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Abstract

This thesis focuses on data projection methods for the purposes of cluster-
ing and semi-supervised classification, with a primary focus on clustering.
A number of contributions are presented which address this problem in a
principled manner; using projection pursuit formulations to identify sub-
spaces which contain useful information for the clustering task. Projection
methods are extremely useful in high dimensional applications, and situa-
tions in which the data contain irrelevant dimensions which can be counter-
informative for the clustering task. The final contribution addresses high
dimensionality in the context of a data stream. Data streams and high dimen-
sionality have been identified as two of the key challenges in data clustering.

The first piece of work is motivated by identifying the minimum density
hyperplane separator in the finite sample setting. This objective is directly
related to the problem of discovering clusters defined as connected regions
of high data density, which is a widely adopted definition in non-parametric
statistics and machine learning. A thorough investigation into the theoretical
aspects of this method, as well as the practical task of solving the associated
optimisation problem efficiently is presented. The proposed methodology is
applied to both clustering and semi-supervised classification problems, and
is shown to reliably find low density hyperplane separators in both contexts.

The second and third contributions focus on a different approach to clus-
tering based on graph cuts. The minimum normalised graph cut objective has
gained considerable attention as relaxations of the objective have been devel-
oped, which make them solvable for reasonably well sized problems. This
has been adopted by the highly popular spectral clustering methods. The
second piece of work focuses on identifying the optimal subspace in which
to perform spectral clustering, by minimising the second eigenvalue of the
graph Laplacian for a graph defined over the data within that subspace. A
rigorous treatment of this objective is presented, and an algorithm is pro-
posed for its optimisation. An approximation method is proposed which
allows this method to be applied to much larger problems than would other-
wise be possible. An extension of this work deals with the spectral projection
pursuit method for semi-supervised classification.
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The third body of work looks at minimising the normalised graph cut us-
ing hyperplane separators. This formulation allows for the exact normalised
cut to be computed, rather than the spectral relaxation. It also allows for a
computationally efficient method for optimisation. The asymptotic properties
of the normalised cut based on a hyperplane separator are investigated, and
shown to have similarities with the clustering objective based on low den-
sity separation. In fact, both the methods in the second and third works are
shown to be connected with the first, in that all three have the same solution
asymptotically, as their relative scaling parameters are reduced to zero.

The final body of work addresses both problems of high dimensionality
and incremental clustering in a data stream context. A principled statistical
framework is adopted, in which clustering by low density separation again
becomes the focal objective. A divisive hierarchical clustering model is pro-
posed, using a collection of low density hyperplanes. The adopted frame-
work provides well founded methodology for determining the number of
clusters automatically, and also identifying changes in the data stream which
are relevant to the clustering objective. It is apparent that no existing methods
can make both of these claims.
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Chapter 1

Introduction

The problem of identifying groups of related objects is one of the fundamen-
tal tasks in knowledge discovery from data. This problem has been exten-
sively studied in the literature on statistics, machine learning, data mining
and pattern recognition because of the numerous applications in summarisa-
tion, learning and segmentation (Jain and Dubes, 1988; Aggarwal and Reddy,
2013). Such applications include,

• Engineering: In manufacturing, group technology seeks to identify sim-
ilar items so that manufacturing and design concepts can be borrowed,
thus speeding up the manufacturing lifecycle of emerging items (Pham
and Afify, 2007). In radar signal analysis, the direction of arrival of
pulses is crucial for object locating, however the sheer density of sig-
nals creates a computational challenge which is mitigated by identi-
fying groups of pulses (Zhu et al., 2010). Outlier rejection deals with
separating a single group of objects from remaining nuisance observa-
tions which do not fit within the group’s context, this has applications
in robotics in the form of consistent hypothesis identification (Olson et
al., 2005).

• Computer Science: Web mining deals with organising the billions of
web pages on the internet, so that queries can be handled efficiently.
Grouping similar web objects, often by textual content, significantly
aids this challenging task (Chen and Chau, 2004). Computer vision and
image segmentation tasks require identifying different planar ranges
in an image, which may be achieved by grouping small sections of an
image, or sequence of images, to determine separate planes and using
their respective orientation and geometry (Frigui and Krishnapuram,
1999).

• Life Sciences: In the study of spatial population genetics, tracing geo-
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Chapter 1. Introduction

graphical ancestries can be aided by finding similar allele groups from
spatially recorded genetic information (Rosenberg et al., 2002). Group-
ing lifestyle factors which have higher combined prevalence in indi-
viduals suffering certain diseases than would be predicted given their
individual prevalence has use in preventative medicine (Schuit et al.,
2002).

• Social Sciences: Person perception, in the field of psychology, looks
at the different mental processes used to form impressions of peo-
ple. Grouping people based on their perceptions of archetypal life fig-
ures has been useful in identifying psychopathologies (Rosenberg et al.,
1996). The success of an education institution is predicated on both aca-
demic performance and enrollment management. Grouping students
based on their persistence with academic courses can be useful in both
areas, especially for early identification of potential defectors (Luan,
2002).

• Commerce: Market segmentation can be achieved by identifying groups
of related consumers or products (Punj and Stewart, 1983), and is a cen-
tral feature in targeted marketing strategy. Outlier rejection, as in the
robotics application, can also be used to identify fraudulent behaviour
of consumers or organisations, comparing behavioural patterns with
the general behaviour of a group (Phua et al., 2010).

Broadly speaking the task of assigning a set of objects to groups may be
termed classification (Jain and Dubes, 1988), and exists on three distinct levels
in terms of the assumed available information. In the machine learning lit-
erature the amount of information available may be described by degrees of
supervision for the learning task. On one end of the spectrum is the fully su-
pervised classification task, in which the true groupings of all data used in the
learning phase of the task are known. An inductive model is then built which
can be used to predict the groupings of future data. It is the fully supervised
task which is commonly given the name “classification". On the other end of
the spectrum lies unsupervised classification. In this context there is no ex-
plicit information regarding how data should be grouped. The relationships
between data must therefore be learned by other means. In this context any
model which assigns groupings to data is used only within the context of the
data used to build the model, and is not used to predict the groupings of
future unseen data. Between these extremes lies semi-supervised classifica-
tion. The motivation for semi-supervised classification can be seen as follows.
When using a (supervised) classification model to predict the groupings of
new data, there is an implicit assumption that the nature of those new data,
in terms of their grouping tendencies, is somewhat related to the nature of
the data used in building the model. If this assumption is true, then utilis-
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ing whatever information about the new data is available, within the context
of all the data, may be useful in determining the groups to which they be-
long. Semi-supervised classification is extremely useful in situations where
identifying the true group labels for data is expensive. In such situations the
number of labelled data may be small, and making inference or prediction
from a (supervised) classification model can be unreliable, and the prediction
task can be substantially aided by utilising every bit of available information.

This thesis focuses on the latter two, with a primary focus on the unsu-
pervised problem. Semi-supervised classification is treated within the same
framework, as an extension of the unsupervised case. Utilising information
about data which does not explicitly determine their groups is therefore the
central feature of the work presented. Throughout the remainder it is as-
sumed that a data set is described by a fixed set of features, each taking a
(real) numerical value. Data may therefore be thought of as occupying a vec-
tor space defined over the real numbers in which the number of dimensions
is equal to the number of features describing the data.

A common assumption when data arise from multiple groups, or classes,
is that the data tend to contain multiple clusters, and that objects within
the same cluster are more likely to represent the same group. In the con-
text of semi-supervised classification this is referred to as the cluster assump-
tion (Chapelle and Zien, 2005), and in the unsupervised case leads to the field
of cluster analysis. Cluster analysis has a very rich history, and remains one
of the most active and important areas of research in fields relying on the
analysis of data. The term cluster analysis, or simply clustering, is often used
to refer to the task of unsupervised classification.

Accepting the cluster assumption immediately begs the question of what
constitutes a cluster of data, and numerous definitions have been proposed,
each leading to hosts of methods for identifying clusters which adhere to
these definitions. Arguably the single common concept underpinning all of
these, though, is that the spatial relationships between data contain useful
information for determining clusters. The spatial relationships in this con-
text are defined by the topological structure bestowed on the vector space
containing the data, usually via the Euclidean (or L2) norm, although other
metrics may be used.

This thesis is motivated by two of the key challenges associated with data
clustering, both from practical and theoretical points of view. The principal
motivation comes from the problem of dimension reduction. Dimension re-
duction forms a crucial part of the analysis of data which are either high
dimensional, i.e., data containing a very large number of features, or data
which contain features, or combinations of features, that may be irrelevant
or even counter-informative for identifying clusters. A number of contri-

3



Chapter 1. Introduction

butions are presented which address this problem in a principled manner;
using projection-pursuit formulations to identify subspaces which contain
useful information for the clustering task. A secondary motivation arises
from the challenge associated with clustering data incrementally, where data
are received sequentially in a data stream. The final contribution of this thesis
addresses both challenges, and proposes a method for clustering high dimen-
sional data streams within a principled statistical framework. Further details
of these contributions are given at the end of this chapter.

The remainder of this chapter is organised as follows. In Section 1 a number
of cluster definitions are explored, as well as some important methods for
finding clusters which fit within their respective definitions. In Section 2 a
discussion of semi-supervised classification methods will be presented, with
particular attention to those adhering to the cluster assumption. Following
that, in Section 3 some fundamental challenges associated with clustering
methods from practical, theoretical and philosophical perspectives will be
presented. The focus of the remaining thesis will then be outlined in Sec-
tion 4.

Neither of Sections 1 and 2 is intended to be a comprehensive account of
the entire literature on these problems, but rather provides a representative
cross section of concepts and methods which are either highly influential or
of relevance in the remaining thesis. Each subsequent chapter will contain
its own review, documenting existing approaches which are of particular
importance for the context of that chapter.

1 Clustering

This section is dedicated to the discussion of existing methods for clustering.
Important concepts and methods in the clustering literature are discussed un-
der the headings relating to different definitions of what constitutes a clus-
ter. Clustering methods can also be split between two distinct approaches
to model structure. Hierarchical clustering models are nested sequences of
partitions (Jain and Dubes, 1988) and may be further categorised into divi-
sive and agglomerative clustering. In divisive clustering, beginning with the
entire data set being a cluster, clusters are recursively partitioned until a stop-
ping criterion is met. Conversely, agglomerative clustering begins with every
datum in its own cluster, and repeatedly merges clusters until all data are
contained in a single cluster. Partitional clustering models instead directly
assign data to their final clusters in a single step. Partitional methods may
also be referred to as generating a flat clustering. The focus of this section will
be more strongly motivated by the concept of what constitutes a cluster, than
by the model structure in which the clusters reside. The reason being that
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the philosophy behind a particular approach to establishing or identifying re-
lated groups of objects is much more closely related to the group definitions
than their representation.

1.1 Centroid-Based Clustering

Centroid-based clustering defines clusters in relation to single representative
points (centroids). Data are thought to collect around these points, forming
clusters. Models derived from these clustering methods may be summarised
by a set of centroids, and data are classified based on which centroid is near-
est to them (Leisch, 2006). This approach generates a partitional clustering
model.

Formally, the clustering task may be stated in relation to the following
optimisation problem,

min
C∈F k

n

∑
i=1

min
c∈C

f (d(xi, c)). (1.1)

Here the xi, i = 1, ..., n represent the data points and the set C is the set
of centroids over which the optimisation takes place. The set F represents
the collection of feasible centroid values. The function f : R+ → R+ is
non-decreasing, and operates on the distances between the data and their
associated centroids, via the distance metric d(·, ·). In these approaches the
number of centroids, and therefore clusters, k, is chosen by the user.

The k-means clustering method is seen as one of the simplest and most
classical approaches to data clustering (Jain, 2010) and remains one of the
most widely used in practice, largely due to its simplicity (Aggarwal and
Reddy, 2013). In the k-means approach the optimal clustering model is de-
fined as the set of k centroids which minimises the sum of the squared Eu-
clidean distances between each datum and its cluster centroid. In terms of the
above optimisation, (1.1), one therefore has f (x) = x2 and d(x, y) = ‖x− y‖2.
The centroids are essentially unconstrained, and so the set F is given by the
whole space from which the data set arose. It is straightforward to show
that with this objective, the centroids for the optimal model are defined as
the means of the data assigned to each cluster. A simple iterative algorithm
was proposed by Lloyd (1957, 1982). The algorithm is initialised with a set
of k potential centroids. It then alternates between assigning the data to their
nearest centroid, and then updating the centroids by giving them the value
equal to the mean of the data assigned to them. This is repeated until the
solution converges.

Solving the objective in (1.1), where instead the L1 norm is used and sim-
ple distances, rather than squared distances as in k-means, determine the
function f leads to the k-medians clustering problem (Bradley et al., 1997).
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The structure of the algorithm for solving this problem is essentially the same
as for the k-means objective. Both k-means and k-medians have worst case
computational complexity which is non-polynomial in general, even for find-
ing local optima, however most implementations have an empirical run time
which is of O(nkD), where D the number of dimensions.

In k-medoids clustering, the centroids are selected from the data set itself.
Therefore the set F is given by {x1, ..., xn}. This is especially useful when the
objects being clustered may not permit a reasonable interpretation of mean or
median (Aggarwal and Reddy, 2013). While the number of iterations is often
more than is required for solving either k-means or k-medians (Aggarwal and
Reddy, 2013), this approach does have the benefit that distance calculations
can be recycled since many of the pairwise inter-distance calculations will
have been performed in previous iterations.

The above methods represent three of the fundamental centroid-based
clustering methods, largely due to the fact that the centroids admit closed
form solutions, making them especially attractive from a computational point
of view. The problem formulation, however, allows for any general distance
function to be used, and modern optimisation techniques have allowed for
these to be implemented practically (Leisch, 2006).

Centroid-based clustering methods benefit from their ease of implemen-
tation, and fast computation in most practical examples. They also have close
connections with model-based clustering, for example the k-means solution
can be seen as an approximation of the Gaussian Mixture Model solution for
a fixed number of clusters, and isotropic covariance matrices. The funda-
mental limitations of these approaches are the low flexibility of cluster shape,
since cluster boundaries are given by the Voronoi tesselation of the centroids,
and the fact that the number of clusters must be prespecified.

1.2 Connectivity-Based Clustering

Unlike in centroid-based clustering, the pairwise distances between data points
are the driving force in connectivity-based clustering. The term connectivity
refers to the algorithmic approach of merging data, or clusters of data already
determined, until all data are connected as a single cluster. This generates an
agglomerative model, and different levels in the hierarchy provide the clus-
tering result at different granularity/scale.

Within single-linkage clustering, at each step in the agglomerative proce-
dure precisely two clusters (which may be singletons) are merged. The pair
selected for merging is that which has the minimum distance between the
clusters, based on the standard metric extension to sets. That is, the smallest
pairwise distance between them. Formally, if C1, ..., Ck represent the clusters at
iteration n− k + 1, then at iteration n− k + 2 clusters Ci and Cj are replaced
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with Ci ∪ Cj, where i, j minimise

min
{l,m}⊂{1,...,k}

min
x∈Cl ,y∈Cm

d(x, y). (1.2)

This approach is called single linkage as only a single pair of data belong-
ing to the two clusters being merged need to be close together, i.e., a single
link of short distance must exist. Sibson (1973) developed a quadratic time,
linear storage algorithm for generating this hierarchical model. Both of these
complexities have been shown to be optimal for this problem.

In complete-linkage clustering on the other hand, the pair of clusters
merged is the pair between which the largest distance is minimal. In other
words, (1.2) is replaced with,

min
{l,m}⊂{1,...,k}

max
x∈Cl ,y∈Cm

d(x, y). (1.3)

A similar algorithm to that of Sibson (1973) for single linkage clustering was
proposed by Defays (1977), which again has quadratic time complexity in the
number of data. This has been shown to be the optimal complexity for the
complete linkage problem as well.

Other analogous models have been proposed, wherein the only difference
is the rule for selecting the next pair of clusters to be merged. An example
of this is the average linkage approach, or Unweighted Pair Group Method
with Arithmetic mean (UPGMA), proposed by Sokal and Michener (1958).
A quadratic time algorithm for the method was later developed by Murtagh
and Raftery (1984).

Alternative to the strategy of merging a single pair of clusters repeatedly
is an approach in which all pairs of clusters satisfying a connectedness cri-
terion are merged. Weakening the connectedness criterion, for example by
increasing the minimum distance required to satisfy connectedness, leads to
more and more clusters being merged. If all pairwise distances are different,
then it is clear that this approach can be made equivalent to the single-linkage
approach above. Within this formulation, at each iteration the clusters can be
interpreted as the connected components of a graph defined over the clus-
ters present at the previous iteration. An edge is present in the graph if and
only if the two corresponding clusters are merged at the current iteration.
Graph based methods will be discussed in greater detail below, where more
general graphs, i.e., with edges weights assuming continuous values, will be
permitted.

An advantage of connectivity based methods is that they admit clusters
of arbitrary shape, and utilise information in the data set at a local level. In
practice, though, the single linkage approach has been criticised for its ten-
dency to emphasise elongated clusters caused by the chaining effect inherent
in its formulation. The computational complexity of these methods limits
them to data sets of only moderate size.
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1.3 Graph Partitioning Based Clustering

Graph partitioning approaches for clustering draw on the wealth of existing
graph theoretic methods to produce clustering models. In order to do so, a
graph must be defined which is relevant to the clustering task. Certain data
structures, such as networks, immediately lend themselves to graph formu-
lations, however it is possible to define a graph which has useful properties
for clustering an arbitrary set of objects provided a quantitative measure of
similarity between pairs of objects is available. Consider a complete graph in
which each object is designated a vertex, and edge weights take values equal
to the similarity between their adjacent vertices. Then subgraphs containing
comparatively high edge weights correspond to collections of objects which
are mostly similar, and can therefore be interpreted as clusters. Alternatively,
assigning edge weights equal to the distance between the adjacent vertices
means that subgraphs with relatively low edge weights may correspond to
clusters of data which are close together. Some notions of optimality in this
context have been introduced, and will be discussed below.

Using graph cuts is an intuitive way of obtaining clusters of similar ob-
jects. A graph cut is given by the sum of the edge weights connecting dif-
ferent components of a partition of the graph. If the edges represent the
similarities between data, then minimising the cut will form a clustering of
a data set in which the data in different clusters have low similarity. Graph
cuts can be usefully formulated using an affinity matrix, A ∈ Rn×n : Ai,j =
similarity(xi, xj). For a partition of the data set into clusters C1, ..., Ck, the
graph cut may then be given by

Cut(C1, ..., Ck) =
1
2

k

∑
l=1

∑
xi∈Cl ,xj 6∈Cl

Aij. (1.4)

Minimising this graph cut objective has been found to often result in very
small clusters (von Luxburg, 2007). This is because the number of edges
being “broken" by the cut is equal to (|C|(N − |C|)), which is minimised if
either |C| = 1 or |C| = N − 1. Forcing clusters to be above a specific size, or
normalising the graph cut objective to emphasise more balanced partitions
makes the problem NP-hard (Wagner and Wagner, 1993). It can be shown
that two popular normalisations of the graph cut objective, namely RatioCut
and normalised cut (NCut), can be formulated under the following problem
structure,

min
C1,...,Ck

trace(H>LH) (1.5a)

s.t. H>KH = I (1.5b)

Hij =

{
1/
√

size(Cj), xi ∈ Cj

0, otherwise.
(1.5c)
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The matrix L := D− A ∈ Rn×n is called the graph Laplacian, where D is the
diagonal matrix with ii-th entry ∑n

j=1 Aij, and the matrix H ∈ Rn×k encodes
the cluster memberships for each of k clusters. For RatioCut, the size of a
cluster is measured by its cardinality, and the matrix K is simply the identity.
For NCut, size is measured by the volume of a cluster, given by ∑xi∈C Dii, and
K = D. Spectral methods can be used to find approximate solutions to the
normalised cut problem (Hagen and Kahng, 1992; Shi and Malik, 2000), in
which the constraint on the matrix H given by (1.5c) is relaxed. The solution
in this case is given if the columns of H are replaced with the k smallest
eigenvectors of L, or of D−1/2LD−1/2 in the case of NCut. However, in this
case the clusters are not fully determined, and a second clustering step is
performed on the rows of H to determine the final clustering of the data.
This leads to the popular spectral clustering algorithms (von Luxburg, 2007).
A more detailed account of spectral clustering and normalised cuts is given in
Chapters 3 and 4. The second step in which the final clusters are determined
can provide an alternative interpretation of spectral clustering, in which the
matrix H represents a partial embedding of the data within a kernel space.
In particular, if the clustering step is performed using k-means, then spectral
clustering can be shown to be a special case of so-called kernel k-means
(Dhillon et al., 2004).

An alternative approach to graph cuts uses minimum weight spanning
trees (MSTs). When edges correspond to the distance between the adjacent
vertices, the MST gives the fully connected graph which contains the shortest
total distance between the data. The edges in the MST are likely therefore to
contain the important connections between data within clusters. A theorem
from Zahn (1971) shows that if a bi-partition of a data set attains the largest
possible distance between the two elements of the partition, based on the
minimum pairwise distance between data, then the restriction of the MST to
each element in the partition remains connected, i.e., is a subtree. That is, if
C is the solution to

max
B⊂{x1,...,xn}

min
x∈B,y 6∈B

d(x, y), (1.6)

then the subset of edges in the MST which connect elements of C is a con-
nected subgraph. A direct consequence of this result is that by removing
the largest weighted edge from the MST, the remaining subgraphs define the
two-way clustering of the data set which maximises the distance between
them. To generate a full clustering model, what remains is a method for re-
moving the edges from the MST which are likely to exist between clusters,
rather than within them. In the geometric minimum spanning tree cluster-
ing method (Brandes et al., 2003) a performance measure is computed for
each clustering obtained by removing from the minimum spanning tree the
edges with weight above a threshold. Since the tree has only n − 1 edges,
where n is the size of the data set, only n − 1 such thresholds need to be
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considered. The fuzzy C-means minimum spanning tree method (Foggia et
al., 2007) instead clusters the edges based on their weights using the fuzzy
C-means algorithm, and retains only those in the cluster of smaller edge
weights.

1.4 Density-Based Clustering

In density-based clustering, clusters are defined as regions of high data den-
sity which are separated from other high density regions by a region of low
data density. The density at a point may be related to the number of data
falling within a specified neighbourhood size or by using a smoother kernel-
based estimate (Aggarwal and Reddy, 2013).

The DBSCAN clustering algorithm (Ester et al., 1996) uses the former of
the above definitions. In this case high density points are those points within
a specific distance of at least a chosen minimum number of other data. Each
high density point is then connected to all points lying within the specified
distance, and sets of connected points are defined as clusters. Any point
which is not within the specified distance of at least one high density point
is interpreted as an outlier, not belonging to any cluster.

DBSCAN can be seen as approximating the level sets of a kernel density
estimate of the data distribution, where the uniform kernel is used. In the
non-parametric statistics literature, this method is often applied to a more
general density estimate (Azzalini and Torelli, 2007; Stuetzle and Nugent,
2010). In this case clusters are defined as maximally connected components
of the level set of a probability density function (Hartigan, 1975). The level set
of a function is the subset of the function’s domain upon which the functional
value lies above a chosen threshold level. Formally, the level set of a function
f : X → R at level λ is defined as,

{x ∈ X | f (x) ≥ λ}. (1.7)

Computing the level sets of an unknown probability density directly is ex-
tremely challenging even in moderate dimensions (Stuetzle and Nugent, 2010).
Certain approaches approximate these level sets as the union of spheres
around those data at which the estimate of the density is above the thresh-
old level (Cuevas and Fraiman, 1997; Rinaldo and Wasserman, 2010). This
method has compelling consistency properties (Rinaldo and Wasserman, 2010),
in that these approximations form disjoint neighbourhoods of the true com-
ponents of the level sets of the underlying density with high probability.
However, in the clustering context it is only the groups of data occupying
these components of the level sets which are of interest. Other methods
therefore attempt to connect data (i.e., assign them to the same cluster) by
establishing if there is a path between them lying completely within the level
set of the density (Azzalini and Torelli, 2007; Stuetzle and Nugent, 2010).
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Different interpretations of where the density is “high", i.e., using differ-
ent threshold levels for the level set, gives rise to different clusterings, and
using this approach for a range of thresholds results in a hierarchical clus-
tering model, known as the cluster tree. A more in depth account of density-
based clustering, especially from the non-parametric statistical perspective is
provided in Chapters 2 and 5.

An alternative approach to density-based clustering is via a grid formula-
tion. In this case it is the cells of a grid defined over the space occupied by the
data which undergoes clustering. In this case, the concept of adjacency has
a far more interpretable meaning, and so establishing connections between
grid cells is less challenging than for data points. Here the grid cells contain-
ing sufficiently many points are seen as high density cells, and adjacent high
density cells are joined to produce clusters. The final clustering of the data
connects data belonging to the same clusters of grid cells. An advantage of
this approach is that they are at least theoretically applicable in high dimen-
sional applications, because the lower dimensional grids define clusters on
subsets of the dimensions. Such a hierarchical grid structure, where the hi-
erarchy is defined over the dimensions, can be seen in the STING clustering
method (Wang et al., 1997).

A major advantage of density-based clustering is that the number of clus-
ters can be estimated automatically, and moreover they provide a natural
framework for handling outliers. In addition, they are well founded from a
statistical perspective in that a feature of the underlying probability distri-
bution is being estimated directly, and are capable of representing the full
underlying distribution. From a computational point of view, in the general
case density methods can be complex. These methods are also highly limited
in their applicability to higher dimensions, since the sparsity of data makes
estimating the underlying density unreliable, and in grid-based approaches
the size of the grid grows exponentially with the number of dimensions.

1.5 Model-Based Clustering

Model-based clustering again assumes an underlying probability distribution
has generated the data. Unlike the non-parametric approach in the previous
subsection, however, the data are assumed to be a sample from a finite mix-
ture distribution in which each component has a known parametric form.
Formally, the data set is assumed to be a sample of realisations of a random
variable X with density function f , where f may be expressed as,

f (x) =
k

∑
i=1

πi fi(x|θi). (1.8)

Here the π′is are the mixing proportions, i.e., ∑k
i=1 πi = 1, πi > 0, and each fi is

a density function parameterised by θi. If all parameters of the mixture distri-
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bution can be estimated, then data are classified according to which compo-
nent in the mixture has the greatest posterior probability of having generated
it (Fraley and Raftery, 2002). In other words each datum is classified by,

Class(xj) = argmaxi∈{1,...,k}πi fi(xj|θi). (1.9)

In general all components are assumed to belong to the same family of dis-
tributions, i.e., fi = f j ∀i, j, with the Gaussian mixture model being the most
common.

Both partitional and agglomerative clustering approaches have been ap-
plied to this setting. In the partitional case (McLachlan and Basford, 1988;
Celeux and Govaert, 1995), parameter estimation can be done using Expec-
tation Maximisation for mixture models. The agglomerative method uses
the same algorithmic structure as connectivity based cluster, where in this
case the criterion for merging two clusters is based on classification likeli-
hood (Murtagh and Raftery, 1984; Banfield and Raftery, 1993).

Once a family of distributions has been chosen for the individual compo-
nents in the mixture, methods can be further divided by how much freedom
is allowed in the estimation of parameters. If parameter values are uncon-
strained, then the number of parameters that need to be estimated can be
large, leading to computational issues. Moreover, the reliability in estimation
can be negatively affected if few data are used for each parameter, and in
the extreme case this approach can lead to a lack of identifiability. In the
Gaussian mixture case, constraints on the covariance matrices of the differ-
ent components can be introduced; either forcing all covariances to be equal
to the same scaled identity matrix, or allowing for an arbitrary covariance
but ensuring it is shared by all components (Friedman and Rubin, 1967). A
more general framework was given by Banfield and Raftery (1993) where
covariances matrices are described by their eigen-decomposition and certain
elements in this decomposition are fixed for all components, while others are
allowed to vary.

Probably the most attractive feature of model based clustering is that the
problem of determining the number of clusters is stated within the thor-
ough statistical framework of model selection, where measures such as the
Bayesian Information Criterion (Schwartz, 1978) can be used. The fundamen-
tal limitation is that clusters should be describable by a known parametric
distribution, and also that all clusters should fall into the same family of
distributions.

2 Semi-supervised Classification

In semi-supervised classification the true groupings, or class identities, of
some of the data are known (labeled data) and the task is to assign the data
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whose classes are unknown (unlabeled data) to one of the classes defined
within the labeled data. The motivation behind many approaches to solving
this problem is the assumption that data which lie within the same cluster
are likely to belong to the same class. One of the earliest approaches to
semi-supervised classification was based on this cluster assumption (Chap-
elle et al., 2006b). In this section, a selection of cluster motivated semi-
supervised classification methods will be discussed.

2.1 Low Density Separation Methods

If clusters are seen as regions of high data density which are separated by
relatively sparse regions, then an assumption equivalent to the cluster as-
sumption is the so-called low density separation assumption: The boundary
separating classes should lie in a low density region (Chapelle et al., 2006b).
Many modern approaches to the semi-supervised classification problem fo-
cus more on the low density separation assumption, and try to identify low
density regions which separate the known classes.

A common approach to determining the low density boundaries is through
Support Vector Machines (Vapnik and Sterin, 1977). SVMs were originally de-
signed for supervised classification, and are used to find the linear separator
(hyperplane) which separates the classes and which attains the largest margin
on the data, in other words the linear separator which is as far as possible
away from its nearest datum. Kernel methods can be used to find non-linear
separators by implicitly embedding the data in a higher dimensional space.
In semi-supervised classification, the Transductive SVM (TSVM) is the hy-
perplane which separates the classes and attains the largest margin on both
the labeled and unlabeled data (Joachims, 2006). The corresponding optimi-
sation problem is posed in the context of the standard SVM, except that the
class labels for the unlabeled data are treated as decision variables. Since
the set of labels is discrete, this corresponds to a mixed integer quadratic
programme, for which no efficient algorithms exist (Joachims, 2006).

Various authors have attempted to solve the problem exactly (Vapnik and
Sterin, 1977; Bennett and Demiriz, 1998), but this approach is limited to cases
with at most hundreds of unlabeled data points. The SVMlight approach pro-
posed by Joachims (1999) does not find the global optimum, but can handle
problems with up to 100000 data. The method uses a local descent approach
which iteratively swaps two labels assigned to unlabeled data. A similar
approach was proposed by Demiriz and Bennet (2000), which differs from
SVMlight in the number of labels and which selection of labels are swapped,
as well as the heuristics used to avoid local optima (Joachims, 2006). Fi-
nally De Bie and Cristianini (2004) used a convex relaxation via semi-definite
programming. Chapelle et al. (2006a) used a continuation approach to avoid
local minima in the TSVM objective. In this approach a sequence of optimisa-
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tion problems is solved, where each is initialised with the solution to the pre-
vious probelm. In each the objective is convolved with a Gaussian smoothing
kernel for a shrinking sequence of bandwidths. As the bandwidth decreases
the objective function for the convolved problem becomes closer to the true
underlying objective, and this procedure has the potential to find very good
solutions.

The Low Density Separation (LDS) approach of Chapelle and Zien (2005)
attempts to establish if unlabeled points can be connected to a labeled point
by a path of high density. A robust estimate of the lowest density point along
the best path between pairs of data is used to establish a density sensitive
distance measure, which is then used to define a kernel used in the training of
a TSVM.

2.2 Graph Partition Based Methods

The graph formulation described in relation to clustering provides a conve-
nient framework for incorporating additional information, such as known
class labels as in semi-supervised classification. Since the graph may be
defined via edges taking values equal to the pairwise similarities between
data, edges joining data known to belong to the same class can be assigned
maximum similarity, while edges between data known to belong to differ-
ent classes may be assigned the minimum similarity value. Using a nor-
malised cut technique would therefore tend to separate the classes in the la-
beled data as well as connect unlabeled data which are similar to the known
classes under the resulting clustering. This sort of approach has been imple-
mented (Chen and Feng, 2012) in the related field of semi-supervised clustering;
a problem in which no class labels are known but pairs of data may be known
to belong to the same class or not, thereby introducing constraints in the clus-
tering formulation.

In the semi-supervised classification context, a number of approaches
have been proposed. Label Propagation uses an iterative procedure to propa-
gate labels through a similarity graph (Bengio et al., 2006). A labelling vector
is updated by repeatedly multiplying by the normalised similarity matrix
until convergence. The early algorithm by Zhu and Ghahramani (2002) has
been extended to allow for more general clusters and to improve the stability
of the algorithm (Bengio et al., 2006), or by smoothing the actual labelling
vector in an approach referred to as label spreading (Zhou et al., 2004).

In addition to these methods, some authors have combined the kernel
based classification objective with the spectral clustering objective to ob-
tain so-called Laplacian Regularisation or Laplacian SVM (Sindhwani et
al., 2006).
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3 Challenges in Data Clustering

This section investigates two challenges associated with data clustering which
have received considerable attention in the literature. Subection 3.1 looks at
the problem of partitioning data with a very large number of features, so-
called high dimensional data. This is a fundamental challenge faced in a vari-
ety of problems in data analysis, and extends beyond the obvious computa-
tional difficulty associated with processing data objects of a much larger size.
Subsection 3.2 covers the data stream paradigm. In a data stream environ-
ment, the objects being partitioned arrive in sequence and cannot be stored
in memory. The model used for assigning data to groups must therefore be
built incrementally.

3.1 High Dimensionality

The fundamental challenge, from a theoretical point of view, associated with
analysing high dimensional data is that data points become increasingly
sparse as dimensionality increases (Steinbach et al., 2004). This concept is
most easily intuited using a grid-based representation. For a fixed number
of grid cells partitioning each dimension, the number of total grid cells in
the full dimensional space grows exponentially with the dimension. Unless
the number of available data grows with at least the same rate, then for a
very large number of dimensions the ratio of non-empty cells to empty cells
approaches zero. The space is, in a sense, “almost everywhere" sparse.

From a practical point of view, one of the major challenges for data
partitioning is that certain distance measures lose meaning in very high di-
mensions (Kriegel et al., 2009). This is related to the fact that pairwise dis-
tances between points tend to be more uniform in high dimensions (Beyer et
al., 1999; Aggarwal et al., 2001). This is expressed theoretically by Beyer et
al. (1999), who show that for certain distributions underlying the data, the
difference between the largest and smallest distance in a data set, divided by
the smallest distance, tends to zero in probability as dimension approaches
infinity. There is poor discrimination between the nearest and furthest neigh-
bour (Aggarwal et al., 2001).

The standard approach to handling high-dimensional data is via dimen-
sion reduction. Dimension reduction can be performed as a preprocessing
task before any attempt to partition a data set is undertaken, or it can be
performed in conjunction with the partitioning step. Dimension reduction
techniques can also help significantly even in relatively low dimensions, by
removing the effect of features which are irrelevant for determining clusters,
or identifying pairs of features which are highly correlated with one another.

Subspace clustering usually refers to the case where it is assumed that only
a subset of the features contain information which is relevant for defining
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clusters (Steinbach et al., 2004). A challenge in this context is that different
subsets may be relevant for different clusters, and so attempting to cluster
directly using only a single subset of features may not lead to meaningful re-
sults. Grid-based clustering, rather counterintuitively, offers a useful means
for subspace clustering. It is counterintuitive since the number of grid cells
to process is so large that it seems grid-based methods would be particu-
larly limited in high dimensional applications. Their use is well described
by Agrawal et al. (1998) in relation to the CLIQUE algorithm. The observa-
tion is that a density-based cluster defined in a subset of dimensions, when
projected onto each of those dimensions will exhibit a (one-dimensional) high
density region. Importantly, the intersection of two or more one-dimensional
high density regions does not necessarily correspond to a dense grid cell in
those dimensions. Low dimensional dense grid cells, when intersected, there-
fore represent the potential locations of higher dimensional clusters. Only
those intersections need to be considered when searching for clusters, rather
than trying to find dense regions over an exponentially large number of grid
cells.

Other cluster definitions, such as centroid-based, have also been consid-
ered for subspace clustering. For example, the PROCLUS algorithm (Aggar-
wal et al., 1999) used a k-median based approach in which each cluster has
an associated set of dimensions within which the associated data are most
compact, or have least variability. Distance calculations for each cluster are
only computed within their relevant subspace, and using the L1 norm.

Subspace clustering is somewhat limited by restricting attention to clus-
ters defined in axis-parallel subspaces. The term projected clustering will be
used to refer to clustering techniques which attempt to find clusters in ar-
bitrarily oriented subspaces. It is important to note that other authors have
used “projected clustering" to refer to the subspace clustering above, and may
refer to clustering within arbitrary subspaces as “correlation clustering".

The most common approach to projected clustering uses Principal Com-
ponent Analysis (PCA), either locally (on subsets of the data set) or glob-
ally, to determine subspaces within which data have high and low variabil-
ity (Kriegel et al., 2009). ORCLUS (Aggarwal and Yu, 2000) is an extension of
PROCLUS based on low order (low variability) PCA projections. Variations
on this approach all use PCA on a local level.

The Principal Direction Divisive Partitioning algorithm (PDDP) (Boley,
1998) uses PCA iteratively within a divisive hierarchical procedure. First the
entire data set is projected onto the first principal component (the univariate
subspace in which the variability is maximised). The data are then split in two
at their mean within this subspace. This process is then repeated recursively
on the resulting subsets, selecting the next subset to be partitioned based on
a heuristic measure of cohesion, called scatter value. When the number of
subsets reaches a chosen number the process terminates. This algorithm is
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not motivated by a particular cluster definition, but rather uses the reasoning
that subspaces in which the data have high variability are likely to display
high between cluster variability, in which case partitioning at the projected
mean is likely to separate clusters, rather than cut through them.

Two extensions to the PDDP algorithm were considered by Tasoulis et al.
(2010). Both are motivated by density-based clustering, and the equivalent
low density separation assumption. The density enhanced PDDP (dePDDP)
algorithm projects a data set onto its first principal component, as in PDDP,
and then uses a kernel density estimate of the projected data to find a low
density separator. It then splits the subset which induces the lowest den-
sity separation based on its respective density estimate. The interval PDDP
(iPDDP) method is similar, but rather than using a kernel estimate of the
density it splits a data set at the largest gap between consecutive projected
points, thereby separating by the largest margin hyperplane orthogonal to
the first principal component.

The generality offered by projected clustering over subspace clustering is
clearly beneficial in many cases. PCA projections have been successfully ap-
plied in many areas, however it is trivial to construct examples where PCA
is inappropriate. Projection pursuit refers to a class of optimisation problems
aimed at finding the most “interesting" subspace within a multivariate data
set (Jones and Sibson, 1987). The interestingness of a data set within a given
subspace is referred to as the projection index. The term projection pursuit
is attributed to Friedman and Tukey (1974), however an associated practice
dates back to Kruskal (1969). By defining a projection index which is relevant
to the ultimate task at hand, e.g. clustering, it is possible to overcome some
of the shortcomings associated with using off-the-shelf dimension reduction
techniques like PCA. While these off-the-shelf methods have been extremely
useful in the modern era of data analysis, the subsequent task, while eased
by the reduced size of the data, often remains a challenging problem. By per-
forming dimension reduction in tandem with the corresponding analysis, the
ultimate task can be made much easier. This may be of particular relevance
in relation to clustering. In a theoretical study of the concept of clusterabil-
ity, Ackerman and Ben David (2009) observed that “Although most of the
common clustering tasks are NP-hard, finding a close-to-optimal clustering
for well clusterable data sets is easy (computationally)".

3.2 Data Streams

A data stream may be characterised by the sequential arrival of data. Such
situations arise when there is a relative overabundance of data in terms of
available computing and storage resources. This can occur either where data
sets are so large that they cannot be stored in memory, or where they arrive
with such high velocity that standard approaches would be unable to keep
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pace. Random access to past observations is costly, and so a single linear scan
of the data is the only acceptable method for processing the data (Guha et
al., 2003; Silva et al., 2013). A defining property is that the generative process
which is assumed to underlie the arriving data may be subject to change, a
phenomenon known as population drift (Babcock et al., 2002). An algorithm
for determining clusters within a data stream must therefore be able to build
a model incrementally, and the computational requirements for updating the
model must be bounded, and so cannot increase as more data are observed.
In addition, it should be able to identify when new clusters emerge, or clus-
ters disappear, or when clusters undergo some sort of structural change (Jain,
2010).

The majority of data stream clustering algorithms are variations on stan-
dard approaches. They are comprised of an online phase which updates a set
of data structures as new data arrive, and an offline phase which processes the
data structures (Aggarwal et al., 2003; Cao et al., 2006). The data structures
usually represent summaries of subsets of the data processed so far, and the
offline phase is analogous to an existing clustering algorithm, but which op-
erates on these summaries rather than on individual data points. Population
drift is usually accommodated in a heuristic manner by discounting the em-
phasis of older data on the data structures (Aggarwal et al., 2003, 2004; Cao
et al., 2006).

The practical challenges associated with clustering data streams are clear,
however the data stream paradigm also poses philosophical questions about
what defines a cluster. Consider a situation in which the generative process
undergoes an abrupt change, such that the data distribution after the change
is essentially unrecognisable in the context before the change. Even if the
number of clusters under the new distribution is the same, how can one as-
sociate data which arrived before the change with those arriving afterwards?
If the location of such abrupt changes is known, it could be argued that
the previous clusters no longer exist, and any information drawn from the
new clusters should be independent of what came before. However, abrupt
changes might not affect all clusters, and discarding past information could
be detrimental if unnecessary. If the location of changes is unknown, then
the problem becomes immeasurably more complex. Attempting to describe
clusters as persistent entities is almost paradoxical if clusters are described as
groups of data. It seems necessary, therefore, to attempt to estimate features
of the underlying generative process and define clusters relative to them. In
addition, it is preferable to identify changes in the generative process which
affect the cluster definitions, rather than discounting information from previ-
ous data which may or may not be related to the data relevant to the current
cluster definitions. Ideally, in addition the identification of changes to the
process should be at a local level so that information from persistent features
of the process is not discarded.
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4 Focus of Thesis

Within the previous sections, a selection of existing approaches to clustering
and semi-supervised classification were discussed, highlighting some advan-
tages and limitations. The remainder of this thesis presents a number of new
methods for partitioning data sets. It is widely accepted that no single ap-
proach will be usefully applicable to every data set (Jain and Dubes, 1988;
Aggarwal and Reddy, 2013), indeed it is unlikely that a single approach can
reasonably overcome all limitations associated with existing methods.

These contributions are aimed at general methodology and are intended
for wide applicability; they are therefore not proposed with any particular
application or application area in mind. As such, they do not attempt to ad-
dress every potential limitation and challenge associated with clustering and
semi-supervised classification, nor solve the respective problem completely
within a single applied context. Rather they represent pragmatic and prin-
cipled approaches to the problem of data partitioning that are motivated by
fundamental cluster definitions, under the unifying framework of projected
divisive partitioning.

4.1 Contributions

The body of this thesis consists of four chapters. In Chapter 2 a new hyperplane-
based classification method is proposed for unsupervised and semi-supervised
classification problems. The formulation is motivated by the low density sep-
aration assumption, and the optimal hyperplane is defined as that which has
the minimum integrated density along it. This density is estimated using
kernel density estimation. The minimum density hyperplane attains the least
possible upper bound on the full dimensional density evaluated along it, and
so is highly unlikely to cut through high density clusters. Like the maximum
margin hyperplane methods, a naive approach to solving this problem is
faced with many local minima. To mitigate this problem, a projection pursuit
formulation is developed in which the projection index is given by the mini-
mum integrated density of all hyperplanes orthogonal to the corresponding
subspace, penalised to emphasise a useful partition of the data. The projec-
tion pursuit is therefore directly connected with the clustering objective. This
is perhaps the first direct attempt to implement the low density separation
assumption in a finite sample setting. A theoretical investigation reveals that
the minimum density hyperplane converges to the maximum margin hyper-
plane as the bandwidth in the kernel density estimator is reduced to zero.

Chapter 3 contains two parts. Part A. contains a thorough exposition of
projection pursuit based on spectral connectivity for unsupervised partition-
ing. The spectral connectivity of a data set relates to the optimal solution
of the relaxed normalised graph cut problem, and therefore the optimal sub-

19



Chapter 1. Introduction

space based on spectral connectivity is one in which the data are most cluster-
able by spectral clustering. It is widely acknowledged that partitions result-
ing from graph cut based clustering methods tend to satisfy the low density
separation assumption. The theoretical discussion in Chapter 3 offers a new
perspective on this, as it is established that the optimal subspace for spectral
clustering converges to the subspace normal to the largest margin hyperplane
through the data as the scaling parameter is reduced to zero, and so the meth-
ods in the first two chapters are in fact intrinsically connected. In Part B. this
methodology is extended to the semi-supervised setting. It is shown that if
the labels are incorpoarted in a particular way, then the maximum margin
result extends to this setting, and the optimal subspace for semi-supervised
spectral connectivity converges to the subspace normal to the optimal TSVM
solution.

Chapter 4 investigates how the exact normalised graph cut can be ad-
dressed for hyperplane based partitions. A theoretical investigation into the
asymptotic properties of the normalised graph cut measured across a hyper-
plane is presented. It is shown that the asymptotic value of the normalised
cut has desirable properties for clustering in that it both achieves low den-
sity integral, and also is likely to separate the modes of the full dimensional
density without the need for penalisation. On a fixed sample, the optimal hy-
perplane is again shown to be asymptotically connected with the maximum
margin hyperplane as the scaling parameter is reduced to zero. A highly effi-
cient algorithm is proposed for the problem, provided the Laplace, or double
exponential kernel is used to define pairwise similarities.

Finally, in Chapter 5 projected divisive partitioning is looked at within
a data stream environment. Projection pursuit requires access to the entire
data sample throughout the optimisation procedure, and is unsuitable for
data streams in its general form. Incremental algorithms for estimating prin-
cipal components, however, have been very well studied (Weng et al., 2003).
Resting on the success of PDDP variants, a PCA based projected divisive clus-
tering method is proposed. A statistically robust procedure for determining
when a cluster should be split is introduced, which makes use of a proposed
data stream version of the dip test for unimodality (Hartigan and Hartigan,
1985). When a cluster contains multiple modes in the underlying probability
density, it is split by finding a low density hyperplane orthogonal to the PCA
projection. A principled adaptive strategy is designed to handle population
drift, which continuously monitors the density level on the separating hyper-
planes in the model, and revises the model whenever a significant increase
in density is detected.
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Chapter 2

Minimum Density
Hyperplane: An
Unsupervised and
Semi-supervised Classifier

Abstract

Associating distinct groups of objects (clusters) with contiguous regions of high prob-
ability density (high-density clusters), is central to many statistical and machine
learning approaches to the classification of unlabelled data. We propose a novel hyper-
plane classifier for clustering and semi-supervised classification which is motivated
by this objective. The proposed minimum density hyperplane minimises the integral
of the empirical probability density function along it, thereby avoiding intersection
with high density clusters. We show that the minimum density and the maximum
margin hyperplanes are asymptotically equivalent, thus linking this approach to max-
imum margin clustering and semi-supervised support vector classifiers. We propose
a projection pursuit formulation of the associated optimisation problem which allows
us to find minimum density hyperplanes efficiently in practice, and evaluate its per-
formance on a range of benchmark datasets. The proposed approach is found to be
very competitive with state of the art methods for clustering and semi-supervised
classification.
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1 Introduction

We study the fundamental learning problem: Given a random sample from an
unknown probability distribution with no, or partial label information, identify a sep-
arating hyperplane that avoids splitting any of the distinct groups (clusters) present
in the sample. We adopt the cluster definition given by Hartigan (Hartigan,
1975, chap. 11), in which a high-density cluster is defined as a maximally con-
nected component of the level set of the probability density function, p(x), at
level c>0,

levc p(x)=
{

x∈Rd ∣∣ p(x)>c
}

.

An important advantage of this approach over other methods is that it is
well founded from a statistical perspective, in the sense that a well-defined
population quantity is being estimated.

However, since p(x) is typically unknown, detecting high-density clus-
ters necessarily involves estimates of this function, and standard approaches
to nonparametric density estimation are reliable only in low dimensions. A
number of existing density clustering algorithms approximate the level sets
of the empirical density through a union of spheres around points whose
estimated density exceeds a user-defined threshold (Walther, 1997; Cuevas
et al., 2000, 2001; Rinaldo and Wasserman, 2010). The choice of this threshold
affects both the shape and number of detected clusters, while an appropri-
ate threshold is typically not known in advance. The performance of these
methods deteriorates sharply as dimensionality increases, unless the clus-
ters are assumed to be clearly discernible (Rinaldo and Wasserman, 2010).
An alternative is to consider the more specific problem of allocating obser-
vations to clusters, which shifts the focus to local properties of the density,
rather than its global approximation. The central idea underlying such meth-
ods is that if a pair of observations belong to the same cluster they must be
connected through a path traversing only high-density regions. Graph the-
ory is a natural choice to address this type of problem. Azzalini and Torelli
(2007); Stuetzle and Nugent (2010) and Menardi and Azzalini (2014) have re-
cently proposed algorithms based on this approach. Even these approaches
however are limited to problems of low dimensionality by the standards of
current applications (Menardi and Azzalini, 2014).

An equivalent formulation of the density clustering problem is to assume
that clusters are separated through contiguous regions of low probability
density; known as the low-density separation assumption. In both cluster-
ing and semi-supervised classification, identifying the hyperplane with the
maximum margin is considered a direct implementation of the low-density
separation approach. Motivated by the success of support vector machines
(SVMs) in classification, maximum margin clustering (MMC) (Xu et al., 2004),
seeks the maximum margin hyperplane to perform a binary partition (bi-
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partition) of unlabelled data. MMC can be equivalently viewed as seeking
the binary labelling of the data sample that will maximise the margin of an
SVM estimated using the assigned labels.

In a plethora of applications data can be collected cheaply and automat-
ically, while labelling observations is a manual task that can be performed
for a small proportion of the data only. Semi-supervised classifiers attempt
to exploit the abundant unlabelled data to improve the generalisation error
over using only the scarce labelled examples. Unlabelled data provide addi-
tional information about the marginal density, p(x), but this is beneficial only
insofar as it improves the inference of the class conditional density, p(x|y).
Semi-supervised classification relies on the assumption that a relationship
between p(x) and p(x|y) exists. The most frequently assumed relationship is
that high-density clusters are associated with a single class (cluster assump-
tion), or equivalently that class boundaries pass through low-density regions
(low-density separation assumption). The most widely used semi-supervised
classifier based on the low-density separation assumption is the semi super-
vised support vector machine (S3VM) (Vapnik and Sterin, 1977; Joachims,
1999; Chapelle and Zien, 2005). S3VMs implement the low-density separa-
tion assumption by partitioning the data according to the maximum margin
hyperplane with respect to both labelled and unlabelled data.

Encouraging theoretical results for semi-supervised classification have been
obtained under the cluster assumption. If p(x) is a mixture of class con-
ditional distributions, Castelli and Cover (1995, 1996) have shown that the
generalisation error will be reduced exponentially in the number of labelled
examples if the mixture is identifiable. More recently, Singh et al. (2009)
showed that the mixture components can be identified if p(x) is a mixture
of a finite number of smooth density functions, and the separation between
mixture components is large. Rigollet (2007) considers the cluster assumption
in a nonparametric setting, that is in terms of density level sets, and shows
that the generalisation error of a semi-supervised classifier decreases expo-
nentially given a sufficiently large number of unlabelled data. However, the
cluster assumption is difficult to verify with a limited number of labelled ex-
amples. Furthermore, the algorithms proposed by Rigollet (2007) and Singh
et al. (2009) are difficult to implement efficiently even if the cluster assump-
tion holds. This renders them impractical for real-world problems (Ji et al.,
2012).

Although intuitive, the claim that maximising the margin over (labelled
and) unlabelled data is equivalent to identifying the hyperplane that goes
through regions with the lowest possible probability density has received
surprisingly little attention. The work of Ben-David et al. (2009) is the only
attempt we are aware of to theoretically investigate this claim. Ben-David
et al. (2009) quantify the notion of a low-density separator by defining the
density on a hyperplane, as the integral of the probability density function over
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the hyperplane. They study the existence of universally consistent algorithms
to compute the hyperplane with minimum density. The maximum hard mar-
gin classifier is shown to be consistent only in one dimensional problems. In
higher dimensions only a soft-margin algorithm is a consistent estimator of
the minimum density hyperplane. Ben-David et al. (2009) do not provide an
algorithm to compute low density hyperplanes.

