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The dynamical systems found in Nature are rarely isolated. Instead they interact and influence
each other. The coupling functions that connect them contain detailed information about the
functional mechanisms underlying the interactions and prescribe the physical rule specifying how
an interaction occurs. Here, we aim to present a coherent and comprehensive review encompassing
the rapid progress made recently in the analysis, understanding and applications of coupling
functions. The basic concepts and characteristics of coupling functions are presented through
demonstrative examples of different domains, revealing the mechanisms and emphasizing their
multivariate nature. The theory of coupling functions is discussed through gradually increasing
complexity from strong and weak interactions to globally-coupled systems and networks. A variety
of methods that have been developed for the detection and reconstruction of coupling functions
from measured data is described. These methods are based on different statistical techniques for
dynamical inference. Stemming from physics, such methods are being applied in diverse areas
of science and technology, including chemistry, biology, physiology, neuroscience, social sciences,
mechanics and secure communications. This breadth of application illustrates the universality of
coupling functions for studying the interaction mechanisms of coupled dynamical systems.
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I. INTRODUCTION

A. Coupling functions, their nature and uses

Interacting dynamical systems abound in science and
technology, with examples ranging from physics and
chemistry, through biology and population dynamics, to
communications and climate (Haken, 1983; Kuramoto,
1984; Pikovsky et al., 2001; Strogatz, 2003; Winfree,
1980).

The interactions are defined by two main aspects:
structure and function. The structural links determine
the connections and communications between the sys-
tems, or the topology of a network. The functions are
quite special from the dynamical systems viewpoint, as
they define the laws by which the action and co-evolution
of the systems are governed. The functional mecha-
nisms can lead to a variety of qualitative changes in the
systems. Depending on the coupling functions, the re-
sultant dynamics can be quite intricate, manifesting a
whole range of qualitatively different states, physical ef-
fects, phenomena and characteristics, including synchro-
nization (Acebrón et al., 2005; Kapitaniak et al., 2012;
Lehnertz and Elger, 1998; Pikovsky et al., 2001), oscilla-
tion and amplitude death (Koseska et al., 2013a; Saxena
et al., 2012), birth of oscillations (Pogromsky et al., 1999;
Smale, 1976), breathers (MacKay and Aubry, 1994), co-
existing phases (Keller et al., 1992), fractal dimensions
(Aguirre et al., 2009), network dynamics (Arenas et al.,
2008; Boccaletti et al., 2006), and coupling strength and
directionality (Hlaváčkováá-Schindler et al., 2007; Mar-
wan et al., 2007; Rosenblum and Pikovsky, 2001; Ste-
fanovska and Bračič, 1999). Knowledge of such coupling
function mechanisms can be used to detect, engineer or
predict certain physical effects, to solve some man-made
problems and, in living systems, to reveal their state of
health and to investigate changes due to disease.

Coupling functions possess unique characteristics car-
rying implications that go beyond the collective dynamics
(e.g. synchronization or oscillation death). In particular,
the form of the coupling function can be used, not only
to understand, but also to control and predict the inter-
actions. Individual units can be relatively simple, but
the nature of the coupling function can make their col-
lective dynamics particular, enabling special behaviour.
Additionally, there exist applications which depend just
and only on the coupling functions, including examples of
applications in social sciences and secure communication.

Given these properties, it is hardly surprising that
coupling functions have recently attracted considerable
attention within the scientific community. They have

mediated applications, not only in different subfields of
physics, but also beyond physics, predicated by the de-
velopment of powerful methods enabling the reconstruc-
tion of coupling functions from measured data. The re-
construction within these methods is based on a vari-
ety of inference techniques, e.g. least squares and ker-
nel smoothing fits (Kralemann et al., 2013a; Rosen-
blum and Pikovsky, 2001), dynamical Bayesian inference
(Stankovski et al., 2012), maximum likelihood (multiple-
shooting) methods (Tokuda et al., 2007), stochastic mod-
eling (Schwabedal and Pikovsky, 2010) and the phase re-
setting (Galán et al., 2005; Levnajić and Pikovsky, 2011;
Timme, 2007).

Both the connectivity between systems, and the asso-
ciated methods employed for revealing it, are often dif-
ferentiated into structural, functional and effective con-
nectivity (Friston, 2011; Park and Friston, 2013). Struc-
tural connectivity is defined by the existence of a phys-
ical link, like anatomical synaptic links in the brain or
a conducting wire between electronic systems. Func-
tional connectivity refers to the statistical dependences
between systems, like for example correlation or coher-
ence measures. Effective connectivity is defined as the
influence one system exerts over another, under a par-
ticular model of causal dynamics. Importantly in this
context, the methods used for the reconstruction of cou-
pling functions belong to the group of effective connec-
tivity techniques i.e. they exploit a model of differential
equations and allow for dynamical mechanisms – like the
coupling functions themselves – to be inferred from data.

Coupling function methods have been applied widely
(Fig. 1), and to good effect: in chemistry, for understand-
ing, effecting, or predicting interactions between oscilla-
tory electrochemical reactions (Blaha et al., 2011; Kiss
et al., 2007; Kori et al., 2014; Miyazaki and Kinoshita,
2006; Tokuda et al., 2007); in cardiorespiratory physi-
ology (Iatsenko et al., 2013; Kralemann et al., 2013a;
Stankovski et al., 2012) for reconstruction of the human
cardiorespiratory coupling function and phase resetting
curve, for assessing cardiorespiratory time-variability and
for studying the evolution of the cardiorespiratory cou-
pling functions with age; in neuroscience for revealing
the cross-frequency coupling functions between neural
oscillations (Stankovski et al., 2015); in social sciences
for determining the function underlying the interactions
between democracy and economic growth (Ranganathan
et al., 2014); for mechanical interactions between coupled
metronomes (Kralemann et al., 2008); and in secure com-
munications where a new protocol was developed explic-
itly based on amplitude coupling functions (Stankovski
et al., 2014).

In parallel with their use to support experimental
work, coupling functions are also at the centre of in-
tense theoretical research (Acebrón et al., 2005; Craw-
ford, 1995; Daido, 1996a; Strogatz, 2000). Particular
choices of coupling functions can allow for a multiplicity
of singular synchronized states (Komarov and Pikovsky,
2013). Coupling functions are responsible for the overall
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Figure 1 (color online). Examples of coupling functions used
in chemistry, cardiorespiratory physiology and secure commu-
nications, to demonstrate their diversity of applications. (a)
Coupling functions used for controlling and engineering the
interactions of two (left) and four (right) non-identical elec-
trochemical oscillations. (b) Human cardiorespiratory cou-
pling function Qe reconstructed from the phase dynamics the
heart ϕe and respiration ϕr phases. (c) Schematic descrip-
tion of the coupling function encryption protocol. Multi-
ple information signals are encrypted by modulating the pa-
rameters of linearly-independent coupling functions between
(chaotic) dynamical systems at the transmitter. These appli-
cations are discussed in detail in Sec. V. Fig. 1(a) is from Kiss
et al. (2007), (b) from Kralemann et al. (2013a) and (c) from
Stankovski et al. (2014).

coherence in complex networks of non-identical oscilla-
tors (Luccioli and Politi, 2010; Pereira et al., 2013; Ullner
and Politi, 2016) and for the formation of waves and anti-
waves in coupled neurons (Urban and Ermentrout, 2012).
Coupling functions play important roles in the phenom-
ena resulting from interaction such as synchronization
(Daido, 1996a; Kuramoto, 1984; Maia et al., 2015), am-
plitude and oscillation death (Aronson et al., 1990; Kos-
eska et al., 2013a; Schneider et al., 2015; Zakharova et al.,
2014), the low-dimensional dynamics of ensembles (Ott
and Antonsen, 2008; Watanabe and Strogatz, 1993), and
clustering in networks (Ashwin and Timme, 2005; Kori
et al., 2014). The findings of these theoretical works are
fostering further the development of methods for coupling
function reconstruction, paving the way to additional ap-

plications.

B. Significance for interacting systems more generally

An interaction can result from a structural link
through which causal information is exchanged between
the system and one or more other systems (Haken, 1983;
Kuramoto, 1984; Pikovsky et al., 2001; Strogatz, 2003;
Winfree, 1980). Often it is not so much the nature of
the individual parts and systems, but how they inter-
act, that determines their collective behaviour. One ex-
ample is circadian rhythms, which occur across different
scales and organisms (DeWoskin et al., 2014). The sys-
tems themselves can be diverse in nature – for example,
they can be either static or dynamical, including oscilla-
tory, nonautonomous, chaotic, or stochastic characteris-
tics (Gardiner, 2004; Katok and Hasselblatt, 1997; Kloe-
den and Rasmussen, 2011; Landa, 2013; Strogatz, 2001;
Suprunenko et al., 2013). From the extensive set of pos-
sibilities, we focus in this review on dynamical systems,
concentrating especially on nonlinear oscillators because
of their particular interest and importance.

1. Physical effects of interactions: Synchronization, amplitude
and oscillation death

An intriguing feature is that their mutual interactions
can change the qualitative state of the systems. Thus
they can cause transitions into or out of physical states
such as synchronization, amplitude or oscillation death,
or quasi-synchronized states in networks of oscillators.

The existence of a physical effect is, in essence, defined
by the presence of a stable state for the coupled systems.
Their stability is often probed through a dimensionally-
reduced dynamics, for example the dynamics of their
phase difference or of the driven system only. By de-
termining the stability of the reduced dynamics, one can
derive useful conclusions about the collective behaviour.
In such cases, the coupling functions describe how the
stable state is reached and the detailed conditions for
the coupled systems to gain or lose stability. In data
analysis, the existence of the physical effects is often as-
sessed through measures that quantify – either directly
or indirectly – the resultant statistical properties of the
state that remains stable under interaction.

The physical effects often converge to a manifold, such
as a limit cycle. Even after that, however, coupled dy-
namical systems can still exhibit their own individual dy-
namics, making them especially interesting objects for
study.

Arguably, synchronization is the most studied of all
such physical effects. It is defined as an adjustment of
the rhythms of the oscillators, caused by their weak inter-
action (Pikovsky et al., 2001). Synchronization is the un-
derlying qualitative state that results from many cooper-
ative interactions in nature. Examples include cardiores-
piratory synchronization (Kenner et al., 1976; Schäfer
et al., 1998; Stefanovska et al., 2000), brain seizures
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(Lehnertz and Elger, 1998), neuromuscular activity (Tass
et al., 1998), chemistry (Kiss et al., 2007; Miyazaki and
Kinoshita, 2006), the flashing of fireflies (Buck and Buck,
1968; Mirollo and Strogatz, 1990) and ecological synchro-
nization (Blasius et al., 1999). Depending on the domain,
the observable properties and the underlying phenomena,
several different definitions and types of synchronization
have been studied. These include phase synchroniza-
tion, generalized synchronization, frequency synchroniza-
tion, complete (identical) synchronization, lag synchro-
nization and anomalous synchronization (Arnhold et al.,
1999; Blasius et al., 2003; Brown and Kocarev, 2000; Er-
mentrout, 1981; Eroglu et al., 2017; Kocarev and Par-
litz, 1996; Kuramoto, 1984; Pecora and Carroll, 1990;
Pikovsky et al., 2001; Rosenblum et al., 1996; Rulkov
et al., 1995).

Another important group of physical phenomena at-
tributable to interactions are those associated with os-
cillation and amplitude deaths (Bar-Eli, 1985; Koseska
et al., 2013a; Mirollo and Strogatz, 1990; Prasad, 2005;
Schneider et al., 2015; Suárez-Vargas et al., 2009; Za-
kharova et al., 2013). Oscillation death is defined as a
complete cessation of oscillation caused by the interac-
tions, when an inhomogeneous steady state is reached.
Similarly, in amplitude death, due to the interactions
a homogeneous steady state is reached and the oscilla-
tions disappear. The mechanisms leading to these two
oscillation quenching phenomena are mediated by differ-
ent coupling functions and conditions of interaction, in-
cluding strong coupling (Mirollo and Strogatz, 1990; Zhai
et al., 2004), conjugate coupling (Karnatak et al., 2007),
nonlinear coupling (Prasad et al., 2010), repulsive links
(Hens et al., 2013) and environmental coupling (Resmi
et al., 2011). These phenomena are mediated, not only
by the phase dynamics of the interacting oscillators, but
also by their amplitude dynamics, where the shear am-
plitude terms and the nonisochronicity play significant
roles. Coupling functions define the mechanism through
which the interaction causes the disappearance of the os-
cillations.

There is a large body of earlier work in which physical
effects, qualitative states, or quantitative characteristics
of the interactions were studied, where coupling functions
constituted an integral part of the underlying interac-
tion model, regardless of whether or not the term was
used explicitly. Physical effects are very important and
they are closely connected with the coupling functions.
In such investigations, however, the coupling functions
themselves were often not assessed, or considered as en-
tities in their own right. In simple words, such inves-
tigations posed the question of whether physical effects
occur; while for the coupling function investigations the
question is rather how they occur. Our emphasis will
therefore be on coupling functions as entities, on the ex-
ploration and assessment of different coupling functions,
and on the consequences of the interactions.

2. Coupling strength and directionality

The coupling strength gives a quantitative measure of
the information flow between the coupled systems. In an
information-theoretic context, this is defined as the trans-
fer of information between variables in a given process.
In a theoretical treatment the coupling strength is clearly
the scaling parameter of the coupling functions. There
is great interest in being able to evaluate the coupling
strength, for which many effective methods have been
designed (Bahraminasab et al., 2008; Chicharro and An-
drzejak, 2009; Faes et al., 2011; Jamšek et al., 2010; Mar-
wan et al., 2007; Mormann et al., 2000; Paluš and Ste-
fanovska, 2003; Rosenblum and Pikovsky, 2001; Smirnov
and Bezruchko, 2009; Staniek and Lehnertz, 2008; Sun
et al., 2015). The dominant direction of influence, i.e.
the direction of the stronger coupling, corresponds to the
directionality of the interactions. Earlier, it was impossi-
ble to detect the absolute value of the coupling strength,
and a number of methods exist for detection only of the
directionality through measurements of the relative mag-
nitudes of the interactions – for example, when detect-
ing mutual information (Paluš and Stefanovska, 2003;
Smirnov and Bezruchko, 2009; Staniek and Lehnertz,
2008), but not the physical coupling strength. The as-
sessment of the strength of the coupling and its predom-
inant direction can be used to establish if certain in-
teractions exist at all. In this way, one can determine
whether some apparent interactions are in fact genuine,
and whether the systems under study are truly con-
nected or not.

When the coupling function results from a number of
functional components, its net strength is usually evalu-
ated as the Euclidian norm of the individual components’
coupling strengths. Grouping the separate components,
for example the Fourier components of periodic phase
dynamics, one can evaluate the coupling strengths of the
functional groups of interest. The latter could include the
coupling strength from either one system or the other, or
from both of them. Thus one can detect the strengths
of the self, direct and common coupling components, or
of the phase response curve (Faes et al., 2015; Iatsenko
et al., 2013; Kralemann et al., 2011). In a very simi-
lar way, these ideas can be generalized for multivariate
coupling in networks of interacting systems.

It is worth noting that, when inferring couplings even
from completely uncoupled or very weakly-coupled sys-
tems, the methods will usually detect non-zero coupling
strengths. This results mainly from the statistical prop-
erties of the signals. Therefore, one needs to be able
to ascertain whether the detected coupling strengths are
genuine, or spurious, just resulting from the inference
method. To overcome this difficulty, one can apply sur-
rogate testing (Andrzejak et al., 2003; Kreuz et al., 2004;
Paluš and Hoyer, 1998; Schreiber and Schmitz, 2000)
which generates independent, uncoupled, signals that
have the same statistical properties as the original sig-
nals. The apparent coupling strength evaluated for the
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surrogate signals should then reflect a “zero-level” of ap-
parent coupling for the uncoupled signals. By compari-
son, one can then assess whether the detected couplings
are likely to be genuine. This surrogate testing process is
also important for coupling function detection – one first
needs to establish whether a coupling relation is genuine
and then, if so, to try to infer the form of the coupling
function.

3. Coupling functions in general interactions

The present review is focused mainly on coupling func-
tions between interacting dynamical systems, and espe-
cially between oscillatory systems, because most stud-
ies to date have been developed in that context. How-
ever, interactions have also been studied in a broader
sense for non-oscillatory, non-dynamical, systems, spread
over many different fields, including for example quan-
tum plasma interactions (Marklund and Shukla, 2006;
Shukla and Eliasson, 2011), solid state physics (Farid,
1997; Higuchi and Yasuhara, 2003; Zhang, 2013), in-
teractions in semiconductor superlattices (Bonilla and
Grahn, 2005), Josephson junction interactions (Golubov
et al., 2004), laser diagnostics (Stepowski, 1992), inter-
actions in nuclear physics (Guelfi et al., 2007; Mitchell
et al., 2010), geophysics (Murayama, 1982), space science
(Feldstein, 1992; Lifton et al., 2005), cosmology (Baldi,
2011; Faraoni et al., 2006), biochemistry (Khramov and
Bielawski, 2007), plant science (Doidy et al., 2012),
oxygenation and pulmonary circulation (Ward, 2008),
cerebral neuroscience (Liao et al., 2013), immunology
(Robertson and Ghazal, 2016), biomolecular systems
(Christen and Van Gunsteren, 2008; Dong et al., 2014;
Stamenović and Ingber, 2009), gap junctions (Wei et al.,
2004) and protein interactions (Gaballo et al., 2002;
Jones and Thornton, 1996; Okamoto et al., 2009; Teas-
dale and Jackson, 1996). In many such cases, the in-
teractions are different in nature. They are often struc-
tural, and not effective connections in the dynamics; or
the corresponding coupling functions may not have been
studied in this context before. Even though we do not
discuss such systems directly in this review, many of the
concepts and ideas that we introduce in connection with
dynamical systems can also be useful for the investigation
of interactions more generally.

II. BASIC CONCEPT OF COUPLING FUNCTIONS

A. Principle meaning

1. Generic form of coupled systems

The main problem of interest is to understand the dy-
namics of coupled systems from their building blocks. We
start from the isolated dynamics:

ẋ = f(x;µ),

where f : Rm × Rn → Rn is a differentiable vector field
with µ being the set of parameters. For sake of sim-
plicity, whenever there is no risk of confusion, we will
omit the parameters. Over the last fifty years, develop-
ments in the theory of dynamical systems have illumi-
nated the dynamics of isolated systems. For instance, we
understand their bifurcations, including those that gen-
erate periodic orbits as well as those giving rise to chaotic
motion. Hence we understand the dynamics of isolated
systems in some detail.

In contrast, our main interest here is to understand the
dynamics of the coupled equations:

ẋ = f1(x) + g1(x, y) (1)

ẏ = f2(y) + g2(x, y), (2)

where f1,2 are vector fields describing the isolated dy-
namics (perhaps with different dimensions) and g1,2 are
the coupling functions. The latter are our main objects
of interest. We will assume that they are at least twice
differentiable.

Note that we could also study this problem from an
abstract point of view by representing the equations as:

ẋ = q1(x, y) (3)

ẏ = q2(x, y), (4)

where the functions q1,2 incorporate both the isolated
dynamics and the coupling functions. This notation for
inclusion of coupling functions, with no additive split-
ting between the interactions and the isolated dynam-
ics, can sometimes be quite useful (Aronson et al., 1990;
Pereira et al., 2014). Examples include coupled cell net-
works (Ashwin and Timme, 2005), or the provision of
full Fourier expansions (Kiss et al., 2005; Rosenblum and
Pikovsky, 2001) when inferring coupling functions from
data.

2. Coupling function definition

Coupling functions describe the physical rule specify-
ing how the interactions occur. Being directly connected
with the functional dependences, coupling functions fo-
cus not so much on whether there are interactions, but
more on how they appear and develop. For instance, the
magnitude of the phase coupling function affects directly
the oscillatory frequency and describes how the oscilla-
tions are being accelerated or decelerated by the influence
of the other oscillator. Similarly, if one considers the am-
plitude dynamics of interacting dynamical systems, the
magnitude of the coupling function will prescribe how the
amplitude is increased or decreased by the interaction.

A coupling function can be described in terms of its
strength and form. While the strength is a relatively
well-studied quantity, this is not true of the form. It
is the functional form that has provided a new dimen-
sion and perspective, probing directly the mechanisms of
interaction. In other words, the mechanism is defined
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Figure 2 (color on-
line). The state of syn-
chronization described
through phase differ-
ence dynamics, ψ̇ ver-
sus ψ. Depending on
the existence of stable
equilibria, the oscilla-
tors can be synchro-
nized (a),(c) or unsyn-
chronized (b). Stable
points are shown with
white circles, while un-
stable with black cir-
cles. Adapted from
Kuramoto (1984).

by the functional form which, in turn, specifies the rule
and process through which the input values are translated
into output values i.e. in terms of one system (System A)
it prescribes how the input influence from another sys-
tem (System B) gets translated into consequences in the
output of System A. In this way the coupling function
can describe the qualitative transitions between distinct
states of the systems e.g. routes into and out of syn-
chronization. Decomposition of a coupling function pro-
vides a description of the functional contributions from
each separate subsystem within the coupling relationship.
Hence, the use of coupling functions amounts to much
more than just a way of investigating correlations and
statistical effects: it reveals the mechanisms underlying
the functionality of the interactions.

3. Example of coupling function and synchronization

To illustrate the fundamental role of coupling functions
in synchronization, we consider a simple example of two
coupled phase oscillators (Kuramoto, 1984):

φ̇1 = ω1 + ε1 sin(φ2 − φ1)

φ̇2 = ω2 + ε2 sin(φ1 − φ2),
(5)

where φ1, φ2 are the phase variables of the oscillators,
ω1, ω2 are their natural frequencies, ε1, ε2 are the cou-
pling strength parameters, and the coupling functions of
interest are both taken to be sinusoidal. (For further
details including, in particular, the choice of the cou-
pling functions, see also section III). Further, we con-
sider coupling that depends only on the phase difference
ψ = φ2−φ1. In this case, from ψ̇ = φ̇2− φ̇1 and Eqs. (5)
we can express the interaction in terms of ψ as:

ψ̇ = ∆ω + εq(ψ) = (ω2 − ω1)− (ε1 + ε2) sin(ψ). (6)

Synchronization will then occur if the phase difference ψ
is bounded, i.e. if Eq. (6) has at least one stable-unstable

pair of solutions (Kuramoto, 1984). Depending on the
form of the coupling function, in this case the sine form
q(ψ) = sin(ψ), and on the specific parameter values, a
solution may exist. For the coupling function given by
Eq. (6) one can determine that the condition for synchro-
nization to occur is |ε1 + ε2| ≥ |ω2 − ω1|.

Fig. 2 illustrates schematically the connection between
the coupling function and synchronization. An example
of a synchronized state is sketched in Fig. 2(a). The re-
sultant coupling strength ε = (ε1 + ε2) has larger values
of the frequency difference ∆ω = ω2−ω1 at certain points
within the oscillation cycle. As the condition ψ̇ = 0 is
fulfilled, there is a pair of stable and unstable equilib-
ria, and synchronization exists between the oscillators.
Fig. 2(b) shows the same functional form, but the oscil-
lators are not synchronized because the frequency differ-
ence is larger than the resultant coupling strength. By
comparing Figs. 2(a) and (b) one can note that while
the form of the curve defined by the coupling function
is the same in each case, the curve can be shifted up or
down by choice of the frequency and coupling strength
parameters. For certain critical parameters, the system
undergoes a saddle-node bifurcation, leading to a stable
synchronization.

The coupling functions of real systems are often more
complex than the simple sine function presented in Fig.
2(a) and (b). For example, Fig. 2(c) also shows a syn-
chronized state, but with an arbitrary form of coupling
function that has two pairs of stable-unstable points. As
a result, there could be two critical coupling strengths (ε′

and ε′′) and either one, or both, of them can be larger
than the frequency difference ω2 − ω1, leading to sta-
ble equilibria and fulfilling the synchronization condition.
This complex situation could cause bistability (as will be
presented below in relation to chemical experiments Sec.
V.A). Thus comparison of Fig. 2(a) and (c) illustrates the
fact that, within the synchronization state, there can be
different mechanisms defined by different forms of cou-
pling function.
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B. History

The concepts of coupling functions, and of interactions
more generally, had emerged as early as the first studies
of the physical effects of interactions, such as the syn-
chronization and oscillation death phenomena. In the
seventeenth century, Christiaan Huygens observed and
described the interaction phenomenon exhibited by two
mechanical clocks (Huygens, 1673). He noticed that their
pendula, which beat differently when the clocks were
attached to a rigid wall, would synchronize themselves
when the clocks were attached to a thin beam. He re-
alised that the cause of the synchronization was the very
small motion of the beam, and that its oscillations com-
municated some kind of motion to the clocks. In this way,
Huygens described the physical notion of the coupling –
the small motion of the beam which mediated the mutual
motion (information flow) between the clocks that were
fixed to it.

In the nineteenth century, John William Strutt, Lord
Rayleigh, documented the first comprehensive theory of
sound (Rayleigh, 1896). He observed and described the
interaction of two organ pipes with holes distributed in
a row. His peculiar observation was that for some cases
the pipes could almost reduce one another to silence. He
was thus observing the oscillation death phenomenon, as
exemplified by the quenching of sound waves.

