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Abstract

System dynamics (SD) simulation models are differential equation models that often

contain a complex network of relationships between variables. These models are

widely used, but have a number of limitations. SD models cannot represent individual

entities, or model the stochastic behaviour of these individuals. In addition, model

parameters are often not observable and so values of these are based on expert opinion,

rather than being derived directly from historical data. This thesis aims to address

these limitations and hence enhance system dynamics modelling. This research is

undertaken in the context of SD models from a major telecommunications provider.

In the first part of the thesis we investigate the advantages of adding a discrete-

event simulation model to an existing SD model, to form a hybrid model. There

are few examples of previous attempts to build models of this type and we therefore

provide an account of the approach used and its potential for larger models. Results

demonstrate the advantages of the hybrid’s ability to track individuals and represent

stochastic variation.

In the second part of the thesis we investigate data-driven methods to validate

model assumptions and estimate model parameters from historical data. This com-
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mences with use of regression based methods to assess core structural assumptions

of the organisation’s SD model. This is a complex, highly nonlinear model used by

the organisation for service delivery. We then attempt to estimate the parameters

of this model, using a modified version of an existing approach based on state-space

modelling and Kalman filtering, known as FIMLOF. One such modification, is the use

of the unscented Kalman filter for nonlinear systems. After successfully estimating

parameters in simulation studies, we attempt to calibrate the model for 59 geograph-

ical regions. Results demonstrate the success of our estimated parameters compared

to the organisation’s default parameters in replicating historical data.
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Chapter 1

Introduction

This thesis investigates the feasibility and value of implementing recent developments

in operational research and statistics, in order to enhance System Dynamics (SD)

models. This thesis is split into three sections. Each of these sections aims to add

value to SD modelling by addressing one of the limitations of SD models below.

1. The low–detailed approach of SD means that individual entities in the sys-

tem cannot be represented. In addition, there is no means of representing the

stochastic variation in the behaviour of these individuals.

2. A lack of statistical rigour often exists in the validation of these models.

3. Model parameters may not be observable and so values of these are often based

on system knowledge/estimates, rather than being derived directly from histor-

ical data.

This research is supported by BT Research and Innovation. Although the approaches

presented throughout this thesis are applied to models and data that are from Open-

1



CHAPTER 1. INTRODUCTION 2

reach – a separate company that is owned by the BT Group – for simplicity we refer

to our industrial partner as BT. BT make extensive use of a large SD model (referred

to as their hydraulics model) to plan and manage their service delivery processes. Re-

sults from the hydraulics model include prediction of key performance metrics. These

enable BT to project how well their system will perform over a period of up to 12

months ahead. Consequently the output of the model influences key decisions within

the organisation.

This thesis seeks to address the three limitations of SD models described above to

determine approaches for improving SD models in practice, using the BT model as

a guide to the type of real limitations that exist in SD models, and to demonstrate

and evaluate the potential solutions that recent developments from OR and statistics

can offer. The main chapters of this thesis (chapters 2-6) are split into three sec-

tions. Each of these sections investigates a different approach that aims to address

one of the three SD modelling limitations described above. Since this thesis consists

of three distinct sections, there are separate, self-contained literature reviews within

each section. We detail below these three sections of the thesis.

Chapter 2: System dynamics & discrete-event hybrid models

This section aims to address SD modelling limitation (1) by adding a discrete-event

simulation (DES) model to an existing SD model. DES is an alternative modelling

approach to SD that offers a completely different perspective of the system. Whereas

SD modelling requires a more distant view of the system in order to model large
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systems over long time scales, DES is a much more ‘zoomed-in’ approach capable of

capturing greater detail. As such, there is reason to believe that the best of both

worlds can be achieved by combining the two approaches in a hybrid model. This

chapter investigates the added benefits of adding a DES model to an existing SD

model to form a hybrid.

The SD model used is a simplified version of BT’s hydraulics model. A DES model

that is capable of individually representing large numbers of BT engineers is added

to the SD model. The DES part is shown to provide added capabilities to the stan-

dalone SD model. The hybrid model’s ability to represent stochastic variation and

track individual jobs through the system allows important performance measures to

be calculated. SD models cannot track individuals (e.g. jobs or engineers) through

the system and so previously, BT estimated one of these performance measures via a

regression relationship with SD model output. When using the hybrid model, the mea-

sure can be estimated directly and does not need to rely on the regression relationship.

Results demonstrate the effects of stochastic variation on the performance measure;

i.e. more variation results in poorer performance. Results also demonstrate the ad-

vantages of using the hybrid model to estimate the performance measure directly.

In addition, the weaknesses of the current regression approach used by BT and the

potential for misleading results are demonstrated.
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Chapter 3: Data-driven structural validation of SD models

This section aims to address SD modelling limitation (2) by using data-driven tech-

niques to strengthen existing structural validation tests of SD models. The core as-

sumptions of the BT hydraulics model are evaluated from analysis of historical time

series data.

