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The CAPTAIN Toolbox is a collection of MATLAB functions for non-stationary time 
series analysis, forecasting and control (Taylor et al., 2007, 2018). The toolbox consists of 
three modules, organised into three folders (or directories) as follows: 

• TVPMOD: Time Variable Parameter (TVP) MODels. For the identification of 
unobserved components models, with a particular focus on state-dependent and time-
variable parameter models (includes the popular dynamic harmonic regression model). 

• RIVSID: Refined Instrumental Variable (RIV) System Identification algorithms. 
For optimal recursive and en bloc RIV estimation of multiple-input, continuous- and 
discrete-time Transfer Function models. 

• TDCONT: True Digital CONTrol (TDC). For multivariable, non-minimal state space 
control, including pole assignment and linear quadratic optimal control design, and 
with backward shift and delta-operator options. 

The toolbox is useful for system identification, signal extraction, interpolation, forecasting, 
data-based mechanistic modelling and control of a wide range of stochastic systems. 

1.1  Documentation 

The following provide information about the toolbox: 

• The present document, the Getting Started Guide, provides installation instructions, 
terms of use, preliminary examples, and an overview of the underlying methods, 
citing wide ranging research by Peter Young and colleagues. 

• Guide to RIVSID: Refined Instrumental Variable System Identification (Pedregal et 
al., 2024) is a legacy handbook for RIVSID but needs updating. The algorithms 
and models for RIVSID are more fully described by the extensive work of Peter 
Young (e.g. Young, 1984, 2011), including the latest research papers. Key concepts 
and algorithms for RIVSID are also reviewed in Chapter 8 of Taylor et al. (2013). 

• Guide to TVPMOD: Time Variable Parameter Models (Taylor et al., 2024) is the 
handbook for TVPMOD. It provides a tutorial introduction to unobserved 
components models, including relevant function calls and other code. It is available 
from the CAPTAIN download web page. 

• The TDCONT module links directly to the book published by Wiley on True 
Digital Control: Statistical Modelling and Non–Minimal State Space Design 
(Taylor et al., 2013). The demos in TDCONT reproduce figures from this book.  

CHAPTER 1 
INTRODUCTION 
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1.2  Use of the CAPTAIN Toolbox 

1. Wherever the CAPTAIN Toolbox has been used to generate results which have then 
been used in any written work, please reference it using the text below: 

Taylor, C.J., Pedregal, D.J., Young, P.C. and Tych, W. (2007) Environmental Time 
Series Analysis and Forecasting with the Captain Toolbox, Environmental Modelling 
and Software, 22, pp. 797-814 (http://dx.doi.org/doi:10.1016/j.envsoft.2006.03.002). 

2. The CAPTAIN Toolbox is supplied in good faith and whilst all efforts have been made 
to assure that it is free from errors and bugs, the authors and Lancaster University 
accept no liability for erroneous results obtained using the Toolbox.  

3. Installation of the CAPTAIN Toolbox is carried out at the user’s own risk and neither 
the authors nor Lancaster University accept any responsibility in the unlikely event of 
installation resulting in detrimental effects to the user's computer hardware or software.  

4. The user may not redistribute the Toolbox to any third party.  

5. Ownership of the Toolbox is retained by the authors. 

6. Any part of the Toolbox may be used for scientific or educational purposes. For 
commercial applications, permission is required from the authors. 

7. The Toolbox is provided without formal support, although questions and bug reports 
can be emailed to the authors. 

1.3  How to Install 

CAPTAIN is usually distributed as a mixture of pre-parsed MATLAB pseudo-code 
(P-files) and conventional M-files. It is organised into three self-contained modules, 
TVPMOD (Time Variable Parameter MODels), RIVSID (Refined Instrumental Variable 
System Identification) and TDCONT (True Digital CONTrol). 

Each module consists of a folder (sub-directory) containing a set of functions, demos and 
help information. Some users may wish to install only one or two of these modules 
depending on their requirements. Each module is independent of the others (although a 
small number of optional demos require more than one module). 

The following instructions assume that MATLAB is already installed. Copy the M- and P-
files to directories where you want the toolbox to reside. For example: 

Program Files\Matlab\Toolbox\rivsid 

Program Files\Matlab\Toolbox\tdcont 

Program Files\Matlab\Toolbox\tvpmod 

Start MATLAB and add each of the above locations to your path. You can use the 
MATLAB addpath function at the Command Line or the MATLAB menu-based user 
interface to do this. Please refer to your MATLAB documentation for more information. 
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1.4  How to Uninstall 

Start MATLAB and remove the CAPTAIN toolbox paths. You can use the rmpath 
command or the menu-based user interface to do this (refer to MATLAB documentation). 
Delete the CAPTAIN toolbox folders and their entire contents. 

1.5  Getting Started 

Once installed, typing captdemo in the MATLAB Command Window displays a short 
introductory message and checks which modules (folders) have been added to the path. 

>> captdemo 
 ... 
 Checking MATLAB path... 
   TVPMOD installed 
   RIVSID installed 
   TDCONT installed 

If this does not work, check that you have correctly added the toolbox locations to your 
MATLAB path. To see a list of command line demos associated with each module, type 
tvpdemo, rivdemo or tdcdemo, as shown below: 

>> tvpdemo 
>> rivdemo 
>> tdcdemo 

In each case, a list of Command Line demonstration scripts is shown in the MATLAB 
Command Window. These are standard scripts (M–files) that can be run by entering their 
name (e.g. dardemo) or opened in the MATLAB editor (e.g. edit dardemo). They 
generally use the Command Window for input and output, as well as generating graphs in 
separate figure windows, so make sure these are visible. 

