
Emerging Sounds Through Implicit Cooperation: A Novel Model for Dynamic
Music Generation

Mário Escarce Junior1,2∗, Georgia Rossmann Martins1∗, Leandro Soriano Marcolino2,
Yuri Tavares dos Passos3

1Phersu Interactive, Belo Horizonte, Brazil
2School of Computing and Communications, Lancaster University, Lancaster, United Kingdom
3Centro de Ciências Exatas e Tecnológicas, Universidade Federal do Recôncavo da Bahia, Brazil

{mario,georgia}@phersu.com.br, l.marcolino@lancaster.ac.uk,
yuri.passos@ufrb.edu.br

Abstract

Normally agents cooperate when they have a joint goal or are
able to get a higher payoff by doing so. We present a new
perspective, where an agent cooperates with another without
an explicit intention. We study this perspective in the context of
Art Games, by introducing a novel algorithm where a human
agent cooperates with a video game system in generating
music in an emergent fashion, without needing awareness that
he/she is doing so. We present a theoretical analysis of our
system, and preliminary experiments with human subjects.

Introduction
Cooperative agents are able to accomplish hard tasks through
their joint work. However, most systems assume that agents
explicitly collaborate, by having a joint goal, an utility func-
tion that foster collaboration, or even pre-specified coordi-
nation rules. In many situations, however, we may have a
system where the actions of an agent unintentionally help
another. In particular, we may be able to use the actions of an
agent to produce works of art in an emergent fashion, without
requiring artistic knowledge from the agent, nor an explicit
intention to create an artistic piece.

Recent works view the creative process as a collaboration
between a human and an AI system (d’Inverno and McCor-
mack 2015). Pachet et al. (2013) present a system where a
human musician plays a music sample, and an AI system,
after learning the basic music pattern, joins the musician in
producing music. Hence, both human and system “jam” to-
gether, creating a unique music that neither would construct
alone. Moreira, Roy, and Pachet (2013) show a set of agents
that react to human musicians, and human and agents cooper-
ate in producing a live music performance. However, in all
these works the user has to explicitly collaborate with the
AI system in the music generation process, even requiring
musical background in order for the system to work well.

In this work we present a new algorithm where the actions
of a user are used to dynamically emerge a musical piece.
This system may be used in the context of Art Games, a new
genre that views games as an artistic experience rather than
just entertainment. Our algorithm places (invisible) musical

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

* M. Escarce Junior and G. R. Martins are both first authors.

cells on the floor of a virtual scenario, which are arranged
in a way that fosters the musical production. We present a
theoretical analysis of our algorithm, where we show that:
(i) our algorithm correctly generates grids that foster the
generation of arpeggios, but maintaining the diversity of
notes; (ii) we can generate complete grids for an odd number
of notes; (iii) a human agent walking in our grids has a
higher likelihood of generating music than random walks
or randomly drawing notes. Additionally, we develop an
Art Game with our algorithm, and evaluate our approach
with real human players. We show that real humans, without
realizing the effect of their actions, effectively generate a
large number of arpeggios, and classify the product of the
system as “music”.

Related Work
This work is related to the study of cooperation in multi-agent
systems and mechanism design; the study of AI for video
games and music generation; and computational creativity.

Cooperation is an important topic in multi-agent systems
(Cohen and Levesque 1991; Tambe 1997), where agents have
joint intentions and objectives. It is also possible to coordinate
a team through task allocation, for instance with the contract
net protocol (Smith 1980). Large groups may also present a
global, organized behavior by following local coordination
rules (Marcolino et al. 2017). Additionally, in Cooperative
Game Theory (Branzei, Dimitrov, and Tijs 2008), agents
form groups when it allows them to achieve a higher payoff.
Our implicit cooperation approach for music generation, how-
ever, is essentially different than these previous works. Our
work also relates to mechanism design (Hurwicz and Reiter
2006), a model in game theory that focuses on designing the
rules of a game in order to achieve desired objectives. Tradi-
tionally, mechanism design assumes rational agents, while
our approach does not need rationality assumptions (in fact,
our model is not based on game theory).

Artificial intelligence is used extensively in (video) games.
The main focus is on creating strong agents, that are able to
win or achieve a high score. It is notorious the recent success
of UCT Monte Carlo to play board games (Gelly et al. 2006),
and the development of machine learning algorithms that are
able to perform well in a range of Atari games (Bellemare
et al. 2013). In the industry, however, creating strong agents
is not as crucial. One of their main objectives is to create

non-player characters (NPCs) that make the game enjoyable,
often by using scripts and simple techniques (Robertson and
Watson 2014). Designers also explicitly program the agents
to make mistakes (Lidén 2004). They still hold the belief,
however, that the major role of AI is for creating realistic (or
human-like) agent behavior (Scott 2002).

AI techniques have also been used to automatically cre-
ate levels of games. For example, Sorenson, Pasquier, and
DiPaola (2011) combine genetic algorithms and constraint
satisfaction for automatically generating “enjoyable” levels.
Similarly, Zook and Riedl (2011) present an approach where
the difficulty level of the game adjusts dynamically to the
current player, in order to make the game enjoyable. In Art
Games, however, the objective is in creating a new expressive
experience, and not necessarily in making a game “fun”.

