination Parameter j

Parameter j determines whether each variable has its final job rank cre-

ated by taking the average of the two job ranks, or by taking the minimum

or maximum of the two. Visually, there appears to be a lot of overlap in

performance (Figure 10.9.9). To assess whether the difference in time per-

Figure 10.9.9: Spread of the mean running time against job ranking

type.
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formance between the three parameter values across all problem instances

is statistically significant, three Wilcoxon rank sum tests were employed.

A Bonferroni correction is applied to the significance level to account for

multiple testing. Thus, we apply a 1.666% significance level, α = 0.0166.

The test results show there is no evidence of a difference in performance

between “average” and “max” (p=0.1024). However, “average” performs

significantly different than “min” (p<0.0001), and there is also a significant

difference in performance between “max” and “min” (p<0.0001). Hence,

we use the minimum of the two job ranks, since it has the smallest median.

10.9.7 Rank Combination Parameter r

Parameter r determines whether the final variable rank is determined by

taking the sum of the job and machine ranks, or by taking the maximum-

primary, minimum-secondary approach. However, for the recommended

value for b (close to 1), parameter r has no effect. This is because for

such values of b, the largest job rank is smaller than the interval between

machine ranks. As a result, the policies selected by r always result in final

ranks determined by the machine first, with ties broken by the job rank.

10.9.8 Stack Reordering Policies

The algorithm was tested with all possible permutations of the four stack

reordering policies. The results are shown in Figure 10.9.10 (top). The four-
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Figure 10.9.10: Top: Mean running time of the Branch and Bound

algorithm against all permutations of the four reordering policies: Com-

pleteness, score, gradient, and random. The four-digit binary numbers

on the x-axis indicate which of the four policies, in the preceding order,

are active. Bottom: Comparison of all policies with score reordering

active, and the policy with no reordering.
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digit binary numbers on the x-axis indicate which of the four policies, in the

order [completeness, score, gradient, random], are active. If more than one

reordering policy is active, the type of reordering is selected in a round-robin

fashion. The very first configuration, 0000, represents the case in which no

reordering takes place at all. This performs very poorly. Configuration 1000

(completeness only) also performs poorly, in some instances hitting the 300s

time limit. More generally, configurations of type *0**, i.e. any in which

score reordering is inactive, all have some very visible poorly performing

outliers. All configurations of type *1**, i.e. those with score reordering

activated, are shown in Figure 10.9.10 (bottom). Policy 0000 (no reordering

at all) is also shown again. Note that even the best performance of policy

0000 is worse than the worst performance of three other configurations.

This demonstrates the benefit of employing a reordering policy. All policies

of type *1** can be seen to perform well. The simplest of these is 0100,

in which reordering happens solely by score. The best observed median

performance is under policy 0110 (score and gradient).

To assess whether the difference in time performance between stack

reordering policies across all problem instances is statistically significant,

120 simultaneous Wilcoxon rank sum tests were employed. A Bonferroni

correction is applied to the significance level to account for multiple test-

ing. Thus, we apply a 5
120

= 0.0417% significance level. The results are

illustrated in Figure 10.9.11. Note that the policies have been ordered by

median time performance. At this significance level, there is no clear single
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Figure 10.9.11: Results of simultaneous Wilcoxon rank sum tests,

with overall significance level of 5%, comparing the running times of all

stack reordering policies.

best performing policy. There is some suggestion that the two policies with

the best median time performance, 0110 and 1110, outperform the other

policies, since each significantly outperforms 9 other policies. Out of these

policies, 0110 (score and gradient) is simpler, so we use it as our default

policy.



Chapter 11

Blocking Job Shop:

Computational Experiments

This chapter presents computational experiments, comparisons and analy-

sis conducted to evaluate the performance of the proposed algorithms for

the blocking job shop with flexible maintenance. The problem is described

in Chapter 8. The algorithms compared here include the exact Branch and

Bound algorithm proposed in Chapter 10, and the various heuristic meth-

ods presented in Chapter 9: Ant Colony Optimisation (ACO, Section 9.2),

a Rollout method (Section 9.3), the rollout methods proposed by Meloni

et al. (2004) (AMCC, SMCP, SMSP), the adapted Simulated Annealing

algorithm (SA, Section 9.4), ‘instant’ solutions based solely on topological

sorting (TS, Section 8.8.2), and ‘almost instant’ solutions based on topo-

logical sorting followed by local optimisation (TS+LO, Section 9.3.1). The

algorithms have been tested across a wide set of problem instances. These

241
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test problems have been constructed in such a way as to capture the main

characteristics of the industrial facility described in Chapter 1.

The computational results show that the exact Branch and Bound

method clearly outperforms all tested heuristic methods in terms of the

quality of the final solutions found. In terms of running time, only the

heuristics based on Topological Sorting are faster than Branch and Bound,

however, these are not suitable alternatives due to their poor quality solu-

tions.

The problem instances used for the evaluation of the developed algo-

rithms are introduced in Section 11.1. The experimental design of the

computational experiments is discussed in Section 11.2. Computational re-

sults for all the methods are presented in Section 11.3. To conclude the

experiments, the scalability of the best algorithms across different problem

sizes is investigated in Section 11.4.