Within the model, during periods of increased demand, feedback mechanisms aim

to replicate management decisions and increase workforce numbers. The increased

workforce numbers are then able to reduce the job queue back to a manageable level.

The analysis aims to investigate whether the time series data revealed any evidence of

this feedback. Also of interest is determining whether this increase is linear, and if the

feedback operates in the same way across the different geographical regions of the UK.

The exploratory analysis within this section is based on a traditional regression ap-

proach. Overall, this consists of the process below.

• Defining increased demand periods: Methods are used to treat the raw time

series and detect increases in demand above a defined threshold.

• Tracking system changes: Having identified these increased demand intervals,

explanatory variables are defined to track changes in the time series. A suit-

able response variable measuring changes in the engineer numbers is defined to

measure the system’s response to the increased demand.

• Regression: Assuming that a response from the system could be observed, there
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is little prior knowledge of the type of response that could be expected. There-

fore linear regression is chosen as the method to provide an initial indication of

the nature of any response to demand increases.

Results provide strong evidence that a response to increases in demand was observ-

able and depended on the characteristics of the increase. However, contrary to current

assumptions at BT, results also suggest that the response provided by different geo-

graphical regions may not be the same.

This section can also be viewed as laying the foundations prior to chapters 4-6, where

we attempt to estimate the parameters of the hydraulics model. If the data had

revealed insufficient evidence of a response to increased demand, estimating the pa-

rameters of an SD model with a questionable structure would potentially be of little

value.

Chapters 4-6: Using State-space methods to calibrate the SD model

This section aims to address SD modelling limitation (3) by estimating the parame-

ters of a SD model from historical time series data. BT analysts have a high degree

of confidence in the structure and core assumptions of the hydraulics model. However

there is less confidence in the model parameters. At BT, as is often the case with

SD modelling, model parameters are based on expert knowledge/estimates and are

not derived directly from data, since data for these parameters is often not observ-

able. Currently, the SD model is calibrated by hand using a cumbersome trial and

error procedure involving repeated runs of the model and comparing the output to
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historical data - until the output from the model is a sufficiently good match. This

process can be time-consuming and there is no guarantee that the parameters found

are optimal.

This section, throughout chapters 4-6, presents a modified version of an existing

approach to automatically calibrate the hydraulics model. Model parameters are es-

timated directly from time series data. This approach is based on representing the

system as a state-space model and using filtering techniques to estimate the underly-

ing state of the time series from what is assumed to be noisy data. Chapters 4 and 5

test the approach on simulated data, initially on simplified versions of the hydraulics

model before progressing to the full version of the model. In chapter 6 we attempt

to calibrate the hydraulics model to historical time series data for 59 geographical

regions of the UK.

Chapter 4 introduces the theory behind the approach and presents the literature

review for this section. This covers the origins of the method and its developments

and applications in recent years. We present a considerably simplified version of the

hydraulics model which in terms of the key variables is a linear representation of

the system. Simulation studies demonstrate the effectiveness of our approach when

attempting to estimate the known parameters of simulated data with added noise.

Results also reveal that our modifications to the existing algorithm improve the ac-

curacy of parameter estimates.
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Chapter 5 introduces two versions of the hydraulics model, both of which are nonlin-

ear. The first model is only slightly more complex than the model in chapter 4 but

the second model is effectively the full version of the model as used by BT. This is a

considerable leaps in terms of complexity and it is also highly nonlinear. These two

nonlinear versions of the hydraulics model require adjustments to our approach. A

different filtering technique is required to estimate the underlying state of the time

series from noisy data. For both versions of the hydraulics model, simulation stud-

ies demonstrate that when our selected filter is incorporated into our algorithm for

parameter estimation, we are able to estimate the known parameters from simulated

data with added noise.

In chapter 6, we apply our algorithm to historical BT time series data for 59 ge-

ographical regions. In doing so we aim to calibrate the hydraulics model for each

region and fit the model’s output to match the historical data. We describe some

further adjustments that are required to the algorithm. Results of using our pa-

rameter estimates are compared to two sets of BT parameters. In this application,

although limitations of our approach are exposed, a practical solution that can be

implemented by BT is shown to be more successful at calibrating the model than the

BT parameters.



Chapter 2

Constructing hybrid simulation

models using system dynamics and

discrete-event methodologies

2.1 Introduction

System dynamics (SD) simulation models are widely used in a variety of settings,

from modelling organisations (Forrester, 1968a) to economic systems (Radzicki et al.,

2004). However, the SD approach is not without its limitations. Its low–detailed ap-

proach means that individual entities in the system cannot be modelled and there is

no means of representing the stochastic behaviour of these individuals. Discrete-event

simulation (DES) models do not possess such limitations. Hence combining SD and

DES methods in a hybrid model can overcome these limitations.

