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The dynamical systems found in nature are rarely isolated. Instead they interact and influence
each other. The coupling functions that connect them contain detailed information about the
functional mechanisms underlying the interactions and prescribe the physical rule specifying
how an interaction occurs. A coherent and comprehensive review is presented encompassing the
rapid progress made recently in the analysis, understanding, and applications of coupling
functions. The basic concepts and characteristics of coupling functions are presented through
demonstrative examples of different domains, revealing the mechanisms and emphasizing their
multivariate nature. The theory of coupling functions is discussed through gradually increasing
complexity from strong and weak interactions to globally coupled systems and networks. A variety
of methods that have been developed for the detection and reconstruction of coupling functions
from measured data is described. These methods are based on different statistical techniques
for dynamical inference. Stemming from physics, such methods are being applied in diverse
areas of science and technology, including chemistry, biology, physiology, neuroscience, social
sciences, mechanics, and secure communications. This breadth of application illustrates the
universality of coupling functions for studying the interaction mechanisms of coupled dynamical
systems.
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I. INTRODUCTION

A. Coupling functions, their nature, and uses

Interacting dynamical systems abound in science and tech-
nology, with examples ranging from physics and chemistry,
through biology and population dynamics, to communications
and climate (Winfree, 1980; Haken, 1983; Kuramoto, 1984;
Pikovsky, Rosenblum, and Kurths, 2001; Strogatz, 2003).
The interactions are defined by two main aspects: structure

and function. The structural links determine the connections and
communications between the systems or the topology of a
network. The functions are quite special from the dynamical
systems viewpoint as they define the laws by which the action
and coevolution of the systems are governed. The functional
mechanisms can lead to a variety of qualitative changes in the
systems. Depending on the coupling functions, the resultant
dynamics can be quite intricate, manifesting a whole range of
qualitatively different states, physical effects, phenomena, and
characteristics, including synchronization (Lehnertz and Elger,
1998; Pikovsky, Rosenblum, and Kurths, 2001; Acebrón et al.,
2005; Kapitaniak et al., 2012), oscillation and amplitude death
(Saxena, Prasad, and Ramaswamy, 2012; Koseska, Volkov, and
Kurths, 2013a), birth of oscillations (Smale, 1976; Pogromsky,
Glad, and Nijmeijer, 1999), breathers (MacKay and Aubry,
1994), coexisting phases (Keller, Künzle, and Nowicki, 1992),
fractal dimensions (Aguirre, Viana, and Sanjuán, 2009), net-
work dynamics (Boccaletti et al., 2006;Arenas et al., 2008), and
coupling strength and directionality (Stefanovska and Bračič,

1999; Rosenblum and Pikovsky, 2001; Hlaváčkováá-Schindler
et al., 2007;Marwan et al., 2007). Knowledge of such coupling
function mechanisms can be used to detect, engineer, or predict
certain physical effects, to solve someman-made problems and,
in living systems, to reveal their state of health and to investigate
changes due to disease.
Coupling functions possess unique characteristics carrying

implications that go beyond the collective dynamics (e.g.,
synchronization or oscillation death). In particular, the form of
the coupling function can be used, not only to understand, but
also to control and predict the interactions. Individual units can
be relatively simple, but the nature of the coupling function can
make their collective dynamics particular, enabling special
behavior. Additionally, there exist applications which depend
just and only on the coupling functions, including examples of
applications in social sciences and secure communication.
Given these properties, it is hardly surprising that cou-

pling functions have recently attracted considerable atten-
tion within the scientific community. They have mediated
applications, not only in different subfields of physics, but
also beyond physics, predicated by the development of
powerful methods enabling the reconstruction of coupling
functions from measured data. The reconstruction within
these methods is based on a variety of inference techniques,
e.g., least-squares and kernel smoothing fits (Rosenblum
and Pikovsky, 2001; Kralemann et al., 2013), dynamical
Bayesian inference (Stankovski et al., 2012), maximum
likelihood (multiple-shooting) methods (Tokuda et al.,
2007), stochastic modeling (Schwabedal and Pikovsky,
2010), and the phase resetting (Galán, Ermentrout, and
Urban, 2005; Timme, 2007; Levnajić and Pikovsky, 2011).
Both the connectivity between systems and the associated

methods employed for revealing it are often differentiated into
structural, functional, and effective connectivity (Friston,
2011; Park and Friston, 2013). Structural connectivity is
defined by the existence of a physical link, such as anatomical
synaptic links in the brain or a conducting wire between
electronic systems. Functional connectivity refers to the
statistical dependences between systems, such as, for exam-
ple, correlation or coherence measures. Effective connectivity
is defined as the influence one system exerts over another,
under a particular model of causal dynamics. Importantly in
this context, the methods used for the reconstruction of
coupling functions belong to the group of effective connec-
tivity techniques, i.e., they exploit a model of differential
equations and allow for dynamical mechanisms—such as the
coupling functions themselves—to be inferred from data.
Coupling function methods have been applied widely

(Fig. 1) and to good effect: in chemistry, for understanding,
effecting, or predicting interactions between oscillatory
electrochemical reactions (Miyazaki and Kinoshita, 2006;
Kiss et al., 2007; Tokuda et al., 2007; Blaha et al., 2011;
Kori et al., 2014); in cardiorespiratory physiology (Stankovski
et al., 2012; Iatsenko et al., 2013; Kralemann et al., 2013;
Ticcinelli et al., 2017) for reconstruction of the human
cardiorespiratory coupling function and phase resetting curve,
for assessing cardiorespiratory time variability, and for study-
ing the evolution of the cardiorespiratory coupling functions
with age; in neuroscience for revealing the cross-frequency
coupling functions between neural oscillations (Stankovski
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et al., 2015); and polyrithmic behavior in neuronal circuits
(Wojcik et al., 2014; Schwabedal, Knapper, and Shilnikov,
2016); in social sciences for determining the function under-
lying the interactions between democracy and economic
growth (Ranganathan et al., 2014); for mechanical interactions
between coupled metronomes (Kralemann et al., 2008); and in
secure communications where a new protocol was developed
explicitly based on amplitude coupling functions (Stankovski,
McClintock, and Stefanovska, 2014).
In parallel with their use to support experimental work,

coupling functions are also at the center of intense theoretical
research (Crawford, 1995; Daido, 1996a; Strogatz, 2000;
Acebrón et al., 2005). Particular choices of coupling functions
can allow for a multiplicity of singular synchronized states
(Komarov and Pikovsky, 2013). Coupling functions are
responsible for the overall coherence in complex networks
of nonidentical oscillators (Luccioli and Politi, 2010; Pereira

et al., 2013; Ullner and Politi, 2016) and for the formation of
waves and antiwaves in coupled neurons (Urban and
Ermentrout, 2012). Coupling functions play important roles
in the phenomena resulting from interactions such as syn-
chronization (Kuramoto, 1984; Daido, 1996a; Maia, Pereira,
and Macau, 2015), amplitude and oscillation death (Aronson,
Ermentrout, and Kopell, 1990; Koseska, Volkov, and Kurths,
2013a; Zakharova, Kapeller, and Schöll, 2014; Schneider
et al., 2015), the low-dimensional dynamics of ensembles
(Watanabe and Strogatz, 1993; Ott and Antonsen, 2008), and
clustering in networks (Ashwin and Timme, 2005; Kori et al.,
2014). The findings of these theoretical works are further
fostering the development of methods for coupling function
reconstruction, paving the way to additional applications.

B. Significance for interacting systems more generally

An interaction can result from a structural link throughwhich
causal information is exchanged between the system and one or
more other systems (Winfree, 1980; Haken, 1983; Kuramoto,
1984; Pikovsky, Rosenblum, and Kurths, 2001; Strogatz,
2003). Often it is not so much the nature of the individual
parts and systems, but how they interact that determines their
collective behavior. One example is circadian rhythms, which
occur across different scales and organisms (DeWoskin et al.,
2014). The systems themselves can be diverse in nature—
for example, they can be either static or dynamical,
including oscillatory, nonautonomous, chaotic, or stochastic
characteristics (Katok and Hasselblatt, 1997; Strogatz, 2001;
Gardiner, 2004; Kloeden and Rasmussen, 2011; Landa, 2013;
Suprunenko, Clemson, and Stefanovska, 2013). From the
extensive set of possibilities, we focus in this review on
dynamical systems, concentrating especially on nonlinear
oscillators because of their particular interest and importance.

1. Physical effects of interactions: Synchronization, amplitude,
and oscillation death

An intriguing feature is that their mutual interactions can
change the qualitative state of the systems. Thus they can cause
transitions into or out of physical states such as synchroniza-
tion, amplitude, or oscillation death, or quasisynchronized
states in networks of oscillators.
The existence of a physical effect is, in essence, defined by

the presence of a stable state for the coupled systems. Their
stability is often probed through a dimensionally reduced
dynamics, for example, the dynamics of their phase difference
or of the driven system only. By determining the stability of
the reduced dynamics, one can derive useful conclusions
about the collective behavior. In such cases, the coupling
functions describe how the stable state is reached and the
detailed conditions for the coupled systems to gain or lose
stability. In data analysis, the existence of the physical effects
is often assessed through measures that quantify, either
directly or indirectly, the resultant statistical properties of
the state that remains stable under interaction.
The physical effects often converge to a manifold, such as a

limit cycle. Even after that, however, coupled dynamical
systems can still exhibit their own individual dynamics,
making them especially interesting objects for study.

FIG. 1. Examples of coupling functions used in chemistry,
cardiorespiratory physiology, and secure communications to
demonstrate their diversity of applications. (a) Coupling func-
tions used for controlling and engineering the interactions of two
(left) and four (right) nonidentical electrochemical oscillations.
From Kiss et al., 2007. (b) Human cardiorespiratory coupling
function Qe reconstructed from the phase dynamics of the heart
φe and respiration φr phases. From Kralemann et al., 2013.
(c) Schematic description of the coupling function encryption
protocol. From Stankovski, McClintock, and Stefanovska, 2014.
Multiple information signals are encrypted by modulating the
parameters of linearly independent coupling functions between
(chaotic) dynamical systems at the transmitter. These applications
are discussed in detail in Sec. V.
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Arguably, synchronization is the most studied of all such
physical effects. It is defined as an adjustment of the rhythms
of the oscillators, caused by their weak interaction (Pikovsky,
Rosenblum, and Kurths, 2001). Synchronization is the under-
lying qualitative state that results from many cooperative
interactions in nature. Examples include cardiorespiratory
synchronization (Kenner, Passenhofer, and Schwaberger,
1976; Schäfer et al., 1998; Stefanovska et al., 2000), brain
seizures (Lehnertz and Elger, 1998), neuromuscular activity
(Tass et al., 1998), chemistry (Miyazaki and Kinoshita, 2006;
Kiss et al., 2007), the flashing of fireflies (Buck and Buck,
1968; Mirollo and Strogatz, 1990), and ecological synchro-
nization (Blasius, Huppert, and Stone, 1999). Depending on
the domain, the observable properties, and the underlying
phenomena, several different definitions and types of
synchronization have been studied. These include phase
synchronization, generalized synchronization, frequency syn-
chronization, complete (identical) synchronization, lag syn-
chronization, and anomalous synchronization (Ermentrout,
1981; Kuramoto, 1984; Pecora and Carroll, 1990; Rulkov
et al., 1995; Kocarev and Parlitz, 1996; Rosenblum, Pikovsky,
and Kurths, 1996; Arnhold et al., 1999; Brown and Kocarev,
2000; Pikovsky, Rosenblum, and Kurths, 2001; Blasius,
Montbrio, and Kurths, 2003; Eroglu, Lamb, and Pereira,
2017).
Another important group of physical phenomena attribut-

able to interactions are those associated with oscillation and
amplitude deaths (Bar-Eli, 1985; Mirollo and Strogatz, 1990;
Prasad, 2005; Suárez-Vargas et al., 2009; Koseska, Volkov,
and Kurths, 2013a; Zakharova et al., 2013; Schneider et al.,
2015). Oscillation death is defined as a complete cessation of
oscillation caused by the interactions, when an inhomo-
geneous steady state is reached. Similarly, in amplitude death,
due to the interactions a homogeneous steady state is reached
and the oscillations disappear. The mechanisms leading to
these two oscillation quenching phenomena are mediated by
different coupling functions and conditions of interaction,
including strong coupling (Mirollo and Strogatz, 1990; Zhai,
Kiss, and Hudson, 2004), conjugate coupling (Karnatak,
Ramaswamy, and Prasad, 2007), nonlinear coupling
(Prasad et al., 2010), repulsive links (Hens et al., 2013),
and environmental coupling (Resmi, Ambika, and Amritkar,
2011). These phenomena are mediated, not only by the phase
dynamics of the interacting oscillators, but also by their
amplitude dynamics, where the shear amplitude terms and
the nonisochronicity play significant roles. Coupling func-
tions define the mechanism through which the interaction
causes the disappearance of the oscillations.
There is a large body of earlier work in which physical

effects, qualitative states, or quantitative characteristics of the
interactions were studied, where coupling functions consti-
tuted an integral part of the underlying interaction model,
regardless of whether or not the term was used explicitly.
Physical effects are very important and they are closely
connected with the coupling functions. In such investigations,
however, the coupling functions themselves were often not
assessed or considered as entities in their own right. In simple
words, such investigations posed the question of whether
physical effects occur; while for the coupling function inves-
tigations the question is rather how they occur. Our emphasis

is therefore on coupling functions as entities, on the explora-
tion and assessment of different coupling functions, and on the
consequences of the interactions.

2. Coupling strength and directionality

The coupling strength gives a quantitative measure of the
information flow between the coupled systems. In an infor-
mation-theoretic context, this is defined as the transfer of
information between variables in a given process. In a
theoretical treatment the coupling strength is clearly the
scaling parameter of the coupling functions. There is great
interest in being able to evaluate the coupling strength for
which many effective methods have been designed (Mormann
et al., 2000; Rosenblum and Pikovsky, 2001; Paluš and
Stefanovska, 2003; Marwan et al., 2007; Bahraminasab et al.,
2008; Staniek and Lehnertz, 2008; Chicharro and Andrzejak,
2009; Smirnov and Bezruchko, 2009; Jamšek, Paluš, and
Stefanovska, 2010; Faes, Nollo, and Porta, 2011; Sun, Taylor,
and Bollt, 2015). The dominant direction of influence, i.e., the
direction of the stronger coupling, corresponds to the direc-
tionality of the interactions. Earlier, it was impossible to detect
the absolute value of the coupling strength, and a number of
methods exist for detection only of the directionality through
measurements of the relative magnitudes of the interactions—
for example, when detecting mutual information (Paluš and
Stefanovska, 2003; Staniek and Lehnertz, 2008; Smirnov and
Bezruchko, 2009), but not the physical coupling strength. The
assessment of the strength of the coupling and its predominant
direction can be used to establish if certain interactions exist at
all. In this way, one can determine whether some apparent
interactions are in fact genuine, and whether the systems under
study are truly connected or not.
When the coupling function results from a number of

functional components, its net strength is usually evaluated as
the Euclidian norm of the individual components’ coupling
strengths. Grouping the separate components, for example, the
Fourier components of periodic phase dynamics, one can
evaluate the coupling strengths of the functional groups of
interest. The latter could include the coupling strength either
from one system or the other or from both of them. Thus one
can detect the strengths of the self-, direct, and common
coupling components, or of the phase response curve (PRC)
(Kralemann, Pikovsky, and Rosenblum, 2011; Iatsenko et al.,
2013; Faes, Porta, and Nollo, 2015). In a similar way, these
ideas can be generalized for multivariate coupling in networks
of interacting systems.
It is worth noting that, when inferring couplings even from

completely uncoupled or very weakly coupled systems, the
methods will usually detect nonzero coupling strengths. This
results mainly from the statistical properties of the signals.
Therefore, one needs to be able to ascertain whether the
detected coupling strengths are genuine, or spurious, just
resulting from the inference method. To overcome this
difficulty, one can apply surrogate testing (Paluš and
Hoyer, 1998; Schreiber and Schmitz, 2000; Andrzejak et al.,
2003; Kreuz et al., 2004) which generates independent,
uncoupled signals that have the same statistical properties
as the original signals. The apparent coupling strength
evaluated for the surrogate signals should then reflect a “zero
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level” of apparent coupling for the uncoupled signals. By
comparison, one can then assess whether the detected cou-
plings are likely to be genuine. This surrogate testing process
is also important for coupling function detection; one first
needs to establish whether a coupling relation is genuine and
then, if so, to try to infer the form of the coupling function.

3. Coupling functions in general interactions

This review is focused mainly on coupling functions
between interacting dynamical systems and especially
between oscillatory systems, because most studies to date
have been developed in that context. However, interactions
have also been studied in a broader sense for nonoscillatory,
nondynamical systems spread over many different fields,
including, for example, quantum plasma interactions
(Marklund and Shukla, 2006; Shukla and Eliasson, 2011),
solid state physics (Farid, 1997; Higuchi and Yasuhara, 2003;
Zhang, 2013), interactions in semiconductor superlattices
(Bonilla and Grahn, 2005), Josephson-junction interactions
(Golubov, Kupriyanov, and IlIchev, 2004), laser diagnostics
(Stepowski, 1992), interactions in nuclear physics (Guelfi
et al., 2007; Mitchell, Richter, and Weidenmüller, 2010),
geophysics (Murayama, 1982), space science (Feldstein,
1992; Lifton et al., 2005), cosmology (Faraoni, Jensen, and
Theuerkauf, 2006; Baldi, 2011), biochemistry (Khramov and
Bielawski, 2007), plant science (Doidy et al., 2012), oxy-
genation and pulmonary circulation (Ward, 2008), cerebral
neuroscience (Liao et al., 2013), immunology (Robertson and
Ghazal, 2016), biomolecular systems (Christen and Van
Gunsteren, 2008; Stamenović and Ingber, 2009; Dong, Liu,
and Yang, 2014), gap junctions (Wei, Xu, and Lo, 2004), and
protein interactions (Jones and Thornton, 1996; Teasdale and
Jackson, 1996; Gaballo, Zanotti, and Papa, 2002; Okamoto,
Bosch, and Hayashi, 2009). In many such cases, the inter-
actions are different in nature. They are often structural and
not effective connections in the dynamics or the correspond-
ing coupling functions may not have been studied in this
context before. Even though we do not discuss such systems
directly in this review, many of the concepts and ideas that we
introduce in connection with dynamical systems can also be
useful for the investigation of interactions more generally.

II. BASIC CONCEPT OF COUPLING FUNCTIONS

A. Principle meaning

1. Generic form of coupled systems

The main problem of interest is to understand the dynamics
of coupled systems from their building blocks. We start from
the isolated dynamics

_x ¼ fðx; μÞ;

where f∶ Rm ×Rn → Rn is a differentiable vector field with
μ being the set of parameters. For simplicity, whenever there is
no risk of confusion, we will omit the parameters. Over the last
50 years, developments in the theory of dynamical systems
have illuminated the dynamics of isolated systems. For
instance, we understand their bifurcations, including those

that generate periodic orbits as well as those giving rise to
chaotic motion. Hence we understand the dynamics of isolated
systems in some detail.
In contrast our main interest here is to understand the

dynamics of the coupled equations:

_x ¼ f1ðxÞ þ g1ðx; yÞ; ð1Þ

_y ¼ f2ðyÞ þ g2ðx; yÞ; ð2Þ

where f1;2 are vector fields describing the isolated dynamics
(perhaps with different dimensions) and g1;2 are the coupling
functions. The latter are our main objects of interest. We
assumed that they are at least twice differentiable.
Note that we could also study this problem from an abstract

point of view by representing the equations as

_x ¼ q1ðx; yÞ; ð3Þ

_y ¼ q2ðx; yÞ; ð4Þ

where the functions q1;2 incorporate both the isolated dynam-
ics and the coupling functions. This notation for inclusion of
coupling functions, with no additive splitting between the
interactions and the isolated dynamics, can sometimes be
quite useful (Aronson, Ermentrout, and Kopell, 1990; Pereira
et al., 2014). Examples include coupled cell networks
(Ashwin and Timme, 2005) or the provision of full Fourier
expansions (Rosenblum and Pikovsky, 2001; Kiss, Zhai, and
Hudson, 2005) when inferring coupling functions from data.

2. Coupling function definition

Coupling functions describe the physical rule specifying
how the interactions occur. Being directly connected with the
functional dependences, coupling functions focus not so much
on whether there are interactions, but more on how they
appear and develop. For instance, the magnitude of the phase
coupling function directly affects the oscillatory frequency
and describes how the oscillations are being accelerated or
decelerated by the influence of the other oscillator. Similarly,
if one considers the amplitude dynamics of interacting
dynamical systems, the magnitude of the coupling function
will prescribe how the amplitude is increased or decreased by
the interaction.
A coupling function can be described in terms of its

strength and form. While the strength is a relatively well-
studied quantity, this is not true of the form. It is the functional
form that has provided a new dimension and perspective,
directly probing the mechanisms of interaction. In other
words, the mechanism is defined by the functional form
which, in turn, specifies the rule and process through which
the input values are translated into output values, i.e., in terms
of one system (system A) it prescribes how the input influence
from another system (system B) gets translated into conse-
quences in the output of system A. In this way the coupling
function can describe the qualitative transitions between
distinct states of the systems, e.g., routes into and out of
synchronization. Decomposition of a coupling function pro-
vides a description of the functional contributions from each
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separate subsystem within the coupling relationship. Hence,
the use of coupling functions amounts to much more than just
a way of investigating correlations and statistical effects: it
reveals the mechanisms underlying the functionality of the
interactions.

3. Example of coupling function and synchronization

To illustrate the fundamental role of coupling functions in
synchronization, we considered a simple example of two
coupled phase oscillators (Kuramoto, 1984):

_ϕ1 ¼ ω1 þ ε1 sinðϕ2 − ϕ1Þ;
_ϕ2 ¼ ω2 þ ε2 sinðϕ1 − ϕ2Þ; ð5Þ

where ϕ1, ϕ2 are the phase variables of the oscillators, ω1, ω2

are their natural frequencies, ε1, ε2 are the coupling strength
parameters, and the coupling functions of interest are both
taken to be sinusoidal. (For further details including, in
particular, the choice of the coupling functions, see also
Sec. III.) Further, we consider coupling that depends only on
the phase difference ψ ¼ ϕ2 − ϕ1. In this case, from _ψ ¼
_ϕ2 − _ϕ1 and Eqs. (5) we can express the interaction in terms of
ψ as

_ψ ¼ Δω þ εqðψÞ ¼ ðω2 − ω1Þ − ðε1 þ ε2Þ sinðψÞ: ð6Þ

Synchronization will then occur if the phase difference ψ is
bounded, i.e., if Eq. (6) has at least one stable-unstable pair of
solutions (Kuramoto, 1984). Depending on the form of the
coupling function, in this case the sine formqðψÞ ¼ sinðψÞ, and
on the specific parameter values, a solution may exist. For the
coupling function given by Eq. (6) one can determine that the
condition for synchronization to occur is jε1þε2j≥ jω2−ω1j.
Figure 2 schematically illustrates the connection between

the coupling function and synchronization. An example of a
synchronized state is sketched in Fig. 2(a). The resultant
coupling strength ε ¼ ε1 þ ε2 has larger values of the fre-
quency difference Δω ¼ ω2 − ω1 at certain points within the

oscillation cycle. As the condition _ψ ¼ 0 is fulfilled, there is a
pair of stable and unstable equilibria, and synchronization
exists between the oscillators. Figure 2(b) shows the same
functional form, but the oscillators are not synchronized
because the frequency difference is larger than the resultant
coupling strength. By comparing Figs. 2(a) and 2(b) one can
note that while the form of the curve defined by the coupling
function is the same in each case, the curve can be shifted
up or down by choice of the frequency and coupling
strength parameters. For certain critical parameters, the system
undergoes a saddle-node bifurcation, leading to a stable
synchronization.
The coupling functions of real systems are often more

complex than the simple sine function presented in Figs. 2(a)
and 2(b). For example, Fig. 2(c) also shows a synchronized
state, but with an arbitrary form of coupling function that has
two pairs of stable-unstable points. As a result, there could be
two critical coupling strengths (ε0 and ε00) and either one or
both of them can be larger than the frequency difference
ω2 − ω1, leading to stable equilibria and fulfilling the syn-
chronization condition. This complex situation could cause
bistability (as presented later in relation to chemical experi-
ments of Sec. V.A). Thus comparison of Figs. 2(a) and 2(c)
illustrates the fact that, within the synchronization state, there
can be different mechanisms defined by different forms of
coupling function.

