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Abstract 

 
Optoelectronic properties of metallo-porphyrins play a central role in photosynthesis and are 

therefore crucial to life on earth. This thesis presents a series of studies into the electronic 

and thermoelectric properties of various families of molecular junction of metallo-

porphryins 

Two main techniques will be included in the theoretical approach; Density Functional 

Theory, which is implemented in the SIESTA code, and the Green’s function formalism of 

electron transport (Chapter 2), which is implemented in the GOLLUM code. Both 

techniques are used extensively to study a family of metallo-porphyrin molecules.  

In this thesis, I cover three main results in the areas of electical and thermoelectrical 

properties of metallo-porphyrin molecular wires, in which a Co, Ni, Cu, or Zn metal ion in 

the center of the porphyrin skeleton is coordinated to pyridyl moieties attached to gold 

electrodes and demonstrate that the current-perpendicular-to-the-plane (CPP) electrical 

conductances of the series of Ni, Co, Cu or Zn-5,15-diphenylporphyrins increase with the 

atomic weight of the divalent metal ion. This supramolecularly wired arrangement with the 

aromatic plane perpendicular to the current is stable at room temperature and provides a 

unique family of high-conductance molecular wires, whose electrical transport properties 

can be tuned by metal substitution. I deal with the thermoelectric properties of the same 

metallo-porphyrin junction (CPP) in chapter four, where I demonstrate that varying the 

transition metal-centre of a porphyrin molecule allows the molecular energy levels to be 

tuned relative to the Fermi energy of the electrodes thereby creating the ability to optimise 

the thermoelectric properties of metallo-porphryins. In chapter six I compare thermoelectric 
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properties of three zinc porphyrin (ZnP) dimers and a ZnP monomer. The results show that 

the “edge-over-edge” dimer formed from stacked ZnP rings possesses a highest room-

temperature ZT ever reported for an organic material. 
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Chapter 1 

1.1 Introduction 

Molecular electronics is a branch of nanotechnology, which extends over chemistry, 

physics, biology and material science and its scope is involved in the study of the electronic 

and thermal transport properties of devices in which single molecules or assemblies of them 

are used as a basic building block
1
. The idea of using single molecules in electronic devices, 

started with theoretical research in the1970s
2
, but only recently has it attracted intense 

scientific interest. 

Molecular electronics is based on exploiting molecules as fundamental units in electronic 

devices which can be connected to each other efficiently and in a controllable way. In 

addition to their ultimately small size, they have the potential to be fast and cheap electronic 

circuit elements with very low power consumption. Therefore, single molecule devices are 

very appealing candidates for future applications. 
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Molecular electronics is a multi-disciplinary field which includes elements of both physics 

and chemistry and a combination of theory and experiment working side-by-side is needed 

to design and enhance future devices. Experimental groups across the world use a variety of 

measurement techniques (e.g. Scanning Tunneling Microscopy Break Junctions (STM-BJ) 

and Mechanically Controllable Break Junctions MCBJ
3,4

) to study the molecule’s electronic 

properties. But the main problem is due to the simple fact that the size of the molecules 

makes it unclear to experimentalists what exactly is being measured and how the molecule is 

orientated or connected to the electrodes. This can be resolved by modeling the structure 

using Density Functional Theory (DFT) and providing an explanation of the experimental 

data from theoretical calculations. A second approach to theory is that it can give predictions 

about the molecular structure before the experiment is carried out, to determine whether a 

particular molecule might be suitable. Theoretical and experimental investigations have 

focused on electrode-molecule-electrode (EME) junctions, which will be discussed in this 

thesis and the main experimental technique used to study these systems is the (STM-BJ).  

The ability to control electron transport through a single molecule is considered to be a 

crucial task in this field
5-7

. Most studies in molecular electronics have focused on two-

electrodes devices
8-11

. 

Also the ability to manage waste heat is a major challenge, which currently limits the 

performance of information technologies. To address this challenge, there is a need to 

develop novel materials and device concepts coupled with new strategies for managing and 

scavenging on-chip waste heat. A major target of current research is the development of new 

high-efficiency and low-cost thermoelectric materials and devices. Thermoelectric materials, 

which allow highly-efficient heat-to-electrical-energy conversion from otherwise wasted 



CHAPTER 1. INTRODUCTION 

 

 

3 
 

low-level heat sources, would have enormous impact on global energy consumption. 

Nanoscale structures are very promising in this respect, due to the fact that transport takes 

place through discrete energy levels. The ability to measure thermopower in nanoscale 

junctions opens the way to developing fundamentally new strategies for enhancing the 

conversion of heat into electric energy
12

.  

The current focus is on finding molecules with required properties and finding ways to get 

reliable and reproducible contacts by major improvements in device fabrications methods. 

Among different organic molecules, porphyrins were an obvious class of organic molecules 

to investigate for molecular electronic functions
13

. Pophyrins, metallo-porphyrins, and their 

derivatives are prime candidates for a host of molecular electronics applications. As a class 

of molecule, they possess distinctive, reversible oxidation and reduction chemistry that 

potentiates their use as wires, switches, transistors, junctions, and                      

photodiodes
14-16

. There is a large amount of theoretical investigation of the electronic 

properties of porphyrin via density functional theory (DFT)
17-25

. Also significant 

experimental work using both the STM method
26-33

 and the STM-BJ method
34-38

 has been 

carried out. There are also many theoretical and experimental studies that have investigated 

the thermoelectronic properties of the porphyrin molecule
39-44

.  

The work described in this thesis is based on the electronic and thermoelectric properties of 

porphyrins. Therefore the next few sections will introduce briefly information about 

porphyrins. 
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1.2 Basic structure of Porphyrin 

 

The name porphyrin originated from the ancient Greek word porphura that was used to 

describe the colour purple (or royal purple)
45

. The parent porphyrin is porphin(e), and 

substituted porphin(e) is called porphyrin. Porphyrins are a group of organic compounds, the 

chemistry of porphyrins and related compounds dates back to eighteenth century. The first 

effort in giving names and directions for drawing the different isomers of porphyrins was 

made by Hans Fischer
46

. 

The basic structure of the porphyrin molecule has in common a substituted aromatic 

macrocyclic ring consisting of four pyrrole rings linked by methine bridges. The four 

pyrrole units after linking with each other give a planar structure to the porphyrin molecules 

with an extended conjugated 18 π-electron system being responsible for the aromatic 

behaver of porphyrins
47-49

. The presence of highly conjugated 18 π-electron systems is 

responsible for the intense color and other distinctive electronic and redox properties of 

porphyrins
50

.  Figure (1.1) shows the structure of the porphyrin and the numbering of the 

ring positions . 
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Figure 1.1 The structure of porphyrin. Left: Molecular structure with numbering of atoms in 

porphyrin macrocycle, Right: 3D structure, gray: carbon, white: Hydrogen and blue: Nitrogen.  

  

Two distinct patterns of substituents are illustrated in figure 1. The meso-positions are 

numbered 5,10,15,20 and the Beta-positions are 2,3,7,8,12,17,18 
51

. 

The main theme in the synthesis of porphyrin is the arrangement of diverse substituents in 

specific patterns about the periphery of the macrocycle. The synthetic control over these 

substituents enables the porphyrin to be designed and tailored for specific applications. 

On the basis of pattern of substituents attached to the macrocycle, porphyrin can be 

classified into two main categories as shown in Fig.1.2 
52

. The first one is meso-substituted 

porphyrins and the second is Beta-substituted porphyrins. The substituents at the meso-

position can be alkyl, aryl, heterocyclics or organometallic groups as well as other porphyrin 

rings. Meso-substituted porphyrins are more attractive compared to the naturally occurring 

beta-substituted porphyrins for different applications, because of ease of synthesis and their 

amenability towards synthetic modifications
53-55

. 
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Figure 1.2 meso-substituted porphyrin (1) and Beta –substituted porphyrin (2) 

 

One of the most well-known meso-substituted porphyrins is Diphenylporphyrin (DPP)
56

. 

DPP was first reported in 1968 by Treibs and Haberle
57

.  

In addition to substitution on the periphery of the core, porphyrins can be metallated at the 

center to give another dimension of modularity
58

 in which the central core is coordinated by 

suitable metals; porphyrins. These are called metallo-porphyrins, as shown in Fig.1.3. 

whereas porphyrin in which no metal is inserted in its cavity is called a free-base porphyrin. 
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Figure 1.3 Scheme formation of metallo-porphyrins, M is the incorporated metal atom. 

 

1.3 Metallo-porphyrins 

 

The formation of metallo-porphyrins is due to the ability of free-base porphyrins to complex 

a huge variety of metal ions
59,60

. The size of porphyrin macrocycle cavity is perfect to bind 

metal ions such as Zn, Fe, Ni, and Co etc, forming metallo-porphyrins
61,62

. A large variety of 

metallo-porphyrins could be synthesized by the insertion of metals into the center of the 

porphyrin cavity, however circumstances can prevail when binding metal ions, due to the 

size of the incorporated metal, the molecule might not remain planar, but can be distorted
63

. 

Porphyrin, and its metal derivatives are of considerable spectroscopic interest because of 

their simplicity and unique nature of this chemistry
64

. 

Metallo-porphyrins have become a wide-ranging research area, which is attention-grabbing 

and worthwhile for research in different scientific fields
65-70

.  
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1.4 Thesis outline 

This thesis will report a theoretical study of the electrical and thermoelectrical properties of 

families of metallo-porphyrin molecules. To begin with, chapter 2 gives a brief overview of 

density functional theory (DFT) which is used in this thesis to study and understand the 

electronic properties of single-molecule junctions. Chapter 3 describes the single particle  

Green’s function based scattering theory, and related topics such as the Landauer formula, 

Green’s function of infinite leads. Examples of scattering calculations and a general 

approach to solving the surface lead Green’s function are also presented. 

 

In chapter 4 I present a study of the electrical conductance of metallo-porphyrins in a 

perpendicular junction and compute their electronic conductance through a DFT calculation. 

In chapter 5 I introduce theoretical study thermoelectric properties of the same junction. In 

chapter 6 the thermoelectrical properties for three different dimer zinc porphyrin and 

monomer has been studied. Finally, chapter 7 presents conclusions and future works. 

 

 

 

 

 

 

 

 



CHAPTER 1. INTRODUCTION 

 

 

9 
 

Bibliography 

 

1.    Zotti, L.A., Kirchner, T., Cuevas, J.C., Pauly, F., Huhn, T., Scheer, E. and Erbe, A., 

2010. Revealing the Role of Anchoring Groups in the Electrical Conduction Through 

Single‐Molecule Junctions. small, 6(14), pp.1529-1535.  

2.    Aviram, A. and Ratner, M.A., 1974. Molecular rectifiers. Chemical Physics Letters, 

29(2), pp.277-283.  

3.     R. Huber, M.T. González, S. Wu, M. Langer, S. Grunder, V. Horhoiu, M. Mayor, M.R. 

Bryce, C. Wang, R. Jitchati, Electrical conductance of conjugated oligomers at the 

single molecule level, Journal of the American Chemical Society 130 (2008) 1080-

1084. 

4.   W. Hong, H. Valkenier, G. Mészáros, D.Z. Manrique, A. Mishchenko, A. Putz, P.M. 

García, C.J. Lambert, J.C. Hummelen, T. Wandlowski, An MCBJ case study: The 

influence of π-conjugation on the single-molecule conductance at a solid/liquid 

interface, Beilstein journal of nanotechnology 2 (2011) 699-713. 

5.     A. Aviram, M.A. Ratner, Molecular rectifiers, Chemical Physics Letters 29 (1974) 277-

283. 

6.     R.L. Carroll, C.B. Gorman, The genesis of molecular electronics, Angewandte Chemie 

International Edition 41 (2002) 4378-4400. 

7.    C. Joachim, J. Gimzewski, A. Aviram, Electronics using hybrid-molecular and mono- 

molecular devices, Nature 408 (2000) 541-548. 

8.    J. Chen, M. Reed, A. Rawlett, J. Tour, Large on-off ratios and negative differential 

resistance in a molecular electronic device, Science 286 (1999) 1550-1552. 

9.      C. Collier, E. Wong, M. Belohradský, F. Raymo, J. Stoddart, P. Kuekes, R. Williams, 

J. Heath, Electronically configurable molecular-based logic gates, Science 285 (1999) 

391-394. 

10.   S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak, Current-

voltage characteristics of self-assembled monolayers by scanning tunneling 

microscopy, Physical Review Letters 79 (1997) 2530. 



CHAPTER 1. INTRODUCTION 

 

 

10 
 

11.    R.M. Metzger, Unimolecular electrical rectifiers, Chemical reviews 103 (2003) 3803-

3834. 

12.   L.A. Algharagholy, Q. Al-Galiby, H.A. Marhoon, H. Sadeghi, H.M. Abduljalil, C.J. 

Lambert, Tuning thermoelectric properties of graphene/boron nitride heterostructures, 

Nanotechnology 26 (2015) 475401. 

13.    Shaikh, Ahson Jabbar. "Single Molecule Electronics." (2013). 

14.   Jurow, Matthew, et al. "Porphyrins as molecular electronic components of functional 

devices." Coordination chemistry reviews 254.19 (2010): 2297-2310. 

15.   Kang, B.K., et al., Length and temperature dependence of electrical conduction through 

dithiolated porphyrin arrays. Chemical Physics Letters, 2005. 412(4-6): p. 303-306. 

16.  Sedghi, G., et al., Single molecule conductance of porphyrin wires with ultralow 

attenuation. Journal of the American Chemical Society, 2008. 130(27): p. 8582. 

17.   Venkataramanan, N.S., et al., Electronic structures and spectra of symmetric meso-         

substituted porphyrin: DFT and TDDFT—PCM investigations. International Journal 

of Quantum Chemistry, 2011. 111(10): p. 2340-2351. 

18.  Liao, M.S. and S. Scheiner, Electronic structure and bonding in metal porphyrins, 

metal=Fe, Co, Ni, Cu, Zn. Journal of Chemical Physics, 2002. 117(1): p. 205-219. 

19.   Cho, S., et al., Electron delocalization in various triply linked zinc(II) porphyrin arrays: 

role of antiaromatic junctions between aromatic porphyrins. Physical Chemistry 

Chemical Physics, 2011. 13(36): p. 16175-16181. 

20.   Yamaguchi, Y., Theoretical prediction of electronic structures of fully piconjugated 

zinc oligoporphyrins with curved surface structures. Journal of Chemical Physics, 

2004. 120(17): p. 7963-7970. 

21.  Noori, Mohammed, et al. "Tuning the electrical conductance of metalloporphyrin 

supramolecular wires." Scientific Reports 6 (2016). 

22.   Hirao, Hajime, Sason Shaik, and Pawel M. Kozlowski. "Theoretical analysis of the 

structural and electronic properties of metalloporphyrin π-cation radicals." The Journal 

of Physical Chemistry A 110.18 (2006): 6091-6099. 

23.   Mulya, Fadjar, et al. "Design a better metalloporphyrin semiconductor: A theoretical 

studies on the effect of substituents and central ions." AIP Conference Proceedings. 

Eds. Tri Rini Nuringtyas, et al. Vol. 1755. No. 1. AIP Publishing, 2016. 



CHAPTER 1. INTRODUCTION 

 

 

11 
 

24.  Chokbuunpiam, Tatiya, et al. "Molecular structure and electronic properties of 

porphyrin-thiophene-perylene using quantum chemical calculation." International 

Journal of Photoenergy 2010 (2010). 

25.   Sena, Alex MP, Veronika Brázdová, and David R. Bowler. "Density functional theory 

study of the iron-based porphyrin haem (b) on the Si (111): H surface." Physical 

Review B 79.24 (2009): 245404. 

26.   Scudiero, L., D.E. Barlow, and K.W. Hipps, Physical properties and metal ion specific 

scanning tunneling microscopy images of metal(II) tetraphenylporphyrins deposited 

from vapor onto gold (111). Journal of Physical Chemistry B, 2000. 104(50): p. 

11899-11905. 

27.  Scudiero, L., et al., Scanning tunneling microscopy, orbital-mediated tunneling 

spectroscopy, and ultraviolet photoelectron spectroscopy of metal(II) 

tetraphenylporphyrins deposited from vapor. Journal of the American Chemical 

Society, 2001. 123(17): p. 4073-4080. 

28.  Scudiero, L., D.E. Barlow, and K.W. Hipps, Scanning tunneling microscopy,orbital-

mediated tunneling spectroscopy, and ultraviolet photoelectron spectroscopy of 

nickel(II) octaethylporphyrin deposited from vapor. Journal of Physical Chemistry B, 

2002. 106(5): p. 996-1003. 

29   Deng, W.L. and K.W. Hipps, Tip-sample distance dependence in the STM-based 

orbital-mediated tunneling spectrum of nickel(II) tetraphenylporphyrin deposited on 

Au(111). Journal of Physical Chemistry B, 2003. 107(39): p. 10736-10740. 

30.  Muellegger, S., et al., Spectroscopic STM Studies of Single Gold(III) Porphyrin 

Molecules. Journal of the American Chemical Society, 2009. 131(49): p. 17740- 

17741. 

31.   Majima, Y., et al., Negative differential resistance by molecular resonant tunneling 

between neutral tribenzosubporphine anchored to a Au(111) surface and 

tribenzosubporphine cation adsorbed on to a tungsten tip. Journal of the American 

Chemical Society, 2013. 135(38): p. 14159-14166. 

32.  Kim, H., et al., Switching and sensing spin states of Co-porphyrin in bimolecular 

reactions on Au(111) using scanning tunneling microscopy. ACS Nano, 2013. 7(10): 

p. 9312-9317. 



