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“The mysteries of the trade become no mysteries; but are as it were in the air…” 

Alfred Marshall (1920), Principles of Economics, 8th Edition, p.225.  

 

1. INTRODUCTION 

 

Since at least Marshall (1920) it has been argued that forces of agglomeration may lead to the 

formation of industrial clusters, and by extension, cities. As has been discussed in greater detail 

elsewhere (Krugman, 1991, Fujita et al, 1999), Marshall identified three reasons for the spatial 

concentration of economic activity: knowledge spillovers, thick markets for specialised skills, 

and the backward and forward linkages associated with large local markets. Because of the 

presence of knowledge spillovers, cities are not only the centre of economic activity, but also 

the focal point of innovative activity. Indeed, if it is argued that innovative activity makes use 

of all three of Marshall’s external economies, then innovative activity should be even more 

concentrated than economic activity in general. Anecdotal evidence supports this idea; for 

instance, in 2008 Tokyo had 27 percent of Japan’s population, but 32.3 percent of GDP, and 

34.3 percent of the number of patents. 

 

This paper explores the distribution of patenting activities across cities, the persistence and 

growth of patenting in cities, and the determinants of patenting activity. In so doing, we make 

use of methods developed for the analysis of city populations, and city population thus acts as 

a useful benchmark to compare with patents. We use a sample of 218 cities from OECD 

countries, from 2000 to 2008, and obtain three main results. First, patenting is more unevenly 

distributed across cities than population or GDP. Second, patenting is less persistent than both 

population and GDP, especially in the middle of the distribution. Third, even after controlling 

for the endogeneity of some explanatory variables, the number of patents is positively 
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associated with GDP and population density. Taken together our results suggest that it may be 

possible for policymakers to implement policies that encourage innovation in cities.  

 

Usually in this literature the analysis is performed using a sample of cities within a country. 

One reason for this is that different countries may have different institutional settings, which 

may influence the distribution of innovative activity in the country. Our use of data for cities 

across OECD countries may be defended along the following lines. First, we focus on 

innovations, and innovators are often highly skilled, footloose people, who may be more likely 

to move across international borders. In this context, the cities in the sample are the largest 

cities in each country with a minimum population of 500,000, so may be viewed as substitutes 

(even if imperfect) by innovators. Second, some of the theoretical literature on city systems 

(for instance, Gabaix, 1999) shows that, if each region or country follows Zipf’s Law (which 

in turn arises from Gibrat’s Law), then the overall distribution will follow Zipf’s Law as well. 

Hence, using a larger geographic region as the sample should not materially influence the 

analysis. Indeed, we are unable to reject the null hypothesis that Gibrat’s Law of proportional 

growth holds for patents, thus suggesting that the mechanism identified by Gabaix (1999) may 

apply in our sample. Third, in estimating the determinants of innovative activity, we make use 

of methods which control for unobserved city-specific effects, so institutional frameworks 

which are different across countries should not influence the results.  

 

This paper is related to three strands of literature. First, the literature on the production of 

knowledge in cities is discussed in Audretsch and Feldman (1996, 1999) and has been surveyed 

in Audretsch and Feldman (2004). This line of research is mainly focussed on the impact of 

industrial concentration and diversity on the productivity of R&D (“spillovers”). A closely 

related line of work in Glaeser et al (1992, 1995) investigates the effects of different industrial 
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composition on economic growth in cities. Unlike this literature, our focus is not on R&D 

spillovers, but rather on the distribution of innovation across cities, and the factors that may 

explain the distribution.  

 

There is an associated branch of the literature which examines innovative and creative activities 

in cities. This includes OhUallachain (1999), Berry and Glaeser (2005), Bettencourt et al (2007, 

2010), and Strumsky and Thill (2013). However, much of this literature focuses on US cities, 

and is primarily interested in describing the distribution of innovative activity across cities. In 

the present paper, we use an international dataset comprising the largest cities in the OECD, 

thus allowing us to see whether any trends that we observe operate across national boundaries. 

In addition, whilst we are also interested in how innovative activity is distributed across cities, 

we extend the analysis to consider the persistence and evolution of innovative activity over 

time.  

 

Methodologically, since the paper presents evidence on the distribution and growth of 

innovation in cities, it is related to the literature on the size distribution and growth of cities, as 

discussed in Gabaix and Ioannides (2004), Eaton and Eckstein (1997), Black and Henderson 

(2003), Dobkins and Ioannides (1999, 2001), Ioannides and Overman (2001, 2003, 2004), Soo 

(2005, 2007), and Bosker et al (2008). On the distribution of innovation in cities, we make use 

of the concept of Zipf’s Law (Zipf, 1949), that the size of cities follows a Pareto distribution. 

Gabaix and Ibragimov (2011) develop a simple way of improving the performance of OLS 

estimates of Zipf’s Law. On the persistence of innovation in cities, we make use of the concept 

of transition probability matrices. Finally, on the growth of innovation over time, we make use 

of both parametric and non-parametric approaches to describe the growth patterns of 

innovation, and the determinants of innovative growth.  



4 
 

 

The next section discusses the data used in this paper. This is followed in Section 3 by the 

analysis of the distribution of innovative activity, in Section 4 by the persistence of innovative 

activity, in Section 5 by the growth of innovative activity, and in Section 6 by the determinants 

of innovative activity. Because of the wide range of methods used, they will be discussed within 

each section to maximise clarity. The final section concludes.   

 

2. DATA 

 

The data is obtained from the OECD Metropolitan Database, which contains data for metro 

areas with a population of 500,000 or more across OECD countries. Metro areas are defined 

following a harmonised functional definition developed by the OECD in OECD (2012). This 

is important, since studies using data across countries can be affected by the fact that the data 

may not be defined consistently across countries. We avoid this by using data from the OECD 

Metropolitan Database. There are a total of 275 cities from 28 OECD countries. Patent data is 

available for 218 metro areas from 16 countries from 2000 to 2008, and represents a count of 

the number of patent applications by the city of the inventor1. The dataset also includes other 

variables, such as population, geographical and administrative information, labour markets, 

and GDP (measured in US$ in constant prices and constant PPPs with a base year of 2005).  

 

< Place Table 1 here > 

< Place Table 2 here > 

 

Table 1 shows the distribution of cities across countries in the data. Most major OECD 

countries are represented, with the notable exceptions being Canada, Korea, Spain and the 
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United Kingdom, for which patent data are not available. Table 2 reports the correlation 

between patenting activity, economic activity as measured by GDP, and population in our 

sample, for 2008. There is high correlation between all three variables; large cities are also 

cities with lots of economic activity, and lots of innovative activity. Figure 1 graphically 

represents the same information as in Table 22.  

 

< Place Figure 1 here > 

< Place Table 3 here > 

 

Table 3 presents the ten cities with the largest number of patents in 2008, along with their 

population and GDP, with their 2000 ranks in parentheses. Although in general the cities with 

the most patents also have the most population and the highest GDP, there are some anomalies. 

For instance, San Francisco is associated with Silicon Valley, and has a larger number of 

patents than would be predicted by its population or GDP. Similarly, Boston is associated with 

biotechnology and the IT cluster of Route 128, while San Diego is a centre for biotechnology 

and communications technology. Two other features of Table 3 are noteworthy. First, 

comparing rankings between 2008 and 2000 shows that populations are persistent over time, 

whereas GDP and patents are less so; we shall return to this in Section 4 below. Second, cities 

in the United States dominate the table, occupying seven of the top ten patenting cities in 2008; 

the equivalent number in 2000 was five of the top ten from the United States. This emphasises 

the United States’ dominance in innovation, although it may be partially driven by cities in 

countries which have been omitted from our sample due to lack of data, for instance London 

and Seoul.  
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3. THE DISTRIBUTION OF INNOVATIVE ACTIVITY 

 

In this section we compare the distribution of patents across cities with the distribution of 

population and economic activity. If the idea behind Marshall’s external economies is correct, 

then we would expect that patents are going to be more highly concentrated than economic 

activity in general, and that economic activity is in turn going to be more highly concentrated 

than population.  