Experience suggests that one of the most effective ways to get started with CAPTAIN, is to 
examine each Command Line demo in turn and then to adapt these for bespoke projects 
and new data sets. We suggest saving any modified demo scripts under a new filename. 

To obtain a full list of user functions for each module, type help rivsid, help tdcont or 
help tvpmod in the Command Window, replacing rivsid, tdcont or tvpmod if necessary 
with the name of the folder (directory) chosen when you first installed the toolbox. 

>> help rivsid 
>> help tvpmod 
>> help tdcont 

Each function includes help information obtained in the usual manner e.g. help irwsm. 
Default input arguments are shown in parenthesis while (*) implies no default (hence a 
user input argument is always required for this variable). Some functions include more 
information, readable using e.g. type irwsm or edit irwsm (see Chapter 3). 
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1.6  MATLAB and CAPTAIN versions 

CAPTAIN is presently developed for MATLAB R2024a onwards, although some 
backwards compatibility is maintained at the discretion of the authors. 

Note that, because of updates over time to MATLAB and CAPTAIN, you may obtain 
different numerical results compared to the examples below. However, if the results are 
very different, or if the code yields an error message, please inform the authors – it likely 
implies a compatibility problem associated with the latest version of MATLAB, something 
that will hopefully be corrected in a future release of CAPTAIN. 

Finally, please check the help information within MATLAB for the latest calling syntax 
and default values of each function since these may change over time (e.g. help irwsm). 
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CAPTAIN is a MATLAB compatible toolbox for non-stationary time series analysis and 
forecasting. Based around a powerful state space framework, CAPTAIN extends 
MATLAB to allow, in the most general case, for the identification of Unobserved 
Components (UC) models. Here, the time series is assumed to be composed of an additive 
or multiplicative combination of different components that have defined statistical 
characteristics, but which cannot be observed directly. With Maximum Likelihood 
estimation of most models and the inclusion of several popular model forms, such as the 
Basic Structural Model of Harvey (1989) and the Dynamic Linear Model of West and 
Harrison (1989), together with a standard set of data pre-processing, system identification 
and model validation tools, CAPTAIN is a wide-ranging package for signal processing and 
general time series analysis. 

Perhaps uniquely, however, CAPTAIN focuses on Time Variable Parameter (TVP) models, 
where the stochastic evolution of each parameter is assumed to be described by a 
generalised random walk process (Jakeman and Young, 1981). In this regard, the state 
space formulation utilised is particularly well suited to estimation based on optimal 
recursive estimation, in which the time variable parameters are estimated sequentially 
whilst working through the data in temporal order. In the off-line situation, where all the 
time series data are available for analysis, this Kalman filtering operation (Kalman, 1960) 
is accompanied by optimal recursive smoothing. Here the estimates obtained from the 
forward pass filtering algorithm are updated sequentially whilst working through the data 
in reverse temporal order using a backwards-recursive Fixed Interval Smoothing (FIS) 
algorithm (Bryson and Ho, 1969). 

In this manner, CAPTAIN provides novel tools for TVP analysis, allowing for the optimal 
estimation of dynamic regression models, including linear regression, auto-regression 
(Young, 1998b) and harmonic regression (Young et al., 1999). Furthermore, a closely 
related algorithm for state dependent parameter estimation provides for the non-parametric 
identification and forecasting of a very wide class of nonlinear systems, including chaotic 
systems. The identification stage in this process again exploits the recursive FIS algorithms, 
combined with special data re-ordering and ‘back-fitting’ procedures, to obtain estimates 
of any state dependent parameter variations (Young, 2000). 

Of course, in many cases, specifying time invariant parameters for the model yields the 
equivalent, conventional, stationary model. In this regard, one model that has received 
special treatment in the toolbox is the multiple-input, single-output Transfer Function (TF) 

CHAPTER 2 
TOOLBOX OVERVIEW 
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model. CAPTAIN includes functions for robust unbiased identification and estimation of 
both discrete- time (Young, 1984, 1985) and continuous- time (Young, 2002) TF models. 
One advantage of the TF model is its simplicity and ability to characterise the dominant 
modal behaviour of a dynamic system. This makes such a model an ideal basis for control 
system design. 

In the latter regard, the toolbox includes a set of functions for True Digital Control (TDC), 
based on the Proportional-Integral-Plus (PIP) control system design methodology (Young 
et al., 1987; Taylor et al. 2000, 2013). The underlying philosophy of the approach is that 
the entire design procedure, from the identification and estimation of a suitable model 
through to the practical implementation of the final control algorithm, is carried out in 
discrete time. This differs from many conventional digital controllers, where an inherently 
continuous time algorithm is digitised for implementation purposes. Indeed, CAPTAIN has 
been successfully utilised for the design of PIP control systems for many years (selected 
examples include Taylor et al., 2004, 2013; Taylor and Shaban, 2006). 