11.1 Problem Instances

To the best of our knowledge, there are no established test problem in-

stances for a blocking job shop with flexible maintenance activities and

both soft and hard due dates. This section provides an overview of the

test problems we have constructed. A fuller description of these appears

in Appendix A. The test problems are available at http://dx.doi.org/

10.17635/lancaster/researchdata/160.

http://dx.doi.org/10.17635/lancaster/researchdata/160
http://dx.doi.org/10.17635/lancaster/researchdata/160
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Test problems should capture the typical job structure of jobs at the

facility described in Chapter 1. Jobs typically start and end at one of the

two combined entry/exit points, and must use the transporter to travel

between workstations. Every second operation of a job is therefore usually

a transporter operation. In order to assess the performance of the devel-

oped exact and heuristic optimisation algorithms, 100 such test problems

were randomly constructed, subject to a number of constraints designed to

include some typical features of the jobs processed at the facility.

The test instances were designed for a facility with 9 workstations (ma-

chine IDs 1-9) and one transporter (machine ID 0). Workstations 1 and 9

both serve as entry and exit points. Each test problem consists of 20 regular

production jobs, some with merges or splits. There are also 10 maintenance

activities, one for each workstation and one for the transporter. The total

number of operations in each test instance is 102. This is in the order of

magnitude of the sets of work being scheduled at the facility. Time is mea-

sured in hours, assuming a 40 hour working week. Some jobs are released

at time 0, and some jobs are released at time 40.

11.2 Experimental Design

Due to the stochastic nature of the heuristic algorithms, each of the ACO,

Rollout, and SA algorithms were given 30 independent execution runs, on

each of the 100 test instances. The B&B, AMCC, SMCP, SMSP, TS and
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TS+LO algorithms are deterministic, and hence were only executed once

on each test problem. The time limit was set to 300 seconds. If this time

limit is reached before the natural conclusion of the algorithm, then the

best-so-far solution is returned as the final solution. The total tardiness

penalty of this best solution is used to compare the performance of the

algorithms.

To highlight the general performance of the developed algorithms, the

experimental results are aggregated across all problem instances. Statistics

on their general performance are presented, in terms of objective values of

the best performing solutions, execution time required to reach the reported

result, and statistics on the tardiness characteristics of the scheduled jobs.

All algorithms considered in this study were implemented in C++ and

compiled with the GNU g++ compiler under GNU/Linux running on a

cluster system equipped with Intel Xeon E5-2650v2 CPU of 2.6 GHz, and

4 GB of RAM per CPU. All experimental results reported here have been

obtained under the same computing conditions.

Each algorithm had its parameters set to its recommended values, as

presented with the algorithm descriptions in Chapters 9 and 10. Note that

AMCC, SMCP, SMSP, TS and TS+LO have no hyperparameters to be

tuned.
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11.3 Computational Results

Statistics on the performance of the algorithms across all 100 problem in-

stances considered in this work are presented in this section. To enhance

the readability of the reported results, the best performing cases are high-

lighted with boldface font.

It should be noted that two of the rollout methods occasionally failed

to find a feasible solution. AMCC failed to find a feasible solution for 4

problem instances, while SMSP failed to find a feasible solution for 3 test

instances. These seven failed runs provide no usable information in terms

of solution score or running time. As such, they are omitted from the

analysis of solution scores and running times. The results shown for these

two methods should therefore be considered to be optimistic.

Table 11.3.1 reports the average (µs), median (ms) and standard de-

viation (σs) values for the objective value of the best solution found by

each algorithm. Recall that the aim is to minimise this penalty score.

Branch and Bound clearly outperforms all other methods. It always finds

an optimal solution within the time limit, with a median objective value of

5204.27. In terms of the median values, Simulated Annealing, AMCC, and

SMSP all roughly rank second. This is followed by ACO, our own Rollout

Method, TS+LO, SMCP, and finally TS. Note that the ranking would be

different if based on the means. In particular, AMCC and SMSP would

be ranked much lower. In terms of mean objective value, both are outper-
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Algorithm µs ms σs

ACO 4362458.87 4019157.91 2141478.94

B&B 244971.69244971.69244971.69 5204.275204.275204.27 474883.45

Rollout 5050913.70 5016386.67 1275299.25

SA 1190007.02 1006727.52 1209283.89

TS 9424264011.02 9014845179.35 637123399.62

TS+LO 23016699.14 13040471.94 100111220.87

AMCC 375746777.70 1007349.00 684697843.14

SMCP 1122572363.08 1002011019.51 1149087612.12

SMSP 320233949.86 1003155.24 715626074.37

Table 11.3.1: The mean (µs), median (ms) and standard deviation

values (σs) of the objective values.

formed by the simple TS+LO heuristic. The mean values are influenced by

the large hard due date penalties, and as such the median provides a more

robust measure of performance. The performance of the algorithms is also

illustrated in Figure 11.3.1.

Perhaps a more interesting measure than the final score, is the amount

by which the final scores exceeds the optimal solution. These values are

summarised in Table 11.3.2. This clearly demonstrates the optimality of

B&B with respect to schedule quality. These figures are visualised in Fig-

ure 11.3.2.
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Figure 11.3.1: The objective values for all the algorithms over all the

problem instances and runs (y-axis in log10 scale)
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Figure 11.3.2: The difference between the objective values and the

optimal solutions, over all the problem instances and runs. Because the

y-axis is on a log-scale, B&B is not shown. Note that AMCC and SMSP

occasionally located the optimal solution, and the score for this cannot

be shown with the log-transform.
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Algorithm µd md σd

ACO 4117487.19 4011378.94 2016789.20

B&B 0.000.000.00 0.000.000.00 0.00

Rollout 4805942.01 5010151.97 1238444.10

SA 945035.33 1000422.75 1047061.71

TS 9424019039.33 9014840483.68 637137162.31

TS+LO 22771727.45 13031752.37 100035022.05

AMCC 375502191.76 4644.33 684692044.22

SMCP 1122327391.39 1002004622.34 1148980632.23

SMSP 319991852.67 2077.48 715631156.10

Table 11.3.2: Performance in terms of mean (µd), median (md) and

standard deviation values (σd) of the distance from the optimal objec-

tive values.