Concerning music generation, many works create music
without human intervention, by applying machine learning
techniques over a music corpus (Eigenfeldt and Pasquier
2010). Others, however, see the creative process as a col-
laboration between a human and an AI system (d’Inverno
and McCormack 2015; Pachet et al. 2013; Moreira, Roy, and
Pachet 2013), which aligns with our view. These systems,
however, require the human to explicitly join the music gen-
eration process, and the human must be an expert in music.

The collaboration between a human and a computer system
is an active topic in computational creativity: e.g., in Roberts
et al. (2017) a user plays some notes for the melody on a
MIDI keyboard, and the system responds with variations on
this melody and also with a bass accompaniment; in Jacob
and Magerko (2015) a human and an agent collaborate to
produce movement-based performance pieces; and in Davis
et al. (2016), a user takes turn with a computer AI system
when drawing in the same canvas. In these systems, however,
the user has to be actively engaged in the creation process.

Art Games
Recently a new line of research has been drawn on the digital
arts horizon. Composed of mixtures of innovative gameplay
mechanics, disturbing narratives and surreal aesthetics, the
Art Games are normally produced with a low budget and
focus on breaking expectations and paradigms, on being
provocative, and on creating unique experiences. The term
Art Game was first used in Holmes (2002), and it can be
understood as a game whose structure is destined to produce
different reactions in the audience. Similarly to entertainment-
focused games, they normally have audio and video output
and interactive interfaces, but in a non-conventional way.
Within the Art Games genre, there are sub-genres focused on
specific artistic segments, such as music, as we can observe
on Music Video Games. In these games, the mechanics are
oriented around the interaction with very elementary musical
elements, such as rhythm, which makes them easily associa-
ble with many traditional puzzle games that uses rhythmic
structures to overcome obstacles (for example, in Vib-Ribbon
(Sony Interactive Entertainment, 1999) and Patapon (SIE
Japan Studio, 2007)). The creative expressiveness of the user
in the current projects of this genre is very restricted, since
the only action allowed for the player is usually to press de-
termined buttons at predetermined moments. Another project

worth mentioning is ElectroPlankton (Iwai 2005). In Elec-
troPlankton a user interacts with objects in virtual scenarios,
which affects the movement of digital “planktons” that play
musical notes, generating music. However, he/she must still
be engaged in the music generation process, and must reason
about the music generation mechanics of the game during
play. Our implicit cooperation approach is, hence, fundamen-
tally different.

Implicit Cooperation
Implicit cooperation consists of a multi-agent system where
agents collaborate without the intention of doing so. That is,
while an agent is pursuing its own objectives, its actions “end
up” aiding another agent.

In this paper we study a restricted version of implicit coop-
eration, where we will focus in systems with only two agents.
Additionally, we will study these systems in the context of
human-computer interaction. Hence, we will consider the
following two agents: (i) a human controlled one (a character
in a digital game), which seeks the objectives given in the
game; (ii) the computer system itself, which uses the actions
of the user to accomplish another objective. Therefore, we
will design systems which will accomplish their objectives
with the help of a user, but without requiring from him/her
an explicit intention of collaborating with the system.

That is, given an agent φ, which receives a reward ra for
each action a, according to the current world state. Let’s
assume that φ wants to maximize its total reward (for in-
stance, explore the world as much as possible, or collect
items in a virtual environment). Given now a system S, with
an objective O (for instance, generate music with a certain
characteristic). The implicit cooperation problem under study
in this paper is: how can the system S induce agent φ to
accomplish objective O?

We solve this problem for emergent music generation.
Hence, in the next section we present an algorithm that allows
the system S to change the floor of the scenario of a digital
game, in order to produce music according to the movements
of the agent φ in that scenario.

Emergent Music Generation
We present a system where the movement of an agent pro-
duces music in an emergent fashion. First, we provide a
definition of “music” in the context of our work.

Music: As any art form, there are many possible defini-
tions for music. Our work aligns to a particular one, attributed
to the modernist composer Edgard Varèse (McAnally 1995),
that music is nothing more than “organized sounds”. We first
introduce the scale, a musical concept that is important to the
game mechanics we will present later on. A musical scale is
a set of musical notes arranged in sequence from the lowest
note to the highest note. For example, from a major C scale,
we have the sequence CDEFGAB until we reach the C once
again, one octave above. In this work we will not consider
accidents (which increase or decrease a note in half a tone).

Another key element that served as a guideline for our
system is repetition. Repetition is a strong factor for musi-
calization, because it “breaks” a song into pieces and seams

Figure 1: The C Major Scale, all possible triads of thirds, and
an example of all possible inversions for the triad CEG.

them together forming new patterns in a way to preserve
an initial structure, making it easier for our brains, an avid
“devourer of patterns” (Koster 2004) to easily assimilate it
and recognize it as music. According to Elizabeth Hellmuth
(Margulis 2014), if we are asked whether a particular piece is
music or not, a remarkably large part of the answer appears
to be: “I know it when I hear it again.” She also stated that
repetition serves as a “handprint” of human intent, and a
phrase that might have sounded arbitrary at first may sound
reasonable the second time it is heard.

