IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON COOPERATIVE AND INTELLIGENT SENSING

Received January 20, 2017, accepted February 22, 2017, date of publication March 29, 2017, date of current version May 17, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2689002

Reordering Webpage Objects for
Optimizing Quality-of-Experience

WEIWANG LI', ZHIWEI ZHAO', GEYONG MIN2, HANCONG DUAN!,

QIANG NI, AND ZIFEI ZHAO'

!College of Computer Science, University of Electronic Science and Technology of China, Chengdu 611731, China
2College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, U.K.

3Data Science Institute, Lancaster University, Lancaster LA1 4YW, U.K.

Corresponding author: Zhiwei Zhao (zzw @uestc.edu.cn)

This work was supported in part by the Fundamental Research Funds for the Central Universities under Grant ZYGX2016KYQD098,
in part by the National Natural Science Foundation of China under Grant 61602095 and Grant 61303241, and in part by the

EU FP7 CLIMBER Project under Grant PIRSES-GA-2012-318939.

ABSTRACT The quality of experience (QoE) perceived by users is a critical performance measure for
Web browsing. “Above-The-Fold” (ATF) time has been recently recognized and widely used as a direct
measure of user-end QoE by a number of studies. To reduce the ATF time, the existing works mainly focus
on reducing the delay of networking. However, we observe that the webpage structures and content orders can
also significantly affect the Web QoE. In this paper, we propose a novel optimization framework that reorders
the webpage objects to minimize the user-end ATF time. Our core idea is to first identify the webpage objects
that consume the ATF time but have no impact on the page experience and then change the positions of these
objects to achieve the minimum ATF time. We implement this framework and evaluate its performance with
popular websites. The results show that the ATF time is greatly reduced compared with the existing works,

especially for complex webpages.

INDEX TERMS Web browsing, quality of experience (QoE), reordering.

I. INTRODUCTION

Webpages have become the standard for billions of users
to access the Internet [11], [24]. The topic of Quality-of-
Experience (QoE) perceived by web users has attracted
much research attention in recent years [4], [12], [30]. As
reported in many recent works, webpage loading delay has
a strong correlation with web QoE: a lower delay leads
to better web QoE [4], [7], [20]. Quantifying the QoE on
webpage browsing seems quite complex because 1) the web-
pages nowadays have become highly complex which contain
tens even hundreds of objects and Internet connections and
2) there is no clear signal/event that can be used to measure
the user experience during the process of webpage loading
and rendering. As a result, some new metrics are proposed
to capture the actual QoE of web browsing, such as the Page
Load Time (PLT) and Above-The-Fold (ATF) time [4], [6].
PLT denotes the duration from the time when the first request
is sent to the time of the event DOMContentloaded. ATF
time denotes the duration from the time the first request is
sent to the time that the content above the first fold (i.e.,
the content that can be seen in the first-sight window of the

browser) remains unchanged. Compared to PLT, ATF time
is recognized as a more direct measure of the web browsing
QoE [1], [5]. Therefore, we use the ATF time as the QoE
metric throughout this paper.

Several works have been done to improve the web QoE.
The first line of works focus on improving the network
transfer for web browsing. For example, techniques such as
DNS pre-resolution [29], TCP pre-connection [10] and the
SPDY protocol [27] are utilized to reduce network delay at the
application layer. Some works offload the computation tasks
from the client browsers to the cloud-based proxy [2], [22],
[25], [28], which is expected to reduce the delay experienced
at the end users. The second line of works focus on reducing
the loading delay. These works are designed to reduce the
loading delay of web objects. Some other works [8], [13], [15]
aim at reducing the computation delay of the javascript and
css evaluation process. Although these works can improve the
web QoE in some level, they often overlook the optimization
space within webpage structures. The current webpage struc-
tures are often coded by the designers, which may not be well
structured for end user QoE. Some objects that are placed in

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

6626 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 5, 2017

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

W. Li et al.: Reordering Webpage Objects for Optimizing QoE

IEEE Access

the beginning part of the webpage which may not contribute
to the screen display but still incur considerable loading
delay.

To address this issue, we investigate the problem of QoE
optimization by modifying the webpages. The basic idea is to
reorder the webpage objects in order to achieve the minimum
ATF time, i.e., moving the objects that will not be shown in
the first fold to the positions below the first fold, such that they
are processed after the ATF time. To this end, there are two
key challenges as follows: 1) Whether an object is related to
the ATF display? It is quite difficult to run all the codes before
reordering, thus we need to tell whether an object is display-
related before actually loading it. 2) Whether an object is
movable? Although some objects may not be related to the
ATF display, they may be depended on by some objects that
are related to the ATF display.

In this paper, we propose a novel QoE optimization frame-
work that modifies the webpages to achieve the minimum
ATF time. In the framework, a novel scheme based on Support
Vector Machine (SVM) is proposed to estimate whether an
object is related to the ATF display and ATF time, based
on analysis of the HTML tags and code segments. Besides,
we propose a scheme to judge the movability of an object
based on dependency analysis similar to [26]. With the above
modules, we are able to postpone the objects that have no
or little impact with the ATF display below the fold and the
ATF time can be reduced.

We implement the framework and evaluate it with the
top 500 websites of China ranked in Alexa. The experimen-
tal results show that the reordering system can effectively
speedup the webpage browsing by optimizing the object
orders.