B. History

The concepts of coupling functions, and of interactions
more generally, had emerged as early as the first studies of the
physical effects of interactions, such as the synchronization
and oscillation death phenomena. In the 17th century,
Christiaan Huygens observed and described the interaction
phenomenon exhibited by two mechanical clocks (Huygens,
1673). He noticed that their pendula, which beat differently
when the clocks were attached to a rigid wall, would
synchronize themselves when the clocks were attached to a
thin beam. He realized that the cause of the synchronization
was the very small motion of the beam, and that its oscillations

T00 T

0 T(b)

(c)(a)

FIG. 2. The state of synchronization described through phase difference dynamics _ψ vs ψ . Depending on the existence of stable
equilibria, the oscillators can be (a), (c) synchronized or (b) unsynchronized. Stable points are shown as white circles, while unstable are
black circles. Adapted from Kuramoto, 1984.
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communicated some kind of motion to the clocks. In this way,
Huygens described the physical notion of the coupling—the
small motion of the beam which mediated the mutual motion
(information flow) between the clocks that were fixed to it.
In the 19th century, John William Strutt, Lord Rayleigh,

documented the first comprehensive theory of sound
(Rayleigh, 1896). He observed and described the interaction
of two organ pipes with holes distributed in a row. His peculiar
observation was that for some cases the pipes could almost
reduce one another to silence. He was thus observing the
oscillation death phenomenon as exemplified by the quench-
ing of sound waves.
Theoretical investigations of oscillatory interactions

emerged soon after the discovery of the triode generator in
1920 and the ensuing great interest in periodically alternating
electrical currents. Appleton and Van der Pol considered
coupling in electronic systems and attributed it to the effect
of synchronizing a generator with a weak external force
(Appleton, 1923; Van der Pol, 1927). Other theoretical works
on coupled nonlinear systems included studies of the syn-
chronization of mechanically unbalanced vibrators and rotors
(Blekhman, 1953) and the theory of general nonlinear
oscillatory systems (Malkin, 1956). Further theoretical studies
of coupled dynamical systems explained phenomena ranging
from biology to laser physics to chemistry (Wiener, 1963;
Winfree, 1967; Haken, 1975; Kuramoto, 1975; Glass and
Mackey, 1979). Two of these earlier theoretical works
(Winfree, 1967; Kuramoto, 1975) have particular importance
and impact for the theory of coupling functions.
In his seminal work Winfree (1967) studied biological

oscillations and population dynamics of limit-cycle oscillators
theoretically. Notably, he considered the phase dynamics of
interacting oscillators, where the coupling function was a
product of two periodic functions of the form

q1ðϕ1;ϕ2Þ ¼ Zðϕ1ÞIðϕ2Þ: ð7Þ

Here Iðϕ2Þ is the influence function through which the second
oscillator affects the first, while the sensitivity function Zðϕ1Þ
describes how the first observed oscillator responds to the
influence of the second one. [This was subsequently gener-
alized for the whole population in terms of a mean field
(Winfree, 1967, 1980).] Thus, the influence and sensitivity
functions Iðϕ2Þ, Zðϕ1Þ, as integral components of the cou-
pling function, described the physical meaning of the separate
roles within the interaction between the two oscillators. The
special case Iðϕ2Þ ¼ 1þ cosðϕ2Þ and Zðϕ1Þ ¼ sinðϕ1Þ has
often been used (Winfree, 1980; Ariaratnam and Strogatz,
2001).
Arguably, the most studied framework of coupled oscil-

lators is the Kuramoto model. It was originally introduced in
1975 through a short conference paper (Kuramoto, 1975),
followed by a more comprehensive description in an epoch-
making book (Kuramoto, 1984). Today this model is the
cornerstone for many studies and applications (Strogatz, 2000;
Acebrón et al., 2005), including neuroscience (Cumin and
Unsworth, 2007; Breakspear, Heitmann, and Daffertshofer,
2010; Cabral et al., 2014), Josephson-junction arrays
(Wiesenfeld, Colet, and Strogatz, 1996, 1998; Filatrella,

Pedersen, and Wiesenfeld, 2000), power grids (Filatrella,
Nielsen, and Pedersen, 2008; Dorfler and Bullo, 2012), glassy
states (Iatsenko, McClintock, and Stefanovska, 2014), and
laser arrays (Vladimirov, Kozyreff, and Mandel, 2003). The
model reduces the full oscillatory dynamics of the oscillators
to their phase dynamics, i.e., to so-called phase oscillators, and
it studies synchronization phenomena in a large population of
such oscillators (Kuramoto, 1984). By setting out a mean-field
description for the interactions, the model provides an exact
analytic solution.
At a recent conference celebrating “40 years of the

Kuramoto Model,” held at the Max Planck Institute for the
Physics of Complex Systems, Dresden, Germany, Yoshiki
Kuramoto presented his own views of how the model was
developed and described its path from initial ignorance on the
part of the scientific community to dawning recognition
followed by general acceptance: a video message is available
(Kuramoto, 2015). Kuramoto devoted particular attention to
the coupling function of his model, noting that:

In the year of 1974, I first came across Art Winfree’s
famous paper [(Winfree, 1967)] … I was instantly
fascinated by the first few paragraphs of the
introductory section of the paper, and especially
my interest was stimulated when he spoke of the
analogy between synchronization transitions and
phase transitions of ferroelectrics, […]. [There was
a] problem that mutual coupling between two
magnets (spins) and mutual coupling of oscillators
are quite different. For magnetic spins the inter-
action energy is given by a scalar product of a two
spin vectors, which means that in a particular case of
planar spins the coupling function is given by a
sinusoidal function of phase difference. In contrast,
Winfree’s coupling function for two oscillators is
given by a product of two periodic functions, […],
and it seemed that this product form coupling was a
main obstacle to mathematical analysis. […] I knew
that product form coupling is more natural and
realistic, but I preferred the sinusoidal form of
coupling because my interest was in finding out a
solvable model.

Kuramoto studied complex equations describing oscillatory
chemical reactions (Kuramoto and Tsuzuki, 1975). In building
his model, he considered phase dynamics and all-to-all
diffusive coupling rather than local coupling, took the
mean-field limit, introduced a random frequency distribution,
and assumed that a limit-cycle orbit is strongly attractive
(Kuramoto, 1975). As mentioned, Kuramoto’s coupling
function was a sinusoidal function of the phase difference:

q1ðϕ1;ϕ2Þ ¼ sinðϕ2 − ϕ1Þ: ð8Þ

The use of the phase difference reduces the dimensionality of
the two phases and provides a means whereby the synchro-
nization state can be determined analytically in a more
convenient way (see also Fig. 2).
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The inference of coupling functions from data appeared
much later than the theoretical models. The development of
these methods was mostly dictated by the increasing acces-
sibility and power of the available computers. One of the first
methods for the extraction of coupling functions from data
was effectively associated with detection of the directionality
of coupling (Rosenblum and Pikovsky, 2001). Although
directionality was the main focus, the method also included
the reconstruction of functions that closely resemble coupling
functions. Several other methods for coupling function
extraction followed, including those by Kiss, Zhai, and
Hudson (2005), Miyazaki and Kinoshita (2006), Tokuda et al.
(2007), Kralemann et al. (2008), and Stankovski et al. (2012),
and it remains a highly active field of research.

C. Different domains and usage

1. Phase coupling functions

A widely used approach for the study of the coupling
functions between interacting oscillators is through their phase
dynamics (Winfree, 1967; Kuramoto, 1984; Ermentrout,
1986; Pikovsky, Rosenblum, and Kurths, 2001). If the system
has a stable limit cycle, one can apply phase reduction
procedures (see Sec. III.B for further theoretical details)
which systematically approximate the high-dimensional
dynamical equation of a perturbed limit-cycle oscillator with
a one-dimensional reduced-phase equation, with just a single
phase variable ϕ representing the oscillator state (Nakao,
2015). In uncoupled or weakly coupled contexts, the phases
are associated with zero Lyapunov stability, which means that
they are susceptible to small perturbations. In this case, one
loses the amplitude dynamics, but gains simplicity in terms of
the single dimension phase dynamics, which is often sufficient
to treat certain effects of the interactions, e.g., phase synchro-
nization. Thus phase connectivity is defined by the connection
and influence between such phase systems.
To present the basic physics underlying a coupling function

in the phase domain, we consider an elementary example of
two phase oscillators that are unidirectionally phase coupled:

_ϕ1 ¼ ω1;

_ϕ2 ¼ ω2 þ q2ðϕ1;ϕ2Þ ¼ ω2 þ cosðϕ1 þ π=2.5Þ: ð9Þ

Our aim is to describe the effect of the coupling function
q2ðϕ1;ϕ2Þ through which the first oscillator influences the
second one. From the expression for _ϕ2 in Eq. (9) one can
appreciate the fundamental role of the coupling function:
q2ðϕ1;ϕ2Þ is added to the frequency ω2. Thus changes in the
magnitude of q2ðϕ1;ϕ2Þ will contribute to the overall change
of the frequency of the second oscillator. Hence, depending on
the value of q2ðϕ1;ϕ2Þ, the second oscillator will either
accelerate or decelerate relative to its uncoupled motion.
The description of the phase coupling function is illustrated

schematically in Fig. 3. Because in real situations one
measures the amplitude state of signals, we explain how the
amplitude signals [Figs. 3(a) and 3(d)] are affected depending
on the specific phase coupling function [Figs. 3(b) and 3(c)].
In all plots, time is scaled relative to the period T1 of the
amplitude of the signal originating from the first oscillator

x1ðtÞ [e.g., x1ðtÞ ¼ sinðϕ1Þ]. For convenient visualization
of the effects we set the second oscillator to be 15 times
slower than the first oscillator ω2=ω1 ¼ 15. The particular
coupling function q2ðϕ1;ϕ2Þ ¼ cosðϕ1 þ π=2.5Þ presented on
a 2π × 2π grid [Fig. 3(b)] resembles a shifted cosine wave,
which changes only along the ϕ1 axis, like a direct coupling
component. Because all the changes occur along the ϕ1 axis,
and for easier comparison, we also present in Fig. 3(c)
a ϕ2-averaged projection of q2ðϕ1;ϕ2Þ.
Finally, Fig. 3(d) shows how the second oscillator x2ðtÞ is

affected by the first oscillator in time in relation to the phase of
the coupling function: when the coupling function q2ðϕ1;ϕ2Þ
is increasing, the second oscillator x2ðtÞ accelerates; similarly,
when q2ðϕ1;ϕ2Þ decreases, x2ðtÞ decelerates. Thus the form
of the coupling function q2ðϕ1;ϕ2Þ shows in detail the
mechanism through which the dynamics and the oscillations
of the second oscillator are affected: in this case they were
alternately accelerated or decelerated by the influence of the
first oscillator.
Of course, coupling functions can in general be much more

complex than the simple example presented [cosðϕ1þπ=2.5Þ].
This form of phase coupling function with a direct contribu-
tion (predominantly) only from the other oscillator is often
found as a coupling component in real applications as
discussed later. Other characteristic phase coupling functions
of that kind could include the coupling functions from the
Kuramoto model [Eq. (8)] and the Winfree model [Eq. (7)], as
shown in Fig. 4. The sinusoidal function of the phase
difference from the Kuramoto model exhibits a diagonal form

FIG. 3. Schematic illustration of a phase dynamics coupling
function. The first oscillator x1 influences the second oscillator x2
unidirectionally, as indicated by the directional diagram on
the left. (a) Amplitude signal x1ðtÞ during one cycle of period
T1. (b) Coupling function q2ðϕ1;ϕ2Þ in fϕ1;ϕ2g space.
(c) ϕ2-averaged projection of the coupling function q2ðϕ1;ϕ2Þ.
(d) Amplitude signal of the second driven oscillator x2ðtÞ, during
one cycle of the first oscillator. From Stankovski et al., 2015.
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in Fig. 4(a), while the influence-sensitivity product function of
the Winfree model is given by a more complex form spread
differently along the two-dimensional space in Fig. 4(b).
Although these two functions differ from those in the previous
example (Fig. 3), the procedure used for their interpretation is
the same.

2. Amplitude coupling functions

Arguably, it is more natural to study amplitude dynamics
than phase dynamics, as the former is directly observable
while the phase needs to be derived. Real systems often suffer
from the “curse of dimensionality” (Keogh and Mueen, 2011)
in that not all of the features of a possible (hidden) higher-
dimensional space are necessarily observable through the low-
dimensional space of the measurements. Frequently, a delay
embedding theorem (Takens, 1981) is used to reconstruct the
multidimensional dynamical system from data. In real appli-
cations with nonautonomous and nonstationary dynamics,
however, the theorem often does not give the desired result
(Clemson and Stefanovska, 2014). Nevertheless, amplitude
state interactions also have a wide range of applications in
both theory and methods, especially in the cases of chaotic
systems, strong couplings, delayed systems, and large non-
linearities, including cases where complete synchronization
(Cuomo and Oppenheim, 1993; Kocarev and Parlitz, 1995;
Stankovski, McClintock, and Stefanovska, 2014) and gener-
alized synchronization (Abarbanel et al., 1993; Rulkov et al.,
1995; Kocarev and Parlitz, 1996; Arnhold et al., 1999; Stam
et al., 2002) have been assessed through observation of
amplitude state space variables.
Amplitude coupling functions affect the interacting dynam-

ics by increasing or decreasing the state variables. Thus
amplitude connectivity is defined by the connection and
influence between the amplitude dynamics of the systems.
The form of the amplitude coupling function can often be a
polynomial function or diffusive difference between the states.
To present the basics of amplitude coupling functions, we

discuss a simple example of two interacting Poincaré limit-
cycle oscillators. In the autonomous case, each of them is
given by the polar (radial r and angular ϕ) coordinates as
_r ¼ rð1 − rÞ and _ϕ ¼ ω. In this way, a Poincaré oscillator is
given by a circular limit cycle and monotonically growing
(isochronous) phase defined by the frequency parameter. In

our example, we transform the polar variables to Cartesian
(state space) coordinates x ¼ r cosðϕÞ and y ¼ r sinðϕÞ, and
we set unidirectional coupling, such that the first (autono-
mous) oscillator

_x1 ¼
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

q �
x1 − ω1y1;

_y1 ¼
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

q �
y1 þ ω1x1; ð10Þ

is influencing the x2 state of the second oscillator through the
quadratic coupling function q2ðx1; y1; x2; y2Þ ¼ x21:

_x2 ¼
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ y22

q �
x2 − ω2y2 þ εx21;

_y2 ¼
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ y22

q �
y2 þ ω2x2: ð11Þ

For simpler visual presentation we choose the first oscillator to
be 20 times faster than the second one, i.e., their frequencies
are in the ratio ω2=ω1 ¼ 20, and we set a relatively high
coupling strength ε ¼ 5.
The description of the amplitude coupling function is

illustrated schematically in Fig. 5. In theory, the coupling
function q2ðx1; y1; x2; y2Þ has four variables, but for better
visual illustration, and because the dependence is only on x1,
we show it only with respect to the two variables x1 and x2,
i.e., q2ðx1; x2Þ. The form of the coupling function is quadratic,
and it changes only along the x1 axis, as shown in Figs. 5(b)
and 5(c). Finally, Fig. 5(d) shows how the second oscillator

FIG. 4. Two characteristic coupling functions in the phase
domain. (a) The coupling function qðϕ1;ϕ2Þ is of sinusoidal
form for the phase difference, as used in the Kuramoto model.
(b) The coupling function qðϕ1;ϕ2Þ is a product of the influence
and sensitivity functions, as used in the Winfree model.

FIG. 5. Schematic illustration of an amplitude dynamics cou-
pling function. The first oscillator Eqs. (10) is influencing the
second oscillator Eqs. (11) unidirectionally, as indicated by the
directional diagram on the left. (a) Amplitude state signal x1ðtÞ
during one cycle of period T1. (b) Coupling function q2ðx1; x2Þ in
fx1; x2g space during one period of each of the oscillations.
(c) x2-averaged projection of the coupling function q2ðx1; x2Þ.
(d) Amplitude signal of the second (driven) oscillator x2ðtÞ,
during one cycle of the first oscillator.
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x2ðtÞ is affected by the first oscillator in time via the
coupling function: when the quadratic coupling function
q2ðx1; x2Þ is increasing, the amplitude of the second oscillator
x2ðtÞ increases; similarly, when q2ðx1; x2Þ decreases, x2ðtÞ
decreases as well.
The particular example chosen for presentation used a

quadratic function x21; other examples include a direct linear
coupling function, e.g., x1, or a diffusive coupling, e.g.,
x2 − x1 (Aronson, Ermentrout, and Kopell, 1990; Mirollo
and Strogatz, 1990; Kocarev and Parlitz, 1996). There are a
number of methods which have inferred models that include
amplitude coupling functions inherently (Friston, 2002; Voss,
Timmer, and Kurths, 2004; Smelyanskiy et al., 2005) or have
preestimated most probable models (Berger and Pericchi,
1996), but without including explicit assessment of the
coupling functions. Because of the multidimensionality and
the lack of a general property in a dynamical system (such as,
for example, the periodicity in phase dynamics), there are
countless possibilities for generalization of the coupling
function. In a sense, this lack of general models is a deficiency
in relation to the wider treatment of amplitude coupling
functions. There are open questions here and much room
for further work on generalizing such models, in terms both of
theory and methods, taking into account the amplitude
properties of subgroups of dynamical systems, including,
for example, the chaotic, oscillatory, or reaction-diffusion
nature of the systems.

3. Multivariate coupling functions

Thus far, we have been discussing pairwise coupling
functions between two systems. In general, when interactions
occur between more than two dynamical systems in a network
(Sec. III.D), there may be multivariate coupling functions with
more than two input variables. For example, a multivariate
phase coupling function could be q1ðϕ1;ϕ2;ϕ3Þ, which is a
triplet function of influence in the dynamics of the first phase
oscillator caused by a common dependence on three other
phase oscillators. Such joint functional dependences can
appear as clusters of subnetworks within a network (Albert
and Barabási, 2002).
Multivariate interactions have been the subject of much

attention recently, especially in developing methods for
detecting the couplings (Baselli et al., 1997; Frenzel and
Pompe, 2007; Paluš and Vejmelka, 2007; Nawrath et al.,
2010; Faes, Nollo, and Porta, 2011; Kralemann, Pikovsky, and
Rosenblum, 2011; Duggento et al., 2012). This is particularly
relevant in networks, where one can miss part of the inter-
actions if only pairwise links are inferred, or a spurious pairwise
link can be inferred as being independent when they are
actually part of a multivariate joint function. In terms of
networks and graph theory, the multivariate coupling functions
relate to a hypergraph, which is defined as a generalization of a
graph where an edge (or connection) can connect any number
of nodes (or vertices) (Karypis and Kumar, 2000; Zass and
Shashua, 2008; Weighill and Jacobson, 2015).
Multivariate coupling functions have been studied by

inference of small-scale networkswhere the structural coupling
can differ from the inferred effective coupling. Kralemann,
Pikovsky, and Rosenblum (2011) considered a network of

three van der Pol oscillators where, in addition to pairwise
couplings, there was also a joint multivariate cross-coupling
function, for example, of the form εx2x3 in the dynamics of the
first oscillator ẍ1. Because of the latter coupling, the effective
phase coupling function is of a multivariate triplet nature. By
extracting the phases and applying an inference method, the
effective phase coupling was reconstructed, as illustrated in
Fig. 6. Comparing the true (Fig. 6, left) and the inferred
effective (Fig. 6, right) diagrams, one can see that an additional
pairwise link from the third to the first oscillator has been
inferred. If the pairwise inference alone was being investigated
onemight conclude, wrongly, that this direct pairwise coupling
was genuine and the only link—whereas in reality it is just an
indirect effect from the actual joint multivariate coupling. In
this way, the inference of multivariate coupling functions can
provide a deeper insight into the connections in the network.
A corollary is the detection of triplet synchronization

(Kralemann, Pikovsky, and Rosenblum, 2013; Jia et al.,
2015). This is a synchronization phenomenon which has
an explicit multivariate coupling function of the form
q1ðϕ1;ϕ2;ϕ3Þ and which is tested with respect to the con-
dition jmϕ1 þ nϕ2 þ lϕ3j ≤ const, for n, m, and l negative or
positive. It is shown that the state of triplet synchronization
can exist, even though each pair of systems remains
asynchronous.
The brain mediates many oscillations and interactions on

different levels (Park and Friston, 2013). Interactions between
oscillations in different frequency bands are referred to as
cross-frequency coupling in neuroscience (Jensen and Colgin,
2007). Recently, neural cross-frequency coupling functions
were extracted from multivariate networks (Stankovski et al.,
2015); see also Sec. V.C. The network interactions between
the five brainwave oscillations δ, θ, α, β, and γ were analyzed
by reconstruction of the multivariate phase dynamics, includ-
ing the inference of triplet and quadruplet coupling functions.
Figure 7 shows a triplet coupling function of how the θ and α
influence γ brain oscillations. It was found that the influence
from theta oscillations is greater than from alpha, and that
there is significant acceleration of gamma oscillations when
the theta phase cycle changes from π to 2π.
Recently, Bick, Ashwin, and Rodrigues (2016) showed

theoretically that symmetrically coupled phase oscillators with
multivariate (or nonpairwise) coupling functions can yield rich
dynamics, including the emergence of chaos. This was
observed even for as few as N ¼ 4 oscillators. In contrast
to the Kuramoto-Sakaguchi equations, the additional multi-
variate coupling functions mean that one can find attracting
chaos for a range of normal-form parameter values. Similarly,

FIG. 6. Inference of multivariate interactions. (Left) True
(structural) configurations, and the (right) reconstructed phase
model. Middle: The table shows the corresponding inferred
coupling strengths. Note the multivariate triplet link, the arrows
from the centers of the diagrams. From Kralemann, Pikovsky, and
Rosenblum, 2011.
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it was found that even the standard Kuramoto model can be
chaotic with a finite number of oscillators (Popovych,
Maistrenko, and Tass, 2005).

4. Generality of coupling functions

The coupling function is well defined from a theoretical
perspective. That is, once we have the model [as in Eq. (1)],
the coupling function is unique and fixed. The solutions of the
equations also depend continuously on the coupling function.
Small changes in the coupling function will cause only small
changes in the solutions over finite-time intervals. If solutions
are attracted to some set exponentially and uniformly fast,
then small changes in the coupling do not affect the stability of
the system.
When we want to infer the coupling function from data we

can face a number of challenges in obtaining a unique result
(Sec. IV). Typically, we measure only projections of the
coupling function, which might in itself lead to nonuniqueness
of the estimate. That is, we project the function (which is
infinite dimensional) onto a finite-dimensional vector space.
In doing so, we could lose some information and, generically,
it is not possible to uniquely estimate the function (even
without taking account of noise and perturbations).
Furthermore, the final form of the estimated function depends
on the choice and number of base functions. For example, the
choice of a Fourier series or general orthogonal polynomials
as base functions can slightly affect the final estimate of the

coupling function. The choice of which base functions to be
used is infinite. Even though many aspects of coupling
functions (such as the number of arguments, decomposition
under an appropriate model, analysis of coupling function
components, prediction with coupling functions, etc.) can be
applied with great generality, the coupling functions them-
selves cannot be uniquely determined.
In the literature, authors often speak of the commonly used

coupling functions including, but not limited to, those listed in
Table I. Note that reactive and diffusive couplings have func-
tionally the same form, the difference being that the reactive
case includes complex amplitudes. This results in a phase
difference between the coupling and the dynamics. Also in the
literature, a diffusive coupling function qðy − xÞ satisfying a
local condition q0ð0Þ < 0 is called dissipative coupling
(Rul’Kov et al., 1992). This condition resembles Fick’s law
as the coupling forces the coupled system to converge toward
the same state. When q0ð0Þ > 0 the coupling is called repulsive
(Hens et al., 2013). Chemical synapses are an important form of
coupling where the influences of x and y appear together as a
product. There are also other interesting forms of coupling such
as the geometric mean and further generalizations (Prasad et al.,
2010; Petereit and Pikovsky, 2017). In environmental coupling,
the function is given by the solution of a differential equation. In
this case one can consider _y ¼ −κyþ ε½xðtÞ þ yðtÞ� for κ > 0,
so that the variables are considered as external fields driving the
equation. Its solution yðtÞ ¼ yðt; x; yÞ is taken as the coupling
function qðx; yÞ and, for t ≫ 1, is given in the table. The
generality of coupling functions, and the fact that the form can
come from an unbounded set of functions,was used to construct
the encryption key in a secure communications protocol
(Stankovski,McClintock, andStefanovska, 2014); see Sec.V.F.

D. Coupling functions revealing mechanisms

The functional form is a qualitative property that defines
the mechanism and acts as an additional dimension to
complement the quantitative characteristics such as the cou-
pling strength, directionality, frequency parameter, and limit-
cycle shape parameters. By definition, the mechanism
involves some kind of function or process leading to a change
in the affected system. Its significance is that it may lead to
qualitative transitions and induce or reduce physical effects,
including synchronization, instability, amplitude death, or
oscillation death.
But why is the mechanism important and how can it be

used? The first and foremost use of the coupling function

FIG. 7. Multivariate triplet coupling functions between neural
oscillations. The phase coupling function qγðϕθ;ϕαÞ shows the
influence that θ and α jointly insert on the γ cortical oscillations.
From Stankovski et al., 2015.