The other concept is chord. Chords are any harmonic set of
three or more notes that are heard resonating simultaneously
(Karolyi 1965). The most frequent type of chords are the
triads, that consists of three notes: the fundamental; the third,
which is the note next to the one following the fundamental;
and the fifth, which is the note next to the one following
the third (Karolyi 1965). Hence, a triad is a sequence of
thirds, where the next note in the scale is always skipped.
There is also a different type of chord called power chord,
commonly executed with the effect of distortion on electric
guitars (Walser 1993). In this arrangement, only two notes are
played: the fundamental and the fifth. For example, CEG and
CG are examples of a triad and a power chord, respectively.

It is possible to form chords when playing only one note at
a time. These are called arpeggios, which is the successive
execution of the notes of a chord (in any order) (Policastro
1999). In our system, we have only one note being played at
a time. Hence, we focus on the presence of arpeggios rather
than chords. Figure 1 shows an example of possible arpeggios
of triads, and all possible orders for the CEG case.

Emergent Generation: We consider our agent as a char-
acter in a scenario, controlled by a human player. This agent
pursues some objective: for instance, collect items or explo-
ration. The actual objective depends on the system designed
using our technique, and does not affect our approach.

Figure 2: 7x7
building block.

We place musical cells on the floor
of the scenario: we divide the environ-
ment in a grid, where each cell corre-
sponds to a piano key. When the agent
steps in a cell, the corresponding key
plays. The grid may be invisible to the
agent, and it may or may not be aware
of this construction. We also consider
that the agent can jump on the same
place, and that would re-play the same
note. When placing the grid, we use a “building block”, which
is concatenated in all directions to cover the full scenario.
This can also be seen as if the block is a torus: upon going
right in the last column, the agent will reach the first column;
upon going down in the last row, the agent will reach the first

A B C
C A B
B C A

(a) 3x3 Block

A B C A B C
C A B C A B
B C A B C A
A B C A B C
C A B C A B
B C A B C A

(b) 6x6 Scenario

Table 1: Example of a 3x3 block covering a 6x6 scenario.

row. We show in Table 1 (a) one 3x3 block, and in Table 1
(b) how it would cover a 6x6 scenario.

We generate the blocks in a way that when the agent moves
towards the south, it follows a sequence of thirds, and thus
creates arpeggios. Similarly, if the agent moves towards the
east, it follows a sequence of fifths, also creating arpeggios.
For example, in the case of 7 keys, we can use the block
shown in Figure 2 (where the colors help visualize different
keys). These blocks can be generated as follows. Let M =
{m1, ...,mn} be a set of notes, and B an n× n matrix. We
generate our proposed block by the Algorithm 1. We start
from the upper left corner, and fill in each cell of the first row
in a progression of fifths (i.e., skip the next 3 elements of the
set). Then, we fill all columns in a progression of thirds (i.e.,
skip the next element of the set).

Algorithm 1: Block generation algorithm.
1 B[1, 1] := 1 ;
2 for c := 1 . . . n− 1 do
3 B[1, c+ 1] := mod(B[1, c] + 4, n) ;
4 end
5 for c := 1 . . . n do
6 for l := 1 . . . n− 1 do
7 B[l + 1, c] := mod(B[l, c] + 2, n) ;
8 end
9 end

Therefore, Figure 2 shows the case where M =
{C,D,E, F,G,A,B}. Note that in this example we start
with C, following the usual musical scale, but different start-
ing notes could be used. Also, when moving north the agent
will play a decreasing sequence of thirds, and likewise when
moving west a decreasing sequence of fifths. As a conse-
quence, for |M| = 7 we also have that: (i) When moving
northeast or south, the agent plays a sequence of thirds; (ii)
When moving north or southwest, the agent plays a sequence
of sixths; (iii) When moving west, the agent plays a sequence
of fourths; (iv) When moving east, the agent plays a sequence
of fifths; (v) When moving southeast, the agent moves in a
sequence of sevenths; (vi) When moving northwest, the agent
moves one tone up. This shows that even though we empha-
size the generation of thirds/fifths, the agent can still generate
a great variety of notes from its current position, increasing
the diversity of the musical production (in fact, for |M| = 7,
we can generate any possible note from a given position).

Additionally, in our analysis we will also consider sets

⊕1 ⊕5 ⊕2
B[i-1,j-1] B[i-1,j] B[i-1,j+1]
⊕3 ⊕0 ⊕4

B[i ,j-1] B[i ,j] B[i ,j+1]
⊕5 ⊕2 ⊕6

B[i+1,j-1] B[i+1,j] B[i+1,j+1]

Table 2: Neighborhood of a cell as stated in Observation 1
for |M| = 7.

of notes of size different than 7. That could represent, for
instance, notes of the next octave; or even a non-traditional
division of a given frequency range in n different notes.