The major contributions of this paper are listed as follows.

1) We propose a optimization framework that modifies the
webpages for better web QoE.

2) We propose a novel scheme that can estimate the impact
of webpage objects without loading them.

Parse CSS\tag Parse js tag /Pgr;e js tag

Parse html
3 2 4~ i

3) We implement the proposed framework and evaluate
its performance with real-world websites. The results
show that our work outperforms the existing works in
terms of the ATF time.

The rest of this paper is organized as follows. Section II
presents the preliminaries and motivation of this work.
Section III presents the main design. Section IV evalu-
ates our work’s performance with experiments. Section V
summarizes the related work on web QOoE optimization.
Section VI concludes this work and discusses the future
directions.

II. PRELIMINARIES AND MOTIVATION

In this section, we first introduce the detailed process of
webpage loading and then discuss the motivation of this work
with an illustrative example as shown in Figure 1.

A. PRELIMINARIES

Modern webpages are becoming more and more splen-
did, which contains HTML, CSS, JavaScript and multime-
dia objects, e.g., pictures, video, audio, etc. The structures
are also becoming more and more complex, which makes
webpage loading a non-trivial task. A typical web browser
such as Google Chrome loads the webpages in the steps as
shown in Figure 2: Object loading downloads the essential
files contained in the webpage; HTML parsing reveals the
structures and correspondence in the webpage; The evalu-
ation of CSS and JavaScript is for the execution of scripts
and styles; Finally, Rendering is done for the webpage
display.

1) OBJECT LOADING

Object Loading fetches the objects requested by the tags in
the HTML or user interactions. Objects are fetched from the
cloud servers over the application layer protocol (http, https,
SPDY, etc.) or from the cache of browser. It mainly consumes
networking delay.

o

arse css tag Parse vidoe tag
7 -

Parse image tag

HTML Parsing |a2 |a3 |a5 V a1 / als a20 | a22
al6 a19 load
Conn 1 |2P| | gi00q.css load videJ
html css e
ObJECt Conn 2 a6|load js aiz:‘al::d
Loading
Conn3 a7 load js \
I~
i Y
Evaluation Parse style a8 a9 ‘ alo ’*@ GC Parsestyle | al7
fenderi eval js evaljs ala] Render a18 Render a23
endering
—>
Start ATF PLT

I
D Network D Computation Blocking —> Dependency

FIGURE 1. The working process of loading a given webpage.

VOLUME 5, 2017

6627

IEEE Access

W. Li et al.: Reordering Webpage Objects for Optimizing QoE

Request Screen
Object .
o Rendering

1

* 208 O
558

— —

Network,
Cache,
localStorage

Evaluation

FIGURE 2. The general page loading process.

2) HTML PARSING

One of the main aims of HTML parser is to transform the
HTML page to the document object model (DOM) Tree.
DOM Tree is an intermediate representation of a webpage and
provides a common interface for manipulation of the objects.

3) CSS AND JavaScript EVALUATION

CSS evaluation converts the CSS to the CSSOM Tree, which
generates the style of the webpage. JavaScript can manip-
ulate the DOM Tree. As both JavaScript Evaluation and
HTML Parsing modify the DOM tree, HTML parsing is
disabled during JavaScript evaluation to avoid conflicts in
DOM modification.

4) RENDERING

Rendering is associated with two process-Layout and Paint.
Layout transforms the DOM Tree to the layout tree and Paint
converts this layout tree to pixel on the browser. We can see
that HTML parsing, CSS/Javascript evaluation and rendering
mainly consume computation delay. However, object load-
ing and computational tasks are often executed in parallel.
Besides, the dependency among objects also incur consider-
able delay in the entire webpage loading process.

B. MOTIVATION

We review the loading process of an example shown in
Figure 1 and analyze the contributions of the objects to the
loading time. The descriptions of all events are listed in
Table 1. The loading process of the webpage is described as
follows.

The main part of the figure shows the loading and rendering
process. The green blocks denote the network delay of the
object loading. The white blocks denote the computational
delay during the parsing and rendering. The “ax” denotes
the x-th event in the process. The arrowed lines denote the
dependency. For example, the arrow from al2-1 to a7 means
that al2-1 can be executed only when a7 is finished. We
can see from the timeline, the content above the fold has
reached the final state and remains unchanged when al7 is
finished. All page contents are loaded and rendered when a23
is finished. From the above process it can be seen that, the
execution of the first two .js file do not have visual impact on

6628

TABLE 1. Event descriptions and the corresponding delay.

‘al’ 25.6ms downloads the .html file.

‘a2’ Ims parses the html till the ‘main.css’ tag.

‘a3’ Ims parses html till the ‘pgturnEff.js’ tag.

‘ad’ 27.2ms downloads the ‘main.css’ file.

‘as’ Ims parses html till the ‘webcounter.js’ tag.

‘a6’ 32.4ms download the two js files.

‘a7’ 35.2ms download the two js files.

‘a8’ 12.6ms is the evaluation of ‘main.css’.

‘a9’ 16.8ms load ‘pgturnEff.js’ and ‘webcounter.js’.
‘al0’ 18.2ms load ‘pgturnEff.js’ and ‘webcounter.js’.
‘all’ Ims parses html file and push the tag elements into DOMTree.
‘al2-1’ 31.2ms Executes the two js functions.
‘al2-2’ 34.5ms Executes the two js functions.
‘al3’ 12.2ms Garbage collection.