Theoretical investigations of oscillatory interactions
emerged soon after the discovery of the triode genera-
tor in 1920 and the ensuing great interest in periodi-
cally alternating electrical currents. Appleton and van
der Pol considered coupling in electronic systems and
attributed it to the effect of synchronizing a generator
with a weak external force (Appleton, 1922; Van Der Pol,
1927). Other theoretical works on coupled nonlinear sys-
tems included studies of the synchronization of mechani-
cally unbalanced vibrators and rotors (Blekhman, 1953),
and the theory of general nonlinear oscillatory systems
(Malkin, 1956). Further theoretical studies of coupled
dynamical systems, explained phenomena ranging from
biology, to laser physics, to chemistry (Glass and Mackey,
1979; Haken, 1975; Kuramoto, 1975; Wiener, 1963; Win-
free, 1967). Two of these earlier theoretical works (Ku-
ramoto, 1975; Winfree, 1967) have particular importance
and impact for the theory of coupling functions.

In his seminal work Winfree (1967) studied biological
oscillations and population dynamics of limit-cycle os-
cillators theoretically. Notably, he considered the phase
dynamics of interacting oscillators, where the coupling
function was a product of two periodic functions of the
form:

q1(φ1, φ2) = Z(φ1)I(φ2). (7)

Here, I(φ2) is the influence function through which the
second oscillator affects the first, while the sensitivity
function Z(φ1) describes how the first observed oscilla-
tor responds to the influence of the second one. (This
was subsequently generalized for the whole population

in terms of a mean field (Winfree, 1967, 1980)). Thus,
the influence and sensitivity functions I(φ2), Z(φ1), as
integral components of the coupling function, described
the physical meaning of the separate roles within the in-
teraction between the two oscillators. The special case
I(φ2) = 1 + cos(φ2) and Z(φ1) = sin(φ1) has often been
used (Ariaratnam and Strogatz, 2001; Winfree, 1980).

Arguably, the most studied framework of coupled os-
cillators is the Kuramoto model. It was originally intro-
duced in 1975 through a short conference paper (Ku-
ramoto, 1975), followed by a more comprehensive de-
scription in an epoch-making book (Kuramoto, 1984).
Today this model is the cornerstone for many studies
and applications (Acebrón et al., 2005; Strogatz, 2000),
including neuroscience (Breakspear et al., 2010; Cabral
et al., 2014; Cumin and Unsworth, 2007), Josephson-
junction arrays (Filatrella et al., 2000; Wiesenfeld et al.,
1996, 1998), power grids (Dorfler and Bullo, 2012; Fila-
trella et al., 2008), glassy states (Iatsenko et al., 2014)
and laser arrays (Vladimirov et al., 2003). The model
reduces the full oscillatory dynamics of the oscillators
to their phase dynamics, i.e. to so-called phase oscilla-
tors, and it studies synchronization phenomena in a large
population of such oscillators (Kuramoto, 1984). By set-
ting out a mean-field description for the interactions, the
model provides an exact analytic solution.

At a recent conference celebrating “40 years of the Ku-
ramoto Model”, held at the Max Planck Institute for the
Physics of Complex Systems, Dresden, Germany, Yoshiki
Kuramoto presented his own views of how the model was
developed, and described its path from initial ignorance
on the part of the scientific community to dawning recog-
nition followed by general acceptance: a video message
is available (Kuramoto, 2015). Kuramoto devoted par-
ticular attention to the coupling function of his model,
noting that:

In the year of 1974, I first came across Art
Winfree’s famous paper [(Winfree, 1967)] . . . I
was instantly fascinated by the first few para-
graphs of the introductory section of the pa-
per, and especially my interest was stimu-
lated when he spoke of the analogy between
synchronization transitions and phase tran-
sitions of ferroelectrics, [. . . ]. [There was a]
problem that mutual coupling between two
magnets (spins) and mutual coupling of os-
cillators are quite different. For magnetic
spins the interaction energy is given by a
scalar product of a two spin vectors, which
means that in a particular case of planar
spins the coupling function is given by a si-
nusoidal function of phase difference. In con-
trast, Winfree’s coupling function for two os-
cillators is given by a product of two peri-
odic functions, [. . . ], and it seemed that this
product form coupling was a main obstacle
to mathematical analysis. [. . . ] I knew that
product form coupling is more natural and re-
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alistic, but I preferred the sinusoidal form of
coupling because my interest was in finding
out a solvable model.

Kuramoto studied complex equations describing oscil-
latory chemical reactions (Kuramoto and Tsuzuki, 1975).
In building his model, he considered phase dynamics
and all-to-all diffusive coupling rather than local cou-
pling, took the mean-field limit, introduced a random
frequency distribution, and assumed that a limit-cycle
orbit is strongly attractive (Kuramoto, 1975). As al-
ready mentioned, Kuramoto’s coupling function was a
sinusoidal function of the phase difference:

q1(φ1, φ2) = sin(φ2 − φ1). (8)

The use of the phase difference reduces the dimensional-
ity of the two phases and provides a means whereby the
synchronization state can be determined analytically in
a more convenient way (see also Fig. 2).

The inference of coupling functions from data appeared
much later than the theoretical models. The develop-
ment of these methods was mostly dictated by the in-
creasing accessibility and power of the available com-
puters. One of the first methods for the extraction of
coupling functions from data was effectively associated
with detection of the directionality of coupling (Rosen-
blum and Pikovsky, 2001). Although directionality was
the main focus, the method also included the reconstruc-
tion of functions that closely resemble coupling functions.
Several other methods for coupling function extraction
followed, including those by Kiss et al. (2005), Miyazaki
and Kinoshita (2006), Tokuda et al. (2007), Kralemann
et al. (2008), and Stankovski et al. (2012), and it remains
a highly active field of research.

C. Different domains and usage

1. Phase coupling functions

A widely used approach for the study of the coupling
functions between interacting oscillators is through their
phase dynamics (Ermentrout, 1986; Kuramoto, 1984;
Pikovsky et al., 2001; Winfree, 1967). If the system
has a stable limit-cycle, one can apply phase reduction
procedures (see Sec. III.B for further theoretical details)
which systematically approximate the high-dimensional
dynamical equation of a perturbed limit cycle oscillator
with a one-dimensional reduced-phase equation, with just
a single phase variable φ representing the oscillator state
(Nakao, 2015). In uncoupled or weakly-coupled contexts,
the phases are associated with zero Lyapunov stability,
which means that they are susceptible to tiny perturba-
tions. In this case, one loses the amplitude dynamics, but
gains simplicity in terms of the single dimension phase
dynamics, which is often sufficient to treat certain effects
of the interactions, e.g. phase synchronization. Thus
phase connectivity is defined by the connection and in-
fluence between such phase systems.

Figure 3 (color online). Schematic illustration of a phase dy-
namics coupling function. The first oscillator x1 influences
the second oscillator x2 unidirectionally, as indicated by the
directional diagram on the left of the figure. (a) Amplitude
signal x1(t) during one cycle of period T1. (b) Coupling func-
tion q2(φ1, φ2) in {φ1, φ2} space. (c) φ2-averaged projection
of the coupling function q2(φ1, φ2). (d) Amplitude signal of
the second driven oscillator x2(t), during one cycle of the first
oscillator. From Stankovski et al. (2015).

To present the basic physics underlying a coupling
function in the phase domain, we consider an elementary
example of two phase oscillators that are unidirectionally
phase-coupled:

φ̇1 =ω1

φ̇2 =ω2 + q2(φ1, φ2) = ω2 + cos(φ1 + π/2.5).
(9)

Our aim is to describe the effect of the coupling function
q2(φ1, φ2) through which the first oscillator influences the

second one. From the expression for φ̇2 in Eq. (9) one can
appreciate the fundamental role of the coupling function:
q2(φ1, φ2) is added to the frequency ω2. Thus changes in
the magnitude of q2(φ1, φ2) will contribute to the overall
change of the frequency of the second oscillator. Hence,
depending on the value of q2(φ1, φ2), the second oscil-
lator will either accelerate or decelerate relative to its
uncoupled motion.

The description of the phase coupling function is illus-
trated schematically in Fig. 3. Because in real situations
one measures the amplitude state of signals, we explain
how the amplitude signals (Fig. 3(a) and (d)) are af-
fected depending on the specific phase coupling function
(Fig. 3(b) and (c)). In all plots, time is scaled relative
to the period T1 of the amplitude of the signal originat-
ing from the first oscillator x1(t) (e.g. x1(t) = sin(φ1)).
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Figure 4 (color online). Two characteristic coupling functions
in the phase domain. (a) The coupling function q(φ1, φ2) is
of sinusoidal form for the phase difference, as used in the
Kuramoto model. (b) The coupling function q(φ1, φ2) is a
product of the influence and sensitivity functions, as used in
the Winfree model.

For convenient visualisation of the effects we set the sec-
ond oscillator to be fifteen times slower than the first
oscillator: ω2/ω1 = 15. The particular coupling func-
tion q2(φ1, φ2) = cos(φ1 + π/2.5) presented on a 2π× 2π
grid (Fig. 3(b)) resembles a shifted cosine wave, which
changes only along the φ1-axis, like a direct coupling
component. Because all the changes occur along the φ1-
axis, and for easier comparison, we also present in Fig.
3(c) a φ2-averaged projection of q2(φ1, φ2).

Finally, Fig. 3(d) shows how the second oscillator x2(t)
is affected by the first oscillator in time in relation to
the phase of the coupling function: when the coupling
function q2(φ1, φ2) is increasing, the second oscillator
x2(t) accelerates; similarly, when q2(φ1, φ2) decreases,
x2(t) decelerates. Thus the form of the coupling func-
tion q2(φ1, φ2) shows in detail the mechanism through
which the dynamics and the oscillations of the second
oscillator are affected: in this case they were alternately
accelerated or decelerated by the influence of the first
oscillator.

Of course, coupling functions can in general be
much more complex than the simple example presented
(cos(φ1 + π/2.5)). This form of phase coupling function
with a direct contribution (predominantly) only from the
other oscillator is often found as a coupling component
in real applications, as will be discussed below. Other
characteristic phase coupling functions of that kind could
include the coupling functions from the Kuramoto model
(Eq. (8)) and the Winfree model (Eq. (7)), as shown in
Fig. 4. The sinusoidal function of the phase difference
from the Kuramoto model exhibits a diagonal form in
Fig. 4(a), while the influence-sensitivity product func-
tion of Winfree model is given by a more complex form
spread differently along the two-dimensional space in Fig.
4(b). Although these two functions differ from those in
the previous example (Fig. 3), the procedure used for
their interpretation is the same.

2. Amplitude coupling functions

Arguably, it is more natural to study amplitude dy-
namics than phase dynamics, as the former is directly
observable while the phase needs to be derived. Real
systems often suffer from the “curse of dimensionality”
(Keogh and Mueen, 2011) in that not all of the features
of a possible (hidden) higher-dimensional space are nec-
essarily observable through the low-dimensional space of
the measurements. Frequently, a delay embedding the-
orem (Takens, 1981) is used to reconstruct the multi-
dimensional dynamical system from data. In real appli-
cation with non-autonomous and non-stationary dynam-
ics, however the theorem often does not give the desired
result (Clemson and Stefanovska, 2014). Nevertheless,
amplitude state interactions also have a wide range of
applications both in theory and methods, especially in
the cases of chaotic systems, strong couplings, delayed
systems, and large nonlinearities, including cases where
complete synchronization (Cuomo and Oppenheim, 1993;
Kocarev and Parlitz, 1995; Stankovski et al., 2014) and
generalized synchronization (Abarbanel et al., 1993; Arn-
hold et al., 1999; Kocarev and Parlitz, 1996; Rulkov et al.,
1995; Stam et al., 2002) has been assessed through ob-
servation of amplitude state space variables.

Amplitude coupling functions affect the interacting dy-
namics by increasing or decreasing the state variables.
Thus amplitude connectivity is defined by the connection
and influence between the amplitude dynamics of the sys-
tems. The form of the amplitude coupling function can
often be a polynomial function or diffusive difference be-
tween the states.

To present the basics of amplitude coupling functions,
we discuss a simple example of two interacting Poincaré
limit-cycle oscillators. In the autonomous case, each of
them is given by the polar (radial r and angular φ) co-

ordinates as: ṙ = r(1 − r) and φ̇ = ω. In this way, a
Poincaré oscillator is given by a circular limit-cycle and
monotonically growing (isochronous) phase defined by
the frequency parameter. In our example, we transform
the polar variables to Cartesian (state space) coordinates
x = r cos(φ), y = r sin(φ), and we set unidirectional cou-
pling, such that the first (autonomous) oscillator:

ẋ1 =
(
1−

√
x2

1 + y2
1

)
x1 − ω1 y1,

ẏ1 =
(
1−

√
x2

1 + y2
1

)
y1 + ω1 x1,

(10)

is influencing the x2 state of the second oscillator through
the quadratic coupling function q2(x1, y1, x2, y2) = x2

1:

ẋ2 =
(
1−

√
x2

2 + y2
2

)
x2 − ω2 y2 + εx2

1,

ẏ2 =
(
1−

√
x2

2 + y2
2

)
y2 + ω2 x2.

(11)

For simpler visual presentation we choose the first oscil-
lator to be twenty times faster than the second one, i.e.
their frequencies are in the ratio ω2/ω1 = 20, and we set
a relatively high coupling strength ε = 5.
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Figure 5 (color online). Schematic illustration of an ampli-
tude dynamics coupling function. The first oscillator Eqs.
(10) is influencing the second oscillator Eqs. (11) unidirec-
tionally, as indicated by the directional diagram on the left of
the figure. (a) Amplitude state signal x1(t) during one cycle of
period T1. (b) Coupling function q2(x1, x2) in {x1, x2} space
during one period of each of the oscillations. (c) x2-averaged
projection of the coupling function q2(x1, x2). (d) Amplitude
signal of the second (driven) oscillator x2(t), during one cycle
of the first oscillator.

The description of the amplitude coupling function is
illustrated schematically in Fig. 5. In theory, the cou-
pling function q2(x1, y1, x2, y2) has four variables, but for
better visual illustration, and because the dependence is
only on x1, we show it only in respect to the two variables
x1 and x2 i.e. q2(x1, x2). The form of the coupling func-
tion is quadratic, and it changes only along the x1-axis, as
shown in Figs. 5(b) and (c). Finally, Fig. 5(d) shows how
the second oscillator x2(t) is affected by the first oscilla-
tor in time via the coupling function: when the quadratic
coupling function q2(x1, x2) is increasing, the amplitude
of the second oscillator x2(t) increases; similarly, when
q2(x1, x2) decreases, x2(t) decreases as well.

The particular example chosen for presentation used
a quadratic function x2

1; other examples include a direct
linear coupling function e.g. x1, or a diffusive coupling
e.g. x2 − x1 (Aronson et al., 1990; Kocarev and Parlitz,
1996; Mirollo and Strogatz, 1990). There are a num-
ber of methods which have inferred models that include
amplitude coupling functions inherently (Friston, 2002;
Smelyanskiy et al., 2005; Voss et al., 2004) or have pre-
estimated most probable models (Berger and Pericchi,
1996), but without including explicit assessment of the
coupling functions. Due to the multi-dimensionality and
the lack of a general property in a dynamical system (like
for example the periodicity in phase dynamics), there are
countless possibilities for generalization of the coupling

function. In a sense, this lack of general models is a de-
ficiency in relation to the wider treatment of amplitude
coupling functions. There are open questions here and
much room for further work on generalising such models,
in terms both of theory and methods, taking into account
the amplitude properties of subgroups of dynamical sys-
tems, including for example the chaotic, oscillatory, or
reaction-diffusion nature of the systems.

3. Multivariate coupling functions

Thus far, we have been discussing pairwise coupling
functions between two systems. In general, when inter-
actions occur between more than two dynamical systems,
in a network (Sec. III.D), there may be multivariate cou-
pling functions with more than two input variables. For
example, a multivariate phase coupling function could
be q1(φ1, φ2, φ3), which is a triplet function of influence
in the dynamics of the first phase oscillator caused by
a common dependence on three other phase oscillators.
Such joint functional dependences can appear as clusters
of subnetworks within a network (Albert and Barabási,
2002).

Multivariate interactions have been the subject of
much attention recently, especially in developing meth-
ods for detecting the couplings (Baselli et al., 1997;
Duggento et al., 2012; Faes et al., 2011; Frenzel and
Pompe, 2007; Kralemann et al., 2011; Nawrath et al.,
2010; Paluš and Vejmelka, 2007). This is particularly
relevant in networks, where one can miss part of the in-
teractions if only pairwise links are inferred, or a spurious
pairwise link can be inferred as being independent when
they are actually part of a multivariate joint function.
In terms of networks and graph theory, the multivariate
coupling functions relate to hypergraph, which is defined
as a generalization of a graph where an edge (or con-
nection) can connect any number of nodes (or vertices)
(Karypis and Kumar, 2000; Weighill and Jacobson, 2015;
Zass and Shashua, 2008).

Multivariate coupling functions have been studied by
inference of small-scale networks where the structural
coupling can differ from the inferred effective coupling
(Kralemann et al., 2011). The authors considered a net-
work of three van der Pol oscillators where, in addition
to pairwise couplings, there was also a joint multivariate
cross-coupling function, for example of the form εx2x3 in
the dynamics of the first oscillator ẍ1. Due to the lat-
ter coupling, the effective phase coupling function is of a
multivariate triplet nature. By extracting the phases and
applying an inference method, the effective phase cou-
pling was reconstructed, as illustrated by the example in
Fig. 6. Comparing the true (Fig. 6 left) and the inferred
effective (Fig. 6 right) diagrams, one can see that an ad-
ditional pairwise link from the third to the first oscillator
has been inferred. If the pairwise inference alone was be-
ing investigated one might conclude, wrongly, that this
direct pairwise coupling was genuine and the only link
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Figure 6 (color online). Inference of multivari-
ate interactions. True (structural) configura-
tions (left), and the reconstructed phase model
(right). Middle: the table shows the correspond-
ing inferred coupling strengths. Note the multi-
variate triplet link – the arrows from the centres
of the diagrams. From Kralemann et al. (2011).

– whereas in reality it is just an indirect effect from the
actual joint multivariate coupling. In this way, the in-
ference of multivariate coupling functions can provide a
deeper insight into the connections in the network.

A corollary is the detection of triplet synchronization
(Jia et al., 2015; Kralemann et al., 2013b). This is a
synchronization phenomenon which has an explicit mul-
tivariate coupling function of the form q1(φ1, φ2, φ3) and
which is tested in respect of the condition |mφ1 + nφ2 +
lφ3| ≤ const, for n,m, l negative or positive. It is shown
that the state of triplet synchronization can exist, even
though each pair of systems remains asynchronous.

The brain mediates many oscillations and interactions
on different levels (Park and Friston, 2013). Interac-
tions between oscillations in different frequency bands
are referred to as cross-frequency coupling in neuro-
science (Jensen and Colgin, 2007). Recently, neural
cross-frequency coupling functions were extracted from
multivariate networks (Stankovski et al., 2015) (see also
Sec. V.C). The network interactions between the five
brainwave oscillations δ, θ, α, β and γ were analysed by
reconstruction of the multivariate phase dynamics, in-
cluding the inference of triplet and quadruplet coupling
functions. Fig. 7 shows a triplet coupling function of how
the θ and α influence γ brain oscillations. It was found
that the influence from theta oscillations is greater than
from alpha, and that there is significant acceleration of
gamma oscillations when the theta phase cycle changes
from π to 2π.

Very recently, Bick et al. (2016) have shown theoreti-

Figure 7 (color online). Multivariate triplet coupling func-
tions between neural oscillations. The phase coupling func-
tion qγ(φθ, φα) shows the influence that θ and α jointly insert
on the γ cortical oscillations. From Stankovski et al. (2015).

cally that symmetrically-coupled phase oscillators with
multivariate (or non-pairwise) coupling functions can
yield rich dynamics, including the emergence of chaos.
This was observed even for as few as N = 4 oscillators. In
contrast to the Kuramoto-Sakaguchi equations, the addi-
tional multivariate coupling functions mean that one can
find attracting chaos for a range of normal-form parame-
ter values. Similarly, it was found that even the standard
Kuramoto model can be chaotic with a finite number of
oscillators (Popovych et al., 2005).

4. Generality of coupling functions

The coupling function is well-defined from a theoretical
perspective. That is, once we have the model (as in Eqs.
1), the coupling function is unique and fixed. The solu-
tions of the equations also depend continuously on the
coupling function. Small changes in the coupling func-
tion will cause only small changes in the solutions over
finite time intervals. If solutions are attracted to some
set exponentially and uniformly fast, then small changes
in the coupling do not affect the stability of the system.

When we want to infer the coupling function from
data we can face a number of challenges in obtaining
a unique result (Sec. IV). Typically, we measure only
projections of the coupling function, which might in it-
self lead to non-uniqueness of the estimate. That is, we
project the function (which is infinite-dimensional) onto
a finite-dimensional vector space. In doing so, we could
lose some information and, generically, it is not possible
to estimate the function uniquely (even without taking
account of noise and perturbations). Furthermore, the
final form of the estimated function will depend on the
choice and number of base functions. For example, the
choice of Fourier series or general orthogonal polynomi-
als as base functions can affect slightly the final estimate
of the coupling function. The choice of which base func-
tions to be used is infinite. Even though many aspects of
coupling functions (like the number of arguments, decom-
position under an appropriate model, analysis of coupling
function components, prediction with coupling functions,
etc.), can be applied with great generality, the coupling
functions themselves cannot be determined uniquely.

In the literature, authors often speak of the commonly-
used coupling functions including, but not limited to,
those listed in Table I. Note that reactive and diffusive
coupling have functionally the same form, the difference
being that the reactive case includes complex amplitudes.
This results in a phase difference between the coupling
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Type of CF Model Meaning Reference

Direct q(x, y) = q(y) unidirectional influence (Aronson et al., 1990)
Diffusive q(x, y) = q(y − x) dependence on state difference (Kuramoto, 1984)
Reactive q(x, y) = (ε+ iβ)q(x− y) complex coupling strength (Cross et al., 2006)
Conjugate q(x, y) = q(x− Py) P permutes the variables (Karnatak et al., 2007)
Chemical synapse q(x, y) = g(x)S(y) S is a sigmoidal (Cosenza and Parravano, 2001)

Environmental q(x, y) ≈ ε
∫ t
0
e−κ(t−s)(x(s) + y(s))ds given by a differential equation (Resmi et al., 2011)

Table I Different examples of coupling functions q. These pairwise coupling functions (CFs) are considered in relation to the
system: ẋ = f(x) + q(x, y).

and the dynamics. Also in the literature, a diffusive
coupling function q(y − x) satisfying a local condition
q′(0) < 0 is called dissipative coupling (Rul’Kov et al.,
1992). This condition resembles Fick’s law as the cou-
pling forces the coupled system to converge towards the
same state. When q′(0) > 0 the coupling is called repul-
sive (Hens et al., 2013). Chemical synapses are an impor-
tant form of coupling where the influences of x and y ap-
pear together as a product. There are also other interest-
ing forms of coupling such as the geometric mean and fur-
ther generalizations (Petereit and Pikovsky, 2017; Prasad
et al., 2010). In environmental coupling, the function is
given by the solution of a differential equation. In this
case one can consider ẏ = −κy+ ε(x(t) + y(t)) for κ > 0,
so that the variables are considered as external fields driv-
ing the equation. Its solution y(t) = y(t;x, y) is taken as
the coupling function q(x, y) and, for t � 1, is given in
the table. The generality of coupling functions, and the
fact that the form can come from an unbounded set of
functions, were used to construct the encryption key in a
secure communications protocol (Stankovski et al., 2014)
(see Sec. V.F).

D. Coupling functions revealing mechanisms

The functional form is a qualitative property that de-
fines the mechanism and acts as an additional dimension
to complement the quantitative characteristics such as
the coupling strength, directionality, frequency param-
eter and limit-cycle shape parameters. By definition,
the mechanism involves some kind of function or process
leading to a change in the affected system. Its signifi-
cance is that it may lead to qualitative transitions and
induce or reduce physical effects, including synchroniza-
tion, instability, amplitude death, or oscillation death.

But why is the mechanism important, and how it can
be used? The first and foremost use of the coupling func-
tion mechanism is to illuminate the nature of the interac-
tions themselves. For example, the coupling function of
the Belousov-Zhabotinsky chemical oscillator has been
reconstructed (Miyazaki and Kinoshita, 2006) with the
help of a method for the inference of phase dynamics.
Fig. 8 shows such a coupling function, demonstrating a
form that is very far from a sinusoidal function: a curve
that gradually decreases in the region of a small ψ and
abruptly increases at a larger ψ, with its minimum and

maximum at around 5/4π and 7/4π, respectively.

Another important set of examples is the class of cou-
pling functions and phase response curves used in neu-
roscience. In neuronal interactions, some variables are
very spike-like i.e. they resemble delta functions. Con-
sequently, neuronal coupling functions (which are con-
volution of phase response curves and perturbation func-
tions) then depend only, or mainly, on the phase response
curves. So the interaction mechanism is defined by the
phase response curves: quite a lot of work has been done
in this direction (Ermentrout, 1996; Gouwens et al., 2010;
Schultheiss et al., 2011; Tateno and Robinson, 2007); see
also Sec. IV.D.2. For example, Tateno and Robinson
(2007) and Gouwens et al. (2010) reconstructed experi-
mentally the phase response curves for different types of
interneurons in rat cortex, in order to better understand
the mechanisms of neural synchronization.