Some of the estimation algorithms considered here were developed originally in the 
1960/1970/1980’s for the CAPTAIN and microCAPTAIN time series analysis and 
forecasting packages (MS-DOS based). The associated optimisation algorithms were 
developed in the 1980/1990’s and were used in the latest version of microCAPTAIN 
(Young and Benner, 1991). However, the MATLAB implementation is much more flexible 
than microCAPTAIN and includes the latest innovations and improvements to the 
algorithms. Note that the present text refers exclusively to this CAPTAIN Toolbox for 
MATLAB (Taylor et al., 2007, 2018). 

2.1  Modelling Philosophy 

As we look around us, we perceive complexity in all directions: environmental, biological 
and ecological systems, socio-economic systems, and some of the more complex 
engineering systems – they all appear to be complicated assemblages of interacting 
processes, many of which are inherently nonlinear dynamic systems, often with 
considerable uncertainty about both their nature and their interconnections. It is not too 
surprising, therefore, that the mathematical models of such systems, as constructed by 
scientists, social scientists and engineers, are often similarly complex. 

What is perhaps surprising, however, is the apparently widespread belief that such systems 
can be described very well, if not exactly, by deterministic mathematical equations, with 
little or no quantification of the associated uncertainty. Such deterministic reductionism 
leads inexorably to large, nonlinear simulation models which reflect the popular view that 
complex systems must be described by similarly complex models. 

The CAPTAIN toolbox has evolved from a different Data-Based Mechanistic (DBM) 
modelling philosophy, which is almost the antithesis of deterministic reductionism. DBM 
models are obtained initially from the analysis of observational time-series but are 
only considered credible if they can be interpreted in physically meaningful terms. 
It is a philosophy that emphasises the importance of parametrically efficient, low order, 
dominant mode models, as well as the development of stochastic methods and the 
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associated statistical analysis required for the identification and estimation of such models. 
Furthermore, it stresses the importance of explicitly acknowledging the basic 
uncertainty that is essential to any characterisation of physical, chemical, biological 
and socio-economic processes. Previous publications map the evolution of the DBM 
philosophy and its methodological underpinning. Such publications utilise the approach for 
the analysis of numerous natural and man-made systems. An incomplete list includes: 
Beck and Young (1975); Jarvis et al. (1999); Parkinson and Young (1998); Price et al. 
(1999, 2000, 2001); Shackley et al. (1998); Tych et al. (2002); Ye et al. (1998); Young 
(1978, 1981; 1983, 1984; 1985; 1993a, 1993b; 1994; 1998a, 1998b, 1999a, 1999b, 2000, 
2001a, 2001b, 2002); Young and Beven (1994); Young and Lees (1993); Young and 
Minchin (1991); Young and Pedregal (1996; 1997; 1998, 1999a, 1999b); Young et al. 
(1996, 1997, 1999, 2000). 

Naturally, these publications introduce a wide range of modelling tools, encompassing 
various model structures and identification algorithms. However, they can be broadly 
categorised into the four closely related and overlapping themes below. 

1. Many of the tools that underpin the DBM modelling philosophy can be unified in terms 
of the discrete-time UC model. Here, the components may include a trend or low 
frequency component, a seasonal component (e.g. annual seasonality), additional 
sustained cyclical or quasi-cyclical components, stochastic perturbations, a component 
to capture the influence of exogenous input signals and so on. CAPTAIN allows for a 
wide range of such components. 

2. Nonstationary and nonlinear signal processing based on the identification and 
estimation of stochastic models with time varying parameters. In this case, the term 
‘nonstationarity’ is assumed to mean that the statistical properties of the signal, as 
defined by the parameters in an associated stochastic model, are changing over time at 
a rate which is ‘slow’ in relation to the rates of change of the stochastic state variables 
in the system under study. Although such nonstationary systems exhibit nonlinear 
behaviour, this can often be approximated well by TVP (or piece-wise linear) models, 
the parameters of which are recursively estimated. 

3. Further to item 2. above, if the changes in the parameters are functions of the state or 
input variables (i.e. they constitute stochastic state variables), then the system is truly 
nonlinear and likely to exhibit severe nonlinear behaviour. Normally, this cannot be 
approximated in a simple TVP manner; in which case, recourse must be made to 
alternative, and more powerful in this context State Dependent Parameter (SDP) 
modelling methods. 

4. Finally, if the essential small perturbation behaviour of the system can be approximated 
by linearised TF models, then robust unbiased, Refined Instrumental Variable (RIV) 
and Simplified Refined Instrumental Variable (SRIV) algorithms are employed. Here, 
either discrete-time TF models represented in terms of the backward shift operator 
(often denoted in the statistical and engineering literature by either , q, B or L, 
where the latter is utilised in the present text) or continuous-time TF models based on 
the Laplace Transform s-operator are identified and estimated. 

1-z
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In recent versions of CAPTAIN, items 1–3 are addressed by TVPMOD, while item 4 is 
implemented in RIVSID. Finally, the independently developed TDCONT module uses 
discrete-time multivariable TF models obtained from RIVSID for control system design. 

2.2  MATLAB 

MATLAB is a high-performance language published by The MathWorks, Inc., integrating 
computation, visualisation and programming in a single environment (MathWorks, 2017). 
CAPTAIN is a collection of MATLAB functions for the estimation of UC, TVP, SDP and 
TF models, and for PIP control system design. By including additional functions for data 
pre-processing, system identification and model validation, CAPTAIN provides a powerful 
all-round package for the analysis of complex stochastic systems (Taylor et al. 2007, 2018). 
The following sections introduce the three main areas of functionality. 