‘ald’ 10.5ms rendering.

‘als’ Ims parses the html.

‘al6’ 26.4ms download .css file.

‘al7 29ms evaluation for the .css file.

‘alg’ 13ms rendering.

‘al9’ 62ms load the video.

‘a20” Ims parsing to the video tag.

‘a2l’ 112ms load the image.

‘a22’ Ims parsing to the image tag.

‘a23’ 16.7ms rendering.

the ATF display but consumes computation time before the
ATF (e.g., a7, a9, al0, al2).

An intuitive idea is to execute the events related to these
objects after the fold line, such that the processing delay will
not be added to the ATF time. In this case, the ATF time
can be greatly reduced when these four events are postponed
after al7. However, we should also notice that although some
objects (e.g., a4) are not relevant to the display above the fold,
they are depended on by some objects that have impact on
display above the fold. Therefore, such objects could not be
moved below the fold.

Ill. DESIGN

A. OVERVIEW

Our design aims at reordering the webpage objects in order to
achieve the minimum ATF time. The basic idea is to change
the positions of the objects before the fold that have no
impact on the display (termed as ‘“‘non-impactive objects”).
Specifically, we would like to reorder them to the positions
below the fold.

Figure 3 shows the proposed framework. Our reorder-
ing system acts as a proxy between the cloud web servers
and the web publishers/developers. When the webpages are
uploaded, our reordering system in the cloud changes the
structures by reordering the objects and then publish the web-
pages for different devices. After that, the web user clients
access the improved webpages with improved web QoE.
There are three key building blocks in the reordering system.

1) Obtaining the fold. For different devices and different
resolutions, the fold positions (the bottoms of the first-
sight window) are different. Therefore, the first step
is to obtain the fold position before finding the non-
impactive objects.

2) Identifying the non-impactive objects. If all webpages
are loaded and rendered at the proxy, the computational

VOLUME 5, 2017

W. Li et al.: Reordering Webpage Objects for Optimizing QoE

IEEE Access

Cloud for websits

|

Publisher

Website browsers

FIGURE 3. The proposed optimization framework.

overhead will be too large. Therefore, we would like to
identify these objects based on the html files without
loading the contained objects.

3) Judging whether the objects are movable. After we
find out the non-impactive objects, we need to judge
whether their positions can be changed by considering
the dependency among objects.

After the above three steps, all movable non-impactive
objects are moved below the fold to reduce the ATF time.

B. OBTAINING THE FOLD

ATF time is the time when the first-fold display no longer
changes. The fold line is determined by: 1) the screen size and
aspect ratio in the web client; 2) the resolution used in the web
client. 3) the webpage content. The webpage content can be
directly obtained from the uploaded files. To obtain the screen
and resolution information, there are several different ways as
follows. For mobile devices, the screen size and resolution
can be inferred by the devices types. For other unpopular
devices of which the screen and resolution parameters are
unkonwn, the APIs provided by modern web browsers such
as Chrome and Firefox can be utilized to directly read the
information. With these information, we are able to calculate
the fold line (*browser’s screen size).

With the fold line, it can be judged that whether an object
is above the fold as follows: 1) the tags that placed above
the fold; and 2) the related objects that manipulate these tags
also belongs to the first fold. Only when the above two kinds
of tags have been loaded and rendered, the first fold will
remain unchanged. Although it is easy to find these ATF
objects, it remains a challenge to identify the non-impactive
ATF objects (or to identify the all impactive objects for the
first fold).

As a result, although the first fold may not be a large
part of the whole page, it may be fully loaded with much
unnecessary delay because of that the related objects are not
loaded/rendered in time. The more unrelated tags above the
fold, the more space is left to be optimized for ATF time.

Next we explain how we identify the non-impactive objects
above the fold.

VOLUME 5, 2017

C. IDENTIFYING THE NON-IMPACTIVE EVENTS

There are basically three types of non-impactive events. We
review the example shown in Figure 1 to illustrate these
events. First, the events that have no (either direct or indirect)
impact on display. For example the garbage collections (GC)
such as al3, which can be directly identified by the event
identifiers. We note that there are also some non-impactive
events that cannot be directly identified by the identifier (such
as the JS event al2-1 which calculates a counter that will not
be shown above the fold).

Second, the events that have no impact on the ATF dis-
play. These events are more difficult to be identified because
although some events have no direct impact on the ATF
display, they may manipulate the ATF tags and have indirect
impact on the ATF display. Some events that have have no
impact on display may be depended by the events related to
the ATF display. We need to distinguish the non-impactive
events from these indirect-impactive events. For example,
some webpages need to read the users’ IP addresses and the
locations and show them in the first fold. The reading part
may not be directly related to the display, but the display
depends on the reading results. There are also some events
that manipulate DOMTree but will not directly be displayed
above the fold.

Third, we need to distinguish the events that seem related
to display but have no actual impact on the webpage. For
example, some javascript (js) and css code sections may
be associated to a html tag that has been removed in the
development of the webpage. In this case, these js and css
codes become useless but may still remain in the html file
and the webpage processing. Some other js and css files
may be associated to the tags that is not shown in ATF part.
Such cases often occur when the webpages are designed
complex and the developers are not careful enough when
adding/removing web tags.