The mechanism of a coupling function depends on
the differing contributions from individual oscillators.
Changes in form may depend predominantly on only
one of the phases (along one-axis), or they may depend
on both phases, often resulting in a complicated and
intuitively unclear dependance. The mechanism speci-
fied by the form of the coupling function can be used
to distinguish the individual functional contributions to
a coupling. One can decompose the net coupling func-
tion into components describing the self, direct and indi-
rect couplings (Iatsenko et al., 2013). The self-coupling
describes the inner dynamics of an oscillator which re-
sults from the interactions and has little physical mean-
ing. Direct-coupling describes the influence of the di-
rect (unidirectional) driving that one oscillator exerts on
the other. The last component, indirect-coupling, often
called common-coupling, depends on the shared contri-
butions of the two oscillators e.g. the diffusive coupling
given with the phase difference terms. This functional
coupling decomposition can be further generalized for
multivariate coupling functions, where for example, a di-
rect coupling from two oscillators to a third one can be
determined (Stankovski et al., 2015).

After learning the details of the reconstructed coupling
function, one can use this knowledge to study or de-
tect the physical effects of the interactions. In this way,
the synchronous behavior of the two coupled Belousov-
Zhabotinsky reactors can be explained in terms of the
coupling function as illustrated by the examples given in
Fig. 8 (Miyazaki and Kinoshita, 2006) and in Sec. V.A.
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Figure 8 Coupling function determined from the phase dy-
namics of two interacting chemical Belousov-Zhabotinsky os-
cillators. The coupling function is reconstructed in terms of
the phase difference ψ = φ2 − φ1. Points obtained from re-
actors 1 and 2 are plotted with open circles and triangles,
respectively. The full curves represent smooth interpolations.
From Miyazaki and Kinoshita (2006).

Furthermore, the mechanisms and form of the coupling
functions can be used to engineer and construct a partic-
ular complex dynamical structure, including sequential
patterns and desynchronization of electrochemical oscil-
lations (Kiss et al., 2007). Even more importantly, one
can use knowledge about the mechanism of the recon-
structed coupling function to predict transitions of the
physical effects – an important property described in de-
tail for synchronization in the following section.

E. Synchronization prediction with coupling functions

Synchronization is a widespread phenomenon whose
occurrence and disappearance can be of great impor-
tance. For example, epileptic seizures in the brain are
associated with excessive synchronization between a large
number of neurons, so there is a need to control synchro-
nization to provide a means of stopping or preventing
seizures (Schindler et al., 2007); while in power grids the
maintenance of synchronization is of crucial importance
(Rubido, 2015). Therefore, one often needs to be able
to control and predict the onset and disappearance of
synchronization.

A seminal work on coupling functions by Kiss et al.
(2005) uses the inferred knowledge of the coupling func-
tion to predict characteristic synchronization phenomena
in electrochemical oscillators. In particular, the authors
demonstrated the power of phase coupling functions, ob-
tained from direct experiments on a single oscillator, to
predict the dependence of synchronization characteristics
such as order-disorder transitions on system parameters,
both in small sets and in large populations of interacting
electrochemical oscillators.

The authors investigated the parametric dependence
of mutual entrainment using an electrochemical reaction
system, the electrodissolution of nickel in sulfuric acid
(see also Sec. V.A for further applications on chemical
coupling functions). A single nickel electrodissolution
oscillator can have two main characteristic waveforms
of periodic oscillation – the smooth type and the relax-
ation oscillation type. The phase response curve is of the

(a)

(b)

(c)

Figure 9 Experimental coupling function from electrochemi-
cal oscillators, used for the prediction of synchronization. (a)-
(c) Coupling function q(ψ) evaluated in respect of the phase
difference ψ = φ2 − φ1 shown on the left panel and its odd
part q−(∆φ) shown on the right panel – for the case of (a)
smooth oscillator, and (b) and (c) for relaxation oscillator
with slightly different parameters. H(∆φ) on the plots is
equivalent to the q(ψ) notation used in the current review.
From Kiss et al. (2005).

smooth type and is nearly sinusoidal, while being more
asymmetric for the relaxation oscillations.

The coupling functions are calculated using the phase
response curve obtained from experimental data for the
variable through which the oscillators are coupled. The
coupling functions q(ψ) of two coupled oscillators are re-
constructed for three characteristic cases, as shown in
Fig. 9(a)-(c), left panels. The right panels in Fig. 9 show
the corresponding odd (antisymmetric) part of the cou-
pling functions q−(ψ) = [q(ψ) − q(−ψ)]/2, which is im-
portant for determination of the synchronization. The
coupling functions q(ψ) Fig. 9 (a)-(c) have predominantly
positive values, so the interactions contribute to the ac-
celeration of the affected oscillators. The first coupling
function Fig. 9(a) for smooth oscillations has a sinu-
soidal q−(ψ) which can lead to in-phase synchronization
at the phase difference of ψ∗ = 0. The third case of re-
laxation oscillations Fig. 9(c) has an inverted sinusoidal
form q−(ψ), leading to stable anti-phase synchronization
at ψ∗ = π. The most peculiar case is the second one
Fig. 9(b) of relaxation oscillations, where the odd cou-
pling function q−(ψ) takes the form of a second harmonic
(q−(ψ) ≈ sin(2ψ)) and both the in-phase (ψ∗ = 0) and
anti-phase (ψ∗ = π) entrainments are stable, in which
case the actual state attained will depend on the initial
conditions.

Next, the knowledge obtained from experiments with
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Figure 10 Mutual entrainment and stable single-cluster (left
panel) and two-cluster (right panel) states of a population of
64 globally-coupled electrochemical relaxation oscillators un-
der the same experimental conditions. The two-cluster state
was obtained from the one-cluster state by a small perturba-
tion acting as a different initial condition for the population.
From Kiss et al. (2005).

a single oscillator was applied to predict the onset of syn-
chronization in experiments with 64 globally coupled os-
cillators. The experiments confirmed that for smooth os-
cillators the interactions converge to a single cluster, and
for relaxational oscillators they converge to a two-cluster
synchronized state. Experiments in a parameter region
between these states, in which bistability is predicted,
are shown in Fig. 10. A small perturbation of the stable
one-cluster state (left panel of Fig. 10) yields a stable two-
cluster state (right panel of Fig. 10). Therefore, all the
synchronization behavior seen in the experiments was in
agreement with prior predictions based on the coupling
functions.

In a separate line of work, synchronization was also
predicted in neuroscience: interaction mechanisms in-
volving individual neurons, usually in terms of phase-
response curves (PRCs) or spike-time response-curves
(STRCs), were used to understand and predict the syn-
chronous behavior of networks of neurons (Acker et al.,
2003; Netoff et al., 2005; Schultheiss et al., 2011). For
example, Netoff et al. (2005) studied experimentally the
spike-time response-curves of individual neuronal cells.
Results from these single-cell experiments were then used
to predict the multi-cell network behaviors, which were
found to be compatible with previous model-based pre-
dictions of how specific membrane mechanisms give rise
to the empirically measured synchronization behavior.

F. Unifying nomenclature

Over the course of time, physicists have used a range of
different terminology for coupling functions. For exam-
ple, some publications refer to them as interaction func-
tions and some as coupling functions. This inconsistency
needs to be overcome by adopting a common nomencla-
ture for the future.

The terms interaction function and coupling function
have both been used to describe the physical and mathe-

matical links between interacting dynamical systems. Of
these, coupling function has been used about twice as of-
ten in the literature, including the most recent. The term
coupling is closer to describing a connection between two
systems, while the term interaction is more general. Cou-
pling implies causality, whereas interaction does not nec-
essarily do so. Often correlation and coherence are con-
sidered as signatures of interactions, while they do not
necessarily imply the existence of couplings. We therefore
propose that the terminology be unified, and the term
coupling function be used henceforth to characterise the
link between two dynamical systems whose interaction is
also causal.

III. THEORY

In physics one is likely to examine stable static config-
urations whereas, in dynamical interaction between os-
cillators, solutions will converge to a subspace. For ex-
ample, if two oscillators are in complete synchronization
the subspace is called the synchronization manifold and
corresponds to the case where the oscillators are in the
same state for all time (Fujisaka and Yamada, 1983; Pec-
ora and Carroll, 1990). So, within the subspace, the os-
cillators have their own dynamics and finer information
on the coupling function is needed.

The analytical techniques and methods needed to an-
alyze the dynamics will depend on whether the coupling
strength is strong or weak. Roughly speaking, in the
strong coupling regime, we will have to tackle the fully-
coupled oscillators whereas in the weak coupling we can
reduce the analysis to lower-dimensional equations.

A. Strong interaction

To illustrate the main ideas and challenges of treating
the case of strong interaction, while keeping technicalities
to a minimum, we will first discuss the case of two coupled
oscillators. These examples contain the main ideas and
reveal the role of the coupling function and how it guides
the system towards synchronization.

1. Two coupled oscillators

We start by illustrating the variety of dynamical phe-
nomena that can be encountered and the role played by
the coupling function in the strong coupling regime.

Diffusion driven oscillations

When two systems interact they may display oscilla-
tions solely because of the interaction. This is the nature
of the problem posed by Smale (1976) based on Tur-
ing’s idea of morphogenesis (Turing, 1952). We consider
two identical systems which, when isolated, each exhibit
a globally asymptotically stable equilibrium, but which
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oscillate when diffusively coupled. This phenomenon is
called diffusion driven oscillation.

Assume that the system

ẋ = f(x), (12)

where f : Rn → Rn is a differentiable vector field with
a globally stable attraction with point – all trajectories
will converge to this point. Now consider two of such
systems coupled diffusively

ẋ1 = f(x1) + εH(x2 − x1) (13)

ẋ2 = f(x2) + εH(x1 − x2).

The problem proposed by Smale was to find (if possible)
a coupling function (positive definite matrix) H such that
the diffusively coupled system undergoes a Hopf bifurca-
tion. Loosely speaking, one may think of two cells that
by themselves are inert but which, when they interact
diffusively, become alive in a dynamical sense and start
to oscillate.

Interestingly, the dimension of the uncoupled systems
comes into play. Smale constructed an example in four di-
mensions. Pogromsky et al. (1999) constructed examples
in three dimensions and also showed that, under suitable
conditions, the minimum dimension for diffusive coupling
to result in oscillation is n = 3. The following example
illustrates the main ideas. Consider

f(x) = Ax(1 + |x|2) with A =

 1 −1 1
1 0 0
−4 2 −3

 , (14)

where |x|2 = xTx. Note that all the eigenvalues of A
have negative real parts. So the origin of the system Eq.
(14) is exponentially attracting.

Consider the coupling function to be the identity

ẋ1 = f(x1) + ε(x2 − x1)

ẋ2 = f(x2) + ε(x1 − x2).

For ε = 0 the origin is globally attracting; the uniform
attraction persists when ε is very small, and so the ori-
gin is still globally attracting. However, for large values
of the coupling ε > 0.6512 the coupled systems exhibit
oscillatory solutions (the origin has undergone a Hopf bi-
furcation).

Generalizations: In this example the coupling func-
tion was the identity. Pogromsky et al. (1999) discussed
further coupling functions, such as coupling functions of
rank two that generate diffusion-driven oscillators. Fur-
ther oscillations in originally passive systems have been
reported in spatially extended systems (Gomez-Marin
et al., 2007). In diffusively coupled membranes, collective
oscillation in a group of nonoscillatory cells can also occur
as a result of spatially inhomogeneous activation factor
(Ma and Yoshikawa, 2009). These ideas of diffusion lead-
ing to chemical differentiation have also been observed
experimentally and generalized by including heterogene-
ity in the model (Tompkins et al., 2014).

Oscillation death

We now consider the opposite problem: Systems which
when isolated exhibit oscillatory behaviour but which,
when coupled diffusively, cease to oscillate and where the
solutions converge to an equilibrium point.

As mentioned above in Sec. IB, this phenomenon is
called oscillation death (Bar-Eli, 1985; Ermentrout and
Kopell, 1990; Koseska et al., 2013a; Mirollo and Strogatz,
1990). To illustrate the essential features we consider a
normal form of the Hopf bifurcation

ẋj = fj(xj)

where

fj(x) = ωjAx+ (1− |x|2)x, with A =

(
0 −1
1 0

)
.

So, each isolated system has a limit cycle of amplitude
|x|2 = 1 and a frequency of ωj . Note that the origin x = 0
is an unstable equilibrium point. In oscillation death
when the systems are coupled, the origin may become
stable.

Focusing on diffusive coupling, again, the question con-
cerns the nature of the coupling function. Aronson et al.
(1990) remarked that the simplest coupling function to
have the desired properties is the identity with strength
ε. The equations have the same form as Eq. (13) with
H being the identity.

The effect can be better understood in terms of phase
and amplitude variables. Let r1, r2 be the amplitudes
and φ1, φ2 the phases of x1 and x2, respectively. We
consider r1 = r2 = r which captures the main causes
of the effect, as well as the phase difference ψ = φ1 −
φ2. Then the equations in these variables can be well
approximated as

ṙ = r(1− ε− r2) + εr cosψ (15)

ψ̇ = ∆ω − 2ε sinψ. (16)

The conditions for oscillation death are a stable fixed
point at r = 0 along with a stable fixed point for the
phase dynamics. The above equations provide the main
mechanism for oscillation death. First, we can deter-
mine the stable fixed point for the phase dynamics, as il-
lustrated in Fig. 2. There is a fixed point ψ∗ if ε > ∆ω/2
and sinψ∗ = ∆ω/(2ε). We will assume that ∆ω > 2
which implies that, when the fixed point ψ∗ exists, ε > 1.

Next, we analyse the stability of the fixed point r∗ = 0.
This is determined by the linear part of Eq. 15. Hence,
the condition for stability is

1− ε+ ε cosψ∗ < 0.

Using the equation for the fixed point we have cosψ∗ =√
1− [∆ω/(2ε)]2. Replacing this in the stability condi-

tion we obtain ε < (4 + ∆2
ω)/8. The analysis reveals that

the system will exhibit oscillation death if the coupling
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is neither too weak nor too strong. Because we are as-
suming that the mismatch is large enough, ∆ω > 2, then
there are minimum and maximum coupling strengths for
oscillation death

1 < ε <
4 + ∆2

ω

4
.

Within this range, there are no stable limit cycles: the
only attracting point is the origin, and so the oscillations
are dead.

The full equation is tackled in Aronson et al. (1990).
The main principle is that the eigenvalues of the cou-
pling function modify the original eigenvalues of the sys-
tem and change their stability. It is possible to general-
ize these claims to coupling functions that are far from
the identity (Koseska et al., 2013a). The system may
converge, not only to a single fixed point, but to many
(Koseska et al., 2013b).

Synchronization

One of the main roles of coupling functions is to facil-
itate collective dynamics. Consider the diffusively cou-
pled oscillators described by Eq. (13). We say that the
diagonal

x1(t) = x2(t)

is the complete synchronization manifold (Brown and
Kocarev, 2000). Note that the synchronization manifold
is an invariant subspace of the equations of motion for all
values of the coupling strength. Indeed, when the oscilla-
tors synchronize the coupling term vanishes. So, they will
be synchronized for all future time. The main question is
whether the synchronization manifold is attractive, that
is, if the oscillators are not precisely synchronized will
they converge towards synchronization? Similarly, if they
are synchronized, and one perturbs the synchronization,
will they return to synchronization?

Let us first consider the case where the coupling is the
identity H(x) = x, and discuss the key mechanism for
synchronization. Note that there are natural coordinates
to analyze synchronization

y =
1

2
(x1 + x2) and z =

1

2
(x1 − x2).

These coordinates have a natural meaning. If the system
synchronizes, z → 0 and y → s with ṡ = f(s). Hence,
we refer to y as the coordinate parallel to the synchro-
nization subspace x1 = x2, and to z as the coordinate
transverse to the synchronization subspace, as illustrated
in Fig. 11.

The synchronization analysis follows two steps: (i)
Obtaining a governing equation for the modes z trans-
verse to the synchronization subspace; and (ii) using the
coupling function to damp instabilities in the transverse
modes.

Figure 11 (color online) Illustration of the coordinates par-
allel y and transverse z to synchronization. In the left panel
we also show a trajectory converging to the synchronization
subspace implying that z → 0. Once the coupled systems
reach synchronization, their amplitudes will evolve together
in time, but the evolution can be chaotic as illustrated in the
right panel. The dynamics along the synchronization sub-
space is the Lorenz attractor.

(i) Obtain an equation for z. Let us assume that the
initial disturbance of z is small. Then we can obtain a
linear equation for z by neglecting the high order terms
proportional to |z|2. Noting that ż = (ẋ1 − ẋ2)/2, using
Eqs. (13) for x1 and x2, and expanding f in a Taylor
series we obtain

ż = J(t)z − 2εz, (17)

where J(t) = Df(x2(t)) is the Jacobian evaluated along
a solution of x2.

(ii) Coupling function to provide damping. The
term −2εz coming from the coupling now plays the role
of a damping term. So we expect that the coupling will
win the competition with J and will force the solutions
of z to decay exponentially fast to zero. To see this, we
observe that the first term

u̇ = J(t)u (18)

depends on the dynamics of x2 alone. Typically, ‖u(t)‖ ∝
eλt for λ > 0. Now, to obtain a bound on the solution of
Eq. (17), we consider the ansatz z = ue−2εt, and notice
that differentiating z we obtain Eq. (17). Hence

‖z(t)‖ ∝ e(λ−2ε)t,

from the growth behaviour of the disturbance z we can
also obtain the critical coupling strength to observe syn-
chronization.

Critical Coupling: From this estimate, we can also
obtain the critical coupling such that the solutions z de-
cay to zero. For coupling strengths

ε >
λ

2
,

the oscillators synchronize.
Meaning of λ > 0: This corresponds to chaotic be-

haviour in the synchronization manifold. If z → 0 then,
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J(t) will be the Jacobian along a solution of ṡ = f(s).
So λ depends on the dynamics on the synchronization
manifold. If λ > 0 and the solutions are bounded, the
dynamics of the synchronized system is chaotic. Roughly
speaking, λ > 0 means that two nearby trajectories will
diverge exponentially fast for small times and, because
the solutions are bounded, they will subsequently come
close together again. So, the coupled systems can syn-
chronize even if the dynamics of the synchronized system
is chaotic, as shown in Fig. 11 for the chaotic Lorenz
attractor. The number λ is the maximum Lyapunov ex-
ponent of the synchronization subspace.

There are intrinsic challenges associated with the anal-
ysis, and more when we attempt to generalize these ideas
and also because of the nonlinearities that we neglected
during the analysis.

1. General coupling functions: From a mathemati-
cal perspective the argument above worked because
the identity commutes with all matrices. For other
coupling functions, the argument above cannot be
applied, and we encounter three possible scenarios:

i) The coupling function does not damp instabili-
ties and the system never synchronizes (Boccaletti
et al., 2002; Pecora and Carroll, 1998).

ii) The coupling function damps out instabilities
only for a finite range of coupling strengths.

ε1
c < ε < ε2

c .

For instance, this is the case for the Rössler sys-
tem with coupling only in the first variable (Huang
et al., 2009).

iii) The coupling function damps instabilities and
there is a single critical coupling εc. This is the
case, when the coupling function eigenvalues have
positive real parts. (Pereira et al., 2014).

2. Local versus global results: In the above argument
we have expanded the vector field in a Taylor series
and obtained a linear equation to describe how the
systems synchronize. This means that any claim on
synchronization is local. It is still an open question
how to obtain global results.

3. Nonlinear effects: We have neglected the non-
linear terms (the Taylor remainders), which can
make synchronization unstable. Many researchers
have observed this phenomenon through the bub-
bling transition (Ashwin et al., 1994; Venkatara-
mani et al., 1996; Viana et al., 2005), intermittent
loss of synchronization (Gauthier and Bienfang,
1996; Yanchuk et al., 2001), and the riddling basin
(Ashwin and Timme, 2005; Heagy et al., 1994).

To highlight the role of the coupling function and illus-
trate the above challenges, we will show how to obtain
global results depending on the coupling function and
discuss how local and global results are related.

Global argument: Assume that H is a Hermitian
positive definite matrix. The main idea is to turn the
problem upside down. That is, we see the vector field as
perturbing the coupling function. So, consider the system
with only the coupling function and use the transverse
coordinates

ż = −2εHz. (19)

SinceH is positive definite we obtain−zTHz ≤ −2cε|z|2,
where c = c(H) is the smallest eigenvalue of H. The
global stability of the system can be obtained by con-
structing a Lyapunov function V . The system will be
stable if V is positive and its derivative V̇ is nega-
tive. This system admits a quadratic Lyapunov function
V (z) = 1

2z
T z. Indeed, taking the derivative

V̇ (z) = zT ż ≤ −2cε|z|2.

Hence all solutions of Eq. (19) will converge to zero ex-
ponentially fast. Next, consider the coupled system

ż = −2εHz + J(t, z),

where by the mean value theorem we obtain

J(t, z) = f(x1(t) + z(t))− f(x1(t)) (20)

=

∫ 1

0

Df(x1(t) + sz(t))z(t)ds.

Because we did not Taylor-expand the vector fields, the
equation is globally valid. Assuming that the Jacobian
is bounded by a constant Mf > 0, we obtain |J(t, z)| ≤
Mf |z|.

Computing again the Lyapunov function for the cou-
pled system (including the vector fields) we obtain

V̇ (z) ≤ −(2cε−Mf )|z|2. (21)

The system will synchronize if V̇ is negative. So synchro-
nization is attained if

εc >
Mf

2c
.

Again the critical coupling has the same form as before.
The coupling function came into play via the constant
c, and instead of λ we have Mf . Typically, Mf is much
larger than λ. So, global bounds are not sharp. This
conservative bound guarantees that the coupling func-
tion can damp all possible instabilities transverse to the
synchronization manifold. Moreover, they are persistent
under perturbation.

Local results: First, we Taylor-expand the system to
obtain

ż = J(t)z − 2εHz (22)

in just the same form as before. Note however that the
trick we used previously, by defining u̇ = Ju, is no longer
applicable. Indeed, we use the ansatz z = ue−2εHt, to
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obtain ż = −2εHz+ e−2εHtJ(t)u, and, since H and J(t)
do not commute,

e−2εHtJ(t)u 6= J(t)e−2εHtu = J(t)z,

the ansatz cannot be used. Thus we need a better way
forward. So in the same way as we calculated the expan-
sion rate λ for J(t), we calculate the expansion rate for
Eq. (22). Such Lyapunov exponents are very important
in a variety of contexts. For us, it suffices to know that
there are various ways to compute them (Dieci and Van
Vleck, 2002; Pikovsky and Politi, 2016). We calculate
the Lyapunov exponent for each value of the coupling
strength ε to obtain a function

ε 7→ Λ(ε).

This function is called the Master Stability Function
(MSF). We will extract the synchronization properties
from Λ(ε). As we already discussed, the solutions of Eq.
(19) will behave as

|z(t)| ∝ CeΛ(ε)t.

Now note that Λ(0) = λ > 0 (the expansion rate of
the uncoupled equation), since we considered the case of
chaotic oscillators. Because of our assumptions, we know
that there is a εc such that

ε > εmsfc ⇒ Λ(ε) < 0

and for which Λ(ε) will become negative, and z will con-
verge to zero.

Global versus local results. In the global analysis,
the critical coupling depends on Mf , which is an upper
bound for the Jacobian. This approach is rigorous and
guarantees that all solution will synchronize. In the local
analysis, we linearized the dynamics about the synchro-
nization manifold and computed the Lyapunov exponent
associated with the transverse coordinate z. The critical
coupling was then obtained by analysing the sign of the
Lyapunov exponent. Generically, εmsfc � Mf/2c. The
main reasoning is as follows. The Lyapunov exponents
measure the mean instability whereas, in the global argu-
ment, we consider the worst possible instability. So the
local method allows us to obtain a sharp estimate for the
onset of synchronization.

The pitfalls of the local results. The main chal-
lenge of the local method lies in the intricacies of the
theory of Lyapunov exponents (Barreira and Pesin, 2002;
Pikovsky and Politi, 2016). These can be discontinuous
functions of the vector field. In other words, the nonlin-
ear terms we threw away as Taylor remainders can make
the Lyapunov exponent jump from negative to positive.
Moreover, in the local case we cannot guarantee that all
trajectories will be uniformly attracted to the synchro-
nization manifold. In fact, for some initial conditions
trajectories are attracted to the synchronization mani-
fold, whereas nearby initial conditions are not. This phe-
nomenon is called riddling (Heagy et al., 1994).

Coupling Function Class Technique Global Persistence

H +ve definite Lyapunov LF Yes Yes
DH +ve definite Lyapunov LF No Yes
H differentiable generic LF − −
H differentiable generic MSF No No

Table II Comparison between classes of coupling function and
the techniques to obtain synchronization. Dashes indicate
that typically we are unable to construct the Lyapunov func-
tion in such cases.

2. Comparison between approaches

As discussed above, there is a dichotomy between
global versus local results, and sharp bounds for criti-
cal coupling. These issues depend on the coupling func-
tion. Some coupling functions allow one to employ a
given technique and thereby obtain global or local re-
sults.