Another important measure of performance is the running time required

to find the final solution. Each algorithm run was allowed a maximum of 5

minutes running time. The average (µt), median (mt) and standard devi-

ation (σt) values for the execution time required to find the best solution,

in terms of CPU Wallclock time measured in seconds, are displayed in

Table 11.3.3. The running time distributions are also visualised in Fig-

ure 11.3.3. B&B only requires a median running time of 5.84 seconds to

find the optimal solution. Most other methods are slower, the worst being
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Algorithm µt mt σt

ACO 199.87 206.02 70.40

B&B 12.50 5.84 25.53

Rollout 159.73 168.41 86.88

SA 274.16 286.42 35.29

TS 0.000.000.00 0.000.000.00 0.00

TS+LO 0.11 0.11 0.02

AMCC 19.23 18.76 1.92

SMCP 14.92 14.68 1.64

SMSP 19.09 18.61 1.77

Table 11.3.3: The time (seconds) required to find the best solution,

for all the algorithms over all the problem instances and runs.

Simulated Annealing with a median running time of 286 seconds. SMCP

has a median running time of 15 seconds, and this increases to 19 seconds

for both AMCC and SMSP. This shows that B&B not only performs best

in terms of final solution quality, it also requires substantially less running

time than most other methods. Only the Topological Sorting methods out-

perform B&B in terms of time until the best solution was found, requiring

only a fraction of a second to run to completion. However, these two meth-

ods show appalling performance with regards to solution quality. The 5.8

seconds median running time of B&B makes it a very suitable solution for
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Figure 11.3.3: The time required to find the best solution, over all

the problem instances and runs (y-axis in log10 scale).
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real-world applications.

The trade-off between running time and solution quality is displayed in

Figure 11.3.4. For each algorithm, its respective plotting point represents

the median distance from the optimal solution, and the median running

time in seconds. It can be seen that B&B dominates all other methods,

except TS and TS+LO. However, both TS methods provide very poor

quality solutions, so that B&B comes out as the preferred method here.

Recall that the primary objective is to schedule maintenance to start

before its hard due date. Almost all algorithms, with the exception of

TS, consistently achieve this. Tardiness measures in terms of due date

violations will therefore only be presented for regular jobs. To highlight the

tardiness of the scheduled jobs, we report the average percentage of jobs

that finish on time (µo), between the soft and hard due dates (µs), and after

the hard due dates (µh), in Table 11.3.4. The highest percentage of jobs

scheduled on time is achieved by B&B, with 76.7%. Since all B&B results

were optimal, these are the best percentages that can be achieved with

our set of test problems. The lowest percentage of jobs scheduled beyond

their hard due dates is also achieved by B&B, at 1.2%. This indicates

that in some problem instances, even the optimal solution will contain

jobs that exceed their hard due dates. This information can be crucial for

decision makers, as early information on potential hard due date violations

could be used when accepting new jobs, to protect revenue and reputation.

Second place is approximately shared by SA, AMCC, and SMSP, with the
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Figure 11.3.4: Median distance from the optimal solution achieved by

each algorithm against their respective median running times. Values

were increased by 1 before log transforms took place, to deal with log(0)

and to map 0 to 0.
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Algorithm µo µs µh

ACO 39.34 38.92 21.73

B&B 76.7076.7076.70 22.10 1.201.201.20

Rollout 37.85 36.98 25.17

SA 67.12 26.96 5.91

TS 10.45 20.00 69.55

TS+LO 14.35 20.75 64.90

AMCC 67.86 28.44 3.70

SMCP 57.15 30.05 12.80

SMSP 68.35 28.45 3.20

Table 11.3.4: Average percentages of jobs finishing on time (µo), after

the soft due date (µs), and after the hard due dates (µh).

caveat that the latter two occasional fail to find any feasible solution at

all. Note that schedules created by TS and TS+LO tend to include a

large number of hard due date violations. In fact, the average percentage

of jobs scheduled beyond their hard due date is 64.90% for TS+LO, and

69.55% for TS. Detailed information on the number of jobs scheduled on

time (or otherwise), across all considered problem instances, is visualised

in Figure 11.3.5.

Figure 11.3.6 shows success percentages of the algorithms across all

problem instances, with success being defined as whether the optimal solu-
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time, between the soft and hard due dates, and after the hard due

dates.
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Figure 11.3.6: Box-plots for percentage of times that each algorithm

found the optimal solution.

tion was found or not. Note that B&B always found the optimal solution,

while most of the other methods never found an optimal solution. Previous

results showed that Simulated Annealing occasionally gets close to the op-

timal solution. AMCC and SMSP have the curious property of being the

only other algorithms which occasionally find an optimal solution, whilst

also being the only algorithms which occasionally fail to find any feasible

solution at all. This again shows the superiority of our novel B&B method

over the other algorithms.