To identify whether an event is non-impactive or not, there
are several alternatives such as decision tree, Support Vector
Machine (SVM), k-means, etc. Since the event information
contains multiple dimensions such as the event name, URL,
event size, etc., we use SVM in our work to identify the non-
impactive events. The input of the SVM is the target features
(described as follow) and the history data of non-impactive
events. The output of the SVM is a judgment whether the
events are non-impactive or not. In the very beginning we
need to manually analyze the events and record the results
as history training data for the SVM model.

D. FEATURES

Considering there are tremendous websites to be optimized
when there are many users, we improve the processing effi-
ciency of the identification, by reading only the html file as
the feature extraction source, instead of all the files referenced
in the html file. Though it is easy to identify certain events
with clear identifiers, the challenge is to find the features for
identifying the impact of .js and .css files contained in html.

6629

IEEE Access

W. Li et al.: Reordering Webpage Objects for Optimizing QoE

1) FEATURES FOR .js FILES

For JS files referenced in URLSs, the useful features include
the JS file name, the domain name and the directory name
in the URL. For JS code segments implemented in the html
file, the useful features include not only the above fea-
tures, but also the number of code lines, the function name
in the code segments and the manipulated element name
(e.g., the target element name in the “getElementBylId()”
method). For example, the features for the JS insertion
(“<link type=-‘text/javascript’ href="http://www.mobinets.
org/misc/counter.js’>"") include file name ‘‘counter.js”,
URL domain ‘“mobinets.org” and URI “misc”. Such infor-
mation for each JS insertion can be collected and used for
training the SVM model to judge whether the target IS is
non-impactive. The training process will be presented in the
following section.

2) FEATURES OF CSS

In general, .css files are related to the display. Therefore,
our job is to judge whether the target .css file or code
segment is related to the ATF tags. Similar to JS, the
features for CSS also include file name, URL, direc-
tory, etc. For example, the features for the CSS insertion
(“<link rel="‘stylesheet’ type="‘text/css’ href="‘http://www.
mobinets.org/frame/main.css’>") include file name
“main.css”, URL domain ‘“mobinets.org” and URI
“frame”. From the directory we can further obtain the
domain name information and the file location by separating
the URL with /.

E. DATA PROCESSING

With the extracted features above, we need to transform
the features to numerical input to the SVM model. The
basic requirement is that the numerical results should be
able to reflect the characteristic of the string features. For
example, “frame” and “framework’ are two close semantic
terms. When transformed to numbers, the difference between
numbers should be able to reflect the semantic distance
of the features. We consider three alternative methods that
can be used for converting string features into numerical
features.

1) Sum of the ASCII values. With ASCII code we
can directly convert the characters in each feature
string to a series of numbers. Then the numbers are
summed up as the numerical feature. For example,
the “www.example.com” is converted to “1746” with
ASCII code.

2) ASCII Vectors. Different from the above method,
the ASCII values of each character in the string is
saved in a vector to present the numerical features.
For example, the “www.example.com” is converted
to (119,119,119,46,109,121,101,120,97,109,112,108,
101, 46,99,111,109). Compared to the above method,
the vector is a more precise representation of
the features but will incur more computational
overhead.

6630

3) Minimum Edit Distance (MED) [19]. Another alterna-
tive is to calculate the minimum edit distance (MED)
for each feature string. We use the average value
of all the training set as the baseline for calculat-
ing the MED values. Each feature is represented by
the vector of ASCII value difference between the
feature and the average value. For example, given
the vector of average values (119,119,119,46,111,
123,111,101,102,111,113, 101, 110, 80, 102,115,103),
the “www.example.com” is converted to MED vec-
tor as (119-119, 119-119, 119-119, 46-46, 109-111,
121-123,101-111, 120-101,97-102, 109-111,112-113,
108-101,101-110, 46-80,99-102,111-115,109-103) =
0,0,0,0,-2,-2,-10, 19, —15, -2, —1,7, -9, —34,
—3, —4, 6). We can see that the common part “www.”
are the same for different feature values and termed as
four “0”’s in the MED vector. We can also separate the
URL with “.”” in order for the MED vectors to be more
representative.

The numerical features are then fed into the SVM model. For
the implementation of SVM, we follow the design proposed
in [9]. Then we can judge whether a web object is non-
impact or not. We will study the performance of the different
converting methods in Section IV.

After obtaining the non-impactive events, the next step is
to find out whether these events can be moved by analyzing
the dependency. We follow the dependency analysis in [26].
If a non-impactive event is depended on by no other events or
by events that are not related to the ATF tags, we mark this
event as ‘“‘movable”. Next, we need to move these movable
non-impactive events after the current fold line to reduce the
ATF time.

F. REORDERING

The reordering module is to move the movable non-impactive
events afterwards. Currently we move these events to ran-
dom positions after the ATF. However when these events are
moved, the fold line will change accordingly, which in turn
impacts the identification of the non-impactive events. As a
result, the fold line and the non-impactive events should also
be updated before the next round of reordering.