First, we compare the two main techniques used in
the literature, that is, Lyapunov functions (LFs) and the
master stability function (MSF). For a generic coupling
function, the LFs are unknown; but Lyapunov exponents
can be estimated efficiently by numerical methods (Dieci
and Van Vleck, 2002; Froyland et al., 2013; Ginelli et al.,
2007).

Given additional information on the coupling, we can
further compare the techniques. Note that the coupling
function H can be nonlinear. In this case, we consider
the Jacobian

Γ = DH(0).

Moreover, we say that Γ belongs to the Lyapunov class
if there are positive matrices Q and P such that

ΓTP + PΓ = −Q.

Whenever the matrix Γ is in the Lyapunov class we can
construct the Lyapunov function algorithmically.

Table II reveals that the MSF method is very versa-
tile. Although it may not encompass nonlinear pertur-
bations it provides a framework to tackle a generic class
of coupling functions (Huang et al., 2009). In the the-
ory of chaotic synchronization, therefore, this has been
the preferred approach. However, it should be used with
caution.

B. Weak regime

In the weak-coupling regime, the coupling strength is
by definition insufficient to affect the amplitudes signif-
icantly; however the coupling can still cause the phases
to adapt and adjust their dynamics (Kuramoto, 1984).
Many of the phenomena observed in nature relate to the
weak coupling regime.

Mathematical descriptions of coupled oscillators in
terms of their phases offer two advantages: first, it re-
duces the dimension of the problem, and secondly, it can
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reveal principles of collective dynamics and other phe-
nomena.

The theory for the weak coupling regime is well-
developed. In the seventies and early eighties Winfree
(1967, 1980) and Kuramoto (1975, 1984) developed the
idea of asymptotic phase and phase reduction. Also start-
ing from the seventies, the mathematical theory for such
phase reduction was brought to completion in terms of
normally hyperbolic invariant manifolds (Eldering, 2013;
Hirsch et al., 1977; Wiggins, 2013). Since then, the
phase reduction theory (Nakao, 2015) has been signifi-
cantly extended and generalized, for inclusion of phase
reduction in the case of strongly perturbed oscillations,
for stochastic treatment of interacting oscillators subject
to noise of different kinds, for oscillating neuronal pop-
ulations, and for spatiotemporal oscillations in reaction-
diffusion systems (Brown et al., 2004; Goldobin et al.,
2010; Kurebayashi et al., 2013; Nakao et al., 2014; Tera-
mae et al., 2009; Yoshimura and Arai, 2008). The main
ingredient in this approach is an attracting periodic orbit.

1. Stable Periodic Orbit and its phase

If the system in question has an exponentially stable
periodic orbit, the theory guarantees the existence of the
reduction and provides a method to obtain it. Thanks
to the works of Ermentrout (1996); Ermentrout et al.
(2008); Ermentrout and Terman (2010); Hoppensteadt
and Izhikevich (2012); Izhikevich (2007); Rinzel and Er-
mentrout (1998) we now have a phase description for
certain classes of neurons and we understand its limita-
tions (Smeal et al., 2010). The strategy is as follows. We
assume that the system

ẋ = f(x), (23)

where f : Rn → Rn, has a uniformly exponentially at-
tracting periodic orbit γ with period T , that is, γ(t+T ) =
γ(t). The orbit is exponentially stable if the trajecto-
ries of the system approach it exponentially fast and the
rate of convergence does not depend on the initial time
or on initial conditions (for points sufficiently close to the
orbit).

We can parameterize the orbit by its phase φ, γ(φ +
2π) = γ(φ). We can also re-parameterize time such that
that phase φ increases uniformly along the orbit γ. That
is, the phase is uniform frequency equal to unity. By the
chain rule we then have

φ̇ = 1 = ∇γφ · f(γ)

The key idea here is that weak coupling can adjust the
rhythm of the phase dynamics. The goal is to obtain the
phase reduction solely on the basis of information about
the isolated system (the orbit γ). To this end we need to
extend the phase ϕ to a neighborhood of the orbit. The
main ingredient necessary for the reduction of the prob-
lem to its phase dynamics is the concept of asymptotic

phase (Winfree, 1967, 1980), which will provide us with
the coupling function.

Asymptotic phase: Right now, the phase φ is de-
fined only along the orbit γ. Our first step is to extend
φ to a neighbourhood of γ. Since the periodic orbit is
exponentially and uniformly attracting, it will attract an
open neighbourhood of γ. We call this set the basin of
attraction of the periodic orbit. Note that every initial
point x0 in the basin of attraction of the orbit will con-
verge to the orbit. Hence, we have a φ(x0) such that

lim
t→∞

|x(t, x0)− γ(t+ φ(x0))| = 0,

where x(t, x0) is the solution of the system with initial
condition x0. For each initial point in the basin of at-
traction of γ we can assign a unique point in the orbit θ.
This φ ∈ [0, 2π] is called the asymptotic phase.

Figure 12 (color online) Periodic orbits are shown as filled
(black) circles and isochrons as (blue) lines. Every point in an
isochron has the same value of asymptotic phase. Moreover,
the distance between two points in the same isochron tends
to zero exponentially fast, as illustrated by the red (dark)
and blue (light) points. In the lower figure, we show the
effect on the phase dynamics of a small perturbation. The
point is initially at phase zero. The perturbation ∆x moves
the system from its initial point to another isochron, thereby
advancing the phase. The periodic orbit γ and the isochrons
are for Eq. 25.

Isochron. For each value of phase φ in the orbit γ
we have a curve passing through this phase values. And
along this curve every initial will have the same asymp-
totic phase. This set is called isochron. That is, the
isochron is a level set of φ(x). So points in the isochron
have the same value of phase and will move at the same
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speed. See Fig. 12 where points in the same isochron
approach the orbit along the same isochron. The set
of points where the isochron cannot be defined is called
phaseless. Once we find the isochron we can perform the
phase reduction.

2. Coupling function and phase reduction

Consider Eq. (23) with a stable periodic orbit γ being
perturbed

ẋ = f(x) + εI(ϑ, x),

where ϑ = ωt is the phase of the external influence, and
I the influence is a periodic on ϑ. The weak coupling
implies ε� 1.

One of the cornerstones of the theory of invariant man-
ifolds is to guarantee that, when the system is perturbed
and the coupling strength is weak ε � 1, there is a new
attracting periodic orbit γ̃ close to the orbit γ, the dif-
ference between the orbits being of order ε. Moreover,
γ̃ is exponentially attractive and the isochrons also per-
sist. So, while the amplitudes are basically unaffected,
the dynamics of the phases change greatly.

With the help of the asymptotic phase, we define the
phase in a neighborhood of the orbit γ. This neighbor-
hood contains the new orbit γ̃ as we consider small ε > 0.
So, calculating the phase along γ̃, by the chain rule we
obtain

φ̇ = ∇γ̃φ · [f(γ̃) + εI(ϑ, γ̃)].

But by construction ∇φ · f = 1 in a neighborhood of γ.
Because γ̃ is O(ε) distant from γ we can expand both
f and I and evaluate them along γ at the expense of a
perturbation of order ε. It is standard to denote Z =
∇γφ. In this setting we have

φ̇ = 1 + εZ(φ) · I(ϑ, γ(φ)) +O(ε2),

and we have successfully reduced the problem to the
phase of the unperturbed orbit γ. In general terms, we
study problems of the following type

φ̇ = 1 + εq(φ, ϑ). (24)

The main insight was to obtain the coupling function in
terms of how the phase of the unperturbed orbit behaves
near the orbit γ. We performed the following steps:

(1) Phase sensitivity Z of the unperturbed system.
Once we have the asymptotic phase, we can use it
as the new phase variable φ, extending the defini-
tion of phase along the orbit to a neighborhood of
the orbit. From the phase, we can in turn compute
the phase sensitivity function

Z = ∇φ,

where the gradient is evaluated along the orbit γ.

(2) Obtain coupling function by q = Z · I. For this
step, we need to take the inner product of Z with
the perturbation p. When studying collective phe-
nomena q will contain fast variables and slow vari-
ables. Typically, only the slow variable are of in-
terest, so we will average q over the fast variables.

Meaning of q. In this approach we have a strong
underlying assumption: that the phase responds linearly
to perturbations. That is, the coupling function is linear
in the perturbations. If the phase is perturbed by I1 and
I2 the net effect will be the sum of I1 and I2. Notice,
that the linearity is only in terms of the perturbations.
The equation itself is nonlinear in the phase variable ϕ.
The linearity with respect to perturbations is because we
have discarded all nonlinear terms and terms of order ε2

(by computing Z along the unperturbed orbit). We will
discuss these issues in an example below. This linearity
will facilitate the study of networks and large ensembles
of oscillators.

These two steps will provide the phase description
for weakly coupled oscillators. Using these steps, it is
possible to explain the collective behaviour of neurons
(Ermentrout, 1996), and circadian dynamics (Winfree,
1980), among other processes (Ermentrout and Terman,
2010; Kuramoto, 1984).

3. Synchronization with external forcing

We will illustrate and discuss how the above ideas can
be applied to study the problem of synchronization with
external forcing. Consider the system

ẋ = f(x) = x+ |x|2Ax, with A =

(
1 −1
1 1

)
. (25)

By inspection, it is clear that x = 0 is an unstable point
and the system has an attracting periodic orbit γ of ra-
dius 1. This can be better seen by changing to polar
coordinates x1(r, φ) = r sin(ϕ) and x2(r, ϕ) = r cos(ϕ)
using which, we obtain

ṙ = r(1− r2), ϕ̇ = r2. (26)

The orbit γ corresponds to r = 1 and is shown in Fig.
12.

Asymptotic phase: The phase ϕ as defined in the
orbit γ has a constant frequency equal to unity. Along
the orbit γ, we therefore have ϕ̇ = 1 (by inspection of the
equations). For points outside the orbit, however, this is
no longer true. The asymptotic phase φ will fix this issue
because the points then move at the same speed as the
corresponding points in the orbit, so that φ̇ = 1 for points
outside the orbit.

Because of the symmetry (r does not depend on ϕ) we
can use the ansatz

φ(r, ϕ) = ϕ+ ζ(r),
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where we aim to find the function ζ. Differentiating we
obtain φ̇ = ϕ̇+ dζ

dr
dr
dt and, using the isochron’s properties

together with the equations for r and ϕ, we obtain ζ̇ =
1/r so ζ = log r + C. Since we want to extend the phase
continuously from the orbit, if x ∈ γ then φ(x) = ϕ(x).
We choose the constant C = 0. Therefore,

φ(r, ϕ) = ϕ+ log r,

and we can define the isochron with asymptotic phase
φ(r, ϕ) = c. In Fig. 12(top) we show four level sets of the
asymptotic phase corresponding to φ = 0, π/2, π, and
3π/2.

We can use the asymptotic phase to obtain a coordi-
nate that decouples the phase dynamics from the other
coordinates. Note that, by defining a new coordinate
φ = ϕ− η(r), we obtain

φ̇ = ∇φ · f = 1, (27)

which is valid, not only along the orbit γ via Eq. 26, but
also in a neighborhood of the orbit. In the first equal-
ity we just stressed the identity between the frequency
(applying the chain rule) and the gradient of φ.

We can now readily take the gradient (in polar co-
ordinates), yielding ∇φ = e1(sin(φ − log(r)) + cos(φ −
log(r))/r. Along the unperturbed orbit γ we have Z(φ) =
∇γφ so that the phase sensitivity functions are

Z(φ) = e1 sin(φ+ π/4).

Next we obtain the coupling function.
Obtaining the coupling function of external

forcing. Now we consider the system being forced at
frequency:

ẋ = f(x) + εI(ϑ), (28)

where ϑ = ωt. We obtain the coupling function through
the isochron. We now justify in detail why we have dis-
carded the corrections in ε2.

We compute the equation for the phase dynamics.
Note that, by chain rule φ̇ = ∇φ · ẋ = ∇φ · (f(x) + εI).
Using Eq. (27) and evaluating the gradient along the
orbit γ̃, we obtain

φ̇ = 1 + ε∇γ̃φ · I.

For small ε, we know that the difference between ∇γφ
and ∇γ̃φ is of order ε, so we can replace the gradient
along the perturbed orbit and unperturbed orbit with
corrections of order ε2 (because ε is already multiplying
the function). Hence,

φ̇ = 1 + εq(φ, ϑ) +O(ε2).

Synchronization and coupling function. The
main idea is that the coupling function q can help in
adjusting the frequency of the system to the frequency

ω of the forcing. As we discussed above, we will neglect
the terms O(ε2). Introducing the phase difference

ψ = φ− ϑ

and considering 1− ω = ∆ω we obtain

ψ̇ = ∆ω + εZ(ψ + ϑ) · I(ϑ).

If ∆ω is of order ε then the dynamics of ψ will be slow in
comparison with the dynamics of θ. Roughly speaking,
for each cycle of ψ we have 1/ε cycles of θ. Because,
the dynamics of ϑ is faster than that of ψ, we use the
averaging method to obtain the coupling function

q(ψ) =
1

T

∫ T

0

Z(ψ + ϑ) · I(ϑ)dϑ,

where T = 2π is the period of p as a function of ϑ. Note
that, for our result, Z is sinusoidal so that by integrating
over ϑ while keeping ψ fixed, we obtain q(ψ) = A sin(ψ+
β). Hence we obtain the dynamics in terms of the phase
difference

dψ

dt
= ∆ω + εq(ψ), (29)

which is exactly the equation shown in Fig. 2.
We are now ready to study collective phenomena be-

tween the driving and the system. For instance, the sys-
tem will phase-lock with the driving when ∆ + εq(ψ∗) =
0. In this case, the oscillators will have the same fre-
quency. Moreover, because q is a periodic function, the
fixed point ψ∗ will exist only when |∆/ε| ≤ max q.

Higher order n:m phase locking. Our assumption
is that ∆ = O(ε), so that Eq. (29) for the phase differ-
ence ψ = φ − ϑ is a slow variable. It may happen that
ψmn = mϕ − nϑ gives rise to a slow variable. In such
cases, we perform the same analysis for ψmn and fur-
ther information on the higher order phase locking can
be obtained (Ermentrout, 1981).

4. Phase response curve

The phase sensitivity function Z plays a major role
in this analysis. It also has many names: infinitesimal
phase response curve (iPRC), linear response function,
infinitesimal phase resetting curve. It is deeply related
to the so-called phase response curve or phase resetting
curve (PRC). For an oscillator to be able to adjust its
rhythm and synchronize, it must respond differently to
the perturbations at different phases φ. So the phase can
advance or retard to adjust its rhythm to the external
forcing. The PRC is a natural way of displaying the
response of oscillators to perturbations and thereby to
gain insight into the collective dynamics.

The main idea of the PRC is as follows: If we per-
form a small and short perturbation of the orbit, the
phase may complete its cycle before expectation (in the
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absence of perturbations), or it may be delayed. The un-
perturbed period of the orbit γ is T0. Every point on the
orbit can be uniquely described by the phase φ. A small
perturbation applied at a phase φs can cause the phase
to complete its full cycle at a time T1. The normalized
phase difference between the cycles is

PRC =
T0 − T1

T0
.

Note that the PRC depends on the phase φs at which
the small perturbation was applied, that is, PRC =
PRC(φs). This is the so-called phase response curve.

In the theory of weakly coupled oscillators, we use the
concept of an infinitesimal PRC (iPRC). It is equivalent
to the gradient of the phase Z, and it is defined as the
PRC normalized by the amplitude of the perturbation A

Z = lim
A→0

PRC

A
.

Indeed, the isochrons and the PRC are closely related. If
a point moving along the orbit γ is instantaneous and the
perturbation is small, the point will land on an isochron,
which tells us the new phase φ of the point once it comes
back to the orbit. Further considerations and the re-
lationship of the PRC to experiments are given in Sec.
IV.D.2.

In neuroscience, pulse-coupled oscillators are an impor-
tant class of models. Here the interactions happen in in-
stantaneous pulses of communication. The collective dy-
namics of such models are of great interest (Mirollo and
Strogatz, 1990). The relationship between pulse-coupled
oscillators and the phase reduction presented above has
recently been elucidated by Politi and Rosenblum (2015)
who showed that the models are equivalent.

5. Examples of the phase sensitivity function

Because of the works of Winfree (1967, 1980), Ku-
ramoto (1984), Ermentrout (1996); Stiefel et al. (2008),
we now have a good understanding of the phase sensitiv-
ity Z for many classes of systems such as heartbeats, cir-
cadian rhythms, and in some neurons (with stable repet-
itive firing).

The iPRC and PRC are closely related to the bifurca-
tion that led to the oscillatory behaviour (Brown et al.,
2004; Ermentrout, 1996). Z(φ) is a vector and, in our
example in Sec. III.B.3, the norm of Z was proportional
to sin(φ+β). This is typical of Hopf bifurcations. In Fig.
13 we present typical bifurcations in neuronal models for
which the iPRC and PRC are relevant.

In neuron models, the coupling is in one single variable:
the membrane potential V . So we only need to compute
the derivative with respect to V . Thus, Z(φ) = ∂φ/∂V 1.

1 We are abusing the notation by using Z to represent both the

Figure 13 (color online) Three typical bifurcations appearing
as the result of changing a single parameter. As the parameter
changes for the SNIPER bifurcation, two fixed points collapse
to a saddle node on the circle, and then the system oscillates.
In the Hopf bifurcation, a periodic orbit appears after desta-
bilization of the fixed point. In the homoclinic bifurcation,
the stable and unstable manifolds of the saddle point join to
form a homoclinic orbit, as the parameter changes; with fur-
ther parameter change, the homoclinic orbit is destroyed and
a periodic orbit appears.

Izhikevich (2000) derived a phase model for weakly cou-
pled relaxation oscillators and burster neurons (Izhike-
vich, 2007). Brown et al. (2004) obtained the phase sen-
sitivity Z for other interesting cases, including homoclinic
oscillators. Neurons with stable repetitive firing (corre-
sponding to a stable orbit) can be classified as having
PRC type I dynamics corresponding to a SNIPER bi-
furcation, or PRC type II dynamics corresponding to a
Hopf bifurcation. The phase portraits for these two bi-
furcations are illustrated in Fig. 13. PRCs of type I are
always positive whereas PRCs of type II have both nega-
tive and positive parts, as shown in Table III. The PRC
type is indicative of the neuron’s ability to synchronize:
networks of neurons with PRC type II can synchronize
via mutual excitatory coupling, but those of PRC type I
cannot (Ermentrout, 1996).

Bifurcation Z(φ)

SNIPER 1− cosφ
Hopf sin(φ− β)
Homoclinic exp(−λφ)
Integrate and Fire 2π
Leaky Integrate and Fire exp(gφ)

Table III The phase sensitiveness for various models and their
bifurcation after Brown et al. (2004). Izhikevich (2000, 2007)
obtained the phase sensitivity Z for relaxation oscillators.
They are discontinuous and are not shown here.

full gradient and the derivative with respect to a single variable.
In theoretical neuroscience this convention is standard.
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C. Globally coupled oscillators

Now suppose that we have N coupled oscillators

ẋi = fi(xi) + ε

N∑
j=1

Hij(xi, xj). (30)

We assume that, when they are uncoupled ε = 0, each
system has an exponentially attracting periodic orbit. So
the dynamics of the uncoupled system occurs on a torus
TN that is exponentially attracting. Moreover, we also
assume that fi is close to f . As we turn the coupling on,
the dynamics changes. The theory of normally hyper-
bolic invariant manifolds guarantees that the dynamics of
system with small coupling will also take place on a torus
(Eldering, 2013). So the amplitudes remain roughly the
same. But the dynamics on the torus, that is, the phases
can change a lot (Turaev, 2015).

Again if we know the isochrons for the phases we can
use the same arguments to describe the system in terms
of the phases. The corresponding phase model

φ̇ = ωi + ε
∑
j

qij(φi, φj),

where each oscillator has its own period Ti, and qij is
the coupling function describing the influence of the j-th
oscillator on the i-th oscillator. Here

qij(φi, φj) = Q(φi) ·Hij(γi(φi), γj(φj)).

Note that Z is independent of the index i because we as-
sumed that fi’s are all close to f . Again, we can average
over the fast variables to obtain equations in terms of the
phase difference (Daido, 1996b).

In many cases, the isolated oscillators are close to a
Hopf bifurcation. As discussed above, the coupling func-
tion after averaging takes the form

qij(φi, φj) = sin(φi − φj + β).

This is by far the best-studied coupling function, and
it has offered deep insights into collective properties for
both globally coupled oscillators (Acebrón et al., 2005)
and complex networks (Arenas et al., 2008; Rodrigues
et al., 2016).

First, we consider β = 0. The model is then written as

φ̇i = ωi +
ε

N

N∑
j=1

sin(φj − φi).

If the oscillators are identical ωi = ω then any small
coupling ε > 0 leads to synchronization (the phases will
converge to the same value). If the distribution g of nat-
ural frequencies ωi is broad, then at a critical coupling εc
a large cluster of synchronized oscillators appears and,
with further increase of coupling, additional oscillators
join the cluster.

The main idea of the analysis is to introduce an order
parameter

z = reiψ =
1

N

N∑
j=1

eiφj

and to rewrite the equations in terms of the parameters
r and ψ (which are now mean-field parameters)

φi = ωi + εr sin(ψ − φi).

Taking the limit N → ∞, we can write the model in
terms of self-consistent equations (Kuramoto, 1984).

When the distribution g of the natural frequencies is
an even, unimodal, and non-increasing function, and the
coupling is weak, the incoherent state is neutral (Strogatz
and Mirollo, 1991), but the order parameter r vanishes
(at a polynomial rate) if g is smooth (Fernandez et al.,
2014). Moreover, on increasing the coupling, the inco-
herent solution r = 0 bifurcates for

ε > εc =
2

g(0)
.

A systematic review of the critical coupling, includ-
ing bi-modal distributions (keeping the coupling func-
tion purely harmonic) has been given by Acebrón et al.
(2005).

1. Coupling functions leading to multistability

As we have seen, if the oscillators are close to a Hopf
bifurcation as is typical, then the corresponding phase
sensitivity Z(φ) ∝ sin(φ+ β). This means that the cou-
pling function will have a phase shift

q(φi, φj) = sin(φj − φi + β), with |α| < π/2.

This coupling function is called the Sakaguchi-Kuramoto
coupling (Sakaguchi and Kuramoto, 1986). The slight
modification can lead to non-monotonic behaviour of syn-
chronization (Omel’chenko and Wolfrum, 2012). For cer-
tain unimodal frequency distributions g, the order pa-
rameter can decay as the coupling increases above the
critical coupling, and the incoherent state can regain sta-
bility. Likewise multistability between partially synchro-
nized states and/or the incoherent state can also appear.

Although the dynamics of the model with this slight
modification can be intricate, it is still possible to treat
a more general version of the Sakaguchi-Kuramoto cou-
pling

qij(φi, φj) = Bj sin(φj + βj − φi − αi).

This coupling function generalizes the standard
Sakaguchi-Kuramoto model as it allows for different
contributions of oscillators to the mean field, on account
of the phase shifts αi and βj and coupling factors Bj . In
turn, the mean field acts on each oscillator differently.
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This scenario is tractable in terms of the self-consistency
equations for the amplitude and frequency of the mean
field (Vlasov et al., 2014). Also in this setting, solutions
of the coupled phase oscillators approximate solutions
of phase oscillators with an inertial term (Dorfler and
Bullo, 2012) which plays a major role in power-grids.

Higher harmonics. In the previous discussion, the
coupling function q contained one harmonic. q(φ) =
sin(φ+ β). Depending on the underlying bifurcation we
must now include further, higher-order, Fourier compo-
nents,

q(φ) = a1 sin(φ) + a2 sin(2φ+ b2) + ...+ an sin(nφ+ bn),

where ai and bi are parameters. For example, synchro-
nization of weakly-coupled Hodgkin-Huxley neurons can
be replicated using coupling functions consisting of the
first four Fourier components (Hansel et al., 1993b).

Moreover, considering the coupling function q to be
a biharmonic coupling function (Hansel et al., 1993a),
there is a multiplicity of such states, which differ micro-
scopically in the distributions of locked phases (Komarov
and Pikovsky, 2013). Higher harmonics in the coupling
function can also lead to the onset of chaotic fluctuations
in the order parameter (Bick et al., 2011). Indeed, the
coupling function alone can generate chaos, that is, even
keeping the frequencies identical and having no ampli-
tude variations.

2. Designing coupling functions for cluster states and chimeras

Ashwin and co-workers tailored the coupling function
to obtain clusters states in identically and globally cou-
pled phase oscillators (Ismail and Ashwin, 2015; Orosz
et al., 2009). In this situation, because the oscillators
are identical, the behaviour of the system is determined
by the number of oscillators N and the coupling func-
tion q. By carefully choosing the Fourier coefficients of
the coupling function we obtain two major results: (a)
any clustering can appear and be stable, and (b) open
sets of coupling functions can generate heteroclinic net-
work attractors. Heteroclinic networks are not confined
to globally-coupled oscillators and they can appear ro-
bustly in complex networks (Aguiar et al., 2011; Field,
2015).