Analysis: We will start by analyzing the correctness of
Algorithm 1. It is clear that there exists a bijective function
that maps the set M to Zn. Also, the “third” of a note mi

is equivalent to the note m(i+2) mod n. In a general way, a
note mi changes in a sequence of k-th to m(i+k−1) mod n.
Therefore, we can consider the cyclic group (Zn,⊕), with ⊕
representing addition modulo n, as an isomorphism to set M
under operation of changing in a sequence of k-th.

The following theorem (from Ledermann (1949)) will be
useful to prove Algorithm 1 correctness:
Theorem 1. Let (G, ∗) be a cyclic group, |G| = n, ak =
a ∗ a ∗ · · · ∗ a (k times). If a ∈ G is a generator of G and k
is relatively prime to n, then ak is also a generator of G.

Hence, considering the group (Zn,⊕), 1 is its generator.
Also, we have for every integer k > 0 that 1k = k mod n.
So, every 0 < k < n relatively prime to n is also a generator.

The following observation states that generating a progres-
sion of thirds and fifths in south and east direction respec-
tively allows the agent to move as enumerated above. Con-
sider below that an integer k > n is the same as k mod n
and for any a ∈ Zn, its inverse is −a = n 	 a = n − a
mod n. Let b = B[i, j].
Observation 1. If B[i, j+1] = b⊕ 4∧B[i+1, j] = b⊕ 2,
then: B[i − 1, j − 1] = b ⊕ −6, B[i − 1, j] = b ⊕ −2,
B[i−1, j+1] = b⊕2,B[i, j−1] = b⊕−4,B[i+1, j−1] =
b⊕−2, B[i+ 1, j + 1] = b⊕ 6

As it is valid for every integer i, j, B[i, j − 1] = b ⊕ −4
and B[i− 1, j] = b⊕−2 is trivially true. Thus we have that:
B[i−1, j−1] = B[i−1, j]⊕−4 = b⊕−2⊕−4 = b⊕−6;
B[i − 1, j + 1] = B[i − 1, j] ⊕ 4 = b ⊕ −2 ⊕ 4 = b ⊕ 2;
B[i+1, j− 1] = B[i+1, j]⊕−4 = b⊕ 2⊕−4 = b⊕−2;
B[i + 1, j + 1] = B[i + 1, j] ⊕ 4 = B[i + 1, j]⊕ 2 ⊕ 4 =
B[i+ 1, j]⊕ 6.

Table 2 shows Observation 1 applied to moves in a set
|M| = 7. Note that positive relations (B[i− 1, j + 1], B[i+
1, j+1], B[i+1, j], B[i, j+1]) will remain as in Table 2 for
any set size n, while negative relations will change according
to the calculation of the inverse n− a mod n. Also, we will
use the following lemma:
Lemma 1. If for every integer i ∈ {1, . . . , n − 1} and
j ∈ {1, . . . , n}, B[i + 1, j] = B[i, j] ⊕ 2 and for all
j ∈ {1, . . . , n − 1}B[1, j + 1] = B[1, j] ⊕ 4, then: ∀i ∈
{1, . . . , n} : ∀j ∈ {1, . . . , n−1} : B[i, j+1] = B[i, j]⊕4.

Proof. We use induction on i. Base: As hypothesis is given
for i = 1, we begin with i = 2. Thus, for every j ≤ n − 1,
B[i, j+1] = B[2, j+1] = B[1, j+1]⊕2 = B[1, j]⊕4⊕2 =
B[2, j]	 2⊕ 4⊕ 2 = B[2, j]⊕ 4 = B[i, j]⊕ 4. Induction:
As induction hypothesis, consider that ∀i ∈ {1, . . . , n− 1} :
∀j ∈ {1, . . . , n − 1} : B[i, j + 1] = B[i, j] ⊕ 4. So, for
i = n, we have: B[n, j + 1] = B[n − 1, j + 1] ⊕ 2 =
B[n−1, j]⊕4⊕2 = B[n, j]	2⊕4⊕2 = B[n, j]⊕4.

Now we can show the correctness of Algorithm 1:

Theorem 2. Algorithm 1 generates blocks so that the agent
movement plays notes in the proposed way.

Proof. By Observation 1, we only need to prove that Algo-
rithm 1 generates blocks such that B[i, j + 1] = B[i, j] ⊕
4 and B[i + 1, j] = B[i, j] ⊕ 2, for every integers i, j. At
end of line 4 we have the following postcondition: B[1, 1] =
1∧∀j ∈ {1, . . . , n−1} : B[1, j+1] = B[1, j]⊕4.We need
to show that second for loop has the following postcondition:
∀j ∈ {1, . . . , n} : ∀i ∈ {1, . . . , n − 1} : B[i + 1, j] =
B[i, j]⊕ 2.