Now we revisit the example shown in Figure 1. As
shown in the code segment in Figure 4, the jsC1 function
(““writeToThePage()’”) will write ‘“Hello World” to the page
(Figure 5) and the jsC2 function (“‘collectlnput(3,4)”)
adds two input sources but displays nothing to the page.
Apparently, jsC1 is impactive to the ATF display and jsC2
is non-impactive to the ATF display. From the codes and
the settings of the client, we can obtain the fold line of the
page (the bottom line of Figure 5). With this line, we con-
struct the structure of the webpage as shown in Figure 4(a).
We check the positions of the object one by one and obtain
all objects that are located above the fold (included in the red
line in Figure 4(a)). Then when jsC2 is identified as non-
impactive, it is moved out of the ATF area. Then the ATF
is updated as shown in Figure 4(b). The process continues

VOLUME 5, 2017

W. Li et al.: Reordering Webpage Objects for Optimizing QoE

IEEE Access

cis
‘
— i
e
ca o

T

FIGURE 4. The original and reordered structure of the example in Figure

In the early days of publishing, ‘above the fold’ was a term used for content that appeared on the top half of the
front pags of a newspaper. When newspapers were displayed on a newsstand, the headlines and lead stories
that appeared above the fold were the most visible, and catchy headlines and vivid imagery were commonly
used to attract readers’ attention, convincing them to buy the paper.

As publishers moved their businesses online and web design evolved in the 1990's, the term continued to stick.
Today, the fold no longer refers to an actual fold in a newspaper, but the bottom of a browser window, or
approximately B00 pixels from the top of the page.

Info Header 1 Info Header 2 Info Header 3

Text 14 Text 16 Text 1C

Text 24

Hello World

WHY IS ABOVE THE FOLD IMPORTANT?

Text 28 Text 2C

Content layout and placement is important because content that appears above the fold is what is first visible
when the user loads the page. It is the prime real estate that gets most of the attention from users.

FIGURE 5. Webpage display. The red rectangle denotes the output of the
javascript.

until all non-impactive ATF events are moved afterwards (as
shown in Figure 6). We can see that the ATF time of the
same webpage if reduced from 45.2ms to 30.2ms with our

=

1.

- | [cio

A m]a]

o |
Lot Co{m oy
[} cr{p |

Cl13 P -
- e
T O

reordering scheme. At the same time, the page load time is
not increased.

G. DISCUSSION

It is possible that the identification of the non-impactive
events is not accurate. If false negatives happen, the events
will not be reordered. The ATF time will be larger than the
minimum ATF time but can still be reduced compared to the
original webpage ATF time. If false positives happen, the
events that are impactive will be reordered. The ATF time will
be enlarged because these events will be the new bottleneck
of the ATF display. To reduce the negative impact of the false
positive cases, we add a confidence threshold to the non-
impactive event identification. Only when the confidence
is larger than the threshold, the events can be identified as
non-impactive.

Parse csstag Parsejstag Parse js tag Parse html Parse hitml Parse vidoe tag Parse image tag
——Z, - - o S S
HTML Parsing a2 | a3| a5 all als a20 | a22
alload a4 |oad al9 |°i|
Conn1 html cBs | vide
1 a21 load
ObJeCt a6|load js image
Loading Conn 2
Conn 3 a7 load js
%\%
Evaluation Parse style a9 | a10 \ a12-1 T a12-2 | evaljs GC |al3
eval js render a4 ’ render| a23
Rendering -
Start ATF PLT
. [.
D Network D Computation 2 Blocking — Dependency

FIGURE 6. The optimized loading process of the webpage in Figure 1.

VOLUME 5, 2017

6631

IEEE Access

W. Li et al.: Reordering Webpage Objects for Optimizing QoE

From the example in Figure 1, we can see that not all
events can be moved afterwards because some events are not
associated with specific webpage objects (Since only objects
can be reordered in the webpage). For example, the GC
events are not triggered by any objects. Reordering webpage
objects cannot change the execution order of these events.
Alternatively, the reordering of these events can be done at
the client browser side. For other events that are associated
with specific objects, we can directly move them afterwards
the fold to reduce the ATF time.

It is also worth noting that there is optimization space for
events reordering to further reduce the loading time of the
entire webpage. We will leave the optimization of the moving
strategy in our future work.

IV. IMPLEMENTATION AND EVALUATION

In this section, we present the implementation of the reorder-
ing and the evaluation results. As shown in Figure 3, the
reordering system can be implemented either in the cloud
side or in the publisher client side. In our experiment, we
implement the system in the webpage publisher end (i.e., the
webpages are first reordered before uploading to the cloud
servers).

A. METHODOLOGY
We conduct the experiment on the Mac with the 2.8 GHz
Intel Core i7 CPU, 16 GB 1600 MHz DDR3 memory and the
Intel Iris Pro 1536 MB GPU in the Destop. We download the
top 500 websites of China and save the website data locally.
The data mainly includes the CSS files, JavaScripts files
and the multimedia files. The webpages for training are first
loaded and rendered locally using Google Chrome with the
Chrome devtool (53.0.2785.143). The information includes
the loading and rendering process of the webpage and the
corresponding delay. Chrome devtool records the timestamps
at the beginning and the end of each event executed during the
page loading. The timestamps for four parameters are object
loading, scripting, rendering and painting. We choose the top
300 and top 500 websites of China in the Alexa for training
and testing our model, respectively. The different screen sizes
and resolutions for different devices are considered as shown
in Table 2. After the local reordering, the webpages are
uploaded and then accessed by different devices. The network
settings used in the experiment and the average round trip
time (RTT) are also shown in Table 2.

We use all the three feature convert methods in our data
processing and compare their performance.