 

< Place Table 4 here > 

 

A simple way to compare the distribution of the three variables is to compare the standard 

deviations of the natural logs of the variables. This is reported in Table 4, where it is clear that 

population has the smallest standard deviation, followed by GDP and patents. That is, as 

predicted by Marshall’s theory, patents are more concentrated in a small number of cities than 

economic activity and population. Figure 2 plots the coefficient of variation (standard deviation 

divided by the mean) over time for the three variables. Not only does Figure 2 show the same 

patterns as in Table 4, in addition it shows that the coefficient of variation of patenting is 

decreasing over time, unlike for population and GDP, which have remained fairly constant over 

the time period of Figure 2. This suggests that patents are becoming less concentrated over 

time. Figure 3 plots the kernel density functions for the three variables in 2008 (in natural logs), 

using an Epanechnikov kernel and the Silverman (1986) rule of thumb bandwidth. This figure 

again shows the greater dispersion of patents compared to the other two variables, which 

indicates greater concentration of patents in the cities which undertake the most patenting.  

 

< Place Figure 2 here >  
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< Place Figure 3 here >  

 

An alternative way of comparing the distribution of these variables, which has been popular in 

the city size literature, is to use Zipf’s Law, which states that the size distribution follows a 

simple Pareto distribution with shape parameter equal to 1. To operationalise this idea, let:  

𝑅𝑅 = 𝐴𝐴𝑆𝑆−𝛼𝛼,      (1) 

where 𝑅𝑅 is the rank of a city in terms of its size (with the largest city being ranked 1), 𝑆𝑆 is the 

size of the city used in constructing 𝑅𝑅, and 𝐴𝐴 and 𝛼𝛼 are parameters. Taking natural logs of 

equation (1) and adding a random error term 𝜖𝜖 gives:  

ln𝑅𝑅 = ln𝐴𝐴 − 𝛼𝛼 ln 𝑆𝑆 + 𝜖𝜖.     (2) 

Thus the Zipf’s Law prediction is that there is a linear relationship between the natural log of 

the rank and the natural log of the size. The parameter 𝛼𝛼 is a measure of the inequality of the 

distribution; the larger is 𝛼𝛼, the more equal is the distribution across cities.  

 

< Place Figure 4 here > 

 

Figure 4 plots the scatter diagram of the rank of a city versus its size as measured by population, 

GDP and number of patents, for 2008, on a log scale with the largest value normalised to 1. 

The figure shows that, whilst there appears to be a roughly linear relationship between log of 

rank and log of population, there is pronounced curvature for GDP and especially for patents. 

Another observation that can be made from Figure 4 is that, overall, population is more equally 

distributed than GDP, which in turn is more equally distributed than patents. If Marshall’s 

external economies argument is correct, then this is what we would expect; that larger cities 

are more productive than smaller cities, and this is especially true for innovative activity where 
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proximity to other innovating agents will yield greater external economies than other types of 

economic activity.  

 

Gabaix and Ioannides (2004) show that OLS estimation of equation (2) leads to biased results, 

while Gabaix and Ibragimov (2011) show that a simple way to improve OLS estimation of 

equation (2) is instead to estimate the following equation:  

ln �𝑅𝑅 − 1
2
� = ln𝐴𝐴 − 𝛼𝛼 ln 𝑆𝑆 + 𝜖𝜖,     (3) 

with the standard error of 𝛼𝛼 being given by (2 𝑛𝑛⁄ )1 2⁄ 𝛼𝛼, where 𝑛𝑛 is the number of cities. The 

results of estimating equation (3) for each year for population, GDP and patents are presented 

in Table 5, which reports the values of 𝛼𝛼. Comparing across the three variables, the coefficients 

for population are always larger than for GDP, which in turn are always larger than for patents. 

This confirms the visual inspection of Figure 4 discussed above; population is the most equally 

distributed across cities, followed by GDP, with patents being the most unequally distributed.  

 

< Place Table 5 here >  

 

Comparing the coefficients across time, the coefficient for population is almost constant over 

time. The coefficient for GDP shows greater variation over time (although part of the variation 

is driven by data availability), while the coefficient for patents shows the greatest variation 

over time. Especially for patents, there appears to be a trend of rising coefficients, which 

indicates that patenting activity is becoming more dispersed over time. This may indicate that 

the Marshallian external economies in innovative activity are becoming weaker over time, 

perhaps in response to developments in communication technology, and supports the analysis 

using the coefficient of variation in Figure 2. In terms of Zipf’s Law (the hypothesis that 𝛼𝛼 =

1), for this sample of cities, Zipf’s Law holds for GDP, but not for population and patents. City 
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populations are more equal in size than would be predicted by Zipf’s Law, whereas patents are 

less equally distributed than the Zipf’s Law prediction3.  

 

4. THE PERSISTENCE OF INNOVATIVE ACTIVITY 

 

In this section we examine how persistent is innovative activity, relative to population and 

GDP. We make use of transition probability matrices first introduced into the economic growth 

literature by Quah (1993), and used in the city population literature by Eaton and Eckstein 

(1997), Dobkins and Ioannides (2000), and Black and Henderson (2003). We group the sample 

of cities into ten cells in each year. Let 𝐹𝐹𝑡𝑡 be a 10 × 1 vector which denotes the distribution of 

sizes across cities at time 𝑡𝑡. Assume that 𝐹𝐹𝑡𝑡 evolves according to:  

𝐹𝐹𝑡𝑡+1 = 𝑀𝑀𝐹𝐹𝑡𝑡,      (4) 

where 𝑀𝑀 is a 10 × 10 transition probability matrix, mapping the assignment from period 𝑡𝑡 into 

an assignment in period 𝑡𝑡 + 1. Following Dobkins and Ioannides (2000), we define the vector 

𝐹𝐹𝑡𝑡 based on the deciles of the distribution4. Since we have data from 2000 to 2008, and since 

population changes only slowly, we present results for the 8-year transition matrix between 

2000 and 20085.  

 

< Place Table 6 here >  

 

Table 6 presents the results, arranged so as to make the comparison between the three variables 

(population, GDP and patents) as clear as possible. Overall, patents exhibit less persistence 

than population and GDP; the diagonal elements of the matrix (in bold type) are, on average, 

smaller for patents than for population and GDP. This is especially true in the middle of the 

distribution. On the other hand, population and GDP appear to be quite similar in terms of how 
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persistent they are over time6. Indeed, the mobility of a city both up and down the distribution 

of patents is quite large; a city which in the year 2000 was between the 60th and 70th percentiles 

of the distribution of patents, could by the year 2008 lie anywhere between the 30th and 90th 

percentiles.  

 

Nevertheless, where patenting activity does exhibit considerable persistence, is at both ends of 

the distribution. Cities in the bottom 10th percentile of the distribution of patents in the year 

2000 only had a 13.6 percent chance of moving up to the 20th percentile by 2008, which is a 

lower likelihood of transition than for both population and GDP. A similar though less 

pronounced pattern can be observed at the top of the distribution. What this suggests is that 

cities that start off with low levels of patenting activity, struggle to develop any innovation 

capacity (or perhaps choose to specialise in non-innovation-intensive activities); cities with lots 

of patenting activity benefit from Marshallian external economies, while cities in between may 

end up in either a virtuous or a vicious cycle of innovation.  