In networks of identical oscillators a chimera state
is defined as a spatio-temporal pattern in which syn-
chronous and asynchronous oscillations coexist (Abrams
and Strogatz, 2004; Hagerstrom et al., 2012). Chimera
states among phase oscillators appear only when a spa-
tial (long-range) coupling is included. The approach de-
scribed above, in which the coupling is tailored to ob-
tain clusters and complicated attractors in identical and
globally-coupled oscillators, can be extrapolated to con-
struct chimeras. They can be obtained either by consid-
eration of higher harmonics (Ashwin and Burylko, 2015),
or by perturbation of the coupling function in specific
ways. A partially coherent inhomogeneous pattern

called chimera death, which combines the features of
chimera states and oscillation death, has been also es-
tablished (Zakharova et al., 2014).

3. Coupling functions with delay

A natural generalization of the coupling function is to
introduce delay. A common case is the inclusion of trans-
mission delays

qτ (φi(t), φj(t)) = sin(φj(t− τ)− φi − β).

The addition of delays makes the model infinite-
dimensional and leads to a series of new phenomena
such as bistability between synchronized and incoherent
states, and unsteady solutions with time-dependent order
parameters (Yeung and Strogatz, 1999). Multistability is
very common in the presence of delays. In particular, it
can also be observed in small variations of the previous
coupling function

qτ (φi(t), φj(t)) = b sinφi(t) + ε sin(φj(t− τ)− φi − β),

and multistablity can also be observed (Kim et al., 1997).
Carefully chosen communication delays can also be

used to encode patterns in the temporal coding by spikes.
These patterns can be obtained by a modulation of the
multiple, coexisting, stable, in-phase synchronized states,
or traveling waves propagating along or against the di-
rection of coupling (Popovych et al., 2011). Coupling
functions with delay can also be used for controlling the
state of oscillation death (Zakharova et al., 2013). Two
limiting cases of delay can be treated. First, for very
small delays, the theory of an invariant manifold can be
applied. Secondly, in the case of large delays, develop-
ments due to Lichtner et al. (2011) and Flunkert et al.
(2010) can be used to determine the collective properties
of ensembles of oscillators.

4. Low dimensional dynamics

A particularly striking observation is the low-
dimensional dynamics of identical globally-coupled phase
oscillators under the Sakaguchi-Kuramoto coupling func-
tion. Note that, in this case, writing the sinusoidal cou-
pling in exponential form, we can express the coupled
equations as

φ̇j = feiφj + g + f̄ e−iφj ,

where f and g are smooth function of the phases which
can also depend on time.

These identically coupled oscillators evolve under the
action of the Moebius symmetry group M (actually a
Moebius subgroup). So, ensembles of identical, globally-
coupled oscillators have N − 3 constants of motion and
their dynamics is three-dimensional (Marvel et al., 2009;
Watanabe and Strogatz, 1993). That is, all phases evolve
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according to the action of the same Moebius transforma-
tion

eiφj = Mα,ψ(eiθj ),

where the θj are constants and α ∈ C and ψ ∈ S1 are the
parameters of the Moebius group.

This approach can do more. In the limit of large N
it is possible to obtain nonlinear equations for the order
parameter. Choosing uniformly-distributed constants of
motion θj , the complex order parameter z follows a Ric-
cati equation

ż = i(fz2 + gz + f̄).

This reduction was applied to study a number of non-
linear problems in arrays of Josephson junctions (Marvel
and Strogatz, 2009; Vlasov and Pikovsky, 2013), discon-
tinuous transitions in explosive synchronization (Vlasov
et al., 2015) and to classify the attractors in the ensemble
of oscillators. Indeed, the only attractors are fixed points
or limit cycles where all but one oscillator are synchro-
nized (Engelbrecht and Mirollo, 2014).

The above reduction follows from the group symmetry
of the equations and it is valid only for identical frequen-
cies. Ott and Antonsen (2008) put forward a scheme
allowing dimensional reduction for nonidentical frequen-
cies. In the limit N → ∞, the state of the oscillator
system is described by a distribution

f(ω, φ, t) =
g(ω)

2π

( ∞∑
n=1

fn(ω, t)einφ + c.c

)
,

where c.c. stands for complex conjugate. Next we assume
that

fn(ω, t) = α(ω, t)n, (31)

that is, the whole distribution f is determined by only
one function with |α| < 1. It is possible to show that
the evolution of the system preserves this form of f . For
various classes of distribution g it is possible to obtain
equations for α and thereby for the order parameter.

So the scheme will give low dimensional equations for
the order parameter. This ansatz of Eq. (31) has been
successfully applied to understand the dynamics of glob-
ally coupled oscillators and the second order Kuramoto
model (Rodrigues et al., 2016), and to understand the
formation of clusters when higher order harmonics are
included in the coupling function (Skardal et al., 2011).
The approach can also be used to study nonautonomous
globally coupled ensembles of phase oscillators (Petkoski
and Stefanovska, 2012).

Pikovsky and Rosenblum (2011) made a generalization
to heterogeneous ensembles of phase oscillators, and con-
nected the Watanabe and Strogatz reduction to the Ott
and Antonsen ansatz. In the limit of infinitely many os-
cillators, the Kuramoto order parameter z can be written
as an integral over the stationary distribution of phases

ν. Clearly z does not characterize the distribution ν, so
one may consider the generalized order parameters

zm =

∫ 2π

0

ν(φ)eimφdφ,

which are the Fourier coefficients of the distribution ρ.
Clearly, z1 = z is the standard order parameter. If the
distribution of the constants of motion is uniform, then

zm = zm

and, for this particular case, the order parameter z com-
pletely determines the distribution. The Ott and An-
tonsen ansatz corresponds to the special case where the
generalized order parameters are expressed via the pow-
ers of order parameter.

Sensitivity to the coupling function. This ap-
proach to finding low-dimensional dynamics is dependent
on the coupling function being sinusoidal in shape. The
Watanabe and Strogatz reduction for N globally coupled
oscillators gives N − 3 constants of motion. Therefore,
the dynamics of the ensemble is neutral. The dynamics
on these subspaces evolves under the identity map. Re-
cent results show that, by perturbing the identity map,
we can generate any dynamics (Turaev, 2015). So, small
perturbations in the coupling function can lead to abrupt
changes in the dynamics of the ensemble.

5. Noise and nonautonomous effects

If the oscillators are subject to noise, the phase re-
duction scheme can still be applied but with some mi-
nor modifications (Balanov et al., 2008; Ermentrout and
Saunders, 2006). Even in the absence of coupling, the
oscillators can synchronize if driven by a common noise.
This is a general result by Le Jan (1987) who showed
that, when phase oscillators are driven by noise, the tra-
jectories converge to a random fixed point (corresponding
to the two oscillators going to the same trajectory). This
result is well appreciated in the physics community as
are also the differing effects of common and independent
noises (Lindner et al., 2004).

In the context of interacting oscillators we can ana-
lyze the contributions of the coupling function and com-
mon noise in driving the oscillators towards synchroniza-
tion (Garcia-Alvarez et al., 2009). Consider the follow-
ing model of two coupled (or uncoupled) phase oscillators
with common and independent noises:

φ̇1 = ω1 + ε sinψ +A1ξ(t) sin(φ1) +B1ξ1 sinφ1

φ̇2 = ω2 + ε2 sinψ +A1ξ(t) sin(φ1) +B2ξ2 sinφ1

where ξ, ξ1 and ξ2 are Gaussian noises of unit variance
and, again, ψ = φ1−φ2. It is possible to obtain a stochas-
tic differential equation for the generalised phase differ-
ence ψ. This equation is nonautonomous. An analytical
approach is to write a Fokker-Planck equation for the
probability density of ψ.
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The probability density is almost independent of the
fast variables φ1 and φ2, so a good approximation is to
integrate over these variables to obtain a proxy for a sta-
tionary probability distribution. This approach reveals
three important effects: (i) independent noises ξ1, ξ2 hin-
der synchronisation; (ii) coupling-induced synchronisa-
tion takes place for low noise intensity and large coupling
strengths; and (iii) common-noise-induced synchronisa-
tion occurs for large common-noise intensities and small
coupling strengths.

Nonautonomous effects. If the frequencies of the oscil-
lators are nonautonomous but the oscillators are identi-
cal the reduction techniques can still be applied (Marvel
et al., 2009; Petkoski and Stefanovska, 2012; Watanabe
and Strogatz, 1993), so that phenomena such as synchro-
nization can be studied. A new class of systems described
by nonautonomous differential equations are chronotaxic
systems. These are defined as dissipative dynamical sys-
tems with internal sources of energy. In such cases the
coupling function is nonautonomous and the systems re-
tain stable (time-dependent) amplitude and phase under
external perturbation (Suprunenko et al., 2013).

D. Networks of oscillators

In this section, we generalize the discussion to networks
of interacting systems with pairwise interaction. That is,
we consider

ẋi = fi(xi) + ε

N∑
j=1

WijHij(xi, xj),

where Wij is the matrix encoding the strength of inter-
action between j and i, and H is the coupling function.
Note that we allow each isolated vector field to be dis-
tinct. To be able to draw conclusions about the overall
dynamics from the microscopic data for f , W and H,
we will consider a subclass of vector fields and coupling
functions.

1. Reduction to phase oscillators

Assume that for ε = 0, each isolated system has an
exponentially-attracting periodic orbit. A typical as-
sumption is that Hij = H (i.e. all coupling functions
are identical). Then proceeding in the same way as in
Sec. III.C for globally coupled oscillators in the limit of
small coupling strengths, we can reduce the dynamics to
the phases

ϕ̇i = ωi + ε

N∑
j=1

Wijq(ϕi, ϕj).

This model describes the dynamics of the phase os-
cillators in terms of complex networks of interactions.
Most results relate to the sinusoidal coupling function

q(ϕi, ϕj) = sin(ϕj − ϕi). The main questions lie in the
realm of collective dynamics and transitions from inco-
herent to coherent states (Rodrigues et al., 2016). The
situation here is less-well-understood. For instance, it is
unclear how to generalize the low-dimensional reduction
approach.

2. Networks of chaotic oscillators

A subclass of this model offers insight. Consider
Wij = Aij , where Aij = 1 if i receives a connection from
j, and Aij = 0 otherwise. Moreover, consider the diffu-
sive coupling functions Hij(x, y) = H(x − y). Suppose
also that fi = f , that is, all isolated nodes are identical.
We also assume that the isolated systems are chaotic.
This assumption is not necessary but æsthetically pleas-
ant, because in this situation the only possible source for
collective dynamics is through the coupling. This model
corresponds to identical oscillators interacting diffusively,
and it can then be rewritten as

ẋi = f(xi) + ε

N∑
j=1

AijH(xj − xi).

The role of the coupling function is to attempt to bring
the system towards synchronization x1 = x2 = · · · = xN .
The main questions now are: (a) when will the coupling
function H bring the system towards synchronization;
and (b) how will the interaction structure Aij influence
the system? We should analyse the growth of small per-
turbations xi = s + ξi, where ṡ = f(s). But we face the
challenges of having too many equations and, moreover,
of all the ξi being coupled.

Global Results: Here we want to find the conditions
on the coupling function guaranteeing that the network
dynamics will converge to synchronization, regardless the
initial conditions. The challenge is to construct a Lya-
punov function, whose existence is a sufficient condition
for a globally stable synchronous state.

Pogromsky and Nijmeijer (2001) used control tech-
niques and concepts of passive systems to obtain global
synchronization results for arrays of interacting systems.
Assuming that the coupling function is positive definite,
they were able to construct a Lyapunov function for the
array and to express its construction in terms of the spec-
trum of the network. They showed thereby that all so-
lutions of the coupled equation are bounded and that, if
the coupling is large enough, the network synchronizes.
They also showed how diffusion-driven instabilities can
appear in such arrays. This approach to passive systems
was subsequently applied to neuron models to study their
synchronization properties (Steur et al., 2009).

In a similar spirit to constructing Lyapunov functions,
Belykh et al. (2004) developed the connection graph sta-
bility method. At its very heart, the method requires
the existence of a Lyapunov function for the nonlinear
equations of the perturbations ξi. The existence of this
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function is unclear from the beginning, however, and it
may depend on the vector field f . The method relates
the critical coupling necessary to attain synchronization
to the total length of all paths passing through an edge
on the network connection graph.

Another approach to studying synchronization is to
tackle the equations for the perturbations ξi using the
theories of contraction (Russo and Di Bernardo, 2009)
and exponential dichotomy (Pereira et al., 2014). Here
we use the coupling function to construct differential in-
equalities. At their cores, these approaches are equivalent
to the construction of local Lyapunov functions. How-
ever, if the coupling function is such that the contraction
theory can be applied (for example the coupling func-
tion is positive definite) then much information on the
synchronization can be extracted. In particular, even if
the network structure is time-varying the network may
synchronize (Lü and Chen, 2005).

Local Results: In the section above, we took ac-
count of the nonlinear behaviour of the perturbation ξi.
In the local approach we consider only the linear terms
in ξ. Pecora and Carroll (1998) had the idea of block-
diagonalizing the perturbations ξi via a change of coor-
dinates where ξi goes to ζi. In the new variables ζi the
perturbations decouple and they all have the same form

ż = [Df(s(t)) + αΓ]z,

where Γ = DH(0). To recover the equation for ζi we
only need to set α = ελi where λi is the ith eigenvalue of
the Laplacian of the network. So the problem reduces to
the case of two coupled oscillators. Obviously, there are
additional challenges in understanding the graph struc-
ture via λi, but the main idea now boils down to the case
of two oscillators. We classify the stability of the varia-
tional equation for z. The commonest criterion used for
stability is the Lyapunov exponent, which gives rise to
the master stability function Λ (just as in the two os-
cillator case). This approach showed that the topology
of the networks can exert systematic influences on the
synchronization (Barahona and Pecora, 2002) and can
be used to predict the onset of synchronization clusters
(Pecora et al., 2014; Williams et al., 2013). In the last
two decades this approach has been popular and it has
been applied to a variety of network structures (Arenas
et al., 2008) and to problems of pinning control (Sor-
rentino et al., 2007).

The MSF approach was also extended to the case
where the coupling function has time delays (Li and
Chen, 2004). Moreover, in the limit of large delays it
is possible to understand the behaviour of the level sets
of the master stability function Λ. Indeed, the level sets
tend to be circles whose radii increase monotonically in
the complex plane (Flunkert et al., 2010). Some networks
also have two types of coupling function. Typical exam-
ples are neural networks where electrical and chemical
synapses coexist. If the underlying matrices defining the
chemical and electrical coupling commute, then the MSF
can be used to understand the net effects of the coupling

function on the synchronization (Baptista et al., 2010).
Generalizations: So far, we have discussed networks

of identical oscillators. If the network is composed of
slightly nonidentical nodes, the MSF approach can still
be applied, via a perturbation analysis (Sun et al., 2009).
In general, to understand the effect of the network, com-
bined with the effects of nonidentical nodes, further infor-
mation about the coupling function is necessary. If the
coupling function Γ (linearized about the synchronized
manifold) has a spectrum with a positive real part, then
we can extract a great deal of information it. Adding
random links to a network of nonidentical oscillators
can substantially improve the coherence (Pereira et al.,
2013). For directed networks, depending on the coupling
function, improvements in the network topology such as
link addition can destabilise synchronization (Pade and
Pereira, 2015). This phenomenon can also be observed in
experiments with lasers when the coupling function has
a time-delay (Hart et al., 2015).

Moreover, if one adds a small perturbation on the
nodes of systems interacting in a fully connected net-
work, the collective dynamics will lead to smaller fluc-
tuations than those expected if the oscillators were un-
coupled and one applies the central limit theorem (Ma-
suda et al., 2010). That is, the central limit theorem
would predict fluctuations of order O(N−1/2), whereas
the collective dynamics gives O(N−1). One can clas-
sify the regular networks such that the improvement is
significant (Pereira et al., 2014). For this class of cou-
pling function, one can also gain insight into the speed of
synchronization, that is, how fast the system converges
towards synchronization. The speed is well known to
depend on the network structure (Grabow et al., 2010;
Timme et al., 2004). For the above class of coupling
functions, it is possible to show how the properties of
the coupling function and network structure combine to
determine the speed of convergence. For example, if the
spectrum of the coupling function is real, then the speed
towards synchronization is dictated by the real part of
the Laplacian spectral gap.

So far efforts have been concentrated on the study of
nonidentical nodes, while keeping the coupling function
identical. Because the coupling function couples with
the network structure of the equations, perturbations in
the coupling function can have a drastic impact on the
collective dynamics. For instance, if the network has a
heterogeneous degree distribution, no perturbations in
the coupling function are tolerated. Any perturbation in
the large network limit will destabilize the synchronous
motion (Maia et al., 2015).

IV. METHODS

A. Inferring coupling functions

Before discussing methods for the inference of coupling
functions, we mention earlier discussions and techniques
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Data Pre-estimation Inference Coupling Function
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phase, amplitude

Figure 14 (color online). Schematic illustration of the procedure for the inference of coupling functions. From left to right:

measurement dataM; pre-estimation procedure where the phase or amplitude M̃ are estimated from those data; the inference
of a dynamical model from the M̃ data; and the coupling function emerging as the end result of the procedure.

(Arnhold et al., 1999; Čenys et al., 1991; Schiff et al.,
1996; Schreiber, 2000; Stefanovska and Bračič, 1999) that
paved the way for the subsequent introduction of cou-
pling functions. Although the mathematical and compu-
tational facilities of the time did not allow for the full
inference of coupling functions, this goal was nonetheless
closely approached by different measures that detected
the existence of a coupling relationship and character-
ized its nature.

In a study of this kind, Stefanovska and Bračič (1999)
investigated the coupled oscillators of the cardiovascu-
lar system from human blood flow signals. Among other
methods, wavelet time-frequency analysis was used to de-
tect the instantaneous frequency of the heart, through
which the coupling from respiration was assessed. Sim-
ilarly, many information-based measures were used for
assessment of the coupling strength and directionality
(Barrett and Barnett, 2013; Paluš and Stefanovska, 2003;
Schreiber, 2000). Even though these methods are very
useful in detecting the net coupling effects, they are es-
sentially directed functional connectivity measures and
they are not designed to infer mechanisms.

Another traditional approach for studying interactions
is via transfer function analysis (Boreman, 2001; Cooke
et al., 1998; Sanathanan and Koerner, 1963; Saul et al.,
1991). The transfer function is a mathematical represen-
tation that describes the linear relationships between the
inputs and outputs of a system considered as a black-
box model. Although this approach suffers from some
limitations, it has nonetheless been used in the past for
understanding interactions, and still is.

The inference of coupling functions involves the anal-
ysis of data to reconstruct a dynamical model describing
the interactions. The main pillar of the procedure is a
method for dynamical inference, often referred to as dy-
namical modelling or dynamical filtering (Kalman, 1960;
Sanjeev Arulampalam et al., 2002; von Toussaint, 2011;
Voss et al., 2004). The latter has been used historically
as means of advanced “filtering”, when one selects and
detects the features of interest described by the model –
a celebrated example being the Kalman filter (Kalman,

1960). Fig. 14 presents the main steps in obtaining the
coupling function. In short, starting with the data M
from two (or more) interacting dynamical systems, first

the appropriate observable data M̃, like the phase or am-
plitude, are estimated from the initial data M, so that
they can be used by a method that infers a dynamical
model from which one can extract the coupling functions.

The data M, are usually represented by amplitude
state signals measured dynamically i.e. they describe the
time evolution of the system. Very often the raw mea-
surements require pre-processing and pre-estimation pro-
cedures. If the systems are of an oscillatory nature, the
phase of the periodic signal is extracted; similarly the am-
plitude can be extracted from the signals. There can be
further pre-processing, including filtering within desired
intervals, removal of artifacts, noise suppression, removal
of common source disturbances, filtering of power sup-
ply frequency, etc. The pre-processed signals then act as
input for the inference methods.

The inference process aims to reconstruct a model to
describe the interacting dynamical systems. It is given
by a set of ordinary differential equations (ODEs) or, if
there is dynamical noise, by stochastic differential equa-
tions (SDEs). The model in Fig. 14 is given in terms of
general variable χ, while usually the model uses either
the phase or amplitude domain. The dynamics of the
system is modeled with a set of base functions, which
are usually linearly independent. For example, the set of
base functions can be a Fourier series of sine and cosine
functions. Base functions can be either linear or non-
linear, and are specified by a set of parameters c that
usually act as scaling parameters. When appropriately
parameterized by c, the base functions then combine to
give the all-important coupling function.

The base functions are a part of the model that is as-
sumed to be known beforehand, so the main task of the
inference method is to determine the parameters c from
the data M̃, given the (SDE or ODE) model χ̇. The
choice of the right model can be rather difficult, espe-
cially if the dynamical system does not posses some gen-
eral characteristics. Nevertheless, a number of methods
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exist for optimal model selection (Berger and Pericchi,
1996; Burnham and Anderson, 2002; Ljung, 1998). Given
a model and a set of data, one can use different methods
to perform the inference. These methods may differ con-
siderably in their characteristics and performance, and
we present below some examples of those that are most
widely used.

B. Methods for coupling function reconstruction

1. Modeling by least-squares fitting

As mentioned above, one of the first works on the re-
construction of coupling functions from data was that
developed by Rosenblum and Pikovsky (2001). Their
inference of the interaction is based on a least-squares
fitting procedure applied to the phase dynamics of the
interacting oscillators. The main goal of the method is
the detection of coupling and directionality. Neverthe-
less, part of the results are functions that closely resemble
the form of coupling functions.

The technique provides for experimental detection of
the directionality of weak coupling between two self-
sustained oscillators, from bivariate data. The approach
makes use of the well-known fact that weak coupling
predominantly affects the phases of the oscillators, not
their amplitudes. The principal idea is to investigate and
quantify whether the phase dynamics of one oscillator is
influenced by the phase of the other. To achieve this,
the model of the phase equations (Eq. 5) is fitted to the
phase data. From the inferred model and its parameters,
one can then quantify the coupling in one or the other
direction.

First, for each point in time of the phase time-series,
the increments ∆1,2(k) = φ1,2(tk + τ)−φ1,2(tk) are com-
puted, where τ is a free parameter. These increments
∆1,2(k) are considered as being generated by some un-
known two-dimensional map

∆1,2(k) = F1,2[φ1,2(k), φ2,1(k)].

The functions F1,2[φ1,2(k), φ2,1(k)] are decomposed into
Fourier series, and their dependences ∆1,2(k) on φ1 and
φ2 are modeled with the least-square fitting procedure.
As base functions for the fitting, the Fourier series:

F1,2 =
∑
m,l

Am,le
imφ1+ilφ2 ,

with |l| ≤ 3 for m = 0, |m| ≤ 3 for l = 0 and |l| = |m| = 1
were considered.

It is worth pointing that this notion is close to, though
not exactly identical to, the dynamical inference of
ODEs: the increments ∆1,2(k) are close to the Euler
method for first order differentiation which would have
been ∆Euler;1,2(k) = [φ1,2(tk+1) − φ1,2(tk)]/h, where h
is the sampling (differentiation) step. Therefore, the
functions F1,2[φ1,2(k), φ2,1(k)] are similar to the coupling

Figure 15 The reconstructed functions of the phase interac-
tions. (a) The function F1(φ1, φ2) for the influence of the
second on the first oscillator, and (b) the function F2(φ1, φ2)
for the influence of the first on the second oscillator. From
Rosenblum and Pikovsky (2001).

functions q1,2(φ1, φ2), i.e. they are close to the form of the
genuine coupling functions with close relative but not ab-
solute coupling strength. Despite the differences, these
were probably the first extracted functions of oscillatory
interactions, and they were of great importance for the
work that followed.

The inference itself was performed by least-squares fit-
ting, a widely-used method for finding the best-fitting
curve to a given set of points (Lawson and Hanson, 1974;
Leon, 1980). The main objective of the fitting consists
of adjusting the parameters of a model function to best
fit a data set. The result of the fitting process is an
estimate of parameters, given the model and the base
functions. To obtain the parameter estimates, the least-
squares method minimizes the summed square of residu-
als (often also called offsets). The residual ℘(k) for the k-
th data point is defined as the difference between the ob-
served response value ∆(k) and the fitted response value

∆̃(k), and is identified as the error associated with the
data. The summed square of residuals is then given as:

O =
∑
k

℘2(k) =
∑
k

[∆(k)− ∆̃(k)]2.

The main estimation, aiming to minimize O, involves
partial differentiation with respect to each parameter,
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and setting the result equal to zero (Lawson and Han-
son, 1974; Leon, 1980). Such schemes can use linear,
weighted or nonlinear fitting. More recent methods for
coupling function reconstruction with fitting procedures
often involve a kernel density estimation (Kralemann
et al., 2008). The finally inferred parameters applied to
the model base functions, provide explicit definitions of
the functions F1,2[φ1,2(k), φ2,1(k)].

To demonstrate the method, a simple example of two
coupled phase oscillators subject to white noise was con-
sidered:

φ̇1 = ω1 + ε1 sin(φ2 − φ1) + ξ1(t)

φ̇2 = ω2 + ε2 sin(φ1 − φ2) + ξ2(t),

where the coupling functions are sines of the phase dif-
ference (c.f. Kuramoto Eq. (8)), with frequencies ω1,2 =
1±0.1, and couplings ε1 = 0.1 and ε2 = 0.02 (i.e. weaker
than ε1). The noise is assumed to be white Gaussian
with 〈ξ1,2(t)ξ1,2(t′)〉 = δ(t − t′)2D1,2, with D1,2 = 0.2.
One should note that the least-squares fitting only in-
fers the deterministic part of the ODEs, and the noise
here is used to introduce imprecisions only i.e. there is
no inference of SDEs. Fig. 15 presents the two functions
as reconstructed using least-squares fitting. Note from
Fig. 15(a) that the form of the reconstructed function F1

rightly resembles that of the genuine coupling function
sin(φ2 − φ1), i.e. a diagonal form of a wave determined
by the phase difference φ2 − φ1; and (b) the strength, or
amplitude of F2 is much lower due to the weaker coupling
strength.