B. EXPERIMENTAL RESULTS

Figure 7 shows the identification accuracy for non-impactive
JS files with different converting methods. We can see that
MED achieves the best accuracy. The reason is that: 1) its
value can reflect more about the semantic difference between
different feature values and 2) the non-impactive JS files with
similar directory and file names to the non-impactive training
data will be accurately identified. As the number of dimen-

6632

TABLE 2. The network settings.

Notation Meaning
good 2G bandwidth 450kbps,150ms RTT
Regular 3G bandwidth 750kbps,100ms RTT
Good 3G bandwidth 1Mbps,40ms RTT
Regular 4G bandwidth 4Mbps,20ms RTT
WiFi bandwidth 30Mbps,2ms RTT
1
ASCII sum g
0.9 |—e-ASCIl vector| 1
——MED
0.8 --"

Accuracy
I
by

3 4 5 6
Number of Dimensions

FIGURE 7. The identification accuracy of the JS files/segments.

sions increases, the methods with ASCII vectors and the
MED vectors increase. It is because that more fine-grained
data achieves more accurate identification. Differently, the
accuracy of identification with ASCII sum method decreases.
The reason is that the sum of ASCII values cannot distinguish
the cases with similar sum but with different values. For
example, “mean.js” and ‘“name.js”’ have the same ASCII
sum value but the meanings are totally different.

0.9
ASCII sum
0.8 = -ASCII vector 4
: ——MED
))
3 0.7
3
1 -
g 0.6 L - -
0.5
0.4
2 4 5

3
Number of Dimensions

FIGURE 8. The prediction accuracy of the CSS evaluation’s impact with
different number of input dimensions.

In Figure 8, we compare the identification for non-
impactive events with different converting methods. Similar
to the JS identification results, MED vectors achieve the
highest accuracy compared to the other two methods because
it better represents the semantic difference and similarity
among different feature samples. However, we notice that
compared to the JS identification, the accuracy of CSS identi-
fication is lower. The reason is two fold. First, in many web-
page development cases, the styles are often written in one
single .css file. Therefore, the impactive and non-impactive

VOLUME 5, 2017

W. Li et al.: Reordering Webpage Objects for Optimizing QoE

IEEE Access

CSS segments often share the same file name and directories,
which makes it difficult to distinguish. Second, there are often
fewer CSS files/segments compared to JS files/segments. As
aresult, there are fewer CSS data for training the SVM model
and the accuracy is reduced.

Next we evaluate the end-to-end improvement in ATF time.
We choose the top 5 websites in China (in Alex ranking)
as the target websites in the experiment. We compare the
ATF time between the original webpages and the reordered
webpages. Figure 9 shows the result. We can see that the
improvement for baidu is the smallest and the improvement
for sina is the highest (23%). By analyzing the webpages we
infer that it is because the sina webpage is the most complex
compared to the other four websites (containing the largest
number of JS and CSS files/segments). From this case, we can
also infer that the proposed work is more suitable for complex
webpages because there may be more space for optimization.

1800

[Original

1600 I Reordered

1400

1200
)
£ 1000
£ 800
<

600

400

200

0 n -
Baidu Taobao QaQ 163 Sina
Websites

FIGURE 9. The ATF time of the five target websites.

3500

3000 [CJorgnal | []
| I Heordered|
2500
m
E 2000
Z 1500
o
1000 -
500
0 . |
Baidu Taobao QQ 163 Sina
Websites

FIGURE 10. The PLT of the five target websites.

We also compare the entire page load time (PLT) between
the original webpages and the reordered webpages. Figure 10
shows the result. (1) Compared to the ATF reduction, the
PLT reduction is limited. The reason is that although we can
optimize the first fold, all objects in the webpages will be
processed eventually. Therefore, the PLT time of the original
and reordered webpages is similar. (2) Compared to the orig-
inal webpages, the PLT of reordered webpages is reduced.
Although our reordering does not optimize PLT, the reorder-
ing may shorten the critical path in the webpage, which is
also beneficial to reducing PLT. (3) sina achieves the largest
reduction in PLT. Similarly to the evaluation results in ATF
time, the reason is that sina page is the most complex webpage
in the five websites and has the most space for optimization.

VOLUME 5, 2017

V. RELATED WORKS

The literature can be classified into two categories accord-
ing to the optimization objectives: Works on reducing the
network delay and works on reducing the processing delay.
There are also works that focus on the cloud-based proxy,
which deals with the tasks offloaded from the mobile devices.

A. REDUCING NETWORK DELAY

There are several works aiming at reducing the network
delay. Some works exploit the preloading techniques such
as [17]. The network delay can be reduced by establishing
TCP pre-connection or TCP fast open technique [18]. Some
works design new protocols for web browsing to speed up
the browsing such as HTTP2 [23] and SPDY [27]. Local
cache is also proposed and exploited for reducing the caching
delay during the loading and rendering process in web
browsing [3], [21].

B. REDUCING PROCESSING DELAY

Related measurement studies focus on improving page load
computation. In Parallel Webpage Layout [15], a novel com-
puting scheme is proposed to reduce the time of webpage
layout by parallelizing the CSS evaluations. A similar tech-
nique called Parallel Web Scripting [13] is proposed to exploit
parallelism between scripting and page layout under a new
architecture. Parallel Web Browser [8] parallelizes preloading
and preprocessing for web objects and can speed up the
computation in sub-activities. The work in [14] reduces the
page load time by parallelizing the loading and evaluation of
JavaScript and CSS. In Silo [16] a new scheme is proposed to
utilize the inline JavaScript and CSS files caching to reduce
the round trip time.