CHAPTER 1. INTRODUCTION 

 

 

12 
 

33.    Yokoyama, T. and F. Nishiyama, Direct Visualization of Electronic Asymmetry within 

a Phenyl-Linked Porphyrin Dimer. Journal of Physical Chemistry Letters, 2014. 5(8): 

p. 1324-1328. 

34.    Noguchi, Y., et al., Fowler-nordheim tunneling in electromigrated break junctions with 

porphyrin molecules. Japanese Journal of Applied Physics, Part 1: Regular Papers and 

Short Notes and Review Papers, 2007. 46(4 B): p. 2683-2686. 

35.  Aragones, A. C. et al. Highly Conductive Single-Molecule Wires with Controlled 

Orientation by Coordination of Metalloporphyrins. Nano letters 14, 4751-4756 (2014). 

36.  Li, Z. and E. Borguet, Determining Charge Transport Pathways through Single 

Porphyrin Molecules Using Scanning Tunneling Microscopy Break Junctions.Journal 

of the American Chemical Society, 2012. 134(1): p. 63-66. 

37.  Li, Z., et al., Quasi-Ohmic Single Molecule Charge Transport through Highly 

Conjugated meso-to-meso Ethyne-Bridged Porphyrin Wires. Nano Letters, 2012. 

12(6): p. 2722-2727. 

38.    Sedghi, G., et al., Long-range electron tunnelling in oligo-porphyrin molecular wires. 

Nature Nanotechnology, 2011. 6(8): p. 517-523. 

39.  Sadeghi, Hatef, Sara Sangtarash, and Colin J. Lambert. "Electron and heat                   

transport in porphyrin-based single-molecule transistors with electro-burnt graphene 

electrodes." Beilstein journal of nanotechnology 6.1 (2015): 1413-1420. 

40.    Mohammed Noori, Hatef Sadeghi, Qusiy Al-Galiby and Colin J. Lambert "High cross-

plane thermoelectric performance of metallo-porphyrin molecular junctions" Physical 

Chemistry Chemical Physics (2017). 

41. Rincón-García, Laura, et al. "Thermopower measurements in molecular 

junctions." Chemical Society Reviews 45.15 (2016): 4285-4306. 

42. Al-Galiby, Qusiy H., et al. "Tuning the thermoelectric properties of metallo-

porphyrins." Nanoscale 8.4 (2016): 2428-2433. 

43. Mohammed Noori, Hatef Sadeghi and Colin J. Lambert. "High-performance 

thermoelectricity in edge-over-edge zinc-porphyrin molecular wires", Nanoscale 9.16 

(2017): 5299-5304 

44. Suslick, Kenneth S., et al. "The materials chemistry of porphyrins and 

metalloporphyrins." Journal of Porphyrins and Phthalocyanines 4.4 (2000): 407-413. 



CHAPTER 1. INTRODUCTION 

 

 

13 
 

45.    P.E. McGovern and R. H. Michel, Acc. Chem. Res. 23 (1990) 152. 

46.   H. Fischer and  H. Orth, Die Chemie des pyrrols, Vol III, Akad. Verlag, Leipzig  

(1940) 

47.     M. Counterman, The porphyrin, D. Dolphin (Ed), Academic, New York, Vol III, Part   

A, Physical Chemistry, 1978. 

48.    L. R. Milgrom, The colours of life: An Introduction to the Chemistry of Porphyrins 

and Related Compounds, Oxford University Press,1997. 

49.   M. Counterman, in The porphyrins, Vol.3, Ed, By D. Dolphin Academic Press, New 

York, 1978, pp. 1-165. 

50.    W. R. Scheidt, Acc. Chem. Res. 10 (1977) 339. 

51.   J. S,. Lindsey in ‘The porphyrin Handbook’ ed. K. M. Kadish, K. M. Smith, and R. 

Guilard, San Diego, 2000. Vol.1, pp 45-118. 

52.    Lindsey, J. S., In “The Porphyrin Handbook,” (Ed.), Kadish, K. M.; Smith, K. M.; and 

Guilard, R., San Diego, 2000, Vol. 1, 45-118. (b) Smith, K. M., In “The Porphyrins,” 

Elsevier Press, 1975, 9. (c) Boucher, L. J.; and Katz, J. J., J. Am. Chem. Soc. 1967, 89, 

4703. 

53.   Halime, Z.; Belieu, S.; Lachkar, M.; Roisnel, T.; Richard, P.; and Boitrel, B., Eur. J 

.Org. Chem. 2006, 5, 1207. 

54.   Senge, M. O.; Shaker, Y. M.; Pintea, M.; Ryppa, C.; Hatscher, S. S.; Ryan, A.; and 

Sergeva, Y., Eur. J. Org. Chem. 2010, 2, 237. 

55.    Lindsey, J. S., Accounts of Chemical Research. 2010, 43, 300. 

56.   J. B. Kim, A. D. Adler, and F. R. Longo, in ‘The Porphyrins’, ed. D. Dolphin, 1978, 

Vol. 1, pp 85-100. 

57.    A. Treibs and N. Haeberle, Justus Liebigs Ann. Chem. 1968, 718, 183. 

58.   Sanders, J. K. M.; Bampos, N.; Clyde-Watson, Z.; Darling, S. L.; Hawley, J. C.; Kim, 

H. –J.; Mak, C. C.; and Webb, S. J., “Axial Coordination Chemistry of 

Metalloporphyrins. Porphyrin Handbook”. 2000, 3, 1. 

59.    J. W. Buchler, in ‘The Porphyrins’, ed. D. Dolphin, 1978, Vol. 1, pp 389-483. 

60.    J. W. Buchler, in ‘Porphyrins Metalloporphyrins’, 1975, pp 157-231. 

61.  W. Kaim, B. Schwederski, Bioanorganische Chemie,4th edn. B. G. Teubner, 

Wiesbaden,2005. 



CHAPTER 1. INTRODUCTION 

 

 

14 
 

62.    J. L. Hoard, Science, 174 (1971) 1295. 

63. Chen, Xi. "Local Optoelectronic Properties Of Zinc-Porphyrin/gold Molecular 

Interfaces." (2014).  

64.   Preethi, N. "Studies on some metalloporphyrin systems." (2010). 

65.   Milgrom, L. R.; and Jones, C. C., Chem. Commun. 1988, 9, 576. 

66    Ivanisevic, A.; and Ellis, A. B., J. Phys. Chem. B. 1999, 103, 1914. 

67.  Ivanisevic, A.; Reynolds, M. F.; Burstyn, J. N.; and Ellis, A. B., J. Am.Chem. Soc. 

2000, 122, 3731. 

68.   Adler, A. D., J. Polym. Sci. C. 1970, 29, 73. 

69.   Fleischer, E. B.; and Krishnamurthy, M., J. Am. Chem. Soc. 1972, 94, 1382. 

70. Montanari, F.; and Casella, L., (Ed.), “Metalloporphyrins Catalyzed Oxidations”, 

Kluwer Academic: Boston, 1994. 

 

 

 

 

 



CHAPTER 2. DENSITY FUNCTIONAL THEORY 

 

 
 

15 
 

 

 

Chapter 2 

Density Functional Theory 

 

2.1   Introduction 

The explanation and understanding of electronic properties of molecular wires can be 

obtained by investigating the behavior of electrons in the wires.  This means solving the 

interacting many-body Schrödinger equation to find the eigenvalues, eigenfunctions, 

Hamiltonian and overlap matrices of the system. In order to solve this complex equation 

there are various theoretical and semi empirical techniques which are based on an ‘ab-initio’ 

method using fitted parameters with experimental data
1-5

. Density Functional theory  

(DFT)
6,7

 is one of these techniques and is proving to be one of the most successful and 

promising theories used in physics, chemistry and materials science to compute the 

electronic structure of the ground state of many body systems
8-12

. The methodology of DFT 

has been applied to a large variety of systems such as atoms
13

, molecules
14

 and solids
15

. DFT 

tends to offer a good balance between calculation quality and the required computational 
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effort
16

. DFT is a method that calculates the local electronic density at each point in space, 

rather than attempting to obtain the many-particle wave function. 

In this chapter I will present a brief introduction of density functional theory (DFT). I will 

start by presenting a short overview of DFT with the Born-Oppenheimer approximation, 

Kohn-Sham equations and exchange and correlation energy. The next section will deal with 

SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms)
17

 that is 

an implementation of DFT, which I have used widely during my PhD study as a theoretical 

tool. The final sections will deal with pseudopotential approximations, localised basis sets 

and finally calculating binding energy using the counter poise method. 

 

2.2 Density Functional theory  

(DFT) was first proposed in [6] and extended a year later in [7], both papers set out the basic 

theory of Density Functional theory. DFT is a first principle approach that attempts to 

predict the properties of a material by using as few approximations as possible. The 

fundamental problem in an electronic structure calculation is that the electrons in a solid 

interact not only with atomic nuclei but also with each other. Furthermore, the electrons are 

correlated. As a consequence, there is no systematic way of finding the exact wave functions 

of their energy eigenvalues. DFT manages to overcome this problem by writing the 

equations of motion for the system in terms of the ground-state density n(r), and by 

obtaining the ground-state density, one can in principle calculate the ground-state energy. 

The main aim of DFT to accurately describe a system with a number of charged nuclei 
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surrounded by an electron gas. In quantum theory of solids, both electrons and nuclei are 

described by Schrödinger equation.  

H𝛹(𝑟1, 𝑟2, … , 𝑟𝑁 , 𝑅1, 𝑅2, … , 𝑅𝑀) = 𝐸𝛹(𝑟1, 𝑟2, … , 𝑟𝑁 , 𝑅1, 𝑅2, … , 𝑅𝑀)                            (2.2.1) 

where H is the Hamiltonian operator of a system consisting of M nuclei and N electrons, ri is 

the position of the i-th electron, and RI the position of the I-th nucleus. A molecule is an 

excellent example of such a complex many-body system. Generally, the many-body 

Hamiltonian is constructed as the sum of five terms as follows: 

 

ennneenuelFull VVVTTH                                                                             (2.2.2) 

where  elT  and nuT  are the kinetic energy terms for the electron and the nuclei respectively. 

eeV is the interaction energy terms between all electrons, nnV  is the interaction between the 

nuclei and enV is the interaction between electrons and nuclei. These interactions are 

described by the Hamiltonian operator which is written as follows:                        
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                                                              (2.2.3) 

here 𝑖 and 𝑗 denote the N-electrons while 𝐼 and 𝐽 run over the M-nuclei in the system, 𝑚𝑖  is 

the mass of the i-th electron, m𝑛  the mass of the I-th nucleus, 𝑒 and 𝑍𝐼 are the electron and 

nuclear charge respectively. 𝜀𝑜  is the dielectric constant of the vacuum. The position of the 
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electrons and nuclei are denoted as 𝑟𝑖 and 𝑅𝐼 respectively. If we can solve the Schrödinger 

equation, then we will be able to determine most of the physical properties of a system. 

However, the Schrödinger equation is very difficult to solve (nearly impossible) when the 

number of atoms become large because the interaction terms in the Hamiltonian cannot be 

directly uncoupled and independently solved. An approximation has to be applied to enable 

a separation of the nucleon and electron degrees of freedom to reduce the size of the 

problem. This is achieved through the Born-Oppenheimer approximation. 

 

2.3   Born-Oppenheimer approximation 

Since the mass of the electron is much smaller than that of nuclei, and in terms of their 

velocities, the nuclei could be considered as  classical particles which creates an external 

potential, and the electrons as quantum particles are subjected to this potential. This concept 

known as the Born-Oppenheimer approximation
18

 assumes the nucleon wave function is 

independent of the electrons positions, in other words the wave function that describes the 

full system can be decomposed to a nuclear wave function, and the electrons wave function. 

We rewrite the wave function in equation (2.2.1) as: 

𝜓(𝑟𝑁, 𝑅𝑀) = 𝜓𝑒(𝑟𝑁, 𝑅𝑀)𝜓𝑁(𝑅𝑀)                                                                          (2.3.1) 

Hence we can rewrite in Schrödinger equation (2.2.1) as two separate Schrödinger 

equations: 

𝐻𝑒𝜓𝑒(𝑟𝑁, 𝑅𝑀) = 𝐸𝑒𝜓𝑒(𝑟𝑁 , 𝑅𝑀)                                                                                      (2.3.2) 
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and 

𝐻𝑁𝜓𝑁(𝑅𝑀) = 𝐸𝜓𝑁(𝑅𝑀)                                                                                                (2. .3.3) 

Where 𝐸𝑒 (𝑅𝑀) is the ground state energy of the electrons for a given set of nuclei 

coordinates. The Hamiltonian for the electrons is 𝐻𝑒 = 𝑇𝑒𝑙 + 𝑉𝑒𝑒 + 𝑉𝑒𝑛  and nuclei is 

𝐻𝑁 = 𝑇𝑁 + 𝑉𝑛𝑛 + 𝐸𝑒 (𝑅𝑀). To find the ground state energy of the electrons 𝐸𝑒  we need to 

solve equation (2.3.2). The employment of the Born-Oppenheimer approximation, allows 

the electron and nucleon degrees of freedom to be decoupled. Nevertheless, solving the 

Schrödinger equation for this system of nucleons and electrons still needs further 

approximations such as DFT.  

 

2.4   Kohn-Sham Equations 

The Kohn-Sham equation provides DFT the ability to solve the many-body problem which 

describes the interacting system in an external potential as a set of non-interacting particles 

in a new effective external potential Veff(r). By comparing the result of a non-interacting 

system and an interacting system, we can find the effective external potential. This means 

that the original Hamiltonian can be replaced by an effective Hamiltonian of non-interacting 

particles in an effective external potential, which has the same ground-state density as the 

original system. This new effective electron potential is identified by comparing the results 

from a non-interacting system to that of the interacting system. The energy functional is then 

written as follows: 
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𝐸[𝑛( 𝑟 )] = 𝐹𝐾𝑆[𝑛( 𝑟 )] + ∫𝑉𝑒𝑥𝑡(𝑟 )  𝑛( 𝑟 ) 𝑑𝑟                                                                     (2.4.1) 

E[𝑛] = 𝐸𝐾[𝑛] + 𝐸𝐻[𝑛] + 𝐸𝑥𝑐[𝑛] + ∫𝑉𝑒𝑥𝑡( r )  𝑛(r ) 𝑑r                                                     (2.4.2)       

where the functional 𝐹𝐾𝑆[𝑛( 𝑟 )] consists of the following three terms: 𝐸𝐾[𝑛( 𝑟 )] +

𝐸𝐻[𝑛( 𝑟 )] + 𝐸𝑥𝑐[𝑛( 𝑟 )]. The first three terms represent the kinetic energy of electrons in 

the non-interacting system is described by a functional 𝐸𝐾[𝑛], classical Hartree potential 

which includes an electron self-interaction term 𝐸𝐻[𝑛] and finally the term Exc(n) which 

describes the exchange and correlation energy. This contribution to the energy will be 

explained later. 

Let us now suppose that the density is perturbed by a small amount δn(r), this would cause 

an energy change by amount δE. The expression of this small change can be written as: 
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
                                                  (2.4.3)   

However since the number of electrons in the system is fixed 

0)(  drrn                                                                                                              (2.4.4) 

the quantity in square brackets in equation (2.4.3) is a constant quantity called a Lagrange 

multipiler, this will be labelled as μ.  

In order to describe the non-interacting electron systems through the Kohn-Sham equation, we 

consider 𝐸𝐻[𝑛] and Exc(n)  are equal to zero because the interactions between electrons in this 

system are equal to zero. Thus μ is given by 
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μ = 𝑉𝑒𝑥𝑡 (𝑟) +
𝛿𝐸𝐾[𝑛]

𝛿𝑛
                                                                                                               (2.4.5) 

But for interacting system which depend on μ,  

μ = 𝑉𝑒𝑓𝑓 (𝑟) +
𝛿𝐸𝐾[𝑛]

𝛿𝑛
                                                                                                              (2.4.6) 

where  𝑉𝑒𝑓𝑓 (𝑟) is 

 

𝑉𝑒𝑓𝑓 (𝑟) = 𝑉𝑒𝑥𝑡 (𝑟) +
𝛿𝐸𝐻[𝑛]

𝛿𝑛
+
𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛
                                                                           (2.4.7) 

By using this potential, we can write down a single particle Hamiltonian 

 

𝐻𝐾𝑆 = 𝐸𝐾 + 𝑉𝑒𝑓𝑓  (𝑟)                                                                                                                 (2.4.8) 

The corresponding Schrodinger equation is 

𝐻𝐾𝑆𝜓
𝐾.𝑆 = 𝐸𝜓𝐾.𝑆                                                                                                                        (2.4.9) 

 

Equation (2.4.9) is the Kohn-Sham equation. Density functional theory uses a self-consistent 

field procedure to obtain the ground state density.  For example, let us suppose that this can 

be accurately determined. The problem is now it cannot be calculated until the correct 

ground state density is known and the correct density cannot be obtained from the Kohn-

Sham wave functions until equation (2.4.9) is solved with the correct density. Therefore we 

solve this circular problem by carrying out a self-consistent cycle
19-23

 as shown in figure 2.1. 
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Figure 2.1: Schematic of the self-consistent DFT cycle starting from an initial density n (r), which is 

used to calculate the Kohn-Sham potential VKS, Hamiltonian He and wave functions 𝜓𝑖
𝐾𝑆 of the 

system. This allows a new density nnew(r) to be calculated, and the cycle is repeated until 

convergence is achieved. 
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2.5 Exchange and correlation energy 

In the previous section, we reduced the many-particle Schrödinger equation to a one-particle 

Schrödinger equation in the framework of the Kohn-Sham equation. The effective potential 

in the Kohn-Sham equation involves the exchange–correlation potential; the explicit form of 

the Exc (n) term controls the accuracy of the ground state density and energy. As there is no 

exact form to evaluate the exchange–correlation potential this leads to approximation 

methods. There are numerous proposed forms for the exchange and correlation energy in the 

literature. The first successful and yet simple form was the Local Density Approximation 

(LDA)
24

 which depends only on the density, thus it is a local functional. The LDA is in 

some sense the simplest form one could imagine for the exchange and correlation energies. 

