Search for dark matter at √s = 13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector

Barton, Adam Edward and Beattie, Michael and Bertram, Iain Alexander and Borissov, Guennadi and Bouhova-Thacker, Evelina Vassileva and Dearnaley, William and Fox, Harald and Grimm, Kathryn Ann Tschann and Henderson, Robert Charles William and Hughes, Gareth and Jones, Roger William Lewis and Kartvelishvili, Vakhtang and Long, Robin Eamonn and Love, Peter Allan and Muenstermann, Daniel Matthias Alfred and Parker, Adam Jackson and Skinner, Malcolm and Smizanska, Maria and Walder, James William and Wharton, Andy and Whitmore, Ben (2017) Search for dark matter at √s = 13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector. European Physical Journal C: Particles and Fields, 77 (6). ISSN 1434-6044

Full text not available from this repository.

Abstract

Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in data, corresponding to an integrated luminosity of 36.1 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV, is in agreement with the Standard Model expectations, model-independent limits are set on the fiducial cross section for the production of events in this final state. Exclusion limits are also placed in models where dark-matter candidates are pair-produced. For darkmatter production via an axial-vector or a vector mediator in the s-channel, this search excludes mediator masses below 750–1200 GeV for dark-matter candidate masses below 230– 480 GeV at 95% confidence level, depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression scale M∗ to be above 790 GeV at 95% confidence level. A limit is also reported on the production of a high-mass scalar resonance by processes beyond the Standard Model, in which the resonance decays to Zγ and the Z boson subsequently decays into neutrinos.

Item Type:
Journal Article
Journal or Publication Title:
European Physical Journal C: Particles and Fields
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2200/2201
Subjects:
ID Code:
86921
Deposited By:
Deposited On:
03 Jul 2017 10:06
Refereed?:
Yes
Published?:
Published
Last Modified:
16 Sep 2020 03:51