TABLE I. Different examples of coupling functions q. These pairwise coupling functions (CFs) are considered in relation to the system
_x ¼ fðxÞ þ qðx; yÞ.
Type of CF Model Meaning Reference

Direct qðx; yÞ ¼ qðyÞ Unidirectional influence Aronson, Ermentrout, and
Kopell (1990)

Diffusive qðx; yÞ ¼ qðy − xÞ Dependence on state difference Kuramoto (1984)
Reactive qðx; yÞ ¼ ðεþ iβÞqðx − yÞ Complex coupling strength Cross et al. (2006)
Conjugate qðx; yÞ ¼ qðx − PyÞ P permutes the variables Karnatak, Ramaswamy, and

Prasad (2007)
Chemical synapse qðx; yÞ ¼ gðxÞSðyÞ S is a sigmoidal Cosenza and Parravano (2001)
Environmental qðx; yÞ ≈ ε

R
t
0 e

−κðt−sÞ½xðsÞ þ yðsÞ�ds Given by a differential equation Resmi, Ambika, and Amritkar (2011)
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mechanism is to illuminate the nature of the interactions
themselves. For example, the coupling function of the
Belousov-Zhabotinsky chemical oscillator was reconstructed
(Miyazaki and Kinoshita, 2006) with the help of a method for
the inference of phase dynamics. Figure 8 shows such a
coupling function, demonstrating a form that is very far from a
sinusoidal function: a curve that gradually decreases in the
region of a small ψ and abruptly increases at a larger ψ, with
its minimum and maximum at around 5=4π and 7=4π,
respectively.
Another important set of examples is the class of coupling

functions and phase response curves used in neuroscience. In
neuronal interactions, some variables are very spikelike, i.e.,
they resemble delta functions. Consequently, neuronal cou-
pling functions (which are a convolution of phase response
curves and perturbation functions) then depend only, or
mainly, on the phase response curves. So the interaction
mechanism is defined by the phase response curves: quite
a lot of work has been done in this direction (Ermentrout,
1996; Tateno and Robinson, 2007; Gouwens et al., 2010;
Schultheiss, Prinz, and Butera, 2011); see also Sec. IV.D.2.
For example, Tateno and Robinson (2007) and Gouwens et al.
(2010) experimentally reconstructed the phase response
curves for different types of interneurons in rat cortex, in
order to better understand the mechanisms of neural
synchronization.
The mechanism of a coupling function depends on the

differing contributions from individual oscillators. Changes in
form may depend predominantly on only one of the phases
(along one axis), or they may depend on both phases, often
resulting in a complicated and intuitively unclear dependence.
The mechanism specified by the form of the coupling function
can be used to distinguish the individual functional contri-
butions to a coupling. One can decompose the net coupling
function into components describing the self-, direct, and
indirect couplings (Iatsenko et al., 2013). The self-coupling
describes the inner dynamics of an oscillator which results
from the interactions and has little physical meaning. Direct
coupling describes the influence of the direct (unidirectional)
driving that one oscillator exerts on the other. The last
component, indirect coupling, often called common coupling,
depends on the shared contributions of the two oscillators,
e.g., the diffusive coupling given with the phase difference

terms. This functional coupling decomposition can be further
generalized for multivariate coupling functions, where, for
example, a direct coupling from two oscillators to a third one
can be determined (Stankovski et al., 2015).
After learning the details of the reconstructed coupling

function, one can use this knowledge to study or detect the
physical effects of the interactions. In this way, the synchro-
nous behavior of the two coupled Belousov-Zhabotinsky
reactors can be explained in terms of the coupling function
as illustrated by the examples given in Fig. 8 (Miyazaki and
Kinoshita, 2006) and Sec. V.A. Furthermore, the mechanisms
and form of the coupling functions can be used to engineer
and construct a particular complex dynamical structure,
including sequential patterns and desynchronization of
electrochemical oscillations (Kiss et al., 2007). Even more
importantly, one can use knowledge about the mechanism of
the reconstructed coupling function to predict transitions of
the physical effects—an important property described in detail
for synchronization in the following section.

E. Synchronization prediction with coupling functions

Synchronization is a widespread phenomenon whose
occurrence and disappearance can be of great importance.
For example, epileptic seizures in the brain are associated with
excessive synchronization between a large number of neurons,
so there is a need to control synchronization to provide a
means of stopping or preventing seizures (Schindler et al.,
2007), while in power grids the maintenance of synchroniza-
tion is of crucial importance (Rubido, 2015). Therefore, one
often needs to be able to control and predict the onset and
disappearance of synchronization.
A seminal work on coupling functions by Kiss, Zhai, and

Hudson (2005) uses the inferred knowledge of the coupling
function to predict characteristic synchronization phenomena
in electrochemical oscillators. In particular, they demonstrated
the power of phase coupling functions, obtained from direct
experiments on a single oscillator, to predict the dependence
of synchronization characteristics such as order-disorder
transitions on system parameters, both in small sets and in
large populations of interacting electrochemical oscillators.
They investigated the parametric dependence of mutual

entrainment using an electrochemical reaction system, the
electrodissolution of nickel in sulfuric acid (see also Sec. V.A
for further applications on chemical coupling functions).
A single nickel electrodissolution oscillator can have two
main characteristic wave forms of periodic oscillation: the
smooth type and the relaxation oscillation type. The phase
response curve is of the smooth type and is nearly sinusoidal,
while being more asymmetric for the relaxation oscillations.
The coupling functions are calculated using the phase

response curve obtained from experimental data for the
variable through which the oscillators are coupled. The
coupling functions qðψÞ of two coupled oscillators are
reconstructed for three characteristic cases, as shown in
Figs. 9(a)–9(c), left panels. The right panels in Fig. 9 show
the corresponding odd (antisymmetric) part of the coupling
functions q−ðψÞ ¼ ½qðψÞ − qð−ψÞ�=2, which is important for
determination of the synchronization. The coupling functions
qðψÞ of Figs. 9(a)–9(c) have predominantly positive values, so

FIG. 8. Coupling function determined from the phase dynamics
of two interacting chemical Belousov-Zhabotinsky oscillators.
The coupling function is reconstructed in terms of the phase
difference ψ ¼ ϕ2 − ϕ1. Points obtained from reactors 1 and 2
are plotted with open circles and triangles, respectively. The full
curves represent smooth interpolations. From Miyazaki and
Kinoshita, 2006.
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the interactions contribute to the acceleration of the affected
oscillators. The first coupling function of Fig. 9(a) for smooth
oscillations has a sinusoidal q−ðψÞ which can lead to in-phase
synchronization at the phase difference of ψ� ¼ 0. The third
case of relaxation oscillations of Fig. 9(c) has an inverted
sinusoidal form q−ðψÞ, leading to stable antiphase synchro-
nization at ψ� ¼ π. The most peculiar case is Fig. 9(b), right
panel, of relaxation oscillations, where the odd coupling
function q−ðψÞ takes the form of a second harmonic
[q−ðψÞ ≈ sinð2ψÞ] and both the in-phase (ψ� ¼ 0) and anti-
phase (ψ� ¼ π) entrainments are stable, in which case the
actual state attained will depend on the initial conditions.
Next, the knowledge obtained from experiments with a

single oscillator was applied to predict the onset of synchro-
nization in experiments with 64 globally coupled oscillators.
The experiments confirmed that for smooth oscillators the
interactions converge to a single cluster, and for relaxational
oscillators they converge to a two-cluster synchronized state.
Experiments in a parameter region between these states, in
which bistability is predicted, are shown in Fig. 10. A small
perturbation of the stable one-cluster state (left panel of
Fig. 10) yields a stable two-cluster state (right panel of
Fig. 10). Therefore, all the synchronization behavior seen
in the experiments was in agreement with prior predictions
based on the coupling functions.
In a separate line of work, synchronization was also

predicted in neuroscience: interaction mechanisms involving
individual neurons, usually in terms of PRCs or spike-time
response curves, were used to understand and predict the
synchronous behavior of networks of neurons (Acker, Kopell,

and White, 2003; Netoff et al., 2005; Schultheiss, Prinz, and
Butera, 2011). For example, Netoff et al. (2005) experimen-
tally studied the spike-time response curves of individual
neuronal cells. Results from these single-cell experiments
were then used to predict the multicell network behaviors,
which were found to be compatible with previous model-
based predictions of how specific membrane mechanisms give
rise to the empirically measured synchronization behavior.

F. Unifying nomenclature

Over the course of time, physicists have used a range of
different terminology for coupling functions. For example,
some publications refer to them as interaction functions and
some as coupling functions. This inconsistency needs to be
overcome by adopting a common nomenclature for the
future.
The terms interaction function and coupling function have

both been used to describe the physical and mathematical
links between interacting dynamical systems. Of these,
coupling function has been used about twice as often in the
literature, including the most recent. The term coupling is
closer to describing a connection between two systems, while
the term interaction is more general. Coupling implies
causality, whereas interaction does not necessarily do so.
Often correlation and coherence are considered as signatures
of interactions, while they do not necessarily imply the
existence of couplings. We therefore propose that the termi-
nology be unified, and the term coupling function be used
henceforth to characterize the link between two dynamical
systems whose interaction is also causal.

III. THEORY

In physics one is likely to examine stable static configu-
rations, whereas, in dynamical interaction between oscillators,
solutions will converge to a subspace. For example, if two
oscillators are in complete synchronization the subspace is
called the synchronization manifold and corresponds to the
case where the oscillators are in the same state for all time
(Fujisaka and Yamada, 1983; Pecora and Carroll, 1990).

FIG. 9. Experimental coupling function from electrochemical
oscillators used for the prediction of synchronization.
(a)–(c) Coupling function qðψÞ evaluated with respect to the
phase difference ψ ¼ ϕ2 − ϕ1 shown in the left panel and its odd
part q−ðΔϕÞ shown in the right panel—for the case of (a) a
smooth oscillator, and (b), (c) for relaxation oscillators with
slightly different parameters. HðΔϕÞ on the plots is equivalent to
the qðψÞ notation used in the current review. From Kiss, Zhai, and
Hudson, 2005.

FIG. 10. Mutual entrainment and stable (left panel) single-
cluster and (right panel) two-cluster states of a population of
64 globally coupled electrochemical relaxation oscillators
under the same experimental conditions. The two-cluster state
was obtained from the one-cluster state by a small perturbation
acting as a different initial condition for the population. From
Kiss, Zhai, and Hudson, 2005.

Stankovski et al.: Coupling functions: Universal insights into …

Rev. Mod. Phys., Vol. 89, No. 4, October–December 2017 045001-13



So, within the subspace, the oscillators have their own
dynamics and finer information on the coupling function is
needed.
The analytical techniques and methods needed to analyze

the dynamics will depend on whether the coupling strength is
strong or weak. Roughly speaking, in the strong coupling
regime, we have to tackle the fully coupled oscillators whereas
in the weak coupling we can reduce the analysis to lower-
dimensional equations.

A. Strong interaction

To illustrate the main ideas and challenges of treating the
case of strong interaction, while keeping technicalities to a
minimum, we first discuss the case of two coupled oscillators.
These examples contain the main ideas and reveal the role of
the coupling function and how it guides the system toward
synchronization.

1. Two coupled oscillators

We start by illustrating the variety of dynamical phenomena
that can be encountered and the role played by the coupling
function in the strong coupling regime.
Diffusion-driven oscillations.—When two systems interact

they may display oscillations solely because of the interaction.
This is the nature of the problem posed by Smale (1976) based
on Turing’s idea of morphogenesis (Turing, 1952). We
consider two identical systems which, when isolated, each
exhibit a globally asymptotically stable equilibrium, but
which oscillate when diffusively coupled. This phenomenon
is called diffusion-driven oscillation.
Assume that the system

_x ¼ fðxÞ; ð12Þ

where f∶ Rn → Rn is a differentiable vector field with a
globally stable attraction with point—all trajectories will
converge to this point. Now consider two of such systems
coupled diffusively

_x1 ¼ fðx1Þ þ εHðx2 − x1Þ;
_x2 ¼ fðx2Þ þ εHðx1 − x2Þ: ð13Þ

The problem proposed by Smale was to find (if possible) a
coupling function (positive definite matrix) H such that the
diffusively coupled system undergoes a Hopf bifurcation.
Loosely speaking, one may think of two cells that by
themselves are inert but which, when they interact diffusively,
become alive in a dynamical sense and start to oscillate.
Interestingly, the dimension of the uncoupled systems

comes into play. Smale constructed an example in four
dimensions. Pogromsky, Glad, and Nijmeijer (1999) con-
structed examples in three dimensions and also showed that,
under suitable conditions, the minimum dimension for dif-
fusive coupling to result in oscillation is n ¼ 3. The following
example illustrates the main ideas. Consider

fðxÞ ¼ Axð1þ jxj2Þ with A ¼

0
B@

1 −1 1

1 0 0

−4 2 −3

1
CA; ð14Þ

where jxj2 ¼ xTx. Note that all the eigenvalues of A have
negative real parts. So the origin of the system Eq. (14) is
exponentially attracting.
Consider the coupling function to be the identity

_x1 ¼ fðx1Þ þ εðx2 − x1Þ;
_x2 ¼ fðx2Þ þ εðx1 − x2Þ:

For ε ¼ 0 the origin is globally attracting; the uniform
attraction persists when ε is very small, and so the origin is
still globally attracting. However, for large values of the
coupling ε > 0.6512 the coupled systems exhibit oscillatory
solutions (the origin has undergone a Hopf bifurcation).
Generalizations.—In this example the coupling function

was the identity. Pogromsky, Glad, and Nijmeijer (1999)
discussed further coupling functions, such as coupling func-
tions of rank two that generate diffusion-driven oscillators.
Further oscillations in originally passive systems have been
reported in spatially extended systems (Gomez-Marin, Garcia-
Ojalvo, and Sancho, 2007). In diffusively coupled mem-
branes, collective oscillation in a group of nonoscillatory
cells can also occur as a result of a spatially inhomogeneous
activation factor (Ma and Yoshikawa, 2009). These ideas of
diffusion leading to chemical differentiation have also been
observed experimentally and generalized by including hetero-
geneity in the model (Tompkins et al., 2014).
Oscillation death.—We now consider the opposite prob-

lem: Systems which when isolated exhibit oscillatory behavior
but which, when coupled diffusively, cease to oscillate and
where the solutions converge to an equilibrium point.
As mentioned in Sec. I.B, this phenomenon is called

oscillation death (Bar-Eli, 1985; Ermentrout and Kopell,
1990; Mirollo and Strogatz, 1990; Koseska, Volkov, and
Kurths, 2013a). To illustrate the essential features we consider
a normal form of the Hopf bifurcation

_xj ¼ fjðxjÞ;

where

fjðxÞ ¼ ωjAxþ ð1 − jxj2Þx; with A ¼
�
0 −1
1 0

�
:

So each isolated system has a limit cycle of amplitude jxj2 ¼ 1

and a frequency ωj. Note that the origin x ¼ 0 is an unstable
equilibrium point. In oscillation death when the systems are
coupled, the origin may become stable.
Focusing on diffusive coupling, again the question concerns

the nature of the coupling function. Aronson, Ermentrout, and
Kopell (1990) remarked that the simplest coupling function to
have the desired properties is the identity with strength ε. The
equations have the same form as Eq. (13) with H being the
identity.
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The effect can be better understood in terms of phase and
amplitude variables. Let r1 and r2 be the amplitudes and ϕ1

and ϕ2 the phases of x1 and x2, respectively. We consider
r1 ¼ r2 ¼ r which captures the main causes of the effect, as
well as the phase difference ψ ¼ ϕ1 − ϕ2. Then the equations
in these variables can be well approximated as

_r ¼ rð1 − ε − r2Þ þ εr cosψ ; ð15Þ

_ψ ¼ Δω − 2ε sinψ : ð16Þ

The conditions for oscillation death are a stable fixed point at
r ¼ 0 along with a stable fixed point for the phase dynamics.
These equations provide the main mechanism for oscillation
death. First, we can determine the stable fixed point for the
phase dynamics, as illustrated in Fig. 2. There is a fixed point
ψ� if ε>Δω=2 and sinψ� ¼ Δω=ð2εÞ. We assume thatΔω > 2
which implies that, when the fixed point ψ� exists, ε > 1.
Next, we analyze the stability of the fixed point r� ¼ 0.

This is determined by the linear part of Eq. (15). Hence, the
condition for stability is

1 − εþ ε cosψ� < 0:

Using the equation for the fixed point we have cosψ� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½Δω=ð2εÞ�2

p
. Replacing this in the stability condition we

obtain ε < ð4þ Δ2
ωÞ=8. The analysis reveals that the system

will exhibit oscillation death if the coupling is neither too
weak nor too strong. Because we are assuming that the
mismatch is large enough, Δω > 2, then there are minimum
and maximum coupling strengths for oscillation death

1 < ε <
4þ Δ2

ω

4
:

Within this range, there are no stable limit cycles: the only
attracting point is the origin, and so the oscillations are dead.
The full equation was tackled by Aronson, Ermentrout, and

Kopell (1990). The main principle is that the eigenvalues of
the coupling function modify the original eigenvalues of the
system and change their stability. It is possible to generalize
these claims to coupling functions that are far from the identity
(Koseska, Volkov, and Kurths, 2013a). The system may
converge, not only to a single fixed point, but to many
(Koseska, Volkov, and Kurths, 2013b).
Synchronization.—One of the main roles of coupling

functions is to facilitate collective dynamics. Consider the
diffusively coupled oscillators described by Eq. (13). We say
that the diagonal

x1ðtÞ ¼ x2ðtÞ
is the complete synchronization manifold (Brown and
Kocarev, 2000). Note that the synchronization manifold is
an invariant subspace of the equations of motion for all values
of the coupling strength. Indeed, when the oscillators syn-
chronize the coupling term vanishes. So they will be
synchronized for all future time. The main question is whether
the synchronization manifold is attractive; that is, if the
oscillators are not precisely synchronized will they converge

toward synchronization? Similarly, if they are synchronized,
and one perturbs the synchronization, will they return to
synchronization?
Let us first consider the case where the coupling is the

identity HðxÞ ¼ x and discuss the key mechanism for syn-
chronization. Note that there are natural coordinates to analyze
synchronization

y ¼ 1
2
ðx1 þ x2Þ and z ¼ 1

2
ðx1 − x2Þ:

These coordinates have a natural meaning. If the system
synchronizes, z → 0 and y → s with _s ¼ fðsÞ. Hence, we
refer to y as the coordinate parallel to the synchronization
subspace x1 ¼ x2, and to z as the coordinate transverse to the
synchronization subspace, as illustrated in Fig. 11.
The synchronization analysis follows two steps:

(i) Obtaining a governing equation for the modes z transverse
to the synchronization subspace, and (ii) using the coupling
function to damp instabilities in the transverse modes.

(i) Obtain an equation for z.—Let us assume that the
initial disturbance of z is small. Then we can obtain
a linear equation for z by neglecting the high
order terms proportional to jzj2. Noting that _z ¼
ð _x1 − _x2Þ=2, using Eqs. (13) for x1 and x2, and
expanding f in a Taylor series, we obtain

_z ¼ JðtÞz − 2εz; ð17Þ

where JðtÞ ¼ Df(x2ðtÞ) is the Jacobian evaluated
along a solution of x2.

(ii) Coupling function to provide damping.—The term
−2εz coming from the coupling now plays the role
of a damping term. So we expect that the coupling
will win the competition with J and will force the
solutions of z to decay exponentially fast to zero. To
see this, we observe that the first term

_u ¼ JðtÞu ð18Þ

depends on the dynamics of x2 alone. Typically,
kuðtÞk ∝ eλt for λ > 0. Now, to obtain a bound on

FIG. 11. Illustration of the coordinates parallel y and transverse
z to synchronization. In the left panel we also show a trajectory
converging to the synchronization subspace implying that z → 0.
Once the coupled systems reach synchronization, their ampli-
tudes will evolve together in time, but the evolution can be
chaotic as illustrated in the right panel. The dynamics along the
synchronization subspace is the Lorenz attractor.
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the solution of Eq. (17), we consider the ansatz
z ¼ ue−2εt, and notice that differentiating z we
obtain Eq. (17). Hence

kzðtÞk ∝ eðλ−2εÞt;

from the growth behavior of the disturbance z we
can also obtain the critical coupling strength to
observe synchronization.

Critical coupling.—From this estimate, we can also obtain
the critical coupling such that the solutions z decay to zero.
For coupling strengths

ε >
λ

2
;

the oscillators synchronize.
Meaning of λ > 0.—This corresponds to chaotic behavior

in the synchronization manifold. If z → 0, then JðtÞ will be
the Jacobian along a solution of _s ¼ fðsÞ. So λ depends on the
dynamics on the synchronization manifold. If λ > 0 and the
solutions are bounded, the dynamics of the synchronized
system is chaotic. Roughly speaking, λ > 0 means that two
nearby trajectories will diverge exponentially fast for small
times and, because the solutions are bounded, they will
subsequently come close together again. So the coupled
systems can synchronize even if the dynamics of the
synchronized system is chaotic, as shown in Fig. 11 for the
chaotic Lorenz attractor. The number λ is the maximum
Lyapunov exponent of the synchronization subspace.
There are intrinsic challenges associated with the analysis

and more when we attempt to generalize these ideas and also
because of the nonlinearities that we neglected during the
analysis.

(1) General coupling functions: From a mathematical
perspective the argument above worked because the
identity commutes with all matrices. For other cou-
pling functions, the argument above cannot be applied,
and we encounter three possible scenarios.
(i) The coupling function does not damp instabil-

ities and the system never synchronizes (Pecora
and Carroll, 1998; Boccaletti et al., 2002).

(ii) The coupling function damps out instabilities
only for a finite range of coupling strengths,

ε1c < ε < ε2c:

For instance, this is the case for the Rössler
system with coupling only in the first variable
(Huang et al., 2009).

(iii) The coupling function damps instabilities and
there is a single critical coupling εc. This is the
case when the coupling function eigenvalues
have positive real parts. (Pereira et al., 2014).

(2) Local versus global results: In this argument we
expanded the vector field in a Taylor series and
obtained a linear equation to describe how the systems
synchronize. This means that any claim on synchro-
nization is local. It is still an open question how to
obtain global results.

(3) Nonlinear effects: We neglected the nonlinear terms
(the Taylor remainders), which can make synchroni-
zation unstable. Many researchers have observed this
phenomenon through the bubbling transition (Ashwin,
Buescu, and Stewart, 1994; Venkataramani et al.,
1996; Viana et al., 2005), intermittent loss of syn-
chronization (Gauthier and Bienfang, 1996; Yanchuk,
Maistrenko, and Mosekilde, 2001), and the riddling
basin (Heagy, Carroll, and Pecora, 1994; Ashwin and
Timme, 2005).

To highlight the role of the coupling function and illustrate
the challenges, we show how to obtain global results depend-
ing on the coupling function and discuss how local and global
results are related.
Global argument.—Assume that H is a Hermitian positive

definite matrix. The main idea is to turn the problem upside
down. That is, we see the vector field as perturbing the
coupling function. So consider the system with only the
coupling function and use the transverse coordinates

_z ¼ −2εHz: ð19Þ

Since H is positive definite we obtain −zTHz ≤ −2cεjzj2,
where c ¼ cðHÞ is the smallest eigenvalue of H. The global
stability of the system can be obtained by constructing a
Lyapunov function (LF) V. The system will be stable if V is
positive and its derivative _V is negative. This system admits a
quadratic Lyapunov function VðzÞ ¼ 1

2
zTz. Indeed, taking the

derivative

_VðzÞ ¼ zT _z ≤ −2cεjzj2:

Hence all solutions of Eq. (19) will converge to zero
exponentially fast. Next consider the coupled system

_z ¼ −2εHzþ Jðt; zÞ;

where by the mean value theorem we obtain

Jðt; zÞ ¼ f(x1ðtÞ þ zðtÞ) − fðx1ðtÞÞ

¼
Z

1

0

Df(x1ðtÞ þ szðtÞ)zðtÞds: ð20Þ

Because we did not Taylor expand the vector fields, the
equation is globally valid. Assuming that the Jacobian is
bounded by a constant Mf > 0, we obtain jJðt; zÞj ≤ Mfjzj.
Computing again the Lyapunov function for the coupled

system (including the vector fields) we obtain

_VðzÞ ≤ −ð2cε −MfÞjzj2: ð21Þ

The system will synchronize if _V is negative. So synchroni-
zation is attained if

εc >
Mf

2c
:

Again the critical coupling has the same form as before. The
coupling function came into play via the constant c, and
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instead of λ we have Mf. Typically,Mf is much larger than λ.
So global bounds are not sharp. This conservative bound
guarantees that the coupling function can damp all possible
instabilities transverse to the synchronization manifold.
Moreover, they are persistent under perturbation.
Local results.—First we Taylor expand the system to obtain

_z ¼ JðtÞz − 2εHz ð22Þ

in just the same form as before. Note, however, that the trick
we used previously, by defining _u ¼ Ju, is no longer
applicable. Indeed we use the ansatz z ¼ ue−2εHt to obtain
_z ¼ −2εHzþ e−2εHtJðtÞu, and since H and JðtÞ do not
commute,

e−2εHtJðtÞu ≠ JðtÞe−2εHtu ¼ JðtÞz;

the ansatz cannot be used. Thus we need a better way forward.
So in the same way as we calculated the expansion rate λ for
JðtÞ, we calculate the expansion rate for Eq. (22). Such
Lyapunov exponents are important in a variety of contexts. For
us, it suffices to know that there are various ways to compute
them (Dieci and Van Vleck, 2002; Pikovsky and Politi, 2016).
We calculate the Lyapunov exponent for each value of the
coupling strength ε to obtain a function

ε ↦ ΛðεÞ:

This function is called the master stability function (MSF).
We extract the synchronization properties from ΛðεÞ. As
discussed, the solutions of Eq. (19) will behave as

jzðtÞj ∝ CeΛðεÞt:

Now note that Λð0Þ ¼ λ > 0 (the expansion rate of the
uncoupled equation), since we considered the case of chaotic
oscillators. Because of our assumptions, we know that there is
a εc such that

ε > εMSF
c ⇒ ΛðεÞ < 0

and for which ΛðεÞ will become negative, and z will converge
to zero.
Global versus local results.—In the global analysis, the

critical coupling depends on Mf, which is an upper bound for
the Jacobian. This approach is rigorous and guarantees that all
solutions will synchronize. In the local analysis, we linearized
the dynamics about the synchronization manifold and com-
puted the Lyapunov exponent associated with the transverse
coordinate z. The critical coupling was then obtained by
analyzing the sign of the Lyapunov exponent. Generically,
εMSF
c ≪ Mf=2c. The main reasoning is as follows. The
Lyapunov exponents measure the mean instability, whereas,
in the global argument, we consider the worst possible
instability. So the local method allows us to obtain a sharp
estimate for the onset of synchronization.
The pitfalls of the local results.—The main challenge of the

local method lies in the intricacies of the theory of Lyapunov
exponents (Barreira and Pesin, 2002; Pikovsky and Politi,

2016). These can be discontinuous functions of the vector
field. In other words, the nonlinear terms we threw away as
Taylor remainders can make the Lyapunov exponent jump
from negative to positive. Moreover, in the local case we
cannot guarantee that all trajectories will be uniformly
attracted to the synchronization manifold. In fact, for some
initial conditions trajectories are attracted to the synchroniza-
tion manifold, whereas nearby initial conditions are not.
This phenomenon is called riddling (Heagy, Carroll, and
Pecora, 1994).