It is a simple yet powerful functional and it is known to be accurate for systems where the 

electron density is not rapidly changing. The first calculations obtaining the correlation 

energy was performed by Ceperley and Alder using the quantum Monte-Carlo method. 

Then the next step was the Generalized Gradient Approximation (GGA)
25

. The GGA 

extends the LDA by including the derivatives of the density. It contains information about 

the neighborhood and therefore it is semi-local. The first calculations were proposed by 

Perdew, Burke and Ernzerhof . One of the latest, and most universal functional is the van der 

Waals density functional (vdW-DF)
26

 which also contains non-local terms.  
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2.6 SIESTA 

SIESTA
17

 is an acronym derived from the Spanish Initiative for Electronic Simulations with 

Thousands of Atoms. . It can be considered as a “theoretical laboratory” to investigate the 

structures of molecules, and most electrical properties such as charge densities, band 

structures, and binding energies. SIESTA is a set of methods and a complete software 

package that can be used to perform DFT calculations on a massive number of atoms 

(~1000) within a lifetime. It uses the standard Kohn-Sham self-consistent functional method 

and a Linear Combination of Atomic Orbital Basis set (LCAOB) to perform efficient 

calculations
27

. All calculations in this thesis were carried out by the implementation of DFT 

in the SIESTA code. It is used to obtain the relaxed geometry of the discussed structures and 

to carry out the calculations to investigate their electronic properties. 

 

 

2.7 Pesudopotential Approximation 

Despite all approximations mentioned in previous sections we still need another 

simplification to solve the many-body Schrödinger equation for practical applications. The 

electrons in an atom can be split into two types: core and valence, where core electrons lie 

within filled atomic shells and the valence electrons lie in partially filled shells. Together 

with the fact that core electrons are spatially localized about the nucleus, only valence 

electron states overlap when atoms are brought together so that in most systems only 

valence electrons contribute to the formation of molecular orbitals. This allows the core 

electrons to be removed and replaced by a pseudopotential such that the valence electrons 
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feel the same screened nucleon charge as if the core electrons were still present
28-29

. This 

reduces the number of electrons in a system dramatically and in turn reduces the time and 

memory required to calculate properties of molecules that contain a large number of 

electrons. 

2.8 Localised Basis Set 

In order to perform efficient calculations, SIESTA utilizes Linear Combination of Atomic 

Orbital (LCAO) basis sets, which are constrained to be zero outside of a certain radius (cut-

off radius), and are constructed from the orbitals of the atoms. This produces a sparse form 

of the Hamiltonian, because the overlap between basis functions is reduced. A LCAO basis 

set is constructed from the orbitals of the atoms, which enables a minimum size basis set to 

produce properties close to that of the studied system. 

The simplest form of the atomic basis set for an atom is single-ζ, which corresponds to a 

single basis function per electron orbital and represented in equation (2.8.1) 

𝜓𝑛𝑙𝑚(𝑟) = 𝜙𝑛𝑙
1 Y𝑙𝑚(𝑟)                                                                                             (2.8.1) 

Where 𝜓𝑛𝑙𝑚(𝑟) is the single basis function which consists of a product of one radial wave 

function, 𝜙𝑛𝑙
1   and one spherical harmonic Y𝑙𝑚. For higher accuracy (multiple-ζ) basis sets 

with additional radial wave functions can be included for each electron orbital. Further 

accuracy using multiple-ζ polarised basis sets can be obtained by including wave functions 

with different angular momenta corresponding to orbitals which are unoccupied in the atom. 

Table 2.1 shows the number of basis orbitals for a select number of atoms for single-ζ, 
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single-ζ  polarised, double-ζ and double-ζ polarised. Throughout this thesis, I have 

employed a double- ζ polarized basis set in all SIESTA DFT calculations. 

 

Atoms SZ SZP DZ DZP 

H 1 4 2 5 

C 4 9 8 13 

N 4 9 8 13 

O 4 9 8 13 

S 4 9 8 13 

 

Table 2.1: Table showing the number of radial basis functions per atom as used within the SIESTA for 

different degrees of precision. For clarity, the specific orbitals are listed below each number, with ~ 

representing the polarization of that orbital. 
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2.9 Calculating binding energy using the counter poise 

method  

Using the DFT approach to calculate the ground state geometry of different system 

configurations allows us to also calculate the binding energy between different parts of the 

system. However, these calculations are subject to errors, due to the use of localized basis 

sets which are centered on the nuclei. If atoms are moved, then the basis set changes so any 

error arising from the incompleteness of the basis set will also change. One example of these 

errors is the overlapping basis sets of closed-shell atoms, where this generates synthetic 

short bond lengths combined with synthetic strong bonding energy which will give an 

inaccurate total energy of system. In the case of localized basis sets, as used in SIESTA, 

there is basis set superposition error (BSSE)
30

 present and we have to correct for different 

basis sets of the two configurations. In 1970, Boys and Bernardi proposed a technique to 

eliminate the BSSE in molecular complexes composed of two geometric configurations so-

called the counterpoise correction (CP)
31

 scheme. 

In figure 2.3 e, d and c represent the two isolated molecules with their individual and 

corresponding basis functions while the shaded gray atoms in 2.3 a and b represent the ghost 

states (basis set functions which have no electrons or protons).  The BSSE is obtained by 

recalculating using the mixed basis sets realised by introducing the ghost orbitals, and then 

subtracting the error from the uncorrected energy to calculate the binding energy  𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 

givien by: 

𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐸𝑒 − (𝐸𝑎 + 𝐸𝑏)                                                                                           (2.9.1) 
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where  𝐸𝑒 , 𝐸𝑎  and 𝐸𝑏  are the total energy of (e) , (a) and (b) systems in figure (2.1) 

respectively. This is an important concept that has been successfully implemented in many 

systems to give reliable and realistic results in this thesis. 

 

 

Figure 2.1: Illustrating the counterpoise method to calculate the binding energy, the empty shapes 

are basis sets with atoms present and the filled grey shapes are without atoms they are ghost states. 

(a) and (b) represent the counterpoise correction, (c) and (d) show the basis function for the 

individual monomers, (e) represents the basis functions for total system. 
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Chapter 3 

 

Single Particle Transport 

 

3.1 Introduction 

One of the significant issues in molecular electronic is how to connect the molecule to 

metallic or semi-metallic electrodes. In principle, the molecule could be coupled to the 

electrodes with a weak or strong coupling strength. However, in most cases the coupling is 

weak. Such a system involves scattering processes either from the junction to the leads or 

inside the molecule itself. There are different approaches to study the electronic and 

vibrational properties of such junctions. In this thesis I will use the Green’s function 

formalism. 

In this chapter, I will start with a brief overview of the Landauer formula. Next, I will 

introduce the simplest form of a retarded Green's function for a one-dimensional tight 

binding chain. Following this, I will break the periodicity of this lattice at a single 

connection and show that the Green's function is related directly to the transmission 
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coefficient across the scattering region. The methods used on these simple systems will then 

be used to derive the transmission coefficient of mesoscopic conductors of arbitrarily 

complex geometry. The method that is presented in this chapter assumes negligible 

interaction between carriers and the absence of inelastic processes. The thermoelectroric 

properties and phonon transmission will be introduced in the last section. 

 

3.2 Landauer Formula  

The Landauer formula
1,2

 is the standard way to describe transport phenomena in ballistic 

mesoscopic systems and is applicable for phase coherent systems, where a single wave 

function is sufficient to describe the electronic flow. The final result is a formula which 

relates the conductance of system to the S-matrix of a scattering region attached to two 

semi-infinite leads. 

 

 

Figure 3.1: A mesoscopic scatterer connected to contacts by ballistic leads. The chemical potentials 

in the left and right contacts are 𝜇𝐿 and 𝜇𝑅 respectively. If an incident wave packet hits the scatterer 

from the left, it will be transmitted to the right with probability 𝑇 and reflected with probability 𝑅.  
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To briefly introduce the main ideas behind this formula let us start by consider a mesoscopic 

scatterer connected to the two contacts, which behave as electron reservoirs, by means of 

two ideal ballistic leads (Figure 3.1). All inelastic relaxation processes are limited to the 

reservoirs
3
. The reservoirs have slightly different chemical potentials 𝜇𝐿 > 𝜇𝑅 ⟹ 𝜇𝐿 −

𝜇𝑅 = 𝑒𝛿𝑉 > 0, which will drive electrons from the left to the right reservoir. For one open 

channel the zero temperature incident electric current (𝛿𝐼𝑖𝑛) generated by the chemical 

potential difference: 

 

𝛿𝐼𝑖𝑛 = 𝑒𝑣𝑔
𝜕𝑛

𝜕𝐸
 (𝜇𝐿 − 𝜇𝑅)                                                (3.2.1) 

 

here, 𝑒 is the electronic charge, 𝑣𝑔 is the group velocity and 𝜕𝑛/𝜕𝐸 is the density of states 

(𝐷𝑂𝑆) per unit length in the lead in the energy window defined by the chemical potentials of 

the contacts. Since the system is considered one dimensional, we can write:  

  

𝜕𝑛

𝜕𝐸
= (

𝜕𝑛

𝜕𝑘
 
𝜕𝑘

𝜕𝐸
) =

1

ℎ𝑣𝑔
                                                                                                                 (3.2.2) 

 

by this and after including a factor 2 for spin, equation (3.2.1) becomes: 

 

𝛿𝐼𝑖𝑛 =
2𝑒

ℎ
(𝜇𝐿 − 𝜇𝑅) =

2𝑒2

ℎ
𝛿𝑉                                                                                                  (3.2.3) 
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where 𝛿𝑉 is the voltage associated with the chemical potential mismatch. From equation 

(3.2.3), it is clear that in the absence of a scattering region (ideal periodic system) the 

conductance of a quantum wire with one open channel is 𝐺0 = 2𝑒
2/ ℎ which is 

approximately  7.75 × 10−5𝑆 (or in other words, a resistance of 12.9𝑘Ω). This is reasonable 

quantity; it typically appears on the circuit boards of everyday electrical appliances. 

 

Now if we consider a scattering region, the current is partially reflected with a probability  

R = |r|2 and partially transmitted with a probability T = |t|2 the current collected in the 

right contacts (δIout) will be: 

 

𝛿𝐼𝑜𝑢𝑡 = 𝛿𝐼𝑖𝑛 𝑇 =
2𝑒2

ℎ
 𝑇 𝛿𝑉 ⟹

𝛿𝐼𝑜𝑢𝑡

𝛿𝑉
= 𝐺 =

2𝑒2

ℎ
 𝑇                (3.2.4) 

 

This is the well-known Landauer formula, relating the conductance G, of a mesoscopic 

scatterer to the transmission probability (𝑇) of the electrons traveling through it. It describes 

the linear response conductance, hence it only holds for small bias voltages, 𝛿𝑉 ≈ 0. To 

calculate the conductance in multi-channel system - for the case of more than one open 

channel- the Landauer formula has been generalized by Büttiker
2
. In this case the 

transmission coefficient is replaced by the sum of all the transmission amplitudes which 

describe electrons incoming from the left contact and arriving to the right contact. Landauer 

formula (equation (3.2.4)) for the multi-open channels hence becomes: 

 

𝛿𝐼𝑜𝑢𝑡

𝛿𝑉
= 𝐺 =

2𝑒2

ℎ
∑|𝑡𝑖𝑗|

2
=
2𝑒2

ℎ
𝑇𝑟𝑎𝑐𝑒 (𝑡𝑡ϯ)

𝑖𝑗

             (3.2.5) 
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where 𝑡𝑖𝑗 is the transmission amplitude describing scattering from the 𝑗𝑡ℎ channel of the left 

lead to the 𝑖𝑡ℎ channel of the right lead. Similarly, the reflection amplitudes 𝑟𝑖𝑗 which 

describe scattering processes where the particle is scattered from the 𝑗𝑡ℎ channel of the left 

lead to the 𝑖𝑡ℎ channel of the same lead. By combining reflection and transmission 

amplitudes one can obtain an object which is called the 𝑆 matrix, it connects states coming 

from the left lead to the right lead and vice versa: 

 

𝑆 = (𝑟 𝑡′

𝑡 𝑟′
)                                                                                                    (3.2.6) 

 

here 𝑟 and 𝑡 describe electrons coming from the left, while 𝑟′  and 𝑡′  describe electrons 

coming from the right in equation (3.2.5)  𝑟, 𝑡, 𝑟′ and 𝑡′ are complex matrices for more than 

one channel, which due to charge conservation satisfy  𝑆𝑆ϯ = 𝐼.  

 

3.3 One-Dimension 

In order to calculate transport properties it is first necessary to describe a perfect wire. I am 

going to use the Green's function technique to obtain the transmission coefficient, so I will 

first discuss the form of the Green’s function for a simple one dimensional discrete lattice 

(section 3.3.1) and then move on to calculate the scattering matrix of a one-dimensional 

scatterer (section 3.3.2). 
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3.3.1 Perfect One-Dimensional infinite chain 

 

In this section I will discuss the form of the Green’s function for a simple infinite one-

dimensional chain with on-site energies (𝜀𝑜) and real hopping parameters (−𝛾) as shown in 

Figure 3.2. I am going to consider a simple tight binding approach (as done in [3-10]) to get 

a qualitative understanding of electronic structure calculations in periodic systems.  

 

 
 

Figure 3.2: Tight-binding model of a one-dimensional periodic lattice with on-site energies 𝜀𝑜 and 

couplings −𝛾. 

 

Before we calculate the Green's functions, let us solve the Schrödinger equation to obtain the 

wave functions of the whole system. The Hamiltonian in our simple one-dimensional tight 

binding model has the matrix form as:  

 











































0

0
H                                                                              (3.3.1) 
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According to the time independent Schrödinger equation (Eq.3.3.2) which can be expanded 

at a lattice site (z) in terms of the energy and wave function Ψ(z) (Eq.3.3.3). 

 

 

𝐻Ψ = EΨ →→ (E − H)Ψ = 0                                                                  (3.3.2) 

 

Now we can write out the Schrödinger equation for row 𝑧 of the Hamiltonian (𝐻), as: 

 

𝜀𝑜Ψ(𝑧) − 𝛾Ψ(𝑧+1) − 𝛾Ψ(𝑧−1) = 𝐸Ψ(𝑧)                                           (3.3.3) 

  

The wave function for this perfect lattice takes the form of propagating Bloch state (equation 

(3.3.4)), normalised by its group velocity υg, in order for it to carry unit current flux. The 

substitution of this into equation (3.3.3) leads to the well-known one-dimensional dispersion 

relation (equation (3.3.5)). 

 

Ψ(𝑧) =
1

√𝑣𝑔
𝑒𝑖𝑘𝑧                                                                        (3.3.4)

                    

𝐸 = 𝜀𝑜 − 2𝛾 cos 𝑘                                                                               (3.3.5)      

           

where (k) refers to the wavenumber. The retarded Green’s function ℊ(𝑧, 𝑧′) is closely 

related to the wave function and is in fact the solution to an equation very similar to that of 

the Schrödinger equation: 

 

(𝐸 − 𝐻) ℊ(𝑧, 𝑧′) = 𝛿𝑧,𝑧′                                                                                                              (3.3.6) 

here 𝛿𝑧,𝑧′ is kronecker delta 𝛿𝑧,𝑧′ = 1,   𝑖𝑓 𝑧 = 𝑧
′ and  𝛿𝑧,𝑧′ = 0,     𝑖𝑓 𝑧 ≠ 𝑧

′ 
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Physically, the retarded Green’s function, ℊ(𝑧, 𝑧′), describes the response of a system at a 

point 𝑧 due to an excitation (source) at a point 𝑧′. Intuitively, we expect such an excitation to 

give rise to two waves, traveling outwards from the point of excitation, with amplitudes 

𝐴+ and 𝐴− as shown in Figure 3.3 

 

 

Figure 3.3: shows the retarded Green’s function of an infinite one-dimensional lattice. The source 

(excitation point) at 𝑧 = 𝑧′ causes the wave to propagate left and right with amplitudes 𝐴− and 𝐴+ 

respectively. 