This paper introduces a novel approach to clustering and semi-supervised
classification which directly identifies low-density hyperplanes in the finite
sample setting. In this approach the density on a hyperplane criterion pro-
posed by Ben-David et al. (2009) is directly minimised with respect to a kernel
density estimator that employs isotropic Gaussian kernels. The density on a
hyperplane provides a uniform upper bound on the value of the empirical
density at points that belong to the hyperplane. This bound is tight and pro-
portional to the density on the hyperplane. Therefore, the smallest upper
bound on the value of the empirical density on a hyperplane is achieved by
hyperplanes that minimise the density on a hyperplane criterion. An im-
portant feature of the proposed approach is that the density on a hyperplane
can be evaluated exactly through a one-dimensional kernel density estimator,
constructed from the projections of the data sample onto the vector normal
to the hyperplane. This renders the computation of minimum density hyper-
planes tractable even in high dimensional applications.

We establish a connection between the minimum density hyperplane and
the maximum margin hyperplane in the finite sample setting. In particular,
as the bandwidth of the kernel density estimator is reduced towards zero,
the minimum density hyperplane converges to the maximum margin hyper-
plane. An intermediate result establishes that there exists a positive band-
width such that the partition of the data sample induced by the minimum
density hyperplane is identical to that of the maximum margin hyperplane.
Unlike MMC and S3VMs the estimation of which involves an inherently
nonconvex combinatorial optimisation problem, estimating minimum den-
sity hyperplanes is a nonconvex but continuous optimisation problem, and
so offers considerable computational benefits.

The remaining paper is organized as follows: The formulation of the min-
imum density hyperplane problem as well as basic properties are presented
in Section 2. Section 3 establishes the connection between minimum density
hyperplanes and maximum margin hyperplanes. Section 4 discusses the esti-
mation of minimum density hyperplanes and the computational complexity
of the resulting algorithm. Experimental results are presented in Section 5,
followed by concluding remarks and future research directions in Section 6.
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2 Problem Formulation

We study the problem of estimating a hyperplane to partition a finite dataset,
X ={xi}n

i=1⊂Rd, without splitting any of the high-density clusters present.
We assume that X is an i.i.d. sample of a random variable X on Rd, with
unknown probability density function p :Rd→R+. A hyperplane is defined
as H(v,b) :={x∈Rd |v ·x=b}, where without loss of generality we restrict
attention to hyperplanes with unit normal vector, i.e., those parameterised by
(v,b)∈bd(Bd)×R, where bd(Bd)={v∈Rd

∣∣‖v‖=1}. Following Ben-David
et al. (2009) we define the density on the hyperplane H(v,b) as the integral of
the probability density function along the hyperplane,

I(v,b) :=
∫

H(v,b)
p(x)dx. (2.1)

We approximate p(x) through a kernel density estimator with isotropic
Gaussian kernels,

p̂(x|X ,h2 I)=
1

n(2πh2)d/2

n

∑
i=1

exp
{
−‖x−xi‖2

2h2

}
. (2.2)

This class of kernel density estimators has the useful property that the inte-
gral in Eq. (2.1) can be evaluated exactly by projecting X onto v; constructing
a one-dimensional density estimator with Gaussian kernels and bandwidth h;
and evaluating the density at b,

Î(v,b|X ,h2 I) :=
∫

H(v,b)
p̂
(

x|X ,h2 I
)

dx,

=
1

n
√

2πh2

n

∑
i=1

exp
{
− (b−v ·xi)

2

2h2

}
=: p̂v

(
b |{v ·xi}n

i=1,h2
)

.

(2.3)

The univariate kernel estimator p̂v
(
· |{v ·xi}n

i=1,h2) approximates the pro-
jected density on v, that is, the density function of the random variable, Xv=
X ·v. Henceforth we use Î(v,b) to approximate I(v,b). To simplify ter-
minology we refer to Î(v,b) as the density on H(v,b), or the density inte-
gral on H(v,b), rather than the empirical density, or the empirical density
integral, respectively. For notational convenience we also write p̂v(b) for
p̂v
(
b |{v ·xi}n

i=1,h2), and Î(v,b) for Î(v,b|X ,h2 I), where X and h are appar-
ent from context.

The following Lemma, adapted from (Tasoulis et al., 2010, Lemma 3),
shows that Î(v,b) provides an upper bound for the maximum value of the
empirical density at any point that belongs to the hyperplane.
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Lemma 1 Let X ={xi}n
i=1⊂Rd, and p̂(x|X ,h2 I) a kernel density estimator with

isotropic Gaussian kernels. Then, for any (v,b)∈bd(Bd)×R,

max
x∈H(v,b)

p̂(x|X ,h2 I)6(
√

2πh)1−d Î(v,b). (2.4)

This lemma shows that a hyperplane, H(v,b), cannot intersect level sets of the
empirical density with level higher than (

√
2πh)1−d Î(v,b). The proof of the

lemma relies on the fact that projection contracts distances, and follows from
simple algebra. In Eq. (2.4) equality holds if and only if there exists x∈H(v,b)
and c∈Rn such that all xi∈X , can be written as xi=x+civ. It is therefore
not possible to obtain a uniform upper bound on the value of the empirical
density at points that belong to H(v,b) that is lower than (

√
2πh)1−d Î(v,b)

using only one-dimensional projections. Since the upper bound of Lemma 1
is tight and proportional to Î(v,b), minimising the density on the hyperplane
leads to the lowest upper bound on the maximum value of the empirical
density along the hyperplane separator.

To obtain hyperplane separators that are meaningful for clustering and
semi-supervised classification, it is necessary to constrain the set of feasible
solutions, because the density on a hyperplane can be made arbitrarily low
by considering a hyperplane that intersects only the tail of the density. In
other words, for any v, Î(b|v) can be made arbitrarily low for sufficiently
large |b|. In both problems the constraints restrict the feasible set to a subset
of the hyperplanes that intersect the interior of the convex hull of X . In detail,
let convX denote the convex hull of X , and assume Int(convX ) 6=∅, where
Int(·) denotes interior. Define C to be the set of hyperplanes that intersect
Int(convX ),

C=
{

H(v,b)
∣∣∣(v,b)∈bd(Bd)×R, ∃z∈Int(convX ) s.t. v ·z=b

}
. (2.5)

Then denote by F the set of feasible hyperplanes, where F⊂C. We define the
minimum density hyperplane (MDH), H(v?,b?)∈F to satisfy,

Î(v?,b?)= min
(v,b)|H(v,b)∈F

Î(v,b). (2.6)

In the following subsections we discuss the specific formulations for cluster-
ing and semi-supervised classification in turn.

2.1 Clustering

Since high-density clusters are formed around the modes of p(x), the convex
hull of these modes would be a natural choice to define the set of feasible
hyperplanes. Unfortunately, this convex hull is unknown and difficult to es-
timate. We instead propose to constrain the distance of hyperplanes to the
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origin, b. Such a constraint is inevitable as for any v∈bd(Bd), p̂v(b) can
become arbitrarily close to zero for sufficiently large |b|. Obviously, such
hyperplanes are inappropriate for the purposes of bi-partitioning as they as-
sign all the data to the same partition. Rather than fixing b to a constant, we
constrain it in the interval,

F(v)=[µv−ασv,µv+ασv] , (2.7)

where µv and σv denote the mean and standard deviation, respectively, of
the projections {v ·xi}n

i=1. The parameter α>0, controls the width of the
interval, and has a probabilistic interpretation from Chebyshev’s inequality.
Smaller values of α favour more balanced partitions of the data at the risk
of excluding low density hyperplanes that separate clusters more effectively.
On the other hand, increasing α increases the risk of separating out only a
few outlying observations. We discuss in detail how to set this parameter
in the experimental results section. If Int(convX ) 6=∅, then there exists α>0
such that the set of feasible hyperplanes for clustering, FCL, satisfies,

FCL=
{

H(v,b)
∣∣∣(v,b)∈bd(Bd)×R, b∈F(v)

}
⊂C, (2.8)

where C is the set of hyperplanes that intersect Int(convX ), as defined in
Eq. (2.5).

The minimum density hyperplane for clustering is the solution to the
following constrained optimisation problem,

min
(v,b)∈bd(Bd)×R

Î(v,b), (2.9a)

subject to: b−µv+ασv>0, (2.9b)

µv+ασv−b>0. (2.9c)

Since the objective function and the constraints are continuously differen-
tiable, MDHs can be estimated through constrained optimisation methods
like sequential quadratic programming (SQP). Unfortunately the problem of
local minima due to the nonconvexity of the objective function seriously hin-
ders the effectiveness of this approach.

To mitigate this we propose a parameterised optimisation formulation,
which gives rise to a projection pursuit approach. Projection pursuit meth-
ods optimise a measure of “interestingness” of a linear projection of a data
sample, known as the projection index. For our problem the natural choice of
projection index for v is the minimum value of the projected density within
the feasible region, minb∈F(v) p̂v(b). This index gives the minimum density
integral of feasible hyperplanes with normal vector v. To ensure the dif-
ferentiability of the projection index we incorporate a penalty term into the
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objective function. We define the penalised density integral as,

fUL(v,b)= p̂v(b)+
L
ηε

max{0,µv−ασv−b,b−µv−ασv}1+ε , (2.10)

where, L=
(

e1/2h2
√

2π
)−1
>supb∈R | p̂′v(b)|, ε∈(0,1) is a constant term that

ensures that the penalty function is everywhere continuously differentiable,
and η∈(0,1). Other penalty functions are possible, but we only consider
the above due to its simplicity, and the fact that its parameters offer a direct
interpretation: L in terms of the derivative of Î(v,b); and η in terms of the
desired accuracy of the minimisers of fUL(v,b) relative to the minimisers of
Eq. (2.9), as discussed in the following proposition.

Proposition 2 For v∈bd(Bd), define, the set of minimisers,

B(v)=argmin
b∈F(v)

p̂v(b), (2.11)

BC(v)=argmin
b∈R

fUL(v,b) (2.12)

For every b?∈B(v) there exists b?C∈BC(v) such that |b?−b?C|6η. Moreover, there
are no minimisers of fUL(v,b) outside the interval [µv−ασv−η,µv+ασv+η],

BC(v)∩R\[µv−ασv−η,µv+ασv+η]=∅.

Proof Any minimiser in the interior of the feasible region, b?∈B(v)∩Int(F(v)),
also minimises the penalised function, since fUL(v,b)= p̂v(b) ∀ b∈Int(F(v)),
hence b?∈BC(v).

Next we consider the case when either or both of the boundary points
of F(v), b−=µv−ασv and b+=µv+ασv, are contained in B(v). It suffices
to show that, fUL(v,b)> p̂v(b−) for all b<b−−η, and fUL(v,b)> p̂v(b+) for
all b>b++η. We discuss only the case b>b++η as the treatment of b<
b−−η is identical. Assume that p̂v(b)< p̂v(b+) (since in the opposite case
the result follows immediately: fUL(v,b)> p̂v(b)> p̂v(b+)). From the mean
value theorem there exists ξ∈(b+,b) such that,

p̂v(b+)= p̂v(b)−(b−b+) p̂′v(ξ)

6 p̂v(b)+(b−b+)L

< p̂v(b)+
L(b−b+)1+ε

ηε
= fUL(v,b).

In the above we used the following facts: p̂′v(ξ)<0, L>supξ∈R | p̂′v(ξ)|, and
b−b+

η >1. �

28



2. Problem Formulation

We define the projection index for the clustering problem as the minimum
of the penalised density integral,

φUL(v)=min
b∈R

fUL(v,b). (2.13)

Since the optimisation problem of Eq. (2.13) is one-dimensional it is simple
to compute the set of global minimisers BC(v). As we discuss in Section 4,
this is necessary to compute directional derivatives of the projection index,
as well as, to determine whether φUL is differentiable. We call the optimi-
sation of φUL, minimum density projection pursuit (MDP2). For each v, MDP2

considers only the optimal choice of b. This enables it to avoid local minima
of the p̂v(·). Most importantly MDP2 is able to accommodate a discontinu-
ous change in the location of the global minimiser(s), argminb∈R fUL(v,b),
as v changes. Neither of the above can be achieved when the optimisa-
tion is jointly over (v,b) as in the original constrained optimisation problem,
Eq. (2.9). The projection index φUL is continuous, but it is not guaranteed
to be everywhere differentiable when BC(v) is not a singleton. The resulting
optimisation problem is therefore nonsmooth and nonconvex.

To illustrate the effectiveness of MDP2 to estimate MDHs, we compare
this approach with a direct optimisation of the constrained problem given in
Eq. (2.9) using SQP. To enable visualisation we consider the two-dimensional S1
dataset (Fränti and Virmajoki, 2006), constructed by sampling from a Gaus-
sian mixture distribution with fifteen components, where each component
corresponds to a cluster. Figure 2.1 depicts MDHs obtained over 100 random

(a) SQP (b) MDP2

Fig. 2.1: Binary partitions induced by 100 MDHs estimated through SQP and MDP2

initialisations of SQP and MDP2. It is evident that SQP frequently yields
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hyperplanes that intersect regions with high probability density thus split-
ting clusters. As SQP always converged in these experiments the poor per-
formance is solely due to convergence to local minima. In contrast, MDP2

converges to three different solutions over the 100 experiments, all of which
induce high-quality partitions, and none intersects a high-density cluster.

2.2 Semi-Supervised Classification

In semi-supervised classification labels are available for a subset of the data
sample. The resulting classifier needs to predict as accurately as possible the
labelled examples, while avoiding intersection with high-density regions of
the empirical density. The formulation of the minimum density hyperplane
problem can readily accommodate partially labelled data by incorporating
the linear constraints associated with the labelled data into the clustering for-
mulation. Without loss of generality assume that the first ` examples are
labelled by y=(y1, . . . ,y`)>∈{−1,1}`. The MDH for semi-supervised classi-
fication is the solution to the problem,

min
(v,b)∈bd(Bd)×R

Î(v,b), (2.14a)

subject to: yi(v ·xi−b)>0, ∀i=1, . . . ,`, (2.14b)

b−µv+ασv>0, (2.14c)

µv+ασv−b>0, (2.14d)

where Î(v,b),µv, and σv are computed over the entire data set. If the la-
belled examples are linearly separable by a hyperplane, H(v,b), satisfying
b∈F(v), then the constraints in Eq. (2.14) define a nonempty feasible set of
hyperplanes,

FLB=
{

H(v,b) |(v,b)∈bd(Bd)×R,b∈F(v),yi(v ·xi−b)>0, ∀i∈{1, . . . ,`}
}
⊂C.

(2.15)
Eqs. (2.14c) and (2.14d) act as a balancing constraint which discourages MDHs
that classify the vast majority of unlabelled data to a single class. Balanc-
ing constraints are included in the estimation of S3VMs for the same rea-
son (Joachims, 1999; Chapelle and Zien, 2005).

As in the case of clustering, the direct minimisation of Eq. (2.14) frequently
leads to locally optimal solutions. To mitigate this we again propose a projec-
tion pursuit formulation. We define the penalised density integral for semi-
supervised classification as,

fSSC(v,b)= fUL(v,b)+γ
l

∑
i=1

max{0,−yi(v ·xi−b)}1+ε (2.16)
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where, γ>0 is a user-defined constant, which controls the trade-off between
reducing the density on the hyperplane, and misclassifying the labelled ex-
amples. The projection index is then defined as the minimum of the penalised
density integral,

φSSC(v)=min
b∈R

fSSC(v,b). (2.17)

Notice also that the projection pursuit formulation benefits from always
having a solution, even in the event that the labelled data are not linearly
separable.

3 Connection to Maximum Margin Hyperplanes

In this section we discuss the connection between MDHs and maximum
(hard) margin hyperplane separators. The margin of a hyperplane H(v,b)
with respect to a data set X is defined as the minimum Euclidean distance
between the hyperplane and its nearest datum,

margin H(v,b)=min
x∈X
|v ·x−b|. (2.18)

The points whose distance to the hyperplane H(v,b) is equal to the margin
of the hyperplane, that is, argminx∈X |v ·x−b|, are called the support points
of H(v,b). Let F denote the set of feasible hyperplanes; then the maximum
margin hyperplane (MMH) H(vm,bm)∈F satisfies,

margin H(vm,bm)= max
(v,b)|H(v,b)∈F

margin H(v,b). (2.19)

The main result of this section is Theorem 1, which states that as the band-
width parameter, h, is reduced to zero the MDH converges to the maximum
margin hyperplane. An intermediate result, Lemma 4, shows that there ex-
ists a positive bandwidth, h′>0 such that, for all h∈(0,h′), the partition of
the data set induced by the MDH is identical to that of maximum margin
hyperplane.

To begin with we discuss some assumptions which allow us to present
the associated theoretical results of this section. As before we assume a fixed
and finite data set X ⊂Rd, and approximate its (assumed) underlying proba-
bility density function via a kernel density estimator using Gaussian kernels
with isotropic bandwidth matrix h2 I. We assume that the interior of the con-
vex hull of the data, Int(convX ), is non-empty, and define C as the set of
hyperplanes that intersect Int(conv X ), as in Eq. (2.5). The set of feasible
hyperplanes, F, for either clustering or the semi-supervised classification sat-
isfies F⊂C. By construction every H(v,b)∈F defines a hyperplane which
partitions X into two non-empty subsets. Observe that if for each v∈bd(Bd)
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the set {b∈R|H(v,b)∈F} is compact, then by the compactness of bd(Bd) a
maximum margin hyperplane in F exists. For both the clustering and semi-
supervised classification problems this compactness holds by construction.

Now, for any h>0, let (v?
h,b?h)∈bd(Bd)×R parameterise a hyperplane

which achieves the minimal density integral over all hyperplanes in F, for
bandwidth matrix h2 I. That is,

Î(v?
h,b?h)= min

(v,b)|H(v,b)∈F
Î(v,b|X ,h2 I), (2.20)

where we briefly return to the explicit notation Î(v,b|X ,h2 I) to emphasise
the dependence on the bandwidth parameter, h. Following the approach
of Tong and Koller (2000) we first show that as the bandwidth, h, is reduced
towards zero, the density on a hyperplane is dominated by its nearest point.
This is achieved by establishing that for all sufficiently small values of h, a
hyperplane with non-zero margin has lower density integral than any other
hyperplane with smaller margin.

Lemma 3 Take H(v,b)∈F with non-zero margin and 0<δ<margin H(v,b) :=
Mv,b. Then ∃h′>0 such that h∈(0,h′) and Mw,c :=margin H(w,c)6Mv,b−δ
implies Î(v,b)< Î(w,c).

Proof Using Eq. (2.3) it is easy to see that,

Î(v,b)6
1

h
√

2π
exp

{
−

M2
v,b

2h2

}
,

inf
{

Î(w,c) |Mw,c6Mv,b−δ
}
>

1
nh
√

2π
exp

{
−
(Mv,b−δ)2

2h2

}
.

Therefore,

06 lim
h→0+

Î(v,b)
inf
{

Î(w,c) |Mw,c6Mv,b−δ
}6 lim

h→0+

nexp
{
−M2

v,b
2h2

}
exp

{
− (Mv,b−δ)2

2h2

}=0.

Therefore, ∃h′>0 such that h∈(0,h′)⇒ Î(v,b)

inf
{

Î(w,c)
∣∣Mw,c6Mv,b−δ

}<1.

An immediate corollary of Lemma 3 is that as h tends to zero the margin
of the minimum density hyperplane tends to the maximum margin. How-
ever, this does not necessarily ensure the stronger result that the sequence
of minimum density hyperplanes converges to the maximum margin hyper-
plane. To establish this we require two technical results, which describe some
algebraic properties of the maximum margin hyperplane, and are provided
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as part of the proof of Theorem 1 which is given in the appendix to this
chapter.

The next lemma uses the previous result to show that there exists a posi-
tive bandwidth, h′>0, such that an MDH estimated using h∈(0,h′) induces
the same partition of X as the MMH. The result assumes that the maximum
margin hyperplane is unique. Notice that if X is a sample of realisations of
a continuous random variable then this uniqueness holds with probability 1.

Lemma 4 Suppose there is a unique hyperplane in F with maximum margin, which
can be parameterised by (vm,bm)∈bd(Bd)×R. Then ∃h′>0 s.t. h∈(0,h′)⇒
H(v?

h,b?h) induces the same partition of X as H(vm,bm).

Proof Let M=marginH(vm,bm). Since X is finite ∃δ>0 s.t. any hyper-
plane H(w,c)∈F inducing a partition of X different than that induced by
H(vm,bm), satisfies margin H(w,c)6M−δ. By Lemma 3, ∃h′>0 s.t.,

h∈(0,h′)⇒H(v?
h,b?h)/∈{H(w,c) |margin H(w,c)6M−δ} ,

which completes the proof.

The next theorem is the main result of this section, and states that the MDH
converges to the MMH as the bandwidth parameter is reduced to zero. No-
tice that by the non-unique representation of hyperplanes, the maximum
margin hyperplane has two parameterisations in C, namely (vm,bm) and
(−vm,−bm). Convergence to the maximum margin hyperplane is therefore
equivalent to showing that,

min{‖(v?
h,b?h)−(vm,bm)‖,‖(v?

h,b?h)+(vm,bm)‖}→0 as h→0+.

Theorem 1 Suppose there is a unique hyperplane in F with maximum margin,
which can be parameterised by (vm,bm)∈bd(Bd)×R. Then,

lim
h→0+

min{‖(v?
h,b?h)−(vm,bm)‖,‖(v?

h,b?h)+(vm,bm)‖}=0.

The set F used in Theorem 1 is generic so it can capture the constraints
associated with both clustering and semi-supervised classification, Eq. (2.9),
and Eq. (2.14) respectively. In the case of semi-supervised classification we
must also assume that the labelled data are linearly separable. Theorem 1 is
not directly applicable to the MDP2 formulations as in this case the function
being minimised is not the density on a hyperplane. The next two subsections
establish this result for the MDP2 formulation of the unsupervised and semi-
supervised problem.
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3.1 MDP2 for Clustering

We have shown that for the constrained optimisation formulation the min-
imum density hyperplane converges to the maximum margin hyperplane
within the feasible set, FCL⊂C. In addition, Proposition 2 places a bound
on the difference between the optima for the two problems, in terms of the
parameter η. Combining these we can show that the optimal solution to the
penalised MDP2 formulation converges to the maximum margin hyperplane
in FCL, provided the parameters within the penalty term suitably depend on
the bandwidth parameter, h. While the general case can be shown, for ease of
exposition we make the simplifying assumption that the maximum margin
hyperplane is strictly feasible, i.e., if (vm,bm) parameterises the maximum
margin hyperplane then bm∈(µvm−ασvm ,µvm +ασvm).

For h,η, L>0 define (v?
h,η,L,b?h,η,L) to be any global minimiser of fCL, i.e.,

fCL(v?
h,η,L,b?h,η,L)= min

(v,b)∈bd(Bd)×R
fCL(v,b).

Lemma 5 Suppose there is a unique hyperplane in FCL with maximum margin,
which can be parameterised by (vm,bm)∈bd(Bd)×R. Suppose further that bm∈
(µvm−ασvm ,µvm +ασvm). For h>0, let L(h)=(e1/2h2

√
2π)−1, and 0<η(h)6h.

Then,

lim
h→0+

min{‖(v?
h,η(h),L(h),b

?
h,η(h),L(h))−(vm,bm)‖,

‖(v?
h,η(h),L(h),b

?
h,η(h),L(h))+(vm,bm)‖}=0.

Proof Let M=marginH(vm,bm) and as in the proof of Lemma 4, let δ>0
be such that any hyperplane inducing a different partition from H(vm,bm)
has margin at most M−δ. Since H(vm,bm) is strictly feasible it must be
the unique maximum margin hyperplane in Fδ

CL :={(v,b)∈bd(Bd)×R|b∈
Bδ/2(F(v))}, since the margins of the locally maximum margin hyperplanes
for each partition of X can increase by at most δ/2. We have used the notation
Bδ/2(F(v)) to denote the neighbourhood of F(v) given by {r∈R|d(r,F(v))<
δ/2}. Observe now that for 0<h<δ/2 we have H(v?

h,η(h),L(h),b
?
h,η(h),L(h))∈

Fδ
CL, by Proposition 2. In addition, by Theorem 1, we know that the minimis-

ers of Î(v,b) over Fδ
CL, say H(vδ

h,bδ
h), satisfy

lim
h→0+

min
{
‖(vδ

h,bδ
h)−(vm,bm)‖,‖(vδ

h,bδ
h)+(vm,bm)‖

}
=0.

Now, since H(vm,bm) is strictly feasible ∃ε′>0 s.t. (v,b)∈Bε′({(vm,bm),
−(vm,bm)})⇒H(v,b)∈FCL. Then for any 0<ε<ε′ there exists h′>0 s.t. for
0<h<h′ both (vδ

h,bδ
h)∈Bε({(vm,bm),−(vm,bm)})⇒H(vδ

h,bδ
h)∈FCL and

H(v?
h,η(h),L(h),b

?
h,η(h),L(h))∈Fδ

CL. Now for H(v,b)∈Fδ
CL\FCL we know that Î(v,b)
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< fCL(v,b), whereas for H(v,b)∈FCL, Î(v,b)= fCL(v,b) and therefore the min-
imiser of fCL(v,b) must lie in the neighbourhood Bε({(vm,bm),−(vm,bm)}),
and the result follows.

3.2 MDP2 for Semi-Supervised Classification

Denote the set of hyperplanes which correctly classify the labelled data by
FLB. Under the assumption that ∃H(v,b)∈FLB∩FCL with non-zero margin,
we can show that, provided the parameter γ does not shrink too quickly
with h, the hyperplane that minimises fSSC converges to the maximum mar-
gin hyperplane contained in FLB∩FCL, where as before we assume that such
a maximum margin hyperplane is strictly feasible. To establish this result
it is sufficient to show that there exists h′>0 such that for all h∈(0,h′), the
optimal hyperplane H(v?

h,η,L,γ,b?h,η,L,γ) correctly classifies all the labelled ex-
amples. If this holds, then fSSC(v?

h,η,L,γ,b?h,η,L,γ)= fUL(v?
h,η,L,γ,b?h,η,L,γ) for all

sufficiently small h, and hence Lemma 5 can be applied to establish the result.
The proof relies on the fact that the penalty terms associated with the known
labels in Eq. (2.16) are polynomials in b. Provided that γ is bounded below
by a polynomial in h, the value of the penalty terms for hyperplanes that do
not correctly classify the labelled data dominate the value of the density inte-
gral as h approaches zero. Therefore the optimal hyperplane must correctly
classify the labelled data for small values of h.

Lemma 6 Define FLB={H(v,b)
∣∣yi(v ·xi−b)>0,∀i=1, . . . ,`} and FCL={H(v,b)

∣∣
µv−ασv6b6µv+ασv} and assume that FSSC=FLB∩FCL 6=∅ and that ∃H(v,b)∈
FSSC with non-zero margin. For h>0, let L(h)=(e1/2h2

√
2π)−1, 0<η(h)6h and

γ(h)>hr for some r>0. Then there exists h′>0 s.t. h∈(0,h′)⇒H
(

v?
h,η(h),L(h),γ(h),

b?h,η(h),L(h),γ(h)

)
∈FLB.

Proof Consider H(v,b) 6∈FLB. Then,

fSSC(v,b)>
1

n
√

2πh
exp(−ν2

?/2h2)+γ(h)ν1+ε
? >γ(h)ν1+ε

? ,

where ν?>0 minimises 1
n
√

2πh
exp(−ν2/2h2)+γ(h)ν1+ε. Therefore, ν? is the

unique positive number satisfying,

1
n
√

2πh
exp

(
− ν2

?

2h2

)(
− ν?

h2

)
+(1+ε)γ(h)νε

?=0

⇒ν1−ε
? =(1+ε)γ(h)n

√
2πh3 exp

(
ν2
?

2h2

)
⇒ν?>

(
(1+ε)γ(h)n

√
2πh3

)1/1−ε
.
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We therefore have,

fSSC(v,b) > γ(h)
(
(1+ε)γ(h)n

√
2πh3

) 1+ε
1−ε

= Kγ(h)
2

1−ε h
3(1+ε)

1−ε

> Kh
2r+3(1+ε)

1−ε ,

where K is a constant which can be chosen independent of (v,b). Finally, for
any H(v′,b′)∈FSSC with non-zero margin, ∃h′>0 s.t.

h∈(0,h′)⇒ fSSC(v′,b′)= Î(v′,b′)<Kh
2r+3(1+ε)

1−ε < fSSC(v,b).

Since K is independent of (v,b), the result follows. The final set of inequalities
holds since the hyperplane H(v′,b′) is assumed to have non-zero margin, say
Mv′ ,b′>0, and hence Î(v′,b′)6 1

h
√

2π
exp{−Mv′ ,b′/2h2}, which tends to zero

faster than any polynomial in h, as h→0+.

4 Estimation of Minimum Hyperplanes

In this section we discuss the computation of minimum density hyperplanes.
We first investigate the continuity and differentiability properties required to
optimise the projection indices φUL(v) and φSSC(v).

Since the domain of both projection indices, φUL(v) and φSSC(v), is the
boundary of the unit-sphere in Rd it is more convenient to express v in terms
of spherical coordinates,

vi(θ)=

{
cos(θi)∏i−1

j=1 sin(θj), i=1, . . . ,d−1

∏d−1
j=1 sin(θj), i=d,

(2.21)

where θ∈Θ=[0,π]d−2× [0,2π] is called the projection angle. Using spherical
coordinates renders the domain, Θ, convex and compact, and reduces dimen-
sionality by one.

As the following discussion applies to both φUL(v) and φSSC(v) we denote
a generic projection index φ :Θ→R, and the associated set of minimisers, as,

φ(θ)=min
b∈A

f (v(θ),b), (2.22)

B?(θ)=
{

b∈A
∣∣ f (v(θ),b)=φ(θ)

}
, (2.23)

where f (v(θ),b) is continuously differentiable, A⊂R is compact and convex,
and the correspondence B?(θ) gives the set of global minimisers of f (v(θ),b)
for each θ. The definition of A is not critical our formulation. Setting,

A⊃
[

min
v∈bd(Bd)

{µv}−ασp−η, max
v∈bd(Bd)

{µv}+ασp+η

]
, (2.24)
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where σ2
p is the variance of the projections along the first principal compo-

nent, ensures that the set of hyperplanes that satisfy the constraint of Eq. (2.7)
will be a subset of A for all v.

Berge’s maximum theorem (Berge, 1963; Polak, 1987), establishes the con-
tinuity of φ(θ) and the upper-semicontinuity (u.s.c.) of the correspondence
B?(θ). Theorem 3.1 in (Polak, 1987) enables us to establish that φ(θ) is locally
Lipschitz continuous. Using Theorem 4.13 of Bonnans and Shapiro (2000)
we can further show that φ(θ) is directionally differentiable everywhere. The
directional derivative at θ in the direction ν is given by,

dφ(θ;ν)= min
b∈B?(θ)

Dθ f (v(θ),b) ·ν, (2.25)

where Dθ denotes the derivative with respect to θ. It is clear from Eq. (2.25)
that φ(θ) is differentiable if Dθ f (v(θ),b) is the same for all b∈B?(θ). If B(θ)
is a singleton then this condition is trivially satisfied and φ(θ) is continuously
differentiable at θ.

It is possible to construct examples in which B(θ) is not a singleton. How-
ever, with the exception of contrived examples, our experience with real and
simulated datasets indicates that when h is set through standard bandwidth
selection rules B(θ) is almost always a singleton over the optimisation path.

Proposition 7 Suppose B(θ) is a singleton for almost all θ∈Θ. Then φ(θ) is con-
tinuously differentiable almost everywhere.

Proof The result follows immediately from the fact that if B(θ)={b} is a
singleton, then the derivative Dφ(θ)=Dθ f (v(θ),b), which is continuous.

Wolfe (1972) has provided early examples of how standard gradient-based
methods can fail to converge to a local optimum when used to minimise non-
smooth functions. In the last decade a new class of nonsmooth optimisation
algorithms has been developed based on gradient sampling (Burke et al.,
2006). Gradient sampling methods use generalised gradient descent to find
local minima. At each iteration points are randomly sampled in a radius
ε of the current candidate solution, and the gradient at each point is com-
puted. The convex hull of these gradients serves as an approximation of the
ε-Clarke generalised gradient (Burke et al., 2002). The minimum element in
the convex hull of these gradients is a descent direction. The gradient sam-
pling algorithm progressively reduces the sampling radius so that the convex
hull approximates the Clarke generalised gradient. When the origin is con-
tained in the Clarke generalised gradient there is no direction of descent, and
hence the current candidate solution is a local minimum. Gradient sampling
achieves almost sure global convergence for functions that are locally Lip-
schitz continuous and almost everywhere continuously differentiable. It is
also well documented that it is an effective optimisation method for func-
tions that are only locally Lipschitz continuous.
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4.1 Computational Complexity

In this subsection we analyse the computational complexity of MDP2. At
each iteration the algorithm projects the data sample onto v(θ) which in-
volves O(nd) operations. To compute the projection index, φ(θ), we need to
minimise the penalised density integral, f (v(θ),b). This can be achieved by
first evaluating f (v(θ),b) on a grid of m points, to bracket the location of the
minimiser, and then applying bisection to compute the minimiser(s) within
the desired accuracy. The main computational cost of this procedure is due to
the first step which involves m evaluations of a kernel density estimator with
n kernels. Using the improved fast Gauss transform (Morariu et al., 2008)
this can be performed in O(m+n) operations, instead of O(mn). Bisection
requires O(− log2 ε) iterations to locate the minimiser with accuracy ε.

If the minimiser of the penalised density integral b?=argminb∈A f (v(θ),b),
is unique the projection index is continuously differentiable at θ. To obtain
the derivative of the projection index it is convenient to define the projection
function, P(v)=(x1 ·v, . . . ,xn ·v)> . An application of the chain rule yields,

dθφ=Dθ f (v(θ),b?)=DP f (v(θ),b?)DvPDθv (2.26)

where the derivative of the projections of the data sample with respect to v
is equal to the data matrix, DvP=(x1, . . . ,xn)>; and Dθv is the derivative of
v with respect to the projection angle, which yields a d×(d−1) matrix. The
computation of the derivative therefore requires O(d(n+d)) operations.

The original GS algorithm requires O(d) gradient evaluations at each it-
eration which is costly. Curtis and Que (2013) have developed an adaptive
gradient sampling algorithm that requires O(1) gradient evaluations in each
iteration. More recently, Lewis and Overton (2013) have strongly advocated
that for the minimisation of nonsmooth, nonconvex, locally Lipschitz func-
tions, a simple BFGS method using inexact line searches is much more effi-
cient in practice than gradient sampling, although no convergence guarantees
have been established for this method. BFGS requires a single gradient eval-
uation at each iteration and a matrix vector operation to update the Hessian
matrix approximation. In our experiments we use this algorithm.

5 Experimental Results

In this section we assess the empirical performance of the minimum density
hyperplane approach for clustering and semi-supervised classification. We
compare performance with existing state-of-the-art methods for both prob-
lems on the following 14 benchmark datasets: Banknote authentication (ban-
knote), Breast Cancer Winsconsin original (br. cancer), Forest type mapping
(forest), Ionosphere, Optical recognition of handwritten digits (optidigits),
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Table 2.1: Details of Benchmark Data Sets

n d c
banknotea 1372 4 2
br. cancera 699 9 2

foresta 523 27 4
ionospherea 351 33 2

optidigitsa 5618 64 10
pendigitsa 10992 16 10

seedsa 210 7 3
smartphone a 10929 561 12

image seg.a 2309 18 7
satellitea 6435 36 6

syntha 600 60 6
votinga 435 16 2

winea 178 13 3
yeastb 698 72 5

a. UCI machine learning repository https://archive.ics.uci.edu/ml/datasets.html

b. Stanford Yeast Cell Cycle Analysis Project http://genome-www.stanford.edu/cellcycle/

Pen-based recognition of hand-written digits (pendigits), Seeds, Smartphone-
Based Recognition of Human Activities and Postural Transitions (smartphone),
Statlog Image Segmentation (image seg.), Statlog Landsat Satellite (satel-
lite), Synthetic control chart time series (synth control), Congressional voting
records (voting), Wine, and Yeast cell cycle analysis (yeast). Details of these
data sets, in terms of their size n, dimensionality d and number of clusters c,
can be seen in Table 2.1.

5.1 Clustering

Since MDHs yield a bi-partition of a dataset rather than a complete clustering,
we propose two measures to assess the quality of a binary partition of a
dataset containing an arbitrary number of clusters. Both take values in [0,1]
with larger values indicating a better partition. These measures are motivated
by the fact that a good binary partition should (a) avoid dividing clusters
between elements of the partition, and (b) be able to discriminate at least one
cluster from the rest of the data. To capture this we modify the cluster labels
of the data by assigning each cluster to the element of the binary partition
which contains the majority of its members. In the case of a tie the cluster is
assigned to the smaller of the two partitions. We thus merge the true clusters
into two aggregate clusters, C1 and C2.
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The first measure we use is the binary V-measure which is simply the
V-measure (Rosenberg and Hirschberg, 2007) computed on C1,C2 with re-
spect to the binary partition, which we denote Π1,Π2. The V-measure is the
harmonic mean of homogeneity and completeness. For a dataset contain-
ing clusters C1, . . . ,Cc, partitioned as Π1, . . . ,Πk, homogeneity is defined as
the conditional entropy of the cluster distribution within each partition, Πi.
Completeness is symmetric to homogeneity and measures the conditional
entropy of each partition within each cluster, Cj. An important characteristic
of the V-measure for evaluating binary partitions is that if the distribution
of clusters within each partition is equal to the overall cluster distribution in
the data set then the V-measure is equal to zero (Rosenberg and Hirschberg,
2007). This means that if an algorithm fails to distinguish the majority of any
of the clusters from the remainder of the data, the binary V-measure returns
zero performance. Other evaluation metrics for clustering, such as purity and
the Rand index, can assign a high value to such partitions.

To define the second performance measure we first determine the num-
ber of correctly and incorrectly classified samples. The error of a binary
partition, E(Π1,Π2), given in Eq. (2.27), is defined as the number of elements
of each aggregate cluster which are not in the same partition as the majority
of their original clusters. In contrast, the success of a partition, S(Π1,Π2),
Eq. (2.28), measures the number of samples which are in the same parti-
tion as the majority of their original clusters. The Success Ratio, SR(Π1,Π2),
Eq. (2.29), captures the extent to which the majority of at least one cluster is
well-distinguished from the rest of the data.

E(Π1,Π2)=min{|Π1∩C1|+ |Π2∩C2|, |Π1∩C2|+ |Π2∩C1|} , (2.27)

S(Π1,Π2)=min{max{|Π1∩C1|, |Π1∩C2|} ,max{|Π2∩C1|, |Π2∩C2|}} ,
(2.28)

SR(Π1,Π2)=
S(Π1,Π2)

S(Π1,Π2)+E(Π1,Π2)
. (2.29)

Similarly to the binary V-measure defined above, Success Ratio takes the
value zero if an algorithm fails to distinguish the majority of any cluster
from the remainder of the data.

Parameter Settings for MDP2

The two most important settings for the performance of the proposed ap-
proach are the initial projection direction, and the choice of α, which controls
the width of the interval F(v) within which the optimal hyperplane falls.
Despite the ability of the MDP2 formulation to mitigate the effect of local
minima in the projected density p̂v(b), the problem remains non-convex and
local minima in the projection index can still lead to suboptimal performance.
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We have found that this effect is amplified in general when either or both the
number of dimensions, and the number of high density clusters in the dataset
is large. To better handle the effect of local optima, we use multiple initialisa-
tions and select the MDH that maximises the relative depth criterion, defined
in Eq. (2.30). The relative depth of an MDH, H(v,b), is defined as the smaller
of the relative differences in the density on the MDH and its two adjacent
modes in the projected density, p̂v(·),

RelativeDepth(v,b)=min
{

p̂v(ml)− p̂v(b)
p̂v(b)

,
p̂v(mr)− p̂v(b)

p̂v(b)

}
, (2.30)

where ml and mr are the two adjacent modes in p̂v(·). If an MDH does not
separate the modes of the projected density, p̂v(·), then its relative depth is
set to zero, signalling a failure of MDP2 to identify a meaningful bi-partition.
The relative depth is appealing because it captures the fact that a high quality
separating hyperplane should have a low density integral, and separate well
the modes of the projected density p̂v(·). Note also that the relative depth
is equivalent to the inverse of a measure used to define cluster overlap in
the context of Gaussian mixtures (Aitnouri et al., 2000). In all the reported
experiments we initialise MDP2 to the first and second principal component
and select the MDH with the largest relative depth. For the data sets listed
above it was never the case that both initialisations led to MDHs with zero
relative depth.

The choice of α determines the trade-off between a balanced bi-partition
and the ability to discover lower density hyperplanes. The difficulties asso-
ciated with choosing this parameter are illustrated in Figure 2.2. In each
sub-figure the horizontal axis is the candidate projection vector, v, while
the right vertical axis is the direction of maximum variability orthogonal
to v. Points correspond to projections of the data sample onto this two-
dimensional space, while colour indicates cluster membership. The solid line
depicts the projected density on v, p̂v(·), while the dotted line depicts the
penalised function, fUL(v, ·). The scale of both functions is depicted in the
left vertical axis. The solid vertical line indicates the MDH along v. Setting
α to a large value can cause MDP2 to focus on hyperplanes that have low
density because they partition only a small subset of the dataset as shown
in Figure 2.2(a). In contrast smaller values of α may cause the algorithm to
disregard valid lower density hyperplane separators (see Figure 2.2(b)), or
for the separating hyperplane to not be a local minimiser of the projected
density (see Figure 2.2(c)).

Rather than selecting a single value for α we recommend solving MDP2

repeatedly for an increasing sequence of values in the range {αmin,αmax},
where each implementation beyond the first is initialised using the solution
to the previous. Setting αmin close to zero forces MDP2 to seek low density
hyperplanes that induce a balanced data partition. This tends to find projec-
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Fig. 2.2: Impact of choice of α on minimum density hyperplane.

tions which display strong multimodal structure, yet prevents convergence to
hyperplanes that have low density because they partition a few observations,
as in the case shown in Figure 2.2(a). Increasing α progressively fine-tunes the
location of the MDH. To avoid sensitivity to the value of αmax (set to 0.9) the
output of the algorithm is the last hyperplane that corresponds to a minimiser
of p̂v(·). Figure 2.3 illustrates this approach using the optical recognition of
handwritten digits dataset from the UCI machine learning repository (Lich-
man, 2013). Figure 2.3(a) depicts the projected density on the initial projection
direction, which in this case is the second principal component. As shown,
the density is unimodal and the clusters are not well separated along this
vector. Although not shown, if a large value of α is used from the outset,
MDP2 will identify a vector for which p̂v(·) is unimodal and skewed. Fig-
ure 2.3(b) shows that after five iterations with α=10−2 MDP2 has identified
a projection vector such that p̂v(·) is bimodal. In subsequent iterations the
two modes become more clearly separated, Figure 2.3(c), while increasing α
enables MDP2 to locate an MDH that corresponds to a minimiser of p̂v(·), as
illustrated in Figure 2.3(d).

Performance Evaluation

We compare the performance of MDP2 for clustering with the following
methods:

1. k-means++ (Arthur and Vassilvitskii, 2007), a version of k-means that is
guaranteed to be O(logk)–competitive to the optimal k-means cluster-
ing.

2. The adaptive linear discriminant analysis guided k-means (LDA-km) (Ding
and Li, 2007). LDA-km attempts to discover the most discriminative lin-
ear subspace for clustering by iteratively using k-means, to assign labels
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Fig. 2.3: Evolution of the minimum density hyperplane through consecutive iterations.

to observations, and LDA to identify the most discriminative subspace.
3. The principal direction divisive partitioning (PDDP) (Boley, 1998), and

the density-enhanced PDDP (dePDDP) (Tasoulis et al., 2010). Both
methods project the data onto the first principal component. PDDP
splits at the mean of the projections, while dePDDP splits at the lowest
local minimum of the one-dimensional density estimator.

4. The iterative support vector regression algorithm for MMC (Zhang et al.,
2009) using the inner product and Gaussian kernel, iSVR-L and iSVR-G
respectively. Both are initialised with the output of 2-means++.

5. Normalised cut spectral clustering (SCn) (Ng et al., 2002) using the
Gaussian affinity function, and the automatic bandwidth selection method
of Zelnik-Manor and Perona (2004). This choice of kernel and band-
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width produced substantially better performance than alternative choices
considered. For datasets that are too large for the eigen decompo-
sition of the Gram matrix to be feasible we employed the Nyström
method (Fowlkes et al., 2004).

We also considered the density-based clustering algorithm PdfCluster
(Menardi and Azzalini, 2014), but this algorithm could not be executed on
the larger datasets and so its performance is not reported herein. With the
exception of SCn and iSVR-G, the methods considered bi-partition the data
through a hyperplane in the original feature space. For the 2-means and
LDA-2m algorithm the hyperplane separator bisects the line segment joining
the two centroids. iSVR-L directly seeks the maximum margin hyperplane
in the original space, while iSVR-G seeks the maximum margin hyperplane
in the feature space defined by the Gaussian kernel. PDDP and dePDDP use
a hyperplane whose normal vector is the first principal component. PDDP
uses a fixed split point while dePDDP uses the hyperplane with minimum
density along the fixed projection direction.

Table 2.2 reports the performance of the considered methods with respect
to the success ratio (SR) and the binary V-measure (V-m) on the fourteen
datasets. In addition Figures 2.4(a) and 2.4(b) provide summaries of the over-
all performance on all datasets using boxplots of the raw performance mea-
sures as well as the associated regret. The regret of an algorithm on a given
dataset is defined as the difference between the best performance attained on
this dataset and the performance of this algorithm. By comparing against the
best performing clustering algorithm regret accommodates for differences in
difficulty between clustering problems, while also making use of the mag-
nitude of performance differences between algorithms. The distribution of
performance with respect to both SR and V-m is negatively skewed for most
methods, and as a result the median is higher than the mean (indicated with
a red dot).

It is clear from Table 2.2 that no single method is consistently superior to
all others, although MDP2 achieves the highest or tied highest performance
on seven datasets (more than any other method). More importantly MDP2

is among the best performing methods in almost all cases. This fact is better
captured by the regret distributions in Figure 2.4(b). Here we see that the
average, median, and maximum regret of MDP2 is substantially lower than
any of the competing methods. In addition MDP2 achieves the highest mean
and median performance with respect to both SR and V-m, while also hav-
ing much lower variability in performance when compared with most other
methods.

Pairwise comparisons between MDP2 and other methods reveal some less
obvious facts. SCn achieves higher performance than MDP2 in more exam-
ples (six) than any other competing method, however it is much less consis-
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MDP2 iSVR-L iSVR-G SCn LDA-2m 2-means++ PDDP dePDDP

Dataset SR V-m SR V-m SR V-m SR V-m SR V-m SR V-m SR V-m SR V-m

banknote 0.79 0.55 0.00 0.00 0.35 0.00 0.46 0.10 0.00 0.01 0.37 0.01 0.40 0.03 0.00 0.03

br. cancer 0.91 0.79 0.73 0.56 0.73 0.56 0.00 0.13 0.87 0.71 0.87 0.72 0.91 0.78 0.90 0.77

forest 0.78 0.67 0.90 0.72 0.91 0.74 0.56 0.41 0.76 0.63 0.72 0.58 0.64 0.36 0.00 0.00

image seg. 0.89 0.72 0.82 0.59 0.88 0.71 0.92 0.87 0.78 0.58 0.78 0.71 0.87 0.67 1.00 1.00

ionosphere 0.48 0.13 0.47 0.13 0.47 0.13 0.55 0.22 0.47 0.12 0.47 0.12 0.47 0.12 0.42 0.09

optidigits 0.93 0.85 0.63 0.29 0.82 0.60 0.00 0.00 0.81 0.62 0.92 0.82 0.68 0.30 0.00 0.00

pendigits 0.74 0.39 0.79 0.55 0.88 0.68 0.80 0.68 0.79 0.55 0.78 0.57 0.79 0.54 0.61 0.42

satellite 0.89 0.75 0.73 0.40 0.73 0.40 0.92 0.86 0.73 0.40 0.87 0.81 0.71 0.37 0.00 0.00

seeds 0.88 0.73 0.71 0.53 0.71 0.53 0.89 0.76 0.96 0.90 0.86 0.70 0.75 0.59 0.73 0.60

smartphone 0.99 0.97 0.99 0.95 0.99 0.96 0.99 0.94 0.99 0.97 0.99 0.94 0.99 0.95 0 .00 0.00

synth 0.98 0.94 0.94 0.83 0.94 0.83 1.00 1.00 0.88 0.76 1.00 1.00 0.69 0.51 1.00 1.00

voting 0.70 0.43 0.46 0.09 0.00 0.00 0.00 0.05 0.69 0.41 0.00 0.00 0.70 0.40 0.68 0.38

wine 0.77 0.61 0.70 0.52 0.69 0.50 0.67 0.48 0.66 0.48 0.68 0.49 0.65 0.46 0.68 0.49

yeast 0.92 0.76 0.89 0.68 0.91 0.72 0.84 0.61 0.86 0.63 0.91 0.73 0.87 0.65 0.00 0.00

Average Improvement 0.13 0.18 0.12 0.14 0.22 0.16 0.10 0.11 0.10 0.08 0.11 0.18 0.40 0.32

Table 2.2: Performance on the task of binary partitioning. (Ties in best performance were re-
solved by considering more decimal places)

tent in its performance, obtaining very poor performance on five of the data
sets. The iSVR maximum margin clustering approach is arguably the closest
competitor to MDP2. iSVR-L and iSVR-G achieve the second and third high-
est average performance with respect to V-m and SR respectively. The PDDP
algorithm is the second best performing method on average with respect to
SR, but performs poorly with respect to V-m. The density enhanced variant,
dePDDP, performs on average much worse than MDP2. This approach is
similarly motivated by obtaining hyperplanes with low density integral, and
its low average performance indicates the usefulness of searching for high
quality projections as opposed to always using the first principal component.
Finally, neither of the k-means variants appears to be competitive with MDP2

in general.

5.2 Semi-Supervised Classification

In this section we evaluate MDHs for semi-supervised classification. We com-
pare MDHs against three state-of-the-art semi-supervised classification meth-
ods: Laplacian Regularised Support Vector Machines (LapSVM) (Belkin et al.,
2006), Simple Semi-Supervised Learning (SSSL) (Ji et al., 2012), and Corre-
lated Nyström Views (XNV) (McWilliams et al., 2013). For all methods the
inner product kernel was used to render the resulting classifiers linear, and
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Fig. 2.4: Performance and Regret Distributions for all Methods Considered

thereby comparable to the minimum density hyperplane approach. As the
MDH is asymptotically equivalent to a linear S3VM we also considered the
continuous formulation for the estimation of a S3VM proposed by Chapelle
and Zien (2005). These results are omitted as this method was not competi-
tive on any of the considered datasets.

Parameter Settings for MDP2

The existence of a few labelled examples enables an informed initialisation
of MDP2. We consider the first and second principal components as well as
the weight vector of a linear SVM trained on the labelled examples only, and
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Fig. 2.5: Classification error for different number of labelled examples for datasets with two
clusters.

initialise MDP2 with the vector that minimises the value of the projection
index, φSSC. The penalty parameter γ is first set to 0.1 and with this setting
α is progressively increased in the same way as for clustering. After this, α is
kept at αmax and γ is increased to 1 and then 10. Thus the emphasis is initially
on finding a low density hyperplane with respect to the marginal density
p̂(x). As the algorithm progresses the emphasis on correctly classifying the
labelled examples increases, so as to obtain a hyperplane with low training
error within the region of low density already determined.

Performance Evaluation

To assess the effect on performance of the number of labelled examples, `,
we consider a range of values. We compare the methods using the subset of
datasets used in the previous section in which the size of the smallest class
exceeds 100. In total eight datasets are used. For each value of `, 30 random
partitions into labelled and unlabelled data are considered. As classes are
balanced in the datasets considered, performance is measured only in terms
of classification error on the unlabelled data. For datasets with more than
two classes all pairwise combinations of classes are considered and aggregate
performance is reported.
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regions.

Fig. 2.6: Classification error for different numbers of labelled examples over all pairwise combi-
nations of classes.