2. Comparison between approaches

As previously discussed, there is a dichotomy between
global versus local results and sharp bounds for critical
coupling. These issues depend on the coupling function.
Some coupling functions allow one to employ a given
technique and thereby obtain global or local results.
First we compare the two main techniques used in the

literature, that is, Lyapunov functions and the master stability
function. For a generic coupling function, the LFs are
unknown, but Lyapunov exponents can be estimated effi-
ciently by numerical methods (Dieci and Van Vleck, 2002;
Ginelli et al., 2007; Froyland et al., 2013).
Given additional information on the coupling, we can

further compare the techniques. Note that the coupling
function H can be nonlinear. In this case, we consider the
Jacobian

Γ ¼ DHð0Þ:

Moreover, we say that Γ belongs to the Lyapunov class if there
are positive matrices Q and P such that

ΓTPþ PΓ ¼ −Q:

Whenever the matrix Γ is in the Lyapunov class we can
construct the Lyapunov function algorithmically.
Table II reveals that the MSF method is very versatile.

Although it may not encompass nonlinear perturbations, it
provides a framework to tackle a generic class of coupling
functions (Huang et al., 2009). In the theory of chaotic
synchronization, therefore, this has been the preferred
approach. However, it should be used with caution.

B. Weak regime

In the weak coupling regime, the coupling strength is by
definition insufficient to significantly affect the amplitudes;

TABLE II. Comparison between classes of coupling function and
the techniques to obtain synchronization. Dashes indicate that
typically we are unable to construct the Lyapunov function in such
cases.

Coupling function Class Technique Global Persistence

H þve definite Lyapunov LF Yes Yes
DH þve definite Lyapunov LF No Yes
H differentiable Generic LF — —
H differentiable Generic MSF No No
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however, the coupling can still cause the phases to adapt and
adjust their dynamics (Kuramoto, 1984). Many of the phe-
nomena observed in nature relate to the weak coupling regime.
Mathematical descriptions of coupled oscillators in

terms of their phases offer two advantages: first, it reduces
the dimension of the problem, and secondly, it can reveal
principles of collective dynamics and other phenomena.
The theory for the weak coupling regime is well developed.

In the 1970s and early 1980s Winfree (1967, 1980) and
Kuramoto (1975, 1984) developed the idea of asymptotic
phase and phase reduction. Also starting from the 1970s, the
mathematical theory for such phase reduction was brought to
completion in terms of normally hyperbolic invariant
manifolds (Hirsch, Shub, and Pugh, 1977; Eldering, 2013;
Wiggins, 2013). Since then, the phase reduction theory
(Nakao, 2015) has been significantly extended and general-
ized, for inclusion of phase reduction in the case of strongly
perturbed oscillations, for stochastic treatment of interacting
oscillators subject to noise of different kinds, for oscillating
neuronal populations, and for spatiotemporal oscillations in
reaction-diffusion systems (Brown, Moehlis, and Holmes,
2004; Yoshimura and Arai, 2008; Teramae, Nakao, and
Ermentrout, 2009; Goldobin et al., 2010; Kurebayashi,
Shirasaka, and Nakao, 2013; Nakao, Yanagita, and
Kawamura, 2014). The main ingredient in this approach is
an attracting periodic orbit.

1. Stable periodic orbit and its phase

If the system in question has an exponentially stable
periodic orbit, the theory guarantees the existence of the
reduction and provides a method to obtain it. Thanks to
Ermentrout (1996), Rinzel and Ermentrout (1998), Izhikevich
(2007), Ermentrout, Galán, and Urban (2008), Ermentrout and
Terman (2010), and Hoppensteadt and Izhikevich (2012) we
now have a phase description for certain classes of neurons
and we understand its limitations (Smeal, Ermentrout, and
White, 2010). The strategy is as follows. We assume that the
system

_x ¼ fðxÞ; ð23Þ

where f∶ Rn → Rn, has a uniformly exponentially attracting
periodic orbit γ with period T; that is, γðtþ TÞ ¼ γðtÞ. The
orbit is exponentially stable if the trajectories of the system
approach it exponentially fast and the rate of convergence
does not depend on the initial time or on initial conditions (for
points sufficiently close to the orbit).
We can parametrize the orbit by its phase ϕ,

γðϕþ 2πÞ ¼ γðϕÞ. We can also reparametrize time such that
the phase ϕ increases uniformly along the orbit γ. That is, the
phase is uniform frequency equal to unity. By the chain rule
we then have

_ϕ ¼ 1 ¼ ∇γϕ · fðγÞ.

The key idea here is that weak coupling can adjust the rhythm
of the phase dynamics. The goal is to obtain the phase
reduction solely on the basis of information about the isolated
system (the orbit γ). To this end we need to extend the phase φ

to a neighborhood of the orbit. The main ingredient necessary
for the reduction of the problem to its phase dynamics is the
concept of asymptotic phase (Winfree, 1967, 1980), which
will provide us with the coupling function.
Asymptotic phase.—Right now, the phase ϕ is defined only

along the orbit γ. Our first step is to extend ϕ to a neighbor-
hood of γ. Since the periodic orbit is exponentially and
uniformly attracting, it will attract an open neighborhood of
γ. We call this set the basin of attraction of the periodic orbit.
Note that every initial point x0 in the basin of attraction of
the orbit will converge to the orbit. Hence, we have a ϕðx0Þ
such that

lim
t→∞

jxðt; x0Þ − γ(tþ ϕðx0Þ)j ¼ 0;

where xðt; x0Þ is the solution of the system with initial
condition x0. For each initial point in the basin of attraction
of γ we can assign a unique point in the orbit θ. This
ϕ ∈ ½0; 2π� is called the asymptotic phase.
Isochron.—For each value of phase ϕ in the orbit γ we have

a curve passing through this phase value. And along this curve
every initial will have the same asymptotic phase. This set is
called an isochron. That is, the isochron is a level set of ϕðxÞ.
So points in the isochron have the same value of phase and
will move at the same speed. See Fig. 12 where points in the

FIG. 12. Periodic orbits are shown as solid (black) circles and
isochrons as (blue) lines. Every point in an isochron has the same
value of asymptotic phase. Moreover, the distance between two
points in the same isochron tends to zero exponentially fast, as
illustrated by the red (dark) and blue (light) points. In the lower
figure, we show the effect on the phase dynamics of a small
perturbation. The point is initially at phase zero. The perturbation
Δx moves the system from its initial point to another isochron,
thereby advancing the phase. The periodic orbit γ and the
isochrons are for Eq. (25).
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same isochron approach the orbit along the same isochron.
The set of points where the isochron cannot be defined is
called phaseless. Once we find the isochron we can perform
the phase reduction.

2. Coupling function and phase reduction

Consider Eq. (23) with a stable periodic orbit γ being
perturbed

_x ¼ fðxÞ þ εIðϑ; xÞ;

where ϑ ¼ ωt is the phase of the external influence, and I is
the influence is a periodic on ϑ. The weak coupling implies
ε ≪ 1.
One of the cornerstones of the theory of invariant manifolds

is to guarantee that, when the system is perturbed and the
coupling strength is weak ε ≪ 1, there is a new attracting
periodic orbit ~γ close to the orbit γ, the difference between the
orbits being of the order of ε. Moreover, ~γ is exponentially
attractive and the isochrons also persist. So, while the
amplitudes are basically unaffected, the dynamics of the
phases change greatly.
With the help of the asymptotic phase, we define the phase

in a neighborhood of the orbit γ. This neighborhood contains
the new orbit ~γ as we consider small ε > 0. So, calculating the
phase along ~γ, by the chain rule we obtain

_ϕ ¼ ∇~γϕ · ½fð~γÞ þ εIðϑ; ~γÞ�:

But by construction ∇ϕ · f ¼ 1 in a neighborhood of γ.
Because ~γ is OðεÞ distant from γ we can expand both f and
I and evaluate them along γ at the expense of a perturbation of
the order of ε. It is standard to denote Z ¼ ∇γϕ. In this setting
we have

_ϕ ¼ 1þ εZðϕÞ · I(ϑ; γðϕÞ)þOðε2Þ;

and we have successfully reduced the problem to the phase of
the unperturbed orbit γ. In general terms, we study problems
of the type

_ϕ ¼ 1þ εqðϕ; ϑÞ: ð24Þ

The main insight was to obtain the coupling function in terms
of how the phase of the unperturbed orbit behaves near the
orbit γ. We performed the following steps:

(1) Phase sensitivity Z of the unperturbed system.—Once
we have the asymptotic phase, we can use it as the new
phase variable ϕ, extending the definition of phase
along the orbit to a neighborhood of the orbit. From
the phase, we can in turn compute the phase sensitivity
function

Z ¼ ∇ϕ;
where the gradient is evaluated along the orbit γ.

(2) Obtain the coupling function by q ¼ Z · I.—For this
step, we need to take the inner product of Z with the
perturbation p. When studying collective phenomena,

q will contain fast and slow variables. Typically, only
the slow variables are of interest, so we average q over
the fast variables.

Meaning of q.—In this approach we have a strong
underlying assumption that the phase responds linearly to
perturbations. That is, the coupling function is linear in the
perturbations. If the phase is perturbed by I1 and I2, the net
effect will be the sum of I1 and I2. Notice that the linearity is
only in terms of the perturbations. The equation itself is
nonlinear in the phase variable φ. The linearity with respect to
perturbations is because we have discarded all nonlinear terms
and terms of the order of ε2 (by computing Z along the
unperturbed orbit). We discuss these issues in an example
later. This linearity will facilitate the study of networks and
large ensembles of oscillators.
These two steps provide the phase description for weakly

coupled oscillators. Using these steps, it is possible to explain
the collective behavior of neurons (Ermentrout, 1996) and
circadian dynamics (Winfree, 1980), among other processes
(Kuramoto, 1984; Ermentrout and Terman, 2010).

3. Synchronization with external forcing

We illustrate and discuss how these ideas can be applied to
study the problem of synchronization with external forcing.
Consider the system

_x ¼ fðxÞ ¼ xþ jxj2Ax; with A ¼
�
1 −1
1 1

�
: ð25Þ

By inspection, it is clear that x ¼ 0 is an unstable point and the
system has an attracting periodic orbit γ of radius 1. This can
be better seen by changing to polar coordinates x1ðr;ϕÞ ¼
r sinðφÞ and x2ðr;φÞ ¼ r cosðφÞ using

_r ¼ rð1 − r2Þ; _φ ¼ r2: ð26Þ

The orbit γ corresponds to r ¼ 1 and is shown in Fig. 12.
Asymptotic phase.—The phase φ as defined in the orbit γ

has a constant frequency equal to unity. Along the orbit γ, we
therefore have _φ ¼ 1 (by inspection of the equations). For
points outside the orbit, however, this is no longer true. The
asymptotic phase ϕ will fix this issue because the points then
move at the same speed as the corresponding points in the
orbit, so that _ϕ ¼ 1 for points outside the orbit.
Because of the symmetry (r does not depend on φ) we can

use the ansatz

ϕðr;φÞ ¼ φþ ζðrÞ;

where we aim to find the function ζ. Differentiating we obtain

_ϕ ¼ _φþ dζ
dr

dr
dt

and, using the isochron’s properties together with the equa-
tions for r and φ, we obtain _ζ ¼ 1=r so ζ ¼ log rþ C. Since
we want to extend the phase continuously from the orbit, if
x ∈ γ then ϕðxÞ ¼ φðxÞ. We choose the constant C ¼ 0.
Therefore,
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ϕðr;φÞ ¼ φþ log r;

and we can define the isochron with asymptotic phase
ϕðr;φÞ ¼ c. In Fig. 12 (top) we show four level sets of the
asymptotic phase corresponding to ϕ ¼ 0, π=2, π, and 3π=2.
We can use the asymptotic phase to obtain a coordinate that

decouples the phase dynamics from the other coordinates.
Note that by defining a new coordinate ϕ ¼ φ − ηðrÞ we
obtain

_ϕ ¼ ∇ϕ · f ¼ 1; ð27Þ

which is valid not only along the orbit γ via Eq. (26), but also
in a neighborhood of the orbit. In the first equality we just
stressed the identity between the frequency (applying the
chain rule) and the gradient of ϕ.
We can now readily take the gradient (in polar coordinates),

yielding ∇ϕ¼ e1½sinðϕ− logðrÞ�þ cos½ϕ− logðrÞ�=r. Along
the unperturbed orbit γ we have ZðϕÞ ¼ ∇γϕ so that the
phase sensitivity functions are

ZðϕÞ ¼ e1 sinðϕþ π=4Þ:

Next we obtain the coupling function.
Obtaining the coupling function of external forcing.—Now

we consider the system being forced at frequency

_x ¼ fðxÞ þ εIðϑÞ; ð28Þ
where ϑ ¼ ωt. We obtain the coupling function through the
isochron. We now justify in detail why we discarded the
corrections in ε2.
We compute the equation for the phase dynamics. Note that

by chain rule _ϕ ¼ ∇ϕ · _x ¼ ∇ϕ · ½fðxÞ þ εI�. Using Eq. (27)
and evaluating the gradient along the orbit ~γ, we obtain

_ϕ ¼ 1þ ε∇~γϕ · I:

For small ε, we know that the difference between ∇γϕ and
∇~γϕ is of the order of ε, so we can replace the gradient along
the perturbed orbit and unperturbed orbit with corrections of
the order of ε2 (because ε is already multiplying the function).
Hence,

_ϕ ¼ 1þ εqðϕ; ϑÞ þOðε2Þ:

Synchronization and coupling function.—The main idea is
that the coupling function q can help in adjusting the
frequency of the system to the frequency ω of the forcing.
As discussed, we neglect the terms Oðε2Þ. Introducing the
phase difference

ψ ¼ ϕ − ϑ

and considering 1 − ω ¼ Δω we obtain

_ψ ¼ Δω þ εZðψ þ ϑÞ · IðϑÞ:
IfΔω is of the order of ε then the dynamics of ψ will be slow in
comparison with the dynamics of θ. Roughly speaking, for
each cycle of ψ we have 1=ε cycles of θ. Because the

dynamics of ϑ is faster than that of ψ , we use the averaging
method to obtain the coupling function

qðψÞ ¼ 1

T

Z
T

0

Zðψ þ ϑÞ · IðϑÞdϑ;

where T ¼ 2π is the period of p as a function of ϑ. Note that
for our result Z is sinusoidal so that by integrating over ϑ
while keeping ψ fixed, we obtain qðψÞ ¼ A sinðψ þ βÞ.
Hence we obtain the dynamics in terms of the phase difference

dψ
dt

¼ Δω þ εqðψÞ; ð29Þ

which is exactly the equation shown in Fig. 2.
We are now ready to study collective phenomena between

the driving and the system. For instance, the system will phase
lock with the driving dynamics when Δþ εqðψ�Þ ¼ 0. In this
case, the oscillators will have the same frequency. Moreover,
because q is a periodic function, the fixed point ψ� will exist
only when jΔ=εj ≤ max q.
Higher-order n:m phase locking.—Our assumption is that

Δ ¼ OðεÞ, so that Eq. (29) for the phase difference ψ ¼ ϕ − ϑ
is a slow variable. It may happen that ψmn ¼ mφ − nϑ gives
rise to a slow variable. In such cases, we perform the same
analysis for ψmn and further information on the higher-order
phase locking can be obtained (Ermentrout, 1981).

4. Phase response curve

The phase sensitivity function Z plays a major role in this
analysis. It also has many names: infinitesimal phase response
curve (iPRC), linear response function, or infinitesimal phase
resetting curve. It is deeply related to the PRC. For an
oscillator to be able to adjust its rhythm and synchronize, it
must respond differently to the perturbations at different
phases ϕ. So the phase can advance or retard to adjust its
rhythm to the external forcing. The PRC is a natural way of
displaying the response of oscillators to perturbations and
thereby to gain insight into the collective dynamics.
The main idea of the PRC is as follows: If we perform a

small and short perturbation of the orbit, the phase may
complete its cycle before expectation (in the absence of
perturbations), or it may be delayed. The unperturbed period
of the orbit γ is T0. Every point on the orbit can be uniquely
described by the phase ϕ. A small perturbation applied at a
phase ϕs can cause the phase to complete its full cycle at time
T1. The normalized phase difference between the cycles is

PRC ¼ T0 − T1

T0

:

Note that the PRC depends on the phase ϕs at which the small
perturbation was applied; that is, PRC ¼ PRCðϕsÞ. This is the
so-called phase response curve.
In the theory of weakly coupled oscillators, we use

the concept of an iPRC. It is equivalent to the gradient of
the phase Z, and it is defined as the PRC normalized by the
amplitude of the perturbation A:

Z ¼ lim
A→0

PRC
A

:
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Indeed, the isochrons and the PRC are closely related. If a
point moving along the orbit γ is instantaneous and the
perturbation is small, the point will land on an isochron,
which tells us the new phase ϕ of the point once it comes back
to the orbit. Further considerations and the relationship of the
PRC to experiments are given in Sec. IV.D.2.
In neuroscience, pulse-coupled oscillators are an important

class of models. Here the interactions happen in instanta-
neous pulses of communication. The collective dynamics of
such models are of great interest (Mirollo and Strogatz,
1990). The relationship between pulse-coupled oscillators
and the phase reduction was recently elucidated by Politi and
Rosenblum (2015) who showed that the models are
equivalent.

5. Examples of the phase sensitivity function

Because of the works of Winfree (1967, 1980), Kuramoto
(1984), Ermentrout (1996), and Stiefel, Gutkin, and
Sejnowski (2008), we now have a good understanding of
the phase sensitivity Z for many classes of systems such as
heartbeats, circadian rhythms, and in some neurons (with
stable repetitive firing).
The iPRC and PRC are closely related to the bifurcation

that led to the oscillatory behavior (Ermentrout, 1996; Brown,
Moehlis, and Holmes, 2004). ZðϕÞ is a vector and, in our
example in Sec. III.B.3, the norm of Z was proportional to
sinðϕþ βÞ. This is typical of Hopf bifurcations. In Fig. 13 we
present typical bifurcations in neuronal models for which the
iPRC and PRC are relevant.
In neuron models, the coupling is in one single variable:

the membrane potential V. So we only need to compute the
derivativewith respect toV. Thus,ZðϕÞ ¼ ∂ϕ=∂V.1 Izhikevich
(2000) derived a phase model for weakly coupled relaxation
oscillators and burster neurons (Izhikevich, 2007). Brown,
Moehlis, and Holmes (2004) obtained the phase sensitivity Z
for other interesting cases, including homoclinic oscillators.
Neurons with stable repetitive firing (corresponding to a stable
orbit) can be classified as having PRC type I dynamics
corresponding to a saddle-node infinite period (SNIPER)
bifurcation, or PRC type II dynamics corresponding to a
Hopf bifurcation. The phase portraits for these two bifurcations
are illustrated in Fig. 13. PRCs of type I are always positive
whereasPRCsof type II have both negative and positive parts, as
shown in Table III. The PRC type is indicative of the neuron’s
ability to synchronize: networks of neuronswithPRC type II can
synchronize via mutual excitatory coupling, but those of PRC
type I cannot (Ermentrout, 1996).

C. Globally coupled oscillators

Now suppose that we have N coupled oscillators

_xi ¼ fiðxiÞ þ ε
XN
j¼1

Hijðxi; xjÞ: ð30Þ

We assume that, when they are uncoupled ε ¼ 0, each system
has an exponentially attracting periodic orbit. So the dynamics
of the uncoupled system occurs on a torus TN that is
exponentially attracting. Moreover, we also assume that fi
is close to f. As we turn the coupling on, the dynamics
changes. The theory of normally hyperbolic invariant mani-
folds guarantees that the dynamics of the system with small
coupling will also take place on a torus (Eldering, 2013). So
the amplitudes remain roughly the same. But the dynamics on
the torus, that is, the phases can change a lot (Turaev, 2015).
Again if we know the isochrons for the phases, we can use

the same arguments to describe the system in terms of the
phases. The corresponding phase model

_ϕ ¼ ωi þ ε
X
j

qijðϕi;ϕjÞ;

where each oscillator has its own period Ti, and qij is the
coupling function describing the influence of the jth oscillator
on the ith oscillator. Here

qijðϕi;ϕjÞ ¼ QðϕiÞ ·Hij(γiðϕiÞ; γjðϕjÞ):

Note that Z is independent of the index i because we assumed
that fi’s are all close to f. Again, we can average over the fast

FIG. 13. Three typical bifurcations appearing as the result of
changing a single parameter. As the parameter changes for the
SNIPER bifurcation, two fixed points collapse to a saddle node
on the circle, and then the system oscillates. In the Hopf
bifurcation, a periodic orbit appears after destabilization of the
fixed point. In the homoclinic bifurcation, the stable and unstable
manifolds of the saddle point join to form a homoclinic orbit, as
the parameter changes; with further parameter change, the
homoclinic orbit is destroyed and a periodic orbit appears.

TABLE III. The phase sensitiveness for various models and their
bifurcation after Brown, Moehlis, and Holmes (2004). Izhikevich
(2000, 2007) obtained the phase sensitivity Z for relaxation oscil-
lators. They are discontinuous and are not shown here.

Bifurcation ZðϕÞ
SNIPER 1 − cosϕ
Hopf sinðϕ − βÞ
Homoclinic expð−λϕÞ
Integrate and fire 2π
Leaky integrate and fire expðgϕÞ

1We are abusing the notation by using Z to represent both the full
gradient and the derivative with respect to a single variable. In
theoretical neuroscience this convention is standard.
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variables to obtain equations in terms of the phase difference
(Daido, 1996b).
In many cases, the isolated oscillators are close to a Hopf

bifurcation. As discussed, the coupling function after averag-
ing takes the form

qijðϕi;ϕjÞ ¼ sinðϕi − ϕj þ βÞ:

This is by far the best-studied coupling function, and it has
offered deep insights into collective properties for both globally
coupled oscillators (Acebrón et al., 2005) and complex net-
works (Arenas et al., 2008; Rodrigues et al., 2016).
First we consider β ¼ 0. The model is then written as

_ϕi ¼ ωi þ
ε

N

XN
j¼1

sinðϕj − ϕiÞ:

If the oscillators are identical ωi ¼ ω, then any small coupling
ε > 0 leads to synchronization (the phases will converge to the
same value). If the distribution g of natural frequencies ωi is
broad, then at a critical coupling εc a large cluster of
synchronized oscillators appears and, with further increase
of coupling, additional oscillators join the cluster.
The main idea of the analysis is to introduce an order

parameter

z ¼ reiψ ¼ 1

N

XN
j¼1

eiϕj

and to rewrite the equations in terms of the parameters r and ψ
(which are now mean-field parameters):

ϕi ¼ ωi þ εr sinðψ − ϕiÞ:

Taking the limit N → ∞, we can write the model in terms of
self-consistent equations (Kuramoto, 1984).
When the distribution g of the natural frequencies is an

even, unimodal, and nonincreasing function, and the coupling
is weak, the incoherent state is neutral (Strogatz and Mirollo,
1991), but the order parameter r vanishes (at a polynomial
rate) if g is smooth (Fernandez, Gérard-Varet, and Giacomin,
2014). Moreover, on increasing the coupling, the incoherent
solution r ¼ 0 bifurcates for

ε > εc ¼
2

gð0Þ :

A systematic review of the critical coupling including bimodal
distributions (keeping the coupling function purely harmonic)
was given by Acebrón et al. (2005).