2. Dynamical Bayesian inference

The recently introduced method for the dynamical
Bayesian inference of coupling functions (Stankovski
et al., 2012) relies on a Bayesian framework (Bayes,
1763; Friston, 2002; Smelyanskiy et al., 2005; von Tou-
ssaint, 2011) and is applied to a stochastic differential
model where the deterministic part is allowed to be time-
varying.

The method attempts to reconstruct the coupling func-
tions by inferring a model consisting of two weakly-
interacting dynamical systems subject to noise. The
model to be inferred is described by the stochastic differ-
ential equation

χ̇i = f(χi, χj |c) +
√

Dξi, (32)

where i 6= j = 1, 2, and f(χi, χj |c) are base functions
describing the deterministic part of the internal and the
interacting dynamics. The parameter vector c provides
scaling coefficients for the base functions. The noise is
assumed to be white, Gaussian, and parameterized by a
noise diffusion matrix D. At this point we speak of χi in
general, but later we will refer separately to the phase or
amplitude coupling functions depending on the domain
of the application.

Given the 2 × M time-series X = {χn ≡ χ(tn)}
(tn = nh) provided, and assuming that the model base
functions are known, the main task for dynamical infer-
ence is to infer the unknown model parameters and the
noise diffusion matrix P = {c,D}. The problem eventu-
ally reduces to maximization of the conditional probabil-
ity of observing the parameters P, given the data X . For
this Bayes’ theorem (Bayes, 1763) is applied, exploiting
the prior density pprior(P) of the parameters and the like-
lihood function `(X|P) of observing X given the choice
P, in order to determine the posterior density pX (P|X )
of the unknown parameters P conditioned on the obser-
vations X :

pX (P|X ) =
`(X|P) pprior(P)∫
`(X|P) pprior(P)dP

.

The next task is to determine the likelihood functions in
order to infer the final posterior result. From the time-
series the midpoint approximation χ∗n = (χn + χn+1)/2
is constructed, followed by the Euler differentiation χ̇n =
(χn+1 − χn)/h. Use of the stochastic integral for noise
that is white and independent leads to the likelihood
function, which is given by a product over n of the prob-
abilities of observing χn+1 at each time (Smelyanskiy
et al., 2005). The negative log-likelihood function is then
S = − ln `(X|P) given as:

S =
N

2
ln |D|+ h

2

N−1∑
n=0

(
ck
∂fk(χ·,n)

∂χ
+

+ [χ̇n − ckfk(χ∗·,n)]T (D−1)[χ̇n − ckfk(χ∗·,n)]
)
,

(33)

with implicit summation over the repeated index k. The
likelihood (33) is of quadratic form. Thus if the prior
is a multivariate normal distribution, so also will be
the posterior. Given such a distribution as a prior for
the parameters c, with mean c̄, and covariance matrix
Σprior ≡ Ξ−1

prior, the final stationary point of S is cal-

culated recursively from:

D =
h

N

(
χ̇n − ckfk(χ∗·,n)

)T (
χ̇n − ckfk(χ∗·,n)

)
,

ck = (Ξ−1)kw uw,

uw = (Ξprior)kw cw + h fk(χ∗·,n) (D−1) χ̇n+

− h

2

∂fk(χ·,n)

∂χ
,

Ξkw = (Ξprior)kw + h fk(χ∗·,n) (D−1) fw(χ∗·,n),

(34)

where summation over n = 1, . . . , N is assumed and
the summation over repeated indices k, and w is again
implicit. The initial prior can be set to be the non-
informative flat normal distribution, Ξprior = 0 and
c̄prior = 0. These four equations (34) are the only ones
needed for implementing the method. They are applied
to a single block of data X and the resultant posterior
multivariate probability NX (c|c̄,Ξ) explicitly defines the
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Figure 16 (color online). Application of dynamical Bayesian
inference to cardiorespiratory interactions when the (paced)
respiration is time-varying. (a) The inferred time-varying res-
piration frequency. (b) The coupling directionality between
the heart and respiration (on this figure denoted as h and r,
respectively). (c),(d),(e) The cardiorespiratory coupling func-
tion evaluated for the three time-windows whose positions are
indicated by the gray arrows. From Stankovski et al. (2012).

probability density of each parameter set of the model
(32).

In dynamical Bayesian inference each new prior distri-
bution depends on and uses the previously inferred pos-
terior distribution. In this framework, however, the in-
formation propagation is amended in order to allow the
method to follow the time-variability of the parameters
(Stankovski et al., 2012). The new prior covariance ma-
trix becomes Σn+1

prior = Σnpost + Σndiff, where Σndiff describes
how much some part of the dynamics can change with
time.

Given the use of Bayesian inference with informative
priors, the method is not prone to the overfitting of pa-
rameters, and it does not require much data within the
windows because, in each new block of data, it only up-
dates the parameters (Duggento et al., 2012). For anal-
yses of dynamical oscillators, one can use data windows
containing 6 to 10 cycles of the slowest oscillation; care
is needed to ensure that the windows are long enough in
cases where there is modulation that is slow relative to
the eigenfrequencies (Clemson et al., 2016). The confi-
dence of the fit is given by the resultant covariance matrix
Σpost.

The description above is for two interacting oscillators.
Nonetheless, the theory also holds for a larger number of
oscillators and the dynamical Bayesian inference has been
generalized to infer networks of systems with multivariate
coupling functions (Stankovski et al., 2015).

Fig. 16 shows an application of dynamical Bayesian
inference to cardiorespiratory interactions from a rest-
ing human subject whose paced respiration was ramped

down with decreasing frequency. The inference of the
dynamics and the coupling functions were reconstructed
from the cardiorespiratory phase dynamics (Stankovski
et al., 2012). Fig. 16(a) indicates the reconstructed respi-
ration frequency, showing the linearly-decreasing trend.
The inferred coupling directionality, defined as Dirc =
(εr−εh)/(εr+εh), is also time-varying, with predominant
direction of influence from the respiration to the heart.
The reconstructed cardiorespiratory coupling functions
Fig. 16(c)-(e), are described by complex functions whose
form changes qualitatively over time – cf. Fig. 16(c) with
Fig. 16(d),(e). This implies that, in contrast to many
systems with time-invariant coupling functions, the func-
tional relations for the interactions of an open (biologi-
cal) system can themselves be time-varying processes. By
analyzing consecutive time windows, one can follow the
time evolution of the coupling functions.

The time-variability of biological systems and the abil-
ity of the method to reconstruct it has implications for
the detection of chronotaxic systems, which are a class of
nonautonomous self-sustained oscillators able to gener-
ate time-varying complex dynamics (Suprunenko et al.,
2013). Such systems have drive-response subsystems
which are inherently connected with appropriate coupling
functions. Dynamical Bayesian inference has been ap-
plied to reconstruct such chronotaxic systems for cases
where the model was known or could be closely approxi-
mated (Clemson et al., 2014).

3. Maximum likelihood estimation: multiple-shooting

The reconstruction of coupling functions has been per-
formed using techniques for maximum likelihood estima-
tion, an approach that was employed for reconstruction
of the coupling functions of electrochemical interactions
(Tokuda et al., 2007, 2013). For this a multiple-shooting
method, as one type of maximum likelihood estimation,
was used.

The maximum likelihood estimation (Aldrich, 1997;
Myung, 2003) is a statistical method of seeking that prob-
ability distribution which makes the observed data most
likely, which means that one needs to find the value of the
parameter vector that maximizes the likelihood function.
The procedure of maximization, intuitively describes the
“agreement” of the selected model with the observed
data, and for discrete random variables it maximizes the
probability of the observed data under the resulting dis-
tribution. Maximum likelihood estimation gives a unified
approach to estimation, which is well-defined in the case
of the normal distribution and many other problems. It
is of fundamental importance in the theory of inference
and provides the basis for many inferential techniques in
statistics.

Maximum likelihood estimation is in general different
from least-squares fitting (Sec. IV.B.1), as the former
seeks the most likely parameters, while the latter is a
descriptive tool that seeks the parameters that provide
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the most accurate description of the data. There is a sit-
uation, however, in which the two methods intersect and
the same parameters are inferred. This is when observa-
tions are independent of one another and are normally
distributed with a constant variance (Myung, 2003).

The multiple-shooting method used for coupling func-
tion reconstruction is based on maximum likelihood es-
timation (Baake et al., 1992; Tokuda et al., 2013; Voss
et al., 2004). A known approach for inference of the tra-
jectories and the parameters is the so-called initial value
approach, where initial guesses for the states x(t1) and
parameters c are chosen and the dynamical equations are
solved numerically. However, a problem can appear in
such approaches – the inferred trajectory may converge
only to a local maximum.

The multiple shooting algorithm provides a possible
solution to the problem. In this approach, initial condi-
tions are estimated at several points along the time series,
so that the shooting nodes, and thus the estimated tra-
jectory, can be made to stay closer to the true values for
a longer time. This task is considered as a multi-point
boundary value problem. The interval for fitting (t1, tN )
is partitioned into m subintervals:

t1 = τ1 < τ2 < . . . < τm+1 = tN .

Local initial values xj = x(τj) are introduced as ad-
ditional parameters for each subinterval (τj , τj+1). In
the case of independent Gaussian noise, maximization
of the likelihood amounts to minimization of the cost
function ζ2(x1, x2 . . . , xm, c), which is the sum of the
squared residuals between the data and the model tra-
jectory, weighted by the inverse variance of the noise:

ζ2(x1, . . . , xm, c) =

N∑
i=1

(yi −G(xi(x1, . . . , xm, c), c))2

σi
,

where x and y are the state and the observed data, re-
spectively, G is a function for the dynamics, and σi gives
the noise variance. Thus in the multiple-shooting method
the dynamical equations are integrated piecewise and the
cost function is evaluated and minimized on the multiple
samples from each subinterval.

Assuming that the dynamical parameters c are con-
stant over the entire interval, the local initial values are
optimized separately in each subinterval. The latter leads
to an initially discontinuous trajectory and the final step
is to linearize them so as to provide continuous states.
This task, called condensation, is often achieved by use
of the generalized Gauss-Newton method.

The multiple-shooting method has been used to model
the phase dynamics of interacting electrochemical oscil-
lators in order to reconstruct their coupling functions
(Tokuda et al., 2007), using Fourier series as base func-
tions. The particular application used an electrochemical
oscillatory system in which the coupling function had pre-
viously been calculated (Kiss et al., 2005) (see also Sec.
II.E) by applying the perturbation method to a single
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Figure 17 (a) The estimated natural frequencies (vertical
axis) of 32 electrochemical oscillators versus their measured
natural frequencies (horizontal axis). (b) The coupling func-
tion estimated by the multiple-shooting method (dotted line),
compared with that estimated by application of the perturba-
tion to a single isolated electrochemical oscillator (full curves).
From Tokuda et al. (2007).

oscillator, and thus a direct comparison could be made
between the two approaches.

Fig. 17 shows the inference of a network of 32 elec-
trochemical oscillators. The effective natural frequen-
cies are well estimated, with slightly higher values than
those obtained with for completely uncoupled systems
Fig. 17(a). The form of the estimated coupling function
is in reasonable agreement with that found by applying
the perturbation method to a single isolated electrochem-
ical oscillator Fig. 17(b), with a difference in amplitude
of 23.7% between the two. The coupling function is said
to be of a form consistent with theoretical predictions for
Stuart-Landau oscillators close to a Hopf bifurcation. In
a similar way, the technical dependences and conditions,
including dependence on the observational noise, network
size, number of defects, and data length have also been
examined (Tokuda et al., 2013).
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Figure 18 Inference of interacting dynamics by application of
the random phase-resetting method. (a) Four-node network
of interacting phase oscillators. (b) Reconstruction of the
four-node network. Circles are the actual parameter values;

crosses are the inferred values; left a
(1)
ij , right b

(1)
ij , for each

pair i → j. (c) Coupling function in respect of the phase
difference ψ42 = φ2 − φ4 from the reconstructed parameters

a
(1)
42 and b

(1)
42 . From Levnajić and Pikovsky (2011).

4. Random phase resetting method

The method of random phase resetting can be used
for the dynamical inference of interacting systems, and
also for the reconstruction of their coupling functions
(Levnajić and Pikovsky, 2011). Initially, the method
was designed for the reconstruction of network topol-
ogy i.e. the inference of coupling strengths; nevertheless,
the framework employed dynamical inference and the in-
ferred model allows for the coupling functions to be re-
constructed as well.

The main idea relies on repeatedly reinitializing the
network dynamics (e.g., by performing random phase re-
sets), in order to produce an ensemble of the initial dy-
namical data. The quantities obtained by averaging this
ensemble reveal the desired details of the network struc-
ture and the coupling functions.

The method considers a dynamical model of interact-
ing phase oscillators such as that in Eq. 5, with coupling
functions in terms of the phase difference qi(φj − φi).
The dynamics starts from a set of initial phases which
are denoted as φ = (φ1, . . . , φN )(t = 0), chosen from a
distribution ~(φ) > 0 normalized to (2π)N . The method
is based on two assumptions: (i) that one is able to ar-

bitrarily reinitialize the network dynamics K times, by
independently resetting the phases of all nodes to a new
state φ, and (ii) that one is able to measure all the val-

ues φl, and all initial instantaneous frequencies φ̇l, each
time the dynamics is reinitialized (for l = 1, . . . ,K). A
2π-periodic test function T = T (φi−φj) with zero mean
is given as input and the coupling functions are taken to
be represented by Fourier series, to obtain an expression
for the index Υij :

Υij [T ] =(2π)−N
N∑
k=1

∞∑
n=1

∫
[0,2π]N

dφT (φi − φj)

× [a
(n)
kj sin(nφk − nφj) + b

(n)
kj cos(nφk − nφj)].

The dynamical network described by the phase equa-
tions can be reconstructed by computing Υij for a suit-
able T function, e.g. T (φ) = einφ. The practical im-
plementation in terms of the data involves the represen-
tation of φ̇l with a kernel smoother (Kralemann et al.,
2008; Wand and Jones, 1994), and appropriate averaging,
to get Υij [T ]:

Υij [T ] =

〈
φ̇jT (φi − φj)

~(φ)

〉
=

1

K

K∑
l=1

φ̇j(φl)T (φi − φj)
~(φl)

.

To mimic an experimentally feasible situation, K ran-
dom phase resets of the network dynamics separated by
the time interval τ are performed. A network of four
phase oscillators, coupled as shown in Fig. 18(a), is con-
sidered. After applying the inference method, the re-
constructed pairwise connections are shown to be in rea-
sonable agreement with the actual coupled values, and
especially in identifying the non-couplings, as shown in

Fig. 18(b). Once the parameters of the phase model a
(1)
ij

and b
(1)
ij have been inferred, one can also reconstruct the

form of the coupling function. Fig. 18(c) presents an ex-
ample of the coupling function showing the influence that
the fourth oscillator is exerting on the second oscillator.

The approach is related to the methods for reconstruc-
tion of phase response curves (see Sec. IV.D.2). Here,
however, phase resetting is used somewhat differently
i.e. the focus is on the network’s internal interactions,
rather than on its response to stimuli. The power of this
method lies in a framework that yields both the topol-
ogy and the coupling functions. Its downside is that it
is invasive – requiring one to interfere with the on-going
system dynamics (via phase-resets or otherwise), which
is often experimentally difficult and sometimes not even
feasible.

5. Stochastic modeling of effective coupling functions

An important feature of the interacting dynamics in
real systems is the presence of noise. Explicit consider-
ation of the stochastic nature of the dynamics can pro-
vide a better means of describing the coupling functions,
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and how they are affected. In Sec. IV.B.2 we discussed
the dynamical Bayesian method which treats stochastic
dynamics, and is able to infer the deterministic part of
the coupling function separately from the random noise.
Often when considering noise-induced oscillations, how-
ever, one may wish to determine the effective coupling
functions including the effect of noise (Schwabedal and
Pikovsky, 2010). When performed on the effective phase
dynamics with an invariant phase defined in a nonpertur-
bative way, the phase will depend on the noise intensity,
and so will all the corresponding characteristics such as
the coupling function.

The authors consider an effective phase model describ-
ing periodically-driven, noise-induced oscillations:

θ̇ = h(θ) + g(θ)ξ(t) + f(ϑ(t), θ), (35)

where ϑ = Ωt is a 2π-periodic driving phase. The aim
is to describe the effective phase dynamics H(θ, ϑ) and
the corresponding effective coupling functions. One can
express the effective dynamics (35) as: θ̇ = H(θ, ϑ) =
Hm(θ)+F(θ, ϑ), whereHm(θ) is ϑ-independent marginal
effective velocity and F(θ, ϑ) is the effective coupling
function. By integrating Eq. (35) over ϑ, the marginal
effective velocity Hm(θ) can be determined. Hence, us-
ing F(θ, ϑ) = H(θ, ϑ) − Hm(θ), one can determine the
effective coupling function:

F(θ, ϑ) = f −
∫ 2π

0

f
P

Pm
dϑ− g2∂θ ln

P

Pm
,

where P = P (θ, ϑ) and Pm = PM (θ) are the probabil-
ity densities of the full and the marginal dynamics, re-
spectively. The variable θ can be considered as a pro-
tophase and can be further transformed by φ = C(θ) =

2π
∫ θ

0
P (η)dη to yield an invariant effective phase dynam-

ics:

φ̇ = ω + 2πPm[C−1(φ)]F [ϑ, C−1(φ)] = ω + q(ϑ, φ). (36)

Equation (36) provides the effective phase dynamics of
the periodically-driven noise-induced oscillations with an
effective coupling function q that depends on the noise
intensity.

This theoretical description can be illustrated on a
noise-driven FitzHugh-Nagumo model as an example of
an excitable system:

εẋ = x− x3

3
− y,

ẏ = x+ a+ σξ(t) + b cos(Ωt),

where a = 1.1, ε = 0.05 are the parameters of the sys-
tem, ξ(t) is an additive noise which induces oscillations,
and the cosine external function provides the interactions
in the system. After estimation of the protophase time-
series θ and its transformation to the phase φ, the effec-
tive coupling function q(Ωt, φ) can be determined. For
this a double Fourier series decomposition was used with

Figure 19 (color online). Coupling functions for noise-
induced oscillations in the FitzHugh-Nagumo model with
b = 0.1 and two different values of the noise intensity D:
for D = 0.08 (left panel), the mean frequency is ω ≈ 0.62);
and for D = 0.11 (right panel), ω ≈ 0.95. From Schwabedal
and Pikovsky (2010).

least-squares fitting of the model to the data. In this
sense, the core of the inference is the same as the least-
squares fit discussed in Sec. IV.B.1, even though the dif-
ference here is that one reconstructs a stochastic model.

The results of the analysis indicated an increase in
the effective coupling for vanishing noise, and masking
of the coupling for driven noise-induced oscillations of
the FitzHugh-Nagumo model. Fig. 19 presents an un-
usual case with implications for the interpretation of ef-
fective coupling functions. Namely, the effective coupling
function was computed with two noise intensities for the
same coupling strength. By comparing the two plots in
Fig. 19 one can see that the amplitude of q decreases with
increasing noise intensity. The change in amplitude may
have been related to a more pronounced masking of the
coupling induced by the frequency shift, or due to the
generic decrease in effective coupling for stronger noise
because of flattening of the marginal probability.

6. Comparison and overview of the methods

The methods discussed for reconstruction of coupling
functions possess some characteristics that are in com-
mon, as well other features that differentiate them. The
latter eventually lead to different choices of method for
use, depending on the circumstances and conditions for
the dynamics and the coupling functions to be inferred.

Table IV summarizes the difference and performance
of the methods discussed in the previous sections IV.B.1-
IV.B.5. Inference of stochastic dynamics which treated
SDEs and the influence of dynamical noise that can cause
noise-induced qualitative changes (e.g. phase slips), can
be performed with dynamical Bayesian inference and
stochastic modelling of the effective coupling functions.
The other methods treat ODEs with possible measure-
ment noise that can affect the statistics and precision of
the inference.

Often the model for inference has more parameters
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Stochastic No-overfitting Calc. speed Data Size

LSF × × X ×
DBI X X × X
MLE-MS × × × X
RPR × × × X
SMECF X × X ×

Table IV Comparison of methods for the inference of coupling
functions in terms of four characteristics (columns) includ-
ing, respectively: stochastic treatment; absence of parame-
ter overfitting; calculation speed; and the size of data win-
dows. The methods (rows) are as described in the previous
sections: least square fitting (LSF); dynamical Bayesian in-
ference (DBI); maximum likelihood estimation with multiple
shooting (MLE-MS); random phase resetting (RPR); and the
stochastic modelling of effective coupling functions (SMECF).
The symbol X indicates if a method possesses that character-
istic, and a × if not.

than the real system. In such cases overfitting of pa-
rameters can occur and some methods can infer random
error or noise instead of the underlying dynamical rela-
tionship. A model that has been overfitted will generally
be a poor representation of the real system, as it can
exaggerate minor fluctuations in the data. Bayesian in-
ference uses informative prior probabilities and can avoid
the problem of overfitting parameters.

The speed of calculation varies between methods, es-
pecially as some methods perform additional steps and
therefore take longer. Dynamical Bayesian inference has
a recursive loop, evaluated for each time-point within
a data window until a certain precision is reached; the
multiple shooting method requires additional initial con-
ditions, the shooting nodes, to be estimated at several
points along the time series; the random phase resetting
method uses a large number of additional random initial
resetting points. These additional processing steps rela-
tive to the initial handling of the time-series, inevitably
require more computing power and thus reduce the cal-
culation speed.

The coupling functions are usually evaluated for a se-
quence of time-series each defined by a certain window-
length whose choice determines how well a method is able
to follow the time-evolution of the coupling functions.
Dynamical Bayesian inference updates the new probabil-
ities within a window of data, based on prior knowledge;
the multiple-shooting method exploits the initial shoot-
ing nodes; and the random-resetting method also uses
resetting points, which are said to require shorter data
windows and, in turn, to provide good time-resolution of
the inference.

A difficulty in common for all the methods is the recon-
struction of coupling functions (and coupling strength in
general) when the systems are highly synchronized and
coherent in the 1:1 frequency ratio (Kiss et al., 2005;
Rosenblum and Pikovsky, 2001). Namely, in the 1:1
phase synchronous state there is a definite strong re-
lationship between the phases and the trajectory on a
(φ1, φ2) torus which is one line; hence φ1 and φ2 are

not independent, and the coupling functions of the two
variables cannot be separately estimated i.e. one is not
able to separate the effect of interaction from the inter-
nal dynamics of autonomous systems. In order to obtain
information about the coupling one needs to observe de-
viations from synchrony, either due to dynamical noise or
due to the onset of quasiperiodic dynamics outside the
synchronization region. Synchronous states with larger
n:m frequency ratios are favorable, because many revo-
lutions cover the surface of the torus, and the inference
is then more successful.

A similar situation applies for the inference of coupling
functions of dynamical systems in amplitude states. In
such cases, the systems are multidimensional, e.g. two
coupled Lorenz chaotic systems, and the inference of the
coupling functions is more plausible in a 1:1 generalized
synchronization sense (Stankovski et al., 2014). Com-
plete synchronization and very strong coupling will again
constrict the available space for inference, leading to dif-
ficulties in reconstructing the amplitude coupling func-
tions.

C. Towards coupling function analysis

Often one needs to draw conclusions based on compar-
ison and quantitative measures of the coupling functions,
after they have been inferred. Such situations occur in ex-
perimental studies of some real system interactions, e.g.
in biomedicine or chemistry. For example, the biomedi-
cal expert would like to have a quantitative measure of
the coupling functions to be able to describe or compare
different states or behaviours in health and disease.

One needs to quantify some characteristics that de-
scribe the coupling functions, and in particular features
that are unique to the coupling functions and cannot be
obtained from other measures. The form of the function
can describe the mechanism of the interactions, so being
able to quantify it is of obvious interest.

Quantifying a function is not a trivial task, in general.
However, many coupling functions can be decomposed, or
are inferred through decomposition into functional com-
ponents, like for example when the phase coupling func-
tions are decomposed into Fourier series. Therefore, the
problem of quantification of the coupling function can
be reduced to quantification of its components, and in
particular the parameters obtained for the components.
In this way, one is left to work with a one-dimensional
vector of parameters.