Figure 2.5 provides plots of the median and interquartile range of the
classification error for values of ` between 5 and 100 for the four datasets
with two classes. Overall MDP2 appears to be most competitive when the
number of labelled examples is small. In addition, MDP2 is comparable with
the best performing method in almost every case. The only exception is the
ionosphere dataset where LapSVM outperforms MDP2 for all values of `.
Figure 2.6 provides plots of the median and interquartile range of the ag-
gregate classification error on datasets containing more than two classes. As
these datasets are larger we consider up to 300 labelled examples. Note that
the interquartile range for XNV is not depicted for the satellite dataset. The
variability of performance of XNV on this dataset was so high that includ-
ing the interquartile range would obscure all other information in the figure.
MDP2 exhibits the best performance overall, and obtains the lowest median
classification error, or tied lowest, for all datasets and values of `.

5.3 Summary of Experimental Results

We evaluated the performance of the MDP2 formulation for finding mini-
mum density hyperplanes for both clustering and semi-supervised classifi-
cation, on a large collection of benchmark datasets, and in comparison with
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state-of-the-art methods for both problems.
For clustering, we found that no single method was consistently superior

to all others. This is a result of the vastly differing nature of the datasets
in terms of size, dimensionality, number and shape of clusters, etc. MDP2

achieved the best performance on more datasets than any of the competing
methods, and importantly was competitive with the best performing method
in almost every dataset considered. All other methods performed poorly
in at least as many examples. Boxplots of both the raw performance and
performance regret, which measures the difference between each method and
the best performing method on each dataset, allowed us to summarise the
comparative performance of the different methods across datasets. The mean
and median raw performance of MDP2 is substantially higher than the next
best performing method, and the regret is also substantially lower.

In the case of semi-supervised classification it was apparent that MDP2 is
extremely competitive when the number of labelled examples is (very) small,
but that in some cases its performance does not improve as much as that
of the other methods considered, when the labelled examples become more
abundant. Our experiments suggest that overall MDP2 is very competitive
with the state-of-the-art for semi-supervised classification problems.

6 Conclusions

We proposed a new hyperplane classifier for clustering and semi-supervised
classification. The proposed approach is motivated by determining low den-
sity linear separators of the high-density clusters within a dataset. This is
achieved by minimising the integral of the empirical density along the hy-
perplane, which is computed through kernel density estimation. To the best
of our knowledge this is the first direct implementation of the low density
separation assumption that underlies high-density clustering and numerous
influential semi-supervised classification methods. We show that the min-
imum density hyperplane classifier is asymptotically connected with max-
imum margin support vector classifiers, thereby establishing an important
link between the proposed approach, maximum margin clustering, and semi-
supervised support vector machines.

The proposed formulation allows us to evaluate the integral of the density
on a hyperplane by projecting the data onto the vector normal to the hyper-
plane, and estimating a univariate kernel density estimator. This enables us
to apply our method effectively and efficiently on datasets of much higher
dimensionality than is generally possible for density based clustering meth-
ods. To mitigate the problem of convergence to locally optimal solutions we
proposed a projection pursuit formulation.

We evaluated the minimum density hyperplane approach on a large col-
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lection of benchmark datasets. The experimental results obtained indicate
that the method is competitive with state-of-the-art methods for clustering
and semi-supervised classification. Importantly the performance of the pro-
posed approach displays low variability across a variety of datasets, and is
robust to differences in data size, dimensionality, and number of clusters. In
the context of semi-supervised classification, the proposed approach shows
especially good performance when the number of labelled data is small.
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7 Proof of Theorem 1

Before proving Theorem 1 we require the following two technical lemmata
which establish some algebraic properties of the maximum margin hyper-
plane. The following lemma shows that any hyperplane orthogonal to the
maximum margin hyperplane results in a different partition of the support
points of the maximum margin hyperplane. The proof relies on the fact that
if this statement does not hold then a hyperplane with larger margin exists
which is a contradiction. Figure 2.7 provides an illustration of why this result
holds. (a) Any hyperplane orthogonal to MMH generates a different parti-
tion of the support points of MMH, e.g., the point highlighted in red in (b) is
grouped with the lower three by the dotted line but with the upper two by
the solid line, the MMH. If an orthogonal hyperplane can generate the same
partition (c), then a larger margin hyperplane than the proposed MMH exists
(d).

Lemma 8 Suppose there is a unique hyperplane in F with maximum margin, which
can be parameterised by (vm,bm)∈bd(Bd)×R. Let M=margin H(vm,bm), C+=
{x∈X |vm ·x−bm=M} and C−={x∈X |bm−vm ·x=M}. Then, ∀w∈Null(vm),
c∈R either min{w ·x−c |x∈C+}60, or max{w ·x−c |x∈C−}>0.

Proof Suppose the result does not hold, then ∃(w,c) with ‖w‖=1,w ·vm=0
and min{w ·x−c|x∈C+}>0 and max{w ·x−c|x∈C−}<0. Let m=min{|w ·
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(a) (b)

(c) (d)

Proposed MMH —–, Orthogonal hyperplane - - -, Hyperplane with larger
margin - · - · -, Regular points©, Support points©©©,

Differently assigned support point©©©

Fig. 2.7: Two dimensional illustration of Lemma 8

x−c|
∣∣x∈C+∪C−}. Define λ= m

2M <1. Define u= 1√
λ2+(1−λ)2

(λw+(1−λ)vm)

and d= λc+(1−λ)bm√
λ2+(1−λ)2

. By construction ‖u‖=1. For any x+∈C+ we have,

u ·x+−d=
λ(w ·x+−c)+(1−λ)(vm ·x+−bm)√

λ2+(1−λ)2

>
λm+(1−λ)M√

λ2+(1−λ)2

=
m2+2M2−Mm√

m2+(2M−m)2

>M.

Similarly one can show that d−u ·x−>M for any x−∈C−, meaning that
(u,d) achieves a larger margin on C+ and C− than (vm,bm), a contradiction.

The next lemma uses the above result to provide an upper bound on the
distance between pairs of support points projected onto any vector, in terms
of the angle between that vector and vm.
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Lemma 9 Suppose there is a unique hyperplane in F with maximum margin, which
can be parameterised by (vm,bm)∈bd(Bd)×R. Define M=margin H(vm,bm),
C+={x∈X |vm ·x−bm=M}, and C−={x∈X |bm−vm ·x=M}. There is no vec-
tor w∈Rd for which w ·x+−w ·x−>2Mvm ·w for all pairs x+∈C+,x−∈C−.

Proof Suppose such a vector exists. Define w′=w−(vm ·w)vm. By construc-
tion w′∈Null(vm). For any pair x+∈C+,x−∈C− we have

w′ ·x+−w′ ·x−=w ·x+−(vm ·w)vm ·x+−w ·x−+(vm ·w)vm ·x−
>vm ·w(2M−vm ·x++bm−bm+vm ·x−)
=0.

Define c := 1
2 (min{w′ ·x+

∣∣x+∈C+}+max{w′ ·x−
∣∣x−∈C−}). Then min{w′ ·

x+−c|x+∈C+}>0 and max{w′ ·x−−c|x−∈C−}<0, a contradiction.

We are now in a position to provide the main proof of this appendix. The
theorem states that if the maximum margin hyperplane is unique, and can
be parameterised by (vm,bm)∈bd(Bd)×R, then

lim
h→0+

min{‖(v?
h,b?h)−(vm,bm)‖,‖(v?

h,b?h)+(vm,bm)‖}=0,

where {H(v?h,b?h)}h is any collection of minimum density hyperplanes in-
dexed by their bandwidth h>0.

Proof of Theorem 1 Define M=margin H(vm,bm), C+={x∈X |vm ·x−bm=
M} and C−={x∈X |bm−vm ·x=M}. Let B=max{‖x‖

∣∣x∈X}. Take any

ε>0 and set 0<δ to satisfy 2δ
M (1+B2)+2Bδ3/2

√
2
M +δ2=ε2. Now, suppose

(w,c)∈bd(Bd)×R satisfies,

w ·x+−c>M−δ, ∀x+∈C+ and c−w ·x−>M−δ, ∀x−∈C−.

By Lemma 9 we know that ∃x+∈C+,x−∈C− s.t. w ·x+−w ·x−62Mvm ·w.
Thus

vm ·w>w ·x+−w ·x−
2M

=
w ·x+−c+c−w ·x−

2M

>
2M−2δ

2M
=1− δ

M
.
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Thus ‖vm−w‖2< 2δ
M . Now, for each x+∈C+,vm ·x+−b=M and for each

x−∈C−,b−vm ·x−=M. Thus for any such x+,x− we have,

M−δ+w ·x−<c<w ·x+−M+δ,

bm−vm ·x−−δ+w ·x−<c<w ·x+−vm ·x++bm+δ,

bm−δ−(vm−w) ·x−<c<bm+δ+(w−vm) ·x+,

bm−δ−B‖vm−w‖<c<bm+δ+B‖w−vm‖,
|c−bm|< |δ+B‖w−vm‖| .

We can now bound the distance between (w,c) and (vm,bm),

‖(vm,bm)−(w,c)‖2 = ‖vm−w‖2+ |bm−c|2

< ‖vm−w‖2(1+B2)+2Bδ‖vm−w‖+δ2

<
2δ

M
(1+B2)+2Bδ

√
2δ

M
+δ2

= ε2.

We have shown that for any hyperplane H(w,c) that achieves a margin larger
than M−δ on the support points of the maximum margin hyperplane, x∈
C+∪C−, the distance between (w,c) and (vm,bm) is less than ε. Equivalently,
any hyperplane H(w,c) such that ‖(w,c)−(vm,bm)‖>ε has a margin less
than M−δ, as min

{
|w ·x−c|

∣∣x∈C+∪C−
}
<M−δ. By symmetry, the same

holds for any (w,c) within distance ε of (−vm,−bm).
By Lemma 4 ∃h1>0 such that for all h∈(0,h1), the minimum density

hyperplane for h, H(v?
h,b?h), induces the same partition of X as the max-

imum margin hyperplane, H(vm,bm). By Lemma 3 ∃h2>0 such that for
all h∈(0,h2), margin H(v?

h,b?h)>M−δ. Therefore for h∈(0,min{h1,h2}), we
have min

{
‖(v?

h,b?h)−(vm,bm)‖,‖(v?
h,b?h)+(vm,bm)‖

}
<ε. Since ε>0 was ar-

bitrarily chosen, this gives the result. �
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Chapter 3

Projection Pursuit Based on
Spectral Connectivity

This chapter contains two parts. The first part provides a rigorous investi-
gation into projection pursuit based on spectral connectivity for the purpose
of unsupervised data partitioning. The spectral connectivity of a data set
refers to the optimal value of a relaxation of the normalised graph cut, in
terms of a graph defined over the data set in which edges correspond to
the similarities between data. A projection along which a data set has low
spectral connectivity in general corresponds to a projection along which the
data display multiple, well separated clusters. In this context a cluster is a
subgraph containing relatively high edge weights, and hence mostly similar
data points.

The second part extends the methodology developed in the first part to
the problem of semi-supervised classification. The graph formulation pro-
vides a useful framework for incorporating additional information, such as
the known class labels of some of the data used in semi-supervised classifi-
cation. If the cluster assumption holds, then determining subspaces which
provide a good separation of clusters of data, and which also allows a sepa-
ration of the known classes is likely to provide high quality classifications of
the data whose classes are unknown.
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A. Minimum Spectral
Connectivity Projection
Pursuit for Unsupervised
Classification

Abstract

We study the problem of determining the optimal low dimensional projection for max-
imising the separability of a binary partition of an unlabelled dataset, as measured
by spectral graph theory. This is achieved by finding projections which minimise the
second eigenvalue of the Laplacian matrices of the projected data, which corresponds
to a non-convex, non-smooth optimisation problem. We show that the optimal uni-
variate projection based on spectral connectivity converges to the vector normal to
the maximum margin hyperplane through the data, as the scaling parameter is re-
duced to zero. This establishes a connection between connectivity as measured by
spectral graph theory and maximal Euclidean separation. It also allows us to apply
our methodology to the problem of finding large margin linear separators. The com-
putational cost associated with each eigen-problem is quadratic in the number of data.
To mitigate this problem, we propose an approximation method using microclusters
with provable approximation error bounds. We evaluate the performance of the pro-
posed method on a large collection of benchmark datasets and find that it compares
favourably with existing methods for projection pursuit and dimension reduction for
unsupervised data partitioning.

1 Introduction

The classification of unlabelled data is fundamental to many statistical and
machine learning applications. Such applications arise in the context of clus-
tering and semi-supervised classification. Underpinning these tasks is the

55



Chapter 3. Projection Pursuit Based on Spectral Connectivity

assumption of a clusterable structure within the data, and importantly that
this structure is relevant to the classification task. The assumption of a clus-
terable structure, however, begs the question of how a cluster should be de-
fined. Centroid based methods, such as the ubiquitous k-means algorithm,
define clusters in reference to single points, or centers (Leisch, 2006). In the
non-parametric statistical approach to clustering, clusters are associated with
the modes of a probability density function from which the data are assumed
to arise (Hartigan, 1975, Chapter 11). We consider the definition as given in
the context of graph partitioning, and the relaxation given by spectral cluster-
ing. Spectral clustering has gained considerable interest in recent years due
to its strong performance in diverse application areas. In this context clusters
are defined as strongly connected components of a graph defined over the
data, wherein vertices correspond to data points and edge weights represent
pairwise similarities (von Luxburg, 2007).

The minimum cut graph problem seeks to partition a graph such that the
sum of the edges connecting different components of the partition is min-
imised. To avoid partitions containing small sets of vertices, a normalisa-
tion is introduced which helps to emphasise more balanced partitions. The
normalisation, however, makes the problem NP-hard (Wagner and Wagner,
1993), and so a continuous relaxation is solved instead. The relaxed problem,
known as spectral clustering, is solved by the eigenvectors of the graph Lapla-
cian matrices. We give a brief introduction to spectral clusering in Section 3.

Crucial to all cluster definitions is the relevance of spatial similarity of
points. In multivariate data analysis, however, the presence of irrelevant or
noisy features can significantly obscure the spatial structure in a data set.
Moreover, in very high dimensional applications the curse of dimensional-
ity can make spatial similarities unreliable for distinguishing clusters (Stein-
bach et al., 2004; Beyer et al., 1999). Dimension reduction techniques seek to
mitigate the effect of irrelevant features and of the curse of dimensionality
by finding low dimensional representations of a set of data which retain as
much information as possible. Most commonly these low dimensional rep-
resentations are defined by the projection of the data into a linear subspace.
Information retention is crucial for the success of any subsequent tasks. For
unsupervised classification this information must, therefore, be relevant in
the context of cluster structure. Classical dimension reduction techniques
such as principal component analysis (PCA) cannot guarantee the structural
relevance of the low dimensional subspace. Moreover a single subspace may
not suffice to distinguish all clusters, which may have their structures defined
within differing subspaces. Recently a number of dimension reduction meth-
ods with an explicit objective which is relevant to cluster structure have been
proposed (Krause and Liebscher, 2005; Niu et al., 2011; Pavlidis et al., 2015).
We discuss these briefly in Section 2.

We consider the problem of learning the optimal subspace for the purpose
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of data bi-partitioning, where optimality is measured by the connectivity of
the projected data, as defined in spectral graph theory. We formulate the
problem in the context of projection pursuit; a class of optimisation problems
which aim to find interesting subspaces within potentially high dimensional
data sets, where interestingness is captured by a predefined objective, called
the projection index. With very few exceptions, the optimisation of the projec-
tion index does not admit a closed form solution, and is instead numerically
optimised. The projection indices considered in the proposed method are
the second smallest eigenvalues of the graph Laplacians, which measure the
quality of a binary partition arising from the normalised minimum cut graph
problem. These eigenvalues are non-smooth and non-convex, and so spe-
cialised techniques are required to optimise them. We establish conditions
under which they are Lipschitz and almost everywhere continuously differ-
entiable, and discuss how to find local optima with guaranteed convergence
properties.

In this paper we establish an asymptotic connection between optimal uni-
variate subspaces for bi-partitioning based on spectral graph theory, and
maximum margin hyperplanes. Formally, we show that as the scaling param-
eter defining pairwise similarities is reduced to zero, the optimal univariate
subspace for bi-partitioning converges to the subspace normal to the largest
margin hyperplane through the data. This establishes a theoretical connec-
tion between connectivity as measured by spectral graph theory and maximal
Euclidean separation. It also provides an alternative methodology for learn-
ing maximum margin clustering models, which have attracted considerable
interest in recent years (Xu et al., 2004; Zhang et al., 2009). We introduce a
way of modifying the similarity function which avoids focusing on outliers,
and allows us to further control the balance of the induced partition. The
importance of controlling this balance has been observed in the context of
large margin clustering (Xu et al., 2004; Zhang et al., 2009) and low density
separators (Pavlidis et al., 2015).

The computation cost associated with the eigen-problem underlying our
projection index is quadratic in the number of data. To mitigate this compu-
tational burden we propose a data preprocessing step using micro-clusters
which significantly speeds up the optimisation. We establish theoretical er-
ror bounds for this approximation method, and provide a sensitivity study
which shows no degradation in clustering performance, even for a coarse
approximation.

The remainder of the paper is organised as follows. In Section 2 we briefly
discuss related work on dimension reduction for unsupervised data partition-
ing. A brief outline of spectral clustering is provided in Section 3. Section 4
presents the methodology for finding optimal projections to perform binary
partitions. Section 5 describes the theoretical connection between optimal
subspaces for spectral bi-partitioning and maximum margin hyperplanes. In
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Section 6 we discuss an approximation method in which the computational
speed associated with finding the optimal subspace can be significantly im-
proved, with provable approximation error bounds. Experimental results and
sensitivity analyses are presented in Section 7, while Section 8 is devoted to
concluding remarks.

2 Related Work

The literature on clustering high dimensional data is vast, and we will fo-
cus only on methods with an explicit dimension reduction formulation, as
in projection pursuit. Implicit dimension reduction methods based on learn-
ing sparse covariance matrices (which impose an implicit low dimensional
projection of the data/clusters), such as quadratic discriminant analysis, can
be limited by the assumption that clusters are determined by their covari-
ance matrices. Projection pursuit approaches can be made more versatile by
defining objectives which admit more general cluster definitions.

Principal component analysis and independent component analysis have
been used in the context of clustering, however their objectives do not corre-
spond exactly with those of the clustering task and the justification of their
use is based more on common-sense reasoning. Nonetheless, these methods
have shown good empirical performance on a number of applications (Bo-
ley, 1998; Tasoulis et al., 2010; Kriegel et al., 2009). Some recent approaches
to projection pursuit for clustering rely on the non-parametric statistical no-
tion clusters, i.e., that clusters are regions of high density in a probability
distribution from which the data are assumed to have arisen. Krause and
Liebscher (2005) proposed using as projection index the dip statistic (Hartigan
and Hartigan, 1985) of the projected data. The dip is a measure of depar-
ture from unimodality, and so maximising the dip tends to projections which
have mutlimodal marginal density, and therefore separate high density clus-
ters. The authors establish that the dip is differentiable for any projection
vector onto which the projected data are unique, and use a simple gradient
ascent method to find local optima.

The minimum density hyperplane approach (Pavlidis et al., 2015) is posed
as a projection pursuit for the univariate subspace normal to the hyperplane
with minimal integrated density along it, thereby establishing regions of low
density which separate the modes of the underlying probability density. The
projection index in this case is the minimum of the kernel density estimate
of the projected data, penalised to avoid hyperplanes which do not usefully
split the data. The authors show an asymptotic connection between the hy-
perplane with minimal integrated density and the maximum margin hyper-
plane. The result we show in Section 5 therefore establishes that the optimal
subspace for bi-partitioning based on spectral connectivity is asymptotically
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connected with the minimum integrated density hyperplane.
A number of direct approaches to maximum margin clustering have also

been proposed (Xu et al., 2004; Zhang et al., 2009). These can be viewed
as a projection pursuit for the subspace normal to the maximum margin
hyperplane intersecting the data. The iterative support vector regression ap-
proach (Zhang et al., 2009) uses support vector methods and so for the linear
kernel explicitly learns the corresponding projection vector, v.

Most similar to our work is that of Niu et al. (2011), who also proposed
a method for dimension reduction based on spectral clustering. The authors
show an interesting connection between optimal subspaces for spectral clus-
tering and sufficient dimension reduction. For the case of a binary partition,
their objective is equivalent to one of the objectives we consider, i.e., that
of minimising the second smallest eigenvalue of the normalised Laplacian
(cf. Sections 3 and 4). However, our methodology differs substantially from
theirs. Niu et al. (2011) define their objective by

max
U,W

trace(U>D−1/2 AD−1/2U) (3.1a)

s.t. U>U= I (3.1b)

Aij=s(‖W>xi−W>xj‖) (3.1c)

W>W= I. (3.1d)

The matrix A is the affinity matrix containing pairwise similarities of points
projected into the subspace defined by W, and D is the diagonal degree ma-
trix of A, with i-th diagonal element equal to the i-th row sum of A. Further
details of these objects can be found in Section 3. The approach used by the
authors to maximise this objective alternates between using spectral cluster-
ing to determine the columns of U, and then using a gradient ascent method
to maximise trace(U>D−1/2 AD−1/2U) over W, where the dependence of this
objective on the projection matrix W is through Eq. (3.1c). Within this gradi-
ent ascent step the matrices U and D are kept fixed. This process is iterated
until convergence. However, the authors do not address the fact that the
matrix D is determined by A, and therefore depends on the projection ma-
trix W. An ascent direction for the objective assuming a fixed D is therefore
not necessarily an ascent direction for the overall objective. Despite this fact
the method has shown good empirical performance on a number of prob-
lems (Niu et al., 2011). In Section 4 we derive expressions for the gradient of
the overall objective, which allows us to optimise it directly.

3 Background on Spectral Clustering

In this section we provide a brief introduction to spectral clustering, with par-
ticular attention to bi-partitioning, which underlies the focus of this work. Bi-

59



Chapter 3. Projection Pursuit Based on Spectral Connectivity

partitioning using spectral clustering has been considered previously by Shi
and Malik (2000), where a full clustering can be obtained by recursively
inducing bi-partitions of (subsets of) the data. With a data sample, X=
{x1, ...,xN}, spectral clustering associates a graph G=(V,E), in which ver-
tices correspond to observations, and the undirected edges assume weights
equal to the pairwise similarity between observations. Pairwise similarities
can be determined in a number of ways, including nearest neighbours and
similarity metrics. In general, similarities are determined by the spatial re-
lationships between points, and pairs which are closer are assigned higher
similarity than those which are more distant.

The information in G can be represented by the adjacency, or affinity ma-
trix, A∈RN×N , with Aij=Eij. The degree of each vertex vi is defined as,
di=∑N

j=1 Aij. The degree matrix, D, is then defined as the diagonal matrix
with i-th diagonal element equal to di. For a subset C⊂X, the size of C
can be defined either by the cardinality of C, |C|, or by the volume of C,
vol(C)=∑i:xi∈C di.

Definition The normalised min-cut graph problem for a binary partition is de-
fined as the optimisation problem

min
C⊂X

∑
i,j:xi∈C,xj∈X\C

Aij

(
1

size(C)
+

1
size(X\C)

)
. (3.2)

It has been shown (Hagen and Kahng, 1992; Shi and Malik, 2000) that the
two normalised min-cut graph problems (corresponding to the two defini-
tions of size) can be formulated in terms of the graph Laplacian matrices,

(standard) L=D−A, (3.3)

(normalised) Lnorm=D−1/2LD−1/2, (3.4)

as follows. For C⊂X define uC∈RN to be the vector with i-th entry,

uC
i =

{ √
size(X\C)/size(C), if xi∈C
−
√

size(C)/size(X\C), if xi∈X\C.
(3.5)

For size(C)= |C|, the optimisation problem in (3.2) can be written as,

min
C⊂X

(uC)>LuC s.t. uC⊥1, ‖uC‖=
√

N. (3.6)

Similarly, if size(C)= vol(C) the problem in (3.2) is equivalent to,

min
C⊂X

(uC)>LuC s.t. DuC⊥1, (uC)>DuC=vol(V). (3.7)

Both problems in (3.6) and (3.7) are NP-hard (Wagner and Wagner, 1993),
and so continuous relaxations of these, in which the discreteness condition
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on uC given in Eq. (3.5) is removed, are solved instead (Hagen and Kahng,
1992; Shi and Malik, 2000). The solutions to the relaxed problems are given
by the second eigenvector of L and the second eigenvector of the generalised
eigen equation Lu=λDu respectively, the latter thus equivalently solved by
D−1/2u, where u is the second eigenvector of Lnorm. In particular, we have

λ2(L) ≤ 1
N
(uS)>LuS (3.8)

λ2(Lnorm) ≤ 1
vol(V)

(uN)>LuN , (3.9)

where λ2(L) and λ2(Lnorm) are the second eigenvalues of L and Lnorm and
uS and uN are the solutions to (3.6) and (3.7) respectively.

The following properties of the matrices L and Lnorm will be useful in es-
tablishing our proposed methodology and the associated theoretical results.
These properties can be found in (von Luxburg, 2007, Propositions 2 and 3).

1. For any v∈RN we have

v>Lv=
1
2 ∑

i,j
Aij(vi−vj)

2 (3.10)

v>Lnormv=
1
2 ∑

i,j
Aij

 vi√
di
−

vj√
dj

2

. (3.11)

2. L and Lnorm are symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0 with corresponding eigenvector 1, the
constant 1 vector

4. The smallest eigenvalue of Lnorm is 0 with corresponding eigenvector
D1/21.

The extension of clustering via the normalised min-cut to a K-partition of the
data is similar, and can be solved approximately by the first K eigenvectors
of either L or Lnorm (von Luxburg, 2007).

4 Projection Pursuit for Spectral Connectivity

In this section we study the problem of minimising the second eigenvalue of
the graph Laplacian matrices of the projected data. If the projected data are
split in two through spectral clustering, then the projection that minimises
the second eigenvalue of the corresponding graph Laplacian minimises the
connectivity of the two components, as measured by spectral graph theory.
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Note that while we discuss explicitly the minimisation of the second eigen-
value, the methodology we present in fact applies to an arbitrary eigenvalue
of the graph Laplacians. As a result, the method discussed herein trivially
extends to the problem of determining a K-partition by minimising the sum
of the K smallest eigenvalues of the Laplacians.

To begin with, let X={x1, ...,xN} be a d-dimensional data set and let V∈
Rd×l be a projection matrix, where l∈N is the dimension of the projection,
and the columns of V, {V1, ...,Vl}, have unit norm. With this formulation it is
convenient to consider a parameterisation of V through polar coorindates as
follows. Let Θ=[0,π)(d−1)×l and for θθθ∈Θ, the projection matrix V(θθθ)∈Rd×l

is given by,

V(θθθ)ij=

{
cos(θθθij)∏i−1

k=1 sin(θθθkj), i=1,...,d−1

∏d−1
k=1 sin(θθθkj), i=d.

(3.12)

From this we define the l dimensional projected data set by P(θθθ)={p(θθθ)1, ...,
p(θθθ)N}={V(θθθ)>x1, ...,V(θθθ)>xN}, and we let L(θθθ) (resp. Lnorm(θθθ)) be the
Laplacian (resp. normalised Laplacian) of the graph of P(θθθ). Edge weights
are determined by a positive function s :(Rl)N×{1. . . N}2→R+, in that the
affinity matrix is given by A(θθθ)ij :=s(P(θθθ), i, j). In the simplest case we may
imagine s being fully determined by the Euclidean distance between two el-
ements of the projected data, i.e., s(P(θθθ), i, j)=k(‖p(θθθ)i− p(θθθ)j‖), for some
function k :R→R+. However we prefer to allow for a more general defini-
tion. We discuss this further in Section 4.3.

Henceforth we will use λi(·) to be the i-th (smallest) eigenvalue of its (in
all cases herein) real symmetric matrix argument, and we assume that all
eigenvectors are unit-norm. The objectives λ2(L(θθθ)) and λ2(Lnorm(θθθ)) are,
in general, non-convex and non-smooth in θθθ, and so specialised techniques
are required to optimise them. In the following subsections we investigate
their differentiability properties, and discuss how alternating between a naive
gradient descent method and a descent step based on a directional derivative
can be used to find locally optimal solutions.

4.1 Continuity and Differentiability

In this subsection we explore the continuity and differentiability properties
of the second eigenvalue of the graph Laplacians, viewed as a function of the
projection angle, θθθ. We will view the data set X as a d×N matrix with i-th
column equal to xi, and similarly the projected data set as an l×N matrix,
P(θθθ)=V(θθθ)>X, with i-th column p(θθθ)i.

Lemma 10 Let X={x1, ...,xN}⊂Rd and let s(P, i, j) be Lipschitz continuous in
P∈Rl×N for fixed i, j∈{1. . . N}. Then λ2(L(θθθ)) and λ2(Lnorm(θθθ)) are Lipschitz
continuous in θθθ.

62



4. Projection Pursuit for Spectral Connectivity

Proof We show the case of L(θθθ), where that of Lnorm(θθθ) is similar. The result
follows from the fact that L(θθθ) is element-wise Lipschitz as a composition
of Lipschitz functions (V(θθθ) is Lipschitz in θθθ as a collection of products of
Lipschitz functions) and the fact that

|λi(L(θθθ))−λi(L(θθθ′))|≤‖L(θθθ)−L(θθθ′)‖≤N
√

max
ij
|L(θθθ)−L(θθθ′)|ij,

where the first inequality is due to Weyl (1912), and the second comes from
Schur’s inequality (Schur, 1911).

Rademacher’s theorem therefore establishes that both objectives are al-
most everywhere differentiable (Polak, 1987). This almost everywhere dif-
ferentiability can also be seen by considering that simple eigenvalues of real
symmetric matrices are differentiable, e.g. Magnus (1985), and establishing
that under certain conditions on the function s the eigenvalues of L(θθθ) and
Lnorm(θθθ) are simple for almost all θθθ.

Tao and Vu (2014) have shown that the real symmetric matrices with non-
simple spectrum lie in a subspace of co-dimension 2. If we denote the space
of real valued N×N symmetric matrices by SN , and denote this subspace by
S, then SN \S is open and dense in SN . Sufficient conditions on the function
s for the almost everywhere simplicity of λ2(L(θθθ)) (resp. λ2(Lnorm(θθθ))) are
therefore that it is continuous in P for each i, j and for all B∈SN and U open
in Θ, ∃θθθ∈U s.t. trace(L(θθθ)B) 6=0 (resp. trace(Lnorm(θθθ)B) 6=0). Continuity of s
ensures continuity of the functions λ2(L(θθθ)) and λ2(Lnorm(θθθ)), and therefore
the openness of the preimage of SN \S. The latter condition ensures that for
each open U⊂Θ, the span of the image of U under λ2(·) is SN . Therefore,
in every open U⊂Θ,∃θθθ∈U s.t. L(θθθ) 6∈S. Therefore the pre-image of SN \S is
dense in Θ.

Generalised gradient based optimisation methods are the natural frame-
work for finding the optimal subspace for spectral bi-partitioning. Eigenvalue
optimisation is, in general, a challenging problem due to the fact that eigen-
values are not differentiable where they coincide. The majority of approaches
in the literature focus on the problems of minimising the largest eigenvalue
or the sum of a predetermined number of largest eigenvalues (Overton and
Womersley, 1993). Both of these problems tend to lead to a coalescence of
eigenvalues, making the issue of non-differentiability especially problematic.
Conversely the minimisation of the smallest eigenvalue tends to lead to a sep-
aration of eigenvalues, and so non-differentiability is less of a concern (Lewis
and Overton, 1996).

If the similarity function s is strictly positive, then both λ2(L(θθθ)) and
λ2(Lnorm(θθθ)) are bounded away from zero, and hence minimising these has
the same benefits as does minimising the smallest eigenvalue in general,
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in that the corresponding optimisation tends to separate them from other
eigenvalues. Despite this practical advantage, the simplicity of λ2(L(θθθ)) and
λ2(Lnorm(θθθ)) is not guaranteed over the entire optimisation. We discuss a
way of handling points of non-differentiability in Section 4.2. This approach
uses the directional derivative formulation given by Overton and Womersley
(1993), and allows us to find descent directions which also tend to lead to a
decoupling of eigenvalues.

Global convergence of gradient based optimisation algorithms relies on
the continuity of the derivatives (where they exist). To establish this continu-
ity, we first derive expressions for the derivatives of λ2(L(θθθ)) and λ2(Lnorm(θθθ))
as functions of θθθ. Theorem 1 of Magnus (1985) provides a useful formulation
of eigenvalue derivatives. If λ is a simple eigenvalue of a real symmetric ma-
trix M, then λ is infinitely differentiable on a neighbourhood of M, and the
differential at M is given by (Magnus, 1985),

dλ=u>d(M)u, (3.13)

where u is the corresponding eigenvector. Let us assume that s(P, i, j) is
differentiable in P∈Rl×N for fixed i, j∈{1. . . N}. For brevity we temporarily
drop the notational dependence on θθθ and denote the second eigenvalue of the
Laplacian by λ, and the corresponding eigenvector by u. The derivative Dθθθλ
is given by the (d−1)× l matrix with i-th column Dθθθi

λ, where we consider the
chain rule decomposition Dθiθiθi

λ=DPλDV PDθiθiθi
V. Here D·· is the differential

operator. Since only the i-th column of V depends on θθθi, and only the i-th row
of P depends on Vi, this product can be simplified as Dθiθiθi

λ=DPi λDVi PiDθiθiθi
Vi,

where Pi is used to denote the i-th row of P, while Vi and θθθi are, as usual,
the i-th columns of V and θθθ respectively. We provide expressions for each of
these terms below.

We first consider the standard Laplacian L. By Eq. (3.13) we have dλ=
u>d(L)u=u>d(D)u−u>d(A)u. Now,

∂Dii
∂Pmn

=
N

∑
j=1

∂Aij

∂Pmn
=

N

∑
j=1

∂s(P, i, j)
∂Pmn

, and
∂Aij

∂Pmn
=

∂s(P, i, j)
∂Pmn

, (3.14)

and so,
∂λ

∂Pmn
=u>

∂L
∂Pmn

u=
1
2 ∑

i,j
(ui−uj)

2 ∂s(P, i, j)
∂Pmn

. (3.15)

For the normalised Laplacian, Lnorm, consider first

d(Lnorm)=d(D−1/2LD−1/2)

=d(D−1/2)LD−1/2+D−1/2d(D)D−1/2−D−1/2d(A)D−1/2

+D−1/2Ld(D−1/2).
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We will again use λ and u to denote the second eigenvalue and corresponding
eigenvector. Using the fact that LD−1/2u=λD1/2u,

dλ = u>d(D−1/2)LD−1/2u+u>D−1/2d(D)D−1/2u−u>D−1/2d(A)D−1/2u

+u>D−1/2Ld(D−1/2)u

= λu>d(D−1/2)D1/2u+u>D−1/2d(D)D−1/2u−u>D−1/2d(A)D−1/2u

+λu>D1/2d(D−1/2)u

= λu>d(I)u+(1−λ)u>D−1/2d(D)D−1/2u−u>D−1/2d(A)D−1/2u,

since

d(D−1/2)D1/2+D1/2d(D−1/2)=d(D−1/2)DD−1/2+D−1/2Dd(D−1/2)

=d(D−1/2)DD−1/2+D−1/2d(D)D−1/2+D−1/2Dd(D−1/2)

−D−1/2d(D)D−1/2

=d(I)−D−1/2d(D)D−1/2.

We therefore have,

dλ = (1−λ)u>D−1/2d(D)D−1/2u−u>D−1/2d(A)D−1/2u

= u>D−1/2d(L)D−1/2u−λu>D−1/2d(D)D−1/2u.

Therefore,

∂λ

∂Pmn
=

1
2 ∑

i,j

 ui√
di
−

uj√
dj

2
∂s(P, i, j)

∂Pmn
−λ∑

i,j

u2
i

di

∂s(P, i, j)
∂Pmn

. (3.16)

The component DVi Pi is simply the N×d transposed data matrix, and the
d×(d−1) matrix, Dθθθi

Vi, is given by


−sin(θθθ1i) 0 ... 0

cos(θθθ1i)cos(θθθ2i) −sin(θθθ1i)sin(θθθ2i) ... 0
...

...
. . .

...

cos(θθθ1i)∏d−1
k=2sin(θθθki) cos(θθθ2i)∏k 6=2sin(θθθki) ... cos(θθθd−1,i)∏

d−2
k=1sin(θθθki)

.

(3.17)
Having derived expressions for the derivatives of λ2(L(θθθ)) and λ2(Lnorm(θθθ)),
we can address their continuity properties. The components DV PDθθθV clearly
form a continuous product in θθθ. The continuity of the elements ∂λ/∂Pmn can
be reduced to addressing the continuity of the eigenvalue itself, of its as-
sociated eigenvector and a continuity assumption on the derivative of the
function s. It is well known that the eigenvalues of a matrix are continu-
ous (Zedek, 1965), while the continuity of the elements of the eigenvector
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come from the fact that we have assumed λ to be simple (Magnus, 1985). We
provide full expressions for the derivatives of λ2(L(θθθ)) and λ2(Lnorm(θθθ)), for
the similarity function used in our experiments, in the Appendix.

The eigenvalues of a real, symmetric matrix can be expressed as the dif-
ference between two convex matrix functions (Fan, 1949). If the similarity
function, s, is Lipschitz continuous and differentiable we therefore have that
λ2(L(θθθ)) and λ2(Lnorm(θθθ)) are directionally differentiable everywhere. Over-
ton and Womersley (1993) describe a way of expressing the directional deriva-
tive of the sum of the k largest eigenvalues of a matrix whose elements are
continuous functions of a parameter, at a point of non-simplicity of the k-th
largest eigenvalue. We will discuss the case of λ2(L(θθθ)), where λ2(Lnorm(θθθ))
is analogous. If we denote the sum of the k largest eigenvalues of L(θθθ) by
Fk(θθθ) then,

λ2(L(θθθ))=FN−1(θθθ)−FN−2(θθθ). (3.18)

Now suppose that θθθ is such that

λN(L(θθθ))≥ ...≥λN−r+1(L(θθθ))>

λN−r(L(θθθ))= ...=λN−k+1(L(θθθ))= ...=λN−r−t+1(L(θθθ))>

λN−r−t(L(θθθ))≥ ...≥λ1(L(θθθ)).

That is, the k-th largest eigenvalue has multiplicity t and k−r are included in
the sum defining Fk(θθθ). Then the directional derivative of Fk(θθθ) in direction
θ is given by (Overton and Womersley, 1993)

Fk′(θθθ;θ)=
d−1

∑
i=1

l

∑
j=1

θijtrace(R>LijR)+ max
U∈Φt,k−r

d−1

∑
i=1

l

∑
j=1

θijtrace(Q>LijQU), (3.19)

where Lij=∂L(θθθ)/∂θθθij, the matrix R∈RN×r has j-th column equal to the
eigenvector of the j-th largest eigenvalue of L(θθθ) and the matrix Q∈RN×t

has j-th column equal to the eigenvector of the (r+ j)-th largest eigenvalue of
L(θθθ). In addition the set Φa,b is defined as,

Φa,b :={U∈Sa|U and I−U are positive semi-definite and trace(U)=b}.
(3.20)

Overton and Womersley (1993) have shown that Fk′(θθθ;θ) is the sum of the
eigenvalues of ∑d−1

i=1 ∑l
j=1 θijR>LijR plus the sum of the k−r largest eigenval-

ues of ∑d−1
i=1 ∑l

j=1 θijQ>LijQ. Therefore, the directional derivative of λ2(L(θθθ))

in the direction θ is given by the smallest eigenvalue of ∑d−1
i=1 ∑l

j=1 θijQ>LijQ,
where the matrix Q is constructed by any complete set of eigenvectors corre-
sponding to the eigenvalue λ=λ2(L(θθθ)).
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4.2 Minimising λ2(L(θθθ)) and λ2(Lnorm(θθθ)).

Applying standard gradient descent methods to functions which are almost
everywhere differentiable can result in convergence to sub-optimal points
(Wolfe, 1972). This occurs when the method for determining the gradient is
applied at a point of non-differentiability and results in a direction which is
not a descent. In addition, gradients close to points of non-differentiability
may be poorly conditioned from a computational perspective leading to poor
performance of the optimisation.

The second eigenvalues of the graph Laplacian matrices, while not dif-
ferentiable everywhere, benefit from the fact that their minimisation tends to
lead to a separation from other eigenvalues. Thus a naive gradient descent
algorithm tends to perform well. Notice also that if u∈RN with ‖u‖=1 and
u⊥1 is such that u>L(θθθ)u=λ2(L(θθθ)) for some θθθ∈Θ, then for any θθθ′∈Θ with
u>L(θθθ′)u<u>L(θθθ)u we have λ2(L(θθθ′))<λ2(L(θθθ)), since u>L(θθθ′)u is an up-
per bound for λ2(L(θθθ′)). Thus even if λ2(L(θθθ)) is a repeated eigenvalue, a
descent direction for u>L(θθθ)u is a descent direction for λ2(L(θθθ)), where u is
any corresponding eigenvector. However, this property does not necessarily
hold for λ2(Lnorm(θθθ)) since the first eigenvector of Lnorm(θθθ) depends on θθθ,
and thus its second eigenvector u will not necessarily be orthogonal to the
first eigenvector of Lnorm(θθθ′).

We assume that the similarity function, s, is Lipschitz continuous and
continuously differentiable in P for each i, j, and hence the Laplacian matri-
ces L(θθθ) and Lnorm(θθθ) are element-wise Lipschitz continuous and continu-
ously differentiable in θθθ. These conditions are sufficient for the everywhere
directional differentiability of λ2(L(θθθ)) and λ2(Lnorm(θθθ)). Our approach for
finding locally minimal solutions for λ2(L(θθθ)) and λ2(Lnorm(θθθ)) can be seen
as a simplification of the general method of Overton and Womersley (1993).
Our method alternates between a naive application of a standard gradient
based optimisation algorithm, in which the simplicity of the second eigen-
value is assumed to hold everywhere along the optimisation path, and a
descent step which (in general) decouples the second eigenvalue. We again
discuss only λ2(L(θθθ)) explicitly, where λ2(Lnorm(θθθ)) is analogous. A de-
scription of the method is found in Algorithm 1. Notice that upon con-
vergence of a gradient descent algorithm which assumes the simplicity of
λ2(L(θθθ)), if λ2(L(θθθ)) is simple then the solution is a local minimum, and
so the algorithm terminates. If λ2(L(θθθ)) is not simple, then the solution
may or may not be a local minimum. As we discuss in Section 4.1, if θθθ is
such that λ2(L(θθθ)) is not simple, then the directional derivative of λ2(L(θθθ))
in direction θ is given by the smallest eigenvalue of ∑d−1

i=1 ∑l
j=1 θijQ>LijQ,

where Q is the matrix with columns corresponding to a complete set of
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eigenvectors for λ=λ2(L(θθθ)), and Lij=∂L(θθθ)/∂θθθij. If Q>LijQ=0 for all i=
1,...,d−1; j=1,..., l, then θθθ is a local minimum and the method terminates,
otherwise ∃θ∈Θ s.t. λ1

(
∑d−1

i=1 ∑l
j=1 θijQ>LijQ

)
<0, and thus θ is a descent

direction for λ2(L(θθθ)). It is possible to find a locally steepest descent direc-
tion by minimising λ1

(
1
‖θ‖∑d−1

i=1 ∑l
j=1 θijQ>LijQ

)
over θ, however the added

computational cost associated with this subproblem outweighs the benefit
over a simply chosen unit coordinate vector. Notice that the directional
derivative of λk+2(L(θθθ)) in direction θ is given by the (k+1)-th eigenvalue
of ∑d−1

i=1 ∑l
j=1 θijQ>LijQ, for k=0,1,...,t−1, where t is the multiplicty of the

eigenvalue λ=λ2(L(θθθ)). Therefore if there exists i∈{1,...,d−1}, j∈{1,..., l}
s.t. λt(Q>LijQ)>0 and is simple then −eij, where −eij is the (d−1)× l matrix
with zeros except in the i, j-th entry where it takes the value 1, is a descent
direction and ∃γ>0 s.t. λ2(L(θθθ−γ′eij))<λ3(L(θθθ−γ′eij)) for all 0<γ′<γ.
On the other hand if λ1(Q>LijQ)<0 and is simple, then eij is such a de-
scent direction. If no such pair i, j exists, then we select i, j which maximises
max{λt(Q>LijQ),−λ1(Q>LijQ)} and set θ=−eij if the maximum was deter-
mined by the largest eigenvalue and equal to eij otherwise.

Computational Complexity

Here we give a very brief discussion of the computational complexity of the
proposed method. At each iteration in the gradient descent, computing the
projected dataset, P(θθθ), requires O(Nld) operations. Computing all pair-
wise similarities from elements of the l-dimensional P(θθθ) has computational
complexity O(lN2), and determining both Laplacian matrices, and their as-
sociated eigenvalue/vector pairs adds a further computational cost O(N2).
Each evaluation of the objectives λ2(L(θθθ)) or λ2(Lnorm(θθθ)) therefore requires
O(lN(N+d)) operations.

In order to compute the gradients of these objectives, the partial deriva-
tives with respect to each element of the projected data matrix need to be
calculated. As we discuss in the appendix to this chapter, the majority of the
terms in the sums in Eq.’s (3.15) and (3.16) are zero, and in fact each partial
derivative can be computed in O(N) time, and so all such partial deriva-
tives can be computed in O(lN2) time. The matrix derivatives Dθθθi

Vi, i=1,..., l,
in (3.17) can each be computed with O(d(d−1)) operations. Finally, deter-
mining the gradients with respect to each column of θθθ involves computing
the matrix product Dθθθi

λ=DPi λDVi PiDθθθi
Vi, where DPi λ∈R1×N , DVi Pi∈RN×d

and Dθθθi
Vi∈Rd×(d−1). This has complexity O(Nd(d−1)). The complete gra-

dient calculation therefore requires O(lN(N+d(d−1))) operations.
We have found that the directional derivative step is seldom, if ever re-

quired, and moreover that this does not constitute the bottleneck in the run-
ning time of the method in practice. The complexity of this step can be com-
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Algorithm 1: Minimising λ2(L(θθθ))

1. Initialise θθθ.

2. Apply gradient based optimisation to λ2(L(θθθ)) assuming differentiability

3. ififif λ2(L(θθθ)) is simple thenthenthen
returnreturnreturn θθθ

4. Find Q∈RN×t, a complete set of t eigenvectors for eigenvalue λ=λ2(L(θθθ)).
Find Lij=∂L(θθθ)/∂θθθij for i=1, . . . ,d−1, and j=1,..., l

5. ififif Q>LijQ=0 ∀i=1, . . . ,d−1; j=1,..., l thenthenthen
returnreturnreturn θθθ

6. ififif ∃i∈{1, . . . ,d−1}; j∈{1,..., l} s.t. λt(Q>LijQ)>0 and is simple thenthenthen
θθθ←argminθθθ′λ2(L(θθθ′)) s.t. θθθ′=θθθ−γeij, γ>0, λ2(L(θθθ′)) is simple
go togo togo to 2.

7. ififif ∃i∈{1, . . . ,d−1}; j∈{1,..., l} s.t. λ1(Q>LijQ)<0 and is simple thenthenthen
θθθ←argminθθθ′λ2(L(θθθ′)) s.t. θθθ′=θθθ+γeij, γ>0, λ2(L(θθθ′)) is simple
go togo togo to 2.

8. (I, J)←argmax(i,j)max{λt(Q>LijQ),−λ1(Q>LijQ)}

9. ififif λt(Q>LI J Q)>−λ1(Q>LI J Q) thenthenthen
θθθ←argminθθθ′λ2(L(θθθ′)) s.t. θθθ′=θθθ−γeI J ,γ>0
go togo togo to 4.

10. θθθ←argminθθθ′λ2(L(θθθ′)) s.t. θθθ′=θθθ+γeI J ,γ>0
go togo togo to 4.

11. endendend

puted along similar lines, and be found to be O(t2lN(N+d(d−1))), where t
is the multiplicity of the eigenvalue λ=λ2(L(θθθ)).

The total complexity of the projection pursuit optimisation depends on
the number of iterations in the gradient descent method, where in general
this number is bounded for a given accuracy level. For our experiments we
use the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm as this has been
found to perform well even on non-smooth functions (Lewis and Overton,
2013).

4.3 Computing Similarities

It is common to define pairwise similarities of points via a decreasing func-
tion of the distance between them. That is, for a decreasing function k :R+→
R+, the similarity function s may be written,

s(P, i, j)=k
(d(pi, pj)

σ

)
, (3.21)
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where d(·, ·) is a metric and σ>0 is a scaling parameter. We have found that the
projection pursuit method which we propose can be susceptible to outliers
when the standard Euclidean distance metric is used, especially in the case of
minimising λ2(L(θθθ)). In this subsection we discuss how to embed a balancing
constraint into the distance function. By including this balancing mechanism
the projection pursuit is steered away from projections which result in only
few data being separated from the remainder of the data set.

While the normalisation of the graph cut objective, given in (3.2), is ex-
tremely effective in emphasising balanced partitions in the general spectral
clustering problem (von Luxburg, 2007), we have found that in the projection
pursuit formulation a further emphasis on balance is sometimes required.
This is especially the case in high dimensional applications. Consider the
extreme case where d>N. Then the projection equation, V>X=P, is an
underdetermined system of linear equations. Therefore for any desired pro-
jected data set P there exist θθθ∈Θ,c∈R\{0} s.t. V(θθθ)>X=cP. In other words
the projected data can be made to have any distribution, up to a scaling
constant. In particular we can generally find projections which induce a suf-
ficient separation of a small group of points from the remainder of the data
that the normalisation in (3.2) is inadequate to obtain a balanced partition.
We have observed that in practice even for problems of moderate dimension
this situation can occur. The importance of including a balancing constraint
in the context of projection pursuit for clustering has been observed previ-
ously by Zhang et al. (2009) and Pavlidis et al. (2015).

Emphasising balanced partitions is achieved through the use of a compact
constraint set ∆, which may be defined using the distribution of the projected
data set P. By defining the metric d(·, ·) in such a way that distances between
points extending beyond ∆ are reduced, we increase the similarity of points
outside ∆ with others. If P is l dimensional then we define ∆ as the rectangle
∆=∏l

i=1 ∆i, where each ∆i is an interval in R which is defined using the
distribution of the i-th component of P. A convenient way of increasing
similarties with points lying outside ∆ is with a transformation T∆ :Rl→Rl ,
defined as follows,

T∆(y)=
(
t∆1(y1), ...,t∆l (yl)

)
, (3.22)

t∆i (z) :=



−δ
(

min∆i−z+(δ(1−δ))
1
δ

)1−δ
+δ(δ(1−δ))

1−δ
δ , z<min∆i

z−min∆i, z∈∆i

δ
(

z−max∆i+(δ(1−δ))
1
δ

)1−δ
−δ(δ(1−δ))

1−δ
δ ,

+Diam(∆i), z>max∆i,
(3.23)

where δ∈(0,.5] is the distance reducing parameter. Each t∆i is linear on ∆i but
has a smaller gradient outside ∆i. As a result we have ‖T∆(x)−T∆(y)‖≤‖x−
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4. Projection Pursuit for Spectral Connectivity

y‖ for any x,y∈Rl , with strict inequality whenever either x or y lies outside
∆. We define T∆ in this way so that it is continuously differentiable even at
the boundaries of ∆, and so does not affect the differentiability properties of
the similarity function, s. Figure 3.1 illustrates how the function T∆ influences
distances and similarities in the univariate case.

In the context of projection pursuit it is convenient to define a full di-
mensional convex constraint set ∆∆∆⊂Rd and define the univariate constraint
intervals, which we now index by the corresponding projection angles, via
the projection of ∆∆∆ onto each V(θθθ)i. That is,

∆θθθi :=
[
min{V(θθθ)>i x|x∈∆∆∆},max{V(θθθ)>i x|x∈∆∆∆}

]
. (3.24)

In our implementation, we define ∆∆∆ to be a scaled covariance ellipsoid cen-
tered at the mean of the data. The projections of ∆∆∆ are thus given by intervals
of the form,

∆θθθi=[µθθθi−βσθθθi,µθθθi+βσθθθi], (3.25)

where µθθθi and σθθθi are the mean and standard deviation of the i-th component
of the projected data set P(θθθ) and the parameter β≥0 determines the width
of the projected constraint interval ∆θθθi.