1. Coupling functions leading to multistability

As seen, if the oscillators are close to a Hopf bifurcation as
is typical, then the corresponding phase sensitivity
ZðϕÞ ∝ sinðϕþ βÞ. This means that the coupling function
will have a phase shift

qðϕi;ϕjÞ ¼ sinðϕj − ϕi þ βÞ; with jαj < π=2:

This coupling function is called the Sakaguchi-Kuramoto
coupling (Sakaguchi and Kuramoto, 1986). The slight modi-
fication can lead to nonmonotonic behavior of synchroniza-
tion (Omel’chenko and Wolfrum, 2012). For certain unimodal
frequency distributions g, the order parameter can decay as the
coupling increases above the critical coupling, and the
incoherent state can regain stability. Likewise multistability
between partially synchronized states and/or the incoherent
state can also appear.
Although the dynamics of the model with this slight

modification can be intricate, it is still possible to treat a
more general version of the Sakaguchi-Kuramoto coupling

qijðϕi;ϕjÞ ¼ Bj sinðϕj þ βj − ϕi − αiÞ:

This coupling function generalizes the standard Sakaguchi-
Kuramoto model as it allows for different contributions of
oscillators to the mean field, on account of the phase shifts αi
and βj and coupling factors Bj. In turn, the mean field acts on
each oscillator differently. This scenario is tractable in terms of
the self-consistency equations for the amplitude and frequency
of the mean field (Vlasov, Macau, and Pikovsky, 2014). Also
in this setting, solutions of the coupled phase oscillators
approximate solutions of phase oscillators with an inertial
term (Dorfler and Bullo, 2012) which plays a major role in
power grids.
Higher harmonics.—In the previous discussion, the cou-

pling function q contained one harmonic qðϕÞ ¼ sinðϕþ βÞ.
Depending on the underlying bifurcation we must now
include further, higher-order, Fourier components,

qðϕÞ ¼ a1 sinðϕÞ þ a2 sinð2ϕþ b2Þ þ � � � þ an sinðnϕþ bnÞ;

where ai and bi are parameters. For example, synchronization
of weakly coupled Hodgkin-Huxley neurons can be replicated
using coupling functions consisting of the first four Fourier
components (Hansel, Mato, and Meunier, 1993b).
Moreover, considering the coupling function q to be a

biharmonic coupling function (Hansel, Mato, and Meunier,
1993a), there is a multiplicity of such states, which differ
microscopically in the distributions of locked phases
(Komarov and Pikovsky, 2013). Higher harmonics in the
coupling function can also lead to the onset of chaotic
fluctuations in the order parameter (Bick et al., 2011).
Indeed, the coupling function alone can generate chaos, that
is, even keeping the frequencies identical and having no
amplitude variations.

2. Designing coupling functions for cluster states
and chimeras

Ashwin and co-workers tailored the coupling function to
obtain cluster states in identically and globally coupled phase
oscillators (Orosz, Moehlis, and Ashwin, 2009; Ismail and
Ashwin, 2015). In this situation, because the oscillators are
identical, the behavior of the system is determined by the
number of oscillators N and the coupling function q. By
carefully choosing the Fourier coefficients of the coupling
function we obtain two major results: (a) any clustering can
appear and be stable, and (b) open sets of coupling functions
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can generate heteroclinic network attractors. Heteroclinic
networks are not confined to globally coupled oscillators
and they can appear robustly in complex networks (Aguiar
et al., 2011; Field, 2015).
In networks of identical oscillators a chimera state is

defined as a spatiotemporal pattern in which synchronous
and asynchronous oscillations coexist (Abrams and Strogatz,
2004; Hagerstrom et al., 2012). Chimera states among phase
oscillators appear only when a spatial (long-range) coupling is
included. This approach, in which the coupling is tailored to
obtain clusters and complicated attractors in identical and
globally coupled oscillators, can be extrapolated to construct
chimeras. They can be obtained either by consideration of
higher harmonics (Ashwin and Burylko, 2015) or by pertur-
bation of the coupling function in specific ways. A partially
coherent inhomogeneous pattern called chimera death, which
combines the features of chimera states and oscillation death,
was also established (Zakharova, Kapeller, and Schöll, 2014).

3. Coupling functions with delay

A natural generalization of the coupling function is to
introduce delay. A common case is the inclusion of trans-
mission delays

qτ(ϕiðtÞ;ϕjðtÞ) ¼ sin (ϕjðt − τÞ − ϕi − β):

The addition of delays makes the model infinite dimensional
and leads to a series of new phenomena such as bistability
between synchronized and incoherent states and unsteady
solutions with time-dependent order parameters (Yeung and
Strogatz, 1999). Multistability is very common in the presence
of delays. In particular, it can also be observed in small
variations of the previous coupling function

qτ(ϕiðtÞ;ϕjðtÞ) ¼ b sinϕiðtÞ þ ε sin½ϕjðt − τÞ − ϕi − β�;

and multistablity can also be observed (Kim, Park, and
Ryu, 1997).
Carefully chosen communication delays can also be used to

encode patterns in the temporal coding by spikes. These
patterns can be obtained by a modulation of the multiple,
coexisting, stable, in-phase synchronized states, or traveling
waves propagating along or against the direction of coupling
(Popovych, Yanchuk, and Tass, 2011). Coupling functions
with delay can also be used for controlling the state of
oscillation death (Zakharova et al., 2013). Two limiting cases
of delay can be treated. First, for very small delays, the theory
of an invariant manifold can be applied. Secondly, in the case
of large delays, developments due to Flunkert et al. (2010) and
Lichtner, Wolfrum, and Yanchuk (2011) can be used to
determine the collective properties of ensembles of oscillators.

4. Low-dimensional dynamics

A particularly striking observation is the low-dimensional
dynamics of identical globally coupled phase oscillators under
the Sakaguchi-Kuramoto coupling function. Note that in this
case writing the sinusoidal coupling in exponential form, we
can express the coupled equations as

_ϕj ¼ feiϕj þ gþ f̄e−iϕj ;

where f and g are smooth functions of the phases which can
also depend on time.
These identically coupled oscillators evolve under the

action of the Moebius symmetry group M (actually a
Moebius subgroup). So ensembles of identical, globally
coupled oscillators have N − 3 constants of motion and their
dynamics is three dimensional (Watanabe and Strogatz, 1993;
Marvel, Mirollo, and Strogatz, 2009). That is, all phases
evolve according to the action of the same Moebius trans-
formation

eiϕj ¼ Mα;ψ ðeiθjÞ;

where the θj are constants and α ∈ C and ψ ∈ S1 are the
parameters of the Moebius group.
This approach can do more. In the limit of large N it is

possible to obtain nonlinear equations for the order parameter.
Choosing uniformly distributed constants of motion θj, the
complex order parameter z follows a Riccati equation

_z ¼ iðfz2 þ gzþ f̄Þ:

This reduction was applied to study a number of nonlinear
problems in arrays of Josephson junctions (Marvel and
Strogatz, 2009; Vlasov and Pikovsky, 2013), discontinuous
transitions in explosive synchronization (Vlasov, Zou, and
Pereira, 2015), and to classify the attractors in the ensemble of
oscillators. Indeed, the only attractors are fixed points or
limit cycles where all but one oscillator are synchronized
(Engelbrecht and Mirollo, 2014).
This reduction follows from the group symmetry of the

equations and it is valid only for identical frequencies. Ott and
Antonsen (2008) put forward a scheme allowing dimensional
reduction for nonidentical frequencies. In the limit N → ∞,
the state of the oscillator system is described by a distribution

fðω;ϕ; tÞ ¼ gðωÞ
2π

�X∞
n¼1

fnðω; tÞeinϕ þ c:c.

�
;

where c.c. stands for complex conjugate. Next we assume that

fnðω; tÞ ¼ αðω; tÞn; ð31Þ

that is, the whole distribution f is determined by only one
function with jαj < 1. It is possible to show that the evolution
of the system preserves this form of f. For various classes of
distribution g it is possible to obtain equations for α and
thereby for the order parameter.
So the scheme will give low-dimensional equations for

the order parameter. This ansatz of Eq. (31) has been
successfully applied to understand the dynamics of globally
coupled oscillators and the second order Kuramoto model
(Rodrigues et al., 2016), and to understand the formation of
clusters when higher-order harmonics are included in the
coupling function (Skardal, Ott, and Restrepo, 2011). The
approach can also be used to study nonautonomous globally
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coupled ensembles of phase oscillators (Petkoski and
Stefanovska, 2012).
Pikovsky and Rosenblum (2011) made a generalization to

heterogeneous ensembles of phase oscillators and connected
the Watanabe and Strogatz reduction to the Ott and Antonsen
ansatz. In the limit of infinitely many oscillators, the
Kuramoto order parameter z can be written as an integral
over the stationary distribution of phases ν. Clearly z does not
characterize the distribution ν, so one may consider the
generalized order parameters

zm ¼
Z

2π

0

νðϕÞeimϕdϕ;

which are the Fourier coefficients of the distribution ρ.
Clearly, z1 ¼ z is the standard order parameter. If the
distribution of the constants of motion is uniform, then

zm ¼ zm

and, for this particular case, the order parameter z completely
determines the distribution. The Ott and Antonsen ansatz
corresponds to the special case where the generalized order
parameters are expressed via the powers of order parameter.
Sensitivity to the coupling function.—This approach to

finding low-dimensional dynamics is dependent on the
coupling function being sinusoidal in shape. The Watanabe
and Strogatz reduction forN globally coupled oscillators gives
N − 3 constants of motion. Therefore, the dynamics of the
ensemble is neutral. The dynamics on these subspaces evolves
under the identity map. Recent results show that by perturbing
the identity map we can generate any dynamics (Turaev,
2015). So small perturbations in the coupling function can
lead to abrupt changes in the dynamics of the ensemble.

5. Noise and nonautonomous effects

If the oscillators are subject to noise, the phase reduction
scheme can still be applied but with some minor modifications
(Ermentrout and Saunders, 2006; Balanov et al., 2008). Even
in the absence of coupling, the oscillators can synchronize if
driven by a common noise. This is a general result by Le Jan
(1987) who showed that, when phase oscillators are driven by
noise, the trajectories converge to a random fixed point
(corresponding to the two oscillators going to the same
trajectory). This result is well appreciated in the physics
community as are also the differing effects of common and
independent noises (Lindner et al., 2004).
In the context of interacting oscillators we can analyze the

contributions of the coupling function and common noise in
driving the oscillators toward synchronization (Garcia-
Alvarez et al., 2009). Consider the following model of two
coupled (or uncoupled) phase oscillators with common and
independent noises:

_ϕ1 ¼ ω1 þ ε sinψ þ A1ξðtÞ sinðϕ1Þ þ B1ξ1 sinϕ1;

_ϕ2 ¼ ω2 þ ε2 sinψ þ A1ξðtÞ sinðϕ1Þ þ B2ξ2 sinϕ1;

where ξ; ξ1, and ξ2 are Gaussian noises of unit variance and,
again, ψ ¼ ϕ1 − ϕ2. It is possible to obtain a stochastic

differential equation for the generalized phase difference ψ .
This equation is nonautonomous. An analytical approach is to
write a Fokker-Planck equation for the probability density
of ψ .
The probability density is almost independent of the fast

variables ϕ1 and ϕ2, so a good approximation is to integrate
over these variables to obtain a proxy for a stationary
probability distribution. This approach reveals three important
effects: (i) independent noises ξ1, ξ2 hinder synchronization;
(ii) coupling-induced synchronization takes place for low noise
intensity and large coupling strengths; and (iii) common-noise-
induced synchronization occurs for large common-noise
intensities and small coupling strengths.
Nonautonomous effects.—If the frequencies of the oscil-

lators are nonautonomous but the oscillators are identical,
the reduction techniques can still be applied (Watanabe and
Strogatz, 1993; Marvel, Mirollo, and Strogatz, 2009; Petkoski
and Stefanovska, 2012), so that phenomena such as synchro-
nization can be studied. A new class of systems described by
nonautonomous differential equations are chronotaxic sys-
tems. These are defined as dissipative dynamical systems with
internal sources of energy. In such cases the coupling function
is nonautonomous and the systems retain stable (time-
dependent) amplitude and phase under external perturbation
(Suprunenko, Clemson, and Stefanovska, 2013; Lancaster
et al., 2016).

D. Networks of oscillators

In this section, we generalize the discussion to networks of
interacting systems with pairwise interaction. That is, we
consider

_xi ¼ fiðxiÞ þ ε
XN
j¼1

WijHijðxi; xjÞ;

where Wij is the matrix encoding the strength of interaction
between j and i, and H is the coupling function. Note that we
allow each isolated vector field to be distinct. To be able to
draw conclusions about the overall dynamics from the micro-
scopic data for f, W, and H, we consider a subclass of vector
fields and coupling functions.

1. Reduction to phase oscillators

Assume that for ε ¼ 0 each isolated system has an
exponentially attracting periodic orbit. A typical assumption
is that Hij ¼ H (i.e., all coupling functions are identical).
Then proceeding in the same way as in Sec. III.C for globally
coupled oscillators in the limit of small coupling strengths, we
can reduce the dynamics to the phases

_φi ¼ ωi þ ε
XN
j¼1

Wijqðφi;φjÞ:

This model describes the dynamics of the phase oscillators in
terms of complex networks of interactions. Most results relate
to the sinusoidal coupling function qðφi;φjÞ ¼ sinðφj − φiÞ.
The main questions lie in the realm of collective dynamics and

Stankovski et al.: Coupling functions: Universal insights into …

Rev. Mod. Phys., Vol. 89, No. 4, October–December 2017 045001-24



transitions from incoherent to coherent states (Rodrigues
et al., 2016). The situation here is less well understood.
For instance, it is unclear how to generalize the low-dimen-
sional reduction approach.

2. Networks of chaotic oscillators

A subclass of this model offers insight. ConsiderWij ¼ Aij,
where Aij ¼ 1 if i receives a connection from j, and Aij ¼ 0

otherwise. Moreover, consider the diffusive coupling func-
tions Hijðx; yÞ ¼ Hðx − yÞ. Suppose also that fi ¼ f, that is,
all isolated nodes are identical. We also assume that the
isolated systems are chaotic. This assumption is not necessary
but aesthetically pleasant, because in this situation the only
possible source for collective dynamics is through the cou-
pling. This model corresponds to identical oscillators inter-
acting diffusively, and it can then be rewritten as

_xi ¼ fðxiÞ þ ε
XN
j¼1

AijHðxj − xiÞ:

The role of the coupling function is to attempt to bring the
system toward synchronization x1 ¼ x2 ¼ � � � ¼ xN . The
main questions now are (a) when will the coupling function
H bring the system toward synchronization, and (b) how will
the interaction structure Aij influence the system? We should
analyze the growth of small perturbations xi ¼ sþ ξi, where
_s ¼ fðsÞ. But we face the challenges of having too many
equations and, moreover, of all the ξi being coupled.
Global results.—Here we want to find the conditions on the

coupling function guaranteeing that the network dynamics
will converge to synchronization, regardless of the initial
conditions. The challenge is to construct a Lyapunov function
whose existence is a sufficient condition for a globally stable
synchronous state.
Pogromsky andNijmeijer (2001) used control techniques and

concepts of passive systems to obtain global synchronization
results for arrays of interacting systems. Assuming that the
coupling function is positive definite, theywere able to construct
a Lyapunov function for the array and to express its construction
in terms of the spectrum of the network. They showed thereby
that all solutions of the coupled equation are bounded and that, if
the coupling is large enough, the network synchronizes. They
also showed how diffusion-driven instabilities can appear in
such arrays. This approach to passive systems was subsequently
applied to neuron models to study their synchronization proper-
ties (Steur, Tyukin, and Nijmeijer, 2009).
In a similar spirit to constructing Lyapunov functions,

Belykh, Belykh, and Hasler (2004) developed the connection
graph stability method. At its very heart, the method requires
the existence of a Lyapunov function for the nonlinear
equations of the perturbations ξi. The existence of this
function is unclear from the beginning, however, and it
may depend on the vector field f. The method relates the
critical coupling necessary to attain synchronization to
the total length of all paths passing through an edge on the
network connection graph.
Another approach to studying synchronization is to tackle

the equations for the perturbations ξi using the theories of

contraction (Russo and Di Bernardo, 2009) and exponential
dichotomy (Pereira et al., 2014). Here we use the coupling
function to construct differential inequalities. At their cores,
these approaches are equivalent to the construction of local
Lyapunov functions. However, if the coupling function is such
that the contraction theory can be applied (for example, the
coupling function is positive definite) then much information
on the synchronization can be extracted. In particular, even if
the network structure is time varying the network may
synchronize (Lü and Chen, 2005).
Local results.—In the previous section on “global results,”

we took account of the nonlinear behavior of the perturbation
ξi. In the local approach we consider only the linear terms in ξ.
Pecora and Carroll (1998) had the idea of block diagonalizing
the perturbations ξi via a change of coordinates where ξi goes
to ζi. In the new variables ζi the perturbations decouple and
they all have the same form

_z ¼ ½Df(sðtÞ)þ αΓ�z;

where Γ ¼ DHð0Þ. To recover the equation for ζi we only
need to set α ¼ ελi, where λi is the ith eigenvalue of the
Laplacian of the network. So the problem reduces to the case
of two coupled oscillators. Obviously, there are additional
challenges in understanding the graph structure via λi, but the
main idea now boils down to the case of two oscillators. We
classify the stability of the variational equation for z. The most
common criterion used for stability is the Lyapunov exponent,
which gives rise to the master stability function Λ (just as in
the two oscillator case). This approach showed that the
topology of the networks can exert systematic influences
on the synchronization (Barahona and Pecora, 2002) and can
be used to predict the onset of synchronization clusters
(Williams et al., 2013; Pecora et al., 2014). In the last two
decades this approach has been popular and it has been
applied to a variety of network structures (Arenas et al., 2008)
and to problems of pinning control (Sorrentino et al., 2007).
The MSF approach was also extended to the case where the

coupling function has time delays (Li and Chen, 2004).
Moreover, in the limit of large delays it is possible to
understand the behavior of the level sets of the master stability
function Λ. Indeed, the level sets tend to be circles whose radii
increase monotonically in the complex plane (Flunkert et al.,
2010). Some networks also have two types of coupling
functions. Typical examples are neural networks where
electrical and chemical synapses coexist. If the underlying
matrices defining the chemical and electrical couplings
commute, then the MSF can be used to understand the net
effects of the coupling function on the synchronization
(Baptista, Kakmeni, and Grebogi, 2010).
Generalizations.—So far we have discussed networks of

identical oscillators. If the network is composed of slightly
nonidentical nodes, the MSF approach can still be applied, via
a perturbation analysis (Sun, Bollt, and Nishikawa, 2009). In
general, to understand the effect of the network, combined
with the effects of nonidentical nodes, further information
about the coupling function is necessary. If the coupling
function Γ (linearized about the synchronized manifold) has a
spectrum with a positive real part, then we can extract a great
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deal of information from it. Adding random links to a network
of nonidentical oscillators can substantially improve the
coherence (Pereira et al., 2013). For directed networks,
depending on the coupling function, improvements in the
network topology such as link addition can destabilize
synchronization (Pade and Pereira, 2015). This phenomenon
can also be observed in experiments with lasers when the
coupling function has a time delay (Hart et al., 2015).
Moreover, if one adds a small perturbation on the nodes of

systems interacting in a fully connected network, the collec-
tive dynamics will lead to smaller fluctuations than those
expected if the oscillators were uncoupled and one applies the
central limit theorem (Masuda, Kawamura, and Kori, 2010).
That is, the central limit theorem would predict fluctuations of
order OðN−1=2Þ, whereas the collective dynamics gives
OðN−1Þ. One can classify the regular networks such that
the improvement is significant (Pereira et al., 2014). For this
class of coupling functions, one can also gain insight into the
speed of synchronization, that is, how fast the system
converges toward synchronization. The speed is well known
to depend on the network structure (Timme, Wolf, and Geisel,
2004; Grabow et al., 2010). For this class of coupling
functions, it is possible to show how the properties of the
coupling function and network structure combine to determine
the speed of convergence. For example, if the spectrum of the
coupling function is real, then the speed toward synchroniza-
tion is dictated by the real part of the Laplacian spectral gap.
So far efforts have been concentrated on the study of

nonidentical nodes, while keeping the coupling function
identical. Because the coupling function couples with the
network structure of the equations, perturbations in the
coupling function can have a drastic impact on the collective
dynamics. For instance, if the network has a heterogeneous
degree distribution, no perturbations in the coupling function
are tolerated. Any perturbation in the large network limit will
destabilize the synchronous motion (Maia, Pereira, and
Macau, 2015).

IV. METHODS

A. Inferring coupling functions

Before discussing methods for the inference of coupling
functions, we mention earlier discussions and techniques
(Čenys, Lasiene, and Pyragas, 1991; Schiff et al., 1996;

Arnhold et al., 1999; Stefanovska and Bračič, 1999;
Schreiber, 2000) that paved the way for the subsequent
introduction of coupling functions. Although the mathemati-
cal and computational facilities of the time did not allow for
the full inference of coupling functions, this goal was none-
theless closely approached by different measures that detected
the existence of a coupling relationship and characterized its
nature.
In a study of this kind, Stefanovska and Bračič (1999)

investigated the coupled oscillators of the cardiovascular
system from human blood flow signals. Among other meth-
ods, wavelet time-frequency analysis was used to detect the
instantaneous frequency of the heart, through which the
coupling from respiration was assessed. Similarly, many
information-based measures were used for assessment of
the coupling strength and directionality (Schreiber, 2000;
Paluš and Stefanovska, 2003; Barrett and Barnett, 2013).
Even though these methods are very useful in detecting the net
coupling effects, they are essentially directed functional
connectivity measures and they are not designed to infer
mechanisms.
Another traditional approach for studying interactions is via

transfer function analysis (Sanathanan and Koerner, 1963;
Saul et al., 1991; Cooke et al., 1998; Boreman, 2001). The
transfer function is a mathematical representation that
describes the linear relationships between the inputs and
outputs of a system considered as a black-box model.
Although this approach suffers from some limitations, it
has nonetheless been used in the past for understanding
interactions and still is.
The inference of coupling functions involves the analysis of

data to reconstruct a dynamical model describing the inter-
actions. The main pillar of the procedure is a method for
dynamical inference, often referred to as dynamical modeling
or dynamical filtering (Kalman, 1960; Sanjeev Arulampalam
et al., 2002; Voss, Timmer, and Kurths, 2004; von Toussaint,
2011). The latter has been used historically as a means of
advanced “filtering,” when one selects and detects the features
of interest described by the model—a celebrated example
being the Kalman filter (Kalman, 1960). Figure 14 presents
the main steps in obtaining the coupling function. In short,
starting with the data M from two (or more) interacting
dynamical systems, first the appropriate observable data ~M,
like the phase or amplitude, are estimated from the initial data

FIG. 14. Schematic illustration of the procedure for the inference of coupling functions. From left to right: measurement data M,
preestimation procedure where the phase or amplitude ~M is estimated from those data, the inference of a dynamical model from the ~M
data, and the coupling function emerging as the end result of the procedure.
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M, so that they can be used by a method that infers a
dynamical model from which one can extract the coupling
functions.
The data M are usually represented by amplitude state

signals measured dynamically, i.e., they describe the time
evolution of the system. Very often the raw measurements
require preprocessing and preestimation procedures. If the
systems are of an oscillatory nature, the phase of the periodic
signal is extracted; similarly the amplitude can be extracted
from the signals. There can be further preprocessing, includ-
ing filtering within desired intervals, removal of artifacts,
noise suppression, removal of common source disturbances,
filtering of power supply frequency, etc. The preprocessed
signals then act as input for the inference methods.
The inference process aims to reconstruct a model to

describe the interacting dynamical systems. It is given by a
set of ordinary differential equations (ODEs) or if there is
dynamical noise by stochastic differential equations (SDEs).
The model in Fig. 14 is given in terms of general variable χ,
while usually the model uses either the phase or amplitude
domain. The dynamics of the system is modeled with a set of
base functions, which are usually linearly independent. For
example, the set of base functions can be a Fourier series of
sine and cosine functions. Base functions can be either linear
or nonlinear and are specified by a set of parameters c that
usually act as scaling parameters. When appropriately para-
metrized by c, the base functions then combine to give the all-
important coupling function.
The base functions are a part of the model that is assumed to

be known beforehand, so the main task of the inference
method is to determine the parameters c from the data ~M,
given the (SDE or ODE) model _χ. The choice of the right
model can be rather difficult, especially if the dynamical
system does not possess some general characteristics.
Nevertheless, a number of methods exist for optimal model
selection (Berger and Pericchi, 1996; Ljung, 1998; Burnham
and Anderson, 2002). Given a model and a set of data, one can
use different methods to perform the inference. These methods
may differ considerably in their characteristics and perfor-
mance, and we present some examples of those that are most
widely used.