To conclude, the B&B algorithm rapidly solves all problem instances
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to optimality. B&B outperforms the other algorithms both in terms of

solution quality, as well as in terms of running time. The combination of

fast running time and good solution quality make this a viable method for

application in demanding real-world industrial settings.

11.4 Scalability Analysis

The test problem instances used for the computational experiments con-

tained 102 operations. This is typical for the workload at the facility for

which these algorithms were developed. For applications in other areas the

workload and number of machines could be larger or smaller. The perfor-

mance of the best algorithms was therefore also investigated with larger

and smaller test problems. The test instances used in this scaling study

contain the following number of operations and machines (machine count

in brackets): 64 (6), 82 (8), 102 (10), 122 (12), 140 (14), 160 (16), 178

(18), and 204 (20). While there are countless different options for scaling

the number of operations and machines, here it was decided to scale the

number of machines roughly proportional to the number of operations. For

each problem size, 100 different test instances were created. The other

properties of the test instances were the same as before, so that jobs can

only enter/exit the system at two locations, and must travel on the trans-

porter between locations. Scaling was only investigated for the Branch and

Bound, SMSP and AMCC algorithms, since none of the other heuristic
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methods showed reasonable performance.

Initial scaling experiments used the B&B hyper-parameter values as

reported in Table 10.8.2. However, with these settings it was found that

larger problems sometimes ran out of memory. This was due to the solution

stack growing very large. The solution stack reordering parameter f was

originally optimised on test problems with an average search-tree depth

of 1051.6. The largest test problems in this scalability analysis have a

search tree with over 4000 levels. If the stack is reordered too frequently, it

becomes very difficult for the algorithm to reach the bottom of the tree, and

the solution stack grows very large. To address these memory problems, it

was therefore decided to scale f relative to the depth d of the search tree.

For search trees with an average depth of 1051.6, the optimal value for f

was 147. The stack reordering parameter f is therefore scaled with the size

of the search tree, as follows:

f =
147× d
1051.6

(11.4.1)

The two rollout algorithms, SMSP and AMCC, occasionally encounter

infeasibility. Both these algorithms are deterministic, so when infeasibility

is encountered it can only be recorded that the algorithm failed to find

a feasible solution. Table 11.4.1 displays the number of times SMSP and

AMCC failed to find a feasible solution, across all problem sizes. There is no

obvious relationship between problem size and infeasibility count. As un-

successful runs provide no information on running time or solution quality,
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Problem Size (operations) 64 82 102 122 140 160 178 204

AMCC 3 4 4 1 1 2 5 1

SMSP 2 4 3 1 1 3 2 0

Table 11.4.1: Count of times each algorithm failed to find a feasible

solution, out of 100 problem instances for each problem size.

these have had to be omitted from the analysis. Hence, any results relating

to AMCC and SMSP should be considered to be somewhat optimistic.

A time limit of one day (86400 seconds) was set for all runs in this

scalability analysis. Any runs that reached this time limit were terminated.

This means some of the observations have censored running times, since all

that is known is that the algorithm would take more than 86400 seconds

to find the optimal solution. For B&B, the number of instances confirmed

to have been solved to optimality within the time limit, for each problem

size, is displayed in Table 11.4.2. It can be seen that as the problem size

Problem Size (operations) 64 82 102 122 140 160 178 204

Solved to optimality (%) 100 100 100 95 89 55 20 0

Table 11.4.2: B&B success rates across problem instance sizes. Suc-

cess is measured as having found and confirmed an optimal solution

within 1 day. 4GB of RAM was available to each run.
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increases, the success rate decreases. Since the optimal solutions for many

of the larger test problems are not known, it is not known what percentage

of SMSP and AMCC runs returned an optimal solution.

The algorithm running times are displayed in Figure 11.4.1, both in reg-

ular values (upper plot) and log-transformed values (lower plot). It should

be noted that some of the B&B test runs for larger test problems termi-

nated before the time limit, without having confirmed the optimal solution.

This is due to the solution stack growing very large and eventually exceed-

ing the available memory (4GB RAM). The total number (and percentage)

of early terminations due to memory shortage is displayed in Table 11.4.3.

This memory shortage would not be an issue for a pure depth-first search

algorithm, where the size of the solution stack is limited by the depth d of

the search tree. Here, however, the solution stack is able to grow large due

to the stack reordering procedure. The benefit of this reordering procedure

was demonstrated in the sensitivity analysis for B&B (Section 10.9.3): It

offers a speed increase for the problem sizes that the algorithm was de-

veloped for. However, to avoid memory issues with larger test problems,

Problem Size (operations) 64 82 102 122 140 160 178 204

Memory shortage (%) 0 0 0 0 1 0 11 73

Table 11.4.3: B&B test runs which terminated early due to memory

shortage.
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Figure 11.4.1: B&B running times until the optimal solution was

confirmed, across varying problem sizes (x-axis to scale). Some data is

censored, since runs were terminated after one day (86400 seconds).
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it may be better not to use reordering, or to ensure there is a sufficient

amount of memory available.

Due to the memory issues encountered by B&B for some of the larger

instances, the scaling experiment was repeated with 8GB RAM available to

each run. None of these runs terminated due to a shortage in memory. The

corresponding success rates are displayed in Table 11.4.4. It can be seen

that these are almost identical to the success rates with 4GB RAM, except

for one additional successful run for problem size 178. It would appear that

runs which previously ran out of memory, still required a lot of additional

running time due to the large number of open branches.