Figure 3.2 shows two dimensional projections of the 64 dimensional op-
tical recognition of handwritten digits dataset1. The leftmost plot shows
the PCA projection which is used as initialisation for the projection pursuit.
The remaining plots show the projections arising from the minimisation of
λ2(L(θθθ)) for a variety of values of β. For β=∞, i.e., an unconstrained projec-
tion, the projection pursuit focuses only on a few data and leaves the remain-
der of the dataset almost unaffected by the projection. Setting β=2.5 causes
the projection pursuit to focus on a larger proportion of the tail of the data
distribution. Setting β=1.5 however allows the projection pursuit to iden-
tify the cluster structure in the data and find a projection which provides a
good separation of three of the clusters in the data, i.e., those shown as black,
orange and turquoise in the top right plot.

4.4 Correlated and Orthogonal Projections

The formulation of the optimisation problem associated with projection pur-
suit based on spectral connectivity places no constraints on the projection
matrix, V, except that its columns should have unit norm. A common con-
sideration in dimension reduction methods is that the columns in the pro-
jection matrix should be orthogonal, i.e., V>i Vj=0 for all i 6= j. In the context
of projection pursuit it is common to generate the columns of V individ-
ually, so that orthogonality of the columns can easily be enforced. Huber

1https://archive.ics.uci.edu/ml/datasets.html
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Chapter 3. Projection Pursuit Based on Spectral Connectivity

Fig. 3.1: Effect of T∆ on Distances and Similarities.
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(a) (b)

(c) (d)

(a) The univariate data set P is plotted against the transformed data T∆(P). The point at ≈15

lies outside ∆ and its distance to other points, e.g. the point at ≈2, is smaller within T∆(P)

(vertical axis) than in P (horizontal axis). (b) The kernel density estimate of the transformed

data T∆(P) (- - -) has a stronger bimodal structure, i.e., two well defined clusters, than that of P

(—–), which has multiple small modes caused by outliers. The connection between spectral

connectivity and density based clustering has been investigated theoretically by Narayanan et

al. (2006) showing that the normalised graph cut is asymptotically related to the density on the

separating surface. (c) The affinity matrix of the data set P has a weaker cluster structure than

that of T∆(P), shown in (d).

(1985) proposes first learning V1 using the original data, and then for each
subsequent column the data are first projected into the null space of all the
columns learnt so far. An alternative approach (Niu et al., 2011), is to instead
project the gradient of the objective into this null space during a gradient
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4. Projection Pursuit for Spectral Connectivity

Fig. 3.2: Two dimensional projections of optical recognition of handwritten digits dataset aris-
ing from the minimisation of λ2(L(θθθ)), for different values of β. In addition, the initialisation
through PCA is also shown. The top row of plots shows the true clusters, while the bottom row
shows resulting bi-partitions.

(a) PCA

x[,1]

(b) β=∞

x[,1]

(c) β=2.5

x[,1]

(d) β=1.5

based optimisation. Notice, however, that orthogonality in the columns of V
is not essential for the underlying problem. Another common approach (Hu-
ber, 1985) is to transform the data after each column is determined in such a
way that the columns learned so far are no longer “interesting", i.e., have low
projection index. This does not enforce orthogonality, but rather steers the
projection pursuit away from the columns already learned by making them
unattractive to the optimisation method.

We propose a different approach which allows us to learn all of the
columns of V simultaneoulsy. This is achieved by introducing an additional
term to the objective function which controls the level of orthogonality, or
alternatively correlation, within the projection matrix. In particular, we con-
sider the objective,

min
θθθ∈Θ

λ2(L(θθθ))+ω∑
i 6=j

(V(θθθ)>i V(θθθ)j)
2, (3.26)

or replacing λ2(L(θθθ)) with λ2(Lnorm(θθθ)) in the normalised case. This ap-
proach serves a dual purpose. In the first case, setting ω>0 leads to approx-
imately orthogonal projections, without the need to optimise separately over
different projection vectors as is standard. Alternatively, setting ω<0 leads to
approximately perfect correlation, i.e., V(θθθ)i≈±V(θθθ)j for all i, j. In the latter
case the resulting projection is therefore equivalent to a univariate projection.
This is similar to simultaneously considering multiple initialisations, and al-
lowing the optimisation procedure to select from them automatically. This is
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Chapter 3. Projection Pursuit Based on Spectral Connectivity

important as the objectives λ2(L(θθθ)) and λ2(Lnorm(θθθ)) are non-convex, and
as a result applying gradient based optimisation can only guarantee conver-
gence to a local optimum.

Notice also that the formulation in Eq. (3.26) offers computational benefits
over the alternative of optimising separately over each projection vector, since
the eigenvalues/vectors computed in each function and gradient evaluation
need only be computed once for each iteration over the multiple projection
dimensions.

5 Connection with Maximal Margin Hyperplanes

In this section we establish a connection between the optimal univariate pro-
jection for spectral bi-partitioning using the standard Laplacian and large
margin separators. In particular, under suitable conditions, as the scaling
parameter tends to zero the optimal projection for spectral bi-partitioning
converges to the vector admitting the largest margin hyperplane through the
data. This establishes a theoretical connection between spectral connected-
ness and separability of the resulting clusters in terms of Euclidean distance.
Large margin separators are ubiquitous in the machine learning literature,
and were first introduced in the context of supervised classification via sup-
port vector machines (SVM, Vapnik and Kotz (1982)). In more recent years
they have shown to be very useful for unsupervised partitioning in the con-
text of maximum margin clustering as well (Xu et al., 2004; Zhang et al.,
2009).

Our result pertains to univariate projections, and therefore the d×1 pro-
jection matrix is equivalently viewed as a projection vector in Rd. We therefore
use the notation v(θθθ), instead of V(θθθ) as before.

The result holds for all similarities for which the function k, in Eq. (3.21),
satisfies the tail condition limx→∞ k(x+ε)/k(x)=0 for all ε>0. This condi-
tions is satisfied by functions with exponentially decaying tails, including the
popular Gaussian and Laplace kernels. It is, however, not satisfied by those
with polynomially decaying tails.

The constraint set ∆∆∆ again plays an important role as in many cases the
largest margin hyperplane through a set of data separates only a few points
from the rest, making it meaningless for the purpose of clustering. We there-
fore prefer to restrict the hyperplane to intersect the set ∆∆∆. What we in fact
show in this section is that there exists a set ∆∆∆′⊂∆∆∆ satisfying ∆∆∆′∩X=∆∆∆∩X,
such that, as the scaling parameter tends to zero, the optimal projection for
λ2(L(θθθ)) converges to the projection admitting the largest margin hyperplane
that intersects ∆∆∆′. The distinction between the largest margin hyperplane in-
tersecting ∆∆∆′ and that intersecting ∆∆∆ is scarcely of practical relevance, but
plays an important role in the theory we present in this section. It accounts
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5. Connection with Maximal Margin Hyperplanes

for situations when the largest margin hyperplane intersecting ∆∆∆ lies close to
its boundary and the distance between the hyperplane and the nearest point
outside ∆∆∆ is larger than to the nearest point inside ∆∆∆. Aside from this very
specific case, the two in fact coincide.

A hyperplane is a translated subspace of co-dimension 1, and can be pa-
rameterised by a non-zero vector v∈Rd\{0} and scalar b as the set H(v,b)=
{x∈Rd

∣∣v>x=b}. Clearly, for any c∈R\{0}, one has H(v,b)=H(cv,cb), and
so we can assume that v has unit norm, thus the same parameterisation by
θθθ can be used. For a finite set of points X⊂Rd, the margin of hyperplane
H(v(θθθ),b) w.r.t. X is the minimal Euclidean distance between H(v(θθθ),b) and
X. That is,

margin(v(θθθ),b)=min
x∈X
|v(θθθ)>x−b|. (3.27)

Connections between maximal margin hyperplanes and Bayes optimal hy-
perplanes as well as minimum density hyperplanes have been established
(Tong and Koller, 2000; Pavlidis et al., 2015).

In this section we use the notation v>X={v>x1, ...,v>xN}, and for a set P⊂R

and y∈R we write, for example, P>y for P∩(y,∞). For scaling parameter σ>
0 and distance reduction factor δ>0 we define θθθσ,δ :=argminθθθ∈Θλ2(L(θθθ,σ,δ)),
where L(θθθ,σ,δ) is as L(θθθ) from before, but with an explicit dependence on
the scaling parameter and distance reducing parameter used in the similarity
function. That is, θθθσ,δ defines the projection generating the minimal spectral
connectivity of X for a given pair σ,δ.

Before proving the main result of this section, we require the following sup-
porting results. Lemma 11 provides a lower bound on the second eigenvalue
of the graph Laplacian of a one dimensional data set in terms of the largest
Euclidean separation of adjacent points, with respect to a constraint set ∆.
This lemma also shows how we construct the set ∆∆∆′. Lemma 12 uses this re-
sult to show that a projection angle θθθ∈Θ leads to lower spectral connectivity
than all projections admitting smaller maximal margin hyperplanes intersect-
ing ∆∆∆′ for all pairs σ,δ sufficiently close to zero.

Lemma 11 Let k :R+→R+ be a non-increasing, positive function and let σ>0,δ∈
(0,0.5]. Let P={p1, ..., pN} be a univariate data set and let ∆=[a,b] for a<b∈R.
Suppose that |P∩∆|≥2 and a≥min{P},b≤max{P}. Define ∆′=[a′,b′], where
a′=(a+min{P∩∆})/2, b′=(b+max{P∩∆})/2. Let M=maxx∈∆′{mini=1...N
|x− pi|}. Define L(P) to be the Laplacian of the graph with vertices P and similari-
ties according to s(P, i, j)=k(|T∆(pi)−T∆(pj)|/σ). Then λ2(L(P))≥ 1

|P|3 k((2M+

δC)/σ), where C=max{D,D1−δ}, D=max{a−min{P},max{P}−b}.

Proof We can assume that P is sorted in increasing order, i.e. pi≤ pi+1, since
this does not affect the eigenvalues of L(P). We first show that s(P, i, i+1)≥
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k((2M+δC)/σ) for all i=1,..., N−1. To this end observe that for x≥0 we

have δ
(

x+
(

δ(1−δ)
1
δ

))1−δ
−δ(δ(1−δ))

1−δ
δ ≤δmax{x,x1−δ}.

• If pi, pi+1≤a then s(P, i, i+1)=k((T∆(pi+1)−T∆(pi))/σ) ≥k((T∆(a)−
T∆(pi))/σ) ≥k((2M+δC)/σ) by the definition of C and using the above
inequality, since k is non-increasing. The case pi, pi+1≥b is similar.

• If pi, pi+1∈∆ then pi, pi+1∈∆′⇒|pi− pi+1|≤2M⇒s(P, i, i+1)≥k(2M/σ)
≥k((2M+δC)/σ) since M is the largest margin in ∆′.

• If none the above hold, then we lose no generality in assuming pi<
a, a< pi+1<b since the case a< pi<b, pi+1>b is analogous. We must
have pi+1=min{P∩∆} and so a′=(a+ pi+1)/2. If pi+1−a>2M then
minj=1...N |a′− pj|>M, a contradiction since a′∈∆′ and M is the largest
margin in ∆′. Therefore pi+1−a≤2M. In all T∆(pi+1)−T∆(pi)=(pi+1−
a)+δ(a− pi+(δ(1−δ))

1
δ )1−δ−δ(δ(1−δ))

1−δ
δ ≤2M+δC⇒s(P, i, i+1)≥

k((2M+δC)/σ).

Now, let u be the second eigenvector of L(P). Then ‖u‖=1 and u⊥1 and
therefore ∃i, j s.t. ui−uj≥ 1√

|P|
. We thus know that there exists m s.t. |um−

um+1|≥ 1
|P|3/2 . By (von Luxburg, 2007, Proposition 1), we know that u>L(P)u=

1
2 ∑i,j s(P, i, j)(ui−uj)

2≥s(P,m,m+1)(um−um+1)
2≥ 1
|P|3 k((2M+δC)/σ) since

all consecutive pairs pm, pm+1 have similarity at least k((2M+δC)/σ), by
above. Therefore λ2(L(P))≥ 1

|P|3 k((2M+δC)/σ) as required.

In the above Lemma we have assumed that ∆ is contained within the
convex hull of the points P, however the results of this section can easily
be modified to allow for cases where this does not hold. In particular, if
an unconstrained large margin hyperplane is sought, then setting ∆∆∆ to be
arbitrarily large allows for this. We have merely stated the results in the most
convenient context for our practical implementation.

The set ∆′ in the above is defined in terms of the one dimensional con-
straint set [a,b]. We define the full dimensional set ∆∆∆′ along the same lines
by,

∆∆∆′ :={x∈Rd|v(θθθ)>x∈∆′θθθ ∀θθθ∈Θ},

∆′θθθ =

[
min∆θθθ +min{v(θθθ)>X∩∆θθθ}

2
,
max∆θθθ +max{v(θθθ)>X∩∆θθθ}

2

]
. (3.28)

Here we assume that ∆∆∆ is contained within the convex hull of the d-dimensional
data set X. Notice that since ∆∆∆ is convex, we have v(θθθ)>∆∆∆′=∆′θθθ . In what fol-
lows we show that as σ and δ are reduced to zero the optimal projection for
spectral partitioning converges to the projection admitting the largest margin
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hyperplane intersecting ∆∆∆′. If it is the case that the largest margin hyper-
plane intersecting ∆∆∆ also intersects ∆∆∆′, as is often the case, although this
fact will not be known, then it is actually not necessary that δ tend towards
zero. In such cases it only needs to satisfy δ≤2M/C for the correspond-
ing values of M and C over all possible projections. In particular, choosing
max{Diam(X),Diam(X)1−δ} instead of C is appropriate for all projections.

Lemma 12 Let θθθ∈Θ and let k :R+→R+ be non-increasing, positive, and satisfy

lim
x→∞

k(x(1+ε))/k(x)=0

for all ε>0. Then for any 0<m<maxb∈∆′
θθθ

margin(v(θθθ),b) there exists σ′>0 and
δ′>0 s.t. 0<σ<σ′, 0<δ<δ′ and maxc∈∆′

θθθ′
margin(v(θθθ′),c)<maxb∈∆′

θθθ
margin(v(θθθ),

b)−m⇒λ2(L(θθθ,σ,δ))<λ2(L(θθθ′,σ,δ)).

Proof Let B=argmaxb∈∆′
θθθ
margin(v(θθθ),b) and M=margin(v(θθθ),B). We as-

sume that M 6=0, since otherwise there is nothing to show. Now, since spec-
tral clustering solves a relaxation of the minimum normalised cut problem
we have,

λ2(L(θθθ,σ,δ))≤ 1
|X|min

C⊂X
∑

i,j:xi∈C
xj 6∈C

s(P(θθθ), i, j)
(

1
|C|+

1
|X\C|

)

≤ 1
|X| ∑

i,j:v(θθθ)>xi<B
v(θθθ)>xj>B

s(P(θθθ), i, j)
(

1
|(v(θθθ)>X)<B|

+
1

|(v(θθθ)>X)>B|

)

=
1
|X| ∑

i,j:v(θθθ)>xi<B
v(θθθ)>xj>B

k

(
T∆θθθ

(v(θθθ)>xj)−T∆θθθ
(v(θθθ)>xi)

σ

)

×
(

|X|
|(v(θθθ)>X)<B||(v(θθθ)>X)>B|

)
≤
∣∣(v(θθθ)>X)<B

∣∣∣∣(v(θθθ)>X)>B
∣∣k(2M

σ

)(
1

|(v(θθθ)>X)<B||(v(θθθ)>X)>B|

)
=k(2M/σ).

The final inequality holds since for any i, j s.t. v(θθθ)>xi<B and v(θθθ)>xj>B
we must have T∆θθθ

(v(θθθ)>xj)−T∆θθθ
(v(θθθ)>xi)≥2M. Now, for any θθθ′∈Θ, let

Mθθθ′=maxc∈∆′
θθθ′

margin(v(θθθ′),c). By Lemma 11 we know that λ2(L(θθθ′,σ,δ))≥
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1
|X|3 k((2Mθθθ′+δC/σ), where C=max{Diam(X), Diam(X)1−δ}. Therefore,

lim
σ→0+ ,
δ→0+

λ2(L(θθθ,σ,δ))
infθθθ′∈Θ{λ2(L(θθθ′,σ,δ))

∣∣Mθθθ′<M−m}
≤ lim

σ→0+ ,
δ→0+

|X|3k(2M/σ)

k((2(M−m)+δC)/σ)

=0.

This gives the result.

Lemma 12 shows almost immediately that the margin admitted by the
optimal projection for spectral bi-partitioning converges to the largest margin
through ∆∆∆′ as σ and δ go to zero. The main result of this section, Theorem 13,
shows the stronger result that the optimal projection itself converges to the
projection admitting the largest margin.

Theorem 13 Let X={x1, ...,xN} and suppose that there is a unique hyperplane,
which can be parameterised by (v(θθθ?),b?), intersecting ∆∆∆′ and attaining maximal
margin on X. Let k :R+→R+ be decreasing, positive and satisfy limx→∞ k((1+
ε)x)/k(x)=0 for all ε>0. Then,

lim
σ→0+ ,δ→0+

v(θθθσ,δ)=v(θθθ?).

Proof Take any ε>0. Pavlidis et al. (2015) have shown that ∃mε>0 s.t. for
w∈Rd,c∈R, we have ‖(w,c)/‖w‖−(v(θθθ?),b?)‖>ε⇒margin(w/‖w‖,c/‖w‖)
< margin(v(θθθ?),b?)−mε. By Lemma 12 we know ∃σ′>0, δ′>0 s.t. if 0<
σ<σ′ and 0<δ<δ′ then ∃c∈∆θθθ s.t. margin(v(θθθσ,δ),c) ≥ margin(v(θθθ?),b?)−
mε, since θθθσ,δ is optimal for the pair σ,δ. Thus, by above, ‖(v(θθθσ,δ),c)−
(v(θθθ?),b?)‖≤ε. But ‖(v(θθθσ,δ),c)−(v(θθθ?),b?)‖≥‖v(θθθσ,δ)−v(θθθ?)‖ for any c∈
R. Since ε>0 was arbitrary, we therefore have v(θθθσ,δ)→v(θθθ?) as σ,δ→0+.

While the results of this section apply only for univariate projections, we
have observed empirically that if a shrinking sequence of scaling parameters
is employed for a multivariate projection, then the projected data tend to
display large Euclidean separation. This is illustrated in Figure 3.3 which
shows two dimensional plots of the 72 dimensional yeast cell cycle analysis
dataset2. As in Figure 3.2 the top plots show the true clusters in the data and
the bottom plots show the clustering assignments. The left plots show the
result of a two dimensional projection pursuit using the proposed method. In
the middle plots the first projection is learnt using one dimensional projection
pursuit, and the second is set to be the direction of maximum variance within
the null space of the first projection. The right plots use as the first projection
the result of the iterative support vector regression method for maximum
margin clustering (Zhang et al., 2009), and again the second projection is the
direction of maximum variance within its null space.

2http://genome-www.stanford.edu/cellcycle/
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6. Speeding up Computation using Microclusters

Fig. 3.3: Large Euclidean separation of the yeast cell cycle dataset. The left plots show the result
from a 2 dimensional projection pursuit using the proposed method. The middle plots show the
1 dimensional projection pursuit result. The right plots show the result of the maximum margin
clustering method of Zhang et al. (2009).

x[,1]

A similar intuition which underlies the theoretical results of this section
can be used to reason why this will occur in multivariate projections, in that
as the scaling parameter reduces to zero the value of λ2(L(θθθ)) is controlled
by the smallest distance between observations in different elements of the
induced partition. It is however elusive how to formulate this rigorously in
the presence of the constraint set ∆∆∆ in more than one dimension.

6 Speeding up Computation using Microclusters

In this section we discuss how a preprocessing of the data using microclusters
can be used to significantly speed up the optimisation process. We derive the-
oretical bounds on the error induced by this approximation. Our approach
uses a result from matrix perturbation theory for diagonally dominant matri-
ces, and therefore only applies to the standard Laplacian, L(θθθ). However, we
have seen empirically that a close approximation of the optimisation surface
is obtained for both λ2(L(θθθ)) and λ2(Lnorm(θθθ)).

The concept of a microcluster was introduced by Zhang and Ramakrish-
nan (1996) in the context of clustering very large data sets. Microclusters are
small clusters of data which can in turn be clustered to generate a clustering
of the entire data set. A microcluster like approach in the context of spectral
clustering has been considered by Yan et al. (2009), where the authors ob-
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tain bounds on the mis-clustering rate induced by the approximation. Rather
than using microclusters as an intermediate step towards determining a final
clustering model, we use them to form an approximation of the optimisa-
tion surface for projection pursuit which is less computationally expensive to
explore. The error bound depends on the ratio of cluster radii to scaling pa-
rameter. As such, this method does not provide a good approximation when
σ is close to zero. Our bounds rely on the following result from perturbation
theory.

Theorem 14 Ye (2009)
Let A=[aij] and Ã=[ãij] be two symmetric positive semidefinite diagonally dom-
inant matrices, and let λ1≤λ2≤ ...≤λn and λ̃1≤ λ̃2≤ ...≤ λ̃n be their respective
eigenvalues. If, for some 0≤ε<1, |aij− ãij|≤ε|aij| ∀i 6= j, and |vi− ṽi|≤εvi ∀i,
where vi=aii−∑j 6=i |aij|, and similarly for ṽi, then

|λi− λ̃i|≤ελi ∀i.

An inspection of the proof of Theorem 14 reveals that ε<1 is necessary only
to ensure that the signs of aij are the same as those of ãij. In the case of
Laplacian matrices this equivalence of signs holds by design, and so in this
context the requirement that ε<1 can be relaxed.

In the microcluster approach, the data set X={x1, ...,xN} is replaced with
K points c1, ...,cK which represent the centers of a K-clustering of X. By pro-
jecting these microcluster centers during subspace optimisation, rather than
the data themselves, the computational cost associated with each eigen prob-
lem is reduced from O(N2) to O(K2). If we define the radius, ρ, of a cluster
C to be the greatest distance between one of its members and its center, that
is,

ρ(C)=max
x∈C

∥∥∥∥∥x− 1
|C| ∑

x∈C
x

∥∥∥∥∥ , (3.29)

then we expect the approximation error to be small whenever the microclus-
ter radii are small. The bounds on the approximation error which we present
in this section are worst case and rely on standard eigenvalue bounds, and
so can be pessimistic. To obtain a reasonable bound on the approximation
surface, as many as K≈0.6N might be needed, leading to only a threefold
speed up. We have observed empirically, however, that even for K=0.1N
(and sometimes lower) one still obtains a close approximation of the optimi-
sation surface. This makes the projection pursuit of the order of 100 times
faster.

Lemma 15 Let C=C1, ...,CK be a K-clustering of X with centers c1, ...,cK, radii
ρ1, ...,ρK and counts n1, ...,nK. For θθθ∈Θ define N(θθθ),B(θθθ)∈RK×K where N(θθθ) is
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6. Speeding up Computation using Microclusters

the diagonal matrix with

N(θθθ)i,i=
K

∑
j=1

njs(Pc(θθθ), i, j)

and
B(θθθ)i,j=

√
ninjs(Pc(θθθ), i, j),

where Pc(θθθ)={V(θθθ)>c1, ...,V(θθθ)>cK} are the projected microcluster centers and
the similarities are given by s(Pc(θθθ), i, j)=k(‖T∆θθθ

(V(θθθ)>ci)−T∆θθθ
(V(θθθ)>cj)‖/σ),

and k(x) is positive and non-increasing for x≥0. Then,

|λ2(L(θθθ))−λ2(N(θθθ)−B(θθθ))|
λ2(L(θθθ))

≤max
i 6=j

max

{
1−

k(Dij/σ)

k((Dij−ρi−ρj)+/σ)
,

k(Dij/σ)

k((Dij+ρi+ρj)/σ)
−1

}
,

where Dij=‖T∆θθθ
(V(θθθ)>ci)−T∆θθθ

(V(θθθ)>cj)‖ and (x)+=max{0,x}.

Proof For brevity we temporarily drop the notational dependence on θθθ. Let
Pc′={V>c1,V>c1, ...,V>cK,V>cK}, where each V>ci is repeated ni times. Let
Lc′ be the Laplacian of the graph with vertices Pc′ and edges given by s(Pc′, i, j).
We begin by showing that λ2(Lc′)=λ2(N−B). Take v∈RK, then,

v>(N−B)v=∑
i,j

s(Pc, i, j)(v2
i nj−vivj

√
ninj)

=
1
2 ∑

i,j
s(Pc, i, j)(v2

i nj+v2
j ni−2vivj

√
ninj)

≥0,

and so N−B is positive semi-definite. In addition, it is straightforward to
verify that (N−B)(

√
n1 . . .

√
nK)=0, and hence 0 is the smallest eigenvalue

of N−B with eigenvector (
√

n1 . . .
√

nK). Now, let u be the second eigen-
vector of Lc′. Then uj=uk for pairs of indices j,k aligned with the same V>ci

in Pc′. Define uc∈RK s.t. uc
i =
√

niuj where index j is aligned with V>ci

in Pc′
j . Then (uc)>(

√
n1 . . .

√
nK)=∑K

i=1 uc
i
√

ni=∑K
i=1 niuji where index ji is

aligned with V>ci in Pc′
ji

for each i. Therefore niuji =∑j:Pc′=V>ci
uj and hence

(uc)>(
√

n1 . . .
√

nK)=∑K
i=1 ∑j:Pc′

j =V>ci
uj=∑N

i=1 ui=0 since 1 is the smallest

eigenvector of Lc′ and so u⊥1. Similarly ‖uc‖2=∑K
i=1 niu2

ji
=∑N

i=1 u2
i =1. Thus

uc⊥(
√

n1 . . .
√

nK) and ‖uc‖=1 and so is a candidate for the second eigen-
vector of N−B. In addition it is straightforward to show that (uc)>(N−
B)uc=u ·Lc′u. Now, suppose by way of contradiction that ∃w⊥(

√
n1 . . .

√
nK)
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with ‖w‖=1 s.t. w>(N−B)w<(uc)>(N−B)uc. Let w′=(w1/
√

n1 w1/
√

n1
. . . wK/

√
nK) where each wi/

√
ni is repeated ni times. Then ‖w′‖=1, (w′)>1=

w>(
√

n1 . . .
√

nK)=0 and w>Lc′w<u>Lc′u, a contradiction since u is the sec-
ond eigenvector of Lc′.

Now, let i, j,m,n be such that xm∈Ci and xn∈Cj. We temporarily drop the
notational dependence on ∆. Then,

‖T(V>xm)−T(V>xn)‖=‖T(V>xm)−T(V>ci)+T(V>ci)−T(V>cj)

+T(V>cj)−T(V>xn)‖
≤‖T(V>xm)−T(V>ci)‖+‖T(V>ci)−T(V>cj)‖

+‖T(V>cj)−T(V>xn)‖
≤ρi+ρj+Dij,

since T contracts distances and ρi and ρj are the radii of Ci and Cj. Since k is
non-increasing we therefore have,

k(Dij/σ)

k((Dij−ρi−ρj)+/σ)
≤

k(Dij/σ)

k(‖T(V>xm)−T(V>xn)‖/σ)
≤

k(Dij/σ)

k((Dij+ρi+ρj)/σ)

⇒1−
k(Dij/σ)

k(‖T(V>xm)−T(V>xn)‖/σ)
≤1−

k(Dij/σ)

k((Dij−ρi−ρj)+/σ)

and

k(Dij/σ)

k(‖T(V>xm)−T(V>xn)‖/σ)
−1≤

k(Dij/σ)

k((Dij+ρi+ρj)/σ)
−1.

Therefore∣∣∣∣ k(Dij/σ)

k(‖T(V>xm)−T(V>xn)‖/σ)
−1
∣∣∣∣≤max

{
1−

k(Dij/σ)

k((Dij−ρi−ρj)+/σ)
,

k(Dij/σ)

k((Dij+ρi+ρj)/σ)
−1

}
.

Now, we lose no generality by assume that X is ordered such that for each
i the elements of cluster Ci are aligned with V>ci in Pc′, since this does
not affect the eigenvalues of the Laplacian of V>X, L. By the design of the
Laplacian matrix the “vi" of Theorem 14 are exactly zero. For off diagonal
terms m,n with corresponding i, j as above, consider

|Lmn−Lc′
mn|

|Lmn|
=
|k(Dij/σ)−k(‖T(V>xm)−T(V>xn)‖/σ)|

k(‖T(V>xm)−T(V>xn)‖/σ)

=

∣∣∣∣ k(Dij/σ)

k(‖T(V>xm)−T(V>xn)‖/σ)
−1
∣∣∣∣ .

Theorem 14 thus gives the result.
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The above bound depends on θθθ via the quantity Dij and for some func-
tions k it is difficult to remove this dependence. We consider the class of
functions, parameterised by α≥0, and given by

k(x)=
(
|x|
α

+1
)α

exp(−|x|) , (3.30)

where we adopt the convention ( a
0 )

0=1 for any a∈R. For α=0 this is equiv-
alent to the Laplace kernel, but for α>0 has the useful property of being
differentiable at 0. We have found the choice of k to matter little in the results
of the proposed approach. The above class of functions is chosen as it allows
us to obtain a uniform bound on the error induced by the above approxima-
tion. Note the parameter α is not intended as a tuning parameter, but rather
we set α close to zero to obtain a function similar to the Laplace kernel, but
which is differentiable at zero.

Corollary 16 Let the conditions of Lemma 15 hold, and let k(x) be defined as in
Eq. (3.30). Then,

|λ2(L(θθθ))−λ2(N(θθθ)−B(θθθ))|
λ2(L(θθθ))

≤max
i 6=j

(
Diam(X)+σα

Diam(X)+ρi+ρj+σα

)α

exp
(

ρi+ρj

σ

)
−1.

Proof Firstly, consider

k(Dij/σ)

k((Dij+ρi+ρj)/σ)
−1=

(
Dij+σα

Dij+ρi+ρj+σα

)α

exp
(

ρi+ρj

σ

)
−1.

Now, the function
(

x+σα
x+y+σα

)α
exp(y/σ) is non-decreasing in x for x,y,α,σ≥0,

therefore by above

k(Dij/σ)

k((Dij+ρi+ρj)/σ)
−1≤

(
Diam(X)+σα

Diam(X)+ρi+ρj+σα

)α

exp
(

ρi+ρj

σ

)
−1.

Secondly, consider the case Dij≥ρi+ρj, then

1−
k(Dij/σ)

k((Dij−ρi−ρj)+/σ)
=1−

(
Dij+σα

Dij−ρi−ρj+σα

)α

exp
(
−

ρi+ρj

σ

)

≤1−
(

Diam(X)+ρi+ρj+σα

Diam(X)+σα

)α

exp
(
−

ρi+ρj

σ

)
,

since
(

x+σα
x−y+σα

)α
exp(y/σ) is non-increasing in x for x,y,α,σ≥0. On the other
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hand, if Dij<ρi+ρj then,

1−
k(Dij/σ)

k((Dij−ρi−ρj)+/σ)
=1−k

(Dij

σ

)
≤1−k

(
ρi+ρj

σ

)
=1−

(
ρi+ρj+σα

σα

)α

exp
(
−

ρi+ρj

σ

)
≤1−

(
Diam(X)+ρi+ρj+σα

Diam(X)+σα

)α

exp
(
−

ρi+ρj

σ

)
,

where the first inequality comes from the fact that Dij<ρi+ρj and k is de-
creasing. Now, using the identity 1− 1

x≤x−1 for x 6=0, we have

1−
(

Diam(X)+ρi+ρj+σα

Diam(X)+σα

)α

exp
(
−

ρi+ρj

σ

)
≤(

Diam(X)+σα

Diam(X)+ρi+ρj+σα

)α

exp
(

ρi+ρj

σ

)
−1,

and so Lemma 15 gives the result.

Tighter bounds can be derived if pairwise distances between elements from
pairs of clusters are compared directly to the distances between the cluster
centers, and for higher dimensional cases the additional tightness can be
significant. We prefer to state the result as above due to the sole reliance on
the internal cluster radii relative to scaling parameter.

While bounds of the above type are not verifiable for Lnorm due to the fact
that it is not diagonally dominant, a similar degree of agreement between
the true and approximate eigenvalues has been observed in all cases consid-
ered. In this case the K×K matrix is given by the normalised Laplacian of
the graph of PC(θθθ) with similarities given by ninjs(PC(θθθ), i, j). This matrix has
the same structure as the original normalised Laplacian, the only difference
being the introduction of the factors ni,nj.

Figure 3.4 shows (a) λ2(L(θθθ)) and (b) λ2(Lnorm(θθθ)) plotted against the single
projection angle θθθ for the 2 dimensional S1 data set (Fränti and Virmajoki,
2006). The parameter σ was chosen using the same method as for our exper-
iments. A complete linkage clustering was performed for 3000 microclusters
(=60% of total number of data), as well as for 200 microclusters for compar-
ison. The true values of λ2(L(θθθ)) and those based on approximations using
3000 microclusters are almost indistinguishable. The approximations based
on 200 microclusters also show a good approximation of the optimisation
surface, and lie well within the bounds pertaining to the 3000 microcluster
case. The same sort of agreement can be seen for λ2(Lnorm(θθθ)). Importantly,
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6. Speeding up Computation using Microclusters

Fig. 3.4: Approximation Error Plots for S1 data set.
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(b) λ2(Lnorm(θθθ))
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(c) |λ2(L(θθθ))−λ̂|
λ2(L(θθθ)) with Theoretical Bound
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(d) |λ2(Lnorm(θθθ))−λ̂|
λ2(Lnorm(θθθ))

True eigenvalue (—–), bounds based on 3000 microclusters (- - -), approximation using 3000

microclusters (—–), approximation using 200 microclusters (—–)

while the approximations based on 200 microclusters slightly underestimate
the true eigenvalues, the location of the local minima, and indeed the shape
of the optimisation surface, are very similar to the truth, and so optimis-
ing over this approximate surface leads to near optimal projections. We also
show the absolute relative error, (c) and (d), as described in Lemma 16. The
pessimism of the bound is clearly evident in the bottom left plot where the
values of |λ2(L(θθθ))−λ2(N(θθθ)−B(θθθ))|

λ2(L(θθθ)) appear very close to zero on the scale of the
theoretical bound.
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7 Experimental Results

In this section we evaluate the proposed method on a large collection of
benchmark datasets. We compare our approach with existing dimension
reduction methods for clustering, where the final clustering result is deter-
mined using spectral clustering. In addition we consider solving our problem
iteratively for a shrinking sequence of scaling parameters to find large mar-
gin separators, relying on the theoretical results presented in Section 5. We
compare these results with the iterative support vector regression approach
of Zhang et al. (2009)3, a state-of-the-art maximum margin clustering algo-
rithm.

We compare the different methods based on two popular evaluation met-
rics for clustering, namely purity (Zhao and Karypis, 2004) and V-measure
(Rosenberg and Hirschberg, 2007). Both metrics compare the label assign-
ments made by a clustering algorithm with the true class labels of the data.
They take values in [0,1] with larger values indicating a better agreement
between the two label sets, and hence a superior clustering result. Purity is
the weighted average of the largest proportion of each cluster which can be
represented by a single class. V-measure is defined as the harmonic mean of
measures of completeness and homogeneity. Homogeneity is similar to pu-
rity, in that it measures the extent to which each cluster may be represented
by a single class, but is given by the weighted average of the entropy of
the class distribution within each cluster. Completeness is symmetric to ho-
mogeneity, and measures the entropy of the cluster distribution within each
class. V-measure therefore also captures the extent to which classes are split
between clusters.

We will use the following notation throughout this section:

• SCP2 and SCnP2 refer to the proposed projection pursuits for minimis-
ing λ2(L(θθθ)) and λ2(Lnorm(θθθ)) respectively.

• LMSC refers to the proposed approach of finding large margin separa-
tors, based on repeatedly minimising λ2(L(θθθ)) for a shrinking sequence
of scaling parameters.

• Subscripts “o" and “c" indicate whether we use an orthogonal projection
(ω>0) or a correlated one (ω<0), respectively.

• SC and SCn refer to spectral clustering based on the eigen-decompositions
of L and Lnorm respectively.

• Subscripts “PCA" and “ICA" indicate principal and independent com-
ponent analysis projections respectively. For example, SCnPCA refers to

3We are grateful to Dr. Kai Zhang for supplying us with code to implement this method.
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spectral clustering using the normalised Laplacian applied to the data
projected into a principal component oriented subspace.

• DRSC abbreviates dimensionality reduction for spectral clustering, pro-
posed by Niu et al. (2011). This existing approach applies only to the
normalised Laplacian.

• iSVRL and iSVRG denote the iterative support vector regression ap-
proach for maximum margin clustering (Zhang et al., 2009), using the
linear and Gaussian kernels respectively.

7.1 Details of Implementation

To extend our approach to datasets containing multiple clusters, we sim-
ply recursively partition (subsets of) the dataset until the desired number of
clusters is obtained. We prefer this approach to the alternative of directly
seeking a projection which yields a full K way partition of the dataset, i.e.,
by minimising the sum of the first K eigenvalues of the Laplacians, as it is
not always clear that all the clusters present in the data can be exposed us-
ing a single projection of fixed dimension. At each iteration in this recursive
bi-partitioning we split the largest remaining cluster.

The scaling parameter and initialisation are set for each bi-partition, given
values determined by the subset of the data being partitioned. For the
fixed scaling parameter approaches, SCP2 and SCnP2, we set σ=

√
lλdN−1/5,

where l is the dimension of the projection, N is the size of the (subset of the)
data and λd is the largest eigenvalue of the covariance matrix. The value√

λd captures the scale of the data, while
√

l accounts for the fact that dis-
tances scale roughly with the square root of the dimension. The denominator
term, N−1/5, is borrowed from kernel density methods and we have found
it to work reasonably well for our applications as well. For the large mar-
gin approach, LMSC, σ is initialised at

√
lλdN−1/5 and decreased by a factor

of two with each minimisation of λ2(L(θθθ)), until convergence of the projec-
tion matrix. The initialisation of V(θθθ) is via the first l principal components.
For the orthogonal projections we use a two dimensional projection, as this
is the lowest dimensional space which can expose non-linear separation be-
tween clusters. For the correlated projections we provide a three dimensional
initialisation, and it was found that in most cases a high quality univariate
projection could be determined from this.

For the LMSC approach, because the values within the Laplacian matrix
approach zero, the optimisation becomes less robust, and we found that the
correlated approach did not always lead to large margin separation. We
believe this is as a result of the term controlling the correlation becoming
too dominant relative to the decreasing eigenvalue unless very careful tuning
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of ω is performed. We therefore consider a univariate projection instead of
the multivariate correlated approach in this case.

Recall that the parameter β controls the size of the constraint set ∆. It is
clear that smaller values of β will tend to lead to more balanced partitions, but
a precise interpretation of the resulting cluster sizes is unavailable. At best
bounds on the cluster sizes can be computed using Chebyshev’s inequality.
Rather than relying on these bounds, which may be loose and difficult to
interpret in multivariate projections, we recommend applying the proposed
method for a range of values of β and selecting the solution corresponding to
the largest value of β which induces a specified balance in the partition. We
define this balance to be satisfied if the smallest cluster size is at least half the
average, i.e., N/2K. In this way the effect of the constraint is limited while
still producing the desired result. We initialise with a large value of β and
decrease by 0.5 until the balance is met. If this balance is not met for β=0.5,
then the corresponding “unbalanced" result is returned anyway.

The parameter δ is set to min{0.01,σ2} and α to 0.1. We have found these
two parameters not to significantly influence the performance of the method.
It is important to note, however, that that parameter α controls the shape of
the similarity function, and as a result there is an interplay between this value
and the value of σ. For substantially larger values of α we expect a smaller
value of σ to be more appropriate.

For competing approaches based on spectral clustering we do the follow-
ing. Whenever the number of data exceeds 1000 we use the approximation
method of Yan et al. (2009). Following Niu et al. (2011), we set the reduced
dimension to K−1, where K is the number of clusters. We compute cluster-
ing results for all values of σ in {0.1,0.2,0.5,1,2,5,10,20,50, 100,200} as well
as for the local scaling approach of Zelnik-Manor and Perona (2004), and re-
port the highest performance in each case. For DRSC we also considered the
parameter setting used for our method, and to implement the local scalings
of Zelnik-Manor and Perona (2004) these were recomputed with each itera-
tion in the corresponding projected subspace. We also provided DRSC with
a warm start via PCA as this improved performance over a random initial-
isation, and offers a more fair comparison. Because of this extensive search
over scaling parameters we expect competing methods to achieve very high
performance whenever the corresponding dimension reduction is capable of
exposing the clusters in the data well.

For the iSVR maximum margin clustering method, we set the balancing
parameter equal to 0.3 as suggested by Zhang et al. (2009) when the cluster
sizes are not balanced. We argue that the balance of the clusters will not be
known in practice, and the unbalanced setting led to superior performance
compared with the balanced setting in the examples considered. The iSVR
approach also generates only a bi-partition, and to generate multiple clusters
we apply the same recursive approach as in our method.
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7.2 Clustering Results

The following benchmark datasets were used for comparison:

• Optical recognition of handwritten digits (Opt. Digits).4 5620 8×8 com-
pressed images of handwritten digits in {0,...,9}, resulting in 64 dimen-
sions with 10 classes.

• Pen based recognition of handwritten digits (Pen Digits).2 10992 ob-
servations, each corresponding to a stylus trajectory (x,y coordinates)
from a handwritten digit in {0,...,9}, i.e., 10 classes. The trajectories are
sampled at 8 time points, resulting in 16 dimensions.

• Satellite.2 6435 multispectral values from 3×3 pixel squares from satel-
lite images, which results in 36 dimensions. There are 6 classes corre-
sponding to different land types.

• Breast cancer Wisconsin (Br. Cancer).2 699 observations with 9 at-
tributes relating to tumour masses. There are 2 classes corresponding
to benign and malignant masses.

• Congressional votes (Voters).2 435 sets of 16 binary decisions on US
congressional ballots. The 2 classes correspond to political party mem-
bership.

• Dermatology.2 366 observations corresponding to dermatology patients,
each containing 34 dimensions derived from clinical and histopatho-
logical features. There are 6 classes corresponding to different skin
diseases.

• Yeast cell cycle analysis (Yeast).5 698 yeast genes across 72 conditions
(dimensions). There are 5 classes corresponding to different genotypes.

• Synthetic control chart (Chart).2 600 simulated time series of length 60
displaying one of 6 fundamental characteristics, leading to 6 classes.

• Multiple feature digits (M.F. Digits).2 2000 handwritted digits in {0,...,9}
taken from Dutch utility maps. Following Niu et al. (2011) we use only
the 216 profile correlation features.

• Statlog image segmentation (Image Seg.).2 2310 observations containing
19 features derived from 3×3 pixel squares from 7 outdoor images.
Each image constitutes a class.

4https://archive.ics.uci.edu/ml/datasets.html
5http://genome-www.stanford.edu/cellcycle/
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Table 3.1: Purity results for spectral clustering using the standard Laplacian, L. Average perfor-
mance from 30 runs on each dataset, with standard deviation as subscript. The highest average
performance in each case is highlighted in bold.

SCP2
o SCP2

c SCPCA SCICA SC

Opt. Digits 0.810.05 0.830.06 0.330.05 0.200.02 0.110.00

Pen Digits 0.780.01 0.760.01 0.640.02 0.530.03 0.620.03

Satellite 0.750.00 0.730.03 0.630.01 0.720.01 0.620.02

Br. Cancer 0.970.00 0.970.00 0.970.00 0.970.00 0.960.00

Voters 0.840.00 0.830.00 0.860.00 0.860.00 0.780.00

Dermatology 0.940.00 0.900.00 0.910.00 0.890.00 0.560.00

Yeast 0.750.00 0.740.00 0.670.00 0.620.00 0.600.00

Chart 0.840.00 0.830.00 0.720.06 0.650.07 0.560.05

M.F. Digits 0.830.02 0.790.02 0.530.03 0.340.03 0.310.04

Image Seg. 0.620.03 0.680.03 0.530.02 0.460.02 0.560.03

Before applying the clustering algorithms, data were rescaled so that ev-
ery feature had unit variance. This is a standard approach to handle situa-
tions where different features are captured on different scales and an appro-
priate rescaling is not obviously apparent from the context. For consistency
we used this same preprocessing approach for all datasets.

Spectral Clustering Using the Standard Laplacian

Tables 3.1 and 3.2 report the purity and V-measure respectively for the pro-
posed method and spectral clustering using the standard Laplacian applied
to the original data, as well as their projection into PCA and ICA oriented
subspaces. The tables report the average and standard deviation (as sub-
script) from 30 repetitions. The highest average performance for each dataset
is highlighted in bold. Both the orthogonal and correlated projection ap-
proaches achieve substantially higher performance than other methods in the
majority of cases. There are few cases where they are not competitive with the
best performing of the competing approaches, while there are mulitple exam-
ples where the proposed methods strongly outperform all others. The two
versions of the proposed method are closely comparable with one another
on average, with the correlated approach offering a slightly better worst case
comparison. This, however, does not appear highly significant beyond sam-
pling variation both within each dataset and with respect to the collection of
datasets used for comparison. What is evident is that the added flexibility of-
fered by multivariate projections does not result in a substantial improvement
over univariate projections, which induce linear cluster boundaries.
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Table 3.2: V-measure results for spectral clustering using the standard Laplacian, L. Average
performance from 30 runs on each dataset, with standard deviation as subscript. The highest
average performance in each case is highlighted in bold.

SCP2
o SCP2

c SCPCA SCICA SC

Opt. Digits 0.770.03 0.780.04 0.400.05 0.210.03 0.010.00

Pen Digits 0.750.01 0.740.02 0.660.01 0.540.03 0.640.02

Satellite 0.600.00 0.590.03 0.500.00 0.600.01 0.500.01

Br. Cancer 0.790.00 0.800.00 0.780.00 0.780.00 0.770.00

Voters 0.420.00 0.380.00 0.410.00 0.410.00 0.300.00

Dermatology 0.890.00 0.830.00 0.860.00 0.820.00 0.580.00

Yeast 0.540.00 0.540.00 0.510.00 0.400.00 0.410.00

Chart 0.770.00 0.770.00 0.810.02 0.730.04 0.700.02

M.F. Digits 0.760.01 0.730.02 0.560.02 0.360.05 0.380.05

Image Seg. 0.620.01 0.650.02 0.530.01 0.460.01 0.580.02

Spectral Clustering Using the Normalised Laplacian

Tables 3.3 and 3.4 report the purity and V-measure respectively for the pro-
posed approach based on minimising λ2(Lnorm(θθθ)), the dimensionality re-
duction for spectral clustering algorithm (Niu et al., 2011) and spectral clus-
tering based on the normalised Laplacian applied to the original data and
their PCA and ICA projections. Again the tables show the average and stan-
dard deviation from 30 runs of each method, with the highest average per-
formance on each dataset highlighted in bold.

The proposed approach using both correlated and orthogonal projections
is again competitive with all other methods in almost all cases considered.
In addition both versions of the proposed approach substantially outperform
the other methods in multiple examples. Unlike in the case of the standard
Laplacian, here there is evidence that the orthogonal projection achieves bet-
ter clustering results in general, outperforming the correlated approach in
the majority of examples.

Large Margin Clustering

It is important to note that the method described in Section 6 does not pro-
vide a close approximation as σ→0+. For the datasets containing more than
1000 data we use the microcluster approach for all values of σ and therefore
only guarantee a large separation between the microclusters. It is arguable
that this is a preferable objective as the maximum margin is not robust in
the presence of noise, and it is not clear that it converges in the general set-
ting (Ben-David et al., 2009). Microclusters have the potential to absorb some

91



Chapter 3. Projection Pursuit Based on Spectral Connectivity

Table 3.3: Purity results for spectral clustering using the normalised Laplacian, Lnorm. Average
performance from 30 runs on each dataset, with standard deviation as subscript. The highest
average performance in each case is highlighted in bold.

SCnP2
o SCnP2

c DRSC SCnPCA SCnICA SCn

Opt. Digits 0.810.05 0.740.06 0.800.03 0.660.03 0.640.01 0.660.02

Pen Digits 0.780.00 0.740.02 0.690.04 0.760.03 0.740.01 0.770.04

Satellite 0.750.00 0.740.03 0.730.01 0.760.01 0.730.02 0.740.01

Br. Cancer 0.970.00 0.970.00 0.960.00 0.970.00 0.970.00 0.970.00

Voters 0.850.00 0.840.00 0.860.00 0.860.00 0.860.00 0.850.00

Dermatology 0.860.00 0.910.00 0.870.00 0.920.02 0.910.00 0.950.00

Yeast 0.760.00 0.700.00 0.620.00 0.710.00 0.690.01 0.600.00

Chart 0.870.00 0.850.00 0.750.00 0.710.06 0.800.07 0.750.00

M.F. Digits 0.840.01 0.790.01 0.770.03 0.770.03 0.790.01 0.770.02

Image Seg. 0.660.01 0.700.01 0.650.04 0.610.03 0.550.02 0.620.02

Table 3.4: V-measure results for spectral clustering using the normalised Laplacian, Lnorm. Av-
erage performance from 30 runs on each dataset, with standard deviation as subscript. The
highest average performance in each case is highlighted in bold.

SCnP2
o SCnP2

c DRSC SCnPCA SCnICA SCn

Opt. Digits 0.770.03 0.720.04 0.750.02 0.620.02 0.600.01 0.620.01

Pen Digits 0.760.00 0.740.01 0.660.02 0.720.01 0.680.01 0.730.02

Satellite 0.610.01 0.600.03 0.570.01 0.620.01 0.600.05 0.600.01

Br. Cancer 0.790.00 0.810.00 0.760.00 0.810.00 0.810.00 0.790.00

Voters 0.420.00 0.410.00 0.420.00 0.410.00 0.410.00 0.420.00

Dermatology 0.850.00 0.860.00 0.800.00 0.860.02 0.830.00 0.910.00

Yeast 0.570.00 0.450.00 0.410.00 0.540.00 0.530.00 0.450.00

Chart 0.810.00 0.800.00 0.750.00 0.810.02 0.800.05 0.730.00

M.F. Digits 0.760.01 0.740.02 0.690.02 0.710.02 0.750.01 0.700.02

Image Seg. 0.650.01 0.680.01 0.620.04 0.600.02 0.460.02 0.600.02

92



7. Experimental Results

Table 3.5: Purity results for large margin clustering. Average performance from 30 runs on each
dataset, with standard deviation as subscript. The highest average performance in each case is
highlighted in bold.

LMSCo LMSC iSVRL iSVRG

Opt. Digits 0.740.05 0.690.05 0.760.00 0.610.01

Pen Digits 0.800.02 0.710.04 0.780.00 0.780.00

Satellite 0.750.01 0.720.03 0.680.00 0.680.00

Br. Cancer 0.960.00 0.970.00 0.900.00 0.950.00

Voters 0.840.00 0.840.00 0.810.00 0.840.00

Dermatology 0.860.00 0.860.00 0.800.00 0.800.00

Yeast 0.750.00 0.750.00 0.750.00 0.700.00

Chart 0.890.00 0.830.00 0.720.00 0.720.00

M.F. Digits 0.820.05 0.740.04 0.670.00 0.600.01

Image Seg. 0.600.04 0.650.03 0.640.00 0.660.01

of the noise in the data, and in the event that they are of roughly equal
density, maximising the margin over the microcluster centers has a similar
effect to that of minimising the empirical density in a neighbourhood of the
corresponding hyperplane separator. This is reminiscent of the soft-margin
approach which does enjoy strong convergence properties (Ben-David et al.,
2009). In addition, since the optimisation is reinitialised for each value of σ,
we are able to recompute the microclusters by performing the coarse clus-
tering on the projected data with each iteration. This tends to lead to the
margins in the microclusters being more closely related to the margins in the
full dataset along the optimal projections.

Tables 3.5 and 3.6 report the average and standard deviation of the pro-
posed LMSC as well as the iterative support vector regression approach (Zhang
et al., 2009) using both a linear and Gaussian kernel for comparison. Both
versions of LMSC, using an orthogonal two dimensional and a one dimen-
sional projection, outperform both versions of the iterative support vector
regression in the majority of cases, with substantially higher performance in
multiple examples. There is strong evidence that the two dimensional LMSCo
obtains better quality clustering results than the one dimensional alternative,
showing sunstantially higher performance in the vast majority of cases con-
sidered.