 

5. THE GROWTH OF INNOVATIVE ACTIVITY 

 

In this section we make use of both parametric and nonparametric approaches to examine the 

growth of innovative activity. Perhaps a natural starting point is to assume that city growth and 

city size are independently distributed; that is, that city growth obeys Gibrat’s Law. We follow 

Black and Henderson (2003) in estimating the following equation:  

ln(𝑆𝑆𝑖𝑖𝑡𝑡) − ln(𝑆𝑆𝑖𝑖𝑡𝑡−1) = 𝛽𝛽𝑖𝑖 + 𝛿𝛿𝑡𝑡 + 𝛾𝛾 ln(𝑆𝑆𝑖𝑖𝑡𝑡−1) + 𝜖𝜖𝑖𝑖𝑡𝑡,   (5) 

where 𝛽𝛽𝑖𝑖 are city fixed effects and 𝛿𝛿𝑡𝑡 are time fixed effects. Hence, both here and in Section 6, 

the coefficients are identified from within-city, across-time variation in the explanatory 
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variables (and therefore any city- or country-specific effects such as different institutional 

arrangements, are partialled-out). Equation (5)7 may be rewritten as follows:  

ln(𝑆𝑆𝑖𝑖𝑡𝑡) = 𝛽𝛽𝑖𝑖 + 𝛿𝛿𝑡𝑡 + (1 + 𝛾𝛾) ln(𝑆𝑆𝑖𝑖𝑡𝑡−1) + 𝜖𝜖𝑖𝑖𝑡𝑡.    (6) 

The null hypothesis implied by Gibrat’s Law is that 𝛾𝛾 = 0 or 1 + 𝛾𝛾 = 1. Given the null 

hypothesis of Gibrat’s Law, the error term cannot be serially correlated, so we use a 

conventional fixed-effects model to estimate equation (6). Here, unlike in the previous section, 

we make use of data on an annual basis.  

 

< Place Table 7 here >  

 

The estimated values of 1 + 𝛾𝛾 for population, GDP and patents using the conventional fixed-

effects model are reported in columns (1) to (3) of Table 7. Standard errors are clustered by 

city to allow for heteroskedasticity and within-city correlation in the residuals, and all results 

reported include both year and city fixed effects. For all three variables of interest, the Gibrat’s 

Law null hypothesis that 1 + 𝛾𝛾 = 1 is rejected in favour of the alternative that 1 + 𝛾𝛾 < 1. That 

is, rather than random growth, we find evidence of mean-reversion; large cities grow more 

slowly than small ones. The coefficient is smallest (hence mean reversion is the quickest) for 

patents, followed by GDP and population. Similarly to the results of the previous section, 

patents exhibit less persistence than GDP and especially population.  

 

However, parametric models such as equation (6) do not give a complete picture of the 

relationship between size and growth of cities. Therefore, we supplement equation (6) with a 

non-parametric estimator. Consider the following general model of the relationship between 

the size and growth of a city8:  

Δ𝑆𝑆𝑖𝑖𝑡𝑡 = 𝑚𝑚(𝑆𝑆𝑖𝑖𝑡𝑡) + 𝜖𝜖𝑖𝑖𝑡𝑡,                                         𝜖𝜖𝑖𝑖𝑡𝑡~𝑖𝑖𝑖𝑖𝑖𝑖(0,𝜎𝜎𝜖𝜖2),   (7) 
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where Δ𝑆𝑆𝑖𝑖𝑡𝑡 = 𝑆𝑆𝑖𝑖𝑡𝑡+1 − 𝑆𝑆𝑖𝑖𝑡𝑡. However, the functional form 𝑚𝑚(∙) is not specified. 𝑚𝑚(∙) may be 

estimated using a local weighted average estimator:  

𝑚𝑚�(𝑆𝑆0) = ∑ 𝑤𝑤𝑖𝑖0,ℎ
𝑁𝑁
𝑖𝑖=1 Δ𝑆𝑆𝑖𝑖𝑡𝑡,     (8) 

where the weights 𝑤𝑤𝑖𝑖0,ℎ = 𝑤𝑤(𝑆𝑆𝑖𝑖𝑡𝑡, 𝑆𝑆0,ℎ) sum to 1. The weights increase as 𝑆𝑆𝑖𝑖𝑡𝑡 becomes closer 

to 𝑆𝑆0. The Nadaraya-Watson or kernel regression estimator (used for instance in the cities 

literature by Ioannides and Overman, 2003 and Eeckhout, 2004) uses a kernel weighting 

function 𝐾𝐾(∙), so that:  

𝑚𝑚�(𝑆𝑆0) =
1
𝑁𝑁ℎ

∑ 𝐾𝐾�
𝑆𝑆𝑖𝑖𝑖𝑖−𝑆𝑆0

ℎ �Δ𝑆𝑆𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

1
𝑁𝑁ℎ

∑ 𝐾𝐾�
𝑆𝑆𝑖𝑖𝑖𝑖−𝑆𝑆0

ℎ �𝑁𝑁
𝑖𝑖=1

.     (9) 

The constant ℎ is the bandwidth of the kernel function. The kernel regression estimator can be 

obtained by minimising ∑ 𝐾𝐾 �𝑆𝑆𝑖𝑖𝑖𝑖−𝑆𝑆0
ℎ

� (Δ𝑆𝑆𝑖𝑖𝑡𝑡 − 𝑚𝑚0)2𝑁𝑁
𝑖𝑖=1  with respect to 𝑚𝑚0. That is, the kernel 

regression estimator is a local constant estimator, because it assumes that 𝑚𝑚(𝑆𝑆) is a constant in 

the local neighbourhood of 𝑆𝑆0. Instead, one can let 𝑚𝑚(𝑆𝑆) be linear in the neighbourhood of 𝑆𝑆0, 

so that 𝑚𝑚(𝑆𝑆) = 𝑎𝑎0 + 𝑏𝑏0(𝑆𝑆 − 𝑆𝑆0) in the neighbourhood of 𝑥𝑥0. The local linear estimator 

minimises:  

∑ 𝐾𝐾 �𝑆𝑆𝑖𝑖𝑖𝑖−𝑆𝑆0
ℎ

� �Δ𝑆𝑆𝑖𝑖𝑡𝑡 − 𝑎𝑎0 − 𝑏𝑏0(𝑆𝑆𝑖𝑖𝑡𝑡 − 𝑆𝑆0)�
2𝑁𝑁

𝑖𝑖=1     (10) 

with respect to 𝑎𝑎0 and 𝑏𝑏0, where 𝐾𝐾(∙) is a kernel weighting function. Then 𝑚𝑚�(𝑆𝑆) = 𝑎𝑎�0 +

𝑏𝑏�0(𝑆𝑆 − 𝑆𝑆0) in the neighbourhood of 𝑆𝑆0. Fan (1992) and Fan and Gijbels (1996) argue that the 

local linear estimator has many attractive properties. The local linear estimator is the best 

among all linear smoothers, and has a smaller bias than the Nadaraya-Watson estimator, 

especially at the boundaries of the support of 𝑆𝑆𝑖𝑖𝑡𝑡. Compared to other local regression estimators 

such as LOWESS (Cleveland, 1979), the local linear estimator is much less computationally 

intensive. On the other hand, Hansen (2017) argues that the Nadaraya-Watson estimator 

outperforms the local linear estimator when 𝑚𝑚(𝑆𝑆) is close to a flat line, but the opposite is true 

when 𝑚𝑚(𝑆𝑆) is non-constant.  
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In implementing a nonparametric estimator of the type just described, there are three 

considerations9. The first consideration is the degree of polynomial used. Although the local 

constant and local linear estimators have been described above, these can be extended to local 

polynomial estimators. However, high-order local polynomial estimators may face the curse of 

dimensionality; that is, data sparsity becomes more of a problem for higher order polynomials. 

This increases the variance of the estimate. We therefore use the local linear estimator for its 

superior performance relative to the Nadaraya-Watson estimator, but also to keep the order of 

the polynomial low to reduce the curse of dimensionality. A second consideration is the kernel 

weighting function used; possible choices include the Gaussian, Epanechnikov, uniform, 

biweight and triweight kernels. The Epanechnikov kernel has the smallest integrated mean 

squared error (IMSE; see Wand and Jones, 1995), so we use this kernel. However, the 

difference between the Epanechnikov kernel and other kernels is often small.  