Since B&B was unable to confirm all optimal solutions for larger prob-

lem sizes, it is not possible to assess how close to optimal the solutions

obtained by AMCC and SMSP are. Instead, the median observed penalty

scores for the three algorithms across all problem sizes are displayed in Ta-

ble 11.4.5. Recall that this excludes the cases in which AMCC and SMSP

were unable to find a feasible solution, as reported in Table 11.4.1. It can

Problem Size (operations) 64 82 102 122 140 160 178 204

Solved to optimality (%) 100 100 100 95 89 55 21 0

Table 11.4.4: B&B success rates across problem instance sizes. Suc-

cess is measured as having found and confirmed an optimal solution

within 1 day. 8GB of RAM was available to each run.
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Problem Size B&B AMCC SMSP

64 327832783278 5176 5171

82 321632163216 6150 6200

102 520452045204 1007504 1004688

122 518451845184 9403 10328

140 629962996299 1010350 1508925

160 736773677367 2011212 3012441

178 121071210712107 1000014363 1000013932

204 101210910121091012109 2000513749 1007021738

Table 11.4.5: Median penalty scores across all problem sizes for

Branch and Bound, AMCC, and SMSP.
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be seen that, on average, B&B finds the best solutions across all problem

sizes.

The running times for AMCC are displayed in Figure 11.4.2, both in

regular values (upper plot) and logged values (lower plot). A similar plot

for SMSP appears in Figure 11.4.3. Both algorithms show very similar time

requirements. For larger problem sizes, AMCC and SMSP require less total

running time than B&B, but the latter produces better quality solutions.

It should be noted, though, that B&B usually produces a number of

ever-improving solutions, before it eventually locates an optimal solution.

Therefore, a better comparison between B&B and the rollout methods can

be made by giving B&B the exact same running time as required by AMCC

and SMSP. This allows the comparison of solutions which were produced

with equal running time. Table 11.4.6 and Table 11.4.7 show such a com-

parisons. For each problem instance, it compares the quality of the rollout

solutions against the B&B incumbent solution at the time that the rollout

method terminated. The first column shows the percentage of instances for

which B&B had actually already obtained a better solution than that pro-

duced by the rollout method. For AMCC this ranges between 71% and 95%

across different problem sizes. The results for SMSP are similar, with B&B

outperforming SMSP between 71% and 96% of the time. Each table has a

second column, containing the median difference in objective score between

B&B and AMCC/SMSP, at the time of completion of the respective roll-

out method. The difference is calculated as B&B minus AMCC/SMSP. It
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Figure 11.4.2: AMCC running times until the solution was found,

across varying problem sizes (x-axis to scale).
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Figure 11.4.3: SMSP running times until the solution was found,

across varying problem sizes (x-axis to scale).
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Problem Size B&B Better (%) Median difference (B&B-AMCC)

64 71 -993

82 75 -1022

102 92 -503031

122 95 -4037

140 88 -1001985

160 86 -1003090

178 80 -998995848

204 85 -1990983639

Table 11.4.6: The percentage of runs in which B&B had obtained a

better result by the time AMCC finished, and the median difference in

total tardiness score between the two methods (B&B - AMCC).

can be seen that, without exception, these differences are negative. Mean

and standard deviation values of the differences cannot be provided, since

some of the AMCC/SMSP runs had an infinite penalty score, as they did

not produce a feasible solution. Even if B&B could not locate the optimal

solutions, the solutions it found are substantially better than the ones gen-

erated by the rollout heuristics. Thus, in an industrial context where the

time budget is similar, B&B is the most appropriate choice to be made. To

conclude, B&B can be seen to outperform the rollout methods, on average,

when scaled across all problem sizes, when the same amount of running
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Problem Size B&B Better (%) Median difference (B&B-SMSP)

64 71 -529

82 77 -1041

102 92 -2954

122 96 -2077

140 91 -1002341

160 87 -2001557

178 79 -998992788

204 84 -1004001403

Table 11.4.7: The percentage of runs in which B&B had obtained a

better result by the time SMSP finished, and the median difference in

total tardiness score between the two methods (B&B - SMSP).

time is available to each method.



Chapter 12

Blocking Job Shop:

Conclusions

The work in Part III was motivated by the real life scheduling challenges

encountered at a facility in the nuclear power industry, as introduced in

Chapter 1. The work at the facility was modelled as a blocking job shop

scheduling problem with flexible maintenance, due dates, release dates,

and precedence constraints (Chapter 8). Heuristic solution methods for

this problem were presented in Chapter 9, including methods based on Ant

Colony Optimisation, Simulated Annealing, rollout procedures, and topo-

logical sorting. An exact Branch and Bound method was also developed

(Chapter 10). It includes both a novel branching strategy based on vari-

able ranking, and a novel search strategy based on periodic solution stack

reordering.

Thorough experimental results, comparisons and analysis on 100 prob-
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lem instances show that the proposed Branch and Bound algorithm pro-

duces optimal solutions, within a short running time (Chapter 11). The

computational results show that the exact Branch and Bound method

clearly outperforms all tested heuristic methods in terms of the quality

of the final solutions found. In terms of running time, only the heuris-

tics based on Topological Sorting are faster than Branch and Bound, how-

ever, these are not suitable alternatives due to their poor quality solutions.

Most of the heuristic methods generally produce low quality solutions. The

heuristics also tend to require much more computational time, compared

to the proposed Branch and Bound method. A scalability analysis showed

that Branch and Bound performs best, both in terms of running time and

solution quality, across a range of problem sizes. This makes it a very ef-

fective algorithm, which optimally solves the considered problem, within

acceptable running time for the industrial problem under consideration.