7.3 Summarising Clustering Performance

Thus far we have compared different approaches for standard and normalised
spectral clustering and for large margin clustering separately. These separate
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Table 3.6: V-measure results for large margin clustering. Average performance from 30 runs
on each dataset, with standard deviation as subscript. The highest average performance in each
case is highlighted in bold.

LMSCo LMSC iSVRL iSVRG

Opt. Digits 0.700.03 0.620.04 0.720.00 0.570.00

Pen Digits 0.760.02 0.660.03 0.720.01 0.730.00

Satellite 0.610.01 0.570.03 0.550.00 0.550.00

Br. Cancer 0.760.00 0.780.00 0.550.00 0.720.00

Voters 0.430.00 0.380.00 0.340.00 0.420.00

Dermatology 0.860.00 0.850.00 0.770.00 0.740.01

Yeast 0.560.00 0.580.00 0.550.01 0.530.00

Chart 0.850.00 0.780.00 0.660.00 0.720.00

M.F. Digits 0.750.03 0.690.03 0.600.00 0.620.01

Image Seg. 0.600.03 0.630.03 0.630.00 0.600.01

comparisons are important to understand the benefits of the proposed meth-
ods, however when considering the clustering problem abstractly it is nec-
essary to compare all methods jointly. It is already clear that no method is
uniformly superior to all others, since even within the separate comparisons
no method outperformed the rest in every example. We find it important to
reiterate the fact that for competing methods based on spectral clustering an
extensive search over scaling parameters was performed and the best perfor-
mance reported, whereas for our method only a simple data driven heuristic
was used in every example. Such a search is not possible in practice since the
true lables will not be known, and hence the results reported for these meth-
ods likely overestimate their true expected performance in practice. What
was evident, however, is that the local scaling approach of Zelnik-Manor
and Perona (2004) is very effective and yielded the highest performance in
roughly half the cases considered.

It is clearly apparent from the performance of the various methods that
the clustering problem differs vastly in difficulty across the different datasets
considered. To combine the results from the different datasets we standardise
them as follows. For each dataset D we compute for each method the relative
deviation from the average performance of all methods when applied to D.
That is, for each method Mi we compute the relative purity,

Rel.Purity(Mi,D)=
Purity(Mi,D)− 1

#Methods ∑#Methods
j=1 Purity(Mj,D)

1
#Methods ∑#Methods

j=1 Purity(Mj,D)
, (3.31)

and similarly for V-measure. We can then compare the distributions of the
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relative performance measures from all datasets and for all methods. It is
clear from Table 3.1 that the competing methods SC, SCPCA and SCICA are not
competitive with other methods in general, due to their vastly inferior per-
formance on multiple datasets. Moreover, their performance is sufficiently
low to obscure the comparisons between others. These three methods are
therefore omitted from this comparison. Figures 3.5 and 3.6 show boxplots
of the relative performance measures for all other methods. The additional
red dots indicate the mean relative performance measures for each method,
and methods are ordered in decreasing order of their means. In the case
of purity, all of the proposed methods outperform every method used for
comparison, and except for the univariate large margin method, LMSC, the
difference between the proposed methods and the methods used for compar-
ison is substantial. In the case of V-measure, the same is true except that
in this case LMSC is outperformed on average by spectral clustering using
the normalised Laplacian applied to the PCA projected data. Notice that
the most relevant comparison for LMSC is with iSVRL because of their sim-
ilar objectives. In terms of both purity and V-measure, LMSC significantly
outperformed the existing large margin clustering method.

Among the methods used for comparison, it is evident that spectral clus-
tering is capable of outperforming existing large margin clustering methods,
provided an appropriate scaling parameter can be determined. Of those spec-
tral clustering variants, PCA projections showed the best overall performance.
While the DRSC method (Niu et al., 2011) in some cases showed a substantial
improvement over the simpler dimension reduction of PCA, it did not yield
consistently higher performance on the datasets considered.

Overall it is apparent that the proposed approach for projection pursuit
based on spectral connectivity is highly competitive with existing dimension
reduction methods. Moreover, a simple data driven heuristic allowed us to
select the important scaling parameter automotically without tuning it for
each dataset, as is recommended for the DRSC method (Niu et al., 2011).
Among the variants of the proposed approaches, it is evident that while the
flexibility of the multivariate projections offered higher performance on aver-
age than the corresponding univariate projections, it is only in the case of the
large margin separation methods that this improvement is significant beyond
the variation from the collection of datasets used for comparison.

7.4 Sensitivity Analysis

In this subsection we investigate the sensitivity of the proposed approach to
the setting of the important scaling parameter, σ. In addition we consider the
effect on performance of the number of microclusters used in approximat-
ing the optimisation surface. For the former we consider the breast cancer,
voters, dermatology, yeast and chart datasets as these exhibited very low vari-
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Fig. 3.5: Box plots of relative purity with additional red dots to indicate means. Methods are
ordered with decreasing mean value.
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ability in performance and offer more interpretable comparisons. Figures 3.7
and 3.8 show plots of the purity and V-measure values for σ taking values in
{0.1σ0,0.2σ0,0.5σ0,σ0,2σ0,5σ0,10σ0}, where σ0=

√
lλdN−1/5 is the value used

in the experiments above. There is some variability in the performance for
different values, with no clear pattern inditcating that a higher or lower value
than the one used is better in general. Importantly there are very few oc-
curences of substantially poorer performance than that obtained with our
simply chosen heuristic, and also it is clear that in the majority of cases per-
formance could be improved from what is reported above if an appropriate
tuning of σ is possible.

To investigate the effect of microclusters on clustering accuracy we simu-
lated datasets from Gaussian mixtures containing 5 components (clusters) in
50 dimensions. This allows us to generate datasets of any desired size. For
these experiments 30 sets of parameters for the Gaussian mixtures were gen-
erated randomly. In the first case a single dataset of size 1000 was simulated
from each set of parameters, and clustering solutions obtained for a num-
ber of microclusters, K, ranging from 100 to 1000, the final value therefore
applying no approximation. Figure 3.9 shows the median and interquartile
range of both performance measures for 10 values of K. It is evident that
aside from K=100, performance is similar for all other values, and so using a
small value, say K=200, should be sufficient to obtain a good approximation
of the underlying optimisation surface.

In the second, we fix the number of microclusters, K=200, and for each
set of parameters simulate datasets with between 1000 and 10 000 observa-
tions. In the most extreme case, therefore, the number of microclusters is only
2% of the total number of data. Figure 3.10 shows the corresponding perfor-
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Fig. 3.6: Box plots of relative V-measure with additional red dots to indicate means. Methods
are ordered with decreasing mean value.
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Fig. 3.7: Sensitivity analysis for varying σ. Standard Laplacian. The x-axis contains the multipli-
cation factor applied to the default scaling parameter used in the experiments.
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mance plots, again containing the medians and interquartile ranges. Even
for datasets of size 10 000, the coarse approximation of the dataset through
200 microclusters is sufficient to obtain a high quality projection using the
proposed approach.
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Fig. 3.8: Sensitivity analysis for varying σ. Normalised Laplacian. The x-axis contains the
multiplication factor applied to the default scaling parameter used in the experiments.
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8 Conclusions

We proposed a projection pursuit method for finding the optimal subspace
in which to perform a binary partition of unlabelled data. The proposed
method optimises the separability of the projected data, as measured by spec-
tral graph theory, by minimising the second smallest eigenvalue of the graph
Laplacians. The Lipschitz continuity and differentiability properties of this
projection index with respect to the projection matrix were established, which
enabled us to apply a generalised gradient descent method to find locally
optimal solutions. Compared with existing dimension reduction for spectral
clustering, we derive expressions for the gradient of the overall objective and
so find solutions within a single generalised gradient descent scheme, with
guaranteed convergence to a local optimum. Our experiments suggest that
the proposed method substantially outperforms spectral clustering applied
to the original data as well as existing dimensionality reduction methods for
spectral clustering.

A connection to maximal margin hyperplanes was established, showing
that in the univariate case, as the scaling parameter of the similarity function
is reduced towards zero, the binary partition of the projected data maximises
the linear separability between the two clusters. Implementing our method
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Fig. 3.9: Sensitivity analysis for varying number of microclusters, K. Plots show median and
interquartile ranges of performance measures from 30 datasets simulated from 50 dimensional
Gaussian mixtures with 5 clusters and 1000 observations.
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for a shrinking sequence of scaling parameters thus allows us to find large
margin separators practically. We found that this approach outperforms state
of the art methods for maximum margin clustering on a large collection of
datasets.

The computational cost of the proposed projection pursuit method per
iteration is O(N(N+d(d−1))), where N is the number of observations, and
d is the dimensionality, which can become prohibitive for large datasets. To
ameliorate this an approximation method using microclusters, with provable
error bounds is proposed. Our sensitivity analysis, based on clustering per-
formance, indicates that even for relatively few microclusters, the approxima-
tion of the optimisation surface is adequate for finding high quality subspaces
for clustering.
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Fig. 3.10: Sensitivity analysis for fixed number of microclusters, K=200, and varying number
of data. Plots show median and interquartile ranges of performance measures from datasets
simulated from 50 dimensional Gaussian mixtures with 5 clusters and between 1000 and 10 000
observations.
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Appendix. Derivatives

In the general case we may consider a set of K microclusters with centers
c1, ...,cK and counts n1, ...,nK. The derivations we provide in this appendix
are valid for ni=1 ∀i∈{1, . . . ,K}, and so apply to the exact formulation of
the problem as well. Let θθθ∈Θ and let P be the repeated projected clus-
ter centers, P={p1, , p1, ...pK, pK}={V(θθθ)>c1, ,V(θθθ)>c1, . . . , V(θθθ)>cK}, where
each V(θθθ)>ci is repeated ni times. In Section 4 we expressed Dθθθλ via the
chain rule decomposition DPλDvPDθθθv. The compression of P to the size K
non-repeated projected set, PC={p1, ..., pK}, requires a slight restructuring,
as described in Section 6.

We begin with the standard Laplacian, and define N(θθθ) and B(θθθ) as in
Lemma 15. That is, N(θθθ) is the diagonal matrix with i-th diagonal element
equal to ∑K

j=1 njs(PC, i, j) and B(θθθ)i,j=
√ninjs(PC, i, j). The derivative of the
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second eigenvalue of the Laplacian of P relies on the corresponding eigen-
vector, u. However, this vector is not explicitly available as we only solve
the K×K eigen-problem of N(θθθ)−B(θθθ). Let uC be the second eigenvector of
N(θθθ)−B(θθθ). As in the proof of Lemma 15 if i, j are such that the i-th element
of P corresponds to the j-th microcluster, then uC

j =
√njui. The derivative of

λ2(N(θθθ)−B(θθθ)) with respect to the i-th column of θθθ, and thus equivalently
of the second eigenvalue of the Laplacian of P, is therefore given by

1
2

∑
j,k

(
uC

j
√nj
−

uC
k√
nk

)2

njnk
∂s(PC, j,k)

∂Pi1
. . . ∑

j,k

(
uC

j
√nj
−

uC
k√
nk

)2

njnk
∂s(PC, j,k)

∂PiK


(

c1 . . . cK

)>
Dθθθi

Vi,

(3.32)

where (c1 . . . cK) is the matrix with i-th column ci, P is treated as a l×N ma-
trix with i-th column pi, and Dθθθi

Vi is given in Eq. (3.17). Now, the use of the
constraint set ∆θθθ and the associated transformation makes a further decom-
position convenient. Let T={t1, ...,tk}={T∆θθθ

(p1), . . . ,T∆θθθ
(pK)}. We provide

expressions for the specific constraint sets used, i.e., ∆θθθ =∏l
i=1[µθθθi

−βσθθθi
,µθθθi

+

βσθθθi
], where µθθθi

= 1
N ∑K

j=1 njPij and σθθθi
is approximated by

√
1
N ∑K

j=1 nj(Pij−µθθθi
)2.

For ease of exposition we assume that each µθθθi
is equal to zero, noting that no

generality is lost through this simplification since the value of the eigenvalue
of the Laplacian is location independent. The data can therefore be centered
prior to projection pursuit and the following formulation employed. We can
then express the first component of (3.32) as DTi λDPC

i
Ti, where

DTi λ=
1
2

∑
j,k

(
uC

j
√nj
−

uC
k√
nk

)2

njnk

∂k
( ‖tj−tk‖

σ

)
∂Ti1

...

... ∑
j,k

(
uC

j
√nj
−

uC
k√
nk

)2

njnk

∂k
( ‖tj−tk‖

σ

)
∂TiK

 (3.33)
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and DPC
i

Ti is the K×K matrix with

(DPC
i

Ti)j 6=k=


δ(1−δ)βnk Pik/Nσθθθi

(−βσθθθi
−Pij+(δ(1−δ))1/δ)δ , Pij<−βσθθθi

βnk Pik
Nσθθθi

, −βσθθθi
≤Pij≤βσθθθi

2βnk Pik
Nσθθθi

−
δ(1−δ)βnk Pik/Nσθθθi

(Pij−βσθθθi
+(δ(1−δ))1/δ)δ , Pij>βσθθθi

(3.34)

(DPC
i

Ti)jj=


δ(1−δ)(1+βnjPij/Nσθθθi

)

(−βσθθθi
−Pij+(δ(1−δ))1/δ)δ , Pij<−βσθθθi

1+
βnjPij
Nσθθθi

, −βσθθθi
≤Pij≤βσθθθi

2βnjPij
Nσθθθi

+
δ(1−δ)(1−βnjPij/Nσθθθi

)

(Pij−βσθθθi
+(δ(1−δ))1/δ)δ , Pij>βσθθθi

.

(3.35)

In the above we have used the lower case tj to denote the j-th element of
the transformed projected dataset, where the upper case Tij denotes the ij-th
element of the l×N matrix with j-th column equal to tj. The benefit of this
further decomposition lies in the fact that the majority of terms in the sums
in (3.33) are zero. In fact,

1
2 ∑

j,k

(
uC

j
√nj
−

uC
k√
nk

)
njnk

∂k
( ‖tj−tk‖

σ

)
∂Tim

= ∑
j 6=m

(
uC

j
√nj
− uC

m√
nm

)
njnm

∂k
( ‖tj−tm‖

σ

)
∂Tim

,

(3.36)
where for the function given in Eq. (3.30) we have,

∂k
( ‖tj−tm‖

σ

)
∂Tim

=
Tij−Tim

σ2α

(‖tj− tm‖
σα

+1
)α−1

exp
(‖tj− tm‖

σ

)
. (3.37)

For the normalised Laplacian, the reduced K×K eigenproblem has precisely
the same form as the original N×N problem, with the only difference being
the introduction of the factors njnk. In particular, the second eigenvalue of the
normalised Laplacian of P is equal to the second eigenvalue of the Laplacian
of the graph of PC with similarities given by njnks(PC, j,k). With the deriva-
tion in Section 4 we can see that the corresponding derivative is as for the
standard Laplacian, except that the coefficients (uC

j /√nj−uC
k /
√

nk)
2njnk in

Eq. (3.36) are replaced with (uC
j /
√

dj−uC
k /
√

dk)
2−λ((uC

j )
2/dj+(uC

k )
2/dk),

where λ is the second eigenvalue of the normalised Laplacian of PC, uC is
the corresponding eigenvector and dj is the degree of the j-th element of PC.
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B. Semi-supervised Spectral
Connectivity Projection
Pursuit

Abstract

We propose a projection pursuit method based on semi-supervised spectral connec-
tivity. The projection index is given by the second eigenvalue of the graph Laplacian
of the projected data. An incomplete label set is used to modify pairwise similarities
between data in such a way that penalises projections which do not admit a separa-
tion of the classes (within the training data). We show that the global optimum of the
proposed problem converges to the Transductive Support Vector Machine solution, as
the scaling parameter is reduced to zero. We evaluate the performance of the proposed
method on benchmark data sets.

1 Introduction

Projection pursuit is a data driven optimisation problem, defined as follows.
For a data set X={x1, ...,xN} in Rd, optimise over the set of unit-norm vec-
tors, {v∈Rd

∣∣‖v‖=1}, a predefined measure of quality of the projected data
set, v ·X={v ·x1, ...,v ·xN}. These unit-norm vectors are referred to as projec-
tion vectors, or simply projections, and the measured quality of the projected
data set is referred to as the projection index.

Semi-supervised classification refers to the construction of a classifier, i.e.,
a map from the data space to a set of class labels, using a set of “training" data
whose true class labels are known as well as a set of “test" data whose labels
are to be inferred from the classifier. In supervised classification, on the other
hand, only the training data and associated labels are used in the construction
of the classifier. In using a classifier for class prediction there is an implicit
assumption that the distribution of the test data resemble somewhat that of
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the training data, and therefore utilising spatial distribution information of
the test data might be useful in better predicting their class memberships.

There are numerous approaches to the problem of semi-supervised clas-
sification, see Chapelle et al. (2006b) for a recent review of standard methods.
Underlying many of these methods is the so-called cluster assumption; that
different classes manifest single clusters, and so can be separated by data
sparse regions. Of these methods, arguably the most popular are those based
on Transductive Support Vector Machines (TSVMs). The original TSVM
problem (Vapnik and Sterin, 1977) is formulated as follows. Given labelled
data X L={x1, ...,xl} with labels YL∈{−1,+1}l and unlabelled data XU =
{xl+1, ...,xl+u}, find YU∈{−1,+1}u s.t. a Support Vector Machine (SVM)
classifier trained on X L∪XU ,YL∪YU achieves the largest margin. This is a
combinatorial problem and difficult to solve for any reasonably sized data
set. Approximations based on local search heuristics (Joachims, 1999) or con-
tinuous relaxations are solved instead (Chapelle et al., 2006a), but these are
highly susceptible to local optima.

Accepting the cluster assumption leads us to consider semi-supervised
methodology that is consistent with popular notions of clusterability. Spec-
tral clustering has become increasingly popular due to its strong performance
in a variety of application areas (von Luxburg, 2007). In spectral clustering,
clusters are defined as strongly connected components of a graph defined
over the data in which edge weights assume values equal to the similarity
between the adjacent vertices. A continuous relaxation of the minimum ratio
cut problem is solved, using the eigenvectors of the graph Laplacian matrix.
Recently a projection pursuit method for learning the projection along which
a set of data are minimally connected under this cluster definition was pro-
posed (Hofmeyr et al., 2015). The authors show that the projection along
which the data are minimally connected converges to the vector normal to
the largest margin hyperplane through the data, as the scaling parameter is
reduced to zero. In this paper we extend this work to include partial supervi-
sion via an incomplete set of labels, as in semi-supervised classification. We
show that if the labels are incorporated in a specific way, then the convergence
result of Hofmeyr et al. (2015) extends to the semi-supervised setting, i.e., the
optimal projection for semi-supervised spectral connectivity converges to the
vector normal to the optimal TSVM hyperplane. This establishes an asymp-
totic connection between our proposed method and popular semi-supervised
classification methods.

The Remainder of this paper is organised as follows. In Section 2 we
give a brief introduction to spectral clustering. In Section 3 we introduce the
proposed methodology. We provide experimental results in Section 4 and
give some concluding remarks in Section 5.
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2 Spectral Clustering

In this section we give a very brief introduction to spectral clustering, with
particular attention to binary partitioning. For a thorough introduction, the
reader is directed to von Luxburg (2007). Let X={x1, ...,xN} be a given data
set. The ratio cut problem is defined as follows,

min
C⊂X

∑
i,j:xi∈C

xj 6∈C

similarity(xi,xj)

(
1
|C|+

1
|X\C|

)
, (3.38)

where | · | is the cardinality operator. The similarity between two points is
generally determined by a non-negative, decreasing function, k :R→R+, of
the distance between them. The above problem can be formulated in terms
of the Laplacian matrix, L :=D−A, where A is the affinity matrix, with Aij=
similarity(xi,xj), and the diagonal matrix D is called the degree matrix, with
Dii=∑N

j=1 Aij. For C⊂X define the vector f C∈RN such that,

f C
i =

{ √
|X\C|/|C|, xi∈C
−
√
|C|/|X\C|, x 6∈C.

(3.39)

Then (3.38) can be written as,

min
C⊂X

f C ·L f C s.t. f C⊥1,‖ f C‖=
√

N. (3.40)

The above problem is NP-hard (Wagner and Wagner, 1993), and so instead
a continuous relaxation, in which the discreteness condition on the vector
f C (3.39) is relaxed, is solved instead. The solution to the relaxed prob-
lem is given by the second eigenvector of L. The second eigenvalue there-
fore provides a lower bound for the normalised aggregated similarities from
pairs of data belonging to different elements of the optimal partition, arising
from the solution to (3.38). While the optimal solution to the relaxed prob-
lem can induce partitions which are arbitrarily far from the optimal solution
to (3.40) (Guattery and Miller, 1998), in many practical applications the so-
lutions tend to be similar. Furthermore, in the univariate case the resulting
partition tends to be very similar to the true optimum. Obtaining the projec-
tion which minimises the second eigenvalue of the Laplacian therefore tends
to result in projections along which the optimal partition arising from (3.38)
is loosely connected, i.e., the elements of the partition are well separated.

3 Methodology

In this section we provide details for how to find locally optimal projections
for bi-partitioning based on semi-supervised spectral clustering. We formu-
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late the problem as a projection pursuit, where the projection index is given
by the second eigenvalue of the Laplacian of the projected data. We assume
we have a set of N data, l of which have labels in {−1,+1} which define their
class membership, and u=N− l are unlabelled.

Following the method of Hofmeyr et al. (2015) we formulate the projection
vectors in terms of their polar coordinates. Let Θ=[0,π)d−2× [0,2π) and for
θθθ∈Θ, define the projection vector v(θθθ) by,

v(θθθ)i=

 cos(θθθi)∏i−1
j=1 sin(θθθ j), i=1, . . . ,d−1

∏d−1
j=1 sin(θθθ j), i=d.

(3.41)

We will use the following notation. For θθθ∈Θ, we write L(θθθ) for the Laplacian
of the projected data set P(θθθ) :=v(θθθ) ·X, and λ2(θθθ) for the second eigenvalue
of L(θθθ). If the similarities between pairs of projected data are Lipschitz and
continuously differentiable functions of θθθ, then λ2(θθθ) is Lipschitz and contin-
uously differentiable almost everywhere (Hofmeyr et al., 2015). This allows
us to find local optima via generalised gradient descent. The derivative of
λ2(θθθ) with respect to θθθ can be decomposed using the chain rule into the
product DP(θθθ)λ2(θθθ)Dv(θθθ)P(θθθ)Dθθθv(θθθ), where D·· is the differential operator.
Derivations of the following can be found in Hofmeyr et al. (2015). If λ2(θθθ)
is a simple eigenvalue, then

∂λ2(θθθ)

∂P(θθθ)k
=

1
2 ∑

ij
(ui−uj)

2 ∂A(θθθ)ij

∂P(θθθ)k
, (3.42)

where A(θθθ) is the affinity matrix of the projected data set.
The matrix Dv(θθθ)P(θθθ)∈RN×d has i-th row x>i , and the matrix Dθθθv(θθθ)∈

Rd×(d−1) has i, j-th element,

∂v(θθθ)i
∂θθθ j

=


0, i< j
−sin(θθθ j)∏

j−1
k=1 sin(θθθk), i= j<d

cos(θθθ j)cos(θθθi)∏k<i,k 6=j sin(θθθk), j< i<d

cos(θθθ j)∏k 6=j sin(θθθk), i=d.

(3.43)

What remains is to address the similarity function. Within spectral clustering,
pairwise similarities between data are defined by a decreasing function of the
distance between them. That is, similarity(xi,xj)=k(d(xi,xj)), where k :R+→
R+ is decreasing and d(·, ·) is a metric. The function k often takes the form
of a kernel, and we use the Gaussian kernel, given by

k(x)=exp
(
− x2

2

)
. (3.44)
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Controlling the balance of the partition, i.e., the relative sizes of the resulting
clusters, is an important feature in semi-supervised classification (Chapelle
et al., 2006b). We control this balance in the same way as in Hofmeyr et al.
(2015) within the metric d(·, ·). In particular, for a univariate data set P,

d(Pi,Pj) :=
|T(Pi)−T(Pj)|

σ
, (3.45)

where σ>0 is the scaling parameter, and the function T is used to decrease
the distance between points lying outside a chosen interval [m, M] and other
points, to induce more balanced splits.

T(x) :=



−δ
(

m−x+(δ(1−δ))
1
δ

)1−δ

+ δ(δ(1−δ))
1−δ

δ , x<m
x−m, x∈ [m, M]

δ
(

x−M+(δ(1−δ))
1
δ

)1−δ

− δ(δ(1−δ))
1−δ

δ , x>M

(3.46)

We set m=µP−βσP and M=µP+βσP, where µP and σP are the mean and
standard deviation of P respectively and β is used to control the width of
the interval [m, M]. See Hofmeyr et al. (2015) for details on the effect of the
function T. The parameter δ takes values in (0,0.5], with smaller values in-
creasing the similarity of points outside [m, M] with other points to a greater
degree. The value of this parameter does not play a huge role in perfor-
mance (Hofmeyr et al., 2015).

So far we have not discussed how we incorporate label information into
this framework. The ratio cut is inherently a connectivity based partition-
ing method, and though the spectral clustering solution is a relaxation, its
behaviour mimics this connectivity property. We wish to use these labels to
modify the pairwise similarities in such a way that projections which do not
admit a separation of the (known) classes are penalised. By this we mean
projections for which ∃i, j s.t. yi=+1,yj=−1 but P(θθθ)i<P(θθθ)j, i.e., the posi-
tive labelled projections do not all lie above all negative labelled projections.
This can be achieved by ensuring that along any such projection there is a
chain of high pairwise similarities connecting the entire projected data set,
as follows. For brevity we temporarily drop the notational dependence on θθθ.
Define,

Aij=


k(d(Pi,Pj)), xi,xj∈XU

k(d(Pi,Pj))+
(
(Pi−Pj)

+
)1+ε , yi=−1,yj 6=−1

k(d(Pi,Pj))+
(
(Pj−Pi)

+
)1+ε , yi=+1,yj 6=+1

H, yi=yj,

(3.47)
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where (x)+=max{0,x} and H≥1 is a chosen constant which affects the in-
fluence of the known labels. We use yi 6=+1 (resp. yi 6=−1) to mean that
yi=−1 or xi is unlabelled (resp. yi=+1 or xi is unlabelled). The exponent
1+ε, where ε is some small positive number, ensures continuous differen-
tiability of the associated additions while having a practical influence much
like the hinge loss function. We’ll refer to these additions as penalties. With
the above formulation we can derive expressions for ∂Aij/∂Pk for all i, j,k. If
xi,xj∈XU then,

∂Aij

∂Pk
=

∂Aij

∂T(Pj)

∂T(Pj)

∂Pk
=

∂k(d(Pi,Pj))

∂T(Pj)

∂T(Pj)

∂Pk

=
T(Pi)−T(Pj)

σ2 exp

(
−

d(Pi,Pj)
2

2

)
∂T(Pj)

∂Pk
.

If yi=+1,yj 6=+1, then if Pi>Pj we have the same formulation as above. Oth-
erwise,

∂Aij

∂Pk
=

∂k(d(Pi ,Pj))

∂T(Pj)

∂T(Pj)

∂Pk
+

∂(Pj−Pi)
1+ε

∂Pk

∂(Pj−Pi)
1+ε

∂Pk
=


(1+ε)(Pj−Pi)

ε, k= j

−(1+ε)(Pj−Pi)
ε, k= i

0, otherwise.

The formulation for yi=−1,yj 6=−1 is analogous. Finally, for j 6=k

∂T(Pj)

∂Pk
=



−
δ(1−δ)(1− β(Pk−µP)(N−1)

NσP
)

N(µP−βσP−Pj+(δ(1−δ))1/δ)δ , Pj<m

1
N

(
β(Pk−µP)(N−1)

NσP
−1
)

, m≤Pj≤M

δ(1−δ)(1− β(Pk−µP)(N−1)
NσP

)

N(Pj−µP−βσP+(δ(1−δ))1/δ)δ

+ 2β(Pk−µP)(N−1)
N2σP

, Pj>M,

and if j=k,

∂T(Pj)

∂Pj
=



−
δ(1−δ)(1−N−

β(Pj−µP)(N−1)
NσP

)

N(µP−βσP−Pj+(δ(1−δ))1/δ)δ , Pj<m

1− 1
N

(
β(Pj−µP)(N−1)

NσP
−1
)

, M≤Pj≤M

δ(1−δ)(N−1−
β(Pj−µP)(N−1)

NσP
)

N(Pj−µP−βσP+δ(1−δ))δ

+
2β(Pj−µP)(N−nj)

N2σP
, Pj>M.
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Fig. 3.11: Two projections, one admitting a separation of the classes (Left) and the other not
(Right).

+’s and -’s indicate labelled data, while unlabelled data are indicated by ◦’s. The horizontal

arrow represents the projection direction. Vertical arrows indicate the maximum projected

datum from class −1, say p−, and the minimum projected datum from class +, p+. The red

and blue lines indicate the penalties induced by these two projections. Each unlabelled datum

is connected to either p− or p+ by the maximum of these two lines. In the right panel, the

minimum of the maximum of these two lines is indicated by the horizontal dashed line, say

with value α>0. The points p− and p+ are also connected by at least this value, and are

connected to their respective classes with similarity H. There is therefore a chain connecting all

data with minimum similarity min{α, H}. In the left panel, partitioning the data above/below

the vertical dashed line leads to a ratio cut with no penalties included.

We can thus evaluate the derivative of λ2(θθθ) with respect to θθθ provided it
is simple. We use the non-smooth optimisation method described in Hofmeyr
et al. (2015) to find locally optimal solutions, which alternates between a naive
application of gradient descent, in which the simplicity of λ2(θθθ) is assumed
to hold everywhere, and a descent step based on the directional derivative
of λ2(θθθ) when it is not simple. We found that the directional step was not
required in any of our experiments, and so omit its formulation. Interested
readers are referred to the paper (Hofmeyr et al., 2015).

While it is perhaps counterintuitive to increase the similarity between data
known to belong to different classes, as in (3.47), this formulation ensures
that projections which do not admit a separation of the known classes are
penalised, while those which do admit such a separation allow for partitions
which do not include any of the penalised similarities in the ratio cut com-
putation. Figure 3.11 illustrates this fact. The following lemma shows that
projections admitting a separation of the classes have a lower spectral con-
nectivity than those which do not, for small values of the scaling parameter
σ.
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Lemma 17 Let k be non-increasing, Lipschitz and satisfy k(x)∈o(x−(1+ε)) as x→
∞. Let θθθ1 be such that min{P(θθθ1)i|yi=+1}>max{P(θθθ1)j|yj=−1}. Then ∃σ′>0
s.t. for any 0<σ<σ′ and θθθ2 s.t. min{P(θθθ2)i|yi=+1}≤max{P(θθθ2)j|yj=−1} we
have λ2(θθθ1)<λ2(θθθ2).

We see then that the formulation given in (3.47) does indeed induce a
penalty, and the penalty forces the optimal solution to admit a separation of
the classes if σ is small enough, assuming that the classes can be separated.
We can extend the above result to show that the optimal projection converges
to the vector normal to the TSVM solution, as σ→0+. We discuss the result
in the context of a constrained solution, i.e., one which induces a balanced
partition by intersecting a scaled covariance ellipsoid. The result holds for all
values of β, and so setting β arbitrarily large proves the result relative to the
original TSVM problem.

Lemma 18 Suppose ∃v∈Rd,b∈R s.t. yi(v ·xi−b)>0 for all i∈{1, . . . , l}. Let
k :R+→R+ satisfy the following:

1. k is non-increasing

2. k is Lipschitz

3. limx→∞ k(x+ε)/k(x)=0 for all ε>0

4. k(x)∈o(x−(1+ε)) as x→∞.

For σ,δ>0 define θθθσ,δ=argminθθθ∈Θλ2(θθθ,σ,δ), where λ2(θθθ,σ,δ) is the same as λ2(θθθ)
from before but with an explicit dependence on σ and δ. Let (v?,b?) define the
largest margin hyperplane which correctly classifies all labelled data and satisfies
m̄<b?< M̄, where m̄ lies halfway between µv? ·X−βσv? ·X and the smallest element
of P(θθθ?) above µv? ·X−βσv? ·X and similarly M̄ lies halfway between µv? ·X+βσv? ·X
and the largest element of P(θθθ?) below µv? ·X+βσv? ·X . Then,

lim
σ,δ→0+

v(θθθσ,δ)=v?

The distinction between m̄ and µv? ·X−βσv? ·X , and analogously for M̄, is not
of much practical concern, but is important for proving the associated theory.
The reader may refer to Hofmeyr et al. (2015) for additional discussion.

3.1 Computational Complexity

It is clear to see that the proposed method has the same computational com-
plexity as the corresponding unsupervised projection pursuit given by Hofmeyr
et al. (2015), since the difference between the semi-supervised approach de-
scribed herein and the unsupervised problem lies only in the modification
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of pairwise similarities, which does not affect the computational complexity.
Hofmeyr et al. (2015) have shown the the computational cost for each evalu-
ation of the projection index is O(N(N+d)), and each gradient computation
has complexity O(N(N+d(d−1))). The total complexity of the method is
therefore O(N(N+d(d−1))t), where t is the number of steps in the gradient
descent.

4 Experiments

In this section we evaluate the performance of the proposed method, which
we will refer to as Semi-Supvervised Spectral Connectivity Projection Pur-
suit (S3CP2), on classification data sets taken from the UCI Machine Learning
Repository (UCIMLR).6 and benchmark data sets for semi-supervised classi-
fication.7 For each UCIMLR data set we generated 30 sets of labels, 10 for
each of the sizes 2%, 10% and 25% the total number of data. The label sets
were generated uniformly at random, however sets which did not contain
at least one label from each class were rejected and replaced with another.
For the data sets taken from Chapelle et al. (2006b) we used the same 24 label
sets, 12 for each of 10 and 100 labels. The UCIMLR data sets considered were:
Mammographic Mass (Mam.): Distinguish benign from malignant masses
found during mammography screening. Voters (Vote.): Determine political
party affiliation from votes made by US congress members. Breast Cancer
(Canc.): Distinguish benign from malignant tumour masses, given physical
characteristics. Ionosphere (Iono.): Distinguish radio signals which show ev-
idence of structure in the ionosphere from those which don’t. Parkinsons
(Park.): A range of biomedical voice measurements used to determine the
presence of Parkinson’s disease. The data sets taken from Chapelle et al.
(2006b) were: g241c: A mixture of 2 Gaussian distributions for which the
cluster assumption holds. g241d: A 4 component Gaussian mixture in which
cluster structure is misleading for class membership. Digit1: Artificially gen-
erated images of the digit “1" varied by translation, ratation, line thickness
and length, obscured to increase difficulty. Class boundary at the 0 rotation
angle. The cluster assumption holds. USPS: U.S. Postal Service handwritten
digits. Digits “2" and “5" form class +1 with the remaining digits form-
ing class −1. The images are obscured using the same transformation as
for Digit1. BCI: A brain-computer interface experiment in which a subject
imagined movements with their right, class +1, and left hand, class −1. The
features are EEG readings taken during the experiment.

6M. Lichman. UCI Machine Learning Respository http://archive.ics.uci.edu/ml. Irvine,
CA. University of California, School of Information and Computer Science. 2013

7A selection of data sets used in Chapelle et al. (2006b)
http://olivier.chapelle.cc/ssl-book/benchmarks.html.
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We compare performance with a standard SVM8 trained only on the la-
belled data, and Semi-Supervised SVM (S3VM)9. We use the linear kernel for
SVM and S3VM since this provides the most meaningful comparison with
our proposed method. Non-linear separators are possible for our method
by an explicit embedding of the data within the kernel space, as in Chapelle
et al. (2006a). For SVM we use the default parameters given in the package.
For S3VM we initialised using SVM and built classifiers for each of 5 values of
C?, which determines the penalty for the unlabelled data violating the large
margin, in each experiment using the UCIMLR data sets. We then report the
highest average performance of those 5 for each case. For the data sets aris-
ing from Chapelle et al. (2006b) we use the results presented there. For S3CP2

we initialise the projection pursuit using the SVM solution. For the UCIMLR
data sets we set β=1.5, σ=0.3nn0.99/

√
d where nn0.99 is the 99th centile of the

nearest neighbour distances in the data and d is the dimension, and H=u/l,
the ratio of the number of unlabelled and labelled data. The data sets taken
from Chapelle et al. (2006b) are more challenging, and we selected σ and β
from the sets {0.1nn0.99/

√
d,0.5nn0.99/

√
d} and {0.5,1.5} respectively using

cross validation.
Tables 3.7 and 3.8 report the average classification accuracy over the dif-

ferent label sets. The highest average performance is highlighted in bold.
The proposed method achieves the highest average performance in roughly
half of the cases considered, and is competitive with the highest performing
method in almost all. Importantly the method achieved higher performance
than linear S3VM in the majority of applications.

Parameter tuning is a very difficult task in semi-supervised classifica-
tion (Chapelle et al., 2006b), and though our method contains numerous
parameters, the majority do not play a significant role in its performance.
The parameter σ, and to a lesser extent β, plays the most crucial role in the
performance of the method, and determining an appropriate value is neces-
sary for the successful application of the method. We used a simple reference
rule which has worked well on many of the examples considered, but believe
considerable improvements can be made if a more principled tuning method
is employed.

5 Conclusions

We propose a new method for semi-supervised classification, which is based
on learning the optimal univariate subspace to perform a binary partition of
the projected data set using semi-supervised spectral clustering. The labels

8We use the R package e1071, which implements the libSVM library
9We use the SVM-light implementation of T. Joachims available at

http://svmlight.joachims.org/
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Table 3.7: UCIMLR Classification Data Sets. Average Accuracy (%) over 10 Splits.

Mam. Vote. Canc. Iono. Park.

2% Labelled Examples

S3CP2 79.62 84.53 96.18 66.44 74.71
SVM 80.58 84.48 91.59 70.82 74.14

S3VM 79.91 86.90 95.84 72.83 65.50

10% Labelled Examples

S3CP2 81.64 90.74 96.04 85.71 79.94

SVM 80.77 89.00 95.26 80.29 80.23
S3VM 81.61 89.74 96.66 85.62 71.09

25% Labelled Examples

S3CP2 82.54 90.34 96.49 87.18 80.68

SVM 82.22 89.33 96.26 84.98 82.60
S3VM 83.04 89.20 96.45 86.92 74.93

Table 3.8: SSC Benchmark Data Sets. Average Accuracy (%) over 12 Splits.

g241c g241d Digit1 USPS BCI

10 Labelled Examples

S3CP2 82.02 50.62 89.51 76.17 50.90

SVM 55.28 56.16 72.90 79.12 52.61
S3VM 79.05 53.65 79.41 69.34 49.96

100 Labelled Examples

S3CP2 86.15 72.93 92.77 86.62 70.86

SVM 74.67 71.98 90.10 86.89 71.56
S3VM 81.82 76.24 81.95 78.88 57.33
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of the training data are incorporated into the model in such a way that the
globally optimal solution must admit a separation of the classes within the
training data, if such a solution exists, and for all scaling parameters close to
zero. We also show that asymptotically this optimal solution converges to the
subspace normal to the optimal TSVM hyperplane, as the scaling parameter
is reduced to zero, thereby providing a theoretical connection between our
proposed method and popular semi-supervised classification methodology.
Experimental results indicate the proposed method is competitive with state-
of-the-art TSVM implementation in terms of classification accuracy.

Appendix. Proofs

The following lemma is useful for proving Lemmas 17 and 18.

Lemma 19 Let k be non-increasing and Lipschitz with constant K, and let k(0)=1.
For θθθ∈Θ let

∆θθθ =[m̄θθθ , M̄θθθ ]∩ [max{P(θθθ)i|yi=−1},min{P(θθθ)j|yj=+1}],

where

m̄θθθ =
µP(θθθ)−βσP(θθθ)+min{P(θθθ)∩ [µP(θθθ)−βσP(θθθ),∞)}

2

M̄θθθ =
µP(θθθ)+βσP(θθθ)+max{P(θθθ)∩(−∞,µP(θθθ)+βσP(θθθ)]}

2
.

Let σ′= K
(1+ε)1/1+ε . If ∆θθθ 6=∅ then set Gθθθ =maxb∈∆θθθ

mini∈{1,...N} |P(θθθ)i−b|. Then

for σ≤σ′ we have,

λ2(θθθ)≥min
{

1
9|X|3 k

(
2Gθθθ +δD

σ

)
,

1
9|X|

( σ

K

)1+ε
}

,

where D=max{Diam(X),Diam(X)1−δ}. If ∆θθθ =∅ then we simply have

λ2(θθθ)≥
1

9|X|

( σ

K

)1+ε
,

for all σ≤σ′.

Proof Since k has Lipschitz constant K we have

k(x/σ)+x1+ε≥(k(0)− K
σ

x)++x1+ε=(1− K
σ

x)++x1+ε.

Since σ≤σ′= K
(1+ε)1/1+ε we can show that (1− K

σ x)++x1+ε≥
(

σ
K
)1+ε for all

x≥0.
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First consider the case ∆θθθ =∅. For each j, we must have either P(θθθ)j≤
max{P(θθθ)i|yi=−1} or P(θθθ)j≥min{P(θθθ)i|yi=+1}. Let I and J be the in-
dices corresponding to max{P(θθθ)i|yi=−1} and min{P(θθθ)i|yi=+1} respec-
tively. Therefore, for each j s.t. xj∈XU either

AjI≥k(|P(θθθ)j−P(θθθ)I)|/σ)+ |P(θθθ)j−P(θθθ)I |1+ε≥
( σ

K

)1+ε

or
AjJ≥k(|P(θθθ)j−P(θθθ)J |/σ)+ |P(θθθ)j−P(θθθ)J |1+ε≥

( σ

K

)1+ε
.

In addition we have

AI J≥k(|P(θθθ)I−P(θθθ)J |/σ)+ |P(θθθ)I−P(θθθ)J |1+ε≥
( σ

K

)1+ε
,

and for each j s.t. yj=+1 and i s.t. yi=−1 we similarly have AjI , Ai J≥(
σ
K
)1+ε. Now, let u be the second eigenvector of L(θθθ), then ‖u‖=1,u⊥1 and

so ∃i, j s.t. ui−uj≥ 1√
|X|

. If |uI−uJ |≤ 1
3
√
|X|

then either |ui−uI |≥ 1
3
√
|X|

and

|ui−uJ |≥ 1
3
√
|X|

or |uj−uI |≥ 1
3
√
|X|

and |uj−uJ |≥ 1
3
√
|X|

. Then,

λ2(L(θθθ))=u ·L(θθθ)u= 1
2 ∑

k,l
Akl(uk−ul)

2

≥AiI(ui−uI)
2+Ai J(ui−uJ)

2+AjI(uj−uI)
2+AjJ(uj−uJ)

2

≥ 1
9|X|

( σ

K

)1+ε

in all possible cases, since
(

σ
K
)1+ε≤1≤H. On the other hand we have |uI−

uJ |≥ 1
3
√
|X|

and so λ2(L(θθθ))≥AI J(uI−uJ)
2≥
(

σ
K
)1+ε /9|X| as required.

Now consider the case ∆θθθ 6=∅. Define u, I, J as above. If

max
i,j:P(θθθ)i ,P(θθθ)j∈[P(θθθ)I ,P(θθθ)J ]

(ui−uj)≤
1

3
√
|X|

,

then since ∃i, j with ui−uj≥ 1√
|X|

we must have either P(θθθ)i 6∈ [P(θθθ)I ,P(θθθ)J ]

and |ui−uI |≥ 1
3
√
|X|

and |ui−uJ |≥ 1
3
√
|X|

or P(θθθ)j 6∈ [P(θθθ)I ,P(θθθ)J ] and |uj−

uI |≥ 1
3
√
|X|

and |uj−uJ |≥ 1
3
√
|X|

. Suppose w/o loss of generality that P(θθθ)i

satisfies these three conditions. If xi∈XU then since P(θθθ)i 6∈ [P(θθθ)I ,P(θθθ)J ] we
have either AiI≥

(
σ
K
)1+ε or Ai J≥

(
σ
K
)1+ε and the result follows similarly to

above. If xi∈X L then either AiI =1 or Ai J =1≥
(

σ
K
)1+ε, and again the result

follows as above. If instead we have

max
i,j:P(θθθ)i ,P(θθθ)j∈[P(θθθ)I ,P(θθθ)J ]

(ui−uj)>
1

3
√
|X|

,
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then the result follows analogously to (Hofmeyr et al., 2015, Lemma 2), with
the addition of the factor 1

3 on the distance between elements of u in consid-
eration. �

Proof of Lemma 17 Let Gθθθ1
>0 be defined as in Lemma 19, and let b be the

corresponding point at which the distance is maximised. Let L and R be the
number of projected data lying to the left and right of b respectively. Then,
since spectral clustering solves the relaxation of the ratio cut, we have

λ2(θθθ1)≤
1
|X|min

C⊂X
∑

i,j:xi∈C
xj 6∈C

A(θθθ1)ij

(
1
|C|+

1
|X\C|

)

≤ 1
|X| ∑

i,j:P(θθθ1)i<b
P(θθθ1)j>b

k(d(P(θθθ1)i,P(θθθ1)j))

(
1
L
+

1
R

)

≤k(2Gθθθ1
/σ).

For any θθθ2 s.t. ∆θθθ2 defined as in Lemma 19 is empty, we have

λ2(θθθ1)

λ2(θθθ2)
≤9|X|K1+εk(2Gθθθ1

/σ)σ−(1+ε)

This right hand side is independent of θθθ2, and converges to 0 as σ→0+ since
k(x)∈o(x−(1+ε)) as x→∞. Therefore the result holds. �

Proof of Lemma 18 By Lemma 17 we know that ∃σ′>0 s.t. 0<σ<σ′⇒
∆θθθσ,δ
6=∅, where ∆θθθ is as in Lemma 19. Take γ>0. It has been shown Pavlidis

et al. (2015) that ∃mγ>0 s.t. for w∈Rd and c∈R one has ‖(w,c)/‖w‖−
(v?,b?)‖>γ⇒margin(w/‖w‖,c/‖w‖)<margin(v?,b?)−mγ. Let θθθ? be such
that v(θθθ?)=v? so that margin(v?,b?)=Gθθθ? , where Gθθθ is as in Lemma 19. As
in the proof of Lemma 17 we have

λ2(θθθ
?)≤k(2Gθθθ?/σ).

In addition, for small enough σ>0 we have

1
9|X|3 k

(
2G+δD

σ

)
<

1
9|X|

( σ

K

)1+ε

holding uniformly in δ>0 for any G>0, where K,D are as in Lemma 19.
Therefore, for small σ,δ we have

λ2(θθθσ,δ)≥
1

9|X|3 k
(2Gθθθσ,δ

+δD
σ

)
,
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and hence
1

9|X|3 k
(2Gθθθσ,δ

+δD
σ

)
≤k
(

2Gθθθ?

σ

)
since λ2(θθθσ,δ)≤λ2(θθθ

?). Now, take δ′ s.t. δ′D<
mγ

2 . Since limx→∞ k(x+ε)/k(x)=
0 for all ε>0, ∃σ′>0 s.t. 9|X|3K(2Gθθθ?/σ)<k((2Gθθθ?−

mγ

2 )/σ) for all σ<σ′.
For σ<σ′,δ<δ′ we have,

k

(
2Gθθθσ,δ

+
mγ

2

σ

)
≤k
(2Gθθθσ,δ

+δD
σ

)
≤9|X|3k

(
2Gθθθ?

σ

)
≤k

(
2Gθθθ?−

mγ

2
σ

)
⇒2Gθθθσ,δ

+
mγ

2
≥2Gθθθ?−

mγ

2

⇒ max
b∈∆θθθσ,δ

margin(v(θθθσ,δ),b)≥margin(v?,b?)−
mγ

2

⇒‖(v(θθθσ,δ),b)−(v?,b?)‖≤γ

⇒‖v(θθθσ,δ)−v?‖≤γ

Since γ>0 was arbitrary and the above holds for all σ<σ′,δ<δ′ we must
have limσ,δ→0+ v(θθθσ,δ)=v? as required. �
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Chapter 4

Clustering by Minimum Cut
Hyperplanes

Abstract

Minimum normalised graph cuts are highly effective ways of partitioning unlabeled
data, having been made popular by the success of spectral clustering. This work
presents a novel method for learning hyperplane separators which minimise this
graph cut objective. The optimisation problem associated with the proposed method
can be formulated as a sequence of univariate subproblems, in which the optimal hy-
perplane orthogonal to a given vector is determined. These subproblems can be solved
in log-linear time, by exploiting the trivial factorisation of the exponential function.
Experimentation suggests that the empirical runtime of the overall algorithm is also
log-linear in the number of data. This compares favourably with existing methods
based on normalised graph cuts.

Asymptotic properties of the minimum cut hyperplane, both for a finite sample,
and for an increasing sample assumed to arise from an underlying probability distri-
bution are discussed. In the finite sample case the minimum cut hyperplane converges
to the maximum margin hyperplane as the scaling parameter is reduced to zero.

Applying the proposed methodology, both for fixed scaling, and the large mar-
gin asymptotes, is shown to produce high quality clustering models in comparison
with state-of-the-art clustering algorithms in experiments using a large collection of
benchmark datasets.

1 Introduction

Clustering is fundamental to many statistical and machine learning applica-
tions, and deals with partitioning sets of data into groups which are believed
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to be related, without any explicit prior information regarding the group as-
sociations of any of the data. Such applications arise in diverse fields from
computer vision (Tatiraju and Mehta, 2008), to bio-informatics (Sturn et al.,
2002) to marketing (Punj and Stewart, 1983).

Common to many clustering methods is the notion of similarity, and the
clustering problem can be abstractly stated as follows: determine a parti-
tion of a data set such that data within groups are more similar than data
between groups. The popular K-means algorithm, as well as other centroid
based methods, define groups of similar data by how they cluster around a
small number of cluster centroids (Leisch, 2006). Density based clustering
methods form groups of data which fall in connected regions of high data
density. In the statistics literature these high density clusters are interpreted via
the level sets of an assumed underlying probability density (Hartigan, 1975).
A third approach, and that which forms the motivation for this work, is clus-
tering by graph cuts. This approach provides a highly principled framework
within which to address the notion of similarity, as the objective which drives
the partitioning deals explicitly with the pairwise similarities between data.
The minimum graph cut problem directly minimises the sum of the similar-
ities between data belonging to different groups in a partition. Normalisa-
tions of the graph cut objective are used to emphasise partitions which have
high within cluster similarity, and to induce more balanced partitions. The
normalised graph cut problem, however, is NP-hard (Wagner and Wagner,
1993). The relaxations given by spectral clustering (Hagen and Kahng, 1992;
Shi and Malik, 2000) mitigate this problem, however the resulting complexity
remains O(n2), where n is the number of data. Further approximations have
been developed to allow these methods to be applied to larger problems.
The Nyström method generates a low rank approximation of the matrix of
pairwise similarities before applying spectral clustering to this approximate
affinity matrix (Fowlkes et al., 2004). An alternative approach reduces the size
of the affinity matrix by first performing a coarse clustering of the data us-
ing a comparatively simple method (e.g. K-means), and then computing the
pairwise similarities between the resulting clusters (Yan et al., 2009).

This paper introduces a new divisive hierarchical clustering method, in
which each partition in the hierarchy is induced by a hyperplane separa-
tor. Each separating hyperplane is the solution to an optimisation problem
which is motivated by the graph partitioning objective, and minimises the
normalised graph cut measured across the hyperplane. Restricting attention
to hyperplane based partitions, while slightly limiting in the fact that the
resulting clusters must be linearly separated, offers considerable computa-
tional benefits. Moreover, the empirical performance of the method is highly
competitive with state-of-the-art clustering algorithms in terms of clustering
accuracy. The formulation presented can be viewed as a sequence of univari-
ate subproblems, each of which can be solved in O(n logn) time, where n is
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the number of data. An empirical study indicates that the overall algorithm
also runs in O(n logn) time, allowing for the application of the proposed ap-
proach to large problems without the need for approximations. Moreover,
the empirical runtime of the proposed method compares favourably with the
approximate spectral clustering methods.