2.3  TVPMOD: Time Variable Parameter MODels 

Unobserved Components models: CAPTAIN includes a range of UC models, several of 
which are unique to this toolbox. In particular, the Dynamic Harmonic Regression (DHR) 
model, estimated using the function dhr, is very useful for signal extraction and 
forecasting of periodic or quasi-periodic series. This function provides smoothed estimates 
of the series, as well as all its components (trend, fundamental frequency, and harmonic 
components), together with the estimated changing amplitude and phase of the latter. 
Typical applications are for the analysis of periodic environmental and economic time-
series; restoration of noisy signals with gaps or other aberrations; and the evaluation of 
temporal changes in environmental data etc. Furthermore, the same function allows for the 
estimation of the well-known Basic Structural Models (BSM) of Harvey (1989). 

While it is sometimes convenient to categorise the functionality of the toolbox, there is 
considerable overlap between the methodological areas chosen. For example, the DHR 
model is a particular case of the general stochastic TVP model. In this regard, the hyper-
parameters of the model, which define the statistical properties of the time variable 
parameters, need to be estimated in some manner. CAPTAIN provides three approaches, 
all through the function dhropt, namely: Maximum Likelihood (ML) based on prediction 
error decomposition; minimisation of the multiple-steps-ahead forecasting errors; and a 
special frequency domain optimisation, based on fitting the model pseudo-spectrum to the 
logarithm of the Auto-Regression (AR) spectrum. 

An alternative to dhr/dhropt is provided by the pair univ/univopt, which allow for the 
estimation of various additional UC model forms. Here, the trend is extracted from the 
time series and a perturbational component about the trend is modelled as a pure AR 
component. Although they may also be utilised for modelling seasonal series, 
univ/univopt are particularly useful in cases where the periodic behaviour of the 
perturbation about the trend is not very marked. In this case, the models are estimated 
using either standard statistical methods or a sequential spectral decomposition approach 
that has been developed for the toolbox to avoid identifiably problems. 
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Time Variable Parameter models: the class of TVP, or ‘dynamic’, regression models, 
includes: Dynamic Linear Regression (DLR), Dynamic Harmonic Regression (DHR), 
Dynamic Auto-Regression (DAR), Dynamic Auto-Regression with eXogenous variables 
(DARX) and the closely related Dynamic Transfer Function (DTF) model. It should be 
noted that the term ‘dynamic’, which is used to differentiate time variable parameter 
regression models from their standard constant parameter relatives, is somewhat 
misleading, since not all these models are inherently dynamic in a systems sense. However, 
it is a common term in certain areas of statistics (see e.g. West and Harrison, 1989 and the 
references therein) and is retained for this reason. 

CAPTAIN provides functions that allow for the optimal estimation of all these dynamic 
regression models. In each case, Fixed Interval Smoothing (FIS) estimates of the TVPs are 
obtained, under the assumption that the parameters vary as one of a family of generalised 
random walks namely: Random Walk (RW); Integrated Random Walk (IRW); Smoothed 
Random Walk (SRW); and Local Linear Trend (LLT). The associated filtering and FIS 
algorithms are accessible via shells, namely the functions dlr, dhr, dar, darx and dtfm. 
Since the regressors are freely defined by the user, the most flexible toolbox function for 
TVP analysis is dlr, which can include all the remaining models as special cases. The other 
functions all restrict the model to the most commonly used forms. For example, dhr 
automatically constrains the regressors to model harmonic components. As one of the key 
tools for estimating UC models, it has already been discussed above. 

At this juncture, it is worth pointing out that CAPTAIN includes the functions mar and 
arspec for Auto-Regression (AR) model and spectrum estimation. However, in the context 
of dynamic regression, dar and darsp are instead useful for evaluating changing signal 
spectra and time-frequency analysis based on DAR models, since they provide the AR 
spectrum at each point in time based on the locally optimum time variable AR parameters. 

Further to this, darx is an extension of the DAR model to include measured eXogeneous or 
input time series that are thought to affect the output, while dtfm augments the model in 
order to allow for coloured noise in the output signal. The latter function employs 
instrumental variables in the solution to ensure that the parameter estimates are unbiased. 
In this manner, the functions darx and dtfm are truly dynamic in a systems sense and form 
a link between the dynamic regression analysis considered here and the dedicated TF 
modelling component of the toolbox discussed in the next section. 

In the case of dlr, dar, darx and dtfm, the Noise Variance Ratio (NVR) and other hyper-
parameters, which define the statistical properties of the TVP’s, are optimised via ML 
based on prediction error decomposition. The relevant toolbox functions are dlropt, 
daropt, darxopt and dtfmopt. Hence, in comparison with most other algorithms for TVP 
estimation, the main innovations in CAPTAIN are this automatic hyper-parameter 
optimisation, the provision of FIS rather than the filtered TVP estimates, and the various 
special uses outlined above. 

State Dependent Parameter models: the approach to TVP estimation discussed above 
works very well in situations where the parameters are slowly varying when compared to 
the observed temporal variation in the measured system inputs and outputs. Although such 
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models are nonlinear systems, since the same inputs, injected at different times, will elicit 
quite different output responses, the resultant nonlinearity is mild. It is only when the 
parameters are varying at a rate commensurate with that of the system variables themselves 
that the model behaves in a heavily nonlinear or even chaotic manner. For such cases, 
CAPTAIN includes a novel algorithm for state dependent parameter estimation, sdp, 
allowing for the non-parametric identification and forecasting of a very wide class of 
nonlinear systems. 