One way to perform such a quantification is through
the correlation coefficient and the difference measure
evaluated from the inferred coupling functions (Krale-
mann et al., 2013a). The first index ρ measures the sim-
ilarity of two coupling functions q1 and q2, irrespectively
of their coupling strengths. It is calculated as the corre-
lation coefficient:

ρ =
〈q̃1q̃2〉
||q̃1|| ||q̃2||

,
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Figure 20 (color online). Boxplots illustrating the similarity
of cardiorespiratory coupling functions. (a) The correlation
coefficient ρ and (b) the difference measure η, for all avail-
able pairs of functions (high similarity corresponds to large
ρ and small η). ES: similarity between the respiration-ECG
coupling functions of the same subject, obtained from two tri-
als. EG: same relation similarity between different subjects in
the group demonstrates low interpersonal variability. PS and
PG: intra- and interpersonal similarities, respectively, for the
respiration-arterial pulse coupling function. EPS and EPG:
intra- and interpersonal similarities, respectively, between be-
tween the two types of coupling function. From Kralemann
et al. (2013a).

where 〈◦〉 denotes spatial averaging over the 2D domain
0 ≤ φ1, φ2 ≤ 2π, q̃ = q − 〈q〉 and ||q|| = 〈qq〉1/2. The
similarity index ρ is of great interest as it relates only
to the form of the function and is a unique measure of
the coupling functions. In a similar way, the difference
measure is defined as:

η =
||q̃1 − q̃2||
||q̃1||+ ||q̃2||

.

The difference measure is of less interest than ρ as it
relates to the coupling strengths, which can be assessed
in different ways through other measures.

Two measures were used to analyze the similarity
and difference of cardiorespiratory coupling functions,
as shown in Fig. 20. It was found that the functions
have a well-pronounced characteristic shape for each of
the subjects and that the correlations between the cou-
pling functions obtained in different trials with the same
subjects were very high Fig. 20(a). Naturally, the cor-
relation between the functions of different subjects was
lower, reflecting the interpersonal variability; however,
it is high enough to demonstrate the high similarity of
the interactions in the group of subjects. The similar-
ity of the coupling functions, obtained from different ob-
servables such as the ECG and the arterial pulse for the
cardiac oscillations, support the validity of the use of in-
variant phase. The similarity index ρ has been also used
for quantifying the form of the brain coupling functions
(Stankovski et al., 2015), quantifying significant differ-
ences in the form of the coupling functions when altered
by the use of different anaesthetics (Stankovski et al.,
2016).

D. Connections to other methodological concepts

1. Phase reconstruction procedures

When analysing data one needs first to reconstruct the
phase, before attempting to detect the underlying phase
coupling functions. Various methods exist for phase
reconstruction from data, including the marked events
method (the marking a particular time event, e.g. a max-
imum or a zero-crossing, within a cycle of oscillation), the
Hilbert transform, and wavelet transform based methods
(Daubechies et al., 2011; Gabor, 1946; Iatsenko et al.,
2016; Pikovsky et al., 2001; Quiroga et al., 2002). The
effect of the method used can have a direct impact on the
form of the reconstructed coupling function. It is there-
fore important to choose a method to reconstruct a phase
that is as genuine as possible. For example, the marked
events method reduces the inter-cycle resolution and, de-
spite its limited usefulness in synchronization analysis, it
is not appropriate for coupling function analysis. Krale-
mann et al. (2008) proposed a protophase-to-phase trans-
form that obtains an invariant phase in terms of the gen-
uine, observable-independent phases. This technique can
be very useful in checking consistency with the phase esti-
mated by use of the Hilbert transform. Some other phase
estimates have also been discussed, noting that use of
the synchrosqueezed wavelet transform means that one
does not need explicit protophase-phase preprocessing,
as it estimates directly the genuine phase (Daubechies
et al., 2011; Iatsenko et al., 2013). Recently, Schwabedal
and Kantz (2016) introduced a method that facilitates
a phase description of collective, irregular-oscillatory dy-
namics from multichannel recordings and they demon-
strated it on EEG recordings. Such phase estimates have
a potential for the reconstruction of coupling functions
from collective dynamics. In any case, one should be very
careful when estimating phases for coupling functions, in
particular from experiments, as otherwise this can lead
to spurious descriptions of the coupling functions.

2. Relation to phase response curve in experiments

The phase response curve (PRC), describes how an os-
cillator responds to an external perturbation (Kuramoto,
1984; Tass, 1999; Winfree, 1980). The response of the
affected oscillator is manifested as shift of its phase. It
has been used in various fields, especially in biological os-
cillations including the heartbeat, circadian rhythms and
neuronal activity (Czeisler et al., 1989; Ermentrout, 1996;
Hannay et al., 2015; Ko and Ermentrout, 2009; Oprisan
et al., 2004; Preyer and Butera, 2005; Tass, 1999).

The phase response curve is a function expressed in
terms of one phase variable from the affected oscillator
(for detailed theoretical description see Sec. III.B.4). In
this way, the phase response curve is a similar concept to
a coupling function, with that difference that the latter
describes the interactions on the whole (two-dimensional)
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Figure 21 Experimental estimation of neuronal phase re-
sponse curves (PRC). a) Raw estimation of the PRC (dots)
and smoothing over a 2π/3 interval (gray line) compared with
the estimated PRC (black line) from the approach in (Galán
et al., 2005). Both curves match, which indicates that the
raw data are consistent with a phase model. b) Same as a)
but after shuffling the raw data. The PRC is roughly flat and
yields inconsistent results with the smoothing, implying that
the shuffled data cannot be described by a phase model. From
Galán et al. (2005).

space i.e. depending on the two phase variables. In fact,
the phase response curve is a functional component of the
coupling function. In terms of the general theory of phase
dynamics (Kuramoto, 1984; Winfree, 1980), the coupling
function q1(φ1, φ2) can be expressed as the product of two
functions:

q1(φ1, φ2) = Z1(φ1)I1(φ2), (37)

where Z1(φ1) is the phase response curve, while I1(φ2) is
the perturbation function.

The reconstruction of functional curves from data has
been used widely, elucidating the mechanisms under-
lying the oscillations found in nature (Batista et al.,
2012; Czeisler et al., 1989; Tass, 1999). This approach
is widely used in neuroscience (Ermentrout, 1996; Galán
et al., 2005; Gouwens et al., 2010; Schultheiss et al., 2011;
Tateno and Robinson, 2007). For example, the phase re-
sponse curve has been estimated with electrophysiolog-
ical experiments on real neurons from the mouse olfac-
tory bulb (Galán et al., 2005). A constant current was
injected into the neuron to make it fire at a constant
frequency within the beta/gamma frequency band. By
following the responses of the neurons to the injected
current stimulation, the phase response curve was recon-
structed. Fig. 21(a) shows the experimental dots and
the fitted phase response curve, which matches well the
one from the phase model of the study. The surrogate
estimation (shuffled dots) in Fig. 21(b) validates this re-
sult. Thus, the method allowed for a simplification of
the complex dynamics from a single neuron to a phase
model. This study also demonstrates the relationship to
the coupling function, which was reconstructed from the

convolution of the phase response curve and the pertur-
bation function – an approach used in chemistry as well
(Kiss et al., 2005).

Going in the opposite direction, the phase response
curve can be estimated by decomposition of the coupling
function (Kralemann et al., 2013a). This can be done
by decomposing the reconstructed coupling function into
a product of two functions Eq. (37) and searching for
a minimum in the decomposition error by means of an
iterative scheme. In this way, the interactions coming
from the second oscillator are used as the perturbation
to the first oscillator under consideration, whence there
is no need for additional external stimulation – a pro-
cedure referred by the authors as in vivo estimation of
the phase response curve. This method was applied to
the reconstruction of the cardiac phase response curve
as perturbed by the respiratory oscillations, as shown in
Fig. 22. One can clearly see the interval where the phase
response curve is non-zero, so that the cardiac system
is susceptible to the respiratory perturbation. Intervals
of positive (negative) effective forcing are the intervals
where respiration is accelerating (decelerating) the heart
rate.

Interesting and relevant parallels could be drawn be-
tween coupling functions and amplitude response curves,
or phase-amplitude response curves (Castejón et al.,
2013; Huguet and de la Llave, 2013). The latter are sim-
ilar to phase response curves, with the difference that
there is also a response to the amplitude on increasing or
decreasing the strength of the oscillations.

3. General effective connectivity modeling

Quite generally, methods of modeling dynamical sys-
tems from data often contain coupling functions (Friston,
2011; Smelyanskiy et al., 2005; von Toussaint, 2011; Voss
et al., 2004). The extent to which these coupling func-
tions resemble the same concept as that discussed in this
review can vary, depending on the design of the method
and the model itself. For example, there can be a model
of one larger system which is different from the interac-
tion of two or many systems, but there can be functions
within the model that are coupling certain variables or
dimensions.

Similar implications hold for the general description
of methods for effective connectivity modeling which ex-
ploit a model of differential equations and allow for dy-
namical mechanisms of connectivity to be inferred from
data. Such effective connectivity has particularly wide
use in neuroscience, where the methods infer the links on
different scales of connectivity and spatially distributed
regions within the heavily connected brain network. Al-
though such methods have much in common with cou-
pling function inference methods they do not, however,
consider the coupling function as an entity, and nor do
they assess or analyze the coupling functions as such.
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Figure 22 (color online). Phase response curve and effective forcing for the cardiorespiratory interactions. (a) Individual PRCs
Z and (b) effective forcing I for all ECG-based coupling functions (grey curves). In both main panels the thick (blue) lines
show the average over all the individual (grey) curves. The thick (red) lines are obtained by decomposition of the averaged
coupling function. The small panel on the top in (a) shows for comparison the average ECG cycle as a function of its phase.
The small panel on the top in (b) shows the average respiratory cycle as a function of its phase, with the epochs of inspiration
and expiration marked (approximately). From Kralemann et al. (2013a).

V. APPLICATIONS AND EXPERIMENTS

In this section we review a number of important ap-
plications of the methods for reconstruction of coupling
functions and their use for the study and manipulation
of the interactions, in various fields.

A. Chemistry

The interactions of chemical oscillations have been
studied extensively, including in connection with cou-
pling functions (Blaha et al., 2011; Kiss et al., 2007, 2002,
2005; Kori et al., 2014; Miyazaki and Kinoshita, 2006;
Tokuda et al., 2007, 2013). Experiments on chemical,
or electrochemical, oscillations provide a convenient way
of studying and manipulating interactions and coupling
functions under controlled laboratory conditions.

One of the more prominent coupling function applica-
tions to chemical oscillators is for engineering complex
dynamical structures (Kiss et al., 2007). The work ex-
ploits the simplicity and analytical tractability of phase
models and, in particular, their reconstructed coupling
functions in order to design optimal global, delayed, non-
linear feedback for obtaining and tuning the desired be-
havior. It uses a feedback design methodology capable of
creating a large class of structures describable by phase
models for general self-organized rhythmic patterns in
weakly interacting systems with small heterogeneities.
The electrochemical oscillations were achieved with elec-
trode potentials during the electrodissolution of nickel
wires in sulfuric acid.

The engineering of the interactions to the desired
behavior is achieved in a population of N oscillators
through the imposition of nonlinear, time-delayed feed-
back in the amplitude state. This reduces to a phase
model of a population of oscillators with weak, global
(all-to-all) coupling described by the Kuramoto model
(Kuramoto, 1984) with a general diffusive coupling func-
tion q(φj−φi) (i.e. notation H(φj−φi) in this work). In

Figure 23 (color online). Engineering a system of four non-
identical oscillators using a specific coupling function to gen-
erate sequential cluster patterns. (a) The target (solid line,
H(∆φ) = sin(∆φ1.32)0.25 sin(2∆φ)) and optimized coupling
function with feedback (dashed line). (b) Theoretical and ex-
perimentally observed heteroclinic orbits and their associated
unstable cluster states. (c) Time series of the order parameter

(R1 =
∑N
j=1 exp(iφj)) along with some cluster configurations.

(d),(e) Trajectories in state space during slow switching. The
black lines represent calculated heteroclinic connections be-
tween cluster states (fixed points). The (red) surface in (e)
is the set of trajectories traced out by a heterogeneous phase
model. H(∆φ) on the plots is equivalent to the q(ψ) notation
used in the current review. From Kiss et al. (2007).

this way, one can also derive the phase response function
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Figure 24 The mechanisms of synchronization for Belousov-
Zhabotinsky chemical oscillations, as determined by their cou-
pling functions. The full curve shows Q(ψ) = q(ψ) − q(−ψ)
estimated from the coupling functions q(ψ). q(ψ) and q(−ψ)
are presented as dashed and dot-dashed lines, respectively.
Stable and unstable solutions of Eq. (38) are shown as solid
and open circles, respectively. ∆ω on the plots is equivalent
to the ∆ω notation used in the present review. From Miyazaki
and Kinoshita (2006).

Z(φi) in connection to the feedback function. Given such
a feedback function and response function Z(φi), one can
in principle obtain the coupling function q(φj − φi) for
use in the phase model. However, in the work discussed,
Kiss et al. (2007) proceeded in the opposite manner: they
chose a coupling function to produce the desired states,
and then designed a feedback loop with optimized feed-
back parameters to give the desired q(φj − φi).

The method is demonstrated with three interesting and
important experiments: (i) tuning the desired arbitrary
phase differences between two dissimilar oscillators (see
also Fig. 1); (ii) generation of complex patterns that in-
clude self-organized switching between unstable dynam-
ical states and clusters; and (iii) the physiologically im-
portant problem of desynchronization of oscillators. Be-
low, we devote particular attention to case (ii) involving
the generation of sequential states and clusters (Ashwin
and Timme, 2005).

Quadratic feedback to a population of four oscillators
is used to reproduce a coupling function proposed for
slow switching, Fig. 23(a). The experimental system with
feedback that sequentially visits (unstable) two-cluster
states with two oscillators in each cluster shows two (sad-
dle type) cluster states in state space, Fig. 23(b). In
agreement with the experiments, the phase model pre-
dicted a switch between these states due to the existence
of heteroclinic orbits connecting them. These switches
can be seen as a fluctuation of the system order, as shown
in Fig. 23 (c). The engineered feedback produces config-
urations of two clusters, each containing two elements,
connected by heteroclinic orbits. Two types of transi-
tions have been observed: intra-cluster and inter-cluster
transitions as presented by the trajectories of the exper-
imental system, and illustrated as phase space plots in
Fig. 23(d) and (e).

In a similar way, Kiss et al. (2005) developed a method
for reconstruction of coupling functions from electro-

Figure 25 Experiments on a three-cluster state close to a Hopf
bifurcation with negative global coupling of 64 electrochemi-
cal oscillators. (a) Current time series and the three cluster
configuration. Solid, dashed, and dotted curves represent the
currents from the three clusters. (b) Cluster configuration.
White, black, and gray circles represent the three clusters.
(c) Response function and waveform (inset) of the electrode
potential from a current of single oscillator. (d) Phase cou-
pling function. Γ(∆φ) on the plot (d) is equivalent to the q(ψ)
notation used in the current review. From Kori et al. (2014).

chemical oscillations, which are then used to predict syn-
chronization, as also discussed in Sec. II.E. Similarly,
Tokuda et al. (2007, 2013) used a different technique for
inference of the coupling function of multivariate electro-
chemical oscillations: see Sec. IV.B.3. Also, to capture
the whole nature of the interaction of electrochemical os-
cillations (and not only the synchronization-related ones)
the coupling functions were reconstructed in the full
two-dimensional (φ1, φ2) space i.e. not only for the one-
dimensional diffusive coupling difference ∆φ = φ2 − φ1

(Blaha et al., 2011).
Of particular interest is a coupling function method

that Miyazaki and Kinoshita (2006) applied for studying
the interactions of Belousov-Zhabotinsky chemical oscil-
lations. This class of reactions serves as a classical exam-
ple of non-equilibrium thermodynamics, resulting in the
establishment of a nonlinear chemical oscillator (Stro-
gatz, 2001). The method infers the phase dynamics with
diffusive coupling functions from the experimental phase
time-series. The coupling function was already discussed
in Sec. II.D, as shown in Fig. 8. Here we further review
the interpretation and use of such coupling functions.

The inferred coupling function q(ψ) is used to describe
the mechanisms of the various synchronous states in two
mutually coupled Belousov-Zhabotinsky reactors. The
dynamics of the phase difference ψ can be expressed as:

ψ̇ = −∆ω + εQ(ψ), (38)

where Q(ψ) = q(ψ) − q(−ψ), ∆ω = ω2 − ω1 and ε =
ε12 − ε21. Then, by varying the frequency ∆ω mismatch
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Figure 26 (color on-
line). Cardiorespira-
tory coupling functions
for the study of human
ageing. Typical time-
averaged coupling func-
tions for (a,c) a young
subject aged 21 years and
(b,d) an old subject aged
71 years. (a,b) are from
the cardiac, while (c,d)
are from the respiration
phase dynamics. From
Iatsenko et al. (2013).

and coupling strength ε, one can study and predict the
occurrence of synchronization. Fig. 24 shows that with
increase of ε, a pair of stationary solutions of Eq. (38)
are obtained as the intersection points of Q(ψ) and ∆ω/ε
(the first horizontal line from the top in Fig. 24). There
is one stable solution (solid circle) and in-phase synchro-
nization is realized. If one increases ε further, a new
stable solution appears slightly below π in addition to
that corresponding to in-phase synchronization – the in-
tersection with the second horizontal line from the top
in Fig. 24. This corresponds to out-of-phase synchro-
nization. Thus, a bistability between out-of-phase and
in-phase synchronization can appear.

Kori et al. (2014) have performed a comprehensive the-
oretical analysis and experimental verification of phe-
nomena in electrochemical oscillators, investigating the
general occurrence of phase clusters in weakly, globally-
coupled oscillators close to a Hopf bifurcation. The am-
plitude equation with a higher-order correction term,
valid near a Hopf bifurcation point, is derived and it is
used to calculate analytically the phase coupling function
from given limit-cycle oscillator models. Such phase cou-
pling functions, allowed the stability of phase clusters to
be analyzed, as demonstrated on the Brusselator model.

Experiments on electrochemical oscillators have
demonstrated the existence of three-cluster states near
the Hopf bifurcation with negative coupling. Electric
potentials were used to control the nature of the os-
cillations, and they were chosen initially such that the
oscillators exhibited smooth oscillations near the Hopf
bifurcation. Fig. 25(a) shows the current from one os-
cillator of each of the three clusters. The nearly bal-
anced three-cluster state with configuration (25:20:19) is
shown on a grid of 8 × 8 circles in Fig. 25(b). Phase
response curves (Fig. 25(c)) and coupling functions (Fig.
25(d)) for these oscillators were found experimentally by
introducing slight perturbations to the oscillations. The
stability of the cluster states was determined, and it was
found that the three-cluster state is the most stable, while
four- and five-cluster states were observed also at higher
potentials. Further increase in the potential resulted in
complete desynchronization of the 64 oscillators.

B. Cardiorespiratory interactions

The heart and the lungs have physiological functions of
great importance for human health and their disfunction
may correspond to severe cardiovascular disease. Both
organs are characterised by a pronounced oscillatory dy-
namics, and the cardiorespiratory interactions have been
studied intensively using the theory and methods from
the nonlinear coupled-oscillators approach (Kenner et al.,
1976; Schäfer et al., 1998; Stefanovska and Bračič, 1999;
Stefanovska et al., 2000).

The cardiorespiratory coupling functions are therefore
a subject of great interest i.e. the mechanisms through
which respiration influences the cardiac period and, in
particular, how this relates to different states and dis-
eases. The cardiorespiratory analysis performed with dy-
namical Bayesian inference (Stankovski et al., 2012), as
discussed in Sec. IV.B.2 and Fig. 16, revealed the form of
the coupling functions in detail. The use of a changing
respiration frequency in a linear (ramped) way showed
that the form of the reconstructed coupling functions is
in itself time-varying. Recently, the method was applied
to the study of the effects of general anaesthesia on the
cardiorespiratory coupling functions (Stankovski et al.,
2016). A similar form of the function was reconstructed
for the awake measurements as in the previous studies,
while its form was more varying and less deterministic
for the state of general anaesthesia.

Dynamical Bayesian inference was used to study the
effect of ageing on the cardiorespiratory interactions (Iat-
senko et al., 2013). Analyses were performed on cardiac
and respiratory time series recorded from 189 subjects of
both genders, aged from 16 to 90 years. By application of
the synchrosqueezed wavelet transform, the respiratory
and cardiac frequencies and phases were pre-estimated.
By applying dynamical Bayesian inference to the phase
time-series, measures such as synchronization, coupling
directionality and the relative contributions of different
mechanisms were then estimated.

The cardiorespiratory coupling function was thus re-
constructed, and its time evolution and age dependence
were assessed. Fig. 26 shows the time-averaged versions
of the cardiorespiratory coupling functions typical of a
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Figure 27 (color online). Coupling functions for the human cardiorespiratory system. The reconstructed functions specify the
dependence of the instantaneous cardiac frequency, measured in radians per second, on the cardiac and respiratory phases.
The functions Qp(φr, φp) are computed from the arterial pulse and respiration. Results from the subject who had the lowest
levels of determinism and similarity to the coupling functions obtained from ECG phases Qe are shown in (a), and those for
the subject with the highest determinism and similarity in (b). Panel (c) presents the averaged coupling function, over all
measurements for all subjects. From Kralemann et al. (2013a).

younger and an older subject. Figs. 26(a) and (b) show
the coupling functions of the heart dynamics qh(φh, φr).
The form of the functions (especially noticeable in Fig.
26(a)) is changing mostly along the respiration phase φr
axis, while it is nearly constant along the φh axis, indi-
cating that this coupling is predominantly defined by the
direct influence of respiration on the heart. In physiol-
ogy, this modulation is known as respiratory sinus arryth-
mia (RSA). By comparing the coupling functions for the
young and old subjects one can see a clear decrease of the
RSA amplitude with age. It can also be noted that RSA
remains the main stable contribution to the qh(φh, φr)
coupling function, irrespective of age and that it survives
after time-averaging. The coupling function from respi-
ratory dynamics qr(φh, φr) shown in Fig. 26(c) and (d)
was very low and seemed to be quite irregular and not
age-dependent. From analysis of the time-variability of
the form of the coupling functions it was observed that,
in older people, the heart coupling function qh(φh, φr) be-
comes less stable in time, dominated by the highly time-
variable indirect contributions. At the same time, the
dynamics of the respiratory coupling function qr(φh, φr)
did not seem to change with age, being irregular and un-
stable.

Kralemann et al. (2013a) looked at the cardiorespira-
tory coupling functions, as an intermediate result, in or-
der to obtain the phase response curve of the heart and
the perturbation inserted by respiration. They studied
the respiratory and cardiac oscillations of 17 healthy hu-
mans while resting in an unperturbed state. The cardiac
oscillation was assessed through two different observables
– the electrocardiograph (ECG) and the arterial pulse
signal. The idea of using two different observables is
to demonstrate that an invariant phase can be obtained
from each of them, describing a common inherent inter-
action between respiratory and cardiac oscillations.

By analysing the phase dynamics, first by estimat-
ing the protophases and transforming them into genuine
phases, the cardiorespiratory phase coupling functions

were reconstructed. Fig. 1(b) shows the reconstructed
cardiorespiratory coupling functions Qe using the car-
diac phase extracted from the ECG signal. The cou-
pling functions estimated from the phases of the arterial
pulse signal are shown in Fig. 27. The forms of the func-
tions reveal the detailed mechanism through which respi-
ration influences the cardiac oscillations i.e. the regions
with high values of the function mean higher frequencies
(acceleration), whereas low regions correspond to lower
frequencies (deceleration) of the cardiac oscillations due
to the respiratory influence. The existence of such car-
diorespiratory coupling functions was tested statistically
in respect of inter-subject and intra-subject surrogates.

The high similarity of the cardiorespiratory coupling
functions obtained from the phases of the ECG observ-
ables Fig. 1(b) and those from the arterial pulse phases
Fig. 27(b) demonstrates that the proposed method cor-
rectly identified the underlying interaction mechanism.
This was achieved because the method was able to trans-
form protophases from different observables into invari-
ant phase dynamics from which a common form of the
coupling functions was obtained. The minor differences
in the form of the functions, as compared to the pre-
vious one with ageing (Fig. 27), are related to possible
inter-subject variations and the different phase estima-
tion approaches.

The similarity of the cardiorespiratory coupling func-
tions among different subjects and between the two ob-
servable phases was further quantified with the similarity
indices (Kralemann et al., 2013a), as discussed in Sec.
IV.C and shown in Fig. 20. The similarity index that
quantifies the correlation between the form of the func-
tions, also proved very useful in assessment of the state
of general anaesthesia (Stankovski et al., 2016). It was
found that the intersubject correlation similarity of the
cardiorespiratory coupling functions, in comparison to
the awake state, decreased with the onset of propofol-
induced general anaesthesia, and to an even greater ex-
tent when sevoflurane was used.
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C. Neural coupling functions

Neural states often manifest themselves as changes in
brain electrophysiological activity, which emanates from
the dynamics of large-scale cell ensembles oscillating syn-
chronously within characteristic frequency intervals. In-
dividual ensembles communicate to integrate their local
information flows into a common brain network. One
way to describe such an integration or communication is
through cross-frequency coupling, an approach that has
led to numerous studies elucidating the respective roles of
cognition, attention, memory and anaesthesia (Canolty
et al., 2006; Jirsa and Müller, 2013; Lakatos et al., 2008;
Stefanovska, 2007). Unlike these cross-frequency cou-
pling strength approaches, the methods discussed here
can assess the neural states through the computation of
the coupling functions, hence describing the functional
forms and mechanisms of individual cross-frequency in-
teractions. In this way, one infers neural cross-frequency
coupling functions (Stankovski et al., 2017).