Asymptotic properties of the normalised cut across a hyperplane are ex-
plored, showing desirable qualities in the context of the non-parametric sta-
tistical formulation of the clustering problem (Hartigan, 1975). In particular
the optimal hyperplane will both have low density integral, therefore passing
through regions of low density, and also will tend to separate the modes of
the underlying probability density, which correspond to high density clus-
ters. Additionally the optimal hyperplane for the proposed objective, eval-
uated on a fixed data set, is shown to be connected with maximum margin
hyperplane separators, and the proposed methodology can be modified to
find large margin hyperplanes practically. This is an important result as max-
imum margin clustering has gained considerable attention in recent years for
its good performance in many application areas including image analysis,
and text mining (Xu et al., 2004; Zhang et al., 2009). Experiments with the
proposed approach for finding large margin hyperplanes indicates that it is
highly competitive with existing methods for the problem. In addition, the
approach significantly reduces the computation time required to find large
margin hyperplanes.

The remainder of this paper is organised as follows. Section 2 intro-
duces graph partitioning and presents the proposed problem formulation.
The asymptotic properties of the proposed method are investigated and dis-
cussed. In Section 3 the methodology for solving the proposed problem is
presented in detail. Section 4 presents the results from extensive experiments
on benchmark data sets for clustering. Finally, concluding remarks are given
in Section 5.

2 Problem Formulation

This section presents an introduction to graph partitioning by (normalised)
graph cuts, and provides the hyperplane based formulation which forms
the focus of this paper. A theoretical discussion of two popular normalisa-
tion techniques, RatioCut (Hagen and Kahng, 1992) and normalised cut, or
NCut (Shi and Malik, 2000), is presented. The conclusion is, at least in rela-
tion to the proposed hyperplane formulation, that NCut has preferable char-
acteristics in the context of data clustering. Following this analysis, the NCut
approach is adopted as the focus of the subsequent methodology presented
in the next section. In addition, a connection between the optimal hyper-
plane based on the NCut objective and the maximum margin hyperplane is
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established, showing that as the scaling parameter in the Ncut formulation
is reduced to zero, the optimal NCut hyperplane converges to the maximum
margin hyperplane through the data.

2.1 Background on Normalised Graph Cuts

The graph cut problem for data partitioning is given as follows. For a set
of data X ={x1, ...,xn} in Rd, define the graph G(X )=(X ,E) with vertices
equal to the elements of X and undirected edges assuming weights equal to
the similarity between pairs of data in X . In practice the similarity between
points relates to their relative spatial relationship, in that pairs of data which
are further apart tend to be given lower similarity value than those which are
closer. The information in G(X ) can be represented by the affinity matrix
A(X )∈Rn×n which has i, j-th element equal to the similarity between data
xi and xj. From the affinity matrix one can define the diagonal degree matrix
D(X )∈Rn×n with i-th diagonal element equal to ∑n

j=1 A(X )i,j.
Now, for a subset C⊂X the graph cut between C and X \C is given by

the sum of the similarities between data in C and those in X \C. Formally,

Cut(C,X \C) := ∑
i,j:xi∈C

xj 6∈C

A(X )i,j. (4.1)

Minimising (4.1) over all subsets C⊂X can be performed in polynomial
time (Stoer and Wagner, 1997), however this approach tends to result in either
C or X \C containing very few points (von Luxburg, 2007). Normalisations
are used to induce more balanced partitions. Two such normalisations are
common, known as RatioCut and NCut, defined as follows,

RatioCut(C,X \C) :=Cut(C,X \C)
(

1
|C|+

1
|X \C|

)
(4.2)

NCut(C,X \C) :=Cut(C,X \C)

 1
∑

i:xi∈C
D(X )i

+
1

∑
i:xi 6∈C

D(X )i

 . (4.3)

The minimisation of both RatioCut and NCut over all subsets C⊂X is NP-
hard (Wagner and Wagner, 1993). Considering only hyperplane based parti-
tions, however, results in a far simpler problem, as will be discussed in the
remainder.

2.2 Normalised Cuts Across Hyperplanes

A hyperplane in Rd is a translated subspace of co-dimension 1, and can be
parameterised by a unit vector v∈Rd,‖v‖=1, and scalar b∈R as the set,

H(v,b) :={x∈Rd|v ·x=b}. (4.4)
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Notice that the unit-vector v defines the subspace normal to the hyperplane.
Henceforth denote the set of unit norm vectors in Rd by Bd.

Hyperplanes induce a binary partition of Rd, and therefore of any data set
residing in Rd, based on the negative/non-negative elements of the subspace,
i.e., separating those x∈Rd s.t. v ·x<b from those satisfying v ·x≥b. The
following notation will be used to define these half spaces,

H(v,b)− :={x∈Rd|v ·x<b} (4.5)

H(v,b)+ :={x∈Rd|v ·x≥b}. (4.6)

Hyperplane based clustering algorithms have been successfully applied in a
number of application areas, including text mining, microarray analysis, and
image segmentation (Boley, 1998; Tasoulis et al., 2010; Zhang et al., 2009).

Connections between clustering by normalised graph cuts and the so-called
low density separation assumption have been established (Narayanan et al.,
2006), in that the value of the normalised cut is asymptotically related to
the integrated density along the surface inducing the cut. The low density
separation assumption states that clusters are separated by contiguous re-
gions of relatively low density, and is equivalent to the definition of clusters
as high density regions which underlies density clustering. Within the non-
parametric statistical approach to clustering, high density clusters may be
associated with the level sets of an (assumed) underlying probability den-
sity (Hartigan, 1975). A separating hyperplane for clustering should there-
fore, as well as possible, separate regions of high density (it should separate
clusters) while avoiding intersection with any such high density regions (in-
dividual clusters should remain intact after the partition). In particular, the
surface integral of the underlying probability density along the hyperplane
should be low, while there should exist regions of high density lying both
sides of the hyperplane. A further theoretical investigation into the asymp-
totic properties of normalised cuts, and their relationship to high density
clustering, is presented below. Particular attention is paid to hyperplane sep-
arators, and in relation to the criteria set out above.

For a random variable X in Rd with probability density p :Rd→R+, the sur-
face integral of the density along a hyperplane, H(v,b), is simply the value
of the marginal density of the univariate random variable v ·X evaluated at
b. Henceforth, for v∈Bd, the marginal density of v ·X will be written as pv,
i.e.,

pv(b)=
∫

x∈H(v,b)
p(x)dx. (4.7)

While exceptions exist, in general we find that if a hyperplane H(v,b) sep-
arates modes in the marginal density pv then there tend to exist modes in the
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full dimensional joint density, p, on both sides of H(v,b). A natural assump-
tion when clustering data assumed to arise from an underlying probability
distribution is that the distribution represents a mixture of comparatively
simple components. If these components are, for example, elliptical, then a
hyperplane separating modes in the marginal density will always intersect
the convex hull of the modes of the individual components, as shown in the
following simple proposition.

Proposition 20 Let p(x)=∑k
i=1 πi pi(x), where ∑k

i=1 πi=1,πi>0, i=1,...,k and
each pi is elliptical. Then a hyperplane H(v,b) which intersects the convex hull of
the modes of pv intersects the convex hull of the modes of the pi.

The quality of a hyperplane for clustering a data set X ={x1, ...,xn} can
therefore, in general, be defined in terms of the properties of the empiri-
cal distribution of the marginal data set v ·X :={v ·x1, ...,v ·xn}, i.e., the data
set projected into the subspace normal to the hyperplane. Considering the
properties of the data only within this subspace has benefits in terms of com-
putational tractability, as well as theoretically in the context of high dimen-
sional applications. Many authors have addressed the problems associated
with clustering high dimensional data sets (Agrawal et al., 1998; Kriegel et
al., 2009; Steinbach et al., 2004), with the observation that as dimensionality
grows the relative distance between points tends to be more uniform, mak-
ing distance/similarity based clustering unreliable. Moreover the potential
irrelevance of certain dimensions to the cluster structure of the data, or of the
probability distribution from which they arose, can significantly affect the
quality of the clustering model and any inference made from it. By reducing
the dimension of the data by considering univariate projections, these prob-
lems are substantially mitigated.

The normalised graph cut of a data set X based on a hyperplane, H(v,b), is
therefore defined in terms of the marginal data set, v ·X . First, let K :R+→R+

be a decreasing function. For σ>0, v∈Bd define

Kσ :R×R→R+ :(x,y) 7→K
(
|x−y|

σ

)
(4.8)

Kv
σ :Rd×Rd→R+ :(x,y) 7→K

(
|v ·x−v ·y|

σ

)
. (4.9)

Kv
σ is used to define the similarity between elements of the marginal data

along v, while when in the context of a univariate data set similarities are
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defined using Kσ. The parameter σ>0 is the scaling parameter. Then define,

RatioCut(v,b|X ) := ∑
x∈X∩H(v,b)−

y∈X∩H(v,b)+

Kv
σ(x,y)

(
1

|X ∩H(v,b)−|+
1

|X ∩H(v,b)+|

)

(4.10)

NCut(v,b|X ) := ∑
x∈X∩H(v,b)−

y∈X∩H(v,b)+

Kv
σ(x,y)

 1
∑

x∈H(v,b)−
y∈X

Kv
σ(x,y)

+
1

∑
x∈H(v,b)+

y∈X

Kv
σ(x,y)

,

(4.11)

adopting the convention that an empty sum is equal to 0 and that 0
0 = 0.

In what follows the asymptotic properties of RatioCut and NCut are
briefly discussed. While the results of this section apply for fairly general
similarity kernel, K(·), it is assumed henceforth and in the proofs of those re-
sults, that K(x) = exp(−x). This particular similarity function is chosen as it
allows for fast (local) optimisation of the normalised cut hyperplane. This is
discussed further in the subsequent section, where corresponding derivations
are presented.

Lemma 21 Let X = {X1, ..., Xn} be an i.i.d. random sample in Rd where each Xi
is a continuous random variable, with density function p and support S. Let H(v, b)
be a hyperplane intersecting Int(S) such that pv is differentiable at b. Let σn be a
null sequence satisfying limn→∞ nσ4+ε

n = ∞ for any fixed ε > 0. Then,

1
nσ2

n
RatioCut(v,b|X )

a.s.−→ pv(b)2

P(X∈H(v,b)−)P(X∈H(v,b)+)

as n→∞.

The above lemma shows that the asymptotic properties of the RatioCut
have some similarities with features relevant in the context of clustering. In
particular, the minimum RatioCut hyperplane is likely to avoid intersecting
regions of high density, captured by the square of the integrated density
along it. Moreover, the balance of the resulting partition is captured in the
division by the probabilities of lying either side of the hyperplane. However,
even for relatively short tailed distributions such as a mixture of Gaussians,

the quantity pv(b)2

P(X∈H(v,b)−)P(X∈H(v,b)+) → 0 as b→ ∞, and hence the minimum
RatioCut solution will not converge as the number of data increases, and in-
stead the optimal partitioning hyperplane will tend to diverge into the tail.
This makes the RatioCut an unappealing objective for clustering by hyper-
plane separators.
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2. Problem Formulation

The NCut solution is stable for a much richer class of distributions. In
particular, it is shown that if the marginal distributions of the collection of
random variables {v · X|v ∈ Bd} all have unbounded hazard function, then
there exists an optimal hyperplane based on the asymptotic value of the
NCut.

Lemma 22 Let X = {X1, ..., Xn} be an i.i.d. random sample in Rd where each Xi
is a continuous random variable, with density function p and support S. Let H(v, b)
be a hyperplane intersecting Int(S) such that pv is differentiable at b. Let σn be a
null sequence satisfying limn→∞ nσ4+ε

n = ∞ for any fixed ε > 0. Then,

2
σn

NCut(v,b|X )
a.s.−→pv(b)2

 1
b∫
−∞

pv(x)2dx

+
1

∞∫
b

pv(x)2dx


as n→∞.

The crucial difference between the above and the corresponding RatioCut
limit lies in squaring the marginal density within the denominator integrals.
Both RatioCut and Ncut will lead to hyperplanes with low integrated density,
however normalising by the integrated square density will favour solutions
in which the marginal density concentrates around at least one location either
side of the hyperplane, these regions of concentrated density corresponding
to modes in the density function. This is illustrated in Figure 4.1, which
shows the results from 100 random initialisations based on NCut (left) and
RatioCut (right) on the S2 dataset (Fränti and Virmajoki, 2006). The data rep-
resent a sample from a Gaussian mixture with 15 components. Minimising
NCut resulted in 4 solutions, all of which provide a visually pleasing parti-
tion of the data, avoiding intersection with any of the high density regions,
but also providing a meaningful partition of the data. The RatioCut solutions,
however, all result in only a very small number of data being partitioned from
the rest.

The following establishes sufficient conditions for the existence of an op-
timal hyperplane based on the asymptotic value of the NCut. Let Y be a
continuous random variable with support S ⊂ R. Let f and F be the density
and distribution functions of Y respectively. Then the hazard function of Y is
defined as,

H : Int(S)→ R+ : y 7→ f (y)
1 − F(y)

Proposition 23 Let X be a continuous random variable in Rd with continuous
density p and support S. Assume that p has finitely many modes and that for all
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Chapter 4. Clustering by Minimum Cut Hyperplanes

Fig. 4.1: Optimal hyperplanes based on NCut (left) and RatioCut (right) from the same 100
initialisations

v ∈ Bd the random variable v · X has unbounded hazard function. Then there exists
a hyperplane, H(v, b), which minimises the asymptotic NCut criterion defined as

pv(b)2

(
1∫ b

−∞ pv(y)2dy
+

1∫ ∞
b pv(y)2dy

)
.

The conditions of the above result can be relaxed somewhat, to include for
example lower semi-continuous densities. For ease of exposition, however,
the above formulation is preferred. Notice that the class of distributions
with unbounded hazard functions for all of its marginals includes Gaussian
mixtures, but not those with polynomially decaying tails.

There is much debate over which normalisation of the graph cut is prefer-
able (von Luxburg et al., 2008). The analysis above suggests, at least for the
hyperplane formulations in Eq.’s (4.10) and (4.11), that NCut is preferable
in the context of clustering. The remainder of this paper therefore focuses
on NCut. The minimum NCut hyperplane is defined as the solution to the
optimisation problem,

min
(v,b)∈F

NCut(v, b|X ) (4.12)

F := {(v, b) ∈ Bd × R
∣∣H(v, b) ∩ Int(conv(X )) 6= ∅},

where conv(X ) denotes the convex hull of the data set. Only hyperplanes
which intersect the interior of the convex hull of the data set X are consid-
ered, as it is necessary that the hyperplane partitions X .

2.3 Connection with Maximum Margin Hyperplanes

In this subsection the finite sample properties of minimum NCut hyperplanes
are discussed in relation to large margin separation. For a data set X =
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2. Problem Formulation

{x1, ..., xn} in Rd, the margin of a hyperplane on X is the Euclidean distance
between the hyperplane and X , i.e.,

marginH(v, b) := d(H(v, b), X ) = min
i∈{1,...,n}

|v · xi − b|. (4.13)

Maximum margin hyperplane classifiers have become extremely popular over
the past few decades, owing to the success of Support Vector Machines (SVM,
(Vapnik and Kotz, 1982)). SVM classifiers were introduced for supervised
classification, and extended to semi-supervised learning via Transductive
Support Vector Machines (TSVM, (Vapnik, 1998)). More recently the sup-
port vector approach has been successfully applied to the fully unsupervised
problem of maximum margin clustering (Xu et al., 2004; Zhang et al., 2009).
The maximum margin clustering problem can be equvalently stated as iden-
tifying the binary labelling of a data that will maximimise the margin of an
SVM estimated using the assigned labels. Early maximum margin clustering
algorithms used semi-definite programming formulations, which limits their
application to data sets of only a few hundred points (Xu et al., 2004). The
iterative Support Vector Regression approach (Zhang et al., 2009) repeatedly
solves a support vector regression problem, updating the labels assigned to
the data after each iteration. This method has shown strong performance em-
pirically and has allowed the application of large margin clustering to much
larger problems than was feasible previously.

The following lemma establishes the convergence of the minimum NCut
hyperplane to the maximum margin hyperplane, as the scaling parame-
ter is reduced to zero. Notice that for v ∈ Bd and for b1, b2 ∈ R s.t. X ∩
H(v, b1)

+ = X ∩ H(v, b2)
+ one has NCut(v, b1|X ) = NCut(v, b2|X ). As a

result there is not a unique minimum cut hyperplane. The convergence to
the maximum margin hyperplane is therefore discussed only in relation to
the normal vector. Notice that if the normal vector to the maximum margin
hyperplane is known, then obtaining the maximum margin hyperplane is
trivial. These two results are thus practically equivalent.

Lemma 24 Let X = {x1, ..., xn} be a data set in Rd. Suppose there is a unique hy-
perplane intersecting conv(X ) with maximum margin, parameterised by (vm, bm) ∈
Bd × R. For σ > 0 define (vσ, bσ) to be any minimiser of the optimisation prob-
lem min(v,b)∈F NCut(v, b|X , σ), where there is now an explicit dependence on the
scaling parameter, σ. Then,

lim
σ→0+

d(vσ, {vm, −vm}) = 0.

The above result relies on the fact that the NCut objective can be viewed as
a sort of smoothing of the maximum margin clustering problem, in that for
large values of σ the global structure of the data set defines the strength of
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the clustering solution, but as σ decreases towards zero points nearer the hy-
perplane become more influential, and asymptotically it is dominated by the
nearest points. Solving the minimum cut hyperplane problem repeatedly for
a shrinking sequence of scaling parameters is thus strongly reminiscent of the
homotopy continuation approach to non-convex optimisation (Allgower and
Georg, 2012), in which an objective function is convolved with a sequence
of smoothing functions the last of which is the identity function. Initialis-
ing each smoothed problem using the solution to the previous provides a
sequence of solutions which converges to a good solution to the original op-
timisation problem.

The above result provides a new approach for finding large margin hy-
perplanes for clustering. One of the challenges associated with maximum
margin clustering is the fact that the objective is plagued with local min-
ima (Zhang et al., 2009). The above approach, due to its similarity with
homotopy continuation, has the potential to mitigate this problem, and there-
fore generate higher quality solutions than those based directly on support
vector methods.

3 Methodology

In the previous section, properties of hyperplane based graph cuts were in-
troduced. It was established that the optimal hyperplane based on NCut is
a preferable objective to that for RatioCut. This section is dedicated to op-
timising NCut(v, b|X ) over (v, b) ∈ F , where X is a data set in Rd. The
optimisation procedure proposed treats optimising over b as a subproblem
to the master problem of optimising over v.

The global objective is thus formulated as,

min
v∈Bd

Φ(v|X ), (4.14)

Φ(v|X ) := min
b∈Int(conv(v·X ))

NCut(v, b|X ). (4.15)

Subsection 3.1 describes the optimisation procedure of the subproblem in
Eq. (4.15). A log-linear time method is presented, wherein the log factor
arises solely from the requirement that the marginal data set, v · X , must
be sorted. Subsection 3.2 is dedicated to the optimisation of Φ(v|X ). These
suffice to generate a bipartition of X , which is the main focus of this work.
Extensions to multi-cluster partitions are covered briefly in subsection 3.3.

3.1 Optimal NCut of the Marginal Data Set v · X
In this subsection it is assumed that the vector v ∈ Bd is fixed, and the optimal
value of b is to be determined based on the marginal data set, v · X . For
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brevity of notation the i-th element of the sorted marginal data set is denoted
xv

i . That is, xv
1 ≤ xv

2 ≤ ... ≤ xv
n. Ties may be broken in an arbitrary but well

defined manner, such as via the order of indices in the original data set.
Observe that for b1, b2 ∈ (xv

i , xv
i+1] we have NCut(v, b1|X ) = NCut(v, b2|X )

and hence one needs only consider at most n − 1 possible values of b, cor-
responding to the midpoints between consecutive distinct elements of the
marginal data set. To that end, define

bi :=
xv

i + xv
i+1

2
, i ∈ {1, ..., n − 1}. (4.16)

Define CS(·) to be the cumulative sum function. That is, if w has length n,

CS(w) =

(
w1,

2

∑
i=1

wi, . . . ,
n

∑
i=1

wi

)
. (4.17)

Let EG be the vector of exponentials of the scaled differences between xv
1 and

each element in the sorted marginal data set, i.e.,

EG :=
(

exp
(

xv
1−xv

1
σ

)
,exp

(
xv

1−xv
2

σ

)
,...,exp

(
xv

1−xv
n

σ

))
. (4.18)

Then, for i≤ j,

Kσ(xv
i ,xv

j )=exp

(
xv

i −xv
j

σ

)
=

exp
(

xv
1−xv

j
σ

)
exp

(
xv

1−xv
i

σ

) =
EGj

EGi

Therefore, the graph cut at bk is given by,

k

∑
i=1

n

∑
j=k+1

Kσ(xv
i ,xv

j )=
k

∑
i=1

n

∑
j=k+1

EGj

EGi
=

k

∑
i=1

1
EGi

n

∑
j=k+1

EGj

=CS
(

1
EG

)
k
(CS(EG)n−CS(EG)k).

Similarly, the sum of the first k degrees in the graph of v·X is given by,

k

∑
i=1

n

∑
j=1

Kσ(xv
i ,xv

j )=
k

∑
i=1

n

∑
j=i+1

EGj

EGi
+

k

∑
i=1

i

∑
j=1

EGi
EGj

=
k

∑
i=1

1
EGi

(CS(EG)n−CS(EG)i)+
k

∑
i=1

EGiCS
(

1
EG

)
i

=CS
(

1
EG
·(CS(EG)n−CS(EG))

)
k
+CS

(
EG ·CS

(
1

EG

))
k
.
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The NCut for any bk can therefore be extracted from a collection of cumu-
lative sum vectors. Computing these vectors has computational cost O(n),
with the extraction of each NCut(v, bk|X ) costing O(1). The solution to the
problem minb NCut(v, b|X ) can therefore be computed in O(n log n) time,
with the log n factor only arising in the sorting of the marginal data set, v · X .

3.2 Optimising Φ(v|X )

In this subsection the optimisation of the master problem, minv∈Bd Φ(v|X )
is discussed. Notice that Φ(v|X ) may not be continuous in v, since if v · X
contains repeated points these cannot be assigned to different elements of
the partition, while in any neighbourhood of v there exist projections along
which they can be. In practice the following optimisation problem is consid-
ered instead,

min
v|‖v‖≥1

min
k∈{1,...,n−1}

φk

(
v
‖v‖

∣∣X), (4.19)

φk(v|X ) :=
k

∑
i=1

n

∑
j=k+1

Kσ(xv
i ,xv

j )

 1
k
∑

i=1

n
∑

j=1
Kσ(xv

i ,xv
j )

+
1

n
∑

i=k+1

n
∑

j=1
Kσ(xv

i ,xv
j )

,

(4.20)

where the computation of mink φk(v/‖v‖|X ) is described in the previous
subsection. It is straightforward to see that the above problem is practically
equivalent to the minimisation of Φ(v|X ) in general. Notice that if v is such
that v · X contains no repeated points, then

min
k∈{1,...,n−1}

φk

(
v
‖v‖

∣∣X) = Φ
(

v
‖v‖

∣∣X) .

If the full dimensional data set, X , contains no repeated points and for all
v 6= 0 one has Int(conv(v · X )) 6= ∅, then this occurs on an open and dense
set in Rd. For those v s.t. v · X does contain repeated points, evaluating
mink φk(v/‖v‖|X ) is the same as for Φ(v/‖v‖|X ), except that some par-
titions which separate equal elements of v · X are permitted. Therefore,
mink φk(v/‖v‖|X ) ≤ Φ(v/‖v‖|X ) and hence for all v 6= 0 one has

liminfw→vΦ(w/‖w‖|X ) = min
k

φk(v/‖v‖|X ).

The objective in (4.19) benefits from being continuous, and is in fact Lips-
chitz continuous over the set {v ∈ Rd|‖v‖ ≥ 1}, as discussed below. The ob-
jective is therefore differentiable almost everywhere, and so gradient based
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methods can be used to find local optima. In general the objective is not
differentiable at points where mink φk(v/‖v‖

∣∣X ) is satisfied by multiple in-
dices k, and where the order statistics corresponding to the minimum co-
incide. Considerable work has been done on optimising such non-smooth
objectives, however it has been observed that the BFGS (Broyden-Fletcher-
Goldfarb-Shanno) algorithm tends to perform well on many non-smooth
functions (Lewis and Overton, 2013). Indeed, applying this method to op-
timising mink φk(v/‖v‖

∣∣X ) did not fail to find a local optimum in any exam-
ples considered for this work.

The Lipschitz continuity of the objective mink φk(v/‖v‖
∣∣X ) is now briefly

discussed. Consider v ∈ Rd \ {0} and u ∈ Rd, u 6= −v. The order statistics
of the marginal data set, v · X , are Lipschitz continuous as functions of v and
so ∃L > 0 s.t. for any i, j ∈ {1, ..., n},∣∣∣(xv

i − xv
j ) − (xv+u

i − xv+u
j )

∣∣∣ ≤ L‖u‖.

It is therefore straightforward to show that,∣∣∣∣∣ x
v
i − xv

j

‖v‖ −
xv+u

i − xv+u
j

‖v + u‖

∣∣∣∣∣ ≤ (L + Diam(X ))
‖u‖
‖v‖

⇒
∣∣∣∣∣exp

(
−
|xv

i − xv
j |

‖v‖σ

)
− exp

(
−
|xv+u

i − xv+u
j |

‖v + u‖σ

)∣∣∣∣∣ ≤ (L + Diam(X ))
‖u‖
‖v‖σ ,

since exp(−x) has Lipschitz constant 1. From this it can be shown that for
‖u‖ ≤ 1, ∃H > 0 s.t. each φk satisfies∣∣∣∣φk

(
v
‖v‖

∣∣X) − φk

(
v + u
‖v + u‖

∣∣X)∣∣∣∣ ≤ H
‖u‖
‖v‖ ,

and hence the objective mink φk(v/‖v‖
∣∣X ) is Lipschitz continuous in v over

the set {v ∈ Rd
∣∣‖v‖ ≥ 1}.

In what follows, derivations of the gradient of mink φk(v/‖v‖
∣∣X ) are pre-

sented for those v where the minimum is unique, and where order statistics
corresponding to the minimum do not coincide. The chain rule decomposi-
tion below is used.

Dvφk

(
v
‖v‖

∣∣X)=D v
‖v‖ ·X

NCut({x
v
‖v‖
1 ,...,x

v
‖v‖
k },{x

v
‖v‖
k+1,...,x

v
‖v‖
n })Dv

v
‖v‖ ·X ,

(4.21)

where D·· is the differential operator. First observe that,

Dv
v
‖v‖ · X =

1
‖v‖X −

1
‖v‖3X (vv>),
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where here X is treated as a matrix in Rn×d in which the i-th row corresponds
to xi. Therefore,

(Dv
v
‖v‖ · X ) · v = 0

⇒
∥∥∥∥v − δDvφk

(
v
‖v‖ |X

)∥∥∥∥ ≥ ‖v‖
for any δ > 0. This means that iterations in a simple gradient descent method
have increasing norm. We have also observed that this behaviour transfers
to the BFGS algorithm, even though the approximate Hessian is included in
the search direction. Thus the constraint ‖v‖ ≥ 1 in the optimisation (4.19) is
inactive provided the initial solution has norm at least 1. The optimisation
can therefore be treated as unconstrained in practice.

What remains is to address the first component in the chain rule decom-
position (4.21). For ease of notation, let xv̂

i = xv/‖v‖
i . Define,

E :=

(
exp

(
xv̂

1−xv̂
k

σ

)
,exp

(
xv̂

2−xv̂
k

σ

)
,. . .,exp

(
xv̂

n−xv̂
k

σ

))
.

Then for l≤k, and using a similar derivation to those in Subsection 3.1, one
has the following,

∂

∂xv̂
l

k

∑
i=1

n

∑
j=k+1

Kσ(xv̂
i ,xv̂

j )=
1
σ

El

(
CS
(

1
E

)
n
−CS

(
1
E

)
k

)
.

In addition,

∂

∂xv̂
l

k

∑
i=1

n

∑
j=1

Kσ(xv̂
i ,xv̂

j )=−
2
σ

CS(E)l−1
El

+
2
σ

El

(
CS
(

1
E

)
k
−CS

(
1
E

)
l

)
+

1
σ

El

(
CS
(

1
E

)
n
−CS

(
1
E

)
k

)
.

If l=1 then the first term above is 0. In a similar way one finds,

∂

∂xv̂
l

n

∑
i=k+1

n

∑
j=1

Kσ(xv̂
i ,xv̂

j )=
1
σ

El

(
CS
(

1
E

)
n
−CS

(
1
E

)
k

)
,

132



3. Methodology

and for l>k, the following,

∂

∂xv̂
l

k

∑
i=1

n

∑
j=k+1

Kσ(xv̂
i ,xv̂

j )=−
1
σ

CS(E)k
El

∂

∂xv̂
l

k

∑
i=1

n

∑
j=1

Kσ(xv̂
i ,xv̂

j )=−
1
σ

CS(E)k
El

∂

∂xv̂
l

n

∑
i=k+1

n

∑
j=1

Kσ(xv̂
i ,xv̂

j )=
2
σ

El

(
CS
(

1
E

)
n
−CS

(
1
E

)
l

)

− 2
σ

CS(E)l−1−CS(E)k
El

− 1
σ

CS(E)k
El

.

The partial derivative of NCut({xv̂
1 ,...,xv̂

k},{x
v̂
k+1,...,xv̂

n}) with respect to the
l-th element of v

‖v‖ ·X is given by

∂

∂xv̂
l

k

∑
i=1

n

∑
j=k+1

Kσ(xv̂
i ,xv̂

j )

 1
k
∑

i=1

n
∑

j=1
Kσ(xv̂

i ,xv̂
j )

+
1

n
∑

i=k+1

n
∑

j=1
Kσ(xv̂

i ,xv̂
j )



−
k

∑
i=1

n

∑
j=k+1

Kσ(xv̂
i ,xv̂

j )


∂

∂xv̂
l

k
∑

i=1

n
∑

j=1
Kσ(xv̂

i ,xv̂
j )(

k
∑

i=1

n
∑

j=1
Kσ(xv̂

i ,xv̂
j )

)2 +

∂
∂xv̂

l

n
∑

i=k+1

n
∑

j=1
Kσ(xv̂

i ,xv̂
j )(

n
∑

i=k+1

n
∑

j=1
Kσ(xv̂

i ,xv̂
j )

)2

.

Therefore the collection of all partial derivatives can be computed in O(n)
time, since each can be extracted in constant time from a collection of cumu-
lative sum vectors.

3.3 Beyond Bi-partitioning

So far methodology for inducing a bipartition of a data set X using the mini-
mum cut hyperplane has been discussed. This divisive procedure can be ap-
plied recursively to (subsets of) the data set to generate a binary partitioning
tree. An indexing policy is required which assigns an ordering to the leaves
of the tree, dictating which should be further partitioned at the next iteration.
This process is repeated until a predetermined number of leaves results, and
the data assigned to each leaf are interpreted as clusters. Pseudocode for a
generic divisive clustering algorithm is given in Algorithm 1.

Two methods are considered. The first uses the procedure in Subsec-
tions 3.1 and 3.2 to induce bipartitions, and selects the leaf which has the
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Algorithm 2: Divisive Clustering
Input: Data set X , #clusters K, indexing function I, partitioning function
Π

C ← {X}
while |C| < K do

C′ ← argmaxC∈C I(C)
[C1, C2]← Π(C′)
C ← (C \ {C′}) ∪ {C1, C2}

end while
return C

smallest NCut value based on the optimal hyperplane. This divisive cluster-
ing algorithm will be referred to as the Normalised Cut Hyperplane, NCutH,
approach. The second is based on the result in Lemma 24, which establishes
the convergence of the minimum cut hyperplane to the maximum margin
hyperplane, and repeatedly implements the procedure in Subsections 3.1
and 3.2 for a shrinking sequence of scaling parameters to find large mar-
gin separators. The NCut value for small σ approaches 0 for all data sets,
and so comparing the NCut values might not be reliable. Instead the simple
indexing which selects the leaf containing the largest number of data to be
partitioned at each iteration is used. This approach based on the asymptotic
convergence of the minimum cut hyperplane will be referred to as NCutH0.

The largest margin through a data set often only separates a few outlying
points from the bulk of the data. For the NCutH0 approach, each hyperplane
is forced to induce a reasonably balanced partition of the data assigned to
its respective leaf. This constraint is trivially incorporated by modifying the
optimisation in (4.19) as,

min
v|‖v‖≥1

min
k∈{c,...,n−c}

φk

(
v
‖v‖

∣∣X) , (4.22)

where c is a chosen parameter. The importance of including a balancing
constraint for maximum margin clustering was also observed by Xu et al.
(2004) and Zhang et al. (2009).

4 Experimental Results

In this section results from experiments using the proposed methods, NCutH
and NCutH0, are presented. Performance is compared with existing state-
of-the-art methods for clustering on the following 15 benchmark data sets:
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Table 4.1: Details of Benchmark Data Sets

n d c

br. cancera 699 9 2

ionospherea 351 33 2

opt. digitsa 5618 64 10

pen digitsa 10992 16 10

votersa 435 16 2

image seg.a 2309 19 7

satellitea 6435 36 6

charta 600 60 6

yeastb 698 72 5

smartphonea 10929 561 12

soybeana 682 35 19

dermatologya 366 34 6

glassa 214 9 6

isoleta 6238 617 26

parkinsonsa 195 22 2

a https://archive.ics.uci.edu/ml/datasets.html
b http://genome-www.stanford.edu/cellcycle/

Breast cancer Wisconsin original (br. cancer), Ionosphere, Optical recogni-
tion of handwritten digits (opt. digits), Pen based recognition of handwritten
digits (pen digits), Congressional voting records (voters), Smart-phone based
recognition of human activities and postural transitions (smartphone), Stat-
log image segmentation (image seg.), Statlog landsat satellite (satellite), Syn-
thetic control charts (chart), Yeast cell cycle analysis (yeast), Soybean disease
(soybean), Dermatology, Glass, Isolet and Parkinsons. Details of these data
sets can be seen in Table 4.1, where n is the number of data, d is the number
of dimensions and c the number of classes.

4.1 Parameter Settings for NCutH and NCutH0

The setting driving the performance of NCutH is the scaling parameter σ,
while in the case of NCutH0 it is the balancing constraint c which has the
greatest effect on performance. Within the divisive hierarchical clustering
approach, these parameters are set at each iteration in the divisive proce-
dure, and the values are determined relative to the subset of the data being
partitioned.

The scaling parameter σ relates to the overall scale of the data, and was
set proportional to

√
λ1, where λ1 is the largest eigenvalue of the covari-

ance matrix. This setting is equal to the standard deviation of the data pro-

135



Chapter 4. Clustering by Minimum Cut Hyperplanes

jected along the first principal component. The analysis in Section 2 suggests
setting σ ∝ n−1/(4+ε) for some ε > 0, and ε is set to 1 for the experiments
herein. To determine an appropriate constant of proportionality, a simple
simulation study using Gaussian mixtures was performed. Simulations are
extremely useful for determining appropriate values of tuning parameters as
the true class labels are known, and so the clustering performance can be
determined reliably. In this study Gaussian mixtures containing between 2
and 10 components, and in 5, 10 and 50 dimensions were simulated. The
data arising from each component were assigned the same class label and
these were compared with the cluster assignments made by NCutH for values
of σ in {σ0, 5σ0, 10σ0, 50σ0, 100σ0, 200σ0} where σ0 =

√
λ1n−1/5. Aside from

σ = σ0, the mean performance for all other values of σ was approximately
the same accross the range of dimensions and number of clusters. However
for σ = 50σ0 and σ = 100σ0 the variability of performance was slightly lower.
For the experiments presented below the value σ = 100σ0 was used, but it is
apparent from this study that performance is robust over a range of values.
One observation made possible by this study is that the cluster sizes tend to
be more balanced for larger values of σ, although this is not guaranteed.

The value of the balancing constraint parameter c was set to n/5, which
is equivalent to the setting used by Zhang et al. (2009) for maximum margin
clustering when the cluster sizes are not balanced. Since this parameter offers
a direct interpretation in terms of the minimum cluster size, prior informa-
tion about the sizes of clusters can be incorprated into the method. To find
large margin hyperplanes using the NCutH0 approach, the scaling parame-
ter was initialised at 100σ0, as above, and subsequently decreased by a factor
of 5 at each iteration. This was repeated until convergence of the optimal
hyperplane.

In addition, since the minimisation of NCut(v, b) is non-convex, the ini-
tialisation of v also plays a significant role. For initialisation of the vector v,
the first principal component of the data was used. It is intuitively the case
that directions with high data variability are likely to admit high quality hy-
perplanes for clustering, and so are likely to present promising initialisations
for the proposed optimisation method.

4.2 Clustering Performance

The following benchmark algorithms were chosen for comparison with NCutH
and NCutH0:

1. K-means using the default implementation in R. Results from the best
solution based on the K-means objective from 10 initialisations are re-
ported.

2. Bisecting K-means (Bis.K-m) (Steinbach et al., 2000). The bisecting ver-
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sion of K-means offers a useful comparison with the proposed method
due to the similar model structure.

3. Normalised Spectral Clustering (SCn). Due to the high computation
time required, when the number of data exceeds 1000 the approxima-
tion method given by Yan et al. (2009) was used.1 A range of scaling
parameters was used, and the highest performance is reported. Spectral
clustering is a highly influential approach to clustering, and is based on
the same normalised graph cut objective as the proposed method.

4. Iterative Support Vector Regression (iSVR). A state-of-the-art method
for maximum margin clustering (Zhang et al., 2009).2 To generate mul-
tiple clusters the same hierarchical method as for NCutH0 is used, split-
ting the largest remaining cluster at each iteration.

5. Density enhanced principal direction divisive partitioning (dePDDP)
(Tasoulis et al., 2010). An improvement of one of the earliest divisive hi-
erarchical clustering algorithms using hypeprlanes, Principal Direction
Divisive Partitioning. To make the comparison fair the correct number
of clusters is supplied to the algorithm.

The algorithms are compared based on cluster Purity (Zhao and Karypis,
2004) and V-Measure (Rosenberg and Hirschberg, 2007). Both measures com-
pare the true classes in the data with the cluster assignments made by an
algorithm. They take values in [0, 1] with higher values indicating superior
performance. Purity is defined as the weighted average of the largest pro-
portion of each cluster which is represented by a single class. V-Measure is
defined as the harmonic mean of homogeneity and completeness. Homogeneity
measures the conditional entropy of the class distribution within each cluster.
Completeness is symmetric to homogeneity, and measures the conditional
entropy of the cluster distribution within each class. V-Measure therefore
captures both the extent to which each cluster can be associated with a sin-
gle class, but also penalises cluster assignments which divide single classes
between multiple clusters.

Tables 4.2 and 4.3 report the Purity and V-Measure respectively. The high-
est performance in each case is highlighted in bold, while - indicates that a
clustering result could not be obtained in reasonable time. It is clear that no
method is uniformly superior to all others, which is due to the vastly differ-
ent natures of the data sets in terms of size, dimension, number and shape of
clusters. It is also clear that the problems of clustering the various data sets
differ in difficulty. Both NCutH and NCutH0 obtained the highest perfor-
mance at least as often as any of the competing methods, and in the case of

1The implementation available at http://www.math.umassd.edu/˜dyan/fasp.html is em-
ployed

2Thanks to Dr. Kai Zhang for providing code for this method.
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Table 4.2: 100 × Purity on Benchmark Data Sets. Highest Performance Highlighted in Bold.

NCutH NCutH0 iSVR dePDDP K-means Bis.K-m SCn

br. cancer 96.85 96.85 90.41 96.71 95.42 95.42 97.28
ionosphere 71.23 71.23 70.37 68.95 70.66 70.66 72.93
opt. digits 78.71 79.69 75.99 26.43 63.28 64.54 48.34

pen digits 77.98 76.83 78.25 56.73 72.23 72.09 41.71

voters 84.60 84.37 81.15 85.06 84.60 84.60 84.27

image seg. 62.19 63.79 64.62 29.32 59.95 58.55 55.91

satellite 74.00 75.76 68.33 75.01 74.11 73.92 68.75

chart 66.67 83.83 72.00 68.00 76.33 66.67 78.17

yeast 75.07 74.93 74.93 77.51 70.92 75.50 71.92

smartphone 68.81 72.47 - 39.06 63.81 64.51 50.14

soybean 80.79 67.45 71.85 60.56 67.74 78.01 72.87

dermatology 96.17 85.52 80.33 85.52 86.07 86.07 94.54

glass 54.21 58.88 51.40 48.13 54.21 53.27 51.40

isolet 51.67 59.17 - 21.88 60.05 52.07 33.71

parkinsons 75.38 75.38 75.38 75.38 75.38 75.38 75.38

V-Measure considerably more often. Much more importantly, however, there
are very few examples in which NCutH and NCutH0 are not among the best
performing methods, whereas all competing algorithms fare poorly in multi-
ple examples. This fact is better captured by regret. The regret of an algorithm
on a specific data set is the difference between that algorithm’s performance
and the best performance from among all algorithms when applied to that
data set. Figure 4.2 shows boxplots of the regret of each algorithm over all
15 benchmark data sets, where the additional red dots indicate the mean.
Both the mean and median regret for Purity and V-Measure are substantially
lower in the case of NCutH and NCutH0 than for any other method. Because
of their similar objectives, the comparisons between NCutH and SCn and be-
tween NCutH0 and iSVR are arguably the most important. It is clear that the
overall performance of the proposed methods is a substantial improvement
over the existing methods.

4.3 Run Time Analysis

The analysis presented in Section 3 showed that the optimal NCut for a given
v can be computed in O(n log n) time. The number of iterations in the BFGS
algorithm may depend on n in an unknown way, and so the overall complex-
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Table 4.3: 100 × V-Measure on Benchmark Data Sets. Highest Performance Highlighted in Bold.

NCutH NCutH0 iSVR dePDDP K-means Bis.K-m SCn

br. cancer 78.80 78.68 55.34 77.99 71.59 71.59 82.45
ionosphere 13.49 13.49 12.64 9.82 12.50 12.50 20.67
opt. digits 71.62 74.65 71.49 28.52 61.30 61.68 50.01

pen digits 70.95 73.07 72.53 59.15 68.93 65.71 48.63

voters 42.82 42.39 33.59 39.25 42.30 42.30 40.48

image seg. 59.38 63.81 62.61 35.15 59.87 58.63 47.90

satellite 59.63 62.68 54.61 61.05 61.30 60.15 53.30

chart 79.65 77.05 66.41 77.75 77.43 76.07 82.36
yeast 59.92 59.01 53.91 55.80 52.55 57.96 51.30

smartphone 61.22 60.04 - 51.03 56.95 56.25 50.30

soybean 80.29 71.87 75.38 67.68 74.13 80.19 73.46

dermatology 93.56 83.82 76.84 87.39 86.33 86.00 90.29

glass 31.58 30.85 27.55 30.17 31.46 31.18 28.79

isolet 65.34 70.36 - 42.34 71.67 63.74 51.94

parkinsons 21.96 21.96 6.38 1.78 12.42 12.42 1.20

ity of the method is investigated empirically. Figure 4.3 shows the run time
of NCutH for n ranging from 100 to 10000. The run time of the overall al-
gorithm increases with rate approximately O(n log n), as might be expected
from the analysis.

In addition the computation time of NCutH and NCutH0 is compared
with existing methods on the benchmark data sets considered before. Ta-
ble 4.4 shows the results of this investigation. All methods were implemented
in R. The default implementation of K-means was used. The iSVR method re-
lies on the e1071 package which implements the libSVM library. It is again
important to highlight the comparisons between NCutH and SCn and be-
tween NCutH0 and iSVR. In both cases the proposed methods are orders
of magnitude faster than the existing methods. An important fact to note
too is that the run time of both K-means and Bis.K-m is overestimated as
the reported numbers are for 10 initialisations, since the performance based
on a single intialisation can be highly variable. A single run of K-means is
therefore of the order of 10 times faster than NCutH.
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Fig. 4.2: Regret distributions of Purity (top) and V-Measure (bottom) across all 15 benchmark
data sets.
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Fig. 4.3: Run time analysis from Gaussian mixtures. The plot shows the medians and interquar-
tile ranges from 50 replications for each value of n. The number of clusters is fixed at 5.
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5. Conclusion

Table 4.4: Run Time on Benchmark Data Sets (in Seconds)

NCutH NCutH0 iSVR dePDDP K-means Bis.K-m SCn

br. cancer 0.01 0.23 1.81 0.01 0.05 0.05 0.67

ionosphere 0.01 0.16 2.47 0.02 0.03 0.05 0.20

opt. digits 4.40 12.01 496.14 0.19 1.97 4.04 28.37

pen digits 1.55 6.37 347.77 0.12 0.79 2.35 24.29

voters 0.02 0.16 1.09 0.01 0.03 0.03 0.27

image seg. 0.39 1.22 18.19 0.06 0.17 0.52 6.15

satellite 0.81 3.26 203.30 0.11 0.95 2.54 21.67

chart 0.20 0.78 14.32 0.12 0.11 0.40 1.61

yeast 0.31 1.06 21.82 0.06 0.19 0.55 2.34

smartphone 81.04 217.38 - 14.71 82.29 103.36 1915.10

soybean 0.47 1.48 12.21 0.15 0.08 0.29 0.19

dermatology 0.13 0.56 1.17 0.06 0.03 0.14 0.31

glass 0.06 0.31 0.32 0.02 0.00 0.03 0.08

isolet 80.86 220.19 - 16.43 54.06 77.95 1511.53

parkinsons 0.01 0.10 0.39 0.01 0.01 0.01 0.05

5 Conclusion

This paper presents a novel hyperplane based method for clustering. The
optimal hyperplane is that which minimises the normalised graph cut mea-
sured across it. The asymptotic properties for an incrceasing sample assumed
to arise from an underlying probability distribution are established, showing
that the minimum NCut hyperplane tends to have low density along it, as
well as separate modes of the underlying probability density. Both of these
are key features in the context of data clustering. In the finite sample case,
the minimum cut hyperplane is asymptotically connected with the maximum
margin hyperplane through the data, as the scaling parameter decreases to
zero. Applying the proposed method for a shrinking sequence of scaling
parameters also therefore provides a new method for finding large margin
separators. Exploiting the trivial factorisation of the exponential function al-
lows for the derivation of a linear time method for extracting the optimal
normalised cut of a sorted univariate marginal data set. The overall algo-
rithm has empirical time complexity which is log-linear in the number of
data, allowing for the application to larger data sets than is generally true of
graph based partitioning methods.

In experiments on a large collection of benchmark data sets the proposed
method showed superior performance to a collection of influential clustering

141



Chapter 4. Clustering by Minimum Cut Hyperplanes

methods from the literature in the majority of examples.

Appendix. Proofs

Proof of Proposition 20 The result follows almost immediately by observing
that if pi is elliptical then the marginal density pv

i is unimodal and the mode
of pv

i is the projection of the mode of pi onto v. Therefore, if a hyperplane
H(v,b) is such that all of the modes of the components pi lie in H(v,b)+, then
the marginal density pv is non-increasing on [b,∞), and hence H(v,b) cannot
intersect the modes of the marginal density pv. The case where all modes lie
in H(v,b)− is the analogous. This proves the result. �

The proofs of Lemmas 21 and 22 borrow some ideas from Narayanan et al.
(2006). In particular, the use of the generalisation of McDiarmid’s inequality
given by Kutin (2002) is useful.

Definition (Kutin, 2002, Definition 1.6) Let Ω1, ...,Ωm be probability spaces.
Let Ω=∏m

k=1 Ωk, and let X be a random variable on Ω. We say X is strongly
difference-bounded by (b, c,δ) if the following holds: there is a “bad" subset
B⊂Ω, where δ=P(ω∈B). If ω,ω′∈Ω differ only in the k-th coordinate, and
ω 6∈B, then

|X(ω)−X(ω′)|≤ c.

Furthermore, for any ω and ω′ differing only in the k-th coordinate,

|X(ω)−X(ω′)|≤b.

Theorem 25 (Kutin, 2002, Theorem 3.6) Let Ω1, ...,Ωm be probability spaces. Let
Ω=∏m

k=1 Ωk, and let X be a random variable on Ω which is strongly difference-
bounded by (b, c,δ). Assume b≥ c>0. Let µ=E[X]. Then, for any τ>0,

P(|X−µ|≥τ)≤2
(

exp
(
− τ2

8mc2

)
+

mbδ

c

)
.

Proof of Lemma 21 Let q=P(X∈H(v,b)−), then q∈ (0,1) since H(v,b) inter-
sects the interior of S. For n∈N define,

Bn :=
{
X ={x1, ..., xn}∈ (Rd)n

∣∣∣
|X ∩H(v,b)−|≤ n

2
q or |X ∩H(v,b)+|≤ n

2
(1−q)

}
.

Bn is defined to represent the set of potential random samples of size n arising
from independent realisations of X in which either the number of data falling
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in H(v,b)+ or the number falling in H(v,b)− is less than or equal to half the
expected number. Using Hoeffding’s inequality one can show that,

P(X ∈Bn)≤exp

(
−2

(nq− n
2 q)2

n

)

+exp

(
−2

(n(1−q)− n
2 (1−q))2

n

)
.

Now, for X ={x1, ..., xn} 6∈Bn, define X ′ to be X except one of the elements is
replaced with another independent realisation of X. Define C=X ∩H(v,b)−,
C′=X ′∩H(v,b)−. Then,∣∣∣∣∣∑x∈C ∑y∈X\C Kv

σ(x,y)
|C|(n−|C|) −

∑x∈C′ ∑y∈X ′\C′ Kv
σ(x,y)

|C′|(n−|C′|)

∣∣∣∣∣≤max
{

1
|C|−1

,
1

n−|C|−1

}
.

Since X 6∈Bn we know that |C|> n
2 q and n−|C|> n

2 (1−q), and hence this
right hand side can be replaced with 2

nmin{q,1−q} .
Now, if X and X ′ are again defined as above except X is allowed to lie in

Bn, then we instead have∣∣∣∣∣∑x∈C ∑y∈X\C Kv
σ(x,y)

|C|(n−|C|) −
∑x∈C′ ∑y∈X ′\C′ Kv

σ(x,y)
|C′|(n−|C′|)

∣∣∣∣∣≤1.

The random variable ξ := 1
nσ2 RatioCut(v,b|X ) is therefore strongly difference

bounded by, (
1
σ2 ,

2
nmin{q,1−q}σ2 ,P(X ∈Bn)

)
.

By the generalisation of McDiarmid’s inequality we thus have,

P (|ξ−E[ξ]|>γ)≤2exp
(
−γ2nmin{q,1−q}2σ4

32

)
+n2 min{q,1−q}P(X ∈Bn).

Now, let Y, Z be random variables with the same distribution as v ·X. Then
we can write,

E[ξ]=E

[
1
σ2 Kσ(Z,Y)

∣∣Z<b,Y≥b
]

.

Therefore,

E[ξ]=
∫

_−∞b
∫ ∞

b

1
σ2 Kσ(z,y)

pv(z)
P(v ·X<b)

pv(y)
P(v ·X≥b)

dydz

=
∫ b

−∞

∫ ∞

b

1
σ2 exp

(
z−y

σ

)
pv(z)

P(v ·X<b)
pv(y)

P(v ·X≥b)
dydz

=
∫ b

−∞

1
σ

exp
(

z−b
σ

)
pv(z)

P(v ·X<b)

∫ ∞

b

1
σ

exp
(

b−y
σ

)
pv(y)

P(v ·X≥b)
dydz.
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Now, the quantity
∫ b
−∞

1
σ exp

(
z−b

σ

)
pv(z)

P(v·X<b)dz is the expected value of a ker-
nel estimate of the density of the random variable v ·X truncated above at
b evaluated at the point b, and using a Laplace kernel with the reflection
method at the boundary. Therefore,∫ b

−∞

1
σ

exp
(

z−b
σ

)
pv(z)

P(v ·X<b)
dz=

pv(b)
P(v ·X<b)

+O(σ).

Similarly, ∫ ∞

b

1
σ

exp
(

b−y
σ

)
pv(y)

P(v ·X≥b)
dy=

pv(b)
P(v ·X≥b)

+O(σ).

Therefore,

E[ξ]=
pv(b)2

P(v ·X<b)P(v ·X≥b)
+O(σ).

In all, there exist D1, D2>0 s.t. for large n and with probability at least
1−D1 exp

(
−γ2σ4n

)
we have,

|ξ−E[ξ]|≤γ and
∣∣∣∣ pv(b)
P(v ·X<b)P(v ·X≥b)

−E[ξ]

∣∣∣∣≤D2σ.