The Branch and Bound method not only performs well, but it also

captures the main characteristics of the facility for which it was developed.

At the time of writing, the algorithm is being trialled by the schedulers at

this facility, as they found that the algorithm models their requirements

very well.



Part IV

Conclusion
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Chapter 13

Conclusions and Future Work

The computational results for the non-blocking job shop scheduling prob-

lem with flexible maintenance (Part II) show that the hybridisation of

heuristic and exact methods can be used to obtain optimal solutions, in

a short running time. When a hybridisation is not used, the exact Branch

and Bound method requires excessive running time, while the heuristic

methods rapidly find optimal or near-optimal solutions. In contrast to this,

the opposite holds true in the blocking variant of the problem (Part III).

There, the heuristics generally struggle to produce good solutions. In fact,

just producing feasible solutions of any quality was found to be problematic

for the heuristic methods. Our novel guaranteed feasibility schedule con-

struction method now ensures the heuristic solutions are at least usable,

but the heuristic algorithms still struggle to produce good quality solu-

tions. In contrast to this, the Branch and Bound algorithm for the block

shop presented in Chapter 10 very quickly produces optimal solutions.

272
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13.1 Future Work

Following the work presented in this thesis, there are a number of open re-

search directions. We would like to further enhance the methods presented

here to also handle the rescheduling of existing schedules. Rescheduling

may be required when new jobs have to be integrated in a schedule which

has already been partially processed, or in response to unforeseen circum-

stances, such as machine breakdowns. The developed Branch and Bound

algorithm can be used for total rescheduling in response to such events.

However, it would be of interest to develop robust rescheduling methods,

which aim to minimise disruption to the existing schedule. Such a robust

rescheduling method would have to balance a trade-off between minimis-

ing the total tardiness score, and minimising ‘change’ between the old and

new schedule, for some measure of change. There is also the potential to

do future work on the inclusion of other resource requirements. Currently,

the only resource taken into account is the location where a job is to be

processed. However, there are certain jobs which can only be performed by

appropriately trained workers, and jobs which require specialist equipment.

Thus, it would be of interest to build on the work presented in this the-

sis by developing a scheduling method that accounts for multiple resource

requirements.



Appendix A

Test Problems

This appendix describes the properties of the 100 test problems created

for the job shop scheduling problem with flexible maintenance and due

dates. This problem is defined in Chapter 3. The same test instances

are also suitable for the blocking version of the same problem, as defined

in Chapter 8. The test problems were randomly generated, but under

some constraints so as to include some typical features of the facility that

the scheduling algorithms were developed for. This facility is described

in Chapter 1. The test problems are available at http://dx.doi.org/10.

17635/lancaster/researchdata/160.

Recall that the facility comprises of shielded workstations. It also con-

tains a single transportation mechanism that connects all workstations and

transfers materials across all workstations. There are two workstations that

both act as entry and exit points for any materials, which is a physical con-

straint for the facility. As such, given a material to be processed, it will
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have to enter the system from one of these two workstations, and be moved

to the appropriate workstation by the transporter. The materials may then

have to undergo further processing at other workstations, and eventually

leave the system through one of the two exit points.

Jobs typically start and end at one of the two combined entry/exit

points, and must use the transporter to travel between workstations. Every

second operation of a job is therefore usually a transporter operation. The

test instances were designed for a facility with 9 workstations (machine

IDs 1-9) and one transporter (machine ID 0). Workstations 1 and 9 both

serve as entry and exit points. Each test problem consists of 20 regular

production jobs, some with merges or splits. There are also 10 maintenance

activities, one for each workstation and the transporter. The total number

of operations in each test instance is 102. Time is measured in hours,

assuming a 40 hour working week. Some jobs are released at time 0, and

some jobs are released at time 40.

A.1 Job Properties

Each job has the following properties:

• Jobs consist of a sequence of operations, where each operation requires

a single specified machine (0-9) and has a specified deterministic pro-

cessing time.

• Machines 1 and 9 provide access to the system, so that jobs must
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start and finish at one of these (except jobs which merge or split).

• Machine 0 is the transporter between machines 1-9, which means

every second operation of a job must be on machine 0.

• A machine (2-8) was randomly assigned to each operation (with equal

probabilities), except for entry/exit and transport operations. Ma-

chines were assigned in such a way that transportation always takes

place between two different machines, i.e. avoiding the situation where

a job is collected from and then delivered to the same machine.

• Some jobs are released at time 0 (the start of week one), and some

at time 40 (the start of week two).

• Processing times are randomly generated from the following uniform

distributions:

– Machines 1 and 9 (entry/exit): Unif(2,6)

– Machine 0 (transport): Unif(0.5,1.5)

– Machines 2-8: Unif(8,32)

• Each job has a soft due date, and some jobs also have a hard due

date.

• Due dates are randomly generated, taking into account the total pro-

cessing time required for the job. This is done in such a way that
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each job in isolation could always be completed before its soft due

date, as follows:

– Soft due date = Release date + (Total processing time) × Ran-

domUnif(1.75,2.25)

– Hard due date = Release date + (Total processing time) × Ran-

domUnif(2.75,3.25)

• Some pairs of jobs merge into one job, and some jobs split into two

jobs.