 

A third consideration is the bandwidth ℎ used. Larger values of ℎ will reduce the variance, 

since more points will be included in the estimate. However, as ℎ increases, the average 

distance between the local points ans 𝑆𝑆0 will also increase, which can result in a larger bias and 

oversmoothing. We use the rule-of-thumb plugin estimator of the asymptotically optimal 

constant bandwidth (note this is not the same as Silverman’s (1986) rule of thumb bandwidth 

estimator). A confidence interval is also reported for the local linear estimator. The residual 

variance at each smoothing point is estimated by locally fitting a polynomial of order 3, and 

the bandwidth used for the confidence interval is 1.5 × ℎ. To implement this estimator, we 

standardise the size and growth of cities by subtracting the annual mean from the raw data and 

dividing by the standard deviation. This allows us to pool observations across years.  
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< Place Figure 5 here >  

 

Figure 5 reports the results of the nonparametric estimates, for the three variables population, 

GDP and patents, together with a 95 percent confidence interval; the scatterplot of data points 

has been omitted for clarity. From this figure it can be seen that GDP most closely follows the 

Gibrat’s Law null hypothesis of no relationship between GDP and GDP growth. Even here 

there is some evidence that cities with larger GDP exhibit slower growth than cities with 

smaller GDP. For population, cities in the middle of the population distribution grow faster 

than those at both ends of the distribution. For patents, the confidence bands are much narrower 

than for the other two variables, and, consistently with the parametric results in Table 7, it is 

cities with the fewest patents that experience the fastest patent growth rates. However, cities 

between 1 and 2 standard deviations below the mean experience slower patent growth rates on 

average. Without additional analysis it is difficult to interpret this finding. However, the result 

bears some similarity with those obtained by Davis and Weinstein (2008), hence may indicate 

the presence of mean-reversion or multiple equilibria. Whilst it may be relatively easy for cities 

with few patents to rapidly increase their patenting rate, it may be more difficult to step up to 

the next level and join the ranks of the major innovating centres.  

 

6. THE DETERMINANTS OF INNOVATIVE ACTIVITY 

 

In the previous section, one general conclusion that emerged was that cities with relatively 

fewer patents, experience more rapid growth in patenting activity. In this section we explore 

this further, and investigate the possible determinants of innovative activity in a city. Similarly 

to Black and Henderson (2003), we extend equation (6) in the previous section to include 

additional explanatory variables:  
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ln(𝑆𝑆𝑖𝑖𝑡𝑡) = 𝛽𝛽𝑖𝑖 + 𝛿𝛿𝑡𝑡 + (1 + 𝛾𝛾) ln(𝑆𝑆𝑖𝑖𝑡𝑡−1) + 𝛙𝛙𝐗𝐗𝐢𝐢𝐢𝐢 + 𝜖𝜖𝑖𝑖𝑡𝑡,   (11) 

where the vector 𝐗𝐗𝐢𝐢𝐢𝐢 may include both time-varying and time-invariant variables. Including the 

lagged dependent variable in equation (11) means that conventional OLS, fixed- and random-

effects estimates are all biased. We therefore use the Blundell and Bond (1998) system GMM 

method in its asymptotically efficient, two-step form. The method estimates a system of two 

equations; the equation in levels, and in orthogonal deviations (each observation is subtracted 

from the average of all future available observations). Because of the inclusion of the levels 

equation, it is possible to recover the coefficients on time-invariant explanatory variables. The 

reported standard errors are clustered by city so are robust to heteroskedasticity and arbitrary 

serial correlation within panels, and are corrected for downward bias using the Windmeijer 

(2005) correction. Time dummies are included in all regressions to reduce the 

contemporaneous correlation across cities.  

 

The lagged dependent variable is assumed to be endogenous and needs to be instrumented. 

Under standard system GMM, the variables in the levels equation are instrumented with lags 

of their own first differences, while the variables in the orthogonal transformed equation are 

instrumented with lags of the variables in levels. However, this results in the number of 

instruments being quadratic in the time dimension. To avoid the problem of too many 

instruments in system GMM (see Roodman (2009b)), we follow the recent literature (Mehrhoff 

(2009), Kapetanios and Marcellino (2010), Bai and Ng (2010)) and replace the GMM 

instruments with their principal components. Principal components analysis is run on the 

correlation matrix of the GMM instruments, and the principal components with the largest 

eigenvalues are selected as instruments. Additional statistics reported in Table 8 show that in 

each specification the principal components explain most of the variation in the instruments, 

and that they perform well based on the Kaiser-Meyer-Olkin measure of sampling adequacy. 
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In the Appendix, to check the robustness of our results to the instrument selection process just 

described, we report the results of estimating the same specifications as in Table 8, for (1) the 

full set of GMM instruments as in Blundell and Bond (1998), and (2) results using bootstrap 

resampling of the principal-components-based estimates.  

 

As a first step, we re-estimate equation (6) for the three variables population, GDP and patents 

using the GMM method outlined above. The results are reported in columns (4) to (6) of Table 

7. Notably, the GMM results are quite different from the fixed-effects results. The standard 

errors in all three cases are much larger than those obtained using fixed-effects. This means 

that we cannot reject the Gibrat’s Law null hypothesis that 1 + 𝛾𝛾 = 1 for all three variables. 

That is, we find little evidence of mean reversion in all three variables. That the results are 

quite different when the GMM method is used, suggests that the endogeneity of the lagged 

dependent variable is an important issue.  

 

< Place Table 8 here >  

 

Table 8 presents the results of estimating equation (11), which add additional controls to the 

bivariate regression of equation (6). In columns (1) and (2), population and GDP are included. 

In column (1), these two variables are assumed to be exogenous, while in column (2) they are 

assumed to be endogenous and are instrumented in the same way as the lagged dependent 

variable. Including population and GDP results in a slight increase in the size and significance 

of the coefficient on lagged patents, when compared with the results in column (6) of Table 7. 

Controlling for the endogeneity of the other two variables, in column (2), both population and 

GDP have a positive and significant effect on patents.  
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Columns (3) and (4) include additional controls. This includes the number of local governments 

per 100,000 inhabitants of the metropolitan area (capturing the fragmentation of local 

government), the number of non-contiguous core areas in the metro area (the polycentricity of 

the city), the share of the total metropolitan population living in the core areas of the city, the 

population density, and an indicator for whether there is a top-100 university in the city. By 

including core population, population density and polycentricity, we seek to explore whether 

the concentration of people (Marshall’s knowledge spillovers) affects the degree of innovative 

activity. The fragmentation of local government may affect the coordination of government 

policies across local governments, which again may influence innovation. In column (3), all 

these additional variables are assumed to be exogenous, whereas in column (4), population 

density and the share of the total metropolitan population living in the core areas of the city are 

treated as endogenous and are instrumented in the usual way.  

 

Including the presence of a top-100 university as an explanatory variable comes from the idea 

that knowledge spillovers from university research and research collaborations with local 

universities may spur private sector research. Early research on such relationships includes 

Jaffe (1989), and more recently Abramovsky et al (2007). There are three major global 

university rankings: the Academic Ranking of World Universities (ARWU or the Shanghai 

Ranking), the Times Higher Education World University Rankings, and the QS World 

University Rankings. The QS World University Rankings were not available for our sample 

period, and the other two rankings are available only since 2003 (ARWU) and 2004 (Times). 

The results reported below make use of the ARWU rankings in 2008, and we code all cities 

with a top-100 university according to this ranking equal to 1, and all other cities equal to zero. 

A total of 32 cities in our sample includes at least one top-100 university according to this 

measure10.  
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Once the endogeneity of population density and population share of the core are controlled for 

in column (4), population density is positively and significantly associated with patenting 

activity. This suggests that if Marshall’s knowledge spillovers are active, one channel via which 

they operate is through increased interaction because of greater population density. The other 

four additional variables – the degree of polycentricity, the share of metropolitan population 

living in the core, the degree of local government fragmentation, and the presence of a top-100 

university – do not have statistically significant effects on patenting. Inclusion of these 

additional variables leaves the coefficients on lagged patents and GDP unchanged in terms of 

both size and significance. However, population is no longer statistically significant in columns 

(3) and (4)11. This suggests that, controlling for these additional variables, the level of 

economic activity is more strongly associated with innovative activity than the mere presence 

of a larger population.   