Setting γ∈O(σε/2) and allowing σ→0 appropriately as n→∞ therefore gives
the result. �
Proof of Lemma 22 Let X be a sample of realisations of X of size n. Define
the following,

η−=
1

2σ

∑x∈X∩H(v,b)− ∑y∈X Kv
σ(x,y)

|X ∩H(v,b)−|(n−1)

=
1

2σ

∑x∈X∩H(v,b)− ∑y∈X ,y 6=x Kv
σ(x,y)

|X ∩H(v,b)−|(n−1)
+

1
2σ(n−1)

η+=
1

2σ

∑x∈X∩H(v,b)+ ∑y∈X Kv
σ(x,y)

|X ∩H(v,b)+|(n−1)

=
1

2σ

∑x∈X∩H(v,b)+ ∑y∈X ,y 6=x Kv
σ(x,y)

|X ∩H(v,b)+|(n−1)
+

1
2σ(n−1)

,

where we adopt the convention 0
0 =0. Similar to the previous proof it can be

shown that η− and η+ are strongly difference bounded by ( 1
2σ , 1

nmin{q,1−q}σ ,
P(X ∈Bn)), with q and Bn defined as before. Thus for γ>0 both P(|η−−
E[η−]|>γ) and P(|η+−E[η+]|>γ) are bounded above by

2exp
(
−γ2nmin{q,1−q}2σ2

8

)
+n2 min{q,1−q}P(X ∈Bn).
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Now, again if we consider random variables Y, Z with the same distribu-
tion as v ·X, then we can write

E[η−]=E

[
1

2σ
Kσ(Y, Z)|Y<b, Z 6=Y

]
+

1
2σ(n−1)

E[η+]=E

[
1

2σ
Kσ(Y, Z)|Y≥b, Z 6=Y

]
+

1
2σ(n−1)

.

Thus,

E[η−]=
∫ b

−∞

∫ ∞

−∞

1
2σ

Kσ(y,z)
pv(y)

P(v ·X<b)
pv(z)dzdy

+
1

2σ(n−1)

=
1
q

∫ b

−∞
pv(y)

∫ ∞

−∞

1
2σ

exp
(
−|y− z|

σ

)
pv(z)dzdy

+
1

2σ(n−1)
,

where
∫ ∞
−∞

1
2σ exp

(
− |y−z|

σ

)
pv(z)dz is the expected value of a kernel estimate

of the density of pv at y using the Laplace kernel. Therefore,

E[η−]=
1
q

∫ b

−∞
pv(y)2dy+O(σ+(σn)−1).

Similarly,

E[η+]=
1

1−q

∫ ∞

b
pv(y)2dy+O(σ+(σn)−1).

With ξ defined as before, we therefore have

E[ξ]

(
1−q

E[η−]
+

q
E[η+]

)
= pv(b)2

(
1∫ b

−∞ pv(x)2dx
+

1∫ ∞
b pv(x)2dx

)
+O(σ+(σn)−1).
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Now consider the following,

P


∣∣∣∣∣∣∣
ξ(1−q)

η−
− 2

σ

∑
x∈X∩H(v,b)−

∑
y∈X∩H(v,b)+

Kv
σ(x,y)

∑
x∈X∩H(v,b)−

∑
y∈X

Kv
σ(x,y)

∣∣∣∣∣∣∣>γ


=P

 2
σ

∑
x∈X∩H(v,b)−

∑
y∈X∩H(v,b)+

Kv
σ(x,y)

∑
x∈X∩H(v,b)−

∑
y∈X

Kv
σ(x,y)

∣∣∣∣ (n−1)(1−q)
|X ∩H(v,b)+| −1

∣∣∣∣>γ


≤P

(
2
σ

∣∣∣∣ (n−1)(1−q)
|X ∩H(v,b)+| −1

∣∣∣∣>γ
∣∣|X ∩H(v,b)−|≥1

)
≤exp

(
−2n(1−q)2

(
σγ/2

1+σγ/2

)2
)
+exp

(
−2

(1−q)2

n

(
nσγ/2−1
1−σγ/2

)2
)

using, as before, tail bounds for the binomial distribution. A similar inequal-
ity holds for ξq

η+
.

Putting this all together, and setting γ=σε/2 and allowing σ→0 as n→∞
s.t. nσ4+ε→∞, we have the following. There exist constants D1,D2,D3,D4,D5>
0 s.t. for large n the following hold,

P(|ξ−E[ξ]|<γ)≥1−D1exp
(
−γ2σ4n

)
P(|η−−E[η−]|<γ)≥1−D2exp

(
−γ2σ2n

)
P(|η+−E[η+]|<γ)≥1−D3exp

(
−γ2σ2n

)
P


∣∣∣∣∣∣∣
ξ(1−q)

η−
− 2

σ

∑
x∈X∩H(v,b)−

∑
y∈X∩H(v,b)+

Kv
σ(x,y)

∑
x∈X∩H(v,b)−

∑
y∈X

Kv
σ(x,y)

∣∣∣∣∣∣∣<γ

≥1−D4exp
(
−nσ2γ2

)

P


∣∣∣∣∣∣∣

ξq
η+
− 2

σ

∑
x∈X∩H(v,b)−

∑
y∈X∩H(v,b)+

Kv
σ(x,y)

∑
x∈X∩H(v,b)+

∑
y∈X

Kv
σ(x,y)

∣∣∣∣∣∣∣<γ

≥1−D5exp
(
−nσ2γ2

)
.

Therefore, there exist constants E1,E2>0 s.t. with probability at least 1−
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E1exp(−γ2σ4n) we have∣∣∣∣∣∣∣∣∣∣
2
σ ∑

x∈X∩H(v,b)−

y∈X∩H(v,b)+

Kv
σ(x,y)

 1
∑

x∈X∩H(v,b)−
y∈X

Kv
σ(x,y)

+
1

∑
x∈X∩H(v,b)+

y∈X

Kv
σ(x,y)

−E[ξ]

(
1−q

E[η−]
+

q
E[η+]

)∣∣∣∣∣∣∣∣∣∣
<γE2.

Combining this with the fact that

E[ξ]

(
1−q

E[η−]
+

q
E[η+]

)
=pv(b)2

(
1∫ b

−∞ pv(x)2dx
+

1∫ ∞
b pv(x)2dx

)
+O(σ+(σn)−1),

gives the result. �

The following technical result is useful for proving Proposition 23

Proposition 26 Let Y be a univariate random variable with distribution F, density
f and support S. Assume that f is continuous and has finitely many modes. Then
∃z<supS s.t.,

f (x)∫ ∞
x f (y)2dy

≥ 1
1−F(x)

,

for all x∈[z,supS).

Proof Since f is continuous and has finitely many modes ∃z∈ Int(S) s.t. f is
non-increasing on [z,supS). For x∈[z,supS), and integrating by parts, con-
sider ∫ ∞

x
f (y)2dy=

∫ ∞

x
f (y)dF(y)

=[F(y) f (y)]∞x −
∫ ∞

x
F(y)d f (y)

≤[F(y) f (y)]∞x −
∫ ∞

x
d f (y)

=−[ f (y)(1−F(y))]∞x
= f (x)(1−F(x)).

A simple rearranging provides the result. �
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Proof of Proposition 23 Take v∈Bd and let Sv be the support of v·X. Then pv

is continuous with finitely many modes, and so by Proposition 26 ∃zv<supS
s.t.

pv(x)∫ supSv

x pv(y)2dy
≥ 1

1−Pv(x)
,

for all x∈[zv,supS). For such x consider,

pv(x)2

(
1∫ x

infSv pv(y)2dy
+

1∫ supSv

x pv(y)2dy

)
≥ pv(x)2∫ supSv

x pv(y)2dy

≥ pv(x)2

pv(x)(1−Pv(x))

=
pv(x)

(1−Pv(x))
.

This is simply the hazard function for the random variable v·X, which is un-
bounded by assumption. Therefore ∃bv<supS s.t. pv(b)2(1/

∫ b
infSv pv(y)2dy+

1/
∫ supSv

b pv(y)2dy) is non-decreasing in b over [bv,supSv), and is strictly in-
creasing on part of this domain. By symmetry the same holds at the lower
end of the support of v·X. Therefore for each v there is a b which minimises
pv(b)2(1/

∫ b
infSv pv(y)2dy+1/

∫ supSv

b pv(y)2dy), since it is continuous and in-
creasing outside a compact set. Notice also that since p is continuous, the
value minb pv(b)2(1/

∫ b
infSv pv(y)2dy+1/

∫ supSv

b pv(y)2dy) is continuous in v,
and since Bd is compact there exists a minimum in (v,b)∈Bd×R. �

Proof of Lemma 24 Take v∈Bd. Assume without loss of generality that the
marginal data set v·X is sorted in non-decreasing order, i.e., v·x1≤v·x2≤...≤
v·xn. For w∈{1,...,n−1} observe,

exp
(

v·xw−v·xw+1

σ

)
≤

w

∑
i=1

n

∑
j=w+1

exp
(v·xi−v·xj

σ

)
≤w(n−w)exp

(
v·xw−v·xw+1

σ

)
.

Similarly,

1≤
w

∑
i=1

n

∑
j=1

exp
(
−
|v·xi−v·xj|

σ

)
≤nw

1≤
n

∑
i=w+1

n

∑
j=1

exp
(
−
|v·xi−v·xj|

σ

)
≤n(n−w).
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Therefore, for b∈(v·xw,v·xw+1] we have

1
w(n−w)

exp
(

v·xw−v·xw+1

σ

)
≤NCut(v,b|X )

≤2w(n−w)exp
(

v·xw−v·xw+1

σ

)
.

Take ε>0. It can be shown (Pavlidis et al., 2015) that ∃mε>0 s.t. for all (w,c)∈
Bd×R, min{‖(w,c)−(vm,bm)‖,‖(w,c)−(−vm,−bm)‖}>ε⇒marginH(w,c) <
marginH(vm,bm)−mε.

Now, for σ>0 let b be the midpoint of the largest gap between consecutive
elements of vσ ·X . Suppose marginH(vσ,b)<marginH(vm,bm)−mε. Let iσ=
|(vσ ·X )∩(−∞,b)|, im=|(vm ·X )∩(−∞,bm)|. Then,

1
n2 exp

(
(vσ ·X )(iσ)−(vσ ·X )(iσ+1)

σ

)
≤NCut(vσ,bσ)

≤NCut(vm,bm)

≤2n2exp

(
(vm ·X )(im)−(vm ·X )(im+1)

σ

)
,

Therefore,

σ≥
(vm ·X )(im+1)−(vm ·X )(im)−((vσ ·X )(iσ+1)−(vσ ·X )(iσ))

log(2n4)

>
2mε

log(2n4)
.

We therefore have,

σ≤ 2mε

log(2n4)
⇒max

b∈R
marginH(vσ,b)≥marginH(vm,bm)−mε

⇒∃b∈R s.t. min{‖(vσ,b)− (vm,bm)‖,‖(vσ,b)− (−vm,−bm)‖}≤ε

⇒min{‖vσ−vm‖,‖vσ− (−vm)‖}≤ε.

Since ε>0 was arbitrary, we have ∀ ε>0,∃σ′>0 s.t. σ≤σ′⇒d(vσ,{vm,−vm})
≤ε. This proves the result. �
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Chapter 5

Divisive Clustering of High
Dimensional Data Streams

Abstract

Clustering streaming data is gaining importance as automatic data acquisition tech-
nologies are deployed in diverse applications. We propose a fully incremental pro-
jected divisive clustering method for high-dimensional data streams that is motivated
by high density clustering. The method is capable of identifying clusters in arbi-
trary subspaces, estimating the number of clusters, and detecting changes in the data
distribution which necessitate a revision of the model.

The empirical evaluation of the proposed method on numerous real and simulated
datasets shows that it is scalable in dimension and number of clusters, is robust to
noisy and irrelevant features, and is capable of handling a variety of types of non-
stationarity.

1 Introduction

High dimensional data stream clustering is increasingly relevant as auto-
matic data generation and acquisition technologies are adopted in diverse
applications. Data streams are encountered in a variety of settings. These
include: computer network traffic monitoring, Web page requests, customer
click streams, sensor networks, as well as transactions data from stock and
foreign exchange markets, to name a few. The volume of data involved in
these applications is far too large to fit in main memory. Hence random ac-
cess to past observations is costly. Linear scans are the only acceptable access
method in terms of computational efficiency (Guha et al., 2003; Silva et al.,
2013). A defining property of data streams is that the population distribution
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is subject to changes over time. This phenomenon is known as population drift
(Babcock et al., 2002). These characteristics pose significant challenges for
clustering. Streaming clustering algorithms must be incremental, with time
and storage requirements independent of the size of the stream. In addition
they must be capable of adapting to population drift by revising the clus-
ter structure, distinguishing emerging clusters from noise, and discarding
expired clusters (Jain, 2010).

The majority of existing streaming clustering algorithms consist of two
components. The first is an online component that incrementally updates
data structures that summarise the data sample. The second component
operates offline, and performs the actual clustering, operating on the data
summaries, rather than the original data samples (Aggarwal et al., 2003; Cao
et al., 2006). However, clustering algorithms for static datasets invariably in-
volve parameters which are application dependent, e.g. the number of clus-
ters in k-means. Using such methods in the offline component of a streaming
algorithm implicitly assumes that appropriate values for these parameters
remain constant over the duration of the data stream. This is hard to justify
in the presence of population drift. Existing algorithms attempt to handle
population drift through simple heuristics, like sliding windows (Aggarwal
et al., 2003; Kranen et al., 2009) and forgetting factors (Aggarwal et al., 2004;
Cao et al., 2006), which are user-determined and static over the length of the
stream. The important aspect of change detection is largely ignored (Silva et
al., 2013). Finally, the majority of traditional clustering algorithms rely on the
Euclidean distance between data samples, which becomes less meaningful
as dimensionality increases (Kriegel et al., 2009). Few streaming algorithms
are capable of handling very high dimensional data, and in general these are
limited to detecting clusters only in axis parallel subspaces (Aggarwal et al.,
2004; Ntoutsi et al., 2012; Hassani et al., 2102, 2014).

The framework we propose draws on the standard nonparametric statis-
tical definition of clusters as regions of high density in the underlying prob-
ability distribution (Hartigan, 1975; Cuevas and Fraiman, 1997; Rigollet and
Vert, 2009). In this approach, a high-density cluster is defined as a connected
component of the level set of the (unknown) density function. When the den-
sity is unimodal the level set is connected, otherwise it can be connected or
not. If it is disconnected, high-density clusters correspond to regions around
modes of the density (Menardi and Azzalini, 2014). Identifying connected
regions of high density of an unknown density is a challenging task even
in moderate dimensions. Existing methods rely on an approximation of the
density (Azzalini and Torelli, 2007; Cuevas et al., 2001), or attempt to infer
local properties of the density (Menardi and Azzalini, 2014; Stuetzle and Nu-
gent, 2010). Due to the curse of dimensionality such approaches are only
effective on problems in up to tens of dimensions (Menardi and Azzalini,
2014). In higher dimensions, graph theoretic formulations have been used
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to approximate these high density regions (Cuevas et al., 2001; Rinaldo and
Wasserman, 2010).

The influential DBSCAN algorithm (Ester et al., 1996), combines a kernel
density estimate using uniform kernel with a graph theoretic approach to
determine clusters. Data points whose density exceeds a chosen threshold,
λ>0, are considered high-density points. A graph is constructed by con-
necting each high density point with each other point within a radius equal
to the bandwidth of the kernel density estimator. Connected components
of the graph define clusters, while singletons are interpreted as noise. This
approach is efficient from a computational perspective, but the connected
components of the resulting graph are not guaranteed to coincide with the
components of the corresponding level set of the estimated density.

A basic weakness of algorithms that attempt to identify high-density clus-
ters for a single, user-defined density level, is that both the number and the
shape of the clusters depends on the choice of this parameter. In addition
using a single density threshold can fail to detect clusters of varied densi-
ties (Ankerst et al., 1999; Stuetzle, 2003). To overcome this limitation one can
compute the clustering structure that arises by considering all possible values
of the density level. The collection of clusters which arises is known as the
cluster tree (Hartigan, 1975). Recent algorithms that attempt to estimate the
cluster tree include OPTICS (Ankerst et al., 1999), and Gslclust (Stuetzle and
Nugent, 2010). A general approach to detect clusters at a local level from a
cluster tree is discussed in (Campello et al., 2013).

In this article we propose a framework for streaming data clustering that
relies on a different approach to high-density clustering. Instead of attempt-
ing to estimate high-density clusters directly, it partitions the data sample hi-
erarchically using linear separators (hyperplanes) that pass through regions
of low density. It thereby avoids splitting high-density clusters. This was
first proposed for static data clustering by Tasoulis et al. (2010). An attractive
feature of this approach from a computational perspective is that it requires
only one-dimensional projections to identify low density separators. Expand-
ing on this we propose a framework for streaming data clustering, which we
refer to as High-dimensional Streaming Divisive Clustering (HSDC), that is
able to: (i) identify clusters of arbitrary orientation; (ii) estimate the number
of clusters automatically using a statistically motivated divisive procedure;
(iii) update the clustering result incrementally without any offline compo-
nent; (iv) utilise information about structural variation of the model to in-
fluence forgetting, instead of relying on static parameters; and (v) identify
changes in the population distribution that require the revision of the clus-
tering model. This is achieved through synthesising and extending results
from incremental dimensionality reduction, kernel density estimation, and
change detection.

The remaining paper is organised as follows. In Section 2 we discuss some
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existing data stream clustering algorithms. Section 3 gives a more formal
description of the problem we consider and discusses challenges associated
with a data stream implementation. Section 4 describe our methodology
for introducing components to the model, as well as how to accommodate
population drift. In Section 5 we give a brief summary of the algorithmic
structure of the method, as well as investigate the computational complexity
of the model updates. In Section 6 we document the results of an extensive
simulation study and performance on publicly available data sets. Finally in
Section 7 we give some concluding remarks.

2 Related Work

Many existing data stream clustering algorithms extend classical clustering
algorithms, such as k-means, k-medians, fuzzy c-means, and DBSCAN, to the
data stream framework (Guha et al., 2003; Zhang and Ramakrishnan, 1996;
Aggarwal et al., 2003, 2004; Cao et al., 2006; Kranen et al., 2009).

One of the most influential data stream clustering algorithms is CluS-
tream (Aggarwal et al., 2003). CluStream uses microclusters to summarise the
data received by the algorithm incrementally. These microclusters are then
clustered offline using a weighted k-means algorithm. Microclusters store
first and second order summary statistics of spatial and temporal informa-
tion, and possess useful additive, subtractive and multiplicative properties,
making them well suited to windows and forgetting factors. To handle non-
stationarity, CluStream stores snapshots of the microclusters which enable it
to approximate the clustering result over a window, which is specified by the
user.

HPStream (Aggarwal et al., 2004) is a modification of CluStream to han-
dle high dimensional data. Distance calculations are performed within axis
parallel subspaces so as to minimise the radii of the microclusters. Assign-
ing potentially differing subspaces to the clusters negates the additive and
subtractive properties of the microclusters, and so HPStream treats the mi-
croclusters as actual clusters rather than data summaries. Snapshots also be-
come meaningless, and so temporal variation is handled by fixed forgetting
factors.

DenStream (Cao et al., 2006) is a density-based algorithm that uses mi-
croclusters. To handle noise it distinguishes between outlier and potential
microclusters, the latter defined by a threshold on the weighted number of
points falling within a sphere of fixed radius. Weights are exponentially de-
creasing functions of time, enabling the algorithm to adapt to population
drift. The offline component of DenStream is a variant of DBSCAN, thus,
enabling the estimation of the number of clusters, and the detection of clus-
ters of arbitrary shape. Recently proposed extensions of DenStream include
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HDDStream (Ntoutsi et al., 2012), PreDeConStream (Hassani et al., 2102),
and DMMStream (Amini et al., 2014a). HDDStream and PreDeConStream
handle high dimensional data by scaling up the contribution of preferred di-
mensions within distance calculations. DMMStream enables the detection of
density connected clusters on differing scales, through the use of mini micro-
clusters.

Grid based density clustering algorithms have also been proposed. The
DStream (Chen et al., 2007) algorithm is similar to DenStream, except that
dense grid cells (cells containing relatively high approximate integrated den-
sity) are used instead of microclusters. The number of grid cells however
depends exponentially on the dimension of the data. DDStream (Jia et al.,
2008) is an extension of DStream which allows the absorption of data at the
boundaries of clusters into adjacent dense cells, thereby reducing the number
of active grid cells.

A potential feature of data streams is that the rate at which new data is
observed can vary over time. Anytime algorithms are able to produce a clus-
tering result after any amount of processing time, but are also capable of re-
fining this result when more time is available (Kranen, 2011). Anytime stream
clustering was first discussed in relation to the ClusTree algorithm (Kranen
et al., 2009). ClusTree stores a hierarchy of microclusters, with each internal
node representing an aggregation of its children. Arriving data are inserted
at the root and traverse the hierarchy via the nearest microcluster at each
level. This insertion is halted if there is insufficient time. Halted data can
“hitchhike" further down the hierarchy with similar arriving data at a later
stage. In this way CluStree is capable of handling not only extremely high
velocity data streams, but also streams in which the velocity varies. Sub-
ClusTree (Hassani et al., 2014) extends ClusTree to high dimensional appli-
cations by establishing multiple hierarchies, each existing within a different
subspace.

A comprehensive review and categorisation of existing data stream clus-
tering algorithms is provided in two recent surveys (Aggarwal, 2013; Silva et
al., 2013). A review focused on density based methods for streaming data is
provided in (Amini et al., 2014b).

3 Problem Description

Our aim is to generate a hierarchical partition of the Euclidean space Rd

such that the modes of a probability density, f , over Rd, are uniquely con-
tained within different cells of the partition. The density, f , is not known,
and instead we receive a sequence of realisations of the random variable X
with density f . The learning process is constrained by standard memory and
computation limits associated with data stream learning. We do not assume
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that f is constant in time, and so modify the model as changes in the empiri-
cal distribution of realisations suggests is necessary.

This problem can be formulated in the context of high density clustering,
wherein the modes of the density f can be associated with its level sets.

Level Set For level λ≥0 and density function f , the level set of f above λ,
or λ level set of f , is defined as {x∈Support( f )| f (x)≥λ}.

As λ increases, the λ level set centers around the modes of f above λ,
and therefore the number of modes, or clusters, can be associated with the
number of maximal connected subsets of the level sets. We refer to these
maximal connected subsets as the components of the level set. Identifying the
components of level sets of a high dimensional probability density function
is extremely costly in terms of computational effort, and often these are ap-
proximated using graph theoretic formulations (Cuevas et al., 2001; Rinaldo
and Wasserman, 2010). In addition, the density function f is unknown and
must be approximated. Standard methods, such as Kernel Density Estima-
tion (KDE), become less effective at accurately representing the underlying
probability density as dimensionality increases (Scott, 2009). Building an ap-
proximation of f incrementally in a data stream setting introduces yet further
challenges, since only summaries of the data can be stored and hence further
approximations are necessary.

The dePDDP algorithm (Tasoulis et al., 2010) attempts to separate the
modes of a distribution via a hierarchy of low density separating hyper-
planes. The algorithm recursively projects (subsets of) the data into a one
dimensional subspace and splits the projected data above and below the low-
est antimode of their estimated density. The KDE of the projected data pro-
vides an upper bound on the value of the full dimensional KDE, as shown in
the following lemma, which is adapted from Tasoulis et al. (2010).

Lemma 27 Let X ={x1, ..., xN} be a d-dimensional data set, and let v∈Rd have
unit length and let b∈R. Let f̂ denote the d-dimensional kernel density estimate
of the distribution of X with bandwidth matrix hI using the multivariate Gaussian
kernel. Let f̂1 be the univariate kernel density estimate of the distribution of v ·X
with bandwidth h using the univariate Gaussian kernel. Then for any x∈Rd s.t.
v · x=b,

f̂ (x)≤hd−1 f̂1(b).

Splitting at the lowest antimode of the projected density estimate, there-
fore, avoids intersecting high level sets of the full dimensional estimated den-
sity. Separating clusters by regions of low density has also been shown to
yield more stable clusters (von Luxborg, 2010), which fits well with the possi-
bility of smooth time variations in f . While this approach avoids the explicit
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estimation of the full dimensional density, the model structure is limited to
cases where the modes of the density can be separated by a hierarchy of hy-
perplane separators. In particular it is limited to cases in which the convex
hulls of the modes are non-overlapping. Despite this limitation, the approach
has shown good empirical performance in a number of high dimensional ap-
plications (Boley, 1998; Tasoulis et al., 2010). The dePDDP algorithm projects
data onto their first principal component, using the justification that direc-
tions with high variability are likely to display high between cluster variability.
This will tend to lead to good separation of the clusters, and hence low anti-
modes in the projected density estimate.

A hyperplane can be parameterised by a vector v∈Rd and scalar b∈R as
the set {x|v · x=b}. No generality is lost by assuming that v is unit length.
We adopt the approach of learning v, which we will refer to as the projection
vector, from the full dimensional realisations of X, and then using the projec-
tions of these realisations onto v to inform our choice of b, which we refer to
as the split point. The problem of incremental principal component analysis
is well studied (Artac et al., 2002; Li et al., 2003; Weng et al., 2003), and com-
putationally efficient algorithms exist. In order to determine the split point,
projections of the data onto the projection vector are used to approximate
the density of the random variable v ·X. Low empirical density regions in
this density approximation suggest the location of low density hyperplanes.
Combining these provides a readily available framework for an online ver-
sion of dePDDP, such as that adopted by SPDC (Tasoulis et al., 2012). Such a
straightforward implementation, however, has important limitations.

Incremental updates to the projection vector, which we henceforth index
by t to indicate the t-th step estimate, mean that the sample of projections
at time t is given by {v1 · x1,v2 · x2, ...,vt · xt}, which is not a sample from the
random variable vt ·X. With successive updates to vt the accuracy of the
projected points at estimating the empirical distribution of vt ·X diminishes,
which affects the accuracy of the spit point. Futhermore, if the splitting rule
at a node in the hierarchy is updated with each observation, then the sets of
data being passed to its children will vary. This variability propagates down
the hierarchy and renders projection vector updates and splitting decisions
at lower levels increasingly inaccurate and unstable. Moreover, if the under-
lying distribution changes in time, these projections and splitting rules are
rendered even more inaccurate, unless these changes are suitably accommo-
dated.

In what follows we detail our approach to overcoming these limitations.
We describe the incremental updates to a node of the hierarchy. The time
indices, t, relate to the t-th update to the node, and not the t-th update to the
entire hierarchy. Similarly, the t-th datum refers to the t-th datum received
by the node, and not the t-th datum in the entire stream.
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4 Methodology

In this section we discuss in detail the three components of the proposed
High-dimensional Streaming Divisive Clustering (HDSC) framework. HSDC
constructs incrementally a hierarchical clustering model which consists of a
collection of separating hyperplanes. The hyperplanes pass through regions
of low density, and are orthogonal to directions of high variance. These hy-
perplane separators are maintained within the model until there is sufficient
evidence indicating that they no longer pass through regions of low density.
Whenever this occurs the hyperplane in question, and therefore the part of
the hierarchy rooted at it, is removed from the model and the corresponding
node is re-initialised.

Section 4.1 details how we find high variance projection directions incre-
mentally using the CCIPCA algorithm (Weng et al., 2003). Section 4.2 de-
scribes how low density hyperplanes are identified using information from
the projected data only. In Section 4.3 we discuss how population drift can
be handled within this framework.

4.1 Learning High Variance Projections

The k-th principal component of a data set, X , is given by the k-th largest
eigenvector of its covariance matrix. Many incremental methods for princi-
pal component estimation require that the full covariance matrix be approx-
imated, leading to high computation and storage costs for large problems.
The CCIPCA algorithm (Weng et al., 2003) instead focuses directly on the
eigen-problem Cov(X )u=λu. The algorithm is based on the recursion,

vt =
t−1

t
vt−1+

1
t

xt ·vt−1

‖vt−1‖
xt, (5.1)

where {xt}∞
t=1 is a sequence with zero mean. Weng et al. (2003) have shown

that the recursion of Eq. (5.1) converges almost surely to ±λu for the maxi-
mum value of λ, i.e., u is the first principal component. Lower order eigenvec-
tors are found by first projecting data into the null space of all approximate
higher order eigenvectors.

Early updates to the projection vector are highly variable, making it more
challenging to approximate the marginal distribution along it. Passing promis-
ing projection vectors down the hierarchy to act as initial projection vectors
in the child nodes can help to ameliorate this problem. When a node is split,
a hyperplane orthogonal to its projection vector is introduced to the model.
The truncation induced by a separating hyperplane tends to reduce the vari-
ability in the normal direction (i.e., along the projection direction) more than
in directions orthogonal to it. The second most highly variable direction is
therefore a good candidate for a high variance projection in the child nodes.
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We investigate a variation on the basic HSDC model, which we call projection
inheritance, in which each node (besides the root node) learns both its own
projection and a high variance projection to be passed to its children. So that
this inheritance is not lost to natural variations in the data, it is given addi-
tional weight in subsequent updates equal to the number of updates already
undergone. Orthogonality to the parent’s projection vector is also enforced
in subsequent updates after being passed down. This increased stability in
the projection vector can be crucial to estimating the distribution along it. If
the updates are highly variable, then the projections made onto it will be less
reliable at representing the target distribution.

Below we describe formally the updates to the projection and inheritance
vector with the arrival of the t-th datum xt. Let ut be the (unnormalised)
projection vector at time t, and zt the inheritance vector. Also, if ut was
initialised by inheritance, let N be the number of updates undergone prior to
inheritance and let p be the projection vector of the parent node (otherwise
assume p=0 and adopt the convention that 0/0=0).

x̄t =
t−1

t
x̄t−1+

1
t

xt

xC := xt− x̄t

x0 := xC−
xC · p
‖p‖2 p

ut =
t+N−1

t+N
ut−1+

1
t+N

x0 ·ut−1

‖ut−1‖
x0

xC = xC−
xC ·ut

‖ut‖2 ut

zt =

{
xC, t=1
t−1

t zt−1+
1
t

xC ·zt−1
‖zt−1‖

xC, otherwise.

In subsequent sections we will assume that the projection vector is nor-
malised, and denote it by vt.

4.2 Splitting Based on a Projected Sample

High density clustering associates clusters with modes of the underlying
probability density. Introducing a new split to the hierarchical model is there-
fore only done when the corresponding truncation of the density, induced
by the hierarchical partition of Rd, contains multiple modes. Assessing the
modality of a high dimensional probability density is difficult, however by
considering one dimensional projections of the underlying random variable,
X, we only need to assess the modality of a univariate sample. Cases exist in
which the full dimensional density is unimodal, but in which the marginal
distribution of a univariate projection is multimodal, and vice versa, and in

158



4. Methodology

these cases the accuracy of our model will be compromised as components
may be split between different elements of the partition.

Assessing Modality

In this subsection we assume that we observe a univariate sample corre-
sponding to the projections of the underlying random variable. The excess
mass test (Müller and Sawitzki, 1991) is used to asses the modality of a sam-
ple from an unknown distribution function F over R, with density function
f . The excess mass of f at level λ is defined as,

E(λ)=
∫

R
( f (x)−λ)+dx.

The excess mass therefore measures the integrated density above level λ. The
excess mass can also be formulated in terms of the distribution function F,

E(λ)= sup
I1,...,Ic(λ)

c(λ)

∑
i=1

(F(Ii)−λ‖Ii‖) , (5.2)

where c(λ) is the number of connected components of the λ level set of f and
‖I‖ is the diameter of the set I. The supremum is taken over all collections of
size c(λ) of disjoint intervals. The latter formulation allows for the empirical
excess mass based on a sample, X , from F to be calculated by replacing F in
(5.2) with the empirical distribution FX , defined as

FX (z)=
1
|X | ∑

x∈X
I[z≥ x].

In practice, the number of connected components c(λ) will not be known,
and so the empirical excess mass is compared for different values. We use
the notation Êc(λ) to mean the empirical excess mass for c intervals. The
excess mass statistic for comparing c1 with c2> c1 components is defined as

∆(c1, c2)=sup
λ

{Êc2(λ)− Êc1(λ)}.

The larger ∆(c1, c2), the more evidence in favour of c2 over c1. In our context,
we are interested in whether or not a density has more than one mode, and
therefore are interested in the case c1=1, c2=2. This case can equivalently
be assessed via the dip (Hartigan and Hartigan, 1985). The dip of a distribu-
tion function F over R measures the departure from unimodality of F and is
given by the supremal distance between F and the distribution function with
unimodal density for which this supremal distance is minimal. Formally,

Dip(F)=min
U∈U
‖F−U‖∞,
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where U is the class of distribution functions with unimodal density. It has
been shown that the dip is equal to half the excess mass statistic ∆(1,2), and
can therefore be used equivalently to assess multimodality when the dip of
FX is considered. To assess the significance of the dip or excess mass, a null
unimodal distribution is specified and the quantiles under this null distribu-
tion estimated using Monte Carlo simulation. The benefits of using the dip
relate to the computationally efficient algorithm given by Hartigan (1985),
which is linear in the sample size. The corresponding unimodal distribution
can be extracted from the algorithm, and hence the value of λ corresponding
to the excess mass can be obtained. We make use of this value of λ in the
approximation of the underlying density (Section 4.2).

While the calculation of the dip is linear in the size of the sample, it can-
not be calculated incrementally. In the context of a data stream, this violates
the fixed storage and computation limits. To remedy this, we propose an
approximation method which requires bounded memory and computation
time. This is achieved by approximating the sample using a fixed number
of compact intervals which are dynamically adjusted to always contain the
entire sample. Storing only the endpoints of the intervals and the number
of data falling in them allows us to construct an approximation of the sam-
ple which leads to a lower bound on the dip of the empirical distribution
of the sample. Thus, this approximation method leads to a uniformly more
conservative test of unimodality, which fits well with our objective to avoid
prematurely splitting clusters.

Compactly Approximating the Sample

Our approximation method relies on the notion of a uniform set, which is
defined as follows.

Uniform Set Let X be a finite sample in R and I=[a,b], a≤b∈R. Then the
uniform set of X and I is defined as

Uni f (X , I)=
n⋃

i=1

{
m+

i−1
n−1

(M−m)

}
,

where n= |X ∩ I|, m=min{X ∩ I}, and M=max{X ∩ I}.

We lose no generality by assuming that the endpoints of the interval I, a
and b, are elements of X . For the purpose of approximating the empirical
distribution, the uniform set replaces the empirical distribution on I with the
distribution function of the random variable YI := ‖I‖

|X∩I|−1 U+min{I}, where
U∼U [0, |X ∩ I|−1] is the discrete uniform random variable on the support
{0,1, ..., |X ∩ I|−1}. Notice that we have again adopted the convention 0/0=
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0. For a collection of disjoint intervals I1< I2< ...< Ik, which jointly contain
the entire sample, the approximate distribution is given by,

F̃(x)=
1
|X |

k

∑
i=1
|X ∩ Ii|FYIi

,

where FYIi
is the distribution function of YIi , defined as above.

With the arrival of a new datum, x, F̃ must be updated such that the num-
ber of intervals used does not exceed the predefined limit. If x lies within
one of the existing intervals, then no adjustment to the above formulation is
necessary. Otherwise, an interval I=[x, x] is added, and then two adjacent in-
tervals are replaced with the convex hull of their union. The intervals merged
in this way are the adjacent pair which minimise the supremal distance be-
tween F̃ before and after the merger. If intervals i, i+1 are merged, then this
distance is given by,

1
|X |max

{∣∣∣∣|X ∩ Ii|−
⌈
‖Ii‖
‖Ii:i+1‖

⌉∣∣X ∩ Ii:i+1
∣∣∣∣∣∣ ,∣∣∣∣|X ∩ Ii|+1−

⌈
min Ii+1−min Ii
‖Ii:i+1‖

⌉∣∣X ∩ Ii:i+1
∣∣∣∣∣∣} ,

where Ii:i+1= Ii∪ Ii+1. With the above formulation of F̃ we arrive at the fol-
lowing result, the derivation of which can be found in the appendix. We also
discuss therein how a slight modification to the dip algorithm allows one to
calculate the dip of the sample approximation in O(k) time, where k is the
number of intervals.

Lemma 28 Let X be a univariate sample of distinct points. For any collection of
disjoint, compact intervals I1< I2< ...< Ik satisfying

X ⊂
k⋃

j=1

Ij,

we have Dip(F̃)≤Dip(FX ).

This result ensures that the approximation method used cannot lead to
additional false discovery of multimodality when compared with the true
sample of observations. While the result is stated for an unweighted sample,
it also holds for weighted samples for which the data within each interval
are given the same weight. This is important as in the next subsection we
describe how reweighting the data can be useful in better approximating the
distribution of a sample projected onto a vector which is continually being
updated.
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Accommodating a Shifting Projection

Our aim is to approximate the distribution of the projected random variable,
v ·X, where ‖v‖=1. However, we only observe realisations of a sequence of
random variables vt ·Xt, where under the assumption that X1, X2, ... are i.i.d.,
we know that vt converges almost surely to a vector v. Even under this as-
sumption, the realisations vt · xt still represent a sample from a nonstationary
distribution due to the shifting projection vt. With consecutive updates to vt,
the accuracy of the observed projections as a representation of the target dis-
tribution diminishes. The influence of these observations on the approximate
distribution should therefore diminish with subsequent updates. Forgetting
factors impose a decaying weight mechanism to control the influence of past
observations on the current estimate, however they are difficult to tune in
practice. If wt,i is the weight associated with observation i at time t, then
wt,i =(1−λt)wt−1,i, where λt∈ [0,1] is the forgetting factor at time t. Weights
associated with new observations are initialised at 1, and so we have,

Wt :=
t

∑
i=1

wt,i = 1+(1−λt)
t

∑
i=1

wt−1,i

= 1+(1−λt)Wt−1.

Our approximate distribution F̃ is a mixture of discrete uniform distribu-
tions, in which the weight associated with each component is equal to the
number of atoms in its support. Using forgetting factors we can adjust these
weights to obtain a more accurate approximation to the distribution on the
current projection. The update to F̃, which we now index by t to represent
the approximation after t observations, is therefore given by,

F̃t =
1

Wt
FY[xt ,xt ]

+(1−λt)
Wt−1

Wt
F̃t−1,

where xt is the observation at time t. If the number of intervals then exceeds
the upper limit, the merging of two adjacent intervals is performed as de-
scribed in Section 4.2. As λt approaches zero, past and present observations
become equally weighted, while higher values of λt increase the influence
of recent observations on F̃. In problems with an explicit loss function, for-
getting factors can be tuned using stochastic gradient descent (Haykin, 1999;
Anagnostopoulos et al., 2012; Pavlidis et al., 2011), but this is not true in our
context. We propose an adaptive scheme which is complementary to the in-
cremental estimation of the projection in that it uses information about the
angles between consecutive updates to vt to quantify the variability of the
projected distribution over time. In detail, with the arrival of the (t+1)-th
datum, first vt is updated as described in Section 4.1, and then λt is set to,

λt+1=min{Λ,γλt +(1−γ)arccos(vt+1 ·vt)}, (5.3)
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where Λ∈ (0,1] is a chosen maximum forgetting factor. We use an exponen-
tially weighted moving average (EWMA) with parameter γ∈ (0,1) to smooth
the impact on λt of isolated large fluctuations in arccos(vt+1 ·vt) arising from
natural variation in vt. The following proposition states that the adaptive
scheme of (5.3) converges almost surely to 0, whenever vt converges almost
surely. The distribution approximation will therefore stabilise as the projec-
tion converges, which is almost sure under the CCIPCA algorithm as long as
the underlying distribution does not change.

Proposition 29 If {vt}∞
t=1 converges almost surely and ‖vt‖=1 ∀t, then λt

a.s.−→0,
where λt is as in (5.3).

Reweighting the projected data in this way means that the approximate
dip or excess mass must be compared with the quantiles for a sample of size
equal to the effective sample size of the reweighted data, which we calculate as
the sum of the weights in the approximation F̃.

When the null hypothesis of unimodality is rejected based on the dip
of the approximate sample distribution, the associated node is split. The
projection direction and split point are then kept fixed. In the following we
describe how to approximate local minima in the density along the projection,
thereby allowing one to determine such a split point based on this density.

Approximating Anti-modes

The distribution function F̃ is discontinuous, and therefore using this dis-
tribution directly to approximate an antimode in the underlying density is
challenging. A standard approach to generating smooth density approxima-
tions is to consider a convolution with a smooth distribution function, having
density K. The density K is referred to as a kernel. The convolution of a dis-
crete distribution associated with a random variable Y, having mass function
p(y), with a smooth distribution, gives rise to the canonical kernel density
estimate,

f̂ (x)=
1
h ∑

y∈Support(Y)
p(y)K

(
x−y

h

)
.

The parameter h is called the bandwidth, and controls the smoothness of the
resulting density estimate. A common choice of kernel is the standard Gaus-
sian distribution given by,

K(x)=
1√
2π

e−x2/2.

In this case the bandwidth directly relates to the standard deviation of the
smoothing density. The support of the random variable underlying our ap-
proximation F̃ still contains |X | atoms, despite the compression of its rep-
resentation. The evaluation of the associated kernel density estimate at a
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fixed number of points is O(|X |). Knowledge that F̃ represents a mixture
of discrete uniform distribution functions leads us to instead consider the
convolution of the corresponding continuous uniform distribution functions
with the kernel K. For those intervals which contain only a single point, there
is no associated continuous distribution, and so the standard kernel convolu-
tion above is used. The convolution of the uniform density on [a,b], a<b∈R

with the Gaussian distribution with variance h2 is given by

f (x)=
Φ((x− a)/h)−Φ((x−b)/h)

b− a
,

where Φ is the distribution function of the standard Gaussian random vari-
able. With this formulation the associated kernel density estimate has k com-
ponents, rather than |X |.

How to choose h remains a very active area of research, and no universal
guidelines exist for every context. We use the equivalence of the dip and ex-
cess mass tests, and the implications of the rejection of their null hypotheses,
to inform our choice of h. Rejection of the null hypothesis of the excess mass
test is equivalent to favouring two λ level set components over one. The cor-
responding value of λ can be extracted from the dip algorithm. We choose
h such that the associated density estimate has λ level set consisting of two
components. The minimum such value of h is chosen, as this leads to more
sharply defined modes and anti-modes.

4.3 Handling Population Drift

A generic approach to detect time-variations in f that invalidate our clus-
tering model is to sequentially consider the hypothesis that each hyperplane
passes through a region of low relative f density (low-density separation hy-
pothesis). If this hypothesis is false then a revision of the corresponding part
of the hierarchical model is necessary. Notice that the low-density separa-
tion hypothesis is not a hypothesis of overall stationarity of f . Indeed, as
Figure 5.1 shows, considerable variation in f is possible without invalidating
the model. The figure also shows that testing this hypothesis for all separat-
ing hyperplanes enables us to identify and revise only the relevant part of
the clustering hierarchy when a change is detected, rather than resetting the
entire model. Moreover, the low-density separation hypothesis is indepen-
dent of the type (abrupt, or gradual) and the speed of drift. Lastly, testing
this hypothesis corresponds to a one-dimensional change detection problem,
since each low-density hyperplane is identified through an estimate of a one-
dimensional marginal density.

With each hyperplane added to the model we initialise a Bernoulli CUSUM
change detection regime, as described in Reynolds and Stoumbos (1999), to
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(a) Cluster Location (b) Cluster Shape (c) New Clusters

Fig. 5.1: Different changes in distribution and their impact on the clustering model. Red lines
indicate necessity of model revision. Green lines indicate changes which can be addressed by
extending the model without revision

detect significant increase in the frequency of data arising in a small neigh-
bourhood of the hyperplane. This frequency is determined relative to the
frequency in a larger neighbourhood extending to the adjacent modes of the
projected density. In this way the local density behaviour is better repre-
sented. If such a significant increase is observed, the corresponding node
and the subhierarchy it anchors are removed from the model, and the node
is re-initialised. We determine the larger region, which we denote by R, by
the location of the adjacent modes in the density estimate described in Sec-
tion 4.2. The smaller neighbourhood, N , of the hyperplane is taken to be
some proportion, β∈ (0,1) of the region R.

To implement a Bernoulli CUSUM, a pre- and post-change frequency
must be specified. We obtain an initial estimate of the pre-change frequency,
p0, using the estimated density described in Section 4.2, and then update this
estimate with new observations to obtain a more accurate estimate. With this
updating regime, the threshold parameter must be recalculated with each
such update. We set the post-change frequency, p1, equal to the average
density over R, since this is the supremal possible frequency while the hy-
perplane is at an anti-mode of the projected density with adjacent modes
beyond the boundaries of R.

The Bernoulli CUSUM statistic, S0, is initialised at 0. Note that the time
index here, unlike previously, relates to the t-th datum since the hyperplane
was introduced to the model. With the arrival of datum xt+1 the CUSUM
statistic is updated as follows. If xt+1 6∈R, then the datum is not relevant,
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and St+1=St. If xt+1∈R, then,

B =

{
1, if xt+1∈N
0, otherwise

,

St+1 = max{0,St}+B

+ log
(

1− p1

1− p0

)
log
(

p1(1− p0)

p0(1− p1)

)−1

.

A change is detected when St exceeds a threshold α. We set α conserva-
tively, corresponding to the maximum for chosen run lengths under p0 and
p1, which we calculate according to the method in Reynolds and Stoumbos
(1999).

5 The HSDC Algorithm

Having detailed the constituent elements of the method in Section 4, in this
section we give a brief summary of the overall algorithm. The clustering
model constructed by HSDC comprises a hierarchy of separating hyper-
planes, each defined by a projection vector, v∈Rd, of norm 1, and split point
b∈R. Associated with each hyperplane is a CUSUM statistic, S, in place
to detect changes in the underlying distribution which lead to instability of
the clustering result. The leaf nodes of the hierarchy (i.e. those for which
the truncated density has not been deemed multimodal) each have associ-
ated with them an updating projection, as well as an approximate univariate
distribution associated with the projection onto it. Leaf nodes might also
contain inheritance vectors, z, to be passed to their children as projections in
the event that the node is split.

Algorithm 3 describes an update to the hierarchical model with the arrival
of a datum x. We associate with each node an identifying tag, ID, which in-
forms the algorithm where to direct data down the hierarchy. Each internal
node has 2 children, LChild and RChild, associated with the halfspaces in-
duced by the node’s hyperplane.

The datum traverses the hierarchical structure until it reaches the appro-
priate leaf node. At each internal node along its path, the corresponding
CUSUM statistic is updated as in Section 4.3. If a change is detected, the as-
sociated node is reinitialised, and it becomes a leaf. Otherwise, the datum is
projected onto the node’s projection vector, and is passed to the appropriate
child node. Once the datum arrives at a leaf, the leaf’s projection vector is up-
dated as described in Section 4.1. The datum is projected onto this updated
vector, and this projected datum is used to update the node’s sample approx-
imation, as described in Sections 4.2 and 4.2. The dip statistic of the sample
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approximation is then calculated, and if the hypothesis of unimodality is re-
jected, the node is split. The split point is given by the lowest anti-mode
between the components of the associated level set of the estimated density,
as in Section 4.2.

Algorithm 3: HSDC Update

Input: New datum x;
[Set index to root node]
ID= root;
[Find relevant leaf node]
while nodeID is internal do

SID =updateCUSUM(SID|x) (Section 4.3);
if SID >αID then

removeSubhierarchy(ID), re-initialise node ID;
else

p :=v>ID(x− x̄ID);
ID= ifelse(p<bID, LChildID, RChildID);

end
end
[Update leaf node and split if necessary]
(vID,zID)=updateProjection(vID,zID|x) (Section 4.1);
p=v>ID(x− x̄ID);
XID =updateSample(XID|p) (Sections 4.2-4.2);
if Reject H0 := F̃ID is unimodal then

bID :=Minimum Antimode Between λ Level Set of f̂ ID (Section 4.2);
initialise nodes LChildID and RChildID.

end

5.1 Computational Complexity

We consider the worst case cost of updating the HSDC hierarchy. Suppose
the model contains C clusters. The maximum depth of the hierarchy is there-
fore C (in general the depth of the hierarchy is much lower, with minimum
value log2(C)). For each internal node along a path to a leaf node, a datum is
projected onto the corresponding projection vector, with a computational cost
O(d). This projected datum is used within an update to the corresponding
CUSUM statistic with cost O(1). The maximal cost of finding the appropriate
leaf node is thus O(C(d+1)). Updates to a leaf node include updating its
projection (and inheritance) vector, O(d), updating the sample approxima-
tion, O(k), and calculating the dip statistic, O(k). For an update which does
not result in a new split being introduced, the computational cost is therefore
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O((C+1)(d+1)+ k). In high dimensional applications, we have Cd� k, and
so the behaviour is O((C+1)(d+1)).

When a node is split, we determine the minimum bandwidth, h, giv-
ing the correct level set of the density estimate. This is done by a bisection
method, which has log2((hmax−hmin)/ε) iterations, where hmax and hmin are
upper and lower bounds on h respectively, and ε is the tolerance level. Within
each iteration, the kernel density estimate is calculated, at a cost of O(k2).
The split point is calculated within this procedure.

For existing data stream clustering algorithms based on microclusters,
the primary cost associated with the online step lies in determining the
nearest microcluster. This has computational cost O(md), where m is the
number of microclusters. The time complexity of the offline step depends
on the clustering algorithm being employed. Algorithms based on k-means
are technically NP hard, however practical implementations run in O(mkd)
time. Density connectivity methods based on DBSCAN have time complexity
O(dm log(m)).

Density based methods based on grids have time complexity of the online
step O(g), where g is the number of active grid cells. Without pruning meth-
ods, this is exponential in d (Aggarwal, 2013). For the offline component, the
approach of DStream (Chen et al., 2007) only requires processing those grid
cells which changed since the last offline step. If t is the number of time steps
since the last offline step, the computational cost is O(t). This means that the
total cost of all offline steps up to time point T has worst case cost O(T).

In general the number of microcluster and grids cells is substantially
larger than the actual number of clusters, i.e., C�m, g. (The HPStream al-
gorithm is an exception.) For standard updates therefore HSDC compares
favourably with existing data stream clustering algorithms in terms of update
time, especially on high dimensional examples. Updates to HSDC which re-
sult in the introduction of a new split have an additional cost of O(k2). How-
ever, in practice these updates requiring a new split being introduced are in-
frequent, and the overall complexity is dominated by standard update steps.
Most importantly however, HSDC has no offline clustering component.

6 Experimental Results

We compare the performance of the following methods.

1. CluStream (Aggarwal et al., 2003): We use the implementation in the R
package streamMOA, and the parameters suggested in (Aggarwal et al.,
2003).

2. HPStream (Aggarwal et al., 2004): HPStream, like CluStream, requires
an offline initialisation step, for which we give it 2000 data and provide
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it with the correct number of clusters for the initial stream segment. We
set the average dimensionality of the clusters to 80% the total dimen-
sionality of the data, and the forgetting factor was set to 0.002. These
parameters improved performance over the suggestions made in (Ag-
garwal et al., 2004).

3. SPDC (Tasoulis et al., 2012): We set the number of kernels for the M-
kernel density estimator to 50.

4. Our method, HSDC and HSDC(I) (with projection inheritance): The
null distribution for the dip test was the Gaussian, and we use the
95th centile from the Monte Carlo simulations as a threshold. We use
100 intervals for the sample approximation. The smoothing parameter,
γ, for the EWMA associated with the forgetting factor was set to 0.9.
Expected run lengths for CUSUM statistics were set to 106 and 250 for
p0 and p1 respectively.

We also considered the density based algorithms DenStream (Cao et al.,
2006) and DMMStream (Amini et al., 2014a), however neither produced mean-
ingful clusterings in high dimensional applications and therefore results are
omitted.

To avoid ambiguity we will refer to true clusters in the data as classes and
the assignments made by an algorithm as clusters. An ideal clustering model
should (i) correctly cluster data from the same class; and (ii) assign data from
each class to a single cluster. It is therefore important to consider the class
distribution within each discovered cluster as well as the cluster distribution
withing each class. We compare algorithms using Purity (Zhao and Karypis,
2001) and V-Measure (Rosenberg and Hirschberg, 2007). Purity takes values
in (0,1], with higher values indicating a clustering in which each cluster con-
tains observations almost exclusively from a single class. A disadvantage of
this measure is that it does not penalise the splitting of data from one class
between multiple clusters. V-Measure is defined as the harmonic mean of ho-
mogeneity and completeness. Homogeneity measures the conditional entropy
of the class distribution within each cluster. Completeness is symmetric, and
measures the conditional entropy of the cluster distribution within each class.
V-Measure takes values in [0,1], with high values indicating a clustering in
which each cluster contains almost uniquely data from one class, and each
class is contained almost entirely within a single cluster.