This is done by showing a postcondition for the innermost
for loop, and then the postcondition above. At innermost for
(lines 6-8), we have the following precondition: 1 ≤ c ≤
n+ 1 ∧ ∀i ∈ {1, . . . , n− 1} : ∀j ∈ {1, . . . , c− 1} : B[i+
1, j] = B[i, j]⊕ 2, and state the following loop invariant in
innermost for: 1 ≤ c ≤ n∧1 ≤ l ≤ n ∧∀i ∈ {1, . . . , n−1} :
∀j ∈ {1, . . . , c − 1} : B[i + 1, j] = B[i, j] ⊕ 2 ∧ ∀i ∈
{1, . . . , l − 1} : B[i + 1, c] = B[i, c] ⊕ 2. Initialization:
Until comparison l ≤ n − 1 at line 6, this is trivially true;
Maintenance: At line 7,B[i+1, c] becomesB[i, c]⊕2. Then,
for every line i from 1 to l, B[i+ 1, c] = B[i, c]⊕ 2. After
increment of l, loop invariant is maintained; Termination:
All lines i < n in column c obeys B[i+ 1, c] = B[i, c]⊕ 2.
Thus, we have as postcondition of innermost for: 1 ≤ c ≤
n ∧ ∀i ∈ {1, . . . , n − 1} : ∀j ∈ {1, . . . , c} : B[i + 1, j] =
B[i, j]⊕ 2.

Now, for outermost loop (lines 5-9), we state the following
loop invariant: 1 ≤ c ≤ n + 1 ∧ ∀i ∈ {1, . . . , n − 1} :
∀j ∈ {1, . . . , c − 1} : B[i + 1, j] = B[i, j] ⊕ 2. Initial-
ization: After initialization of c, loop invariant is trivially
true; Maintenance: Loop invariant is precondition of inner-
most for, hence, before increment, for every line i < n in
column c, B[i + 1, c] = B[i, c]. After increment, invariant
is maintained; Termination: When c becomes n + 1, loop
invariant becomes: ∀j ∈ {1, . . . , n} : ∀i ∈ {1, . . . , n− 1} :
B[i+ 1, j] = B[i, j]⊕ 2.

This proposition together with postcondition of first for
(line 4), give us: B[1, 1] = 1 ∧ ∀j ∈ {1, . . . , n} : ∀i ∈
{1, . . . , n−1} : B[i+1, j] = B[i, j]⊕2 ∧∀j ∈ {1, . . . , n−
1} : B[1, j+1] = B[1, j]⊕ 4. Hence, by Lemma 1, we have
the result.

In the following Corollary, we show that the blocks will
always by cyclic, i.e., will allow the agent to navigate as
exemplified in Table 1.

Corollary 1. Algorithm 1 generates cyclic grids for any set
M, and B[1,1] set initially with any m ∈M.

Proof. Algorithm 1 generate the same pattern of notes for
every cell with i, j > n, because for every i, j :B[i+n, j] =
B[i + n − 1, j] ⊕ 4 = B[i + n − 2, j] ⊕ 4 ⊕ 4 = ... =
B[i, j]⊕

⊕n
k=1 4 = B[i, j], and B[i, j + n] = B[i, j + n−

1]⊕2 = B[i, j+n−2]⊕2⊕2 = ... = B[i, j]⊕
⊕n

k=1 2 =
B[i, j].

Besides generating thirds and fifths, we also need a system
that generates all possible notes, increasing the richness of the
musics produced. Hence, we call a block “complete” when it
has all elements of M. In the next proposition, we show the
conditions for our algorithm to generate complete blocks:
Proposition 1. Algorithm 1 generates complete blocks for
any set M with |M| not divisible by 2 or 4 and B[1,1] set
initially with any m ∈M.

Proof. By Theorem 1, we have that every 0 < k < n rela-
tively prime to n is a generator of the group (Zn,⊕). Hence,
for |M| not divisible by 2 or 4, we have that both 2 and 4 will
be generators. Therefore, all row and columns in B will have
all elements in M.

Let’s assume now random walks in our proposed blocks.
We will consider two different kinds of random walks: (i)
From a given cell, uniform probability to move to any neigh-
boring cell; (ii) Greater probability of moving in straight and
lateral directions (i.e., “human”-like movement). We will
focus our analysis now in blocks where |M| = 7.

In the analysis below, we define music as a repetition of a
sequence of notes containing a sequence of thirds or fifths,
with other notes between repetitions. In other words:
Definition 1. Let N,M ∈ N, and M ≥ N . A sequence
of notes {ai}i∈{1,...,M} ∈ Zn is a music, if there is a se-
quence of notes A = 〈a1, a2, . . . , aN 〉, such that ∀i >
1 : ai+1 − ai ∈ {2,−2, 4,−4}, and {ai}i∈{1,...,M} =
〈A,B1, A,B2, . . . , A,BK〉, for a given K ∈ N; and Bi

are any sequence of notes of any size, even size zero.

Proposition 2. Random walks in blocks generated by Algo-
rithm 1 have a higher probability of generating music than
randomly selecting notes.