1) REDUCING THE NETWORK/PROCESSING

DELAY WITH CLOUD-BASED PROXY

For mobile devices with the computation and bandwidth
limits, researchers have proposed to offload various types
of functionality from client devices to cloud proxies. The
work [25] proposed by Wang et al. exploits the mobile cloud
computing to speed up the response and reduce the energy
consumption. Flywheel [2] use the data compression proxy to
reduce the transferred data size, which can greatly reduces the
network delay especially in the non computation-intensive
cases. Sophia [28] presents a proxy design to preprocess
part of the web loading and rendering tasks, and parallelizes
the CSS evaluation and JavaScript evaluation to reduce both
network delay and the computation delay. FlexiWeb [22]
utilizes network-aware image compression and adaptively
decides whether to offload different web objects to meet the
user deadline.

Our work differs from the above works that: 1) we aim
at optimizing the webpage to minimize the end-to-end ATF
time; 2) both network delay and the computational delay are
implicitly considered; 3) the framework can be extended and
implemented at the cloud side. It is also worth noting that our

6633

IEEE Access

W. Li et al.: Reordering Webpage Objects for Optimizing QoE

work is compatible to most of the existing works and can be
simultaneously exploited for optimizing web QoE.

VI. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we propose a novel optimization framework
that modifies the webpage structures to minimize the user-
end Above-The-Fold (ATF) time. We first identify the non-
impactive objects and events that contribute to ATF time and
then judge whether these objects and events can be moved
considering the in-page dependency. The proposed work is
implemented and evaluated with the top five websites in
China according to Alex rank, the evaluation results show that
the ATF time is greatly reduced with our work compared to
the original webpages, especially for complex webpages.
Our future work will focus on the implementation of the
work on the cloud side, where crowd sourcing can be used
to further improve the accuracy for impact identification and
reduce the ATF time.

REFERENCES

[11 Reduce the Size of the Above-the-Fold Content, accessed on Feb. 15,2017.
[Online]. Available: https://developers.google.com/speed/docs/
insights/Prioritize VisibleContent

[2] V. Agababov et al., “Flywheel: Google’s data compression proxy for the
mobile Web,” in Proc. 12th USENIX Symp. Netw. Syst. Design Imple-
ment. (NSDI), 2015, pp. 367-380.

[3] S.W.AikenandlJ. A. Saba, “High speed flexible slave interface for parallel
common bus to local cache buffer,” U.S. Patent 5761 707, Jun. 2, 1998.

[4] A. Balachandran et al., “Modeling Web quality-of-experience on cellular
networks,” in Proc. 20th Annu. Int. Conf. Mobile Comput. Netw., 2014,
pp. 213-224.

[5] E.Bocchi, L. De Cicco, and D. Rossi, ‘“Measuring the quality of experience
of Web users,” ACM SIGCOMM Comput. Commun. Rev., vol. 46, no. 4,
pp. 8-13, 2016.

[6] J. Brutlag, Z. Abrams, and P. Meenan, “Above the fold time: Measuring
Web page performance visually,” in Proc. Velocity, Web Perform. Oper.
Conf., 2011, pp. 1-18.

[71 M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar, ‘““Klotski:
Reprioritizing Web content to improve user experience on mobile devices,”
in Proc. NSDI, 2015, pp. 439-453.

[8] C.Cascaval etal., “ZOOMM: A parallel Web browser engine for multicore
mobile devices,” ACM SIGPLAN Notices, vol. 48, no. 8, pp. 271-280,
2013.

[9]1 M. Chau and H. Chen, “A machine learning approach to Web page filtering
using content and structure analysis,”” Decision Support Syst., vol. 44, no. 2,
pp. 482-494, 2008.

[10] Y. Deng and S. Manoharan, “Review and analysis of Web prefetch-
ing,” in Proc. IEEE Pacific Rim Conf. Commun., Comput. Signal Pro-
cess. (PACRIM), Aug. 2015, pp. 40-45.

[11] L. Fan, L. Bonomi, L. Xiong, and V. Sunderam, ‘“Monitoring Web brows-
ing behavior with differential privacy,” in Proc. 23rd Int. Conf. World Wide
Web, 2014, pp. 177-188.

[12] D. Guse, S. Egger, A. Raake, and S. Mdller, “Web-QOE under real-
world distractions: Two test cases,” in Proc. 6th Int. Workshop Quality
Multimedia Exper. (QoMEX), 2014, pp. 220-225.

[13] T. Hottelier, J. Ide, D. Kimelman, and R. Bodik, “Parallel Web scripting
with reactive constraints,” Dept. EECS, Univ. California, Berkeley, CA,
USA, Tech. Rep. UCB/EECS-2010-16, 2010.

[14] C. G. Jones, R. Liu, L. Meyerovich, K. Asanovic, and R. Bodik, “Par-
allelizing the Web browser,” in Proc. Ist USENIX Workshop Hot Topics
Parallelism, 2009, pp. 1-6.

[15] L. A. Meyerovich and R. Bodik, “Fast and parallel webpage layout,” in
Proc. 19th Int. Conf. World Wide Web, 2010, pp. 711-720.