Specifying time invariant parameters for the above TVP models usually yields the 
equivalent stationary time series model. In this manner, many of the functions above may 
be utilised to estimate either the well-known conventional model or the more sophisticated 
TVP version, depending on the input arguments chosen. 

System identification is inherent to the modelling approach utilised by most of the 
functions already discussed. Identification tools not yet mentioned include, for example, 
acf to determine the sample and partial autocorrelation function; ccf for the sample cross-
correlation; period to estimate the periodogram; and statist for some sample descriptive 
statistics. Furthermore, del generates a matrix of delayed variables, fcast may be employed 
to prepare data for forecasting and interpolation, and irwsm is used for smoothing, 
decimation or for fitting a simple trend to a time series. These examples complement 
various other included auxiliary functions (see toolbox help for details). 

2.4  RIVSID: Refined Instrumental Variable System Identification 

Multi-Input Transfer Function models: although there are numerous algorithms for 
estimating TF models, the primary technique employed in CAPTAIN, is the least squares- 
based instrumental variable approach. Here, an adaptive auxiliary model is introduced into 
the solution to avoid parameter bias and to optimally filter the data, so making the 
estimation more statistically efficient. CAPTAIN provides the recursive and en-block RIV 
algorithms, as well as more conventional least squares-based approaches, primarily 
through the functions rivbj (for discrete-time systems) and rivcbj (continuous-time). Both 
these functions return the modelling results in the form of a special matrix from which the 
various parameters and standard errors may be extracted using getparbj. Such parameters 
are subsequently be utilised for simulation and forecasting through conventional MATLAB 
commands like filter, or by using Simulink (MathWorks, 2017). 

For a given physical system, an appropriate structure first needs to be identified, i.e. the 
most appropriate values for the time delay and the orders of the numerator and 
denominator polynomials in the TF. In this regard, CAPTAIN utilises two functions, 
namely rivbjid (discrete-time) and rivcbjid (continuous-time), which provide numerous 
statistical diagnostics associated with the model. These include the Coefficient of 
Determination , based on the response error, which is a simple measure of model fit; 
and the more sophisticated Young Identification Criterion (YIC), which provides a 
combined measure of fit and parametric efficiency. 

Since 2007, CAPTAIN has allowed for the estimation of TF models with an auto-
regressive, moving average (ARMA) noise component, i.e. full Box-Jenkins (BJ) models. 

2
TR
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The functions for TF modelling listed above allow for such BJ models (or simpler models 
as special cases using the input arguments). However, older CAPTAIN algorithms that are 
limited to an AR noise model are still included for backwards compatibility (with long 
time users of the toolbox) and sometimes as a back-up option. These functions are called 
riv/rivid, rivc/rivcid and getpar. 

Finally, the toolbox includes various data preparation and auxiliary functions, including, 
for example, prepz to prepare data for input-output modelling and prbs for generating a 
Pseudo Random Binary Signal (PRBS), among others. 

2.5  TDCONT: True Digital CONTrol (TDC) 

True Digital Control: following the identification of a suitable discrete-time time TF 
model, PIP control systems are determined using either the pip or pipopt functions, for 
pole assignment or linear quadratic optimal design respectively. These functions are for the 
single input, single output (SISO) case, while mpipdc and mpiplq are used for 
multivariable PIP control design (for which mtf2mfd is used to convert a multivariable TF 
into the required Matrix Fraction Description). Furthermore, dlrqrf provides direct access 
to the iterative linear quadratic regulator solution for either the SISO or multivariable cases; 
while tdclib is the Simulink library for various PIP control structures, including the 
conventional feedback form and an alternative forward path approach. 

The PIP approach is based on the definition of Non-Minimal State Space (NMSS) models, 
using either nmss (SISO) or mfd2nmss (multivariable), so that full state variable feedback 
control can be implemented directly from the measured input and output signals of the 
controlled process. The PIP controller can be interpreted as a logical extension of 
Proportional-Integral-Derivative (PID) control, with additional dynamic feedback and 
input compensators introduced automatically, when the process has second order or higher 
dynamics, or pure time delays greater than one sampling interval. 

Finally, the TDCONT module includes several auxiliary functions and tools for designing 
other types of control system, including delta operator design (dpip), Monte Carlo 
simulation (mcsim) and Generalised Predictive Control (gpc). 
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The following examples aim to provide a brief illustration of toolbox functionality for 
users already familiar with the methodology, or at least to introduce some of the ideas to 
the open-minded reader who is not. In this regard, formal stochastic descriptions of the 
models are omitted from this Getting Started Guide. 

Installation instructions and conditions of use are given in Chapter 1. It is assumed that all 
three modules, RIVSID, TDCONT and TVPMOD are installed. Since CAPTAIN is largely 
a command line toolbox, it is also assumed that the reader is already familiar with basic 
MATLAB usage, such as loading data, plotting graphs, and writing simple M-files. In 
addition to books and on-line resources, there is extensive support and examples available 
from within the software. Hence, for brevity, the straightforward MATLAB code to label 
the plots and set the axis limits etc. is not necessarily shown in the examples below. 