 

In Table 8, we are unable to reject the null hypothesis of Gibrat’s Law, that 1 + 𝛾𝛾 = 1, for all 

specifications. That is, there is no evidence of mean reversion; alternatively, we find strong 

evidence of persistence in patenting. The results of Table 8 sit somewhat uncomfortably with 

the results in previous sections. For instance, in Table 6 in Section 4, the transition probability 

matrix showed that patents are persistent at both tails of the distribution, but not in the middle 

of the distribution. In Figure 5 in Section 5, the local linear estimates show evidence of 

nonlinearity in the relationship between patenting and the growth of patenting. We speculate 

that this apparent disparity is due to the fact that the (parametric) approach adopted in this 

section restricts the relationship between patents and growth of patents to be linear, whereas 

the nonparametric approaches in previous sections are better-able to capture the true 

relationship, which differs in different parts of the distribution12.  
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We also include a set of diagnostic statistics in Table 8 (similar statistics are reported for the 

GMM estimates in columns (4) to (6) of Table 7). First, we report the number of instruments 

used, which ranges from 19 to 33 instruments. These are fairly low, which should mitigate the 

problem of having too many instruments (see Roodman (2009b))13, and as discussed above, is 

because we have used the principal components of the GMM instruments; if we had not done 

so, column (4) of Table 8 would have had over 150 instruments. Second, we report the Hansen 

test of over-identification. In the baseline column (1), this has a p-value of 0.13, and takes on 

similar values as we include additional controls. This suggests reasonable confidence in the 

validity of our instruments. A third set of test statistics reported is the Arellano and Bond (1991) 

tests for first- and second-order serial correlation in the first-differenced residuals. We find 

evidence of first-order serial correlation, but not second-order serial correlation, across all 

specifications in Table 8. First-order serial correlation is expected in a dynamic panel; that we 

do not find second-order serial correlation provides evidence that our use of lags as instruments 

is valid.  

 

7. CONCLUSIONS 

 

Competition among firms drives innovation in a capitalist economy, as firms seek to gain a 

competitive edge over their rivals. Hence as urbanisation proceeds and economic activity 

becomes increasingly concentrated in cities, so too does innovative activity. What this paper 

has set out to do, is to describe and explain the distribution of innovative activity across OECD 

cities. Although there has been much research on innovation in cities, to our knowledge this is 

the first paper to compare the distribution of innovation to the distribution of population and 

economic activity across cities.  
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Our first main result is that innovation is more highly concentrated than both population and 

general economic activity. This is suggestive of the role of Marshall’s knowledge spillovers as 

a key driver of innovation. Our second main result is that innovation is less persistent than 

population or economic activity, especially in the middle of the distribution. Even in the 

relatively short time period in our sample, cities can become much more (or less) innovative. 

This gives policymakers hope, that government policy can influence how innovative a city is. 

Our third main result is that, even after controlling for the endogeneity of some explanatory 

variables, innovation is positively related to general economic activity and population density. 

Again this gives policymakers a handle on what types of policies may be more effective at 

promoting innovation.  

 

The present paper’s focus on cities as centres of innovative activity yields both advantages and 

disadvantages. On the one hand, cities are undoubtedly important; in the OECD, the vast 

majority of the population lives and works in cities. So thinking about government policies in 

terms of cities may be the more natural unit of analysis. On the other hand, precisely because 

cities have not historically been the default unit of analysis, our analysis suffers from data 

limitations that not only restrict our sample, but also prevent us from digging deeper into the 

determinants of innovative activity as in Audretsch and Feldman (1996, 1999). Such data is 

available for different geographical units, and analysis using this data should serve as an 

important next step in this line of research. In addition, the use of firm-level data on 

productivity and innovation would enable us to present more direct evidence on knowledge 

spillovers, rather than the indirect evidence which we obtain here.  
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Finally, although we find that Gibrat’s Law holds in our sample, more could also be done with 

regard to the assumption made, that it makes sense to combine data across major OECD cities. 

For instance, the Gibrat’s Law equation (6) could be augmented with a set of country indicators 

interacted with lagged city population; this would yield a set of country-specific coefficients, 

and a test could be performed for the equality of the country-specific coefficients across 

countries. Failure to reject the null of equality would indicate that the relationship between size 

and growth is common across countries, and would be supportive of the aggregation of cities 

across countries. We have not performed such a test in this paper, since, as shown in Table 1, 

each country has a different number of cities in the sample, which represents a different fraction 

of each country’s urban population. In this situation, the proposed test may over-reject the null, 

as we are not performing a like-for-like comparison between countries. As suggested above, 

the use of data for different geographical units may be one way of addressing this issue.  
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NOTES 

1 Are patents an input or an output in the knowledge creation process? Griliches (1990) provides an insightful 

discussion on the use of patent statistics in Economics, and concludes that, in the absence of detailed R&D data, 

patent data can be used as an indicator of both inventive input and output.  
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2 A simple regression of the natural log of patents against the natural log of population for any one year yields a 

coefficient which is always larger than 1; this implies that a 1 percent increase in population has a greater than 1 

percent effect on patents. A similar result is obtained for a regression of the natural log of patents against the 

natural log of GDP.  

 

3 Some papers in the literature (for instance, Eeckhout, 2004) have suggested that a lognormal distribution may 

be more appropriate for city sizes. Along similar lines, Clauset et al (2009) present a set of techniques to validate 

and quantify the existence of power laws. We do not pursue these lines of inquiry in this paper.  

 

4 Ioannides and Overman (2001) discuss further the implications of this way of defining 𝐹𝐹𝑡𝑡 as compared to that 

used by Eaton and Eckstein (1997) and Black and Henderson (2003), which is based on fractions of the 

contemporaneous mean. In this paper, since we are comparing the distributions of different variables, a decile-

based definition seems more appropriate.  

 

5 Many of the papers which make use of transition probability matrices on city populations go on to obtain the 

long run, implied ergodic distribution of city sizes. We do not do so, because the relatively short time period of 

our sample means there are relatively few off-diagonal elements of the transition matrices, making the calculations 

sensitive to the choice of cell boundaries. In addition, it would require 𝐹𝐹𝑡𝑡 to be defined based on fractions of the 

contemporaneous mean (see the previous note) as opposed to our decile-based definition.  

 

6 Because of the many zero entries in the table, it is not possible to perform a chi-squared test of the similarity 

between the distributions of the three variables.  

 

7 Equation (5) is of course just the equation that is estimated in a panel unit root test. Conventional panel unit root 

tests cannot be used for our data because of the limited time dimension and the fact that we have an unbalanced 

panel for GDP. See for instance Bosker et al (2008) for an application of tests of this type to German city sizes.  

 

8 The following exposition follows that in Cameron and Trivedi (2005) and Hansen (2017).  
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9 We performed a series of sensitivity analyses based on each of the three considerations below. Whilst there are 

some differences in the results depending on the choices made, the justification for the results reported is discussed 

in the text.  

 

10 Results using the Times ranking are qualitatively similar.  

 

11 This change in results is not driven by the change in sample size between column (2) and column (4).  

 

12 It is of course possible to include nonlinear (quadratic, cubic) terms in the parametric regression analysis. 

Exploratory analysis suggested that it is difficult to obtain statistically significant coefficients for the nonlinear 

terms. This may indicate that, if nonlinearity does exist in the relationship between size and growth, that the 

relationship is more complex than can be captured by the addition of quadratic and cubic terms.  