 

These waves can be expressed simply as: 

 

ℊ(𝑧, 𝑧′) = {
𝐴+ 𝑒𝑖𝑘𝑧,            𝑧 > 𝑧′

𝐴− 𝑒−𝑖𝑘𝑧,          𝑧 < 𝑧′
                                                                                          (3.3.7)    

 

This solution satisfies equation (3.3.6) at every point, except at 𝑧 = 𝑧′. To overcome this, 

the Green's function must be continuous (equation (3.3.7)), so we equate the two at 𝑧 = 𝑧′: 

 

[ℊ(𝑧, 𝑧′)]𝑧=𝑧′− = [ℊ(𝑧, 𝑧
′)]𝑧=𝑧′+                                                                                  (3.3.8) 

 

𝐴+𝑒𝑖𝑘𝑧
′
= 𝐴−𝑒−𝑖𝑘𝑧

′
→ 𝐴− = 𝐴+𝑒2𝑖𝑘𝑧

′
                                                                (3.3.9)                      

 

To find the solution, we write 
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 𝐴+ = 𝛽𝑒−𝑖𝑘𝑧
′
                                                                                                               (3.3.10) 

𝐴− = 𝛽𝑒𝑖𝑘𝑧
′
                                                                                                                                (3.3.11) 

 

From Eqs (3.3.7) and (3.3.8) we get 

 

ℊ(𝑧, 𝑧′) = 𝛽𝑒𝑖𝑘|𝑧−𝑧
′|                                                                                          (3.3.12) 

To obtain the constant 𝛽, we use Eq. (3.3.6) which for 𝑧 = 𝑧′ gives 

 

(𝜀0 − 𝐸)𝛽 − 𝛾𝛽𝑒
𝑖𝑘 − 𝛾𝛽𝑒𝑖𝑘 = −1 

𝛾𝛽(2𝑐𝑜𝑠𝑘 − 2𝑒𝑖𝑘) = −1 

𝛽 =
1

2𝑖𝛾𝑠𝑖𝑛𝑘
=

1

𝑖ℎ𝜐
                                                                                                                         (3.3.13)   

where the group velocity, found from the dispersion relation  equation (3.3.5) , is: 

 

𝑣𝑔 =
1

ℏ

𝜕𝐸(𝑘)

𝜕𝑘
=
2𝛾𝑠𝑖𝑛𝑘

ℏ
                                                                                                                  (3.3.14)                                            

Finally, we can simply write down the retarded Green's function for the one dimensional 

chain
4-6,11

. A more thorough derivation can be found in the literature [3,12,13]. 

 

ℊ𝑅(𝑧, 𝑧′) =
1

𝑖ℏ𝑣𝑔
𝑒𝑖𝑘|𝑧−𝑧

′|                                                                                                           (3.3.15)  

The above retarded Green's function describes electrons energy from a source at 𝑧′ . If the 

two waves incoming from left and right inter the point 𝑧′, so z′ is a sink not a source, then 

the corresponding Green's function  is called the advanced Green’s function and is the 

complex conjugate of ℊ𝑅(𝑧, 𝑧′) 
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3.3.2 One-Dimensional Scattering 

In this section I will consider two one-dimensional tight binding semi-infinite leads 

connected by a coupling element (−α). Both leads have equal on-site potentials (εo) and 

hopping elements (−γ) as shown in figure 3.4. as done in [9,10 and 14-17]. I will derive the 

transmission and reflection coefficients for a particle traveling from the left lead towards the 

scattering region. This simple problem is important, because it turns out that all scattering 

processes can be reduced to this topology of one-dimensional setups. 

 

 

 

Figure 3.4: Simple tight-binding model of a one dimensional scatterer attached to one dimensional 

leads. 

 

 

First, we note that the Hamiltonian, takes the form of an infinite matrix. 

 

𝐻











































0

0
H = (

𝐻𝐿

𝑉𝑐
†

𝑉𝑐
𝐻𝑅
)            (3.3.16) 
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here, 𝐻𝐿and 𝐻𝑅 denote Hamiltonians for the leads which are the semi-infinite equivalent of 

the Hamiltonian shown in equation (3.3.16) and 𝑉𝑐 = −𝛼 denotes the coupling parameter.  

For real 𝛾, the dispersion relation corresponding to the leads introduced above was given in 

equation (3.3.5) and the group velocity was given in equation (3.3.14). In order to obtain the 

scattering amplitudes we need to calculate the Green's function of the system which 

satisfies: 

 

(𝐸 − 𝐻)𝐺 = 𝐼                                                                                                   (3.3.17) 

 

The retarded Green's function for an infinite, one dimensional chain with the same 

parameters is defined in equation (3.3.15): 

 

ℊ𝑧,,𝑧′
∞ =

1

𝑖ℏ𝑣𝑔
𝑒𝑖𝑘|𝑧−𝑧

′|       (3.3.18) 

 

In order to obtain the Green's function of a semi-infinite lead we need to introduce the 

appropriate boundary conditions. In this case, if the lattice is semi-infinite, and the chain 

terminates at a given point (𝑧𝑜 − 1) then the Greens function for site (𝑧𝑜) is zero. Therefore, 

we expected that the Green’s function for the semi-infinite chain is the Green’s function of 

an infinite one-dimensional chain adding a wave function which reflected from the 

boundary.  The wave function in this case is ( ℊ𝑧,𝑧′ = ℊ𝑧,𝑧′
∞ +Ψ

𝑧,𝑧′
𝑧𝑜 ) 

where 

Ψ
𝑧,𝑧′
𝑧𝑜 = −

𝑒𝑖𝑘(2𝑧𝑜−𝑧−𝑧
′)

𝑖ℏ𝑣𝑔
         (3.3.19) 

This vanishes at 𝑧 = 𝑧𝑜 for any 𝑧′ and has the following simple form at the boundary 

(𝑧 = 𝑧′ = 𝑧𝑜 − 1): 
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ℊ𝑧𝑜−1,𝑧𝑜−1 = −
𝑒𝑖𝑘

𝛾
             (3.3.20) 

 

If we consider the case of decoupled leads (𝛼 = 0) the total Green's function of the system 

will simply be given by the decoupled Green's function: 

 

ℊ =

(

 
 
−
𝑒𝑖𝑘

𝛾
0

0 −
𝑒𝑖𝑘

𝛾 )

 
 
= (

ℊ𝐿 0
0 ℊ𝑅

)           (3.3.21) 

 

If we now switch on the interaction, then in order to obtain the Green's function of the 

coupled system (𝐺). Dyson's equation is required: 

 

𝐺 = (ℊ−1 − 𝑉)−1                                                                                       (3.3.22) 

 

here the operator 𝑉 describing the interaction connecting the two leads will have the form: 

 

𝑉 = (
0 𝑉𝑐

𝑉𝑐
† 0

) = (
0 −𝛼
−𝛼 0

)          (3.3.23) 

 

The solution to Dyson's equation, equation (3.3.23) reads: 

 

𝐺 =
1

𝛾2𝑒−2𝑖𝑘 − 𝛼2
(
−𝛾𝑒−𝑖𝑘 −𝛼

−𝛼 −𝛾𝑒−𝑖𝑘
)            (3.3.24) 
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Now we can calculate the transmission (𝑡) and the reflection (𝑟) amplitudes from the Green's 

function equation (3.3.24). This is done by making use of the Fisher-Lee relation
1,18

 which 

relates the scattering amplitudes of a scattering problem to the Green's function of the 

problem. The Fisher-Lee relations in this case read: 

 

𝑟 = 𝐺1,1𝑖ℏ𝑣𝑔 − 1                                                                                                 (3.3.25) 

and 

𝑡 = 𝐺1,2𝑖ℏ𝑣𝑔𝑒
𝑖𝑘                                                                           (3.3.26) 

 

These amplitudes correspond to particles incident from the left. Similar expressions could be 

used for the transmission (t⃖′) and reflection (r⃗′) amplitudes for the particles are travelling 

from the right. Based on these coefficients, the probability is defined as: 𝑇 = |𝑡|2, 𝑇′ = |𝑡′|2 

,   𝑅 = |𝑟|2 and  𝑅′ = |𝑟′|2. 

Since we are now in the possession of the full scattering matrix, so we can use the Landauer 

formula equation (3.5) to calculate the zero bias conductance. The above procedure by 

which this analytical solution for the conductance of a one-dimensional scatterer was found 

can be generalized for more complex geometries.  

To sum up the previous steps, the first step was to calculate the Green's function describing 

the surface sites of the leads and then the total Green's function in the presence of a scatterer 

is obtained by Dyson's equation. After that the Fisher-Lee relation gives us the scattering 

matrix from the Green's function. Finally, and by using the Landauer formula, we can then 

find the zero-bias conductance.  
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3.4 Generalization of the Scattering Formalism 

In this section I will show a generalized the above approach to transport calculations 

following the derivation of  Lambert et al., presented in [4-7]. This is similar to the previous 

approach. First the surface Green's function of crystalline leads is computed, then the 

technique of decimation is introduced to reduce the dimensionality of the scattering region 

and finally the scattering amplitudes are recovered by means of a generalization of the 

Fisher-Lee relation. 

 

3.4.1 Hamiltonian and Green's Function of the Leads 

In general, a lead is a perfect crystalline object that acts as a perfect wave-guide for carrying 

excitations from reservoirs to the scattering region. In this section we study a general semi-

infinite crystalline electrode of arbitrary complexity. Because the leads are crystalline, the 

structure of the Hamiltonian is a generalization of the one-dimensional electrode 

Hamiltonian in equation (3.3.1). Figure 3.5 shows the general system. 

Instead of site energies, we have a Hamiltonian for each repeating layer of the bulk electrode 

(𝐻𝑜), and a coupling matrix to describe the hopping parameters between these layers (𝐻1). 

The Hamiltonian for such a system has the form: 

 

 

𝐻 =

(

 
 

⋱ 𝐻1 0 0

𝐻1
† 𝐻0 𝐻1 0

0 𝐻1
†

0 0

𝐻0 𝐻1

𝐻1
† ⋱)

 
 

                                                                   (3.4.1) 
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Figure 3.5: Schematic representation of a semi-infinite generalized lead. States described by the 

Hamiltonian 𝐻𝑜 are connected via a generalized hopping matrix 𝐻1. The direction z is defined to be 

parallel to the axis of the chain. One can assign for each slice a label z. 

 

 

where 𝐻𝑜 and 𝐻1 are in general complex matrices and the only restriction is that the full 

Hamiltonian (𝐻) should be Hermitian. The main aim of this section is to calculate the 

Green's function of such a lead for general 𝐻1 and 𝐻𝑜. In order to be able to calculate the 

Green's function one has to calculate the spectrum of the Hamiltonian by solving the 

Schrödinger equation of the lead: 

 

𝐻1
†Ψ(𝑧−1) + 𝐻𝑜Ψ(𝑧) + 𝐻1Ψ(𝑧+1) = 𝐸Ψ(𝑧)                                                              (3.4.2) 

 

Here Ψ(𝑧) is the wave function describing layer 𝑧. We assume the system is infinitely 

periodic in the 𝑧 direction only, so the on-site wave function Ψ(𝑧), can be represented in 

Bloch form; consisting of a product of a propagating plane wave and a wave function (Φ(𝑘)), 



CHAPTER 3. SINGLE PARTICLE TRANSPORT 

 
 

47 
 

which is perpendicular to the transport direction (𝑧). If the layer Hamiltonian (𝐻𝑜), has 

dimensions 𝑀 ×𝑀 (or in other words consists of 𝑀 site energies and their respective 

hopping elements), then the perpendicular wave function (Φ(𝑘)), will have 𝑀 degrees of 

freedom and take the form of a 1 × 𝑀 dimensional vector. Therefore the wave function Ψ(𝑧), 

takes the form: 

 

Ψ(𝑧) = √𝑛(𝑘)𝑒
𝑖𝑘𝑧Φ(𝑘)                                                                                          (3.4.3) 

 

where, 𝑛𝑘 is an arbitrary normalization parameter. Substituting this into the Schrödinger 

equation (equation (3.4.2)) gives: 

 

(𝐻𝑜 + 𝑒
𝑖𝑘𝐻1 + 𝑒

−𝑖𝑘𝐻1
† − 𝐸)Φ(𝑘) = 0                                                                 (3.4.4) 

 

Typically, to find the band structure for such a problem, one would select values of 𝑘 and 

calculate the eigenvalues [𝐸 = 𝐸𝑙(𝑘)], where 𝑙 = 1,…… ,𝑀. Here, 𝑙 denotes the band index. 

For each value of 𝑘, there will be 𝑀 solutions to the eigenvalue problem, and so 𝑀 energy 

values. In this way, by selecting successive values for 𝑘, it is straight forward to build up a 

band structure.  

In a scattering problem, the problem is approached from the opposite direction; instead of 

finding the values of 𝐸 at a given 𝑘, we find the values of 𝑘 at a given 𝐸. In order to 

accomplish this, a root-finding method might have been used, but this would have required 

an enormous numerical effort since the wave numbers are in general complex. Instead, we 
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can write down an alternative eigenvalue problem in which the energy is the input and the 

wave numbers are the result by introducing the function: 

 

𝜃(𝑘) = 𝑒
−𝑖𝑘Φ(𝑘) → Φ(𝑘) = 𝑒

𝑖𝑘𝜃(𝑘)                                                                             (3.4.5) 

 

and combining it with equation (3.4.4): 

 

(𝐻1
−1(𝐻0 − 𝐸) −𝐻1

−1𝐻1
†

𝐼 0
) (
Φ𝑘
𝜗𝑘
) = 𝑒𝑖𝑘 (

Φ𝑘
𝜗𝑘
)                                                    (3.4.6) 

 

For a layer Hamiltonian (𝐻𝑜) of size 𝑀 ×𝑀, equation (3.4.6) will yield 2𝑀 eigenvalues 

(𝑒𝑖𝑘𝑙) and eigenvectors (Φ(𝑘𝑙)), of size 𝑀. We can sort these states into four categories 

according to whether they are propagating or decaying and whether they are left going 

𝑧 ⟶ −∞ or right going 𝑧 ⟶ ∞. A state is propagating if it has a real value of 𝑘𝑙, and is 

decaying if it has an imaginary value of 𝑘𝑙. If the imaginary part of the wave number is 

positive then we say it is a left decaying state, if it has a negative imaginary part it is a right 

decaying state. The propagating states are sorted according to the group velocity of the state 

defined by: 

 

𝑣𝑔
𝑘𝑙 =

1

ℏ

𝜕𝐸𝑘,𝑙
𝜕𝑘

                                                                                                                               (3.4.7) 

 

If the state has positive group velocity (𝑣𝑔
𝑘𝑙), means it is a right propagating state, otherwise 

it is a left propagating state. To summarise: 

 



CHAPTER 3. SINGLE PARTICLE TRANSPORT 

 
 

49 
 

Table 3.1: Sorting the eigenstates into left and right propagating or decaying states according to 

the wave number and group velocity. 

 

 
 
 

For convenience, from now on I will denote the wave numbers (𝑘𝑙) which belong to the left 

propagating/decaying set of wave numbers by 𝑘̅𝑙 and the right propagating/decaying wave 

numbers will remain plainly 𝑘𝑙. Thus, Φ(𝑘𝑙) is a wave function associated to a “right" state 

and  Φ(𝑘̅𝑙) is associated to a “left" state. Note that if 𝐻1 is invertible, there must be exactly 

the same number (𝑀) of left and right going states. It is clear that if 𝐻1 is singular, the 

matrix in equation (3.4.6) cannot be constructed, since it relies of the inversion of 𝐻1. 

However, several methods can be used to overcome this problem. The first [19-20] uses the 

decimation technique to create an effective, non-singular 𝐻1. Another solution might be to 

populate a singular 𝐻1 with small random numbers, hence introducing an explicit numerical 

error. This method is reasonable as the introduced numerical error can be as small as the 

numerical error introduced by decimation. Another solution is to rewrite equation (3.4.6)  

such that 𝐻1 need not be inverted: 

 

(𝐻1
−1(𝐻0 − 𝐸) −𝐻1

†

𝐼 0
) (
Φ𝑘
𝜗𝑘
) = 𝑒𝑖𝑘𝑧 (

𝐻1 0
0 𝐼

) (
Φ𝑘
𝜗𝑘
)                                            (3.4.8) 
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However, solving this generalized eigen-problem is more computationally expensive. Any 

of the aforementioned methods work reasonably in tackling the problem of a singular 𝐻1 

matrix, and so can the condition that there must be exactly the same number (𝑀) of left and 

right going states, whether 𝐻1 is singular or not. 

The solutions to the eigen-value equation (3.4.4) at a given wave number (𝑘) will form an 

orthogonal basis set, however, the eigenstates (Φ(𝑘𝑙)) obtained by solving the eigen-value 

equation (3.4.6) at a given energy (𝐸) will not generally form an orthogonal set of states. 

This is crucial, since we will have to deal with the non-orthogonality when constructing the 

Green's function. It is, therefore, necessary to introduce the duals to Φ(𝑘𝑙) and Φ(𝑘̅𝑙) in such 

a way that they obey: 

 

Φ̃(𝑘𝑖)
† Φ(𝑘𝑗) = Φ̃(𝑘̅𝑖)

† Φ(𝑘̅𝑗) = 𝛿𝑖𝑗                                                                   (3.4.9) 

 

This yields the generalized completeness relation: 

 

∑ Φ̃(𝑘𝑙)
† Φ(𝑘𝑙) = ∑ Φ̃(𝑘̅𝑙)

† Φ(𝑘̅𝑙) = 𝐼
𝑀
𝑙=1

𝑀
𝑙=1                                                                (3.4.10) 

 

Once we are in possession of the whole set of eigenstates at a given energy we can calculate 

the Green's function first for the infinite system and then, by satisfying the appropriate 

boundary conditions, for the semi-infinite leads at their surface. Since the Green's function 

satisfies the Schrödinger equation when 𝑧 ≠ 𝑧′, we can build up the Green's function from 

the mixture of the eigenstates Φ(𝑘𝑙) and Φ(𝑘̅𝑙): 
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ℊ(𝑧, 𝑧′) = {
∑ Φ(𝑘𝑙)𝑒

𝑖𝑘𝑙(𝑧−𝑧
′) 𝜔𝑘𝑙

†𝑀
𝑙=1 , 𝑧 ≥ 𝑧′

∑ Φ(𝑘̅𝑙)𝑒
𝑖𝑘̅𝑙(𝑧−𝑧

′) 𝜔𝑘̅𝑙
†𝑀

𝑙=1 , 𝑧 ≤ 𝑧′
                                                               (3.4.11) 

 

where the 𝑀-component vectors 𝜔𝑘𝑙 and 𝜔𝑘̅𝑙 are to be determined. It is important to note the 

structural similarities between this equation and equation (3.3.7) and also that all the degrees 

of freedom in the transverse direction are contained in the vectors Φ(𝑘) and 𝜔𝑘.  