A.2 Maintenance Activity Properties

Maintenance activities are modelled as jobs with a single operation. During

maintenance, the machine is unavailable to other jobs. All the maintenance

activities in the test problems have a duration of 8 hours, and a flexible

starting window of duration 26.67. This is based on current practice for

periodic maintenance at the facility of interest.

A.3 Test Problem Properties

Each test problem has the following properties:

• Total number of operations: 102

• The following jobs are included in each problem:
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– One job with five operations, release date 0, and both soft and

hard due dates.

– One job with five operations, release date 0, and a soft due date.

– One job with five operations, release date 40, and both soft and

hard due dates.

– One job with five operations, release date 40, and a soft due

date.

– One job with seven operations, release date 0, and both soft and

hard due dates.

– One job with seven operations, release date 0, and a soft due

date.

– One job with seven operations, release date 40, and both soft

and hard due dates.

– One job with seven operations, release date 40, and a soft due

date.

– Two jobs (release dates 0 and 40) which each split into two jobs

(giving a total of six jobs). There are three operations before

the split (entry → transport → processing) and four operations

on each fork of each split (transport → processing → transport

→ exit). All six jobs have soft and hard due dates calculated

as described above, except that the processing time required for

jobs after the split is the total processing time required by both
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the job before and the job after the split.

– Two pairs of jobs (release dates 0 and 40) that merge into a

third job (giving a total of six jobs). There are four operations

in each job before the merge (entry → transport → processing

→ transport) and three operations in the jobs after the merge

( processing → transport → exit). All six jobs have soft and

hard due dates calculated as described above, except that the

processing time required for jobs after the merge is the total

processing time required by both the job before and the job

after the split.

• There are 10 maintenance activities, one for each machine. The first

maintenance activity has release date 0. A single maintenance activ-

ity is released every 16 hours (two days). The ordering in which the

machines receive maintenance is random, with equal probabilities.

A.4 File Format

Each of the 100 test instances is stored in a separate .csv file. A typical job

entry has the following format:
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Job ID,1,,,,,,,,,,,,,,,,,,,

Type (job/maintenance),job,,,,,,,,,,,,,,,,,,,

Resource,9,0,3,0,9,,,,,,,,,,,,,,,

Processing time,5.36,1.41,19.41,1.04,4.84,,,,,,,,,,,,,,,

Due date (soft and hard),61.3,102.83,,,,,,,,,,,,,,,,,,

Release date,0,,,,,,,,,,,,,,,,,,,

Preceding Jobs,,,,,,,,,,,,,,,,,,,,

Precedence Type,,,,,,,,,,,,,,,,,,,,

Each entry can be described as follows:

• Job ID: A unique job identification number.

• Type (job/maintenance): Identifies task as a regular job (“job”)

or maintenance (“maintenance”).

• Resource: The resource (machine ID) required by each of the oper-

ations of this job. The ordering of the operations within the job is

defined by the ordering of the data.

• Processing time: The processing time required for each operation.

• Due date (soft and hard): The soft and hard due dates. Some

jobs have their hard due dates set as “Inf”, this denotes infinity and

indicates there is no hard due date for the job.

• Release date: The release date (time) of the job.
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• Preceding Jobs: The precedent constraints, if any. These are the

job IDs of jobs which must be completed before this job can start.

• Precedence Type: Indicates whether the precedence constraint is

part of a job split (“split”) or job merge (“merge”).

Maintenance entries have the same format as job entries, but are marked

as maintenance on the “Type (job/maintenance)” line. A typical mainte-

nance entry has the following format:

Job ID,40,,,,,,,,,,,,,,,,,,,

Type (job/maintenance),maintenance,,,,,,,,,,,,,,,,,,,

Resource,0,,,,,,,,,,,,,,,,,,,

Processing time,8,,,,,,,,,,,,,,,,,,,

Due date (soft and hard),144,170.67,,,,,,,,,,,,,,,,,,

Release date,144,,,,,,,,,,,,,,,,,,,

Preceding Jobs,,,,,,,,,,,,,,,,,,,,

Precedence Type,,,,,,,,,,,,,,,,,,,,

Please note that the job IDs range from 1 to 40, but not every number

in that range is used. These should not be changed, as the precedence

constraints depend on them.
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P. Brucker, B. Jurisch, and A. Krämer. The job-shop problem and immediate
selection. Annals of Operations Research, 50(1):73–114, 1994a.

P. Brucker, B. Jurisch, and B. Sievers. A branch and bound algorithm for the
job-shop scheduling problem. Discrete Applied Mathematics, 49(13):107–127,
March 1994b.

B. Bullnheimer, R. F. Hartl, and C. Strauß. A new rank based version of the
ant system - a computational study. Central European Journal for Operations
Research and Economics, 7:25–38, 1997.

E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
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J. A. Vázquez-Rodŕıguez and S. Petrovic. A new dispatching rule based genetic
algorithm for the multi-objective job shop problem. Journal of Heuristics, 16
(6):771–793, Dec 2010.

S. Wang. Bi-objective optimisation for integrated scheduling of single machine
with setup times and preventive maintenance planning. International Journal
of Production Research, 51(12):3719–3733, 2013.

D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

M. Wright. Automating parameter choice for simulated annealing. Manage-
ment science working paper series, The Department of Management Science,
Lancaster University, 2010.

L. Xing, Y. Chen, P. Wang, Q. Zhao, and J. Xiong. A Knowledge-Based Ant
Colony Optimization for Flexible Job Shop Scheduling Problems. Applied Soft
Computing, 10(3):888–896, June 2010.