 

13 Note the instrument count includes the variables assumed to be exogenous, such as the year dummies.  
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TABLE 1: Distribution of cities across countries in the sample  

Country Number of cities  Country Number of cities 
Austria 3  Japan 36 
Belgium 4  Mexico 31 
Denmark 1  Netherlands 5 
Estonia 1  Norway 1 
Finland 1  Portugal 2 
France 15  Spain 8 
Germany 24  Sweden 3 
Italy 11  United States 72 
Total    218 

 

 

 

TABLE 2: Correlation between patents, GDP and population, 2008 (N = 218)  

 Patents GDP Population 
Patents  1.000   
GDP 0.833 1.000  
Population 0.797 0.939 1.000 

 

 

 

TABLE 3: Top 10 cities with the largest number of patents in 2008  

City  Population  Rank  Patents Rank  GDP  Rank 
Tokyo  34,482,744 1(1)  8,727.0 1(2)  1,316,049 1(-) 
San Francisco  6,778,659 10(10)  5,138.2 2(1)  463,435 7(5) 
Osaka  17,211,140 4(4)  4,451.1 3(4)  534,747 5(-) 
San Diego  3,036,850 35(37)  2,689.3 4(10)  160,635 23(18) 
Paris  11,529,670 7(7)  2,467.6 5(7)  575,983 4(3) 
Boston  3,616,814 29(28)  2,207.5 6(3)  241,083 12(8) 
New York  16,453,331 6(5)  2,001.7 7(6)  977,119 2(1) 
Los Angeles  16,742,427 5(6)  1,957.7 8(5)  768,032 3(2) 
Minneapolis  3,212,176 34(34)  1,672.5 9(11)  174,234 18(16) 
Houston  5,363,803 16(17)  1,590.1 10(16)  323,819 9(7) 
Notes: Figures in parentheses are ranks in 2000. (-) indicates that data was not available in the year 2000. GDP 

is in millions of US$.  
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TABLE 4: Descriptive statistics for population, GDP and patents  

Variable N Mean Std. Dev. 
ln (𝑝𝑝𝑝𝑝𝑝𝑝) 1,332 14.04 0.7547 
ln (𝐺𝐺𝐺𝐺𝐺𝐺) 1,332 10.75 0.9210 
ln (𝑝𝑝𝑎𝑎𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡) 1,332 4.906 1.3876 

Notes: Statistics reported for a consistent sample of 148 cities for which complete data are available from 2000 to 

2008.  

 

 

 

TABLE 5: Zipf regressions for population, GDP and patents, by year  

 (1) (2) (3) 
Year Population GDP Patents 
2000 1.246 1.041 0.330 
 (0.119)* (0.121) (0.032)** 
2001 1.247 1.026 0.350 
 (0.119)* (0.107) (0.033)** 
2002 1.248 1.025 0.375 
 (0.119)* (0.107) (0.036)** 
2003 1.247 0.927 0.358 
 (0.119)* (0.089) (0.034)** 
2004 1.248 0.927 0.370 
 (0.119)* (0.089) (0.035)** 
2005 1.247 0.926 0.384 
 (0.119)* (0.089) (0.037)** 
2006 1.246 0.928 0.387 
 (0.119)* (0.089) (0.037)** 
2007 1.245 0.928 0.397 
 (0.119)* (0.089) (0.038)** 
2008 1.244 0.932 0.426 
 (0.119)* (0.089) (0.041)** 

Notes: † significant at 10%; * significant at 5%; ** significant at 1%. Statistical significance is in terms of the 

null hypothesis that the coefficient is equal to 1. N = 218 for all years in columns (1) and (3); N = 148 in 2000, N 

= 184 in 2001 and 2002, N = 217 in 2003 to 2007, and N = 218 in 2008 in column (2). The values reported are 

the values of 𝛼𝛼 estimated using the Gabaix and Ibragimov (2011) approach in equation (3). Standard errors in 

parentheses are calculated using the Gabaix and Ibragimov (2011) approach.  
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TABLE 6: Transition probability matrices for population, GDP and patents, 2000-2008  

2000 2008 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.1 Pop 71.4 25.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 GDP 85.7 14.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
  Patent 86.4 13.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.2 Pop 25.9 51.9 18.5 3.7 0.0 0.0 0.0 0.0 0.0 0.0 
 GDP 15.0 65.0 15.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 
  Patent 13.6 63.6 22.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.3 Pop 0.0 17.9 53.6 28.6 0.0 0.0 0.0 0.0 0.0 0.0 
 GDP 0.0 20.0 55.0 15.0 10.0 0.0 0.0 0.0 0.0 0.0 
  Patent 0.0 13.6 36.4 31.8 9.1 9.1 0.0 0.0 0.0 0.0 

0.4 Pop 0.0 0.0 25.9 48.2 25.9 0.0 0.0 0.0 0.0 0.0 
 GDP 0.0 0.0 25.0 55.0 20.0 0.0 0.0 0.0 0.0 0.0 
  Patent 0.0 4.6 18.2 18.2 22.7 27.3 4.6 4.6 0.0 0.0 

0.5 Pop 3.6 0.0 0.0 17.9 67.9 10.7 0.0 0.0 0.0 0.0 
 GDP 0.0 0.0 5.0 25.0 65.0 5.0 0.0 0.0 0.0 0.0 
  Patent 0.0 4.8 14.3 38.1 28.6 14.3 0.0 0.0 0.0 0.0 

0.6 Pop 0.0 3.7 0.0 0.0 7.4 66.7 22.2 0.0 0.0 0.0 
 GDP 0.0 0.0 0.0 0.0 4.8 85.7 9.5 0.0 0.0 0.0 
  Patent 0.0 0.0 9.1 4.6 27.3 31.8 27.3 0.0 0.0 0.0 

0.7 Pop 0.0 0.0 0.0 0.0 0.0 21.4 64.3 14.3 0.0 0.0 
 GDP 0.0 0.0 0.0 0.0 0.0 10.0 65.0 25.0 0.0 0.0 
  Patent 0.0 0.0 0.0 9.1 9.1 18.2 36.4 22.7 4.6 0.0 

0.8 Pop 0.0 0.0 0.0 0.0 0.0 0.0 14.8 81.5 3.7 0.0 
 GDP 0.0 0.0 0.0 0.0 0.0 0.0 25.0 55.0 20.0 0.0 
  Patent 0.0 0.0 0.0 0.0 0.0 0.0 31.8 54.6 13.6 0.0 

0.9 Pop 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.6 89.3 7.1 
 GDP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0 75.0 5.0 
  Patent 0.0 0.0 0.0 0.0 0.0 0.0 0.0 18.2 68.2 13.6 

1.0 Pop 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.4 92.6 
 GDP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 95.0 
  Patent 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.3 85.7 
Notes: N = 275 for population, N = 202 for GDP, and N = 218 for patents. The number in each cell shows the 

probability of transitioning from one decile in 2000 to the corresponding decile in 2008. The values in bold are 

the percentages of cities that remain in the same decile between the two years.  
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TABLE 7: Test of Gibrat’s Law  

  (1) (2) (3)  (4) (5) (6) 
Variable  Population GDP Patents  Population GDP Patents 
Estimation method  FE FE FE  GMM GMM GMM 
ln(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛)𝑡𝑡−1  0.919    0.969   
  (0.035)**    (0.350)**   
ln(𝐺𝐺𝐺𝐺𝐺𝐺)𝑡𝑡−1   0.897    0.654  
   (0.020)**    (0.317)*  
ln(𝑝𝑝𝑎𝑎𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡)𝑡𝑡−1    0.186    0.912 
    (0.058)**    (0.137)** 
R2  0.99 0.90 0.31     
N  2,200 2,033 1,744  2,200 2,033 1,744 
Cities  275 271 218  275 271 218 
F-test 1 + 𝛾𝛾 = 1   5.34 25.67 198.96   0.01  1.19  0.41 
F-test p-value  0.022 0.000 0.000  0.930 0.276 0.522 
Instruments      17 14 14 
Hansen Test p-value      0.00 0.29 0.20 
AB AR(1) Test p-value      0.94 0.06 0.00 
AB AR(2) Test p-value      0.94 0.10 0.22 
Principal Components      8 5 6 
PCA R2      0.84 0.67 0.78 
Kaiser-Meyer-Olkin       0.83 0.81 0.87 

Notes: † significant at 10%; * significant at 5%; ** significant at 1%. All columns include unreported year and city fixed effects, and the sample covers the time period from 