 

The task now is to obtain the 𝜔 vectors. As in section 3.3.1, we know that equation (3.4.11) 

must be continuous at 𝑧 = 𝑧′and should fulfill the Green's equation (equation (3.3.6)). The 

first condition is expressed as: 

     

∑ Φ(𝑘𝑙)𝜔𝑘𝑙
† = ∑ Φ(𝑘̅𝑙)𝜔𝑘̅𝑙

†
𝑙=1

𝑀
𝑙=1                                                                                      (3.4.12) 

 

and the second: 

 

∑[(𝐸 − 𝐻𝑜)Φ(𝑘𝑙)𝜔𝑘𝑙
† + 𝐻1Φ(𝑘𝑙)𝑒

𝑖𝑘𝑙𝜔𝑘𝑙
† +𝐻1

†Φ(𝑘̅𝑙)𝑒
−𝑖𝑘̅𝑙𝜔𝑘̅𝑙

† ]

𝑀

𝑙=1

= 𝐼 

 

∑[(𝐸 − 𝐻𝑜)Φ(𝑘𝑙)𝜔𝑘𝑙
† + 𝐻1Φ(𝑘𝑙)𝑒

𝑖𝑘𝑙𝜔𝑘𝑙
† +𝐻1

†Φ(𝑘̅𝑙)𝑒
−𝑖𝑘̅𝑙𝜔𝑘̅𝑙

† + 𝐻1
†Φ(𝑘𝑙)𝑒

−𝑖𝑘𝑙𝜔𝑘𝑙
†

𝑀

𝑙=1

− 𝐻1
†Φ(𝑘𝑙)𝑒

−𝑖𝑘𝑙𝜔𝑘𝑙
† ] = 𝐼 
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∑[𝐻1
†Φ(𝑘̅𝑙)𝑒

−𝑖𝑘̅𝑙𝜔𝑘̅𝑙
† − 𝐻1

†Φ(𝑘𝑙)𝑒
−𝑖𝑘𝑙𝜔𝑘𝑙

† ]

𝑁

𝑙=1

+∑[(𝐸 − 𝐻𝑜) + 𝐻1𝑒
𝑖𝑘𝑙 + 𝐻1

†𝑒−𝑖𝑘𝑙]

𝑀

𝑙=1

Φ(𝑘𝑙)𝜔𝑘𝑙
†

= 𝐼 

 

and since, from the Schrödinger equation (equation (3.4.4)), we know that: 

 

∑ [(𝐸 − 𝐻𝑜) + 𝐻1𝑒
𝑖𝑘𝑙 + 𝐻1

†𝑒−𝑖𝑘𝑙]𝑀
𝑙=1 Φ(𝑘𝑙) = 0                                                          (3.4.13) 

 

This yields to: 

 

 ∑ 𝐻1
† [Φ(𝑘̅𝑙)𝑒

−𝑖𝑘̅𝑙𝜔𝑘̅𝑙
† −Φ(𝑘𝑙)𝑒

−𝑖𝑘𝑙𝜔𝑘𝑙
† ]𝑁

𝑙=1 = 𝐼                                                            (3.4.14) 

 

Now let us make use of the dual vectors defined in equation (3.4.9). Multiplying equation 

(3.4.12) by Φ̃(𝑘𝑝) we get: 

 

∑ Φ̃(𝑘𝑝)
†𝑀

𝑙=1 Φ(𝑘̅𝑙)ω𝑘̅𝑙
† = ω𝑘𝑝

†
                                                                                         (3.4.15) 

and similarly multiplying by Φ̃(𝑘̅𝑝)
†

 gives: 

∑ Φ̃(𝑘̅𝑝)
†𝑀

𝑙=1 Φ(𝑘𝑙)ω𝑘𝑙
† = ω𝑘̅𝑝

†
                                                                                         (3.4.16) 

 

Using the continuity equation (3.4.12) and equations (3.4.15) and (3.4.16), the Green's 

equation (equation (3.4.14)) becomes: 
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∑ ∑ 𝐻1
† (Φ(𝑘̅𝑙)𝑒

−𝑖𝑘̅𝑙Φ̃(𝑘̅𝑙)
† −Φ(𝑘𝑙)𝑒

−𝑖𝑘𝑙Φ̃(𝑘𝑙)
† )𝑀

𝑝=1
𝑀
𝑙=1 Φ(𝑘̅𝑝)𝜔𝑘̅𝑝

† = 𝐼                             (3.4.17) 

 

From which it follow: 

 

∑ [𝐻1
† (Φ(𝑘̅𝑙)𝑒

−𝑖𝑘̅𝑙Φ̃(𝑘̅𝑙)
† −Φ(𝑘𝑙)𝑒

−𝑖𝑘𝑙Φ̃(𝑘𝑙)
† )]

−1
𝑀
𝑙=1 = ∑ Φ(𝑘̅𝑝)𝜔𝑘̅𝑝

† = ∑ Φ(𝑘𝑝)ω𝑘𝑝
†𝑀

𝑝=1
𝑀
𝑝=1                                                                   

(3.4.18) 

 

This immediately gives us an expressions for ω𝑘
†
: 

 

ω𝑘
† = Φ̃(𝑘)

† 𝜈−1                                                                                       (3.4.19) 

 

where  𝜈 is defined as: 

 

𝜈 = ∑ 𝐻1
† (Φ(𝑘̅𝑙)𝑒

−𝑖𝑘̅𝑙Φ̃(𝑘̅𝑙)
† −Φ(𝑘𝑙)𝑒

−𝑖𝑘𝑙Φ̃(𝑘𝑙)
† )𝑀

𝑙=1                                                     (3.4.20) 

 

The wave number (𝑘) in equation (3.4.19) refers to both left and right type of states. 

Substituting equation (3.4.19) into equation (3.4.11) we obtain the Green’s function of an 

infinite system: 

 

ℊ𝑧,𝑧′
∞ = {

∑ Φ(𝑘𝑙)𝑒
𝑖𝑘𝑙(𝑧−𝑧

′)Φ̃(𝑘𝑙)
† 𝜈−1𝑀

𝑙=1 , 𝑧 ≥ 𝑧′

∑ Φ(𝑘̅𝑙)𝑒
𝑖𝑘̅𝑙(𝑧−𝑧

′)Φ̃(𝑘̅𝑙)
† 𝜈−1𝑀

𝑙=1 , 𝑧 ≤ 𝑧′
                                                         (3.4.20) 

 

In order to obtain the Green's function for a semi-infinite lead we have to add a wave 

function to the Green's function in order to satisfy the boundary conditions at the edge of the 
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lead, as with the one dimensional case. The boundary condition here is that the Green's 

function must vanish at a given place ( 𝑧 = 𝑧𝑜). In order to achieve this we simply add: 

 

△= −∑ Φ𝑘̅𝑙𝑒
𝑖𝑘̅𝑙(𝑧−𝑧𝑜)Φ̃(𝑘̅𝑙)

†  Φ(𝑘𝑝)𝑒
𝑖𝑘𝑝(𝑧𝑜−𝑧)Φ̃(𝑘𝑝)

†𝑀
𝑙,𝑝=1 𝜈−1                                         (3.4.21) 

 

To the Green's function, equation (3.4.20), ℊ = ℊ∞ +△. This yields the surface Green's 

function for a semi-infinite lead going left: 

ℊ𝐿 = (𝐼 − ∑ Φ(𝑘̅𝑙)𝑒
−𝑖𝑘̅𝑙  Φ̃(𝑘̅𝑙)

†  Φ(𝑘𝑝)𝑒
𝑖𝑘𝑝  Φ̃(𝑘𝑝)

†𝑀
𝑙,𝑝=1 ) 𝜈−1                                           (3.4.22) 

 

and going right: 

 

ℊ𝑅 = (𝐼 − ∑ Φ(𝑘𝑙)𝑒
𝑖𝑘𝑙  Φ̃(𝑘𝑙)

†  Φ(𝑘̅𝑝)𝑒
−𝑖𝑘̅𝑝  Φ̃(𝑘̅𝑝)

†𝑀
𝑙,𝑝=1 ) 𝜈−1                                          (3.4.23) 

 

 

So now we have a versatile method for calculating the surface Green's functions (equations 

(3.4.22) and (3.4.23)) for a semi-infinite crystalline electrode using the numerical approach 

in equation (4.51). The next step is to apply this to a scattering problem. 

 

3.4.2 Effective Hamiltonian of the Scattering Region  

The coupling matrix between the surfaces of the semi-infinite leads has been shown in 

section (3.3.2), additionally, the Dyson equation has been used to calculate the Green's 

function of the scatterer. However, the scattering region is not generally described simply as 

a coupling matrix between the surfaces. Therefore, it is useful to use the decimation method 
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to reduce the Hamiltonian down to such a structure
19,20

. Other methods have been developed 

21,22
, but in this thesis I will use the decimation method.  

 

Consider again the Schrödinger equation: 

 

∑𝐻𝑖𝑗Ψ𝑗 = 𝐸Ψ𝑖
𝑗

               (3.4.27) 

 

If we separate from the equation (3.4.27) the 𝑑𝑡ℎ degree of freedom in the system: 

 

𝐻𝑖𝑑Ψ𝑑 +∑𝐻𝑖𝑗Ψ𝑗 = 𝐸Ψ𝑖  ,

𝑗≠𝑑

            𝑖 ≠ 𝑑             (3.4.28) 

Now we can examine the component Ψ𝑑, using the latter equation when 𝑖 = 𝑑; 

 

𝐻𝑑𝑑Ψ𝑑 +∑𝐻𝑑𝑗Ψ𝑗 = 𝐸Ψ𝑑
𝑗≠𝑑

            (3.4.29) 

 

From equation (3.4.29) we can express Ψ𝑑 as: 

Ψ𝑑 =∑
𝐻𝑑𝑗Ψ𝑗

𝐸 − 𝐻𝑑𝑑
𝑗≠𝑑

       (3.4.30) 

 

If we then substitute equation (3.4.30) into equation (3.4.28) we get: 

 

∑[𝐻𝑖𝑗 +
𝐻𝑖𝑑𝐻𝑑𝑗

𝐸 − 𝐻𝑑𝑑
]

𝑗≠𝑑

Ψ𝑗 = 𝐸Ψ𝑖   ,       𝑖 ≠ 𝑑            (3.4.31) 
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So we can think of equation (3.4.31) as an effective Schrödinger equation where the number 

of degrees of freedom is decreased by one compared to equation (3.4.27). Hence we can 

introduce a new effective Hamiltonian (𝐻̃) as: 

 

𝐻̃𝑖𝑗 = 𝐻𝑖𝑗 +
𝐻𝑖𝑑𝐻𝑑𝑗

𝐸 − 𝐻𝑑𝑑
 

           (3.4.32) 

 

This Hamiltonian is the decimated Hamiltonian produced by simple Gaussian elimination. A 

notable feature of the decimated Hamiltonian is that it is energy dependent, which suits the 

method presented in the previous section very well
19

since we are interested in computing all 

quantities for given values of E without the decimation method, the Hamiltonian describing 

the system in general would take the form: 

 

𝐻 = (

𝐻𝐿 𝑉𝐿 0

𝑉𝐿
† 𝐻𝑠𝑐𝑎𝑡 𝑉𝑅

0 𝑉𝑅
† 𝐻𝑅

)           (3.4.33) 

 

here, 𝐻𝐿 and 𝐻𝑅 denote the semi-infinite leads, 𝐻𝑠𝑐𝑎𝑡𝑡 denotes the Hamiltonian of the 

scatterer and 𝑉𝐿 and 𝑉𝑅 are the coupling Hamiltonians, which couple the original scattering 

region to the leads. After decimation, we produce an effectively equivalent Hamiltonian: 

 

𝐻 = (
𝐻𝐿 𝑉𝑐

𝑉𝑐
† 𝐻𝑅

)           (3.4.34) 

 

here, 𝑉𝑐 denotes an effective coupling Hamiltonian, which now describes the whole 

scattering process. 
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Now we can apply the same steps as with the one-dimensional case; using the Dyson 

equation (equation (3.3.25)). Hence, the Green's function for the whole system is described 

by the surface Green's functions (equations (3.4.25) and (3.4.26)) and the effective coupling 

Hamiltonian from equation (3.4.34): 

 

𝐺 = (
ℊ𝐿
−1 −𝑉𝑐

−𝑉𝑐
† ℊ𝑅

−1
)

−1

= (
𝐺00 𝐺01
𝐺10 𝐺11

)            (3.4.35) 

 

 

3.5 Breit-Wigner Resonance  

To have an idea for the most important features of the transport curves, it would be 

useful to briefly study about Breit-Wigner distribution. For electrons of energy E 

passing through single molecule the on resonance transmission coefficient T could be 

described by a Lorentzian function, via the Breit-Wigner formula: 

 

𝑇(𝐸) =
4Γ1Γ2

(𝐸 − 𝜀𝑛)2 + (Γ1 + Γ2)2
                                                                                 (3.5.1) 

 

where T(E) is the transmission coefficient of the electrons, Γ1 and Γ2 describe the 

coupling of the molecular orbital to the electrodes (labeled 1 and 2) and 𝜀𝑛 = 𝐸 − Σ   

is the eigenenergy En of the molecular orbital shifted slightly by an amount Σ due to 

the coupling of the orbital to the electrodes. 
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This formula shows that when the electron resonates with the molecular orbital (i.e. 

when 𝐸 = 𝜀𝑛), electron transmission is a maximum. 

The formula is valid when the energy E of the electron is close to an eigenenergy En 

of the isolated molecule, and if the level spacing (differences between the 

eigenenergies of a quantum system) is larger than (Γ1 + Γ2). In the case of a 

symmetric molecule attached symmetrically to identical leads, Γ1 = Γ2, T(E) = 1, on 

resonance, when 𝐸 = 𝜀𝑛. 

 

 

3.6 Thermoelectric coefficients 

Thermoelectricity involves the conversion between thermal and electric energies, since the 

early of 19th century the connection between heat, current, temperature and voltage have 

been known with the discovery of the Seebeck, Peltier and Thompson effects. The Seebeck 

effect describes the production of electrical current due to a temperature difference, whereas 

the Peltier and Thompson effects describe the heating or cooling of a current carrying 

conductor
23,24

. A more general system can be considered where there is a temperature ∆𝑇 

and potential drop ∆𝑉 across the system, causing both charge and heat currents to flow. In 

the linear-response regime, the electric current I and heat current Q̇ passing through a device 

is related to the voltage difference  ∆V and temperature difference ∆T by
26,26

  

(
I
Q̇
) =

1

h
(
e2L0

e

T
L1

eL1
1

T
L2

)(
∆V
∆T
)                                                                                               (3.5.1)  
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where T is the reference temperature. Since transport through single molecules is phase-

coherent, even at room temperature, the coefficients Ln are given by Ln = Ln
↑ + Ln

↓   (n =

0, 1, 2), where: 

 

Ln
σ = ∫ (E − EF)

n
∞

−∞

Tσ(E) (−
∂f(E, T)

∂E
)dE                                                                       (3.5.2) 

 

In this expression, Tσ(E) is the transmission coefficient for electrons of energy E, spin of σ 

= [↑,↓] passing through the molecule from one electrode to the other
38

 and f(E, T) is  the 

Fermi distribution function defined as f(E, T) = [e(E−EF)/kBT + 1]−1 where kB is 

Boltzmann’s constant. Equation (3.5.1) can be rewritten in terms of the electrical 

conductance (G), thermopower (S), Peltier coefficient (∏), and the electronic contribution to 

the thermal conductance (κe): 

 

(
∆V
Q̇
) = (

1/G −S
∏ κe

) (
I
∆T
)                                                                                                    (3.5.3) 

where  

 G =     
2e2

h
L0                                                                                                                          (3.5.4) 

 

S = −
∆V

∆T
= −

1

eT

L1
L0
                                                                                                              (3.5.5) 

Π =
1

e

L1
L0
                                                                                                                                   (3.5.6) 
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κe =
1

hT
(L2 −

(L1)
2

L0
)                                                                                                          (3.5.7) 

κe ≈ L0
σTG,                                                                                                                               (3.5.8) 

 

An important quantity that measures the thermoelectric efficiency of a system is a 

dimensionless number the figure of merit ZT
27-29

 

ZT =
𝑆2𝐺𝑇

𝜅
                                                                                                                              (3.5.9) 

Equation (3.5.9) shows that ZT is proportional to the square of the Seebeck coefficient (S) 

and the conductance (G) and inversely proportional to the thermal conductance (𝜅) , which 

has mainly two components 𝜅 = 𝜅𝑒 + 𝜅𝑝ℎ𝑜𝑛𝑜𝑛. ZT determines how efficient it is to 

transform heat into electricity, ZT has to be as high as possible (closer to one or higher) in 

order to thermoelectric device to work effectively
30,31

. For the electronic thermoelectric 

figure of merit is given by
32

: 

 

ZTe =
𝑆2𝐺

𝜅𝑒
 𝑇                                                                                                                          (3.5.10) 

and by using equation (3.5.2) ZT will be: 

ZTe =
(L1)

2

L0L2 − (L1)2
                                                                                                             (3.5.11) 