Example 3.1  IRW smoothing of the airline passenger series 

To plot the well-known airline passenger series (e.g. Box and Jenkins, 1970), enter the 
following text at the MATLAB Command Window prompt, 

>> load air.dat 
>> plot(air) 
>> title('thousands of passengers per month (1949-1960)') 

These data are included in the TVPMOD module for demonstration purposes, in a standard 
text file. If an error occurs, then check that you have correctly added the toolbox location 
to your MATLAB path. 

We will smooth these data using irwsm. In general, the brief calling syntax for each 
function in CAPTAIN is obtained by entering its name without any input arguments: 

>> irwsm 
 
  irwsm  Integrated Random Walk smoothing and decimation 
  
  [ys,deriv,fitse,trse,derivse,y0,PkN,ers,ykk1,er]=... 
                                        irwsm(y,TVP,nvr,Int,dt,delt) 
 

CHAPTER 3 
EXAMPLES TO 
GET STARTED 



13 
 

More information is provided using the standard help command, as illustrated below. In 
this case, each input argument is described in turn, followed by the output arguments and 
any other information. 

>> help irwsm 
 
  irwsm  Integrated Random Walk smoothing and decimation 
  
  [ys,deriv,fitse,trse,derivse,y0,PkN,ers,ykk1,er]=... 
                                        irwsm(y,TVP,nvr,Int,dt,delt) 
  
  y: Time series (*) 
  TVP: Model type (RW=0, IRW=1, DIRW=2) (1) 
  nvr: NVR hyper-parameter (1605*(1/(2*dt))^4) 
  Int: Vector of variance intervention points (0) 
  dt: decimation rate (1) 
        with dt>1 only the following returned arguments 
        are decimated: ys, deriv, fitse, trse, derivse, y0 
  delt: sampling rate (1) 
 
  ys: Decimated (or simply smoothed if dt=1) series 
  deriv: Derivatives 
  fitse: Standard error of model fit (including observation noise) 
  trse: Trend (state) standard error 
  derivse: standard error of the remaining states (trend derivs.) 
  y0: Interpolated data 
  ... 

The on-line help messages in CAPTAIN are deliberately concise. This is so that an 
experienced user can find information quickly. However, some functions include 
supplementary information, readable using: 

>> type irwsm 

The supplementary information can also be examined by opening the m-file in an editor 
and scrolling down to find it: 

>> edit irwsm 

In the help information, default values for any optional inputs are given in brackets, whilst 
any necessary inputs, such as the data vector y above, are listed with an asterix (*). In this 
case, the default TVP = 1 implies the following model based on an IRW model plus noise, 

  (3.1) 

  (3.2) 

where  is the time series,  is the smoothed signal at sample t, returned by irwsm as the 
first output argument, and  and  are their values at the two previous samples, 
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respectively. Here,  is effectively a time variable parameter, whose stochastic evolution 
in the form of an IRW is described by equation (3.2). Finally,  and  are independent 
zero mean white noise sequences with variance  and , representing the system 
disturbances and measurement noise respectively. This Getting Started Guide omits a full 
explanation of this model and the associated state space form used for estimation: see 
additional toolbox documentation for details. 

Empty variables [ ] may be used to indicate default values when a mixture of defaults and 
user specified arguments are required. For example, a smoothed trend is fitted to the airline 
passenger series as follows, 

>> load air.dat 
>> t = irwsm(air, [], 0.0001);  % equivalent to t = irwsm(air, 1, 0.0001) 
>> plot([air t]) 
 

The plot compares the smoothed and original series, as illustrated in Fig. 3.1. Note that the 
3rd input argument to irwsm specifies the associated Noise Variance Ratio (NVR) hyper-
parameter. Defined here as , this variable is closely related to the 
bandwidth of the filter. Try using values of e.g. 0.1 and 0 for this fourth input argument. 

 

Figure 3.1  Thousands of airline passengers per month (1949-1960) and IRW trend. 

Example 3.2  Interpolation of advertising data using DLR 

Dynamic Linear Regression or DLR provides an excellent vehicle for the analysis of data 
in areas such as economic, business and social data, where regression analysis is a popular 
method of modelling relationships between variables and where these relationships may 
change over time. By contrast, Tsitsimpelis et al. (2024) describes a recent example of 
DLR modelling in connection to radiation detection. 

tT
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Figure 3.2  Scaled advertising data plotted against an arbitrary fixed sampling rate. 

Top: response to advertising. Bottom: expenditure on advertising. 

Consider the following straightforward demonstration from the toolbox, which examines 
the relationship between a particular company’s expenditure on advertising and their 
measure of the public’s response to this expenditure, as illustrated in Figure 3.2. 

For the purposes of the example, these confidential data have been scaled in an arbitrary 
manner, so no units are given in the plots. The output response data are in the range 0-1, 
where a larger number implies a more successful response to the advertising. The response 
data contain missing values, represented in MATLAB by special Not-a-Number or nan 
values and forming gaps in the top plot of Figure 3.2. The filtering and smoothing 
algorithms implemented in CAPTAIN automatically account for these. 

For a preliminary analysis of these data, we will utilise the following model, 

   (3.3) 

where  is the response and  is the expenditure, while  and  are the time variable 
parameters. Finally,  is a serially uncorrelated and normally distributed Gaussian 
sequence with zero mean value and variance . Note that a full description of the general 
DLR methodology and state space model is omitted from this Getting Started Guide. 