Proof. Clearly, sequences of type {ai}i∈{1,...,M} =
〈A,B1, A,B2, . . . , A,BK〉, will be generated with higher
probability as the probability of generating a sequence A =
〈a1, a2, . . . , aN 〉, gets higher. Hence, we focus on studying
the probability of generating a sequence A. Given a sequence
A of size N , the first note can be any from M, so there are
seven possibles outcomes with 1/7 probability. From our
definition of music, for i > 1, the i-th note must be any of
four possibles notes among seven from M. Thus, the prob-
ability for generating music from this sequence randomly
is Pr.p.(A) = 7 1

7

∏N
i=2

4
7 = (47)

N−1, assuming uniform
distribution for drawing notes.

Algorithm 1 generates 8 neighbors and the agent can re-
peat the same note when jumping in the same cell. Hence,
random walks in the neighborhood of a cell at every iteration
has 9 possible notes and 2 repeated notes for a third above,
2 repeated notes for a third below, and one cell for a fifth
above, and another cell for fifth below (see number of cells

for +2, +5, +4, and +3 respectively in Table 2). Assuming
uniform probability to move to any of these nine blocks,
and that the first note is chosen randomly, the random walk
probability of a sequence A = {a1, . . . , aN} is Pr.w.(A) =

7p(a1)
∏N

i=2 p(ai|ai−1) = 7 1
7

∏N
i=2 p(ai|ai−1) = (69)

N−1,
since, for i > 1: p(ai|ai−1) = 6

9 , if ai 	 ai−1 ∈
{2,−2, 4,−4}; 1

9 , otherwise. Hence, whatever note chosen
initially, a random walk has probability 6

9 at each step for gen-
erating music, because there are six directions that contribute
for generating a sequence A: north, east, west, south, south-
west and northeast (Table 2). Against 4

7 probability when
randomly drawing notes, it is more probable for random
walking in our proposed blocks to generate music.

Additionally, we assume that when humans are playing a
game, it is more likely that they move in horizontal and verti-
cal directions (north, south, east, west) than diagonals. For
instance, there are no diagonals keys in computer keyboards,
which would make these movements less likely. Therefore:

Proposition 3. Humans have a higher probability of gen-
erating music than random walks, when moving in blocks
generated by Algorithm 1.

Proof. By the assumption above, human agents move ac-
cording to the following probability: p(move) = p +
ε,move ∈ {north, south, east, west}; p, otherwise. Addi-
tionally, we have that ε > 0, p > 0, and:

9p+ 4ε = 1. (1)

Thus, a human has, at each step, a probability of 4× (p+
ε) + 2× p to generate music. As observed in Proposition 2,
random walking has probability 6

9 . We must have:

4× (p+ ε) + 2× p > 6

9
, (2)

for human moves to be more probable to generate music. The
line segment of Equation 1, restricted to ε > 0 and p > 0, is
always inside the region determined by Equation 2. Hence,
any value of p and ε greater than zero that satisfies Equation
1, also satisfies Equation 2, completing the proof.

Results
We evaluate our approach in experiments with human players.
For comparison, we analyze 3 different systems: (i) Random:
Every time the agent steps in a cell, a note drawn uniformly
randomly from M is played; (ii) Biased Random: Similar
to Random, but notes that are the third or the fifth of the
note that was played previously are drawn with 70% proba-
bility (equally distributed), while all other notes are drawn
with 30% probability (equally distributed); (iii) Cooperative:
Follows our implicit cooperation scheme described in the pre-
vious section. Hence, in Random notes are drawn arbitrarily;
while Biased Random still draws notes randomly, but follow-
ing the basic principle from music theory that thirds and fifths
should appear with higher likelihood, forming arpeggios.

We implemented our system in a game, where a character
(controlled by the user) is able to walk freely in an environ-
ment and collect objects. These objects are created with the

purpose of motivating the users to explore the environment.
We uniformly randomly select 3 cells that are currently visi-
ble to contain objects. Once new cells become visible (due
to the user movement), we repeat the same procedure. We
display a score based on how many items were collected, to
represent the system as a “video game” to the users.

We had 10 users, and each one played all 3 systems. We
randomized the order that each user played each system, in
order to avoid ordering issues. Additionally, the users did not
know how our system works, nor which one of the 3 systems
they were currently playing (the 3 variations were presented
to them as X, Y and Z). Each variation was played for 180s,
and after that they had to fill in a form about their experience.

We queried the users the following questions: (i) On a
scale of 0 to 10, where 0 means “completely arbitrary” and
10 means “very interesting”, how do you classify the audio
of the system?; (ii) On a scale of 0 to 10, where 0 means
“no relation at all” and 10 means “very related”, how do you
classify the relation between your actions and the audio of
the system?; (iii) If you believe there is a relation, on a scale
of 0 to 10, where 0 means “very rarely” and 10 means “very
frequently”, how do you classify the occurrence of a major
motivation to “compose” a song while exploring the virtual
environment?; (iv) On a scale of 0 to 10, where 0 means
“definitely not” and 10 means “absolutely”, do you classify
the sound output of the system as “music”?; (v) On a scale of
0 to 10, where 0 means “very disturbing” and 10 means “very
pleasant”, how do you classify the audio experience provided
by the system?; (vi) On a scale of 0 to 10, where 0 means
“not engaging at all” and 10 means “very immersive”, how
do you classify your experience with the system as a whole?