For E close to EF, if T(E) varies only slowly with E on the scale of kBT then these formulae 

take the form
33

: 

 

G(T) ≈ (
2e2

h
)T(EF),                                                                                                         (3.5.12) 
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S(T) ≈ −αeT(
d lnT(E)

dE
)
E=EF

,                                                                                       (3.5.13) 

where α = (
kB

e
)
2 π2

3
  is the Lorentz number. Equation (3.5.12) demonstrates that S is 

enhanced by increasing the slope of ln T(E) near E=EF  

 

 

3.7 Phonon Transmission and Thermal Conductance 

 

After we obtained relaxed xyz coordinate of the system, from DFT calculations, sets of xyz 

coordinates were generated by displacing each atom in positive and negative x, y, and z 

directions by δq′ The forces in three directions qi = (xi , yi , zi ) on each atom were then 

calculated by DFT without geometry relaxation. These values of the force Fi
q
= (Fi

x, Fi
y
, Fi

z) 

were used to construct the dynamical matrix using the formula: 

 

Dij =
Kij
qq′

Mij
                                                                                                                                 (3.6.1) 

where Kij
qq′

 for i ≠ j are obtained from finite differences  

Kij
qq′

=
Fi
q
(δqj

′) − Fj
q
(−δqj

′)

2δqj
′                                                                                                (3.6.2) 

 

and the mass matrix Mij = (Mi Mj )
1/2

. To satisfy translational invariance, the K for i = j 

(diagonal terms) is calculated from  Kii = −∑ Kiji≠j . The phonon transmission Tph(ω) then 

can be calculated from the relation:  
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Tph(ω) = Tr(ΓL
ph(ω)Gph

R (ω)ΓR
ph(ω)G

ph

R†(ω)                                                                (3.6.3) 

In this expression,  ΓL,R
ph(ω) = i(∑ (ω)

ph
L,R − ∑ (ω)

ph†

L,R ) describes the level broadening due to 

the coupling between left (L) and right (R) electrodes and the central scattering region 

formed from the molecule and closest contact layers of gold, ∑ (ω)
ph
L,R  are the retarded self-

frequencies associated with this coupling and Gph
R = (ω2I − D − ∑ −∑ )

ph
R

ph
L

−1
  is the 

retarded Green’s function, where D and I are the dynamical and the unit matrices, 

respectively. The phonon thermal conductance κph at temperature T is then calculated 

from
34

:  

κph(T) =
1

2π
∫ ℏωTph(ω)
∞

0

∂fBE(ω, T)

∂T
   dω                                                               (3.6.4)   

where   fBE(ω, T) = (e
ℏω

KBT − 1)−1  is Bose−Einstein distribution function, ℏ is reduced 

Planck’s constant, and kB = 8.6 × 10−5 eV/K is Boltzmann’s constant.  
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Chapter 4 

Tuning the electrical conductance of 

metallo-porphyrin supramolecular wires 

 

In this chapter, the electrical conductance of metallo-porphyrins in a perpendicular junction 

will be examined both theoretically and experimentally. I demonstrate that varying the 

transition metal-centre of the porphyrin molecule over a range of metallic atoms allows the 

tuning of the electrical conductance of metallo-porphryins. The results presented in this 

chapter were published in: Noori M, et al. Tuning the thermoelectric properties of metallo-

porphyrins supramolecular wires, 2016, Scientific Reports 6, 37352.  

This study is a collaborative work and the experiment has been carried out in the University 

of Barcelona (Prof. Ismael Díez-Pérez group). 
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4.1 Introduction 

Porphyrins offer a variety of desirable features as building blocks for future molecular-scale 

devices, including their highly-conjugated structure, rigid planar geometry, high chemical 

stability and their ability to form metallo-porphyrins by coordinating metal ions in the center 

of their macrocyclic and aromatic skeleton
1-5

. Following early work, which established their 

chemical and biological properties
6-9

, porphyrins have become a focus of interest both for 

experimental and theoretical investigations of molecular electronics 
10-12

 and for the design 

of complexes using supramolecular chemistry, leading to a diverse array of structures 

available for nano-scale building blocks
13

. This unique combination of properties is 

exploited in nature, where for example metallo-porphyrins act as charge carriers in naturally 

occurring processes such as photosynthesis 
14-17

 and in the respiratory chain
18, 19

. In many of 

these processes, the plane of the porphyrin skeleton is stacked perpendicular to the direction 

of charge transport, whereas previous studies
10-12

 address conductance with the plane of the 

porphyrin skeleton aligned parallel to the direction of charge transport. Further work has 

studied the “current in plane” (CIP) which is an up-right configuration (figure 4.1a), where 

the porphyrin skeleton was contacted to gold electrodes via thiol or pyridyl anchor groups 

and the electrical conductance was found to be low
10, 20

 (of order nanosiemens). For the 

purpose of developing future single-molecule electronics and thermoelectrics, it is highly 

desirable to increase the electrical conductance, since this can lead to higher switching 

speeds and reduce the relative effect of parasitic phonons in thermoelectric devices. In what 

follows I develop a strategy for increasing the electrical conductance of porphyrin-based 
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single-molecule wires by investigating their conductance with the current perpendicular to 

the plane (CPP) (figure 4.1b). I report a joint experimental and theoretical study of CPP 

conductance trends and binding configurations across a family of 5,15-diphenylporphyrins 

(DPPs), with a centrally-coordinated divalent metal ion of either Co, Ni, Cu or Zn and 

demonstrate that their conductance and stability can be tuned through the choice of metal 

atom. This is an extension of previous experimental measurements
21

 which showed that the 

CPP conductance of the flat-laying sandwiches of a Co(II)-DPP shows a large conductance 

value of  three orders of magnitude higher than the measured in-plane conductance 
10

. 

 

 

Figure 4. 1 (a) Porphyrin skeleton aligned parallel to the direction of charge transport “current in 

plane” (CIP) in an up-right configuration and (b) the optimised sandwich configuration of DPP 

junction with the current perpendicular to the plane (CPP).  

 

Experimentally, the measurements were carried out by collaboration in Barcelona using a 

Scanning Tunneling Microscope (STM) and were performed on a system of 5,15-

diphenylporphyrins with a centrally-coordinated divalent metal ion sandwiched edge-on 
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between gold leads, which in turn are functionalized by pyridine-4-yl-methanethiol (PY). 

The method used to determine the electrical conductance is described as a blinking 

experiment, where the blink in this study corresponds to molecular bridge formation 

between the pyridine-functionalized electrodes and the metallo-porphyrin molecule as 

shown in Figure (4.2). The spontaneous formation of junctions (blinking approach) could be 

envisioned as a method to momentarily freeze particular conformations in the single-

molecule junction. Briefly, the STM-BJ experiments consist of repeatedly approaching and 

retracting the two pyridyl-functionalized electrodes, while monitoring the tunneling current 

flowing through the electrode-electrode STM junction under a low applied voltage bias, 

approximately 5000 current traces are collected and 10-15% of them are used to build a 

conductance histogram for each molecule, as shown in Figure 4.3 Here each of the 

histograms show three peaks which correspond to three different electrode separations. The 

high conductance peak was used to extract a most-probable value of the single-molecule 

conductance for the flat-stacked metallo-porphyrin
21

. The observed two low conductance 

peaks are commonly-observed for all porphyrins and they have been ascribed to molecular 

wires with more extended (tilted) conformations of the porphyrin bridging the gap at longer 

electrode-electrode separations
25

. The fact that the free-based DPP uniquely displays the low 

conductance features is evidence that such conformations arise from the interaction between 

the PY and the porphyrin ring moieties. The conductance values extracted from Gaussian 

fits to the conductance histograms for each metallo-porphyrin (Fig. 4.3) has been also 

supported by a static blinking STM approach, where the spontaneous formation of the 

porphyrin bridge is attained while holding a fixed electrode-electrode distance. 
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Figure 4.2   Representative “blink” due to the spontaneous formation of a single-molecule junction 

with the Co-DPP molecule 
[21]

. 
 

 

 

Figure 4.3  (a, b, c and d) show the semi-log conductance histograms for the experimental STM 

single-molecule transport experiment for the Co-DPP, Zn-DPP, Cu-DPP and Ni-DPP systems, 

respectively. The inset shows representative single current decay curves used to build the conductance 

histograms. The applied BIAS was set to +25mV. The sharp increase in counts in both left and right 

sides of the histograms correspond to the current amplifier baseline and saturation respectively. 
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4.2 Binding energies and relaxed configurations  

The first stage in the theoretical modelling is to calculate the optimum geometry of the 

porphyrins between gold electrodes and to do this I minimize the binding energy. To calculate 

theoretical results for binding energies and relaxed configurations, spin-polarised DFT 

calculations were carried out using SIESTA
22

 with the local density functional approximation 

parameterised by Ceperley and Adler
23

. Initially the geometry of each isolated porphyrin was 

optimised to a force tolerance less than 20 meV/Å using an extended double zeta polarised 

basis set of pseudo atomic orbitals for all atoms, and a mesh cutoff of 200Ry to define the real 

space grid. To model the electrode geometry, the optimized geometry of an isolated PY unit 

was obtained and then the geometry of a PY bound to a gold electrode via the thiol atom was 

computed. To explore the binding-energy landscape of the PY-functionalised gold tip above 

the plane of the M(II)-DPP, I performed, without further relaxation, a three dimensions scan 

of a PY-functionalised gold tip over 500 possible binding locations above the planes of the 

Co-DPP, Zn-DPP, Cu-DPP and Ni-DPP. For each location the binding energy 𝐸𝐵 (see section 

2.9) of the top PY with respect to the porphyrin was calculated using the counterpoise 

method
24, 25. I find that the energetically-most-favorable configuration occurs when the PY 

nitrogen atoms are located above the metal atom of the porphyrin, as shown in Figure 4.4 for 

Co and figures Figure 4.5 for all the other metallo-porphyrins. 
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Figure 4.4 The binding energies 𝐸𝐵 for 500 positions of the PY-functionalized gold tip over the Co-

DPP molecule surfaces. The closely-spaced oscillations are a result of varying the gold-PY-

functionalised tip height above the surface, whereas the slow oscillations correspond to changes in 

the tip position parallel to the plane of the porphyrin. 

 

Next, I perform more detailed scans of the PYs along a vertical line through the metal atoms 

of the porphyrins without further relaxation and then at the final stage, allow further 

relaxation to determine more accurate values for their binding energies. Without further 

relaxation, the binding energy between each metallo-porphyrin and a single PY unit is 

computed as a function of the vertical distance of the nitrogen from the metal atom of the 

metallo-porphyrin, whilst holding the geometries of the PY and porphyrin fixed.  To obtain 
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the lowest energy configurations, I performed further relaxation starting from the unrelaxed 

energy minima, the optimum distances and binding energies are shown in Figure 4.6. 

 

Figure 4.5 The binding energies 𝐸𝐵 for 500 positions of the PY-functionalized gold tip over the (a) 

Zn-DPP, (b) Cu-DPP and (c) Ni-DPP molecule surfaces. 
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Figure 4. 6 Figures (a, b, c and d) show DFT calculations of binding energies as a function of 

distance (d) for Zn, Co, Cu and Ni respectively. 𝑑, 𝐸  are the position and binding energy of the 

fully-relaxed complex with a single PY. 
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For all four metallo-porphyrins, I find that the energetically-most-favorable configuration 

occurs when the PY nitrogen atoms are located above the metal atom of the porphyrin. For 

this most-favorable position of the PY nitrogen atoms, the results for all four binding energies 

and the corresponding nitrogen-metal distances are shown in table 4.1. 

 

Table 4.1: Shows optimum distance(𝑑), and binding energies 𝐸𝐵  for all four metallo-porphyrins. 

 

Metal 𝑑 Å 𝐸𝐵 eV 

Zn 2.06 -1.21 

Cu 2.17 -0.45 

Co 1.97 -1.20 

Ni 2.17 -0.17 

 

 

4.3 Conductance calculations 

To model an example of a blinking experiment in which the electrodes are held at a fixed 

separation, I choose the PY-functionalised gold electrodes to have a separation 

corresponding of  4.6 Å  between the terminal nitrogen atoms of the PYs, as shown in figure 

4.7. This distance is chosen to be slightly larger than the highest value of the distances 𝑑  in 

table 4.1, such that all molecules can be accommodated within the electrode gap. I then 

allowed the porphyrin molecule to bind to the lower PY, with a N-to-metal-atom distance of 
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𝑑 (see table 4.1). The PY of the upper gold electrode is therefore more weakly bound to the 

metal atom of the porphyrin, as would be the case in a blinking experiment.  

 

 

Figure 4.7 Scheme of contact of pyridine anchor above the porphyrin molecule. The lower PY 

nitrogen is a distance 𝑑 from the metal atoms, while the the upper PY nitrogen is placed a distance 

4.6 Å above the lower PY nitrogen. 

 

Before computing transport properties, I first examined the spin state of the metallo-

porphyrins. Numerous studies have examined the effect of the axial ligand on the redox 
28, 29

 

and photovoltaic properties of metallo-porphyrins
30

. Nickel porphyrin with coordinating 

axial ligands are paramaganetic (S=1) in contrast to four-coordinate species (S=0) 
31, 32

. 

Therefore, to accurately calculate the transport properties of these molecules, spin polarized 

transport calculations must be carried out. I find in the case of the zinc-metallo-porphyrin 

where there is no spin dependence the up spin and down spin transmission curves are almost 

identical. Figure 4.8a-d shows the spin-up, spin down and total transmission coefficient as a 

function of energy for Zn-DPP, Cu-DDP, Co-DPP and Ni-DDP. 
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Figure 4.8 The spin-up, spin down and total transmission coefficient as a function of energy for (a) 

Zn-DPP, (b) Cu-DDP,  (c) Co-DPP and (d) Ni-DDP. Each PY-porphyrin is in its relaxed 

configuration, with the metal atom a distance 𝑑1
′  from the N of the lower PY. The upper PY-

functionalised gold electrode was then positioned such that distance between the upper and lower 

PY nitrogens was fixed at 4.6 Å.  

 

The conductance was then calculated using the Gollum quantum transport code
33

, which 

utilizes the mean-field Hamiltonians provided by DFT. Starting from the SIESTA 

Hamiltonian, I use Gollum to calculate the transmission coefficient 𝑇𝜎(𝐸), describing 

electrons of energy E, spin 𝜎 = [↑,↓]  passing from one electrode to the other via the 

porphyrin, from which the finite-temperature electrical conductance 𝐺 is obtained using the 

Landauer formula 
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𝐺 = 𝐺↑ + 𝐺↓                                                         (4.1) 

 

where    𝐺𝜎 = 𝐺0 ∫ 𝑑𝐸
∞

−∞
𝑇𝜎(𝐸) (−

𝜕𝑓(𝐸,𝑇)

𝜕𝐸
)               (4.2) 

In this expression, 𝑓(𝐸, 𝑇) is the Fermi distribution function defined as   𝑓(𝐸, 𝑇) =

[𝑒(𝐸−𝐸𝐹)/𝑘𝐵T + 1]−1  where kB is Boltzmann’s constant and  𝐺0 = (
2𝑒2

ℎ
) is the quantum of 

conductance. 

 

Figure 4.8 shows the spin-up, spin down and the total transmission coefficients as a function 

of energy for Zn-DPP, Cu-DPP, Co-DPP and Ni-DPP respectively. The corresponding room-

temperature conductances versus Fermi energy EF are shown in Figure 4. 9a. Since the Fermi 

energy 𝐸𝐹
𝐷𝐹𝑇predicted by DFT is not necessarily accurate

34
, to compare theory with 

experiment, I treat the Fermi energy 𝐸𝐹 as a single free parameter, chosen to determine four 

conductances, which are closest to the experimental trend. Figure 4. 9b shows that the 

experimentally-measured order Ni < Co < Cu < Zn is obtained by choosing a Fermi energy 

𝐸𝐹 −  𝐸𝐹
𝐷𝐹𝑇 = −0.03𝑒𝑉.  
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Figure 4.9 The calculated room-temperature electrical conductances for Zn-DPP, Co-DPP, Cu-

DPP and Ni-DPP, obtained from figure 4.9. (b) Comparison between experimental (orange circles) 

and theoretical conductances (blue circles) obtained by choosing an optimum values of EF - EF
DFT

 = 

-0.03 eV. The error bars in the experimental points (orange circles) represent the full width at half 

maximum from the corresponding conductance histogram peak in Fig. 4.3, which were obtained 

from the accumulation of hundreds of individual traces for every system. 