B. Methods for coupling function reconstruction

1. Modeling by least-squares fitting

As mentioned, one of the first works on the reconstruction
of coupling functions from data was that developed by
Rosenblum and Pikovsky (2001). Their inference of the
interaction is based on a least-squares fitting procedure
applied to the phase dynamics of the interacting oscillators.
The main goal of the method is the detection of coupling and
directionality. Nevertheless, part of the results are functions
that closely resemble the form of coupling functions.
The technique provides for experimental detection of the

directionality of weak coupling between two self-sustained
oscillators, from bivariate data. The approach makes use of the
well-known fact that weak coupling predominantly affects the
phases of the oscillators, not their amplitudes. The principal
idea is to investigate and quantify whether the phase dynamics

of one oscillator is influenced by the phase of the other. To
achieve this, the model of the phase equations [Eq. (5)] is
fitted to the phase data. From the inferred model and its
parameters, one can then quantify the coupling in one or the
other direction.
First, for each point in time of the phase time series, the

increments Δ1;2ðkÞ ¼ ϕ1;2ðtk þ τÞ − ϕ1;2ðtkÞ are computed,
where τ is a free parameter. These increments Δ1;2ðkÞ
are considered as being generated by some unknown two-
dimensional map

Δ1;2ðkÞ ¼ F 1;2½ϕ1;2ðkÞ;ϕ2;1ðkÞ�:

The functions F 1;2½ϕ1;2ðkÞ;ϕ2;1ðkÞ� are decomposed into
Fourier series, and their dependences Δ1;2ðkÞ on ϕ1 and ϕ2

are modeled with the least-square fitting procedure. As base
functions for the fitting, the Fourier series

F 1;2 ¼
X
m;l

Am;leimϕ1þilϕ2 ;

with jlj ≤ 3 for m ¼ 0, jmj ≤ 3 for l ¼ 0, and jlj ¼ jmj ¼ 1

were considered.
It is worth pointing out that this notion is close to,

although not exactly identical to, the dynamical inference
of ODEs: the increments Δ1;2ðkÞ are close to the Euler method
for first order differentiation which would have been
ΔEuler;1;2ðkÞ ¼ ½ϕ1;2ðtkþ1Þ − ϕ1;2ðtkÞ�=h, where h is the sam-
pling (differentiation) step. Therefore, the functions
F 1;2½ϕ1;2ðkÞ;ϕ2;1ðkÞ� are similar to the coupling functions
q1;2ðϕ1;ϕ2Þ, i.e., they are close to the form of the genuine
coupling functions with close relative but not absolute
coupling strength. Despite the differences, these were prob-
ably the first extracted functions of oscillatory interactions,
and they were of great importance for the work that followed.
The inference itself was performed by least-squares fitting,

a widely used method for finding the best-fitting curve to a
given set of points (Lawson and Hanson, 1974; Leon, 1980).
The main objective of the fitting consists of adjusting the
parameters of a model function to best fit a data set. The result
of the fitting process is an estimate of parameters, given the
model and the base functions. To obtain the parameter
estimates, the least-squares method minimizes the summed
square of residuals (also often called offsets). The residual
℘ðkÞ for the kth data point is defined as the difference between
the observed response valueΔðkÞ and the fitted response value
~ΔðkÞ and is identified as the error associated with the data. The
summed square of residuals is then given as

O ¼
X
k

℘2ðkÞ ¼
X
k

½ΔðkÞ − ~ΔðkÞ�2:

The main estimation, aiming to minimize O, involves partial
differentiation with respect to each parameter and setting the
result equal to zero (Lawson and Hanson, 1974; Leon, 1980).
Such schemes can use linear, weighted, or nonlinear fitting.
More recent methods for coupling function reconstruction
with fitting procedures often involve a kernel density estima-
tion (Kralemann et al., 2008). The finally inferred parameters
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applied to the model base functions provide explicit defini-
tions of the functions F 1;2½ϕ1;2ðkÞ;ϕ2;1ðkÞ�.
To demonstrate the method, a simple example of two

coupled phase oscillators subject to white noise was
considered:

_ϕ1 ¼ ω1 þ ε1 sinðϕ2 − ϕ1Þ þ ξ1ðtÞ;
_ϕ2 ¼ ω2 þ ε2 sinðϕ1 − ϕ2Þ þ ξ2ðtÞ;

where the coupling functions are sines of the phase difference
[cf. Kuramoto’s coupling function, Eq. (8)], with frequencies
ω1;2 ¼ 1� 0.1, and couplings ε1 ¼ 0.1 and ε2 ¼ 0.02 (i.e.,
weaker than ε1). The noise is assumed to be white Gaussian
noise with hξ1;2ðtÞξ1;2ðt0Þi¼ δðt− t0Þ2D1;2, where D1;2 ¼ 0.2.
Note that the least-squares fitting only infers the deterministic
part of the ODEs, and the noise here is used to introduce
imprecisions only, i.e., there is no inference of SDEs.
Figure 15 presents the two functions as reconstructed using
least-squares fitting. Note from Fig. 15(a) that the form of the
reconstructed function F 1 rightly resembles that of the
genuine coupling function sinðϕ2 − ϕ1Þ, i.e., a diagonal form
of a wave determined by the phase difference ϕ2 − ϕ1; and
(b) the strength, or amplitude of F 2, is much lower due to the
weaker coupling strength.

2. Dynamical Bayesian inference

The recently introduced method for the dynamical Bayesian
inference of coupling functions (Stankovski et al., 2012) relies
on a Bayesian framework (Bayes, 1763; Friston, 2002;
Smelyanskiy et al., 2005; von Toussaint, 2011) and is applied
to a stochastic differential model where the deterministic part
is allowed to be time varying.
The method attempts to reconstruct the coupling functions

by inferring a model consisting of two weakly interacting
dynamical systems subject to noise. The model to be inferred
is described by the stochastic differential equation

_χi ¼ fðχi; χjjcÞ þ
ffiffiffiffi
D

p
ξi; ð32Þ

where i ≠ j ¼ 1; 2, and fðχi; χjjcÞ are base functions describ-
ing the deterministic part of the internal and the interacting
dynamics. The parameter vector c provides scaling coeffi-
cients for the base functions. The noise is assumed to be white,
Gaussian, and parametrized by a noise diffusion matrix D. At
this point we talk of χi in general, but later we refer separately
to the phase or amplitude coupling functions depending on the
domain of the application.
Given the 2 ×M time series X ¼ fχn ≡ χðtnÞg (tn ¼ nh)

provided, and assuming that the model base functions are
known, the main task for dynamical inference is to infer the
unknown model parameters and the noise diffusion matrix
P ¼ fc;Dg. The problem eventually reduces to maximization
of the conditional probability of observing the parameters P,
given the data X . For this Bayes’ theorem (Bayes, 1763) is
applied, exploiting the prior density ppriorðPÞ of the param-
eters and the likelihood function lðX jPÞ of observing X
given the choice P, in order to determine the posterior density
pX ðPjXÞ of the unknown parameters P conditioned on the
observations X :

pX ðPjXÞ ¼ lðX jPÞppriorðPÞR
lðX jPÞppriorðPÞdP

:

The next task is to determine the likelihood functions in order
to infer the final posterior result. From the time series the
midpoint approximation χ�n ¼ ðχn þ χnþ1Þ=2 is constructed,
followed by the Euler differentiation _χn ¼ ðχnþ1 − χnÞ=h.
Use of the stochastic integral for noise that is white and
independent leads to the likelihood function, which is given
by a product over n of the probabilities of observing χnþ1 at
each time (Smelyanskiy et al., 2005). The negative log-
likelihood function is then S ¼ − lnlðX jPÞ given as

S ¼ N
2
ln jDj þ h

2

XN−1

n¼0

�
ck

∂fkðχ·;nÞ
∂χ

þ ½ _χn − ckfkðχ�·;nÞ�TðD−1Þ½ _χn − ckfkðχ�·;nÞ�
�
; ð33Þ

with implicit summation over the repeated index k. The
likelihood function (33) is of quadratic form. Thus if
the prior is a multivariate normal distribution, so also will
be the posterior. Given such a distribution as a prior for
the parameters c, with mean c̄, and covariance matrix

FIG. 15. The reconstructed functions of the phase interactions.
(a) The function F 1ðϕ1;ϕ2Þ for the influence of the second on the
first oscillator, and (b) the function F 2ðϕ1;ϕ2Þ for the influence
of the first on the second oscillator. From Rosenblum and
Pikovsky, 2001.
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Σprior ≡ Ξ−1
prior, the final stationary point of S is calculated

recursively from

D ¼ h
N
ð _χn − ckfkðχ�·;nÞÞTð _χn − ckfkðχ�·;nÞÞ;

ck ¼ ðΞ−1Þkwuw;

uw ¼ ðΞpriorÞkwcw þ hfkðχ�·;nÞðD−1Þ _χn þ −
h
2

∂fkðχ·;nÞ
∂χ ;

Ξkw ¼ ðΞpriorÞkw þ hfkðχ�·;nÞðD−1Þfwðχ�·;nÞ; ð34Þ

where the summation over n ¼ 1;…; N is assumed and the
summation over repeated indices k and w is again implicit.
The initial prior distribution can be set to be the noninforma-
tive flat normal distribution Ξprior ¼ 0 and c̄prior ¼ 0. These
four equations (34) are the only ones needed for implementing
the method. They are applied to a single block of data X and
the resultant posterior multivariate probability NX ðcjc̄;ΞÞ
explicitly defines the probability density of each parameter set
of the model (32).
In dynamical Bayesian inference each new prior distribu-

tion depends on and uses the previously inferred posterior
distribution. In this framework, however, the information
propagation is amended in order to allow the method to
follow the time variability of the parameters (Stankovski et al.,
2012). The new prior covariance matrix becomes Σnþ1

prior ¼
Σn
post þ Σn

diff , where Σn
diff describes how much some part of the

dynamics can change with time.
Given the use of Bayesian inference with informative

priors, the method is not prone to the overfitting of parameters,
and it does not require much data within the windows because,
in each new block of data, it only updates the parameters
(Duggento et al., 2012). For analyses of dynamical oscillators,
one can use data windows containing 6 to 10 cycles of the
slowest oscillation; care is needed to ensure that the windows
are long enough in cases where there is modulation that is
slow relative to the eigenfrequencies (Clemson, Lancaster, and
Stefanovska, 2016). The confidence of the fit is given by the
resultant covariance matrix Σpost.
This description is for two interacting oscillators.

Nonetheless, the theory also holds for a larger number of
oscillators and the dynamical Bayesian inference has been
generalized to infer networks of systems with multivariate
coupling functions (Stankovski et al., 2015).
Figure 16 shows an application of dynamical Bayesian

inference to cardiorespiratory interactions from a resting
human subject whose paced respiration was ramped down
with decreasing frequency. The inference of the dynamics
and the coupling functions were reconstructed from the
cardiorespiratory phase dynamics (Stankovski et al., 2012).
Figure 16(a) indicates the reconstructed respiration frequency,
showing the linearly decreasing trend. The inferred coupling
directionality, defined as Dirc ¼ ðεr − εhÞ=ðεr þ εhÞ, is also
time varying, with a predominant direction of influence from
the respiration to the heart. The reconstructed cardiorespira-
tory coupling functions [Figs. 16(c)–16(e)] are described by
complex functions whose form changes qualitatively over
time—cf. Fig. 16(c) with Figs. 16(d) and 16(e). This implies
that, in contrast to many systems with time-invariant coupling

functions, the functional relations for the interactions of an
open (biological) system can themselves be time-varying
processes. By analyzing consecutive time windows, one
can follow the time evolution of the coupling functions.
The time variability of biological systems and the ability of

the method to reconstruct it has implications for the detection
of chronotaxic systems, which are a class of nonautonomous
self-sustained oscillators able to generate time-varying com-
plex dynamics (Suprunenko, Clemson, and Stefanovska,
2013). Such systems have drive-response subsystems which
are inherently connected with appropriate coupling functions.
Dynamical Bayesian inference has been applied to reconstruct
such chronotaxic systems for cases where the model was
known or could be closely approximated (Clemson et al.,
2014).

3. Maximum likelihood estimation: Multiple shooting

The reconstruction of coupling functions has been
performed using techniques for maximum likelihood estima-
tion, an approach that was employed for reconstruction of the
coupling functions of electrochemical interactions (Tokuda
et al., 2007; Tokuda, Wickramasinghe, and Kiss, 2013). For
this a multiple-shooting method, as one type of maximum
likelihood estimation, was used.
The maximum likelihood estimation (Aldrich, 1997;

Myung, 2003) is a statistical method of seeking that proba-
bility distribution which makes the observed data most likely,
which means that one needs to find the value of the parameter
vector that maximizes the likelihood function. The procedure
of maximization, intuitively describes the “agreement” of the
selected model with the observed data, and for discrete
random variables it maximizes the probability of the observed
data under the resulting distribution. The maximum likelihood
estimation gives a unified approach to estimation, which is

FIG. 16. Application of dynamical Bayesian inference to
cardiorespiratory interactions when the (paced) respiration is
time varying. (a) The inferred time-varying respiration frequency.
(b) The coupling directionality between the heart and respi-
ration (denoted as h and r, respectively). (c), (d), and (e) The
cardiorespiratory coupling function evaluated for the three time
windows whose positions are indicated by the gray arrows. From
Stankovski et al., 2012.
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well defined in the case of the normal distribution and many
other problems. It is of fundamental importance in the theory
of inference and provides the basis for many inferential
techniques in statistics.
The maximum likelihood estimation is in general different

from least-squares fitting (Sec. IV.B.1), as the former seeks the
most likely parameters, while the latter is a descriptive tool
that seeks the parameters that provide the most accurate
description of the data. There is a situation, however, in
which the two methods intersect and the same parameters are
inferred. This is when observations are independent of one
another and are normally distributed with a constant variance
(Myung, 2003).
The multiple-shooting method used for coupling function

reconstruction is based on the maximum likelihood estimation
(Baake et al., 1992; Voss, Timmer, and Kurths, 2004; Tokuda,
Wickramasinghe, and Kiss, 2013). A known approach for
inference of the trajectories and the parameters is the so-called
initial value approach, where initial guesses for the states xðt1Þ
and parameters c are chosen and the dynamical equations are
solved numerically. However, a problem can appear in such
approaches—the inferred trajectory may converge only to a
local maximum.
The multiple-shooting algorithm provides a possible sol-

ution to the problem. In this approach, initial conditions are
estimated at several points along the time series, so that the
shooting nodes, and thus the estimated trajectory, can be made
to stay closer to the true values for a longer time. This task is
considered as a multipoint boundary value problem. The
interval for fitting ðt1; tNÞ is partitioned into m subintervals:

t1 ¼ τ1 < τ2 < � � � < τmþ1 ¼ tN:

Local initial values xj ¼ xðτjÞ are introduced as addi-
tional parameters for each subinterval ðτj; τjþ1Þ. In the
case of independent Gaussian noise, maximization of the
likelihood amounts to minimization of the cost function
ζ2ðx1; x2;…; xm; cÞ, which is the sum of the squared residuals
between the data and the model trajectory, weighted by the
inverse variance of the noise:

ζ2ðx1;…; xm; cÞ ¼
XN
i¼1

½yi −G(xiðx1;…; xm; cÞ; c)�2
σi

;

where x and y are the state and the observed data, respectively,
G is a function for the dynamics, and σi gives the noise
variance. Thus in the multiple-shooting method the dynamical
equations are integrated piecewise and the cost function is
evaluated and minimized on the multiple samples from each
subinterval.
Assuming that the dynamical parameters c are constant

over the entire interval, the local initial values are optimized
separately in each subinterval. The latter leads to an initially
discontinuous trajectory and the final step is to linearize them
so as to provide continuous states. This task, called con-
densation, is often achieved by use of the generalized Gauss-
Newton method.
The multiple-shooting method has been used to model the

phase dynamics of interacting electrochemical oscillators in

order to reconstruct their coupling functions (Tokuda et al.,
2007), using the Fourier series as base functions. The
particular application used an electrochemical oscillatory
system in which the coupling function had previously been
calculated (Kiss, Zhai, and Hudson, 2005) (see also Sec. II.E)
by applying the perturbation method to a single oscillator, and
thus a direct comparison could be made between the two
approaches.
Figure 17 shows the inference of a network of 32 electro-

chemical oscillators. The effective natural frequencies are
well estimated, with slightly higher values than those obtained
with completely uncoupled systems [Fig. 17(a)]. The form of
the estimated coupling function is in reasonable agreement
with that found by applying the perturbation method to a
single isolated electrochemical oscillator [Fig. 17(b)], with a
difference in amplitude of 23.7% between the two. The
coupling function is said to be of a form consistent with
theoretical predictions for Stuart-Landau oscillators close to a
Hopf bifurcation. In a similar way, the technical dependences
and conditions, including dependence on the observational
noise, network size, number of defects, and data length,
have also been examined (Tokuda, Wickramasinghe, and
Kiss, 2013).
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FIG. 17. (a) The estimated natural frequencies (vertical axis)
of 32 electrochemical oscillators vs their measured natural
frequencies (horizontal axis). (b) The coupling function estimated
by the multiple-shooting method (dotted line), compared with
that estimated by application of the perturbation to a single
isolated electrochemical oscillator (solid curves). From Tokuda
et al., 2007.
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4. Random phase resetting method

The method of random phase resetting can be used for the
dynamical inference of interacting systems and also for the
reconstruction of their coupling functions (Levnajić and
Pikovsky, 2011). Initially, the method was designed for the
reconstruction of network topology, i.e., the inference of
coupling strengths; nevertheless, the framework employed
dynamical inference and the inferred model allows for the
coupling functions to be reconstructed as well.
The main idea relies on repeatedly reinitializing the net-

work dynamics (e.g., by performing random phase resets), in
order to produce an ensemble of the initial dynamical data.
The quantities obtained by averaging this ensemble reveal the
desired details of the network structure and the coupling
functions.
The method considers a dynamical model of interacting

phase oscillators such as that in Eq. (5), with coupling
functions in terms of the phase difference qiðϕj − ϕiÞ. The
dynamics starts from a set of initial phases which are denoted
as ϕ ¼ ðϕ1;…;ϕNÞðt ¼ 0Þ, chosen from a distribution
ℏðϕÞ > 0 normalized to ð2πÞN . The method is based on
two assumptions: (i) that one is able to arbitrarily reinitialize
the network dynamics K times, by independently resetting the
phases of all nodes to a new state ϕ; and (ii) that one is able to
measure all the values ϕl, and all initial instantaneous
frequencies _ϕl, each time the dynamics is reinitialized (for
l ¼ 1;…;K). A 2π-periodic test function T ¼ T ðϕi − ϕjÞ
with zero mean is given as input and the coupling functions
are taken to be represented by a Fourier series, to obtain an
expression for the index ϒij:

ϒij½T � ¼ ð2πÞ−N
XN
k¼1

X∞
n¼1

Z
½0;2π�N

dϕT ðϕi − ϕjÞ

× ½aðnÞkj sinðnϕk − nϕjÞ þ bðnÞkj cosðnϕk − nϕjÞ�:

The dynamical network described by the phase equations
can be reconstructed by computing ϒij for a suitable T
function, e.g., T ðϕÞ ¼ einϕ. The practical implementation in
terms of the data involves the representation of _ϕl with a
kernel smoother (Wand and Jones, 1994; Kralemann et al.,
2008), and appropriate averaging, to get ϒij½T �:

ϒij½T � ¼
� _ϕjT ðϕi − ϕjÞ

ℏðϕÞ
�

¼ 1

K

XK
l¼1

_ϕjðϕlÞT ðϕi − ϕjÞ
ℏðϕlÞ

:

To mimic an experimentally feasible situation, K random
phase resets of the network dynamics separated by the time
interval τ are performed. A network of four phase oscillators,
coupled as shown in Fig. 18(a), is considered. After applying
the inference method, the reconstructed pairwise connections
are shown to be in reasonable agreement with the actual
coupled values, and especially in identifying the noncou-
plings, as shown in Fig. 18(b). Once the parameters of the

phase model að1Þij and bð1Þij have been inferred, one can also
reconstruct the form of the coupling function. Figure 18(c)
presents an example of the coupling function showing the

influence that the fourth oscillator is exerting on the second
oscillator.
The approach is related to the methods for reconstruction of

phase response curves (see Sec. IV.D.2). Here, however, phase
resetting is used somewhat differently, i.e., the focus is on the
network’s internal interactions, rather than on its response to
stimuli. The power of this method lies in a framework that
yields both the topology and the coupling functions. Its
downside is that it is invasive—requiring one to interfere
with the ongoing system dynamics (via phase resets or
otherwise), which is often experimentally difficult and some-
times not even feasible.

5. Stochastic modeling of effective coupling functions

An important feature of the interacting dynamics in real
systems is the presence of noise. Explicit consideration of the
stochastic nature of the dynamics can provide a better means
of describing the coupling functions, and how they are
affected. In Sec. IV.B.2 we discussed the dynamical
Bayesian method which treats stochastic dynamics, and is
able to infer the deterministic part of the coupling function
separately from the random noise. Often when considering
noise-induced oscillations, however, one may want to deter-
mine the effective coupling functions including the effect of
noise (Schwabedal and Pikovsky, 2010). When performed on
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FIG. 18. Inference of interacting dynamics by application of the
random phase resetting method. (a) Four-node network of
interacting phase oscillators. (b) Reconstruction of the four-node
network. Circles are the actual parameter values and crosses are
the inferred values; left að1Þij , right bð1Þij , for each pair i → j.
(c) Coupling function with respect to the phase difference ψ42 ¼
ϕ2 − ϕ4 from the reconstructed parameters að1Þ42 and bð1Þ42 . From
Levnajić and Pikovsky, 2011.
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the effective phase dynamics with an invariant phase defined
in a nonperturbative way, the phase will depend on the noise
intensity, and so will all the corresponding characteristics such
as the coupling function.
Schwabedal and Pikovsky considered an effective

phase model describing periodically driven, noise-induced
oscillations

_θ ¼ hðθÞ þ gðθÞξðtÞ þ f(ϑðtÞ; θ); ð35Þ

where ϑ ¼ Ωt is a 2π-periodic driving phase. The aim is to
describe the effective phase dynamics Hðθ; ϑÞ and the
corresponding effective coupling functions. One can express
the effective dynamics (35) as _θ¼Hðθ;ϑÞ¼HmðθÞþF ðθ;ϑÞ,
where HmðθÞ is the ϑ-independent marginal effective velocity
and F ðθ; ϑÞ is the effective coupling function. By integrating
Eq. (35) over ϑ, the marginal effective velocity HmðθÞ can be
determined. Hence, using F ðθ; ϑÞ ¼ Hðθ; ϑÞ −HmðθÞ, one
can determine the effective coupling function

F ðθ; ϑÞ ¼ f −
Z

2π

0

f
P
Pm

dϑ − g2∂θ ln
P
Pm

;

where P ¼ Pðθ; ϑÞ and Pm ¼ PMðθÞ are the probability
densities of the full and the marginal dynamics, respectively.
The variable θ can be considered as a protophase and can be
further transformed by ϕ ¼ CðθÞ ¼ 2π

R
θ
0 PðηÞdη to yield an

invariant effective phase dynamics:

_ϕ ¼ ωþ 2πPm½C−1ðϕÞ�F ½ϑ; C−1ðϕÞ� ¼ ωþ qðϑ;ϕÞ: ð36Þ

Equation (36) provides the effective phase dynamics of the
periodically driven noise-induced oscillations with an effec-
tive coupling function q that depends on the noise intensity.
This theoretical description can be illustrated on a noise-

driven FitzHugh-Nagumo model as an example of an excit-
able system

ϵ _x ¼ x −
x3

3
− y;

_y ¼ xþ aþ σξðtÞ þ b cosðΩtÞ;

where a ¼ 1.1, ϵ ¼ 0.05 are the parameters of the system, ξðtÞ
is an additive noise which induces oscillations, and the cosine
external function provides the interactions in the system. After
estimation of the protophase time series θ and its trans-
formation to the phase ϕ, the effective coupling function
qðΩt;ϕÞ can be determined. For this a double Fourier series
decomposition was used with least-squares fitting of the
model to the data. In this sense, the core of the inference is
the same as the least-squares fit discussed in Sec. IV.B.1, even
though the difference here is that one reconstructs a stochastic
model.
The results of the analysis indicated an increase in the

effective coupling for vanishing noise and masking of
the coupling for driven noise-induced oscillations of the
FitzHugh-Nagumo model. Figure 19 presents an unusual
case with implications for the interpretation of effective
coupling functions. Namely, the effective coupling function

was computed with two noise intensities for the same coupling
strength. By comparing the two plots in Fig. 19 one can see
that the amplitude of q decreases with increasing noise
intensity. The change in amplitude may have been related
to a more pronounced masking of the coupling induced by the
frequency shift or due to the generic decrease in effective
coupling for stronger noise because of flattening of the
marginal probability.

6. Comparison and overview of the methods

The methods discussed for reconstruction of coupling
functions possess some characteristics that are in common
as well other features that differentiate them. The latter
eventually lead to different choices of method for use,
depending on the circumstances and conditions for the
dynamics and the coupling functions to be inferred.
Table IV summarizes the difference and performance of the

methods discussed in Sects. IV.B.1–IV.B.5. Inference of
stochastic dynamics, which treated SDEs and the influence
of dynamical noise that can cause noise-induced qualitative
changes (e.g., phase slips), can be performed with dynamical
Bayesian inference and stochastic modeling of the effective
coupling functions. The other methods treat ODEs with
possible measurement noise that can affect the statistics
and precision of the inference.

FIG. 19. Coupling functions for noise-induced oscillations in
the FitzHugh-Nagumo model with b ¼ 0.1 and two different
values of the noise intensity D: for (left panel) D ¼ 0.08, the
mean frequency is ω ≈ 0.62; and for (right panel) D ¼ 0.11,
ω ≈ 0.95. From Schwabedal and Pikovsky, 2010.

TABLE IV. Comparison of methods for the inference of coupling
functions in terms of four characteristics (columns) including,
respectively, stochastic treatment, absence of parameter overfitting,
calculation speed, and the size of data windows. The methods (rows)
are as described in the text: least-square fitting (LSF), dynamical
Bayesian inference (DBI), maximum likelihood estimation with
multiple shooting (MLE-MS), random phase resetting (RPR), and
the stochasticmodeling of effective coupling functions (SMECF). The
✓ indicates if a method possesses that characteristic, and a × if not.