We can see the result in Figure 3 (a). It seems that humans
could perceive that Random produced more arbitrary sounds,
while the sounds produced by Biased Random and Coopera-
tive were considered more interesting (Q1). We also notice
that users were not able to distinguish the importance of their
actions in the audio generation process across the three sys-
tems (Q2). Additionally, when queried to assume that there is
a relation, they seem to consider feeling a stronger motivation
to generate music in Cooperative, even though they did not
perceive that their actions had a greater effect in Cooperative
(Q3). We also notice that the audio of Cooperative had the
greatest tendency to be classified as “music”, with Biased
Random close behind. Cooperative also had the lowest vari-
ance in this aspect, indicating that users were more likely to
agree in classifying the system as producing “music” than in
the other systems (Q4). Interestingly, although users tended
to agree more that Cooperative generates music, they also
tended to perceive it as more “disturbing” than in the other
systems (Q5). Finally, in terms of feeling engaged with the
system, both Random and Cooperative had similar results,
with Biased Random right behind (Q6).

We performed a t-test in our results. We do not have yet
strong statistical significance, but we are able to show some
possible trends. In Q4, we find p = 0.3 when comparing
Random and Cooperative. Although it is not yet the desired
p < 0.1, it already gives a 70% confidence that users are
more likely to classify the audio output as “music” than when
randomly drawing notes. Additionally, as mentioned, the

E
va

lu
at

io
n

0

2

4

6

8

10

Q1 Q2 Q3 Q4 Q5 Q6

Random
Biased Random
Cooperative

(a) Survey comparing the differ-
ent systems. Error bars show the
90% confidence interval.

F
re

qu
en

cy

0.0

0.2

0.4

0.6

0.8

Random Biased Random Cooper−
Random Walk ative

(b) Frequency of triads of thirds.
Error bars show standard devia-
tion.

Figure 3: Results of the experiment with real users.

result for Cooperative is quite stable, and we find that the
mean is between 6.81 and 8.18 with p < 0.1, indicating that
there is a strong tendency for humans to classify the output as
“music”. For Random and Biased Random, users had a much
higher variance, giving it a larger confidence interval bar.
Additionally, in Q1 we find p = 0.24, giving 76% confidence
that users found the output more “interesting” in Cooperative.
Meanwhile, for Q2 we find p ≈ 0.9 (when comparing with
both random systems). This is a very positive result, giving us
high confidence that users are not able to distinguish the effect
of their actions, showing “implicit cooperation”. Finally, in
Q3, we have p = 0.11 (between Random and Cooperative).

It is interesting to note that users were not able to perceive
that their actions had a greater effect in the music generation
process in the Cooperative system, but they were more likely
to classify the audio of Cooperative as “music”, and also felt
a greater motivation to produce a song in Cooperative. It is
also interesting that users seem to perceive the experience as
more “disturbing”. We do not see that as a negative result,
as art does not necessarily have to be pleasant; providing a
disturbing experience is also one of the main objectives of
contemporary arts (Henley 1997).

We also analyzed the audio produced. In Figure 3 (b) we
show the frequency of occurrences of triads of thirds (in any
order) across 10 executions. Random Walk refers to walk-
ing in our blocks with uniform probability to any direction
(including jumping in the same cell), while Cooperative is
the data with 10 real human users. Hence, as we can see, the
presence of a human agent is essential in our system for the
formation of arpeggios (which increase the sound quality),
even though the user is not aware of how our system works,
and is not actively trying to generate those structures. Addi-
tionally, even though Biased Random has a higher frequency
of arpeggios, it did not have a higher tendency to be classified
as music than our proposed system.

Note that it is not our objective to overpass Biased Random
in terms of frequency of arpeggios: it could be easily tuned
to generate as many arpeggios as we want, we just use it
to compare the user perception; and to see the arpeggio fre-
quency of Cooperative in relation to an “upper bound” where
those are directly generated. In terms of power chords, we
find a frequency of 24.3%(±8.9%) in the real executions of
Cooperative.

For the interested reader, a video demonstrating our system,
and an example of a simple Art Game using our approach, is
available at: https://youtu.be/bTr5sh3_79Y.

Conclusion
In our system, a human agent collaborates in emergent music
generation. The agent collaborates as a “side-effect” of its
behavior: it does not need to be actively involved, and is
not required to be a music expert. We prove the correctness
of our algorithm, and study the probability of generating
music, showing that it is greater with a human agent. Our
experiments show a larger frequency of arpeggios when a
human uses our system, indicating musical quality. We find
that users were not aware of their impact, but they seem to be
likely to define the product of our system as “music”. It will
be necessary to run experiments with a larger pool of human
subjects, in order to better confirm our experimental results.