 

Figure 4.9b shows that the chosen junction separation captures the experimental ordering of 

the Ni-DPP, Co-DPP, Cu-DPP and Zn-DPP. Furthermore, the computed magnitudes of the 

conductances are of the same order as the measured values and these conductances are far 

higher than those measured for CIP junctions, which are typically less than 10
-4

 G0. 
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4.4 Conclusions 

I have investigated the electrical conductance with the current perpendicular to the plane 

(CPP) of supramolecular metall-oporphyrin wires. Both theory and experiment reveal that 

the variation in conductance across this family of molecules increases in the order Ni < Co < 

Cu < Zn. Experimentally the conductance of Zn-DPP is found to be a factor of 4 greater 

than that of Ni-DPP.  Crucially the CPP conductances are three orders of magnitude greater 

than their CIP counterparts. For example as reported in [10] for Zn-porphyrins, the CIP 

conductance is    2.7·10
-5

 G0, which is more than three orders of magnitude lower than our 

measured CPP conductance. Similarly in [2]
2
 the reported CIP conductances for Cu, Co and 

Ni porphyrins were 3.6 10
-5

 G0, 2.5 10
-5

 G0 and 1.9 10
-5

 G0 respectively. This 

supramolecularly-wired arrangement with the aromatic plane perpendicular to the current is 

therefore stable at room temperature and provides a unique family of high-conductance 

molecular wires, whose electrical conductances and binding energies can be tuned by metal 

substitution. From the point of view of stability, I find that the binding energies of Zn-DPP 

and Co-DPP are significantly higher than those of Ni-DPP and Cu-DPP and therefore in 

view of its higher conductance, I identify Zn-DPP as the favoured candidate for high-

conductance CPP single-molecule devices. 
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Chapter 5 

High cross-plane thermoelectric 

performance of metallo-porphyrin 

molecular junctions 

 

In this chapter, the thermoelectric properties of metallo-porphyrins in perpendicular junction 

has been examined theoretically. The thermoelectric properties to be tuned by the divalent 

metal substitution. By varying the transition metal-centre over the family Ni, Co, Cu, and 

Zn. The results presented in this chapter were published in Mohammed Noori, et al ‘High 

cross-plane thermoelectric performance of metallo-porphyrin molecular junctions’ Physical 

Chemistry Chemical Physics 2017. 
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5.1 Introduction  

 

Thermoelectric materials utilize the Seebeck effect 
[1]

 to generate electricity from a 

temperature gradient, and the Peltier effect for on-chip cooling of electronic devices 
2-5

. 

Nowadays, a great deal of effort is aimed to improve the efficiency of these effects and 

identifying the parameters that control the thermoelectric performance of materials and 

devices 
6-12

 . The efficiency of a thermoelectric device for power generation is characterized 

by the dimensionless figure of merit (ZT = S
2
GT/κ) where S is the Seebeck coefficient, G is 

the electrical conductance, T is the temperature and κ the thermal conductance 
12, 13

. 

Although most common thermoelectric materials are inorganic, there is growing interest in 

the development of organic thermoelectric materials 
[6-10, 18-22]

, partly because many widely-

deployed inorganic thermoelectric materials are toxic, expensive to process and have limited 

global supplies. Since the thermoelectric performance of inorganic materials can be 

enhanced by taking advantage of nanostructuring 
14-20

, it is interest to utilize the natural 

nanostructuring associated with single-molecules attached to nanogap electrodes, or self-

assembled monolayers of such molecule sandwiched between planar electrodes 
21

. 

Porphyrins are attractive as building blocks for molecular-scale devices, because they are 

conjugated, rigid, chemically stable molecules and their properties could be modified by 

coordinating a variety of metallic ions (metallo-porphyrins) 
22-30

. In what follows my aim is 

to explore the potential of metallo-porphyrin-based molecular junctions (fig. 5.1a) for high-

efficiency thermoelectricity . From chapter four since the in-plane electrical conductance of 

porphyrins is rather low, I consider CPP “cross-plane” (current-perpendicular to the plane) 
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junctions in which the current flows perpendicular to the porphyrin plane
31

. A shown in 

figure 5.1, a porphyrin plane is contacted to gold electrodes via thiol or pyridyl anchor 

groups, with the plane of the porphyrin stacked perpendicular to the direction of charge 

transport. From the point of view of optimising thermoelectric properties, junctions formed 

from these molecules are of interest, because by varying the metal atom (denoted χ in figure 

5.1) residing in the core of the organic porphyrin framework, I tune the molecular energy 

levels relative to the Fermi energy EF of the electrodes. If energy levels happen to be close 

enough to EF, then this should lead to transport resonances, which enhance the thermopower 

32
. In what follows, I shall demonstrate that this is indeed the case and that large positive and 

negative thermopowers are achievable. Moreover, my calculations show that although the 

thermal conductance due to the phonons dominates the total thermal conductance, high 

values of ZT are achievable.  

 

 

Figure 5.1  Diphenylporphyrins -based molecular structures (a) with metallic atom, (b) an example 

of an optimized configuration of the system containing a single molecule χ -DPP sandwiched 

between two gold leads which in turn are activated by pyridine-4-yl- methanethiol with different 

metallic atoms, where χ = Co, Cu, Ni and Zn. 



CHAPTER 5.  HIGH CROSS-PLANE THERMOELECTRIC PERFORMANCE OF 

METALLO-PORPHYRIN MOLECULAR JUNCTIONS 

 
 

88 
 

The experiments and theory of chapter four show that the conductance of the metallo-

porphyrins are enhanced when they are sandwiched between two gold electrodes with 

pyridine-4-yl- methanethiol anchors (fig. 5.1b) 
31, 33

.
 
 Since large G is desirable, metallo-

porphyrins studied in this work consist of four different metal atoms χ = Co, Cu, Ni and Zn 

coordinated in a flat-stacked 5,15-diphenylporphyrins-based molecular structures (Fig. 

5.1a). Our aim in this work is to investigate the thermoelectric properties of these metallo-

porphyrins devices by varying the metal atom χ over the series of  χ = Co, Cu, Zn, and Ni.  

 

5.2 Methods  

To calculate the electronic and vibrational properties of each metallo-porphyrin, I used the 

spin density functional (DFT) code SIESTA
34

 which employs Troullier-Martins 

pseudopotentials to represent the potentials of the atomic cores
35

, and a local atomic-orbital 

basis set. I used a double-zeta polarized basis set for all atoms and the local density 

functional approximation (LDA-CA) by Ceperley and Adler 
36

. The Hamiltonian and 

overlap matrices are calculated on a real-space grid defined by a plane-wave cutoff of 150 

Ry. Each molecule was relaxed to the optimum geometry until the forces on the atoms are 

smaller than 0.02  eV/Å. To calculate the vibrational modes of each metallo-porphyrin I use 

the harmonic approximation method discussed in chapter three, to construct the dynamical 

matrix D After obtaining the relaxed geometry of each structure, as shown in Fig. 5.1. From 

these relaxed xyz coordinates, a set of the xyz coordinates were generated by displacing 

each atom in positive and negative x, y, and z directions by δq′ = 0.01 Å. The forces in three 

directions qi = (xi , yi , zi ) on each atom were then calculated by DFT with the same 

parameters as the relaxed system but without geometry relaxation. These set of the force             



CHAPTER 5.  HIGH CROSS-PLANE THERMOELECTRIC PERFORMANCE OF 

METALLO-PORPHYRIN MOLECULAR JUNCTIONS 

 
 

89 
 

Fi
q
 = (Fi

x
 , Fi

y
 , Fi

z
 ) vectors are used to construct the dynamical matrix(equation 3.6.1 see 

section 3.6). By using GOLLUM
37

 the electronic and phononic transmission coefficients 

have been calculated. 

 

5.3 Results and Discussion  

 

For each metallo-porphyrin χ-DPP in figure 5.1b, figure 5.2a-d shows total electronic 

transmission coefficients as a function of energy for DPP with Co, Cu, Zn and Ni, 

respectively. The spin-dependent and total electronic transmission coefficients as a function 

of energy for all χ –DPP in Chapter 4 (Fig 4.8). Due to the thiol anchor all junctions show 

HOMO dominated transport where DFT Fermi energy is very close to the HOMO 

resonance. By using the Landauer formula equation (3.5.5), the electrical conductance could 

be calculated from the transmission coefficient shown in fig. 5.2. The electrical conductance 

is higher in Zn-DPP and lower in Ni-DPP (fig 4.9a Chapter 4) where GZn > GCu > GCo > GNi 

in agreement with the experimental values of Zn-DPP 8.2 x 10
-2

 , Cu-DPP 4.4 x 10
-2

 , Co-

DPP 2.2 x 10
-2

 and Ni-DPP 1.8 x 10
-2

. [33]  
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Figure 5.2 (a, b, c, and d) show the electronic transmission coefficients as a function of energy for 

DPP with Co, Cu, Zn and Ni, respectively 

 

 

The wave function (φ) and the frequencies ω corresponding to the vibrational modes are the 

eigenvectors of the dynamical matrix D, which satisfies: 

Dφ = ω2φ                                                                                                                                        (5.1) 

The normal modes of vibration have amplitude  φ𝑖 𝛼
(ω)

 where 𝛼 = 1,2,3  labels x, y, z degrees 

of freedom and i=1,….N labels the atoms. This satisfies the normalization condition  

 

∑ ∑ (φi α
(ω)
)
2

= 1α=1
N
i=1                (5.2) 
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To analyse the spatial distribution of a normal mode, it is useful to define a participation 

ratio PR, which describes the intensity of a normal mode on a sub-set {𝑖′, 𝛼′} of degrees of 

freedom from: 

 

PR(ω) = ∑ (φi α
(ω)
)
2

i,α∈{i′,α′}

                                                                                                               (5.3) 

If  PR(ω) = 1 then the normal mode of frequency ω resides entirely on the chosen sub-set of 

degrees of freedom. 

𝑃𝑅𝑡𝑜𝑡 = √𝑃𝑅𝑥2 + 𝑃𝑅𝑦2  + 𝑃𝑅𝑧
2                                                             (5.4) 

 

Where PRx, PRy and PRz represent intensity of a normal modes in x, y, z degrees of freedom 

respectively. 

 

Figure 5.3. Participation ratio of the molecular for (a) Cu-DPP, (b) Ni-DDP, (c) Co-DPP and (d) 

Zn-DDP.The number of modes between ħω =0 and 3meV is 35 for Co, 53 for Zn, 52 for Ni and 53 

for Cu.  
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Figure 5.4 (a, b, c, and d) show phonon transmission coefficient as a function of ℏ𝜔 for DPP with 

Co, Cu, Zn and Ni, respectively.  

 

Figure 5.3  Participation ratio of the molecular cores consisting of the χ -DPP on the modes 

associated with whole of the molecule attached to the surface of the gold electrodes. Figures 

5.4 (a-d) shows phonon transmission coefficients as a function of phonon energy ℏω for 

DPP with Co, Cu, Zn and Ni, respectively. Figure 5.4a shows that the low energy phonons 

(smaller than 4 meV) are not transmitted. The binding energy in Co-DPP is higher than 

other metallo-porphryins studied in Chapter 4 table 4.1 [Ref.33]. 
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Figure 5.5 (a) Show electronic contribution of the thermal conductance κel, inset figure shows the 

cumulative distribution of eigenvalues (integrated density of states) and (b) show phononic 

contribution of the thermal conductance κph for DPP with Co, Cu, Zn and Ni. 

 

 

The thermal conductance of the junction (κ = κph + κel) is obtained by summing the 

contributions from both electrons (κel) and phonons (κph). The electronic (phononic) thermal 

conductances are calculated from the electronic (phononic) transmission coefficients (as 

described in (3.6) chapter three and Ref [32]). Comparison between figures 5.5a and 5.5b 
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shows that in the vicinity of DFT Fermi energy, the main source of the thermal conductance 

in these junctions is due to phonons, whose room-temperature contribution is relatively 

insensitive to the choice of metal atom, varying between 6 and 10 pW/K depending on the 

choice.  The inset of figure 5.5b shows the cumulative distribution of eigenvalues (integrated 

density of states) of each molecule and reveals that the lower frequency modes of the Co 

porphyrin in the region 0 to 1.5meV are pushed to higher frequencies, leading to a low-

frequency transmission gap below 3meV. This reflects the higher binding energy of a single 

pyridyl group to the Co metal atom compared with the other. (these follow the trend Co=-

1.2eV, Zn=-1.2eV, Cu=-0.4eV and Ni=-0.17eV). Consequently the low-frequency 

cumulative distribution of Co and the low-temperature thermal conductance initially lies 

below that of the others and then rises with a steeper slope.  Figure 5.4c shows that Zn also 

has a low-frequency transmission gap below 1meV, which supresses the low-temperature 

phonon thermal conductance.  

Figure 5.6 shows Seebeck coefficient S (thermopower) and total figure of merit over a range 

of Fermi energies at room temperature for each metallo-porphyrins. Figure 5.6a 

demonstrates that both the magnitude and sign of thermopower S are sensitive to the metal 

atoms at the centre of the DPP, which determine the location of transport resonances relative 

to the Fermi energy. Since the Fermi energy from DFT is not necessarily reliable, I have 

presented the thermopower for a range of Fermi energies (fig. 5.6a).  
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Figure 5.6  Show (a) Seebeck coefficient S (thermopower) and (b) total figure of merit ZT over a 

range of Fermi energies at room temperature for each metallo-porphyrin.  

 

For the junctions discussed in this work, the conductances have been measured 

experimentally in chapter four, so I have estimated the Fermi energy by comparing these 

measurements with our calculated conductances. This yields a value of EF = -0.03 eV, 

compared with the DFT-predicted Fermi energy. Table 5.1 shows the thermopower of 

porphyrins in the presence of Cu, and then Co, Zn and Ni at EF = -0.03 eV. The predicted 

trend is SCu > SNi > SZn > SCo and when combined with the higher Cu CPP the yield room-

temperature values of ZT range from 1.66 for Cu porphyrin to 0.01 for Ni porphyrin, as 

shown in figure 5.6b 

Table 5.1. Seebeck coefficient S (thermopower) and total figure of merit ZT at EF - EF
DFT

 = -0.03 

eV[33]  

Metallic  S (μV/K) ZT  

EF=-0.03 eV EF=0.0 eV EF=-0.03 eV EF=0.0 eV 

Cu +90 +182 1.66 3.22 

Co -16 +77 0.05 0.92 

Zn -23 +72 0.07 0.56 

Ni -32 +66 0.018 0.05 
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5.4 Conclusion 

 

The room-temperature Seebeck coefficients of these junctions are rather high, ranging from 

90 µV/K for Cu-porphyrin to -16 µV/K for Co-porphyrin. The corresponding room-

temperature values of ZT range from 1.66 for Cu porphyrin to ~ 0.02 for Ni porphyrin. 

These values could be further increased by shifting molecular energy levels relative to the 

Fermi, either by doping or gating, which moves the Fermi energy closer to the regions of 

higher thermopower in figure 5.6. These results demonstrate that metallo- porphyrins are 

attractive building blocks for molecular-scale thermoelectricity and by passing thermal and 

charge currents perpendicular to the plane of the porphyrins, large values of the Seebeck 

coefficient and figure of merit are possible 
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Chapter 6 

High-performance thermoelectricity in 

edge-over-edge zinc-porphyrin molecular 

wires. 

 

In this chapter, I have compared thermoelectric properties of three zinc porphyrin (ZnP) 

dimers and a ZnP monomer and find the “edge-over-edge” dimer formed from stacked ZnP 

rings possesses highest room-temperature ZT ever reported for an organic material. 

The results presented in this chapter were published in Mohammed Noori, et al. “High-

performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires”, 

Nanoscale 9.16 (2017): 5299-5304. 

. 
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 6.1 Introduction 

As mentioned in chapter five, thermoelectric materials, which convert heat to electrical 

energy, could have enormous impact on global energy consumption, but at present their 

efficiency is too low and the most efficient materials are toxic and have limited global 

supply. Recently, in an effort to overcome these limitations, thermoelectric effects in low-

dimensional structures and molecular-scale systems have begun to be investigated
1-14

. 

Nanostructures are promising, because transport takes place through discrete energy levels 

and in molecular-scale junctions, this leads to room-temperature quantum interference, 

which opens further avenues for enhancing the conversion of heat into electric energy
15

. 

The efficiency of a thermoelectric (TE) material or device is determined by the dimensionless 

thermoelectric figure of merit ZT = GS
2
T/κ, where G is the electrical conductance, T is 

temperature, S is the thermopower (Seebeck coefficient) and κ = κel + κph is thermal 

conductance due to electrons (κel) and phonons (κph). The Seebeck coefficient characterizes the 

ability of a thermoelectric material to convert heat to electricity and is defined as S=−ΔV/ΔT, 

where ΔV is the voltage difference generated between the two ends of the junction when a 

temperature difference ΔT is established between them
7, 16-19

. Enhancing the efficiency of TE 

materials is not easy, because all parameters are correlated. For example at a fundamental 

level, the electronic properties G, S and κel are related, because as described in chapter three, 

they are all derived from the transmission coefficient Tel(E) describing electrons of energy E 

passing from one electrode to the other through a molecule (see methods section 6.2). In 
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particular at low-temperatures the Seebeck coefficient S is approximately proportional to the 

slope of the ln Tel(E), evaluated at the Fermi energy EF, whereas the electrical conductance 

is proportional to Tel(EF). Therefore, if the Fermi energy lies in a region of high slope, close 

to a transmission resonance then both G and S are enhanced
20

. On the other hand, to 

decrease the thermal conductance κ, which appears in the denominator of ZT, both electron 

and phonon transport must be engineered. Therefore, simultaneous consideration of both 

electron and phonon transport is needed to develop new materials for thermoelectricity. 

 

 

Figure 6.1 The device structures investigated consist of four different zinc porphyrin (ZnP) 

monomer structures. (1) edge-over-edge ZnP, (2) A ZnP-dimer linked by an oligoyne chain, (3) A 

ZnP-dimer linked by two pyridyl rings (4). 
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Since only a few groups worldwide are able to measure the thermal conductance of single 

molecules, theoretical investigation is needed to identify new strategies to simultaneously 

suppress phonons and enhance S and G. Recent proposals to reduce phonon transport in 

molecular junctions include weakening the overlap between the continuum of vibrational 

states in the electrodes and discrete vibrational modes of the molecules 
21

, taking advantage 

of the weak interaction between different parts of the molecules, as in π−π stacked structures 

19
  and using the low Debye frequency of electrodes to filter high-frequency phonons

20
. The 

challenge is to identify new materials and device structures in which such strategies can be 

realized in the laboratory. In this work, I present a comparative theoretical study of 

thermoelectric properties of four different zinc porphyrin structures and elucidate a new 

strategy for simultaneously increasing their thermopower and reducing their thermal 

conductance leading to a high value of ZT.  