Stochastic No overfitting Calculation speed Data size

LSF × × ✓ ×
DBI ✓ ✓ × ✓

MLE-MS × × × ✓

RPR × × × ✓

SMECF ✓ × ✓ ×
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Often the model for inference has more parameters than the
real system. In such cases overfitting of parameters can occur
and some methods can infer random error or noise instead of
the underlying dynamical relationship. A model that has been
overfitted will generally be a poor representation of the real
system as it can exaggerate minor fluctuations in the data.
Bayesian inference uses informative prior probabilities and
can avoid the problem of overfitting parameters.
The speed of calculation varies between methods, especially

as some methods perform additional steps and therefore take
longer. Dynamical Bayesian inference has a recursive loop,
evaluated for each timepointwithin a datawindowuntil a certain
precision is reached. The multiple-shooting method requires
additional initial conditions, the shooting nodes, to be estimated
at several points along the time series. The random phase
resetting method uses a large number of additional random
initial resetting points. These additional processing steps relative
to the initial handling of the time series inevitably require more
computing power and thus reduce the calculation speed.
The coupling functions are usually evaluated for a sequence

of time series each defined by a certain window length whose
choice determines how well a method is able to follow the
time evolution of the coupling functions. Dynamical Bayesian
inference updates the new probabilities within a window of
data, based on prior knowledge; the multiple-shooting method
exploits the initial shooting nodes; and the random-resetting
method also uses resetting points, which are said to require
shorter data windows and, in turn, to provide good time
resolution of the inference.
A difficulty in common for all the methods is the

reconstruction of coupling functions (and coupling strength
in general) when the systems are highly synchronized and
coherent in the 1∶1 frequency ratio (Rosenblum and Pikovsky,
2001; Kiss, Zhai, and Hudson, 2005). Namely, in the 1∶1 phase
synchronous state there is a definite strong relationship between
the phases and the trajectory on a ðϕ1;ϕ2Þ torus which is one
line; hence ϕ1 and ϕ2 are not independent, and the coupling
functions of the two variables cannot be separately estimated,
i.e., one is not able to separate the effect of interaction from the
internal dynamics of autonomous systems. In order to obtain
information about the coupling one needs to observe deviations
from synchrony, due either to dynamical noise or to the onset of
quasiperiodic dynamics outside the synchronization region.
Synchronous states with larger n∶m frequency ratios are
favorable, because many revolutions cover the surface of the
torus, and the inference is then more successful.
A similar situation applies for the inference of coupling

functions of dynamical systems in amplitude states. In such
cases, the systems are multidimensional, e.g., two coupled
Lorenz chaotic systems, and the inference of the coupling
functions is more plausible in a 1∶1 generalized synchroniza-
tion sense (Stankovski, McClintock, and Stefanovska, 2014).
Complete synchronization and very strong coupling will again
constrict the available space for inference, leading to diffi-
culties in reconstructing the amplitude coupling functions.

C. Toward coupling function analysis

Often one needs to draw conclusions based on comparison
and quantitative measures of the coupling functions, after they

have been inferred. Such situations occur in experimental
studies of some real system interactions, e.g., in biomedicine
or chemistry. For example, the biomedical expert wants to
have a quantitative measure of the coupling functions to be
able to describe or compare different states or behaviors in
health and disease.
One needs to quantify some characteristics that describe the

coupling functions, and, in particular, features that are unique
to the coupling functions and cannot be obtained from other
measures. The form of the function can describe the mecha-
nism of the interactions, so being able to quantify it is of
obvious interest.
Quantifying a function is not a trivial task, in general.

However, many coupling functions can be decomposed, or are
inferred through decomposition into functional components,
such as, for example, when the phase coupling functions are
decomposed into a Fourier series. Therefore, the problem of
quantification of the coupling function can be reduced to
quantification of its components, and, in particular, the
parameters obtained for the components. In this way, one
is left to work with a one-dimensional vector of parameters.
One way to perform such a quantification is through the

correlation coefficient and the difference measure evaluated
from the inferred coupling functions (Kralemann et al., 2013).
The first index ρ measures the similarity of two coupling
functions q1 and q2, irrespectively of their coupling strengths.
It is calculated as the correlation coefficient

ρ ¼ h ~q1 ~q2i
k ~q1kk ~q2k

;

where h∘i denotes spatial averaging over the 2D domain
0 ≤ ϕ1, ϕ2 ≤ 2π, ~q ¼ q − hqi, and kqk ¼ hqqi1=2. The
similarity index ρ is of great interest as it relates only to
the form of the function and is a unique measure of the
coupling functions. In a similar way, the difference measure is
defined as

η ¼ k ~q1 − ~q2k
k ~q1k þ k ~q2k

:

The difference measure is of less interest than ρ as it relates to
the coupling strengths, which can be assessed in different
ways through other measures.
Two measures were used to analyze the similarity and

difference of cardiorespiratory coupling functions, as shown
in Fig. 20. It was found that the functions have a well-
pronounced characteristic shape for each of the subjects and
that the correlations between the coupling functions obtained
in different trials with the same subjects were very high
[Fig. 20(a)]. Naturally, the correlation between the functions
of different subjects was lower, reflecting the interpersonal
variability; however, it is high enough to demonstrate the high
similarity of the interactions in the group of subjects. The
similarity of the coupling functions, obtained from different
observables such as the electrocardiograph (ECG) and the
arterial pulse for the cardiac oscillations, supports the validity
of the use of the invariant phase. The similarity index ρ has
also been used for quantifying the form of the brain coupling
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functions (Stankovski et al., 2015), quantifying significant
differences in the form of the coupling functions when altered
by the use of different anaesthetics (Stankovski et al., 2016).

D. Connections to other methodological concepts

1. Phase reconstruction procedures

When analyzing data one first needs to reconstruct the
phase, before attempting to detect the underlying phase
coupling functions. Various methods exist for phase
reconstruction from data, including the marked events method
(the marking of a particular time event, e.g., a maximum or a
zero crossing, within a cycle of oscillation), the Hilbert
transform, and wavelet transform based methods (Gabor,
1946; Pikovsky, Rosenblum, and Kurths, 2001; Quiroga et al.,
2002; Daubechies, Lu, and Wu, 2011; Iatsenko, McClintock,
and Stefanovska, 2016). The effect of the method used can
have a direct impact on the form of the reconstructed coupling
function. It is therefore important to choose a method to
reconstruct a phase that is as genuine as possible. For example,
the marked events method reduces the intercycle resolution
and, despite its limited usefulness in synchronization analysis,
it is not appropriate for coupling function analysis. Kralemann
et al. (2008) proposed a protophase-to-phase transform that
obtains an invariant phase in terms of the genuine, observable-
independent phases. This technique can be very useful in
checking consistency with the phase estimated by use of the
Hilbert transform. Some other phase estimates have also been
discussed, noting that use of the synchrosqueezed wavelet
transform means that one does not need explicit protophase-
phase preprocessing, as it directly estimates the genuine phase
(Daubechies, Lu, and Wu, 2011; Iatsenko et al., 2013).
Recently, Schwabedal and Kantz (2016) introduced a method
that facilitates a phase description of collective, irregular-
oscillatory dynamics from multichannel recordings and they
demonstrated it on electroencephalogram (EEG) recordings.
Such phase estimates have a potential for the reconstruction of
coupling functions from collective dynamics. In any case, one

should be careful when estimating phases for coupling
functions, in particular, from experiments, as otherwise this
can lead to spurious descriptions of the coupling functions.

2. Relation to phase response curve in experiments

The PRC describes how an oscillator responds to an external
perturbation (Winfree, 1980; Kuramoto, 1984; Tass, 1999).
The response of the affected oscillator is manifested as a shift
of its phase. It has been used in various fields, especially in
biological oscillations including the heartbeat, circadian
rhythms, and neuronal activity (Czeisler et al., 1989;
Ermentrout, 1996; Tass, 1999; Oprisan, Prinz, and Canavier,
2004; Preyer and Butera, 2005; Ko and Ermentrout, 2009;
Hannay, Booth, and Forger, 2015).
The phase response curve is a function expressed in terms

of one phase variable from the affected oscillator (for detailed
theoretical description see Sec. III.B.4). In this way, the phase
response curve is a similar concept to a coupling function,
with the difference that the latter describes the interactions on
the whole (two-dimensional) space, i.e., depending on the two
phase variables. In fact, the phase response curve is a func-
tional component of the coupling function. In terms of the
general theory of phase dynamics (Winfree, 1980; Kuramoto,
1984), the coupling function q1ðϕ1;ϕ2Þ can be expressed as
the product of two functions:

q1ðϕ1;ϕ2Þ ¼ Z1ðϕ1ÞI1ðϕ2Þ; ð37Þ

where Z1ðϕ1Þ is the phase response curve, while I1ðϕ2Þ is the
perturbation function.
The reconstruction of functional curves from data has been

widely used, elucidating the mechanisms underlying the
oscillations found in nature (Czeisler et al., 1989; Tass,
1999; Batista et al., 2012). This approach is widely used in
neuroscience (Ermentrout, 1996; Galán, Ermentrout, and
Urban, 2005; Tateno and Robinson, 2007; Gouwens et al.,
2010; Schultheiss, Prinz, and Butera, 2011). For example, the
phase response curve has been estimated with electrophysio-
logical experiments on real neurons from the mouse olfactory
bulb (Galán, Ermentrout, and Urban, 2005). A constant
current was injected into the neuron to make it fire at a
constant frequency within the beta or gamma frequency band.
By following the responses of the neurons to the injected
current stimulation, the phase response curve was recon-
structed. Figure 21(a) shows the experimental dots and the
fitted phase response curve, which matches well the one from
the phase model of the study. The surrogate estimation
(shuffled dots) in Fig. 21(b) validates this result. Thus, the
method allowed for a simplification of the complex dynamics
from a single neuron to a phase model. This study also
demonstrates the relationship to the coupling function, which
was reconstructed from the convolution of the phase response
curve and the perturbation function—an approach used in
chemistry as well (Kiss, Zhai, and Hudson, 2005).
Going in the opposite direction, the phase response curve

can be estimated by decomposition of the coupling function
(Kralemann et al., 2013). This can be done by decomposing
the reconstructed coupling function into a product of two
functions [Eq. (37)] and searching for a minimum in the
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FIG. 20. Box plots illustrating the similarity of cardiorespiratory
coupling functions. (a) The correlation coefficient ρ and (b) the
difference measure η, for all available pairs of functions (high
similarity corresponds to large ρ and small η). ES: the similarity
between the respiration-ECG coupling functions of the same
subject, obtained from two trials. EG: the same relation similarity
between different subjects in the group demonstrates low inter-
personal variability. PS and PG: intra- and interpersonal simi-
larities, respectively, for the respiration-arterial pulse coupling
function. EPS and EPG: intra- and interpersonal similarities,
respectively, between between the two types of coupling func-
tions. From Kralemann et al., 2013.
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decomposition error by means of an iterative scheme. In this
way, the interactions coming from the second oscillator are
used as the perturbation to the first oscillator under consid-
eration, whence there is no need for additional external
stimulation—a procedure referred by Kralemann et al. as
an in vivo estimation of the phase response curve. This method
was applied to the reconstruction of the cardiac phase
response curve as perturbed by the respiratory oscillations,
as shown in Fig. 22. One can clearly see the interval where the
phase response curve is nonzero, so that the cardiac system is
susceptible to the respiratory perturbation. Intervals of pos-
itive (negative) effective forcing are the intervals where
respiration is accelerating (decelerating) the heart rate.
Interesting and relevant parallels could be drawn between

coupling functions and amplitude response curves, or phase-
amplitude response curves (Castejón, Guillamon, and Huguet,

2013; Huguet and de la Llave, 2013). The latter are similar to
phase response curves, with the difference that there is also a
response to the amplitude on increasing or decreasing the
strength of the oscillations.

3. General effective connectivity modeling

Quite generally, methods of modeling dynamical systems
from data often contain coupling functions (Voss, Timmer,
and Kurths, 2004; Smelyanskiy et al., 2005; Friston, 2011;
von Toussaint, 2011). The extent to which these coupling
functions resemble the same concept as that discussed in this
review can vary, depending on the design of the method and
the model itself. For example, there can be a model of one
larger system which is different from the interaction of two or
many systems, but there can be functions within the model
that are coupling certain variables or dimensions.
Similar implications hold for the general description of

methods for effective connectivity modeling which exploit a
model of differential equations and allow for dynamical
mechanisms of connectivity to be inferred from data. Such
effective connectivity has particularly wide use in neurosci-
ence, where the methods infer the links on different scales of
connectivity and spatially distributed regions within the
heavily connected brain network. Although such methods
have much in common with coupling function inference
methods they do not, however, consider the coupling function
as an entity, nor do they assess or analyze the coupling
functions as such.

V. APPLICATIONS AND EXPERIMENTS

In this section we review a number of important applica-
tions of the methods for reconstruction of coupling functions
and their use for the study and manipulation of the interactions
in various fields.

A. Chemistry

The interactions of chemical oscillations have been
studied extensively, including in connection with coupling
functions (Kiss, Zhai, and Hudson, 2002, 2005; Miyazaki and
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FIG. 21. Experimental estimation of neuronal phase response
curves (PRCs). (a) Raw estimation of the PRC (dots) and smooth-
ing over a 2π=3 interval (gray line) compared with the estimated
PRC (black line) from the approach in Galán, Ermentrout, and
Urban (2005). Both curvesmatch, which indicates that the raw data
are consistent with a phase model. (b) The same as (a) but after
shuffling the raw data. The PRC is roughly flat and yields
inconsistent results with the smoothing, implying that the
shuffled data cannot be described by a phase model. From Galán,
Ermentrout, and Urban, 2005.
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Kinoshita, 2006; Kiss et al., 2007; Tokuda et al., 2007; Blaha
et al., 2011; Tokuda, Wickramasinghe, and Kiss, 2013; Kori
et al., 2014). Experiments on chemical, or electrochemical,
oscillations provide a convenient way of studying and
manipulating interactions and coupling functions under con-
trolled laboratory conditions.
One of the more prominent coupling function applications

to chemical oscillators is for engineering complex dynamical
structures (Kiss et al., 2007). The work exploits the simplicity
and analytical tractability of phase models and, in particular,
their reconstructed coupling functions in order to design
optimal global, delayed, nonlinear feedback for obtaining
and tuning the desired behavior. It uses a feedback design
methodology capable of creating a large class of structures
describable by phase models for general self-organized
rhythmic patterns in weakly interacting systems with small
heterogeneities. The electrochemical oscillations were
achieved with electrode potentials during the electrodissolu-
tion of nickel wires in sulfuric acid.
The engineering of the interactions to the desired behavior is

achieved in a population of N oscillators through the impo-
sition of nonlinear, time-delayed feedback in the amplitude
state. This reduces to a phase model of a population of
oscillators with weak, global (all-to-all) coupling described
by the Kuramoto model (Kuramoto, 1984) with a general
diffusive coupling function qðϕj−ϕiÞ [i.e., notationHðϕj−ϕiÞ
in this work]. In this way, one can also derive the phase
response function ZðϕiÞ in connection to the feedback func-
tion. Given such a feedback function and response function
ZðϕiÞ, one can in principle obtain the coupling function
qðϕj − ϕiÞ for use in the phase model. However, in the work
discussed, Kiss et al. (2007) proceeded in the opposite manner:
they chose a coupling function to produce the desired states
and then designed a feedback loop with optimized feedback
parameters to give the desired qðϕj − ϕiÞ.
The method is demonstrated with three interesting and

important experiments: (i) tuning the desired arbitrary phase
differences between two dissimilar oscillators (see also
Fig. 1), (ii) generation of complex patterns that include
self-organized switching between unstable dynamical states
and clusters, and (iii) the physiologically important problem
of desynchronization of oscillators. Next we devote particular
attention to case (ii) involving the generation of sequential
states and clusters (Ashwin and Timme, 2005).
Quadratic feedback to a population of four oscillators is used

to reproduce a coupling function proposed for slow switching;
see Fig. 23(a). The experimental system with feedback that
sequentially visits (unstable) two-cluster states with two oscil-
lators in each cluster shows two (saddle-type) cluster states in
state space; see Fig. 23(b). In agreement with the experiments,
the phase model predicted a switch between these states due to
the existence of heteroclinic orbits connecting them. These
switches can be seen as a fluctuation of the system order, as
shown in Fig. 23(c). The engineered feedback produces
configurations of two clusters, each containing two elements,
connected by heteroclinic orbits. Two types of transitions have
been observed: intracluster and intercluster transitions as
presented by the trajectories of the experimental system and
illustrated as phase space plots in Figs. 23(d) and 23(e).

In a similar way, Kiss, Zhai, and Hudson (2005) developed
a method for reconstruction of coupling functions from
electrochemical oscillations, which are then used to predict
synchronization as also discussed in Sec. II.E. Similarly,
Tokuda et al. (2007) and Tokuda, Wickramasinghe, and
Kiss (2013) used a different technique for inference of the
coupling function of multivariate electrochemical oscillations;
see Sec. IV.B.3. Also, to capture the whole nature of the
interaction of electrochemical oscillations (and not only the
synchronization-related ones) the coupling functions were
reconstructed in the full two-dimensional (ϕ1;ϕ2) space, i.e.,
not only for the one-dimensional diffusive coupling difference
Δϕ ¼ ϕ2 − ϕ1 (Blaha et al., 2011).
Of particular interest is a coupling function method that

Miyazaki and Kinoshita (2006) applied for studying the
interactions of Belousov-Zhabotinsky chemical oscillations.
This class of reactions serves as a classical example of
nonequilibrium thermodynamics, resulting in the establish-
ment of a nonlinear chemical oscillator (Strogatz, 2001). The
method infers the phase dynamics with diffusive coupling
functions from the experimental phase time series. The

FIG. 23. Engineering a system of four nonidentical oscillators
using a specific coupling function to generate sequential
cluster patterns. (a) The target [solid line, HðΔϕÞ ¼
sinðΔϕ1.32Þ0.25 sinð2ΔϕÞ] and optimized coupling function
with feedback (dashed line). (b) Theoretical and experimentally
observed heteroclinic orbits and their associated unstable
cluster states. (c) Time series of the order parameter [R1 ¼P

N
j¼1 expðiϕjÞ] along with some cluster configurations. (d),

(e) Trajectories in state space during slow switching. The black
lines represent calculated heteroclinic connections between
cluster states (fixed points). The (red) surface in (e) is the set
of trajectories traced out by a heterogeneous phase model.HðΔϕÞ
on the plots is equivalent to the qðψÞ notation used in the current
review. From Kiss et al., 2007.
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coupling function was already discussed in Sec. II.D, as
shown in Fig. 8. Here we further review the interpretation and
use of such coupling functions.
The inferred coupling function qðψÞ is used to describe the

mechanisms of the various synchronous states in two mutually
coupled Belousov-Zhabotinsky reactors. The dynamics of the
phase difference ψ can be expressed as

_ψ ¼ −Δω þ εQðψÞ; ð38Þ

whereQðψÞ¼qðψÞ−qð−ψÞ,Δω¼ω2−ω1, and ε ¼ ε12 − ε21.
Then, by varying the frequency Δω mismatch and coupling
strength ε, one can study and predict the occurrence of
synchronization. Figure 24 shows that with the increase of
ε, a pair of stationary solutions of Eq. (38) are obtained as the
intersection points of QðψÞ and Δω=ε (the first horizontal line
from the top in Fig. 24). There is one stable solution (solid
circles) and in-phase synchronization is realized. If one further
increases ε, a new stable solution appears slightly below π in
addition to that corresponding to in-phase synchronization—
the intersection with the second horizontal line from the top in
Fig. 24. This corresponds to out-of-phase synchronization.
Thus, a bistability between out-of-phase and in-phase
synchronization can appear.
Kori et al. (2014) performed a comprehensive theoretical

analysis and experimental verification of phenomena in
electrochemical oscillators, investigating the general occur-
rence of phase clusters in weakly, globally coupled oscillators
close to a Hopf bifurcation. The amplitude equation with a
higher-order correction term, valid near a Hopf bifurcation
point, is derived and it is used to analytically calculate the
phase coupling function from given limit-cycle oscillator
models. Such phase coupling functions allowed the stability
of phase clusters to be analyzed as demonstrated on the
Brusselator model.
Experiments on electrochemical oscillators have demon-

strated the existence of three-cluster states near the Hopf
bifurcation with negative coupling. Electric potentials were
used to control the nature of the oscillations, and they were

chosen initially such that the oscillators exhibited smooth
oscillations near the Hopf bifurcation. Figure 25(a) shows
the current from one oscillator of each of the three clusters.
The nearly balanced three-cluster state with configuration
(25∶20∶19) is shown on a grid of 8 × 8 circles in Fig. 25(b).
Phase response curves [Fig. 25(c)] and coupling functions
[Fig. 25(d)] for these oscillators were found experimentally
by introducing slight perturbations to the oscillations. The
stability of the cluster states was determined, and it was found
that the three-cluster state is the most stable, while four- and
five-cluster states were observed also at higher potentials.
Further increase in the potential resulted in complete desynch-
ronization of the 64 oscillators.

B. Cardiorespiratory interactions

The heart and the lungs have physiological functions of
great importance for human health and their dysfunction may
correspond to severe cardiovascular disease. Both organs are
characterized by a pronounced oscillatory dynamics, and the
cardiorespiratory interactions have been studied intensively
using the theory and methods from the nonlinear coupled-
oscillators approach (Kenner, Passenhofer, and Schwaberger,
1976; Schäfer et al., 1998; Stefanovska and Bračič, 1999;
Stefanovska et al., 2000).
The cardiorespiratory coupling functions are therefore

a subject of great interest, i.e., the mechanisms through
which respiration influences the cardiac period and, in
particular, how this relates to different states and diseases.
The cardiorespiratory analysis performed with dynamical
Bayesian inference (Stankovski et al., 2012), as discussed

FIG. 24. The mechanisms of synchronization for Belousov-
Zhabotinsky chemical oscillations as determined by their cou-
pling functions. The solid curve shows QðψÞ ¼ qðψÞ − qð−ψÞ
estimated from the coupling functions qðψÞ. qðψÞ and qð−ψÞ are
presented as dashed and dot-dashed lines, respectively. Stable and
unstable solutions of Eq. (38) are shown as solid and open circles,
respectively.Δω on the plots is equivalent to theΔω notation used
in this review. From Miyazaki and Kinoshita, 2006.

FIG. 25. Experiments on a three-cluster state close to a Hopf
bifurcation with negative global coupling of 64 electrochemical
oscillators. (a) Current time series and the three-cluster configu-
ration. Solid, dashed, and dotted curves represent the currents
from the three clusters. (b) Cluster configuration. White, black,
and gray circles represent the three clusters. (c) Response
function and wave form (inset) of the electrode potential from
a current of single oscillator. (d) Phase coupling function. ΓðΔϕÞ
on (d) is equivalent to the qðψÞ notation used in this review. From
Kori et al., 2014.
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in Sec. IV.B.2 and Fig. 16, revealed the form of the coupling
functions in detail. The use of a changing respiration fre-
quency in a linear (ramped) way showed that the form of the
reconstructed coupling functions is in itself time varying.
Recently, the method was applied to the study of the effects of
general anesthesia on the cardiorespiratory coupling functions
(Stankovski et al., 2016). A similar form of the function was
reconstructed for the awake measurements as in the previous
studies, while its form was more varying and less deterministic
for the state of general anesthesia.
Dynamical Bayesian inference was used to study the effect

of ageing on the cardiorespiratory interactions (Iatsenko et al.,
2013). Analyses were performed on cardiac and respiratory
time series recorded from 189 subjects of both genders, aged
from 16 to 90 yr. By application of the synchrosqueezed
wavelet transform, the respiratory and cardiac frequencies and
phases were preestimated. By applying dynamical Bayesian
inference to the phase time series, measures such as synchro-
nization, coupling directionality, and the relative contributions
of different mechanisms were then estimated.
The cardiorespiratory coupling function was thus recon-

structed, and its time evolution and age dependence were
assessed. Figure 26 shows the time-averaged versions of the
cardiorespiratory coupling functions typical of a younger and
an older subject. Figures 26(a) and 26(b) show the coupling
functions of the heart dynamics qhðϕh;ϕrÞ. The form of the
functions [especially noticeable in Fig. 26(a)] is changing
mostly along the respiration phase ϕr axis, while it is nearly
constant along the ϕh axis, indicating that this coupling is
predominantly defined by the direct influence of respiration
on the heart. In physiology, this modulation is known as
respiratory sinus arrythmia (RSA). By comparing the coupling
functions for the young and old subjects one can see a clear
decrease of the RSA amplitude with age. Note also that RSA
remains the main stable contribution to the qhðϕh;ϕrÞ
coupling function, irrespective of age and that it survives
after time averaging. The coupling function from respiratory
dynamics qrðϕh;ϕrÞ shown in Figs. 26(c) and 26(d) was very
low and seemed to be quite irregular and not age dependent.
From the analysis of the time variability of the form of the
coupling functions it was observed that, in older people, the

heart coupling function qhðϕh;ϕrÞ becomes less stable in
time, dominated by the highly time-variable indirect contri-
butions. At the same time, the dynamics of the respiratory
coupling function qrðϕh;ϕrÞ did not seem to change with age,
being irregular and unstable.
Kralemann et al. (2013) looked at the cardiorespiratory

coupling functions, as an intermediate result, in order to obtain
the phase response curve of the heart and the perturbation
inserted by respiration. They studied the respiratory and
cardiac oscillations of 17 healthy humans while resting in
an unperturbed state. The cardiac oscillation was assessed
through two different observables—the ECG and the arterial
pulse signal. The idea of using two different observables is to
demonstrate that an invariant phase can be obtained from each
of them, describing a common inherent interaction between
respiratory and cardiac oscillations.
By analyzing the phase dynamics, first by estimating the

protophases and transforming them into genuine phases, the
cardiorespiratory phase coupling functions were recon-
structed. Figure 1(b) shows the reconstructed cardiorespira-
tory coupling functions Qe using the cardiac phase extracted
from the ECG signal. The coupling functions estimated from
the phases of the arterial pulse signal are shown in Fig. 27. The
forms of the functions reveal the detailed mechanism through
which respiration influences the cardiac oscillations, i.e., the
regions with high values of the function mean higher
frequencies (acceleration), whereas low regions correspond
to lower frequencies (deceleration) of the cardiac oscillations
due to the respiratory influence. The existence of such
cardiorespiratory coupling functions was tested statistically
with respect to intersubject and intrasubject surrogates.
The high similarity of the cardiorespiratory coupling

functions obtained from the phases of the ECG observables
in Fig. 1(b) and those from the arterial pulse phases in
Fig. 27(b) demonstrates that the proposed method correctly
identified the underlying interaction mechanism. This was
achieved because the method was able to transform proto-
phases from different observables into invariant phase dynam-
ics from which a common form of the coupling functions was
obtained. The minor differences in the form of the functions,
as compared to the previous one with aging (Fig. 27), are

FIG. 26. Cardiorespiratory coupling functions for the study of human aging. Typical time-averaged coupling functions for (a),
(c) a young subject aged 21 yr and (b), (d) an old subject aged 71 yr. (a), (b) are from the cardiac, while (c), (d) are from the respiration
phase dynamics. From Iatsenko et al., 2013.
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related to possible intersubject variations and the different
phase estimation approaches.
The similarity of the cardiorespiratory coupling functions

among different subjects and between the two observable
phases was further quantified with the similarity indices
(Kralemann et al., 2013), as discussed in Sec. IV.C and
shown in Fig. 20. The similarity index that quantifies the
correlation between the form of the functions also proved
useful in the assessment of the state of general anesthesia
(Stankovski et al., 2016). It was found that the intersubject
correlation similarity of the cardiorespiratory coupling func-
tions, in comparison to the awake state, decreased with the
onset of propofol-induced general anesthesia, and to an even
greater extent when sevoflurane was used.