T. Yamada and R. Nakano. Job-shop scheduling by simulated annealing com-
bined with deterministic local search. In I. H. Osman and J. P. Kelly, editors,
Meta-Heuristics, pages 237–248. Springer US, 1996.

H. Yang, Q. Sun, C. Saygin, and S. Sun. Job shop scheduling based on earliness
and tardiness penalties with due dates and deadlines: an enhanced genetic
algorithm. The International Journal of Advanced Manufacturing Technology,
61(5-8):657–666, 2012.



290 BIBLIOGRAPHY

W. Zhang and R. E. Korf. An average-case analysis of branch-and-bound with
applications: Summary of results. In Proceedings of the Tenth National Con-
ference on Artificial Intelligence, AAAI’92, pages 545–550. AAAI Press, 1992.


	Abstract
	Acknowledgements
	Declaration
	Contents
	List of Abbreviations
	List of Symbols
	I Introduction
	Problem Introduction
	National Nuclear Laboratory
	A Real-World Problem
	Facility Overview
	Facility Maintenance
	Scheduling Objectives

	Modelling the Real-World Problem
	Novel Model Features

	Thesis Structure

	Literature Review
	Scheduling
	Scheduling Problem Classification
	Job Shop Scheduling Problem
	Job Shop Scheduling with Due Dates
	The Blocking Job Shop
	Other Scheduling Problems

	Integration of Job and Maintenance Scheduling
	Preventive and Corrective Maintenance
	Single Machine Problems
	Two-machine Flow Shop with Preventive Maintenance
	Job Shop Scheduling Integrated with Maintenance Planning
	Further Maintenance Literature

	Metaheuristics
	No Free Lunch Theorem
	Failings of Classical Methods
	Simulated Annealing
	Tabu Search
	Evolutionary Algorithms
	Other Metaheuristics
	Hyperheuristics
	Metaheuristics for the Job Shop

	Branch and Bound


	II The Non-Blocking Job Shop with Flexible Maintenance
	Introduction to the Non-Blocking Job Shop with Flexible Maintenance
	Problem Overview
	Problem Notation
	Objective Function
	Problem Classification
	Solution Methods

	Non-Blocking Job Shop: Exact Methods
	Introduction
	Disjunctive Graphs
	Disjunctive Graph Complexity

	A Novel Branch and Bound Algorithm
	Variable Reduction: Immediate Selection
	Variable Branching: Strong Branching
	Branching Order: Variable Ranking

	Branch and Bound Complexity

	Non-Blocking Job Shop: Heuristic Methods
	Introduction
	Ant Colony Optimisation
	Heuristic Information
	ACO Schedule Construction: An Example

	Simulated Annealing

	Non-Blocking Job Shop: Hybridisation and Computational Experiments
	Problem Instances
	Experimental Design
	Parameter Tuning
	Exact Methodologies: Branch & Bound and Hybrid
	Search methodologies: ACO & SA
	Scalability Analysis
	Scaling: ACO
	Scaling: Branch and Bound


	Non-Blocking Job Shop: Conclusions

	III The Blocking Job Shop with Flexible Maintenance
	Introduction to the Blocking Job Shop with Flexible Maintenance
	Blocking Job Shop
	Problem Overview
	Problem Notation
	Objective Function
	Problem Classification
	Complexity of the Blocking Job Shop
	Alternative Graph
	Traditional Alternative Graph
	Alternative Graph Adaptation: Merging with Blocking
	Alternative Graph Adaptation: Arcs
	Alternative Graph Complexity

	Blocking Job Shop Schedule Construction
	Schedule Construction: Infeasibility
	Schedule Construction: Guaranteed Feasibility


	Blocking Job Shop: Heuristic Methods
	Introduction
	Ant Colony Optimisation for the Blocking Job Shop
	Schedule Construction
	Pheromone Updating
	ACO Parameters

	A Rollout Algorithm for the Blocking Job Shop
	Rollout with Guaranteed Feasibility
	Rollout Parameters

	Simulated Annealing for the Blocking Job Shop
	Perturbation: Single Operation Reschedule
	Perturbation: Job Group Reschedule
	Algorithm Structure
	Simulated Annealing Parameters


	Blocking Job Shop: Exact Methods
	Introduction
	Branch and Bound for the Blocking Job Shop with Flexible Maintenance
	Initial Upper Bound
	Branching Strategies
	Existing Branching Strategies
	Novel Branching Strategy: Variable Ranking

	Immediate Selection
	Constant Immediate Selection

	Search Strategies
	Breadth-first Search
	Depth-first Search
	Best-first Search
	Cyclic Best-first Search
	Novel Search Strategy: Stack Reordering

	Branch and Bound Complexity
	Parameter Tuning
	Sensitivity Analysis
	Rank Balance Parameter b
	Immediate Selection Interval Parameter m
	Stack Reordering Parameter f
	Constant Immediate Selection Parameter c
	Immediate Selection Duration Parameter d
	Job Rank Combination Parameter j
	Rank Combination Parameter r
	Stack Reordering Policies


	Blocking Job Shop: Computational Experiments
	Problem Instances
	Experimental Design
	Computational Results
	Scalability Analysis

	Blocking Job Shop: Conclusions

	IV Conclusion
	Conclusions and Future Work
	Future Work

	Test Problems
	Job Properties
	Maintenance Activity Properties
	Test Problem Properties
	File Format

	Bibliography