2001 to 2008. Estimation is via fixed effects with standard errors clustered by city in columns (1) to (3), and via the two-step Blundell-Bond (1998) System GMM with 

Windmeijer (2005) corrected standard errors in columns (4) to (6). The F-test of 1 + 𝛾𝛾 = 1 is the test of Gibrat’s Law of proportional growth. The Hansen test is the test of 

over-identifying restrictions. The Arellano and Bond tests (AB) are tests for serial correlation in the first-differenced errors, of orders 1 and 2. PCA R2 is the fraction of the 

variance explained by the principal components, and Kaiser-Meyer-Olkin is a measure of the sampling adequacy of the principal components. 
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TABLE 8: The determinants of patenting activity (dependent variable: ln(𝑝𝑝𝑎𝑎𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡)𝑡𝑡)  

 (1) (2) (3) (4) 
Estimation method GMM GMM GMM GMM 
ln(𝑝𝑝𝑎𝑎𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡)𝑡𝑡−1 0.936 0.973 0.958 0.927 
 (0.080)** (0.042)** (0.048)** (0.052)** 
ln(𝑝𝑝𝑝𝑝𝑝𝑝)𝑡𝑡 0.390 0.623 -0.152 -0.345 
 (0.386) (0.219)** (3.014) (0.429) 
ln(𝐺𝐺𝐺𝐺𝐺𝐺)𝑡𝑡 0.393 0.525 0.397 0.430 
 (0.195)* (0.236)* (0.217)† (0.186)* 
ln(𝐶𝐶𝑝𝑝𝐶𝐶𝑝𝑝𝐺𝐺𝑝𝑝𝑝𝑝)𝑡𝑡   0.017 0.516 
   (1.195) (1.298) 
ln(𝐺𝐺𝑝𝑝𝑝𝑝𝐺𝐺𝑝𝑝𝑛𝑛𝑃𝑃)𝑡𝑡   0.063 0.500 
   (3.200) (0.244)* 
ln(𝐺𝐺𝑝𝑝𝑝𝑝𝑃𝑃)𝑡𝑡   -3.963 0.678 
   (34.333) (3.120) 
ln(𝐹𝐹𝐶𝐶𝑎𝑎𝐹𝐹𝑚𝑚𝑝𝑝𝑛𝑛𝑡𝑡)𝑡𝑡   -0.672 -0.113 
   (0.818) (0.276) 
Top 100 university   5.405 0.987 
   (12.209) (1.614) 
N 1,671 1,671 1,671 1,671 
Number of cities 218 218 218 218 
Instruments 20 19 24 33 
F test 1 + 𝛾𝛾 = 1  0.64  0.41  0.78  1.96 
F test p-value 0.424 0.525 0.378 0.163 
Hansen Test p-value 0.13 0.11 0.27 0.18 
AB AR(1) Test p-value 0.00 0.00 0.00 0.00 
AB AR(2) Test p-value 0.30 0.31 0.32 0.33 
Principal components 10 9 11 20 
PCA R2 0.93 0.78 0.81 0.89 
Kaiser-Meyer-Olkin  0.87 0.93 0.93 0.95 

Notes: † significant at 10%; * significant at 5%; ** significant at 1%. All columns include unreported year and 

city fixed effects. Estimation is via the two-step Blundell-Bond (1998) System GMM with Windmeijer (2005) 

corrected standard errors. 𝐶𝐶𝑝𝑝𝐶𝐶𝑝𝑝𝐺𝐺𝑝𝑝𝑝𝑝 is the concentration of population in the metropolitan core. 𝐺𝐺𝑝𝑝𝑝𝑝𝐺𝐺𝑝𝑝𝑛𝑛𝑃𝑃 is 

population density. 𝐺𝐺𝑝𝑝𝑝𝑝𝑃𝑃 is the degree of polycentricity of the city. 𝐹𝐹𝐶𝐶𝑎𝑎𝐹𝐹𝑚𝑚𝑝𝑝𝑛𝑛𝑡𝑡 is the degree of fragmentation of 

local government. Top 100 university is an indicator for whether there is a top-100 university in the city, as ranked 

by ARWU. The F-test of 1 + 𝛾𝛾 = 1 is the test of Gibrat’s Law of proportional growth. The Hansen test is the test 

of over-identifying restrictions. The Arellano and Bond tests (AB) are tests for serial correlation in the first-

differenced errors, of orders 1 and 2. PCA R2 is the fraction of the variance explained by the principal components, 

and Kaiser-Meyer-Olkin is a measure of the sampling adequacy of the principal components.  
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FIGURE 1: Scatterplot of patent applications, population and real GDP, 2008 (N = 218)  

Patent applications and population. 

  

Patent applications and real GDP.  

 
 

 

 

FIGURE 2: Coefficient of variation for population, GDP and patents, for a consistent sample 

of 148 cities, 2000-2008  
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FIGURE 3: Kernel density functions for population, GDP and patents, for 2008, log scale  

 
Notes: Epanechnikov kernel used. Bandwidth is the Silverman (1986) rule-of-thumb bandwidth. Bandwidth = 

0.2254 for population, bandwidth = 0.3106 for GDP, bandwidth = 0.4393 for patents.  

 

 

FIGURE 4: Zipf plots of population, patents and GDP, for 2008, log scale, normalised to the 

size of the largest city  
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FIGURE 5: Nonparametric local linear estimates of the relationship between city size and city 

growth  

 

 

 
 

Notes: The shaded area indicates the 95% confidence interval. Bandwidth indicates the bandwidth used for the 

smoothing, while pwidth = 1.5*bandwidth indicates the bandwidth used for the confidence interval. See the text 

for more details.   
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Appendix: Additional results for the determinants of patenting activity  

 

In Section 6, the results were presented using the Blundell and Bond (1998) system GMM 

method, with the instruments used being the principal components of the GMM instruments, 

to avoid the problem of too many instruments (Roodman, 2009b). However, this may raise 

questions about the robustness of the inferences made. In this Appendix, we report two 

additional results to those reported in Section 6. First, as reported in Table A1, we use the 

standard GMM instruments instead of the principal components of the GMM instruments. 

Second, as reported in Table A2, we employ bootstrap resampling methods on the principal 

components estimates. One thousand replications were performed, with the sample drawn in 

each replication being a bootstrap sample of cities (i.e. a block bootstrap is used). The results 

reported in Table A2, in addition to the bootstrapped standard errors, also include a bias 

correction obtained from the difference between the bootstrap estimates and the GMM 

estimates reported in Table 8 (see, for instance, Cameron and Trivedi, 2005).  

 

Comparing the results of Table A1 with those of Table 8, using the standard GMM instruments 

in Table A1 results in a large number of instruments; over 100 in columns (3) to (5). This may 

give rise to the problem of too many instruments. The use of the principal components of the 

GMM instruments in Table 8 results in similar performance of the Arellano and Bond (1991) 

tests, and superior performance of the Hansen test of overidentifying restrictions. In Table 8, 

we never reject the null hypothesis of overidentification at conventional significance levels, 

but in Table A1 we reject the null four out of five times. The coefficients on the lagged 

dependent variable are of similar orders of magnitude, although in Table A1 there is a slightly 

higher likelihood of rejecting the null hypothesis of Gibrat’s Law. In addition, in Table 8 we 

are able to identify statistically significant coefficients for per capita GDP and population 
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density, which we are unable to in Table A1. Overall, we interpret Table A1 as indicating that 

using the full set of GMM instruments may lead to incorrect inferences because of the presence 

of too many instruments, hence justifying the use of the principal components reduction of the 

instrument set in the text.  