C. Neural coupling functions

Neural states often manifest themselves as changes in brain
electrophysiological activity, which emanates from the
dynamics of large-scale cell ensembles oscillating synchro-
nously within characteristic frequency intervals. Individual
ensembles communicate to integrate their local information
flows into a common brain network. One way to describe such
an integration or communication is through cross-frequency
coupling, an approach that has led to numerous studies
elucidating the respective roles of cognition, attention,
memory, and anesthesia (Canolty et al., 2006; Stefanovska,
2007; Lakatos et al., 2008; Jirsa and Müller, 2013). Unlike
these cross-frequency coupling strength approaches, the
methods discussed here can assess the neural states through
the computation of the coupling functions, hence describing
the functional forms and mechanisms of individual cross-
frequency interactions. In this way, one infers neural cross-
frequency coupling functions (Stankovski et al., 2017).
The methods for the reconstruction of coupling functions

have been applied to EEG recordings (Figs. 28 and 29). The
brain wave intervals, including the δ (0.8–4 Hz), θ (4–7.5 Hz),
α (7.5–14 Hz), β (14–22 Hz), and γ (22–80 Hz), were first
extracted from a single EEG channel recording. The phase
was then extracted from each filtered time series, using, for
example, the Hilbert transform or the synchrosqueezed wave-
let transform. During this preprocessing procedure, particular

care was taken to minimize overlap between the spectra of the
intervals (Lehnertz et al., 2014): overlaps of consecutive
frequency intervals result in overestimation of the correspond-
ing phase-to-phase coupling. Dynamical Bayesian inference
was then used to reconstruct the coupling functions from the
multivariate five-phase oscillators. In a similar manner,
dynamical Bayesian inference was applied to a study of
neural interactions during epileptic seizures (Wilting and
Lehnertz, 2015), although not for cross-frequency coupling.
As the brain is a highly complex system that can mediate a

variety of functions from fixed structure (Park and Friston,
2013), the coupling relationships between the brain waves can
be different. One important coupling relation is the δ; α → α,
as it has been found that the δ waves typical of deep sleep in
adults can influence the α activity, which is related to the
processing of information (Feinberg, Floyd, and March, 1987;
Jirsa and Müller, 2013). Figure 29(a) shows how the form of
the δ; α → α coupling functions varies in relation to their
spatial locations on the head. It can be seen that the tridimen-
sional waves propagate mostly in the δ dimension. This
tendency can be seen better in Fig. 29(b), which shows the
averaged coupling function. Its form depends predominantly
on the direct delta oscillation, changing mostly along the
ϕδ axis. This reveals how and when within one cycle the δ
oscillations accelerate and decelerate the α oscillations. Other
coupling relationships could include, for example, the pair-
wise θ; γ → γ and α; γ → γ, or the multivariate triplet
θ; α; γ → γ, as shown previously in Fig. 7.
Neural cross-frequency coupling functions were used

recently to elucidate the mechanisms of general anesthesia
(Stankovski et al., 2016). In fact, the analyses also included
the cardiac and respiratory oscillations (in a sense integrating
Secs. V.B and V.C). Here we review an important finding
based on the neural δ − α coupling functions. The study
included 25 awake and 29 anesthetized healthy subjects, of
which 14 subjects were anesthetized with the intravenous
anaesthetic propofol and 15 subjects with the inhalational
anaesthetic sevoflurane. The aim of the study was to deter-
mine if there are any differences in the interaction mechanisms
with respect to the three states: awake or anesthetized with
either propofol or sevoflurane.

FIG. 27. Coupling functions for the human cardiorespiratory system. The reconstructed functions specify the dependence of the
instantaneous cardiac frequency, measured in radians per second, on the cardiac and respiratory phases. The functions Qpðϕr;ϕpÞ are
computed from the arterial pulse and respiration. Results from the subject who had the lowest levels of determinism and similarity to the
coupling functions obtained from ECG phasesQe are shown in (a), and those for the subject with the highest determinism and similarity
in (b). (c) The averaged coupling function over all measurements for all subjects. From Kralemann et al., 2013.
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Figure 28 shows the group δ − α coupling functions for the
three states. The coupling functions for the awake resting,
propofol, and sevoflurane states are evidently quite different
from each other, in both the forms and strengths of the
couplings. The δ − α coupling function for the awake state has
a relatively complex and varying form, and low amplitude.
The coupling functions for propofol and sevoflurane are
similar to each other and they look significantly different
from those for the awake state. The sevoflurane coupling
function has the largest coupling amplitude. Careful surrogate
testing showed that the propofol and sevoflurane coupling
functions are statistically significantly different from the
corresponding surrogates. The qualitative form of the δ − α
coupling function has a sinelike form along the ϕδ axis, while
remaining nearly constant along the ϕα axis. This implies that
much of the δ − α coupling comes from the direct contribution
of the delta oscillation. The specific form of the function [see,
e.g., Fig. 28(c)] reveals the underlying coupling mechanism,
i.e., it shows that, when the delta oscillations are between π
and 2π, the sine-wave coupling function is higher and the delta
activity accelerates the alpha oscillations; similarly, when the
delta oscillations are between 0 and π, the coupling function is
decreased and delta decelerates the alpha oscillations.
The delta-alpha coupling has been linked to the coding

mechanism of feedback valence information (Cohen et al.,
2009), non-REM (rapid eye movement) sleep (Bashan et al.,
2012), and the eyes-closed state (Jirsa and Müller, 2013). The
findings with anesthesia are consistent with, and have further
extended, these findings. The form of the δ − α coupling
functions [see, e.g., Fig. 28(c)] indicates that the influence is
direct modulation from delta to alpha, where the couplings are
significantly stronger in anesthesia than when awake. This
showed that, once the subject is anesthetized, delta activity
influences the alpha oscillations by contributing to the
reduction of information processing and integration.

D. Social sciences

In a recent application in social sciences, Ranganathan et al.
(2014) and Spaiser et al. (2014) identified the coupling
functions that capture interactions between social variables,

employing a Bayes factor to decide how many interaction
terms should be included in the model.
The work presents an interesting study of the relationship

between democracy and economic growth, identifying non-
linear relationships between them. Economic growth is
assessed through the gross domestic product (GDP) per capita
(from the World Bank), while the level of democracy is
gauged from the democracy index (from Freedom House)
(Ranganathan et al., 2014). It is well known that the GDP per
capita and democracy are highly correlated: higher GDP
implies more democracy. The linear Pearson correlation
coefficient between the two variables is 0.571 (p < 0.01).
However, by use of coupling functions one can try to
determine a more precise, causal relationship between the
variables, revealing the underlying mechanism.
In its general form, the model considered is

_D ¼ q1ðD;GÞ; _G ¼ q2ðD;GÞ;

where D denotes the democracy and G is GDP per capita. In
this way the change of the variables D and G is represented
with ordinary differential equations, even though the original
data are discrete and one should really use difference rather
than differential equations. Nevertheless, this approximation
was used for mathematical simplicity. Further, the model can
have some of the functions from a set of 17 base functions of
polynomial form, including reciprocal, quadratic, and cubic
terms. The main idea of the method is to select the optimal
base functions thereby reducing the number of terms in
the model.
The inference itself consists of two main steps. The first is

an inferential fitting to obtain a model from the data, based on
a maximum likelihood procedure, and involving multiple
linear regression (similar to that discussed in Sec. IV.B.3). The
second step uses a Bayesian (Berger and Pericchi, 1996)
model selection procedure.2 Here the method decides how
many interaction terms should be included in the model, i.e., it

FIG. 28. Neural cross-frequency coupling functions between δ and α oscillations in general anesthesia. (a)–(c) The average coupling
functions from all subjects within the group. Note that, for realistic comparison, the vertical scale of the coupling amplitude is the same
in each case. Here “Awake” refers to the state when the subject is conscious and resting, and “Propofol” and “Sevoflurane” to states
when the subject is anesthetized with propofol or sevoflurane, respectively. From Stankovski et al., 2016.

2Note that the Bayes factor uses the Bayesian probability theory
too; however, as it is a purely statistical procedure, it differs from the
dynamical Bayesian inference (DBI) as discussed in Sec. IV.B.2.
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selects a subgroup of base functions of the 17 polynomials
available, after trying all possible combinations among them.
Thus, the method punishes overly complicated models and
identifies the models with the most explanatory power. Such
procedures could greatly benefit if a surrogate testing pro-
cedure (see Sec. I.B.2) were used to determine whether the
finally selected model is genuinely reliable.
The method was applied to model the interaction of

democracy and GDP per capita for the years 1981–2006
for 74 countries. The resulting coupling functions for two
selected models are shown in Fig. 30. The simplest
model shown in Fig. 30(a) includes a coupling function
with two terms _D ¼ 0.11G3 − 0.067D=G, while the best
fit five-function model Fig. 30(b) was given as _D ¼
0.77G3 þ 1.9D − 0.85D=G − 0.96DG − 0.14D2. For the
middle GDP, both of the coupling functions show depend-
ences that closely relate to the linear dependence determined
with the simple correlation coefficient. However, there were
some nonlinear deviations from this, especially for very low
and very high GDP. In particular, the threshold for very high

GDP indicated that there is no significant improvement in
democracy with further GDP growth.
Similarly, the best model for G was inferred to be

_G ¼ 0.014þ 0.0064DG − 0.02G, which shows primarily
that the GDP is growing at a constant rate, but in addition
demonstrates that it is positively affected by democracy
interacting with GDP, and that the growth is self-limiting at
high levels of GDP.
Finally, we point out that the method was further applied to

investigate the interactions of other social variables, such as
the case of interactions between democracy, development, and
cultural values (Spaiser et al., 2014). These works could
significantly benefit from further coupling function assess-
ment and analysis.

E. Mechanical coupling functions

Mechanical clocks and oscillators provide an important
cornerstone in the study of interactions and synchronization
phenomena, starting from the earliest observations of the
phenomenon in pendulum clocks by Huygens (1673) up to the
more comprehensive and detailed studies based on current
methods (Kapitaniak et al., 2012).
Kralemann et al. (2008) described an experiment using two

coupled mechanical metronomes for the analysis of coupling
functions. The metronomes were placed on a rigid base and
the coupling through which they interact and influence each
other was achieved by connecting them with an elastic rubber
band; Fig. 31, top. A digital camera was used for acquiring the
data, from which the oscillatory signals were extracted.
Coupling functions were determined for three different
experimental conditions when (i) the pendulums of the
metronomes were linked by a rubber band, (ii) the pendulums
were linked by two rubber bands, and (iii) the metronomes
were uncoupled.
From the extracted signals, the Hilbert transform proto-

phases were first estimated and then transformed to genuine
phases. The coupling functions were then reconstructed with a
fitting procedure based on kernel smoothing. Figure 31 shows

FIG. 30. Coupling functions of the change in democracy q1ðD;GÞ, from the interaction between GDP and democracy. (a) The two term
model, and (b) the five term model. The black lines are the solutions _D ¼ 0. The strengths of the coupling functions are encoded by the
color bars shown on the side of each figure. From Ranganathan et al., 2014.

FIG. 29. Examples of neural cross-frequency coupling func-
tions. (a) Spatial distribution of the δ − α coupling functions over
the head, based on the different probe locations. (b) Average
coupling function along all the probes for the δ − α coupling
relation. Each δ − α coupling function qαðϕδ;ϕαÞ is evaluated
from the α dynamics and depends on the bivariate ðϕδ;ϕαÞ
phases. From Stankovski et al., 2015.
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the results for the three cases. By comparison of the coupling
functions in the case of one rubber coupling [Figs. 31(a) and
31(b)] with the coupling of two rubber couplings [Figs. 31(c)
and 31(d)], one can see that the form is very similar, while the
coupling strength is slightly higher for the case of two-band
coupling. The coupling functions are of a complex form,
changing along both axes, thus reflecting the bidirectional
influence and contribution within the couplings. The meth-
odology correctly detects extremely weak coupling functions
[Figs. 31(e) and 31(f)] for the case of no explicit coupling.
Future developments of this work could benefit from

comparison of the extracted coupling functions with the actual
mechanics of the coupled metronomes, as well as from
validation of the weak coupling regime for better justification
of the use of phases.

F. Secure communications

The findings that the cardiorespiratory coupling function
can be decomposed into a number of independent functions,
and that the latter can have a time-varying nature (Stankovski
et al., 2012) (see Sec. V.B), inspired the creation of a new class
of secure communications characterized by high efficiency
and modularity (Stankovski, McClintock, and Stefanovska,
2014).
The protocol (Fig. 32) starts with a number of information

signals coming from different channels or communication
devices (e.g., mobile phone, sensor networks, or wireless
broadband) needing to be transmitted simultaneously. Each of
the signals si is encrypted in an amplitude coupling function;
i.e., they serve as scaling parameters in the nonlinear coupling
functions between two self-sustained systems in the trans-
mitter. The coupling functions constitute the private key and,
in principle, have an unbounded continuum of possible
combinations. Two signals, one from each system, are trans-
mitted through the public channel. At the receiving end, two
similar systems are enslaved, i.e., completely synchronized,
by the two transmitted signals. Finally, by applying time-
evolving dynamical Bayesian inference (as discussed in
Sec. IV.B.2) to the reconstructed systems, one can infer the
model parameters and decrypt the information signals si.
This application is similar to that where amplitude coupling

functions are reconstructed from data. The coupled systems
are multidimensional and may be chaotic Lorenz or Rössler
systems. The great advantage is that the model of the coupled
systems is known exactly on the side of the receiver where the
inference is performed. Thus the problem of not knowing
the amplitude model and its dimensionality does not exist. The
main task of the decryption lies in inferring the time evolution
of the parameters.
The protocol can encrypt multiple signals simultaneously

as time-evolving parameters. Each of them scales one of
the coupling functions, which are nonlinear and mutually
linearly independent. Thus the method inherently allows for

FIG. 31. Coupling functions for the two coupled mechanical
metronomes. (Top) Experimental apparatus with the two metro-
nomes, placed on a rigid support. (a), (b) The coupling functions
in each direction from the case of coupling with one rubber band,
(c), (d) with two rubber bands, and (e), (f) coupling functions for
the “uncoupled”without any rubber bands. The vertical scales are
the same so that one can clearly see the reduction of the coupling
function in the uncoupled case. From Kralemann et al., 2008.

FIG. 32. Schematic diagram showing the communication protocol based on coupling functions. Messages s1;…; sn are encrypted by
modulation of the coupling functions connecting two dynamical systems at the transmitter. Only two signals are transmitted through the
public domain. The receiver consists of two systems of the same kind with the same coupling functions (forming the private key) and
uses dynamical Bayesian inference to reconstruct s1;…; sn. From Stankovski, McClintock, and Stefanovska, 2014.
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multiplexing, i.e., simultaneous transmission of multiple
signals. Another property of the protocol is that it is highly
resistant to channel noise. This is because the dynamical
Bayesian inference is performed for stochastic dynamics, so
that the method is able very effectively to separate the
unwanted noise from the deterministic dynamics carrying
the messages.
The method is demonstrated on two bidirectionally coupled

chaotic Lorenz systems. Ten information signals s1;…; s10 are
encrypted with ten coupling functions, as indicated on the
ordinate axis in Fig. 33. The choice of the particular forms of
the coupling functions prescribes the private key. After the
transmission, the systems are reconstructed on the receiver
side and, by application of Bayesian inference, the informa-
tion signals are reconstructed. Figure 33 shows good agree-
ment of the original with the decrypted bits.

VI. OUTLOOK AND CONCLUSION

A. Future directions and open questions

Coupling functions have been studied as early as some of
the first theoretical works on interactions and they remain a
very active field of research that is attracting increasing
interest from the scientific community. They bring a certain
complexity in understanding, but at the same time they also
illuminate, and provide deeper insight into, the interaction

mechanisms. As such, coupling functions pose many open
questions and there still remain many related aspects that are
not well understood. Next we discuss some of the open
questions and current possibilities for further developments
related to coupling functions.

1. Theory

The theoretical development of coupling functions will lead
to a better understanding of the mechanisms responsible for
the resulting overall dynamics, and they may help to incor-
porate seemingly different models into a general overall
framework. Future theoretical studies need to identify the
classes of coupling functions that lead to particular physical
effects. In doing so, one needs to determine if there are some
classes of functions which demonstrate unique characteristics,
and more importantly whether some particular functions lead
to common effects. As a consequence, these can then lead to
classes of functions to be used in engineering, for controlling
or predicting the outcome of the interactions.
The experimental results suggest two important directions

for the theoretical development. First, coupling functions can
be nonautonomous. Secondly, coupling functions can lead to
the coexistence of attractors.
The theory of nonautonomous dynamical systems has

gained recent interest, mainly in relation to finite-time
bifurcations (Kloeden and Rasmussen, 2011). These math-
ematical developments play a major role in the theory of
coupling functions. The theoretical studies should include
systematic and comprehensive descriptions of the different
classes of coupling function, including the nonautonomous
case.
The coexistence of attractors has gained considerable

attention. As experimental results show, coupling functions
are important especially in relation to network structure and
the effect on the basin of attraction, e.g., the basin of attraction
of synchronization. Recent results have shown that the roles of
coupling function and network structure can be nontrivial
(Menck et al., 2013). We still need new theoretical methods to
tackle problems associated with the involvement of coupling
functions in the coexistence of attractors. These questions are
intimately related to the stability of the system and will play a
role in important practical applications, such as to electrical
power grids.

2. Methods

The future development of coupling function methods
needs to take into account all the advantages and pitfalls of
current methods, e.g., as outlined in the critical comparison in
Sec. IV.B.6. So far, all the coupling function methods have
been applied to pairs of coupled systems, or small to medium
size networks. New methods should allow applications to the
more prevalent large-scale networks. In line with this, they
should aim to achieve faster calculations so as to facilitate the
ever-growing demand for extensive computation.
There is also room for improvements of the amplitude

coupling function methods. The search for more generally
applicable amplitude models remains open. These should be
as general as possible or at least general enough for specific
subsystems.

FIG. 33. Transmission of ten pseudorandom binary signals
encrypted in different coupling functions. The high values (binary
“1”) at the transmitter are indicated by gray shading. The received
signals, after decrypting, are shown by thick (red) lines, each of
which (a)–(j) represents one information signal siðtÞ. The
particular amplitude coupling functions that were used for
encrypting each signal are indicated on the ordinate axis. The
bit words are indicated bym1 −m4 on the top of the figure. From
Stankovski, McClintock, and Stefanovska, 2014.
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There is a need to overcome the problem of inferring
coupling functions from systems that are highly synchronized
and coherent in 1∶1 frequency ratio. Currently, this is a
common deficiency in all of the available methods for
coupling (function) reconstruction. A possible direction
for solving this issue could lie in the use of perturbation,
for example, starting from different initial conditions or with
some other form of temporary deviation from the highly
coherent state.
To enhance the inference of more general interactions,

efforts are needed to develop and design robust methods for
distinguishing direct from indirect couplings, better surrogates,
and null models for determining significant couplings and
interpretation of the couplings in high-dimensional networks.

3. Analysis

We also point to the need for further development in
coupling function analysis: although the basic coupling
function theory and methods are relatively well developed,
there is a pressing need for measures able to exploit the
computed coupling functions to better effect. The current
tools, including similarity analysis and coupling function
decomposition, are very useful, but there is a clear need for
development of even more analysis tools. The task here is to
find better and more systematic ways of quantifying and
describing the form of the coupling functions and the other
functional characteristics unique to coupling functions.
The development of such methods for analyzing and

characterizing coupling functions could be linked to the
mathematical theory of functional analysis. To date, this
theory including the main concepts in vector spaces, and
measures of mappings between the functions, has not yet been
fully exploited in relation to coupling functions.

4. Integration theory applications

We emphasize that further interplay between theory and
applications for the development of coupling functions is still
needed. Although the applications usually take into account
theoretical developments, recent experimental findings have
not yet been properly addressed by the theory. For example,
the theoretically most studied form of coupling functions is
that for diffusive coupling, which includes the state or phase
difference as an argument. The latter is mostly used because it
provides convenient solvable solutions (see, e.g., the history,
Sec. II.B). On the other hand, the coupling decomposition
experiments have shown that it is the direct coupling function
that often predominates in reality, especially in biological
oscillatory interactions. Hence, further theoretical studies are
needed to establish the phenomena and the nature of inter-
actions for direct coupling functions. Such theoretical inves-
tigations can usefully be performed numerically in cases
where the relevant model cannot be solved analytically.

5. Applications

Coupling functions have universal implications for all
interactions between (dynamical) systems. As such, they
can describe mechanisms operating between systems that
are seemingly of very different natures. We have reviewed a

number of important applications, including, for example,
chemical, biomedical, mechanical, social, and secure commu-
nications; however, the unique features of coupling functions
promise even further application in these and in other fields.
We outline some foreseeable directions for new applications,
notwithstanding that many others are also possible.
Recently, there has been significant interest and develop-

ments in the study of interactions and synchronization in
power grids (Rohden et al., 2012; Rubido, 2015). To ensure a
reliable distribution of power, the network should be highly
controllable and synchronized. It is therefore important that
the state of synchronization should be highly stable (i.e., deep
in the Arnold tongue), so as to ensure that small disruptions
and glitches will not interrupt the function of the network.
Coupling functions should be investigated in order to establish
how to design and engineer a persistent (Pereira et al., 2014)
and very stable state of synchronization.
Similar problems occur with the control, synchronization,

and optimization in transport grids (Rodrigue, 1999;
Albrecht, 2004), for example, in a rail network. In such cases,
of vital importance are the dynamical and the time-varying
events. The developed methods and theory for time-varying
coupling functions could be of great use in these applications.
Increasing the scale of the networks often leads to higher-

level organization, including networks of networks and multi-
layer networks (Stern, 2013; Kivelä et al., 2014). In such high-
dimensional spaces, a variety of different physical effects can
be observed, e.g., synchronization, chimeras, and clustering.
The coupling functions of different levels and layers could
provide deeper insight into the functions or subfunction
integration of the networks.
Coupling functions have been found very useful in studying

the interactions between macroscopic physiological systems,
such as those between the cardiorespiratory and neural systems
previously reviewed. Further coupling function investigations
will probably be developed between different oscillations in
integrated network physiology (Stefanovska, 2007; Bashan
et al., 2012). In a similar way, coupling functions between
microscopic physiological organizations could be developed.
The latter could explore coupling functions between cells
including, for example, the oscillations of neurons or stem cells
(Murthy and Fetz, 1996; Jackson et al., 2001; Eytan and
Marom, 2006; Méndez-Ferrer et al., 2008).

B. Conclusion

In recent years, the investigation of coupling functions has
developed into a very active and rapidly evolving field. Their
study and use have brought much progress in the under-
standing of the mechanisms underlying the diverse inter-
actions seen in nature. The enterprise has now reached a
critical mass, offering increased potential for new and impor-
tant discoveries, and in this way the topic has attained a
substance and unity justifying the present review.
The concept of the function in the coupling functions is

perhaps its most important characteristic. Yet, precisely
because of being a function, it is inevitably harder to interpret,
assess, and compare than is the case for quantitative measures
such as the coupling strength. In attempting to integrate and
pull together existing knowledge about coupling functions,
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therefore, we have tried to organize, to explain, and, as far as
possible, to standardize their description in the hope of
making them more generally accessible and useful.
Interactions underlie many important phenomena and

functions of the systems found in nature, and it is of great
importance to be able to describe and understand the mech-
anisms through which the interactions occur. Coupling func-
tions are opening up new perspectives on these interactions
and we envisage that they will catalyze increased research
activity on coupled dynamical systems and their interactions
in the future.
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