For constant parameters  and , equation (3.3) takes the form of a conventional 
regression model based on the equation of a straight line. However, here we utilise dlropt 
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to determine if the optimal values of the parameters, in a ML sense, in fact vary over time. 
In this regard, assuming a default random walk model for each of the parameters, the 
associated NVR hyper-parameters are estimated as follows, 

>> load adv.dat 
>> u = adv(:, 1);  % expenditure 
>> y = adv(:, 2);  % response 
>> z = [ones(size(u)) u];  % regressors 
>> nvr = dlropt(y, z) 
nvr = 
    0.0078 
    0.0000 

While dlropt is running, a window may briefly appear on screen indicating the 
optimisation algorithm being utilised, together with an update of the Log-Likelihood – this 
window indicates that the optimisation is in progress. 

Default values for the toolbox have been carefully chosen to be as widely applicable as 
possible. In the present case, the default initial conditions and optimisation settings should 
converge to a solution without any problem, hence only the first two input arguments are 
required and the Log-Likelihood window quickly disappears on a modern computer. 

From this analysis, it appears that the  level or trend parameter varies significantly over 
time (NVR = 0.0078), while the  slope parameter is relatively time invariant and has an 
NVR value close to zero. To determine the fit and parameters, 

>> [fit, fitse, par] = dlr(y, z, [], nvr); 
 

By default, dlr assumes NVR’s of zero, so the 4th input argument above is necessary to 
specify the previously optimised values. The 3rd input argument selects the model type: in 
this case, empty brackets imply the default random walk model. Examination of the 
parameters, returned as the first and second columns of par, show how these evolve 
gradually over time (not plotted here). The model fit and associated standard errors are 
shown in Figure 3.3, which is obtained using the code below, 

>> plot(y, 'o')  
>> hold on 
>> plot(fit) 
>> plot(fit+2*fitse, ':') 
>> plot(fit-2*fitse, ':') 

tT
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Figure 3.3  Scaled response to advertising plotted against an arbitrary fixed sampling rate. 

Data (circles), DLR fit (solid) and standard errors (dashed). 

It is clear from Figure 3.3 that the data all lie within the standard error bounds. Note also 
that no user intervention was required to interpolate over the missing response data: both 
fit and par apply over the entire time series. Refer to the on-line help for a full list of 
optimisation settings and output arguments. For example, dlr can return the interpolated 
output y0, consisting of the original series with any missing data replaced by the model fit. 

Example 3.3  Transfer Function model estimation using RIV 

Many control systems, both classical and modern, are analysed by means of TF models. 
Indeed, CAPTAIN has been successfully utilised for the design of control systems for 
many years, particularly with regards to the development of PIP control methods (see 
Taylor et al. 2013 for numerous examples). One practical application is concerned with 
forced ventilation in animal houses (Taylor et al., 2004). Here, uncontrolled response data 
are first collected to identify the dominant dynamics of the fan. 

For a particular test installation at the Katholieke Universiteit Leuven, the SRIV algorithm, 
combined with the  and YIC identification criteria, reveal that a first order model with 6 
seconds time delay provides the best estimated model and most optimum fit to the data 
across a wide range of operating conditions. In a typical experiment, based on a 2 second 
sampling rate, the SRIV algorithm yields the following difference equation, 

  (3.4) 

where  is the airflow rate (m3/h) and  is the applied voltage to the fan expressed as a 
percentage. Equation (3.4) shows that the output variable , is a simple linear function of 
its value at the previous sample and the delayed input variable. Equation (3.4) may 
alternatively be represented in terms of the backward shift operator L, i.e. , by 
the following discrete-time TF model, 

  (3.5) 
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The response of the model (3.5) closely follows the noisy measured data, as illustrated by 
Figure 3.4. These data are included with CAPTAIN for demonstration purposes and the 
associated MATLAB commands for estimating the model are shown below. 

>> load vent.dat 
>> [z, m] = prepz(vent, [], 25); 
>> [th, M, D, stats, e] = rivbj(z, [1 1 3 0 0]); 
>> [at, bt] = getparbj(th) 
at = 
    1.0000   -0.4382 
bt = 
         0         0         0   79.7697 
>> rt2 = stats(3) 
rt2 = 

0.9871 
>> subplot(211); plot([z(:, 1) z(:, 1)-e]+m(1)) 
>> subplot(212); plot(z(:, 2)+m(2)) 

Here, the experimental data are organised into matrix form, with the first column of vent 
consisting of the output variable , and the second the input variable . The function 
prepz is utilised to prepare the data for modelling. The 3rd input argument subtracts the 
mean of the first 25 samples from the data in order to remove the baseline from the series. 
Such data pre-processing sometimes yields better results in the context of TF model 
estimation. 

The TF is estimated using rivbj, where the second input argument defines the model 
structure: in this case, 1 denominator parameter, 1 numerator parameter, 3 samples time 
delay and no model required for the noise. Refer to the function help information for a full 
description of the TF modelling tools and the syntax required. In particular, note that 
MISO and continuous-time models are also possible, while additional functions allow for 
the identification of the most appropriate model structure. 

The first output argument, th, is a matrix containing information about the TF model 
structure, the estimated parameters and their estimated accuracy. In this case, getparbj is 
utilised to extract the required parameter estimates for later control system design. Note 
that these parameter vectors include the leading unity of the TF denominator, and that the 
time delays are represented as zero valued elements in the numerator. 