The methods for the reconstruction of coupling func-
tions have been applied to electroencephalogram (EEG)
recordings. The brainwave intervals, including the δ (0.8-
4 Hz), θ (4-7.5 Hz), α (7.5-14 Hz), β (14-22 Hz) and γ
(22-80 Hz), were first extracted from a single EEG chan-
nel recording. The phase was then extracted from each
filtered time series, using for example the Hilbert trans-
form or the synchrosqueezed wavelet transform. During
this preprocessing procedure, particular care was taken
to minimise overlap between the spectra of the intervals
(Lehnertz et al., 2014): overlaps of consecutive frequency
intervals would result in overestimation of the corre-
sponding phase-to-phase coupling. Dynamical Bayesian
inference was then used to reconstruct the coupling func-
tions from the multivariate five-phase oscillators. In a
similar manner, dynamical Bayesian inference was ap-
plied to a study of neural interactions during epileptic
seizures (Wilting and Lehnertz, 2015), though not for
cross-frequency coupling.

As the brain is a highly complex system that can me-
diate a variety of functions from fixed structure (Park
and Friston, 2013), the coupling relationships between
the brainwaves can be different. One important coupling
relation is the δ, α → α, as it has been found that the
δ-waves typical of deep sleep in adults can influence the
α-activity, which is related to the processing of informa-
tion (Feinberg et al., 1987; Jirsa and Müller, 2013). Fig.
29(a) shows how the form of the δ, α→ α coupling func-
tions varies in relation to their spatial locations on the
head. It can be seen that the tridimensional waves prop-
agate mostly in the δ dimension. This tendency can be
seen better in Fig. 29(b), which shows the averaged cou-
pling function. Its form depends predominantly on the
direct delta oscillation, changing mostly along the φδ-
axis. This reveals how and when within one cycle the δ
oscillations accelerate and decelerate the α oscillations.
Other coupling relationships could include for example
the pairwise θ, γ → γ and α, γ → γ, or the multivariate

triplet θ, α, γ → γ, as shown previously in Fig. 7.

Neural cross-frequency coupling functions were used
recently to elucidate the mechanisms of general anaes-
thesia (Stankovski et al., 2016). In fact, the analyses
also included the cardiac and respiratory oscillations (in a
sense integrating Secs. V.B and V.C). Here, we review an
important finding based on the neural δ-α coupling func-
tions. The study included 25 awake and 29 anaesthetized
healthy subjects, of which 14 subjects were anaesthetized
with the intravenous anaesthetic propofol and 15 subjects
with the inhalational anaesthetic sevoflurane. The aim of
the study was to determine if there are any differences in
the interaction mechanisms in respect of the three states:
awake; and anaesthetized with either propofol or sevoflu-
rane.

Fig. 28 shows the group δ-α coupling functions for
the three states. The coupling functions for the awake
resting, propofol, and sevoflurane states are evidently
quite different from each other, both in the forms and
strengths of the couplings. The δ-α coupling function
for the awake state has a relatively complex and vary-
ing form, and low amplitude. The coupling functions for
propofol and sevoflurane are similar to each other and
they look significantly different from those for the awake
state. The sevoflurane coupling function has the largest
coupling amplitude. Careful surrogate testing showed
that the propofol and sevoflurane coupling functions are
statistically significantly different from the correspond-
ing surrogates. The qualitative form of the δ-α coupling
function has a sine-like form along the φδ-axis, while re-
maining nearly constant along the φα-axis. This implies
that much of the δ-α coupling comes from the direct con-
tribution of the delta oscillation. The specific form of the
function (e.g. Fig. 28(c)) reveals the underlying coupling
mechanism, i.e. it shows that, when the delta oscillations
are between π and 2π, the sine-wave coupling function is
higher and the delta activity accelerates the alpha oscil-
lations; similarly, when the delta oscillations are between
0 and π, the coupling function is decreased and delta
decelerates the alpha oscillations.

The delta-alpha coupling has been linked to the cod-
ing mechanism of feedback valence information (Cohen
et al., 2009), non-REM sleep (Bashan et al., 2012) and
the eyes-closed state (Jirsa and Müller, 2013). The find-
ings with anæsthesia are consistent with, and have fur-
ther extended, these findings. The form of the δ-α cou-
pling functions (e.g. Fig. 28 (c)) indicates that the influ-
ence is direct modulation from delta to alpha, where the
couplings are significantly stronger in anæsthesia than
when awake. This showed that, once the subject is anaes-
thetized, delta activity influences the alpha oscillations
by contributing to the reduction of information process-
ing and integration.
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Figure 28 (color online). Neural cross-frequency coupling functions between δ and α oscillations in general anaesthesia. (a)-
(c) The average coupling functions from all subjects within the group. Note that, for realistic comparison, the vertical scale
of coupling amplitude is the same in each case. Here, Awake refers to the state when the subject is conscious and resting;
and Propofol and Sevoflurane to states when the subject is anaesthetized with propofol or sevoflurane, respectively. From
Stankovski et al. (2016).

Figure 29 (color online). Examples of neural cross-frequency
coupling functions. (a) Spatial distribution of the δ-α cou-
pling functions over the head, based on the different probe
locations. (b) Average coupling function along all the probes
for the δ-α coupling relation. Each δ-α coupling function
qα(φδ, φα) is evaluated from the α-dynamics and depends on
the bivariate (φδ, φα) phases. From Stankovski et al. (2015).

D. Social sciences

In a recent application in social sciences, Ranganathan
et al. (2014); Spaiser et al. (2014) have identified the cou-
pling functions that capture interactions between social
variables, employing a Bayes factor to decide how many
interaction terms should be included in the model.

The work presents an interesting study of the relation-
ship between democracy and economic growth, identi-
fying nonlinear relationships between them. Economic
growth is assessed through the GDP per capita (from
the World Bank), while the level of democracy is gauged
from the democracy index (from Freedom House) (Ran-
ganathan et al., 2014). It is well known that the GDP per
capita and democracy are highly correlated: higher GDP
implies more democracy. The linear Pearson correlation
coefficient between the two variables is 0.571 (p < 0.01).
However, by use of coupling functions one can try to de-
termine a more precise, causal relationship between the

variables, revealing the underlying mechanism.
In its general form, the model considered is:

Ḋ = q1(D,G); Ġ = q2(D,G),

where D denotes the democracy and G is GDP per capita.
In this way the change of the variables D and G is repre-
sented with ordinary differential equations, even though
the original data are discrete and one should really use
difference rather than differential equations. Neverthe-
less, this approximation was used for mathematical sim-
plicity. Further, the model can have some of the func-
tions from a set of seventeen base functions of polynomial
form, including reciprocal, quadratic and cubic terms.
The main idea of the method is to select the optimal
base functions thereby reducing the number of terms in
the model.

The inference itself consists of two main steps. The
first is an inferential fitting to obtain a model from the
data, based on a maximum likelihood procedure, and
involving multiple linear regression (similar to that dis-
cussed in Sec. IV.B.3). The second step uses a Bayesian
(Berger and Pericchi, 1996) model selection procedure2.
Here, the method decides how many interaction terms
should be included in the model, i.e. it selects a sub-
group of base functions of the seventeen polynomials
available, after trying all possible combinations among
them. Thus, the method punishes overly complicated
models and identifies the models with the most explana-
tory power. Such procedures could benefit greatly if a
surrogate testing procedure (see Sec. I.B.2) were used to
determine whether the finally selected model is genuinely
reliable.

2 We note that the Bayes factor uses the Bayesian probability the-
ory too; however, as it is purely statistical procedure, it differs
from the DBI as discussed in Sec. IV.B.2.
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Figure 30 (color online). Coupling functions of the change in democracy q1(D,G), from the interaction between GDP and

democracy. For (a) the two term model is used, while for (b) the five term model. The black line is the solution Ḋ = 0. The
strength of the coupling functions are encoded by the colorbars shown on the side of each figure. From Ranganathan et al.
(2014).

The method was applied to model the interaction of
democracy and GDP per capita for the years 1981-2006
for 74 countries. The resulting coupling functions for two
selected models are shown in Fig. 30. The simplest model
shown in Fig. 30(a) includes a coupling function with two

terms Ḋ = 0.11G3 − 0.067D/G, while the best fit five-

function model Fig. 30(b) was given as Ḋ = 0.77G3 +
1.9D − 0.85D/G − 0.96DG − 0.14D2. For the middle
GDP, both of the coupling functions show dependences
that closely relate to the linear dependence determined
with the simple correlation coefficient. However, there
were some nonlinear deviations from this, especially for
very low and very high GDP. In particular, the threshold
for very high GDP indicated that there is no significant
improvement in democracy with further GDP growth.

Similarly, the best model for G was inferred to be Ġ =
0.014 + 0.0064DG − 0.02G, which shows primarily that
the GDP is growing at a constant rate, but in addition
demonstrates that it is positively affected by democracy
interacting with GDP, and that the growth is self-limiting
at high levels of GDP.

Finally, we point out that the method was further ap-
plied to investigate the interactions of other social vari-
ables, such as the case of interactions between democracy,
development and cultural values (Spaiser et al., 2014).
These works could benefit significantly from further cou-
pling function assessment and analysis.

E. Mechanical coupling functions

Mechanical clocks and oscillators provide an impor-
tant cornerstone in the study of interactions and synchro-
nization phenomena, starting from the earliest observa-
tions of the phenomenon in pendulum clocks by Huygens
(1673), up to the more comprehensive and detailed stud-
ies based on current methods (Kapitaniak et al., 2012).

Figure 31 (color online). Coupling functions for the two cou-
pled mechanical metronomes. (top) Experimental apparatus
with the two metronomes, placed on a rigid support. (a),(b)
The coupling function in each direction from the case of cou-
pling with one rubber band; (c),(d) with two rubber bands.
(e),(f) coupling functions for the “uncoupled” without any
rubber bands. The vertical scales are the same so that one
can clearly see the reduction of the coupling function in the
uncoupled case. From Kralemann et al. (2008).

Kralemann et al. (2008) describe an experiment using
two coupled mechanical metronomes for the analysis of
coupling functions. The metronomes were placed on a
rigid base and the coupling through which they inter-
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Figure 32 (color online). Schematic diagram showing the communication protocol based on coupling functions. Messages
s1, . . . , sn are encrypted by modulation of the coupling functions connecting two dynamical systems at the transmitter. Only
two signals are transmitted through the public domain. The receiver consists of two systems of the same kind with the same
coupling functions (forming the private key) and uses dynamical Bayesian inference to reconstruct s1, . . . , sn. From Stankovski
et al. (2014).

act and influence each other was achieved by connecting
them with an elastic rubber band – Fig. 31(top). A dig-
ital camera was used for acquiring the data, from which
the oscillatory signals were extracted. Coupling functions
were determined for three different experimental condi-
tions, when: (i) the pendulums of the metronomes were
linked by a rubber band; (ii) the pendulums were linked
by two rubber bands; and (iii) the metronomes were un-
coupled.

From the extracted signals, the Hilbert transform pro-
tophases were first estimated, and then transformed to
genuine phases. The coupling functions were then recon-
structed with a fitting procedure based on kernel smooth-
ing. Fig. 31 shows the results for the three cases. By
comparison of the coupling functions in the case of one
rubber coupling Fig. 31(a),(b) with the coupling of two
rubber coupling Fig. 31(c),(d), one can see that the form
is very similar, while the coupling strength is slightly
higher for the case of two-band coupling. The coupling
functions is of a complex form, changing along both axes,
thus reflecting the bidirectional influence and contribu-
tion within the couplings. The methodology correctly
detects extremely weak coupling functions Fig. 31(e),(f)
for the case of no explicit coupling. Future develop-
ments of this work could benefit from comparison of the
extracted coupling functions with the actual mechanics
of the coupled metronomes, as well as from validation of
the weak coupling regime for better justification of the
use of phases.

F. Secure communications

The findings that the cardiorespiratory coupling func-
tion can be decomposed into a number of independent
functions, and that the latter can have a time-varying na-
ture (Stankovski et al., 2012) and Sec. V.B, inspired the
creation of a new class of secure communications char-
acterized by high efficiency and modularity (Stankovski
et al., 2014).

The protocol (Fig. 32) starts with a number of infor-
mation signals coming from different channels or commu-
nications devices (e.g. mobile phone, sensor networks, or
wireless broadband) needing to be transmitted simulta-
neously. Each of the signals si is encrypted in an ampli-
tude coupling function; i.e. they serve as scaling parame-
ters in the nonlinear coupling functions between two self-
sustained systems in the transmitter. The coupling func-
tions constitute the private key and, in principle, have
an unbounded continuum of possible combinations. Two
signals, one from each system, are transmitted through
the public channel. At the receiving end, two similar
systems are enslaved, i.e. completely synchronized, by
the two transmitted signals. Finally, by applying time-
evolving dynamical Bayesian inference (as discussed in
Sec. IV.B.2) to the reconstructed systems, one can in-
fer the model parameters and decrypt the information
signals si.

This application is similar to that where amplitude
coupling functions are reconstructed from data. The
coupled systems are multidimensional and may be, e.g.
chaotic Lorenz or Rössler systems. The great advantage
is that the model of the coupled systems is known ex-
actly on the side of the receiver where the inference is
performed. Thus the problem of not knowing the ampli-
tude model and its dimensionality does not exist. The
main task of the decryption lies in inferring the time-
evolution of the parameters.

The protocol can encrypt multiple signals simultane-
ously as time-evolving parameters. Each of them scales
one of the coupling functions, which are nonlinear and
mutually linearly-independent. Thus the method inher-
ently allows for multiplexing i.e. simultaneous transmis-
sion of multiple signals. Another property of the proto-
col is that it is highly resistent to channel noise. This is
because the dynamical Bayesian inference is performed
for stochastic dynamics, so that the method is able very
effectively to separate the unwanted noise from the de-
terministic dynamics carrying the messages.

The method is demonstrated on two bidirectionally
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Figure 33 (color online). Transmission of ten pseudoran-
dom binary signals encrypted in different coupling functions.
The high values (binary ‘1’) at the transmitter, are indicated
by grey shading. The received signals, after decrypting, are
shown by thick (red) lines, each of which (a-j) represents one
information signal si(t). The particular amplitude coupling
functions that were used for encrypting each signal are indi-
cated on the ordinate axis. The bit words are indicated by
m1-m4 on the top of the figure. From Stankovski et al. (2014).

coupled chaotic Lorenz systems. Ten information sig-
nals s1, . . . , s10 are encrypted with ten coupling func-
tions, as indicated on the ordinate axis in Fig. 33. The
choice of the particular forms of the coupling functions
prescribe the private key. After the transmission, the
systems are reconstructed on receiver side and, by ap-
plication of Bayesian inference, the information signals
are reconstructed. Fig. 33 shows good agreement of the
original with the decrypted bits.

VI. OUTLOOK AND CONCLUSION

A. Future directions and open questions

Coupling functions have been studied as early as some
of the first theoretical works on interactions and they
remain a very active field of research that is attracting
increasing interest from the scientific community. They
bring a certain complexity in understanding, but at the
same time they also illuminate, and provide deeper in-
sight into, the interaction mechanisms. As such, cou-
pling functions pose many open questions and there still
remain many related aspects that are not well under-
stood. Below, we discuss some of the open questions and

current possibilities for further developments related to
coupling functions.

1. Theory

The theoretical development of coupling functions will
lead to a better understanding of the mechanisms re-
sponsible for the resulting overall dynamics, and they
may help to incorporate seemingly different models into
a general overall framework. Future theoretical studies
need to identify the classes of coupling functions that
lead to particular physical effects. In doing so, one
needs to determine if there are some classes of functions
which demonstrate unique characteristics, and more im-
portantly whether some particular functions lead to com-
mon effects. As a consequence, these can then lead to
classes of functions to be used in engineering, for con-
trolling or predicting the outcome of the interactions.

The experimental results suggest two important direc-
tions for the theoretical development. First, coupling
functions can be nonautonomous. Secondly, coupling
functions can lead to the coexistence of attractors.

The theory of nonautonomous dynamical systems has
gained recent interest, mainly in relation to finite-time bi-
furcations (Kloeden and Rasmussen, 2011). These math-
ematical developments will play a major role in the the-
ory of coupling functions. The theoretical studies should
include systematic and comprehensive descriptions of
the different classes of coupling function, including the
nonautonomous case.

The coexistence of attractors has gained considerable
attention. As experimental results show, coupling func-
tions are important, especially in relation to network
structure and the effect on the basin of attraction, e.g.
the basin of attraction of synchronization. Recent re-
sults have shown that the roles of coupling function and
network structure can be nontrivial (Menck et al., 2013).
We still need new theoretical methods to tackle problems
associated with the involvement of coupling functions in
the coexistence of attractors. These questions are in-
timately related to the stability of the system and will
play a role in important practical applications, such as
to electrical power-grids.

2. Methods

The future development of coupling function methods
needs to take into account all the advantages and pitfalls
of current methods, e.g. as outlined in the critical com-
parison Sec. IV.B.6. So far, all the coupling functions
methods have been applied to pairs of coupled systems,
or small to medium size networks. New methods should
allow applications to the more prevalent large-scale net-
works. In line with this, they should aim to achieve faster
calculations so as to facilitate the ever-growing demand
for extensive computation.
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There is also a room for improvements of the amplitude
coupling function methods. The search for more gener-
ally applicable amplitude models remains open. These
should be as general as possible, or at least general
enough for specific sub-systems.

There is a need to overcome the problem of inferring
coupling functions from systems that are highly synchro-
nized and coherent in 1:1 frequency ratio. Currently, this
is a common deficiency in all of the available methods for
coupling (function) reconstruction. A possible direction
for solving this issue could lie in the use of perturbation,
for example starting from different initial conditions or
with some other form of temporary deviation from the
highly coherent state.

To enhance the inference of more general interactions,
efforts are needed to develop and design robust methods
for distinguishing direct from indirect couplings, better
surrogates and null models for determining significant
couplings and interpretation of the couplings in high-
dimensional networks.

3. Analysis

We also point to the need for further development in
coupling function analysis: although the basic coupling
function theory and methods are relatively well devel-
oped, there is a pressing need for measures able to ex-
ploit the computed coupling functions to better effect.
The current tools, including similarity analysis and cou-
pling function decomposition, are very useful, but there is
a clear need for development of even more analysis tools.
The task here is to find better and more systematic ways
of quantifying and describing the form of the coupling
functions and the other functional characteristics unique
to coupling functions.

The development of such methods for analysing and
characterizing coupling functions could be linked to the
mathematical theory of functional analysis. To date, this
theory including the main concepts in vector spaces, and
measures of mappings between the functions, have not
yet been fully exploited in relation to coupling functions.

4. Integration theory-applications

We emphasize that further interplay between theory
and applications for the development of coupling func-
tions is still needed. Although the applications usually
take into account theoretical developments, recent exper-
imental findings have not yet been properly addressed by
the theory. For example, the theoretically most studied
form of coupling functions is that for diffusive coupling,
which includes the state or phase difference as an ar-
gument. The latter is mostly used because it provides
convenient solvable solutions (see e.g. history, Sec. II.B).
On the other hand, the coupling decomposition experi-
ments have shown that it is the direct coupling function

that often predominates in reality, especially in biolog-
ical oscillatory interactions. Hence, further theoretical
studies are needed to establish the phenomena and the
nature of interactions for direct coupling functions. Such
theoretical investigations can usefully be performed nu-
merically in cases where the relevant model cannot be
solved analytically.

5. Applications

Coupling functions have universal implications for all
interactions between (dynamical) systems. As such, they
can describe mechanisms operating between systems that
are seemingly of very different natures. We have reviewed
a number of important applications, including for exam-
ple chemical, biomedical, mechanical, social and secure
communications; however, the unique features of cou-
pling functions promise even further application in these
and in other fields. We outline below some foreseeable di-
rections for new applications, notwithstanding that many
others are also possible.

Recently, there has been a significant interest and de-
velopments in the study of interactions and synchro-
nization in power grids (Rohden et al., 2012; Rubido,
2015). To ensure a reliable distribution of power, the
network should be highly controllable and synchronized.
It is therefore very important that the state of syn-
chronization should be highly stable (i.e. deep in the
Arnold tongue), so as to ensure that small disruptions
and glitches will not interrupt the function of the net-
work. Coupling functions should be investigated in or-
der to establish how to design and engineer a persistent
(Pereira et al., 2014) and very stable state of synchro-
nization.

Similar problems occur with the control, synchroniza-
tion and optimization in transport grids (Albrecht, 2004;
Rodrigue, 1999), for example in a rail network. In such
cases, of vital importance are the dynamical and the
time-varying events. The developed methods and the-
ory for time-varying coupling functions could be of great
use in these applications.

Increasing the scale of the networks often leads to
higher-level organization, including networks of networks
and multilayer networks (Kivelä et al., 2014; Stern, 2013).
In such high-dimensional spaces, a variety of different
physical effects can be observed, e.g. synchronization,
chimeras, and clustering. The coupling functions of dif-
ferent levels and layers could provide deeper insight into
the functions or subfunction integration of the networks.

Coupling functions have been found very useful in
studying the interactions between macroscopic physiolog-
ical systems, such as those between the cardiorespiratory
and neural systems reviewed above. Further coupling
function investigations will probably be developed be-
tween different oscillations in integrated network physiol-
ogy (Bashan et al., 2012; Stefanovska, 2007). In a similar
way, coupling functions between microscopic physiolog-
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ical organizations could be developed. The latter could
explore coupling functions between cells including, for ex-
ample, the oscillations of neurons or stem cells (Eytan
and Marom, 2006; Jackson et al., 2001; Méndez-Ferrer
et al., 2008; Murthy and Fetz, 1996).

B. Conclusion

In recent years, the investigation of coupling functions
has developed into a very active and rapidly evolving
field. Their study and use have brought huge progress
in the understanding of the mechanisms underlying the
diverse interactions seen in nature. The enterprise has
now reached a critical mass, offering increased potential
for new and important discoveries, and in this way the
topic has attained a substance and unity justifying the
present review.

The concept of the function in the coupling functions is
perhaps its most important characteristic. Yet, precisely
because of being a function, it is inevitably harder to
interpret, assess and compare than is the case for quan-
titative measures such as the coupling strength. In at-
tempting to integrate and pull together existing knowl-
edge about coupling functions, therefore, we have tried
to organize, explain and, as far as possible, to standard-
ize their description in the hope of making them more
generally accessible and useful.

Interactions underlie many important phenomena and
functions of the systems found in nature, and it is of
great importance to be able to describe and understand
the mechanisms through which the interactions occur.
Coupling functions are opening up new perspectives on
these interactions and we envisage that they will catalyze
increased research activity on coupled dynamical systems
and their interactions in the future.
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I. Omelchenko, and E. Schöll, 2012, Nature Phys. 8(9),
658.

Haken, H., 1975, Rev. Mod. Phys. 47, 67.
Haken, H., 1983, Synergetics, An Introduction (Springer,

Berlin).
Hannay, K. M., V. Booth, and D. B. Forger, 2015, Phys. Rev.

E 92, 022923.
Hansel, D., G. Mato, and C. Meunier, 1993a, Phys. Rev. E

48(5), 3470.
Hansel, D., G. Mato, and C. Meunier, 1993b, Europhys. Lett.

23(5), 367.
Hart, J. D., J. P. Pade, T. Pereira, T. E. Murphy, and R. Roy,

2015, Phys. Rev. E 92(2), 022804.
Heagy, J. F., T. L. Carroll, and L. M. Pecora, 1994, Phys.

Rev. Lett. 73(26), 3528.
Hens, C. R., O. I. Olusola, P. Pal, and S. K. Dana, 2013,

Phys. Rev. E 88(3), 034902.
Higuchi, M., and H. Yasuhara, 2003, Intern. J. Mod. Phys. B

17(17), 3075.
Hirsch, M. W., M. Shub, and C. C. Pugh, 1977, Invariant

Manifolds (Springer, Berlin).
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Pflügers Archiv. 363, 263.

Keogh, E., and A. Mueen, 2011, in Encyclopedia of Machine
Learning, edited by C. Sammut and G. I. Webb (Springer),
pp. 257–258.

Khramov, D. M., and C. W. Bielawski, 2007, J. Organ. Chem.
72(25), 9407.

Kim, S., S. H. Park, and C. S. Ryu, 1997, Phys. Rev. Lett.
79(15), 2911.

Kiss, I. Z., C. G. Rusin, H. Kori, and J. L. Hudson, 2007,
Science 316(5833), 1886.

Kiss, I. Z., Y. Zhai, and J. L. Hudson, 2002, Science
296(5573), 1676.

Kiss, I. Z., Y. Zhai, and J. L. Hudson, 2005, Phys. Rev. Lett.



51

94, 248301.
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F. Bajrović, and S. Ribarič, 2000, Phys. Rev. Lett. 85(22),
4831.

Stepowski, D., 1992, Prog. Energ. Combust. Sci. 18(6), 463.
Stern, P., 2013, Science 342(6158), 577.
Steur, E., I. Tyukin, and H. Nijmeijer, 2009, Physica D

238(21), 2119.
Stiefel, K. M., B. S. Gutkin, and T. J. Sejnowski, 2008, PLoS

ONE 3(12), e3947.
Strogatz, S., 2001, Nonlinear Dynamics And Chaos (West-

view Press, Boulder).
Strogatz, S. H., 2000, Physica D 143, 1.
Strogatz, S. H., 2003, Sync: The Emerging Science of Spon-

taneous Order (Hyperion, New York).
Strogatz, S. H., and R. E. Mirollo, 1991, J. Stat. Phys. 63(3-

4), 613.
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