[16] J. Mickens, “Silo: Exploiting JavaScript and DOM storage for faster page
loads,” in Proc. WebApps, 2010, pp. 9-21.

[17] R. Mundwiler and M. Gaffin, “System and method for communi-
cating pre-connect information in a digital communication system,”
U.S. Patent 6 178 173, Jan. 23, 2001.

6634

(18]
(19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan, “TCP fast
open,” in Proc. 7th Conf. Emerg. Netw. Experim. Technol., 2011, p. 21.
E. S. Ristad and P. N. Yianilos, “Learning string-edit distance,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 20, no. 5, pp. 522-532, May 1998.
A. Sackl, S. Egger, and R. Schatz, “The influence of network quality
fluctuations on Web QOE,” in Proc. 6th Int. Workshop Quality Multimedia
Exper. (QoMEX), 2014, pp. 123-128.

J. Singh, B. T. Thio, C. W. Bhide, and W. R. Gray, ““Installable performance
accelerator for maintaining a local cache storing data residing on a server
computer,” U.S. Patent 5 805 809, Sep. 8, 1998.

S. Singh, H. V. Madhyastha, S. V. Krishnamurthy, and R. Govindan,
“FlexiWeb: Network-aware compaction for accelerating mobile Web
transfers,” in Proc. 21st Annu. Int. Conf. Mobile Comput. Netw., 2015,
pp. 604-616.

D. Stenberg, “HTTP2 explained,” Comput. Commun. Rev., vol. 44, no. 3,
pp. 120-128, 2014.

P. Tsatsou, Internet Studies: Past, Present and Future Directions.
Abingdon, U.K.: Routledge, 2016.

H. Wang, J. Kong, Y. Guo, and X. Chen, ‘“Mobile Web browser optimiza-
tions in the cloud era: A survey,” in Proc. IEEE 7th Int. Symp. Service
Oriented Syst. Eng. (SOSE), Mar. 2013, pp. 527-536.

X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall, “Demystifying page load performance with WPROE,”
presented at the 10th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2013, pp. 473-485.

X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“How speedy is SPDY?” in Proc. 11th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2014, pp. 387-399.

X. S. Wang, A. Krishnamurthy, and D. Wetherall, “Speeding up Web page
loads with shandian,” in Proc. 13th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2016, pp. 109-122.

R. S. Wilbourn, J. P. Wood, and R. T. Halley, “DNS resolution, policies,
and views for large volume systems,” U.S. Patent 8 707 429, Apr. 22,2014.
M. Zhang, Z. Shen, X. Zhang, L. Luan, and Q. Ouyang, “Theoretical mod-
elings for mobile Web service QoE assessment,” in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), Mar. 2015, pp. 2026-2031.

WEIWANG LI received the B.S. degree from the
College of Computer Science and Engineering,
University of Electronic Science and Technology
of China (UESTC). He is currently pursuing the
M.S. degree with UESTC. His research interests
focus on mobile computing.

ZHIWEI ZHAO received the Ph.D. degree with
the College of Computer Science, Zhejiang Uni-
versity, in 2015. He is currently an Assistant
Professor with the College of Computer Science
and Engineering, University of Electronic Sci-
ence and Technology of China. His research inter-
ests include wireless computing, heterogeneous
wireless networks, protocol design, and network
coding.

VOLUME 5, 2017

W. Li et al.: Reordering Webpage Objects for Optimizing QoE

IEEE Access

d b

GEYONG MIN received the B.Sc. degree in com-
puter science from the Huazhong University of
Science and Technology, China, in 1995, and the
Ph.D. degree in computing science from the Uni-
versity of Glasgow, U.K., in 2003. He is cur-
rently the Chair Professor and the Director of
High-Performance Computing and Networking
Research Group, University of Exeter, U.K. He
joined the University of Bradford as a Lecturer in
2002. He became a Senior Lecturer in 2005 and

a Reader in 2007, and was promoted to a Professor in computer science in
2012. His main research interests include next-generation Internet, wireless
networks, mobile computing, cloud computing, big data, multimedia sys-
tems, information security, system modeling and performance optimization.

HANCONG DUAN received the B.S. degree in
computer science from Southwest Jiaotong Uni-
versity, in 1995, and the M.E. degree in computer
architecture and the Ph.D. degree in computer
system architecture from the University of Elec-
tronic Science and Technology of China, in 2005
and 2007, respectively. He is currently a Pro-
fessor of Computer Science with the University
of Electronic Science and Technology of China.
His current research interests include large-scale

P2P content delivery network, distributed storage, and operating system.

VOLUME 5, 2017

QIANG NI received the B.Sc., M.Sc., and Ph.D.
degrees from the Huazhong University of Science
and Technology, Wuhan, China, all in engineering.
He is currently a Professor and the Chair of Com-
munications and Networking, School of Comput-
ing and Communications, Lancaster University,
U.K. He has authored over 100 papers in engi-
neering. His main research interests are wireless
communications and networking. He is a Fellow
of IET and was an IEEE 802.11 Wireless Standard

Working Group Voting Member and a contributor to the IEEE wireless

ZIFEI ZHAO received the B.S. degree from the
College of Computer Science and Engineering,
University of Electronic Science and Technology
of China (UESTC). He is currently pursuing the
M.S. degree with UESTC. His research interests
focus on wireless and mobile computing.

6635