To compare the performance of algorithms we evaluate them on stream
segments of length 100 taken every 200 time steps. Performance plots show
performance evolution through time, indicating convergence rates and the
ability of algorithms to react to and recover from non-stationarity, while ta-
bles document the overall performance of the algorithms on each stream en-
vironment.
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6.1 Simulations

For all simulations data were generated from a mixture of C multivariate
Gaussian distributions. Covariance matrices were randomly generated ac-
cording to,

Σi =4
(

i
C

)2
S>S, Sj,k∼N(0,1).

The coefficients 4(i/C)2 lead to classes with highly variable scales. The
mixture proportions were determined by pi ∝ ui,ui∼U[1,2]. The compo-
nent means were uniformly sampled from a d-dimensional hypercube, µi∼
U[0,Cd1/4]d. Reported results for simulated experiments are averages over
50 experiments.

Static Environments

We first consider static environments of dimensionality 50, 100 and 500 with
10, 20 and 30 classes. Streams were of length 500C to allow algorithms with-
out an offline component to build their models. Figure 5.2 shows the case
with 20 classes in 500 dimensions. The offline initialisation of CluStream and
HPStream ensures good performance from the early stages of the stream.
However, our algorithm is quickly able to surpass them. SPDC is less conser-
vative in introducing splits than HSDC, however its instability causes the im-
provements to tail off rapidly. HSDC(I) generates robust splits more rapidly
than HSDC because of projection inheritance, and so it is able to achieve
high performance after fewer time steps. Table 5.1 contains a summary of the
algorithms’ performance on the final stream segment of length 100. The per-
formance in the final segment of a static stream is most indicative of model
performance since the algorithms have been given opportunity to converge
and maintain their models. Our algorithms achieve substantially higher per-
formance in the high dimensional examples, while being competitive in every
case considered.

Static Environments with Irrelevant Features

In high dimensional applications, often certain features are irrelevant to the
class identity of the data. Being able to handle data with irrelevant or noisy
features is therefore critical. We consider cases with 20 classes described by
100 relevant features. We explore the robustness of the algorithms to the
number of irrelevant features as well as the degree of variability therein. The
100 relevant features were generated as described above. The data were then
augmented with scaled standard (zero mean and identity covariance) Gaus-
sian measurements for a variety of dimensions (d) and scaling factors (S).
Figure 5.3 shows the case with 100 irrelevant dimensions with scaling factor
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Fig. 5.2: Performance on Static Data Stream with 20 Classes in 500 Dimensions
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(a) C = 20, d = 500: Purity
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(b) C = 20, d = 500: V-Measure

HSDC (0 0), HSDC(I) (4 4), CluStream (+ +), HPStream (� �), SPDC(∗ ∗)

Table 5.1: Clustering Performance. Static environments. Average performance on the final
stream segment. Standard deviation in parentheses. Highest performance in bold. Significantly
lower performance indicated by *, based on a one sided t-test at the 5% level

d = 50 d = 100 d = 500

C = 10 Purity V-Measure Purity V-Measure Purity V-Measure

HPStream 0.89 (0.04) 0.85 (0.03)* 0.86 (0.05) 0.84 (0.04)* 0.81 (0.05)* 0.82 (0.04)*

SPDC 0.88 (0.14) 0.87 (0.10) 0.89 (0.16) 0.88 (0.15) 0.79 (0.25)* 0.82 (0.23)*

CluStream 0.44 (0.06)* 0.49 (0.06)* 0.37 (0.05)* 0.41 (0.06)* 0.30 (0.04)* 0.30 (0.05)*

HSDC 0.84 (0.16)* 0.83 (0.15) 0.88 (0.19) 0.86 (0.20) 0.90 (0.14) 0.91 (0.12)

HSDC(I) 0.82 (0.16)* 0.81 (0.15)* 0.88 (0.17) 0.86 (0.15) 0.94 (0.12) 0.92 (0.08)

C = 20

HPStream 0.87 (0.05)* 0.91 (0.03)* 0.86 (0.04)* 0.89 (0.03)* 0.85 (0.03)* 0.89 (0.03)*

SPDC 0.92 (0.15)* 0.93 (0.11)* 0.85 (0.21)* 0.90 (0.15)* 0.81 (0.16)* 0.90 (0.11)*

CluStream 0.94 (0.04)* 0.97 (0.02) 0.94 (0.04) 0.97 (0.02) 0.83 (0.13)* 0.89 (0.09)*

HSDC 0.98 (0.03) 0.97 (0.02) 0.96 (0.13) 0.95 (0.10) 0.97 (0.08) 0.97 (0.05)

HSDC(I) 0.98 (0.02) 0.96 (0.02)* 0.96 (0.09) 0.95 (0.06)* 0.99 (0.03) 0.98 (0.02)

C = 30

HPStream 0.90 (0.06)* 0.92 (0.04)* 0.85 (0.09)* 0.90 (0.06)* 0.84 (0.06)* 0.90 (0.04)*

SPDC 0.81 (0.20)* 0.89 (0.13)* 0.73 (0.22)* 0.84 (0.16)* 0.77 (0.20)* 0.86 (0.18)*

CluStream 0.94 (0.03)* 0.97 (0.01) * 0.95 (0.02) 0.98 (0.01) 0.94 (0.04)* 0.97 (0.04)

HSDC 0.98 (0.06) 0.98 (0.03) 0.97 (0.12) 0.97 (0.07) 0.96 (0.14) 0.97 (0.11)

HSDC(I) 0.95 (0.13) 0.96 (0.08) 0.97 (0.09) 0.97 (0.05) 0.98 (0.08) 0.98 (0.05)

171



Chapter 5. Divisive Clustering of High Dimensional Data Streams

Fig. 5.3: Clustering Performance. Static Environment with Irrelevant Features. 20 Classes in 100
Relevant and 100 Irrelevant Dimensions with Moderate Variability
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(a) S = 20, d = 100: Purity
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HSDC (0 0), HSDC(I) (4 4), CluStream (+ +), HPStream (� �), SPDC(∗ ∗)

20. The performance of CluStream and HPStream is stable, but substantially
diminished by the presence of the irrelevant features. HSDC and HSDC(I)
both quickly surpass them and maintain stable performance after conver-
gence. SPDC also outperforms CluStream and HPStream, but cannot achieve
the same high levels of performance as our method. Table 5.2 contains a
summary of the algorithms’ performance on the final stream segment. HSDC
and HSDC(I) are robust to the number of irrelevant features and the degree
of noise therein, except in the most extreme case (S = 30, d = 200), where the
high level of noise coupled with the large number of irrelevant features leads
to slower splitting and a much higher incidence of false detection of change.
CluStream achieves the highest performance in this most extreme case. HP-
Stream seems unable to distinguish classes when the number of irrelevant
features dominates the number of relevant ones (d=200).

Non-Stationary Environments

For these experiments we simulated environments in which the distribution
undergoes abrupt changes at discrete points in time. Plots for the 500 dimen-
sional cases are found in Figures 5.4-5.6, and a full summary of the results
from non-stationary examples is found in Table 5.3. For these experiments
we consider the performance of algorithms throughout the data streams. The
table therefore reports the average and standard deviation of the average per-
formance of each algorithm on stream segments of length 100 taken every 200
time steps.
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Table 5.2: Clustering Performance. Static environments with irrelevant features. Average per-
formance on the final stream segment. Standard deviation in parentheses. Highest performance
in bold. Significantly lower performance indicated by *, based on a one sided t-test at the 5%
level

d = 50 d = 100 d = 200

S = 10 Purity V-Measure Purity V-Measure Purity V-Measure

HPStream 0.42 (0.12)* 0.56 (0.10)* 0.46 (0.08)* 0.59 (0.08)* 0.10 (0.02)* 0.01 (0.04)*

SPDC 0.85 (0.24)* 0.90 (0.17)* 0.80 (0.22)* 0.86 (0.16)* 0.83 (0.20)* 0.89 (0.15)*

CluStream 0.94 (0.03)* 0.97 (0.02) 0.94 (0.04) 0.97 (0.02) 0.91 (0.08)* 0.95 (0.05)

HSDC 0.99 (0.02) 0.97 (0.02) 0.92 (0.21) 0.92 (0.19) 0.96 (0.11) 0.96 (0.07)

HSDC(I) 0.97 (0.07)* 0.96 (0.03)* 0.92 (0.20) 0.91 (0.20) 0.97 (0.07) 0.96 (0.05)

S = 20

HPStream 0.44 (0.10)* 0.58 (0.09)* 0.46 (0.08)* 0.59 (0.08)* 0.11 (0.02)* 0.01 (0.04)*

SPDC 0.83 (0.22)* 0.89 (0.17)* 0.78 (0.22)* 0.86 (0.17)* 0.71 (0.24)* 0.80 (0.19)*

CluStream 0.92 (0.05)* 0.96 (0.03) 0.67 (0.07)* 0.79 (0.05)* 0.65 (0.08)* 0.78 (0.06)*

HSDC 0.97 (0.09) 0.96 (0.06) 0.96 (0.09) 0.96 (0.05) 0.87 (0.21)* 0.89 (0.19)*

HSDC(I) 0.96 (0.12) 0.95 (0.08) 0.97 (0.06) 0.96 (0.04) 0.94 (0.10) 0.95 (0.06)

S = 30

HPStream 0.42 (0.12)* 0.56 (0.09)* 0.40 (0.10)* 0.51 (0.11)* 0.11 (0.02)* 0.02 (0.05)*

SPDC 0.73 (0.23)* 0.81 (0.19)* 0.64 (0.21)* 0.76 (0.18)* 0.49 (0.20)* 0.62 (0.22)*

CluStream 0.72 (0.07)* 0.83 (0.05)* 0.72 (0.07)* 0.75 (0.08)* 0.71 (0.07) 0.79 (0.05)

HSDC 0.88 (0.20) 0.90 (0.19) 0.70 (0.28)* 0.77 (0.26)* 0.14 (0.10)* 0.07 (0.18)*

HSDC(I) 0.88 (0.20) 0.89 (0.18) 0.85 (0.20) 0.88 (0.17) 0.56 (0.27)* 0.65 (0.28)*
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Fig. 5.4: Clustering Performance. Decreasing Classes. 500 Dimensions
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Variable Number of Classes For results which lend themselves better to
interpretation, we simulate two separate cases; streams with an increasing
number of classes and streams with a decreasing number. For the former
we split a randomly selected class every 1000 time steps, beginning with
20 classes and ending with 60. The reverse procedure was adopted for the
case of decreasing number of classes. CluStream requires a fixed number of
classes throughout. This was set to 40, the average number of classes over
the stream. HPStream was initialised with the correct number for the initial
stage of the stream.

For a decreasing number of classes (Figure 5.4) the performance of all
algorithms improves as the stream progresses, since the environment be-
comes easier to model. Following initial convergence, the performance of
our method surpasses the others. In the case of increasing number of classes
(Figure 5.5) the performance of CluStream and HPStream deteriorates as the
stream progresses. This highlights the limitation of having to specify a fixed
number of clusters for the entire data stream. In contrast the performance
of our method is stable after initial convergence. The sustained high perfor-
mance indicates that HSDC is able to identify when clusters are being split.

Distribution Overhaul In this set of experiments the distribution under-
goes complete change at regular intervals. We consider the case with 20
classes, whose parameters are reinitialised every 15000 time steps. The per-
formance plots show a sudden deterioration in the performance of our method
following each change. This is expected as the separating hyperplanes are
likely redundant or intersect the new classes, and thus the model must be re-
built from scratch. In all cases, however, HSDC is able to rebuild good qual-

174
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Fig. 5.5: Clustering Performance. Increasing Classes. 500 Dimensions
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ity clustering models, with no apparent deterioration after multiple changes.
The instability of a direct implementation of projected divisive clustering is
indicated by the performance of SPDC. CluStream is least affected by the
changes, but cannot achieve the high performance of HSDC. Because of the
multiple rebuilding stages, CluStream is able to achieve higher average per-
formance than our method when taken over the entire stream.

6.2 Publicly Available Data Sets

In this section we compare the performance of the algorithms on two pub-
licly available data sets where the true class label is known. The first, Forest
Cover Type, is lower dimensional and so (at best) we hope to achieve results
comparable with state of the art standard data stream clustering algorithms
such as CluStream. The second, Gas Sensor Array, is higher dimensional and
we expect HSDC to perform better.

Forest Cover Type

The Forest Cover Type data set, taken from the UCI Machine Learning Repos-
itory (Bache and Lichman, 2016), contains 581012 observations characteristed
by 54 features, where each observation corresponds to one of seven forest
cover types. As in the analyses in (Aggarwal et al., 2004; Tasoulis et al., 2012)
we use only the ten continuous features. A plot of the class proportions (Fig-
ure 5.7) suggests considerable variability in the data distribution through the
stream. Figure 5.8 shows the performance of the various algorithms through
the stream (the series of performance values were smoothed for better inter-
pretability). CluStream achieves the highest performance through the ma-
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Fig. 5.6: Clustering Performance. Distribution Overhaul. 20 Classes in 500 Dimensions

0 20000 40000 60000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Distribution Overhaul: Purity

0 20000 40000 60000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(b) Distribution Overhaul: V-Measure
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Table 5.3: Clustering Performance. Drifting environments. Average performance on segments
taken every 200 time steps. Standard deviation in parentheses. Highest performance in bold.
Significantly lower performance indicated by *, based on a one sided t-test at the 5% level

Increasing Classes Decreasing Classes Overhaul

d = 100 Purity V-Measure Purity V-Measure Purity V-Measure

HPStream 0.85 (0.03)* 0.93 (0.01) 0.93 (0.02) 0.94 (0.01) 0.91 (0.02)* 0.93 (0.00)*

SPDC 0.83 (0.08)* 0.89 (0.06)* 0.83 (0.07)* 0.89 (0.04)* 0.51 (0.06)* 0.56 (0.07)*

CluStream 0.90 (0.01) 0.92 (0.00)* 0.90 (0.01)* 0.92 (0.01)* 0.94 (0.00) 0.97 (0.00)

HSDC 0.91 (0.04) 0.93 (0.03) 0.90 (0.04)* 0.92 (0.03)* 0.82 (0.04)* 0.84 (0.04)*

HSDC(I) 0.91 (0.04) 0.93 (0.02) 0.89 (0.04)* 0.92 (0.03)* 0.82 (0.04)* 0.83 (0.03)*

d = 500

HPStream 0.79 (0.03)* 0.92 (0.02)* 0.85 (0.03)* 0.93 (0.01)* 0.46 (0.07)* 0.57 (0.07)*

SPDC 0.81 (0.08)* 0.89 (0.05)* 0.83 (0.07)* 0.89 (0.05)* 0.53 (0.06)* 0.63 (0.05)*

CluStream 0.88 (0.01)* 0.91 (0.01)* 0.88 (0.01)* 0.91 (0.01)* 0.86 (0.03) 0.91 (0.03)

HSDC 0.91 (0.03) 0.93 (0.03) 0.93 (0.03) 0.94 (0.03) 0.78 (0.04)* 0.80 (0.03)*

HSDC(I) 0.87 (0.03)* 0.92 (0.02) 0.89 (0.03)* 0.93 (0.02)* 0.82 (0.03)* 0.83 (0.03)*
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Fig. 5.7: Class Proportions of Forest Cover Type
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Fig. 5.8: Clustering Performance. Forest Cover Type Data
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jority of the stream. The average purity of all algorithms is similar; in de-
creasing order: CluStream = 0.86, HSDC(I) = 0.85, SPDC = 0.84, HSDC =
0.83, HPStream = 0.82. The average V-Measure of CluStream is substantially
higher than the other algorithms at 0.31. The other algorithms achieved aver-
age V-Measure of: HSDC(I) = 0.27, SPDC = 0.27, HSDC = 0.25, HPStream =
0.22.

Gas Sensor Array

The Gas Sensor Array Drift data set, available from the UCI Machine Learn-
ing repository (Bache and Lichman, 2016), contains 13910 measurements
from each of 16 chemical sensors (amounting to 128 features in total per
datum) used in simulations of drift compensation for the purpose of dis-
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Fig. 5.9: Clustering Performance. Gas Sensor Array Data
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criminating between six different gases (Ammonia, Acetaldehyde, Acetone,
Ethylene, Ethanol, and Toluene) at various levels of concentration. The exper-
iment was designed for the task of achieving al degradation in discriminatory
performance over time as possible to evaluate strategies able to handle non-
stationarity or drift (Vergara et al., 2012). The average number of dimensions
for HPStream was set to 80 after experiments indicated this resulted in better
performance. Figure 5.9 shows the performance of the algorithms through
the stream (again the series are smoothed for better interpretability). Our
method is the only one to obtain good discriminatory performance in the lat-
ter part of the stream, indicated by the purity performance. The instability of
SPDC is again highlighted by its severe performance degradation with drift.
The average purity (and V-Measure), in decreasing order: HSDC(I) = 0.94
(0.44), HSDC = 0.90 (0.39), CluStream = 0.87 (0.39), HPStream = 0.80 (0.30),
SPDC = 0.67 (0.12).

6.3 Discussion of Experimental Results

We compared our method with three existing data stream clustering algo-
rithms from the literature, CluStream, HPStream, and SPDC. We investigated
the scalability of the method in terms of dimensionality and number of clus-
ters. HSDC and HSDC(I) outperformed the compared methods in most cases,
and especially in the highest dimensional examples. Next we investigated ro-
bustness to irrelevant/noisy features. The performance of our method was
affected to a lesser degree than the other methods except in the most extreme
case. When the number of irrelevant dimensions dominated the number
of relevant ones, and in addition the degree of variability in the irrelevant
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dimensions was large, HSDC failed to detect clusters reliably. The stabil-
ity added by projection inheritance improved matters, but the performance
was still strongly affected. Following that we introduced non-stationarity,
considering three types: Clusters dividing, clusters merging, and distribu-
tion overhaul. Our method obtained the highest overall performance when
the number of clusters varied (clusters dividing/merging). For distribution
overhaul, because our method is required to rebuild its model from scratch,
the average performance was strongly affected. Despite this fact, HSDC and
HSDC(I) were always able to rebuild high quality clustering models, with no
apparent degradation with repeated overhauls.

Finally we considered two real world applications: Clustering Forest Cover
Types, and Gas Sensor Array Data. The former is lower dimensional (10 di-
mensions used), and our method obtained similar performance to the other
methods considered. The latter is higher dimensional, and our method strongly
outperformed the compared algorithms.

It is important to notice that in almost all cases where our approach does
not yield the best performance, it is still close to the best performing method,
while there are numerous examples in which our method far outperforms all
others.

7 Conclusion

We introduced a framework for projected divisive clustering that is consis-
tent with high density clustering, and which accommodates central chal-
lenges associated with data streams, including high dimensional data and
non-stationarity. The derived method is able to identify clusters in arbi-
trary subspaces, estimate the number of clusters automatically and identify
changes in the data distribution which affect the validity of the model. The
algorithm is also fully incremental, requiring no offline component. To our
knowledge, no other algorithms achieve all of these simultaneously.

The method constructs a hierarchy of low-density hyperplane separators,
thereby enabling it to handle high dimensional data. This is achieved by
establishing directions of high variability and approximating the projected
distribution along them. We propose a simple approach to speed up the
incremental approximation of such directions, hence reducing the time re-
quired to construct the cluster hierarchy. We introduce new components to
the model only when the marginal distribution along the projection is found
to be multimodal. For this purpose, a fixed memory approximation to the
dip test is developed, and shown to lower bound the true value.

The framework incorporates a novel formulation to detect arbitrary changes
in the population distribution that affect the validity of the current clustering
model. The approach relies on detecting increases in the density local to a
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separating hyperplane, which signal that the hyperplane intersects regions
of high density. This enables us to not only provide indication of the timing
of such changes but also to isolate the parts of the hierarchical model that re-
quire revision. To our knowledge this is the first general purpose clustering
algorithm able to detect changes in the underlying distribution.

Experimental results show that algorithms derived from the proposed
framework obtain the best overall performance on a range of problem types,
when compared with state of the art algorithms for data stream clustering.
Among the competing methods, CluStream achieved an on-average better
performance when the population distribution underwent the most extreme
type of abrupt change. The reason is that reconstructing the entire cluster-
ing hierarchy invariably requires more time than the adaptation of centroid-
based methods. This result however is conditional on the a priori specifica-
tion of the correct number of clusters for such algorithms. When this is not
the case our methods fare better.

Appendix. Proofs

Before we can prove Lemma 28, we require the following preliminaries.
The algorithm for computing the dip of a distribution function F con-

structs a unimodal distribution function G with the following properties: (i)
The modal interval of G, [m, M], is equal to the modal interval of the clos-
est unimodal distribution function to F, which we denote by FU , based on
the supremum norm; (ii) ‖F−G‖∞ =2‖F−FU‖∞; (iii) G is the greatest con-
vex minorant of F on (−∞,m]; (iv) G is the least concave majorant of F on
[M,∞). By construction, the function G is linear between its nodes. A node
n≤m of G satisfies G(n)= liminfx→n F(x), while a node n≥M of G satisfies
G(n)= limsupx→nF(x). If F is the distribution function of a discrete random
variable, then G is continuous.

The function FU can be constructed by finding appropriate values b<m,
B>M s.t. FU is equal to G+Dip(F) on [b,m], equal to G−Dip(F) on [M, B],
linearly interpolating between G(m) and G(M) and given any appropriate
tails, which we choose to be linearly decreasing/increasing to 0 and 1 respec-
tively.

Before proving Lemma 28, we require the following preliminary result,
which relies on the notion of a step linear function.

Step Linear A function f is step linear on a non-empty, compact interval I=
[a,b], if

f (x)=α+β

⌊
(x− a)

n
b− a

⌋
, ∀x∈ I,

for some α, β∈R and n∈N.
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A step linear function is piecewise constant, and has n equally sized jumps of
size β spaced equally on I with the final jump ocurring at b. The approximate
empirical distribution function F̃ (Section 4.2) is therefore step linear over the
approximating intervals.

Proposition 30 Let f be step linear on the closed interval I=[a,b], and satisfy
limx→a− f (x)=α−β, where α, β as in the above definition for f . Let g be linear on
I and continuous on a neighbourhood of I. Then

sup
x∈I
| f (x)− g(x)|≤max{limsupx→a| f (x)− g(x)|, limsupx→b| f (x)− g(x)|} .

Proof Let fm and f M be linear on a neighbourhood of I s.t. they form the closest
lower and upper bounding functions of f on I respectively. Since f is step linear, we
have,

lim
x→a−

f (x)= fm(a), limx→b− f (x)= fm(b),

f (a)= f M(a), f (b)= f M(b).

We therefore have, by above and the fact that g, fm, and f M are linear on I,

sup
x∈I
| f (x)− g(x)|≤max

{
sup
x∈I
| f M(x)− g(x)|, sup

x∈I
| fm(x)− g(x)|

}
=max

{
| f M(b)− g(b)|, | f M(a)− g(a)|,

| fm(a)− g(a)|, | fm(b)− g(b)|}
=max{limsupx→a| f (x)− g(x)|, limsupx→b| f (x)− g(x)|} .

�

We are now in a position to prove Lemma 28, which states that the dip of
a compactly approximated sample, as described in Section 4.2, provides a
lower bound on the dip of the true sample.

Proof of Lemma 28.

Proof Let I=[a,b] be any compact interval and FI the empirical distribution
function of (X ∩ Ic)∪Unif(X , I). Assume |X ∩ I|>1, since otherwise FI =FX
and we are done. We can assume that the endpoints of I are elements of
X since this defines the same uniform set. FX and FI are therefore equal
on Int(I)c. In fact, since X consists of unique points, ∃ε>0 s.t. FI(x)=
FX (x) ∀x 6∈ (a+ε,b−ε). Define F′I to be equal to FU

X for x 6∈ Int(I) and linearly
interpolating between FU

X (a) and FU
X (b). By construction F′I is a continuous

unimodal distribution function.
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We now show ‖FI−F′I‖∞≤‖FX −FU
X ‖∞. To see this, suppose that it is not

true, i.e., ∃x s.t. |FI(x)−F′I(x)|>supy |FX (y)−FU
X (y)|. Clearly x∈ Int(I) due

to the equalities discussed above and the construction of F′I . Because of the
continuity of FU

X and F′I and the equality of FX and FI on (a, a+ε)∪ (b−ε,b),
we have

limsupy→a|FI(y)−F′I(y)|= limsupy→a|FX −FU
X (x)|

and
limsupy→b|FI(y)−F′I(y)|= limsupy→b|FX −FU

X (x)|.

But by Proposition 30 one of these left hand sides is at least as large as
|FI(x)−F′I(x)|, leading to a contradiction.

We have shown that the addition of a single interval cannot increase
the dip. We can apply the same logic to the now modified sample (X ∩
Ic)∪Unif(X , I), iterating the addition of disjoint intervals to obtain a non-
increasing sequence of dips. �

In the above proof, we do not show that F′I is the closest unimodal distri-
bution function to FI , however its existence necessitates the closest one being
at least as close. Now, the sample approximations we employ still contain a
full t atoms after t observations, however, they can be stored in O(k) for k
intervals. We can easily show that the dip of such a sample approximation
can be computed in O(k) time.

Proposition 31 The dip of a sample consisting of k uniform sets with disjoint ranges
can be computed in O(k) time.

Proof We begin by showing that there exists a unimodal distribution function
which is linear on the ranges of the uniform sets and which achieves the
minimal distance to the empirical distribution function of the sample.

Let F be a continuous unimodal distribution function s.t. ‖F− F̃‖∞ =
Dip(F̃). Define F′ similarly to in the above proof to be the continuous dis-
tribution function which is equal to F outside and at the boundaries of the
intervals defining the uniform sets and linearly interpolating on them. Using
the same logic, we know that supx |F′(x)− F̃(x)|≤supx |F(x)− F̃(x)|, hence
‖F′− F̃‖∞ =Dip(F̃).

Proposition 30 ensures that points in the interior of the intervals will not
be chosen by the dip algorithm as end points of the modal interval of G,
nor points at which the difference between the functions is supremal. The
possible choices for these locations is therefore O(k), and the algorithm need
not evaluate the functions except at the endpoints of the intervals. �

Finally, we provide a proof of Proposition 29.
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Proof of Proposition 29.

Proof For s>1 we have

‖vs−vs−1‖=‖vs‖‖vs−vs−1‖≥|vs · (vs−vs−1)|= |vsvs−1−1|,

since ‖vt‖=1 ∀t. Therefore, since {vt}∞
t=1 is almost surely convergent, and

therefore almost surely Cauchy, we have vs ·vs−1
a.s.−→1⇒arccos(vs ·vs−1)

a.s.−→
0. Now, we can easily show that,

λt≤γt−1λ1+(1−γ)
t−2

∑
i=1

γi arccos(vt−i ·vt−i−1).

Take ε>0 and t large enough that γt−1λ1<γε, and t> k+2, where k=
blog(ε(1−γ)/2π)/log(γ)−1c. Consider,

t−2

∑
i=1

γi arccos(vt−i ·vt−i−1)≤
k

∑
i=1

arccos(vt−i ·vt−i−1)+
πγk+1

1−γ
,

and πγk+1

1−γ ≤
ε
2 . In all,

λt >ε⇒
k

∑
i=0

arccos(vt−i ·vt−i−1)>ε/2.

Notice that k does not depend on t. With probability 1, for any given ε>0
there is a T s.t. T>T implies ∑k

i=0 arccos(vT−i ·vT−i−1)≤ε/2, implying λT≤
ε for all T>T , and the result follows. �
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Chapter 6

Conclusion

1 Summary of Contributions

This thesis consists of four new approaches to the important problem of iden-
tifying groups, or clusters of related data, which has applications in all areas
of scientific research from robotics to microarray analysis to marketing strat-
egy and many more. The contributions are motivated by two fundamental
challenges in the context of data clustering, dimension reduction and to a
lesser extent data streams. The problem of dimension reduction is treated in
a highly principled manner, by identifying subspaces in which the data rep-
resent a clusterable structure in relation to fundamental definitions of cluster.
The combination of high dimensionality and sequential arrival of data, as in
a data stream, is handled by integrating the tasks of dimension reduction and
incremental learning which allows for some of the main difficulties in data
streams to be tackled effectively.

In Chapter 2 a new hyperplane based classifier is proposed for unsuper-
vised and semi-supervised classification. The optimal hyperplane is defined
as that which has the minimum integrated density along it, while induc-
ing a meaningful partition of a data set. This approach is motivated by the
widely regarded low density separation assumption; (high density) clusters
are regions of relatively high density separated by low density regions. The
majority of existing approaches which are based on this assumption attempt
to find the hyperplane which has the largest margin on the data set, which
is at best asymptotically connected with the actual lowest density separator.
The proposed approach directly estimates the density using kernel density
estimation, and so has a much more pleasing interpretation in the finite sam-
ple setting. It is apparent that no other existing methods have attempted to
solve the low density separation problem directly in the finite sample setting.
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The optimal hyperplane for the proposed problem is shown to be con-
nected with the more common approach, in that it converges to the largest
margin hyperplane as the bandwidth used in the kernel estimator is reduced
to zero.

A projection pursuit formulation of the optimisation objective is pro-
posed, which is able to significantly mitigate the problem of convergence to a
poor quality local minimum. The resulting objective function is non-smooth,
however utilising modern methods for non-smooth optimisation means that
the approach can be implemented practically and efficiently. This approach
is shown to reliably identify low density hyperplanes in many practical ap-
plications.

Chapter 3 is based on a different definition of clusters, which is that a cluster
is a relatively highly connected subgraph of a graph defined over the data set,
in which edges represent the similarities between data. This definition has
been widely adopted in recent years due to the success of spectral cluster-
ing. Spectral clustering solves a relaxation of the associated normalised graph
cut objective via an eigen decomposition of the so-called graph Laplacian
matrix. Determining the optimal subspace for this graph partitioning objec-
tive requires minimising the eigenvalues of the graph Laplacian of the data
within that subspace. Eigenvalue optimisation problems are notoriously dif-
ficult due to their non-smooth behaviour. A globally convergent algorithm is
proposed which uses directional derivatives where necessary to escape trou-
blesome points. The eigenvalue problems are computationally demanding,
requiring O(n2) operations each. To mitigate this, an approximation is de-
veloped which has provable approximation error and does not result in an
appreciable degradation in the quality of the optimal clustering solution.

The spectral clustering solution has been shown to be connected with a
simple clustering solution from an embedding of the data within a high di-
mensional feature space. While highly effective in many applications, this
can sometimes make the interpretation of the clusters within the input space
difficult to intuit, when compared to something like high density clusters.
It has been established, however, that these are in fact related and that the
graph partitioning objective associated with spectral clustering also leads to
low density separation. A new perspective on this is presented herein, as it
is shown in Chapter 3 that the optimal subspace for spectral clustering con-
verges to the subspace normal to the maximum margin hyperplane as the
scaling is reduced to zero.

Chapter 4 is very closely related with the contents of Chapter 3 in terms
of underlying motivation. The clustering objective is again defined in terms
of the normlised graph cut. Neither work can be seen as a strict improvement
over the other, however. Chapter 4 provides a more computationally efficient
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method which exploits the trivial factorisation of its similarity function to
find the optimal partition within a subspace in log-linear time (as opposed
to the quadratic time eigen problem). It also computes the normalised cut
value exactly, and does not rely on any approximations. It is however limited
in that the fast computation is only possible for a specific similarity function,
and the partition of the data is constrained to the set of hyperplane separa-
tions. One major benefit of the formulation in Chapter 4 is that the theoretical
analysis is comparatively less challenging than for the spectral relaxation. It
is therefore possible to establish asymptotic results for an increasing sample
in terms of an assumed underlying probability distribution. The value of the
normalised cut across a hyperplane is shown to converge almost surely, and
the asymptotic value has desirable characteristics as an objective for clus-
tering. The optimal hyperplane is likely to both pass through low density
regions, and also separate the modes (high density clusters) of the underly-
ing density. The optimal hyperplane is also again shown to converge to the
largest margin hyperplane through the data, as the scaling is reduced to zero.

The final contribution is given in Chapter 5, and considers the problem of
clustering data which are both high dimensional and arrive in a data stream.
It is very challenging to obtain an optimal dimension reduction in an incre-
mental setting, like a data stream. Indeed no existing methods can be found
for this problem. The method in Chapter 5 therefore uses the extremely pop-
ular principal component analysis to perform dimension reduction. It then
incrementally learns the data distribution within the principal subspace. In-
formation from the rate at which the principal subspace is updated is used
to inform the rate of forgetting in the estimation of the distribution. Asymp-
totically the subspace no longer updates, and so the distribution estimation
no longer discounts past information. An incremental version of the dip test
for unimodality is developed, which means that a statistically robust divisive
procedure can be implemented in which a cluster is split by a low density
hyperplane only when there is strong evidence that the cluster represents
multiple modes in the underlying density.

The model structure provides a convenient framework to address the very
challenging problem of change detection in a high dimensional data stream
framework. Because it is the low density separating hyperplanes which form
the model, it is not necessary to identify every change which affects the clus-
ters. Only when a cluster is intersected by a separating hyperplane is there
any need to revise the clustering model. New clusters which spontaneously
arise can be separated at a later time by an additional hyperplane, unless of
course they unluckily arise where they are intersected. All changes which
are relevant to the clustering model can be addressed by the comparatively
simple task of detecting an increase in density along the separating hyper-
planes, which is approximated by detecting an increase in the frequency of
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data arriving in a small neighbourhood around each such hyperplane.

2 An Experimental Comparison of the Contribu-
tions

This thesis presented a number of new methods for projected divisive clus-
tering, where in each case a fundamental clustering objective was optimised
via projection pursuit. In addition, two of the methods were extended to the
related problem of semi-supervised classification. All of these methods were
found to be very competitive with the state-of-the-art in terms of cluster-
ing/classification accuracy. With these comparisons in place, it is interesting
to compare these new methods with one another, to better understand their
respective merits and possible shortcomings.

2.1 Projected Divisive Clustering

This subsection presents a comparison of the projection methods developed
in Chapters 2, 3 and 4. The data stream method discussed in Chapter 5
tackles a different problem, and so is not considered in this comparison. In all
cases a complete clustering result is obtained by recursively obtaining binary
partitions of (subsets of) the datasets, where the binary partitions optimise
the following clustering objectives:

1. Low Density Separation: The MDP2 method minimises the density on
the hyperplane separation, as described in Chapter 2.

2. Minimum Spectral Connectivity: The SCP2
c and SCP2

o methods min-
imise the second eigenvalue of the standard Laplacian of data projected
into one and two dimensional subspaces respectively. Similarly the
SCnP2

c and SCnP2
o minimise the second eigenvalue of the normalised

Laplacian. These methods are discussed in Chapter 3.

3. Minimum Normalised Cut: The NCutH method, Chapter 4, minimises
the exact normalised cut measured across a separating hyperplane.

Tables 6.1 and 6.2 show the Purity and V-Measure of the methods applied to
a collection of datasets taken primarily from the UCI machine learning repos-
itory (Bache and Lichman, 2016), and discussed in greater detail in previous
chapters. Note that the methods based on minimising spectral connectivity
rely on a non-deterministic approximation, and the results presented in the
table are averages from 30 repeated experiments on each dataset.

The SCnP2
o obtains the highest, or tied highest performance almost twice

as often as the next most frequent (NCutH) in terms of purity, while in the
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Table 6.1: A Comparison of the Performance of Proposed Methods for Projected Divisive Clus-
tering. The Table Shows 100 × Purity on Benchmark Data Sets. Highest Performance in Each
Case is Highlighted in Bold.

MDP2 SCP2
o SCP2

c SCnP2
o SCnP2

c NCutH

br. cancer 95.85 96.85 97.00 97.00 97.28 96.85

ionosphere 71.23 71.23 70.09 71.23 70.09 71.23
opt. digits 80.11 81.49 82.97 81.19 73.74 78.71

pen digits 75.17 77.70 76.46 78.17 73.97 77.98

voters 84.60 84.37 82.76 84.83 83.91 84.60

image seg. 65.40 61.60 67.81 66.21 70.12 62.19

satellite 76.39 74.95 73.38 75.41 73.85 74.00

chart 79.67 83.67 83.00 86.50 85.33 66.67

yeast 73.35 75.36 74.50 75.50 70.06 75.07

soybean 68.52 67.06 65.30 66.33 69.69 80.79
dermatology 89.07 94.00 90.16 85.79 91.26 96.17

glass 51.87 49.07 56.07 58.41 60.75 54.21

parkinsons 75.38 75.38 75.38 75.38 75.38 75.38
m.f. digits 80.10 83.44 78.72 84.17 78.50 72.25

case of V-Measure these two methods are tied for most frequent highest per-
formance. The comparisons between the other methods are less clear when
considering these tables, and a summary of the performance is given in Sec-
tion 2.3.

2.2 Large Margin Clustering

One of the appealing properties of the methods presented in this thesis is that
their associated objectives are connected, in that asymptotically, as their re-
spective smoothing parameters are reduced to zero, the optimal solutions all
converge to the maximum margin clustering solution. Solving the associated
problems for a shrinking sequence of smoothing parameters therefore pro-
vides a practical way of locating large margin separators for clustering. The
non-convexity of the objectives in the proposed methods, however, means
that the globally maximum margin solution is not necessarily obtained. In
this subsection, the proposed approaches for large margin clustering are com-
pared with one another.

The procedure of repeatedly solving the projection pursuit problems for
a shrinking smoothing parameter was implemented explicitly in the cases of
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Table 6.2: A Comparison of the Performance of Proposed Methods for Large Margin Clustering.
The Table Shows 100 × V-Measure on Benchmark Data Sets. Highest Performance in Each Case
is Highlighted in Bold.

MDP2 SCP2
o SCP2

c SCnP2
o SCnP2

c NCutH

br. cancer 73.55 78.55 79.83 79.39 81.21 78.70

ionosphere 13.49 13.71 13.20 13.71 13.20 13.49

opt. digits 73.51 76.89 77.55 77.35 72.22 71.62

pen digits 71.53 74.83 73.89 75.89 73.58 70.95

voters 42.82 41.87 38.47 41.80 41.02 42.82
image seg. 62.69 61.59 65.28 64.67 67.64 59.38

satellite 62.88 60.90 59.11 61.49 60.08 59.63

chart 77.15 77.21 77.28 80.70 79.56 79.65

yeast 58.25 53.97 53.97 56.57 45.50 59.92
soybean 71.24 69.77 68.91 69.60 69.98 80.29

dermatology 82.09 89.25 82.66 85.18 86.33 93.56
glass 31.88 27.66 34.38 31.98 30.89 31.58

parkinsons 27.62 20.54 16.44 19.05 17.64 21.96

m.f. digits 75.53 75.60 72.60 75.90 73.98 67.22

both spectral connectivity via the LMSC method, and minimum normalised
cut hyperplanes as in NCutH0. Here the same procedure is applied to the
minimum density hyperplane projection pursuit method, which will be la-
belled MDP2

0 in the following.
Tables 6.3 and 6.4 show the Purity and V-measure for these methods ap-

plied to the same collection of datasets as used above. Here the MDP2
0 ap-

proach achieves the highest performance most often, while the remaining
methods offer little for comparison based only on the frequency of highest
performance. An exception to this is the large margin spectral connectivity
method with univariate projection, LMSC, which only achieved the highest
V-Measure performance in a single case.

2.3 A Summary of Clustering Performance

Here the results for both the base projection methods and the large margin
limit results are combined to provide an overall comparison of all methods
developed in this thesis for divisive clustering in the offline setting. For each
method and each dataset the relative performance, as described in Chap-
ter 3, and the regret, described in Chapter 2, are computed. Figures 6.1 and
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Table 6.3: A Comparison of the Performance of Proposed Methods for Large Margin Clustering.
The Table Shows 100 × Purity on Benchmark Data Sets. Highest Performance in Each Case is
Highlighted in Bold.

MDP2
0 LMSCo LMSC NCutH0

br. cancer 96.57 96.28 96.71 96.85
ionosphere 70.94 70.66 71.23 71.23
opt. digits 84.91 73.89 68.79 79.69

pen digits 77.21 79.86 71.18 77.98

voters 83.68 83.91 83.91 84.37
image seg. 64.23 59.51 64.80 63.79

satellite 76.01 74.94 72.49 75.76

chart 81.33 88.83 82.83 83.83

yeast 73.07 74.79 75.36 74.93

soybean 67.64 67.20 67.06 67.45

dermatology 94.54 86.07 85.52 85.52

glass 59.81 54.67 57.94 58.88

parkinsons 75.38 75.38 75.38 75.38
m.f. digits 80.25 81.80 73.94 71.55

6.2 show box plots of the relative purity and V-measure for each method
across all datasets considered. The methods are ordered with decreasing
mean value, where these mean values are indicated with red dots. It is ap-
parent that methods based on minimising spectral connectivity obtained high
purity values in general, but the performance of the associated large margin
method is relatively poor. Possibly the most obvious observation is that the
performance of the one dimensional large margin method based on spectral
connectivity shows the worst performance overall. On the other hand the
large margin limiting solution for the minimum density hyperplane approach
seems to substantially improve purity performance over the base method,
and is one of the highest performing methods in terms of purity. In the case
of the minimum normalised cut hyperplane, there is very little difference be-
tween the base method and the large margin limit. Comparisons based on
V-measure lead to quite different conclusions. Here the minimum density
approach shows the best overall performance, and in general the minimum
spectral connectivity approaches fare worse than others, with the exception
being SCnP2

o . The normalised cut hyperplane method has middling perfor-
mance in terms of both purity and V-measure, being slightly below average
in the former and slightly above in the latter.
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Table 6.4: A Comparison of the Performance of Proposed Methods for Large Margin Clustering.
The Table Shows 100 × V-Measure on Benchmark Data Sets. Highest Performance in Each Case
is Highlighted in Bold.

MDP2
0 LMSCo LMSC NCutH0

br. cancer 77.46 75.86 77.99 78.68
ionosphere 12.99 12.30 13.49 13.49
opt. digits 76.89 69.88 62.33 74.65

pen digits 72.40 76.39 66.25 73.07

voters 41.13 43.38 37.78 42.82

image seg. 60.60 59.88 63.32 63.81
satellite 61.92 60.71 56.82 62.68

chart 81.32 85.34 78.23 77.05

yeast 58.78 56.26 57.89 59.01
soybean 71.96 70.68 71.36 71.87

dermatology 91.31 85.96 85.41 83.82

glass 36.14 31.29 28.72 30.85

parkinsons 22.84 21.96 21.96 21.96

m.f. digits 75.77 75.39 68.84 67.39

Figures 6.3 and 6.4 contain analogous plots based on regret. Here the
methods are ordered with increasing mean value so that overall performance
is again decreasing when moving left to right. Again the large margin method
arising from the minimum density hyperplane approach and the multivari-
ate minimum spectral connectivity method using the normalised Laplacian,
SCnP2

o , achieve very strong performance when compared with others, while
the LMSC method fares relatively poorly. The minimum normalised cut hy-
perplane approach shows substantially different performance between purity
and V-measure, while other methods seem to more or less retain their rank
between the two performance measures.

In conclusion it is apparent that the large margin method based on min-
imum density hyperplanes, and the multivariate normalised spectral con-
nectivity approaches show especially strong performance for clustering. On
the other hand the large margin method using spectral connectivity shows
comparatively poor performance overall.
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Fig. 6.1: Box plots of relative purity with additional red dots to indicate means. Methods are
ordered with decreasing mean value.
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2.4 Semi-supervised Classification

The minimum density hyerplane and minimum spectral connectivity ap-
proaches were extended to the problem of semi-supervised classification in
Chapters 2 and 3 respectively. This section presents a very brief compari-
son of the performance of these two methods on the collection of datasets
used in Chapter 3. Table 6.5 shows the average classification accuracy of
these methods on a selection of datasets from the UCI machine learning
repository (Bache and Lichman, 2016). The table illustrates that when the
number of labelled data is very small, in this case 2% of the total number
of data, the minimum density hyperplane approach outperforms the spec-
tral connectivity approach. However, for a larger number of labelled data
(10% and 25% of the total number of data) the reverse comparison is made.
Table 6.6 again shows the average classification of these methods, this time
applied to a selection of benchmark semi-supervised classification datasets
taken from Chapelle et al. (2006b). In this case there is a very clear indica-
tion that the performance of the minimum spectral connectivity approach is
superior to the minimum density hyperplane approach, as it obtains higher
average performance in the vast majority of cases and in multiple examples
the improvement is substantial.
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Fig. 6.2: Box plots of relative V-measure with additional red dots to indicate means. Methods
are ordered with decreasing mean value.

●

●

●

●

●

●

●

●

●

● ●
● ● ● ●

●
● ●

●

−
0.

20
−

0.
10

0.
00

0.
10

0.
20

M
DP2_

0

M
DP2

NCut
H

SCnP
2o

NCut
H_0

LM
SCo

SCP2o

SCP2c

SCnP
2c

LM
SC

Table 6.5: A Comparison of the Proposed Methods for Semi-supervised Classification applied to
UCI Machine Learning Repository Classification Data Sets. Average Accuracy (%) over 10 Splits.

Mam. Vote. Canc. Iono. Park.

2% Labelled Examples

S3CP2 79.62 84.53 96.18 66.44 74.71

MDP2 76.10 85.26 96.45 71.95 78.38

10% Labelled Examples

S3CP2 81.64 90.74 96.04 85.71 79.94
MDP2 73.60 89.26 96.08 80.83 79.60

25% Labelled Examples

S3CP2 82.54 90.34 96.49 87.18 80.68
MDP2 74.14 89.85 93.38 85.44 79.38
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Fig. 6.3: Box plots of regret based on purity with additional red dots to indicate means. Methods
are ordered with increasing mean value.
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Table 6.6: A Comparison of the Proposed Methods for Semi-supervised Classification applied
to Benchmark Data Sets taken from Chapelle et al. (2006b). Average Accuracy (%) over 12 Splits.

g241c g241d Digit1 USPS BCI

10 Labelled Examples

S3CP2 82.02 50.62 89.51 76.17 50.90
MDP2 85.17 49.95 87.96 72.65 50.88

100 Labelled Examples

S3CP2 86.15 72.93 92.77 86.62 70.86
MDP2 85.09 53.74 92.77 84.42 66.50
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Fig. 6.4: Box plots of regret based on V-measure with additional red dots to indicate means.
Methods are ordered with increasing mean value.
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3 Possible Extensions and Future Work

Clustering is one of the oldest problems in data analysis, and it is testament
to the importance of the problem that it remains one of the most active areas
of research. The variety and subjectivity of cluster definitions also indicate
that it is likely to remain an important and unsolved problem in the future.
In this section some ideas for future work on this problem that is related to
the work presented in this thesis will be discussed briefly.

The problem of bi-partitioning formed the main focus of many of the contri-
butions in this thesis. It is clear that a bi-partitioning method can be applied
recursively to obtain multiple clusters, and this was performed explicitly in
Chapters 4 and 5. In Chapter 5 determining the number of clusters auto-
matically was also addressed by only splitting a cluster when there is strong
statistical evidence that it in fact represents multiple clusters. It is arguably
the case that this problem is easier to address when using non-optimal sub-
spaces. Tasoulis et al. (2010) used a low density separation method where
hyperplanes orthogonal to the principal component were used, and a clus-
ter was only split if the estimated density contained multiple modes. While
this does not offer statistical confidence in the splitting decision, it is a useful
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heuristic.
The principal challenge when looking at optimal subspaces becomes ap-

parent in the extreme case where the number of dimensions is greater than
the number of data. If there are n data in d>n dimensions and the data are
stored in a matrix X ∈Rn×d, then the projection equation given by X v= p has
infinitely many solutions v for any vector p∈Rn, provided there are at least
n linearly independent dimensions in the data set. What this means is that
regardless of the actual cluster structure in the data, there is a subspace in
which they can be made to look like any equally weighted discrete distribu-
tion with n atoms, up to a scaling constant. For example, for any bi-partition
of the data set, each subset can be projected to a single point, making the
data set in some sense maximally clusterable for any bi-partition.

So called L1 regularisation has been used for problems like regression in
high dimensional applications (Tibshirani, 1996). A regularisation of projec-
tion pursuit seems a natural way to overcome the above problem, but this
adds to the difficulty in establishing when there is statistical confidence that
a cluster should be split.

It would be very interesting to both establish robust rules for determin-
ing the presence of multiple clusters for the proposed methods, and also to
investigate how regularisations affect the number of degrees of freedom in
the resulting solution so that these can be usefully implemented in higher
dimensional examples.

In recent years the high dimensionality problem has entered the realms of
“Big Data". When the number of dimensions is so large that only a few data
points can be stored in a computer’s memory it is not possible to process
the data in their original form. Random projections have become the go-to
approach for dealing with these types of data. The popular result of Johnson
and Lindenstrauss (1984) places a probabilistic bound on the error induced
by random projections on the structure of the data. This result has been
extended such that the error of a clustering model acting on the randomly
projected data, rather than the original data set, can be evaluated (Boutsidis
et al., 2010; Tasoulis et al., 2013).

An interesting observation made by a number of authors is that data aris-
ing from multiple clusters, when projected into a random subspace, tend to
appear as a mixture of Gaussians (Dasgupta, 2000; Fern and Brodley, 2003;
Tasoulis et al., 2013). Theoretical investigations into the properties of random
projections have shown that under certain conditions, asymptotically as the
number of dimensions tends to infinity, almost all projections of a data set
are Gaussian (Noar and Romik, 2003; Dasgupta et al., 2006). What may be
happening in the case of multiple clusters is that the convergence to Gaus-
sianity within the clusters occurs at a faster rate than globally over the whole
data set, due to their being somewhat closer to Gaussian to begin with. For
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finitely many dimensions, but large enough to observe the convergence to
Gaussianity within clusters, one therefore observes a mixture of Gaussians.

The size of the random subspace dictated by Johnson and Lindenstrauss
(1984) is often still large enough that further dimension reduction is neces-
sary to render meaningful results. Using the observation of Dasgupta et al.
(2006) may offer an assumption that the data are close to a mixture of Gaus-
sians. A projection pursuit based on optimally separating a Gaussian mixture
should therefore offer a promising method for learning the optimal subspace
in which to perform clustering.

As a final idea, the data stream setting is revisited. In the last section a
remark was made about the infeasibility of finding optimal projections in the
data stream setting. This does not, however, preclude an attempt to find lo-
cally optimal hyperplane separators. Returning to the assumption that high
density clusters can be separated by low density regions, it may be possible
to find locally minimum density hyperplanes in a fully incremental way.

Optimisation with sequential access to data is very often addressed using
stochastic gradient descent (Bottou, 2010). When a noisy estimate of the gra-
dient of the objective function can be observed with each arriving data point,
then moving along the negative of these gradients for an appropriately sized
sequence of steps leads to convergence to a local minimum in the objective.
The bias in the gradient of a kernel based estimate of a probability density is
independent of the number of data used in the estimate. The size of the bias
is, in fact, controlled by the size of the bandwidth. Repeatedly updating a
hyperplane by moving along the negative of the gradient of a kernel located
on the most recently observed datum will decrease the density along the hy-
perplane. Some important caveats exist, however. Firstly, the density tends
to zero in the tails of the distribution, and so if the hyperplane escapes the
convex hull of the modes of the density then it will not converge. To avoid
this problem, a simple bounding method can be used which prevents the
hyperplane from deviating too far from the mean of the data. Alternatively,
it may be possible to estimate the modes of the density in a similar manner
to decreasing the density on a hyperplane, and thereby force the hyperplane
to intersect their convex hull. Secondly, though the bias can be controlled
by allowing the bandwidth to tend to zero, this has the effect of inflating
the variance of the gradient estimates. This is a similar problem to that ob-
served in the algorithm of Kiefer and Wolfowitz (1952). It may be possible
to define a sequence of step sizes such that both the bias and the variance
in the updates tend to zero asymptotically, in which case convergence can
be achieved. Alternatively, a small but non-zero bandwidth can be used once
sufficiently many data have been observed, which means that the hyperplane
will not necessarily converge to a local minimum but the variance in the up-
date equation is guaranteed to be well controlled.
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