CAPTAIN has some (limited) compatibility with the data objects used by the MATLAB 
System Identification Toolbox, which may be of value to some users. For the present 
example, the 2nd and 3rd output arguments from rivbj provide the estimated model and 
data objects, M and D respectively – these are returned as empty if the System 
Identification Toolbox is not installed. 

 

ty tu



19 
 

 
Figure 3.4  Top: ventilation rate (m3/h) and response of the identified TF model (thick trace) 

Bottom: applied voltage to the control fan expressed as a percentage. 

The second output argument, stats, lists nine statistical diagnostics associated with the 
model, including , implying that the model describes nearly 99% of the 
variation in the data. Finally, the modelling errors are returned as the variable e and are 
used in the code above to compare the TF response with the original data, as shown in 
Figure 3.4. In this graph, the baseline is returned to the series. The built-in MATLAB 

function filter may also be employed to simulate the TF response using these parameter 
vectors. This is useful for simulation and (if estimates of the future input variable are 
available) forecasting purposes. 

Long-time users of the toolbox might have used riv and getpar to model such data, as 
follows: 

>> [th, stats, e] = riv(z, [1 1 3 0]); 
>> [at, bt] = getpar(th) 

These functions are included for backwards compatibility but are not in current 
development. For this demonstration, in which a noise model is not required, they yield 
similar results to rivbj and getparbj. 
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Example 3.4  PIP Control Design and Simulation 

Consider again the ventilation system introduced by Example 3.3 and the associated TF 
model (3.4) or (3.5). The digital control algorithms developed below require that the model 
has at least one sample pure time delay and that the first element of the denominator 
polynomial is unity. For these reasons, the model will be defined in MATLAB as follows: 

>> a=-0.4382        % denominator polynomial with leading unity removed 
>> b=[0 0 79.7697]  % numerator with one sample time delay removed 

Help messages for functions in the TDCONT module often refer to this ‘truncated form’ of 
the TF polynomials. For the present example, the NMSS model is defined by the non-
minimal state vector, , in which  is the integral-of-error between the 
reference or command input  and the sampled output i.e. . The reader is 
directed to one of the many articles on PIP control for details of the design approach; see 
e.g. Taylor et al. (2000, 2004, 2013) and the references therein. The commands below 
specify closed-loop poles for the ventilation system and plot the time response. For this 
example, the poles have been arbitrarily chosen within the unit circle on the complex 
z-plane as follows: 0.5,  and 0.7. 

>> k = pip(a, b, [0.5 0.6+0.1i 0.6-0.1i 0.7]);         % control gains 
>> [acl, bcl, bclu] = pipcl(a, b, k);                  % closed-loop TF 
>> r = zeros(100, 1);  r(10:59) = ones(50, 1)+1000;    % command input 
>> y = filter(bcl, acl, r); subplot(211); plot([y r])  % output variable 
>> u = filter(bclu, acl, r); subplot(212); plot(u)     % input variable 

The output argument of the pole assignment algorithm, pip, is the control gain vector. 
Linear quadratic design is achieved using pipopt instead, for which the input arguments 
specify weights on the integral-of-error state, input states and output states. In the code 
above, pipcl determines the closed-loop TF i.e. the relationships between  and the input 
or output variables. The MATLAB function filter uses these to evaluate the time response, 
as illustrated in Figure 3.5. To confirm that the closed-loop poles are those expected: 

>> roots(acl) 
ans = 
   0.7000           
   0.6000 + 0.1000i 
   0.6000 - 0.1000i 
   0.5000 

1 2[ ]Tt t t t ty u u z- -=x tz
tr 1t t t tz z r y-= + -

i1.06.0 ±

tr
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Figure 3.5  Top: ventilation rate command input and simulated closed-loop response (thick trace). 

Bottom: simulated applied voltage expressed as a percentage. 

The function pipgains returns the control polynomials if desired: 

>> [fpip, gpip, kpip]=pipgains(a, b, k) 
fpip = 
    0.00024 
gpip = 
    1.0000    -0.9618    0.3385 
kpip = 
    0.00032 

In this case, the proportional gain , the denominator of the input filter 
 and the integral gain . This brief example omits 

many details, including the block diagram form of the PIP controller. The included demos 
in the toolbox provide MATLAB code for reproducing almost all the examples in the book 
by Taylor et al (2013). The book provides a tutorial introduction to multivariable state 
space control system design with numerous worked examples, block diagrams, and 
guidance on the practical implementation of the control systems developed. 

If the ubiquitous Simulink extension to MATLAB is installed, then it is often more 
convenient to use this package rather than pipcl and filter for closed-loop simulation. The 
CAPTAIN toolbox library for Simulink, tdclib, includes various PIP control structures. 

>> tdclib 
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Using Simulink, it is relatively straightforward to investigate the response to disturbance 
inputs and other practical issues. For example, if a high order, nonlinear simulation model 
is available, PIP control can be evaluated using this model (e.g. Taylor and Shaban, 2006). 

3.4  Concluding Remarks 

Some of the models and algorithms discussed here have been in constant use within 
MATLAB for over 40 years, and for even longer via earlier code. The toolbox authors 
hope that CAPTAIN will allow interested researchers to add to the ever-expanding 
list of successful applications, which already includes time series analysis, forecasting 
and control of numerous biological, medical, engineering, environmental and socio-
economic processes. 
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