 

The results reported in Table A2 with bootstrap resampling are broadly comparable with those 

in Table 8, in terms of both the estimated coefficients, and the specification tests. We never 

statistically reject the Gibrat’s Law hypothesis that 1 + 𝛾𝛾 = 1. In column (5), which is 

comparable to column (4) in Table 8, GDP and population density are positively and 

significantly associated with patents. In addition, the presence of a top 100 university and how 

polycentric the city is, are now positively associated with patents. The positive association 

between the presence of a top university and patenting is perhaps unsurprising. That a more 

polycentric city is more innovative, controlling for other variables such as population density, 

may indicate that different districts specialise in different fields.  
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TABLE A1: The determinants of patenting activity (dependent variable: ln(𝑝𝑝𝑎𝑎𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡)𝑡𝑡): Full set 

of GMM instruments  

 (1) (2) (3) (4) (5) 
Estimation method GMM GMM GMM GMM GMM 
ln(𝑝𝑝𝑎𝑎𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡)𝑡𝑡−1 0.964 0.880 0.976 0.939 0.948 
 (0.007)** (0.054)** (0.013)** (0.033)** (0.046)** 
ln(𝑝𝑝𝑝𝑝𝑝𝑝)𝑡𝑡  -0.108 0.071 -0.034 0.026 
  (0.305) (0.112) (0.169) (0.333) 
ln(𝐺𝐺𝐺𝐺𝐺𝐺)𝑡𝑡  0.251 -0.033 0.120 0.004 
  (0.223) (0.064) (0.147) (0.231) 
ln(𝐶𝐶𝑝𝑝𝐶𝐶𝑝𝑝𝐺𝐺𝑝𝑝𝑝𝑝)𝑡𝑡    -0.125 0.164 
    (0.241) (0.497) 
ln(𝐺𝐺𝑝𝑝𝑝𝑝𝐺𝐺𝑝𝑝𝑛𝑛𝑃𝑃)𝑡𝑡    0.051 0.063 
    (0.044) (0.048) 
ln(𝐺𝐺𝑝𝑝𝑝𝑝𝑃𝑃)𝑡𝑡    0.101 -0.161 
    (0.226) (0.497) 
ln(𝐹𝐹𝐶𝐶𝑎𝑎𝐹𝐹𝑚𝑚𝑝𝑝𝑛𝑛𝑡𝑡)𝑡𝑡    -0.019 0.041 
    (0.046) (0.065) 
Top 100 university    0.082 0.277 
    (0.204) (0.264) 
N 1,744 1,671 1,671 1,671 1,671 
Number of cities 218 218 218 218 218 
Instruments 35 37 109 112 154 
F test 1 + 𝛾𝛾 = 1 23.82  4.92  3.54  3.32  1.26 
F test p-value 0.000 0.028 0.061 0.070 0.263 
Hansen Test p-value 0.01 0.04 0.01 0.00 0.09 
AB AR(1) Test p-value 0.00 0.00 0.00 0.00 0.00 
AB AR(2) Test p-value 0.25 0.32 0.31 0.32 0.33 
Notes: † significant at 10%; * significant at 5%; ** significant at 1%. All columns include unreported year fixed 

effects. Estimation is via the two-step Blundell-Bond (1998) System GMM with Windmeijer (2005) corrected 

standard errors. 𝐶𝐶𝑝𝑝𝐶𝐶𝑝𝑝𝐺𝐺𝑝𝑝𝑝𝑝 is the concentration of population in the metropolitan core. 𝐺𝐺𝑝𝑝𝑝𝑝𝐺𝐺𝑝𝑝𝑛𝑛𝑃𝑃 is population 

density. 𝐺𝐺𝑝𝑝𝑝𝑝𝑃𝑃 is the degree of polycentricity of the city. 𝐹𝐹𝐶𝐶𝑎𝑎𝐹𝐹𝑚𝑚𝑝𝑝𝑛𝑛𝑡𝑡 is the degree of fragmentation of local 

government. Top 100 university is an indicator for whether there is a top-100 university in the city, as ranked by 

ARWU. The F-test of 1 + 𝛾𝛾 = 1 is the test of Gibrat’s Law of proportional growth. The Hansen test is the test of 

over-identifying restrictions. The Arellano and Bond tests (AB) are tests for serial correlation in the first-

differenced errors, of orders 1 and 2.  
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TABLE A2: The determinants of patenting activity (dependent variable: ln(𝑝𝑝𝑎𝑎𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡)𝑡𝑡): 

Bootstrap resampling   

 (1) (2) (3) (4) (5) 
Estimation method GMM GMM GMM GMM GMM 
ln(𝑝𝑝𝑎𝑎𝑡𝑡𝑝𝑝𝑛𝑛𝑡𝑡)𝑡𝑡−1 0.943 0.885 0.993 0.978 0.966 
 (0.142)** (0.125)** (0.116)** (0.136)** (0.110)** 
ln(𝑝𝑝𝑝𝑝𝑝𝑝)𝑡𝑡  0.539 0.973 -0.248 -0.532 
  (0.512) (0.414)* (1.215) (0.334) 
ln(𝐺𝐺𝐺𝐺𝐺𝐺)𝑡𝑡  0.343 0.610 0.351 0.330 
  (0.224) (0.209)** (0.199)† (0.185)† 
ln(𝐶𝐶𝑝𝑝𝐶𝐶𝑝𝑝𝐺𝐺𝑝𝑝𝑝𝑝)𝑡𝑡    -0.088 0.948 
    (0.997) (0.943) 
ln(𝐺𝐺𝑝𝑝𝑝𝑝𝐺𝐺𝑝𝑝𝑛𝑛𝑃𝑃)𝑡𝑡    -0.235 0.770 
    (0.886) (0.155)** 
ln(𝐺𝐺𝑝𝑝𝑝𝑝𝑃𝑃)𝑡𝑡    -8.397 2.443 
    (8.803) (1.280)† 
ln(𝐹𝐹𝐶𝐶𝑎𝑎𝐹𝐹𝑚𝑚𝑝𝑝𝑛𝑛𝑡𝑡)𝑡𝑡    -1.319 -0.149 
    (0.668)† (0.251) 
Top 100 university    10.871 2.086 
    (6.193) (1.214)† 
N 1,744 1,671 1,671 1,671 1,671 
Number of cities 218 218 218 218 218 
Instruments 14 20 19 24 33 
Test 1 + 𝛾𝛾 = 1 p-value 0.690 0.357 0.952 0.875 0.762 
Hansen Test p-value 0.20 0.13 0.11 0.28 0.18 
AB AR(1) Test p-value 0.00 0.00 0.00 0.00 0.00 
AB AR(2) Test p-value 0.22 0.30 0.31 0.32 0.33 
Principal Components 6 10 9 11 20 
PCA R2 0.78 0.93 0.78 0.81 0.89 
Kaiser-Meyer-Olkin  0.87 0.87 0.93 0.93 0.95 
Notes: † significant at 10%; * significant at 5%; ** significant at 1%. All columns include unreported year and 

city fixed effects. Estimation is via bootstrap resampling of the two-step Blundell-Bond (1998) System GMM 

with Windmeijer (2005) corrected standard errors, with 1,000 bootstrap replications. 𝐶𝐶𝑝𝑝𝐶𝐶𝑝𝑝𝐺𝐺𝑝𝑝𝑝𝑝 is the 

concentration of population in the metropolitan core. 𝐺𝐺𝑝𝑝𝑝𝑝𝐺𝐺𝑝𝑝𝑛𝑛𝑃𝑃 is population density. 𝐺𝐺𝑝𝑝𝑝𝑝𝑃𝑃 is the degree of 

polycentricity of the city. 𝐹𝐹𝐶𝐶𝑎𝑎𝐹𝐹𝑚𝑚𝑝𝑝𝑛𝑛𝑡𝑡 is the degree of fragmentation of local government. Top 100 university is 

an indicator for whether there is a top-100 university in the city, as ranked by ARWU. The test of 1 + 𝛾𝛾 = 1 is 

the test of Gibrat’s Law of proportional growth. The Hansen test is the test of over-identifying restrictions. The 

Arellano and Bond tests (AB) are tests for serial correlation in the first-differenced errors, of orders 1 and 2. PCA 

R2 is the fraction of the variance explained by the principal components, and Kaiser-Meyer-Olkin is a measure of 

the sampling adequacy of the principal components.  
 