 

6.2 Methods 

The geometry of each structure consisting of the gold electrodes and a single zinc porphyrin 

molecule was relaxed to a force tolerance of 20 meV/Å using the SIESTA 
28

 implementation 

of density functional theory (DFT), with a double-ζ polarized basis set (DZP) and 

generalized gradient functional approximation (GGA-PBE) for the exchange and correlation 

functionals 
30, 31

, which is applicable to arbitrary geometries. A real-space grid was defined 

with an equivalent energy cutoff of 150 Ry. From the relaxed xyz coordinate of the system, 

sets of xyz coordinates were generated by displacing each atom in positive and negative x, y, 
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and z directions by δq′ = 0.01 Å. The forces in three directions qi = (xi , yi , zi ) on each atom 

were then calculated by DFT without geometry relaxation. These values of the force is 

combined with the method described in 
20

 to calculate dynamical matrix and thermal 

conductance due to the phonons.  

To calculate electronic properties of the molecules in the junction, from the converged DFT 

calculation, the underlying mean-field Hamiltonian H was combined with our quantum 

transport code, GOLLUM 
29

 to calculate the transmission coefficient Tel(E) for electrons of 

energy E passing from the source to the drain. As discussed in chapter three, the electrical 

conductance Gel(T) = G0L0, the electronic contribution of the thermal conductance κ𝑒𝑙(𝑇) =

(𝐿0𝐿2 − 𝐿1
2)/ℎ𝑇𝐿0 = and the thermopower  𝑆(𝑇) = −𝐿1/𝑒𝑇𝐿0  of the junction are 

calculated from the electron transmission coefficient Tel(E) where𝐿𝑛(𝑇) = ∫ 𝑑𝐸(𝐸 −
∞

−∞

𝐸𝐹)
𝑛 𝑇𝑒𝑙(𝐸) (−

𝜕𝑓𝐹𝐷(𝐸,𝑇)

𝜕𝐸
) and fFD(E,T) is the Fermi−Dirac probability distribution function  

𝑓𝐹𝐷(𝐸, 𝑇) = (𝑒
(𝐸−𝐸𝐹)/𝐾𝐵𝑇 + 1)−1, T is the temperature, EF is the Fermi energy, G0 = 2e 

2
 /h 

is the conductance quantum, e is electron charge, and h is the Planck’s constant. 

 

6.3 Results and discussion 

 

Figure 6.1 shows four different zinc porphyrin (ZnP) structures investigated below. The first 

1 is a ZnP monomer
22

. Structure 2 is an edge-over-edge ZnP dimer, in which two ZnPs are 

locked together by meso-position pyridines
23, 24

. Structure 3 comprises two ZnPs connected 

by an oligoyne linker
22, 25, 26

, while 4 comprises two ZnPs connected through meso-position 

pyridines
27

. In this work, my aim is to demonstrate that of the above structures, the edge-
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over-edge ZnP dimer 2 is by far the most efficient thermoelectric energy converter. From a 

structural point of view, this arises because the pyridyl rings of 2 are locked and therefore 

ring rotation, which would otherwise reduce the electrical conductance, is eliminated. 

Secondly, the edge-over-edge rigid conformation of 2 increases its rigidity, which pushes 

the internal vibrational modes to higher frequencies. This reduces room temperature thermal 

conductance, because modes with frequencies greater than ~25meV do not contribute 

significantly. Thirdly, longitudinal modes entering one end of the edge-over-edge molecule 

must convert to flexural modes to pass from one porphyrin to the other, which creates extra 

phonon scattering and reduces thermal conductance.  

For the structures of figure 6.1, figure 6.3 shows the transmission coefficients for electrons 

with energy E and phonons of energy ħω, passing through a molecule from the left electrode 

to the right electrode, calculated using the method described in reference
20

. I first carry out 

geometry optimization of each molecule placed between two gold electrodes using the 

SIESTA
28

  implementation of density functional theory (DFT) to find the ground state 

optimized positions of the atoms relative to each other (see methods). From the ground state 

geometry, I obtain the mean-field Hamiltonian of each system comprising both electrodes 

and molecule and use our transport code GOLLUM
29

 to calculate the transmission 

coefficients Tel(E) (see methods). In each case the optimal angle between the porphyrins is 

zero, which corresponds to the maximum conductance that could be obtained
22

. The 

electronic transport properties of 1 and 3 have been studied experimentally in the 

literature
22

, so I used these to benchmark our calculations. As shown in table 6.1, our 

calculated conductances for these molecules are in good agreement with experiment. The 
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electron transmission of 4 is much smaller than both 1, 2 and 3, whereas the transmission of 

2 is either equal to that of 3 near the HOMO resonance or lower in the vicinity of the middle 

of the HOMO-LUMO gap. As shown in figure (6.2), this is reflected in the electrical 

conductance as a function of temperature. 

 

Table.6.1 The experimental and theoretical electrical conductance and their ratio for dimer and 

monomer. 

 

Structure Experimental Conductance Theory Conductance 

Monomer (1) 2.7x10
-5

 1.09x10
-1

 

Dimer (3) 1.55x10
-5

 6.35x10
-2

 

Ratio (monomer/dimer) 1.74 1.72 

 

 

 

Figure 6.2 The electrical conductance as a function of temperature for ZnP monomer (1), edge-

over-edge ZnP (2), ZnP connected through an oligoyne chain (3) and ZnP-dimer connected through 

pyridyl rings (4). 
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Figure 6.3 (a) Electron transmission coefficients as a function of energy and (b-e) phonon 

transmission coefficients as a function of ћω (b) for the ZnP monomer 1, (c) the edge-over-edge ZnP 

2, (d) the  ZnP dimer connected via an oligoyne chain 3 and (e) ZnP dimer connected through 

pyridyl rings 4.  
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To calculate the vibrational properties of each structure, I again use the harmonic 

approximation to construct the dynamical matrix D. Each atom is displaced from its ground-

state equilibrium position by δq′ and −δq′ in x, y, and z directions and the forces on all atoms 

calculated in each case. For 3n degrees of freedom (n = number of atoms), the 3n × 3n 

dynamical matrix Dij = (Fi
q
(δqj′)−Fj

q
(−δqj′))/2Mijδqj′ is constructed, where F and M are the 

force and mass matrices, As described before in section 5.3 in chapter five the participation 

ratio PR of the molecule core (ZnPs and linkers) connected to the gold surface has also been 

calculated.  

 

Figure 6.4. Participation ratio of the molecular cores consisting of the ZnP(s) and linkers on the 

modes associated with whole of the molecule attached to the surface of the gold electrodes, (a) for 

the edge-over-edge structure (2), the modes have pushed to the higher energies and only in plane 

transverse modes are transmitted. Out-of plane transverse mode are suppressed due to the more 

rigid nature of (2) compared to (b) structure (3) and (c) structure (4) in out-of-plane transverse 

direction. (d) Shows the density of modes for (1-3). 
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For a molecule within a junction, the dynamical matrix describes an open system composed 

of the molecule and two semi-infinite electrodes and is used to calculate transmission 

coefficient Tph(ω) for phonons with energy ћω passing through the molecule from the right 

to the left electrodes
20

. 

 

Figures 6.3 b-e shows Tph(ω) for the four structures of figure 6.1. It is apparent that the 

widths of the resonances in the edge-over-edge  ZnP-dimer 2 are slightly smaller than those 

of the other structures and the low energy phonons (in the range 2-5 meV) are either 

suppressed or pushed to the higher frequencies. This can be demonstrated using the 

participation ratio of the dimer molecular cores 2, 3 and 4 and comparing the integrated 

density of states Dos(ħω) of 2, 3 and 4.  As shown in figure (6.4), the participation ratio of 

the molecule core (ZnPs and linkers) connected to the gold surface is mostly due to the in-

plane (PRy) and out of plane (PRx) transverse modes in structures 3 and 4, whereas out-of 

plane transverse modes are mainly suppressed or converted to in-plane transverse modes and 

moved to the higher frequency, reflecting the higher rigidity of the edge-over-edge structure. 

In addition, the integrated density of states are almost the same for 3 and 4, whereas for low 

frequencies, the integrated density of states of 2 is smaller than 3 and 4. This means the 

thermal conductance is reduced significantly in 2, because transmission of the low energy 

modes is suppressed due to the scattering from in-plane modes to cross-plane transverse 

modes. In addition, some modes are pushed to higher frequency, although this is smaller 

effect compared with the suppression of low frequency transmission. Overall, these two 

effects combine to yield a lower phonon thermal conductance in 2.  
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Figure 6.5  (a) Phonon thermal conductances (b) Electronic thermal conductance as a function of 

temperature, (c) Room-temperature electronic thermal conductance as a function of Fermi energy 

EF calculated using the DFT-predicted Fermi energy. Results are shown for the ZnP monomer 1, the 

edge-over-edge ZnP 2, the ZnP dimer connected through an oligoyne chain 3 and the ZnP-dimer 

connected through pyridyl rings 4. 
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The thermal conductance of the junction (κ = κph + κel) is obtained by summing the 

contributions from both electrons (κel) and phonons (κph). The electronic (phonon) thermal 

conductances are calculated from the electron (phonon) transmission coefficients shown in 

figure 6.3a-e. Figure 6.5a shows that the ZnP monomer 1 has the lowest value of κph while 4 

has the highest. This is counter-intuitive, because one would expect a higher thermal 

conductance for shorter molecules. However, due to the more rigid nature of the monomer, 

its vibrational modes are pushed to the higher frequencies and therefore their contribution to 

the room temperature conductance is suppressed. In addition, figure 6.5 b,c shows that the 

thermal conductance due to the electrons κel of the dimer ZnP 3 is higher than those of the 

edge-over-edge ZnP and structures 1 and 4 for a wide range of energy in the vicinity of DFT 

predicted Fermi energy. The crucial point is that almost for all Fermi energies, the electronic 

contribution to the thermal conductance is higher than the phonon contribution. This is 

significant, because to achieve a high-ZT material, one needs to only focus on engineering 

the electronic properties of structure 2.  

To examine the thermoelectric properties of 1-4, I obtained the Seebeck coefficient of all 

structures from the electron transmission coefficient Tel(E), as described in the methods. 

Figure 6.6 a shows the Seebeck coefficients as a function of Fermi energy EF  and reveals 

that the edge-over-edge ZnP dimer 2 has a higher Seebeck coefficient than 1, 3 and 4 due to 

the higher slope of ln Tel(EF) over a wide range of Fermi energies between the HOMO and 

LUMO. Since the electronic contribution to the thermal conductance is higher in 1, 2 and 3, 

the contribution of the phonons is negligible. Furthermore the electrical conductance is 

proportional to the electronic thermal conductance, so they cancel each other in ZT. 
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Consequently as shown in figure 6.6b, due to the high Seebeck coefficient of the edge-over-

edge dimer, a ZT as high as ≈4 is obtained when EF lies in a wide energy window in the 

vicinity of the DFT-predicted Fermi energy. Figure 6.6b also shows that the less-rigid 

structure 4 is not promising for efficient conversion of the heat to electricity. Although all of 

these structures are made from ZnP, this study shows the importance of the molecular 

design. The more rigid edge-over-edge ZnP dimer 2 shows very high ZT, whereas the less 

conductive structure 3 is unattractive for thermoelectricity.  
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Figure 6.6 (a) Seebeck coefficient S and (b) full thermoelectric figure of merit ZT as a function of 

Fermi energy for the ZnP monomer 1, edge-over-edge ZnP 2, ZnP connected through an oligoyne 

chain 3 and ZnP-dimer connected through pyridyl  rings 4. 
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6.4 Conclusions 
 

In summary, I have compared thermoelectric properties of three ZnP dimers and a ZnP 

monomer and find the edge-over-edge -like dimer possesses a negligible phonon thermal 

conductance and a high Seebeck coefficient of order 300 μV/K. These transport properties 

combine to yield a room-temperature figure of merit of ZT≈4, which is the highest room-

temperature ZT ever reported for an organic material. This high ZT value is a consequence 

of low phonon thermal conductance, which arises from the edge-over-edge stacking of the 

porphyrin rings, which hinders phonon transport through the molecule. 
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Chapter 7 

Conclusions and Future Works 

In conclusion, I have studied electronic and thermoelectric properties of single organic 

molecules (metallo-porphyrins) in different structures. In the chapter 4 in collaboration with 

University of Barcelona I investigate the transport properties of M(II)-5,15-

diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal 

ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-

based conductance measurements combined with quantum transport calculations 

demonstrate that current-perpendicular-to-the-plane (CPP) junctions have three-orders-of-

magnitude higher electrical conductances than their currentin-plane (CIP) counterparts, 

ranging from 2.10−2 G0 for Ni-DPP up to 8.10−2 G0 for Zn-DPP. The metal ion in the 

center of the DPP skeletons is strongly coordinated with the nitrogens of the pyridyl coated 

electrodes, with a binding energy that is sensitive to the choice of metal ion. I find that the 

binding energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP and 

Cu-DPP. Therefore when combined with its higher conductance, I identify Zn-DPP as the 

favoured candidate for high-conductance CPP single-molecule devices. 
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In chapter 5, I investigated the thermoelectric properties of a unique porphyrin based family 

of flat-stacked 5,15-diphenylporphyrins (DPP) molecular wires, where a divalent metal ion 

is coordinated by the pyridine blocks in the center of the porphyrin skeleton which allows 

the thermoelectric properties to be tuned by the divalent metal substitution. By varying the 

transition metal-centre over the family Ni, Co, Cu, and Zn I was able to tune the molecular 

energy levels relative to the Fermi energy of the electrodes. The room-temperature Seebeck 

coefficients of these junctions are rather high, ranging from 90 µV/K for Cu, Co and Ni- 

porphyrins to -23 µV/K for Zn-porphyrin at the DFT-predicted Fermi energy. These values 

could be further increased by decreasing molecular energy levels relative to the Fermi 

energy. In addition, the main source of the thermal conductance in these junctions in the 

vicinity of the DFT Fermi energy is due to phonons. Furthermore, changing the metal atom 

has little effect on the thermal conductance due to the phonons. The thermopower, thermal 

and electrical conductance are combine to yield the room-temperature values of ZT ranging 

from 1.6 for Cu porphyrin to ~ 0.02 for Ni-porphyrin. In chapter 6 I compared 

thermoelectric properties of three zinc porphyrin (ZnP) dimers and a ZnP monomer and 

found that the “edge-over-edge” dimer formed from stacked ZnP rings possesses a high 

electrical conductance, negligible phonon thermal conductance and a high Seebeck 

coefficient of order 300 μV/K. These combine to yield a room-temperature figure of merit of 

ZT≈4, which is the highest room-temperature ZT ever reported for an organic material. This 

high value of ZT is a consequence of the low phonon thermal conductance arising from the 

stacked nature of the porphyrin rings, which hinders phonon transport through the edge-

over-edge molecule and enhances the Seebeck coefficient. 
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The work presented in this thesis has aimed to identify and investigate molecules exhibiting 

high-performance thermoelectricity. Comparison with the literature suggests that porphyrins 

can perform much better than molecules investigated to date. For example thiol-terminated 

molecules typically exhibit HOMO-dominated transport and a positive S, ranging from 6.8 

to 2.4 μV/K for n-alkanedithiols, depending on the length n
1,2

 , from 7 μV/K  to 16 μV/K for   

n-benzenedithiols, depending on the number n of phenyl rings, ranging from 7 μV/K  to 16 

μV/K
3-9

.  Positive Seebeck coefficients up to to 24 μV/K were measured for 1,4-

Bis((trimethylstannyl)methyl)-n-phenyl (n=1,2,3,4), up to 10.4 μV/K
1,10,11 

for 1,4-n-

Phenylenediamine (PDA) (n-1,2,3) and as high as 14.8 μV/K for oligothiophenes on gold
12

. 

On the other hand pyridyl terminal groups promote LUMO-dominated transport leading to 

negative Seebeck coefficients as high as -9 μV/K and -10 μV/K respectively
11,13

 4,4’-for 

bipyridine and 1,2-di(4-pyridyl)ethylene respectively. Fullerenes also exhibit negative 

Seebeck coefficients, ranging from -10 to -30 μV/K for C60
14

  to -33 μV/K for C60 dimers
15

  

and up to -31.6 μV/K  C82 endohedral fullerenes
16

. The sign of the endohedral fullerene 

Sc3N@C80 was shown to be sensitive to pressure, ranging from -25 μV/K to +25 μV/K, 

depending on the orientation of the molecule on a gold substrate
17

.  

For the future it would be of interest to explore other factors which control thermoelectric 

performance. For example, although most of the above studies used gold electrodes, 

alternative choices could include graphene
18,19

, silicene
20,21

, platinum
22

, palladium
22

, iron
23

 

and nickel
24

, which provide a range of Debye frequencies for controlling phonon transport 

across the electrode-molecule boundary
24

. Systematic modification of the geometry of a 

molecule is known to control electrical conductance and may also be a useful method of 
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controlling thermoelectricity
25

. Finally the question of how to utilise molecular-scale 

thermoelectricity in real devices needs to be addressed, where disorder in the electrodes is 

inevitable
26

. One potential route is to form self-assembled monolayers of molecules, whose 

single-molecule thermoelectric properties have been assessed using the methods presented 

in this thesis. The question of how such properties translate into molecular films is a 

completely open question and likely to be a topic of intense interest in the future years.  
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