Acknowledgments: We would like to thank Anderson Rocha
Tavares for the careful review of this work. We would also
like to thank the School of Computing and Communications,
and the AIIDE Doctoral Consortium for their support.

References
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research 47:253–279.
Branzei, R.; Dimitrov, D.; and Tijs, S. 2008. Models in
Cooperative Game Theory. Springer Berlin Heidelberg.
Cohen, P. R., and Levesque, H. J. 1991. Confirmation and
joint action. In Proceedings of the International Joint Con-
ference on Artificial Intelligence, IJCAI.
Davis, N.; Hsiao, C.-P.; Yashraj Singh, K.; Li, L.; and
Magerko, B. 2016. Empirically studying participatory sense-
making in abstract drawing with a co-creative cognitive agent.
In Proceedings of the 21st International Conference on Intel-
ligent User Interfaces.
d’Inverno, M., and McCormack, J. 2015. Heroic versus
Collaborative AI for the arts. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence.
Eigenfeldt, A., and Pasquier, P. 2010. Realtime generation
of harmonic progressions using constrained Markov selec-
tion. In Proceedings of the First International Conference on
Computational Creativity, ICCC.
Gelly, S.; Wang, Y.; Munos, R.; and Teytaud, O. 2006. Mod-
ification of UCT with patterns in Monte-Carlo Go. Technical
report, Institut National de Recherche en Informatique et en
Automatique.
Henley, D. 1997. Art of disturbation: Provocation and cen-
sorship in art education. Art Education 50(4):39–45.
Holmes, T. 2002. Art games and breakout: New media
meets the american arcade. In Computer Games and Digital
Cultures Conference.
Hurwicz, L., and Reiter, S. 2006. Designing Economic
Mechanisms. Cambridge University Press.
Iwai, T. 2005. Electroplankton.
Jacob, M., and Magerko, B. 2015. Interaction-based au-
thoring for scalable co-creative agent. In Proceedings of the
Sixth International Conference on Computational Creativity,
ICCC.

Karolyi, O. 1965. Introducing Music. Penguin Books;
Reissue edition.
Koster, R. 2004. A Theory of Fun for Game Design.
Paraglyph Press.
Ledermann, W. 1949. Introduction to the theory of finite
groups. Oliver and Boyd.
Lidén, L. 2004. Artificial stupidity: The art of intentional
mistakes. In Rabin, S., ed., AI Game Programming Wisdom,
volume 2. Charles River Media. 41–48.
Marcolino, L. S.; dos Passos, Y. T.; de Souza, Á. A. F.; dos
Santos Rodrigues, A.; and Chaimowicz, L. 2017. Avoid-
ing target congestion on the navigation of robotic swarms.
Autonomous Robots 41(6):1297–1320.
Margulis, E. H. 2014. On repeat: how music plays the mind.
New York, NY: Oxford University Press.
McAnally, J. K. 1995. Edwin Franko Goldman, Richard
Franko Goldman, and the Goldman Band: Professionals and
Educators. The Bulletin of Historical Research in Music
Education 17(1):19–58.
Moreira, J.; Roy, P.; and Pachet, F. 2013. Virtualband: Inter-
acting with styslistically consistent agents. In Proceedings
of the 14th International Society for Music Information Re-
trieval Conference.
Pachet, F.; Roy, P.; Moreira, J.; and d’Inverno, M. 2013.
Reflexive loopers for solo musical improvisation. In Pro-
ceedings of the SIGCHI Conference on Human Factors in
Computing Systems.
Policastro, M. A. 1999. Understanding How to Build Guitar
Chords and Arpeggios. Mel Bay.
Roberts, A.; Engel, J.; Hawthorne, C.; Simon, I.; Waite, E.;
Oore, S.; Jaques, N.; Resnick, C.; and Eck, D. 2017. Inter-
active musical improvisation with Magenta. In Proceedings
of the Thirty-first Annual Conference on Neural Information
Processing Systems (NIPS). (Demonstration).
Robertson, G., and Watson, I. 2014. A review of real-time
strategy game AI. AI Magazine 35(4).
Scott, B. 2002. The illusion of intelligence. In Rabin, S., ed.,
AI Game Programming Wisdom, volume 1. Charles River
Media. 16–20.
Smith, R. G. 1980. The contract net protocol: High-level
communication and control in a distributed problem solver.
IEEE Transactions on Computers C-29(12).
Sorenson, N.; Pasquier, P.; and DiPaola, S. 2011. A generic
approach to challenge modeling for the procedural creation
of video game levels. IEEE Transactions on Computational
Intelligence and AI in Games 3(3).
Tambe, M. 1997. Towards flexible teamwork. Journal of
Artificial Intelligence Research 7:83–124.
Walser, R. 1993. Running with the devil: Power, gender, and
madness in heavy metal music. Middletown, Connecticut:
Wesleyan University Press, p. 9.
Zook, A. E., and Riedl, M. O. 2011. A temporal data-driven
player model for dynamic difficulty adjustment. In Pro-
ceedings of the Artificial Intelligence and Interactive Digital
Entertainment Conference, AIIDE.

