Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

Acciarri, R. and An, R. and Anthony, J. and Asaadi, J. and Auger, M. and Bagby, L. and Balasubramanian, S. and Baller, B. and Barnes, C. and Barr, G. and Bass, M. and Bay, F. and Bishai, M. and Blake, A. and Bolton, T. and Bullard, B. and Camilleri, L. and Caratelli, D. and Carls, B. and Fernandez, R. Castillo and Cavanna, F. and Church, E. and Cianci, D. and Cohen, E. and Collin, G. H. and Conrad, J. M. and Convery, M. and Crespo-Anadon, J. I. and Geronimo, G. De and Tutto, M. Del and Devitt, D. and Dytman, S. and Eberly, B. and Ereditato, A. and Sanchez, L. Escudero and Esquivel, J. and Fadeeva, A. A. and Fleming, B. T. and Foreman, W. and Furmanski, A. P. and Garcia-Gomez, D. and Garvey, G. T. and Genty, V. and Goeldi, D. and Gollapinni, S. and Graf, N. and Gramellini, E. and Greenlee, H. and Lister, A. and Nowak, J. (2017) Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC. Journal of Instrumentation, 12 (8). ISSN 1748-0221

[img]
PDF (1705.07341v1)
1705.07341v1.pdf - Accepted Version
Restricted to Repository staff only until 1 January 2050.
Available under License Creative Commons Attribution-NonCommercial.

Download (6MB)

Abstract

The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Instrumentation
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2600/2610
Subjects:
ID Code:
87302
Deposited By:
Deposited On:
25 Aug 2017 08:32
Refereed?:
Yes
Published?:
Published
Last Modified:
16 Sep 2020 03:47