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Fig. 5. Network Upgrading Scenario.

functionality starting to track permissions and connectivity
permutations. As soon as the connection failure occurs be-
tween SDN switches and the primary path disconnected, the
resilience functionality in the SDN controller will perform
topology scanning to evaluate the restoration path of (SW1,
SW2, SW5, and SW9) to be able for reconnecting the utility
provider with IIoT server. Finally, SDN controller updates the
flow table with new predictions and inform the associated
switches to change data path considering the requested QoS.

B. Network Upgrading Scenario

In modern grid design trends, there is a huge demand
to install additional SDN switches in order to further slice
the power grid area and interface the electric data at grid
edges. In this way, we deploy additional SDN switches to our
smart grid network scenario to meet the data communication
requirements with multi-alternative paths, as shown in Fig.
5. This expansion enables SDN controller to choose among
short/long paths to improve the services provided to smart grid
applications. As soon as new SDN switches are deployed in the
smart grid network, SDN controller will receive corresponding
message for new paths and starts to update the resilience
function automatically.

Fig. 6. Experimental Setup.

V. EXPERIMENTAL EVALUATION

In this section, extensive experimental simulations are con-
ducted to validate the proposed SDN platform enabling re-
silience features for smart grid applications. To conduct our
experiments, we use a Dell Server R730 that has Intel Xeon
E5-2600 CPU and 32G RAM to operate Red Hat Linux 7.
To create multiple entities in VMs, we use RDO Openstack
Mitaka that runs on top of RHEL7. The SDN and switches
are cerated in the form of VMs with four VMs that provide
originating/terminating points for messages exchanged across
the switches pool. The SDN VM has RHEL7 as the operating
system and OpenvSwitch to provide the functionality of SDN.
Moreover, the SW VM has RHEL7 as the operating system
and OpenVswitch to provide the functionality of software
switch, as shown in Fig. 6. Data communications frailer are
configured by sending error message flow during a normal
session. To demonstrate the time accuracy of the proposed
SDN platform for data monitoring to perform resiliency in
smart grid networks, we present different use cases to handle
a traffic flow in real-time monitoring. The first scenario cre-
ated with consideration of conventional topology network to
provide communication connectivity between SDN switches.
The second scenario is the failure topology when fault event
happens between SDN switches. Finally, upgraded topology
was involved deployment of new SDN switches in the smart
grid domain. In such smart grid network, we assume that SDN
controller exchanges updating messages with associated SDN
switches using openflow protocol. Our goal is to differentiate
the conventional data flow, failure event and network upgrade
flow by calculating the traffic flow efficiency of SDN base
switches. The time of message exchanges in the same SDN
switches and time required to reroute end-to-end path con-
nectivity is assessed to be 6 ms, as shown Fig. 7. The latency
performances of the network conventional are slightly high due
to the congested traffic load at the control centre. For example,
in case of failure event, the latency of data delivered to the
control center under real-time monitoring system is higher than
upgrade scenario due to the traffic overflowing effect.
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Fig. 7. End-to-end latency for different networks topology.

The assignment of any SDN switch to a specific flow path
is determined by SDN controller. Such decision is made based
on data obtained from monitoring algorithm running at SDN
controller. The proposed SDN controller can identify failures
using interruption messages obtained from originating point, as
we assume the starting point may need to receive acknowledg-
ment messages for data forwarding. It is obvious the latency
increases during the period of distribution or communication
failure between SW1 and SW4. This is expected since time
required for SDN controller to detect failure and recover the
system is consumed to update the flow table of SW1. The
latency time of data transmission is less in the upgraded system
approach, which mean the transmission time contributes to
overall system can perform well in the proposed scheme.

Fig. 8. Traffic flow for different networks topology.

Fig. 8 shows the data traffic flow times at receiver side. In
the scenario, SDN switches are set to frequently transfer their
active status to SDN controller with data gathering traffic rate
at 1500 kbps. During the event of fault supervisions, SDN
controller will identify any abnormal status after receiving
report from the switches. In order to make sure the time
of monitoring in the control centre is accurate the SDN
controller required to deliver real time data measurements to

the control centre at the rate of 4800 messages per second
[6]. Each message contains an instantaneous sample of power
signals (e.g. voltage, current) readings. It is obvious, how
system performance declines significantly when failure occurs.
For conventional flow in infrastructure layer the monitoring
features set-up at 6 ms time measurement.

VI. CONCLUSIONS

In this paper, we presented an efficient use of emerging SDN
platform powered by IIoT platform for smart grid paradigm,
which is currently considered as one of modernization chal-
lenges to utility providers. To overlay the path toward SDN
employed IIoT integrated smart grid, there are still challenges
ahead such as the use of OpenFlow protocol to integrate all
the layers and development of efficient control algorithms with
low complexity. In this regard, new SDN platform along with
developed algorithm are proposed to adopt dynamic change in
real-time smart grid system,and reliable and flexible operations
to enable control layer in providing real-time monitoring. To
verify the feasibility of the developed system different use
cases are presented (e.g. expansion and fault scenarios) in
smart grid paradigm to evaluate the data traffic flow and for-
warding behavior. According to the demonstrative scenarios,
the paper shows the potential of SDN controller for supporting
resilience of smart grids, even under fault circumstances.The
performance results indicated that the dynamic end-to-end
reroute could be realized within tens of milliseconds and
confirmed the effectiveness of the control scheme. However,
smart grid fault detection required big data of information
exchanges to reduce the latency performance of message
transfer, particularly in upgraded smart grid networks. In this
way, further analyses need to be considered using industrial
protocol to allocate resources for various amount of data with
different delay requirements.
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