8
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The objective of this chapter is to review the recent literature on SD/DES hybrid

simulation methods and to investigate the effects of applying one such method for

adding a DES model to BT’s (SD) hydraulics model, in terms of both model devel-

opment and the extra insights that it is capable of producing.

This chapter is organised as follows. Section 2.2 presents a literature review. Sec-

tion 2.3 presents the SD model that will be used to construct the SD/DES hybrid

model and describes the application to BT’s systems. Section 2.4 presents details of

the approach for constructing the hybrid model. Section 2.5 presents results from the

hybrid model and demonstrates the benefits of this over the standalone SD model for

BT. Section 2.6 presents the discussion.

2.2 Literature review

In this section we present the literature review. Section 2.2.1 introduces SD and

DES. Section 2.2.2 compares the two approaches and discusses the limitations of each.

Section 2.2.3 describes previous attempts at constructing SD/DES hybrid models and

discusses the challenges involved.

2.2.1 System dynamics and discrete-event simulation

In operational research, simulation modelling involves constructing a computer model

to represent what is usually a complex system (e.g. a hospital department or supply

chain), in order to increase understanding of the system and enable experimentation.
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Benefits of such models are that few assumptions are required and the results can

be understood by non-experts (Robinson, 2004). Two of the most commonly used

simulation techniques are system dynamics (SD) and discrete–event simulation (DES).

SD was first devised by Jay Forrester (1960, 1961, 1968b) in his work on ‘Industrial

Dynamics’. The technique is governed by the idea that the dynamic behaviour that is

exhibited by a system is caused solely by the structure present in that system (More-

croft and Robinson, 2005). SD models the problem from a bird’s eye perspective;

from the top all the way down by treating populations as homogeneous and taking

aggregations and averages, rather than focussing on details such as the behaviour of

individual entities (e.g. patients or manufacturing parts) in the system. In addition,

most SD models are entirely deterministic. SD is usually used to answer questions at

a strategic rather than operational level, for example to understand an organisation’s

overall strategy.

In constructing SD models, software packages such as Vensim (2010), enable the user

to create stock and flow diagrams. These are used to both visually represent the

structure of the model and to program the equations that determine the relationships

between each of the variables. An example of such a diagram, representing a word

of mouth model taken from Sterman (2000), is shown in Figure 2.2.1. Stocks and

flows are effectively sources and sinks which determine the flow of entities through

the system. ‘Potential adopters’ and ‘adopters’ are stocks in the model that can store

entities. ‘New adopters’ is a flow representing the transition of entities where poten-
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Figure 2.2.1: Stock and flow diagram of word of mouth model from Sterman (2000).

tial adopters become adopters. This flow of entities (and hence the variables in a SD

model) is continuous, ‘like a fluid, flowing through a system of reservoirs or tanks

connected by pipes’, as Brailsford and Hilton (2001) observe. The equations that

define this flow are first order differential equations.

Central to the SD approach is the idea that feedback from the system affects the

dynamic behaviour of the system over time. In Figure 2.2.1, feedback loops are de-

noted by blue arrows with ‘B’ and ‘R’ denoting a balanced and a reinforcing loop

respectively. The type of feedback loop present can have significant consequences on

the overall behaviour of the system. A balanced loop ensures that the system reg-

ulates itself whereas a reinforcing loop leads to uncontrolled growth (Brailsford and

Hilton, 2001). See Sterman (2000) and Morecroft (2007) for thorough background

texts on both qualitative and quantitative aspects of SD modelling.
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DES has a completely different approach to SD. Rather than taking a bird’s eye

view, DES ‘zooms in’ on the system and attempts to capture a high level of detail.

Populations are treated as heterogeneous and there is a high degree of flexibility for

modelling these differences within populations. Individual entities are tracked through

the system as they proceed to various activities, between these activities they wait

in queues (Robinson, 2004). Generally, a software package such as Witness (2012) is

used and provides a visual representation of the entities’ passage through the system.

DES models stochastic variability within the system (e.g. waiting times and ar-

rival times) using probability distributions that are determined carefully to ensure

they represent the behaviour of the real system – hence large amounts of data can

sometimes be required. Due to the increased detail of DES models, they are generally

used at operational level (e.g. a hospital department), to model a smaller population

than SD models over a shorter timescale. DES models the passing of time by moving

the simulation clock forward only when the next event occurs – which usually means

that intervals between events are irregular. Robinson (2004), Pidd (2004) and Law

and Kelton (2000) are all good background texts on DES.

DES models are used in a wide variety of applications. In healthcare for example,

numerous DES models have been constructed for A & E departments (Ferrin et al.,

2007; Fletcher et al., 2007) and outpatient clinics (Wijewickrama and Takakuwa, 2005;

Guo et al., 2004), but also for operating rooms (Ferrin et al., 2004) and pharmacies

(Wong et al., 2003). More generally, other popular applications of DES models are
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supply chains (Windisch et al., 2015), maintenance processes (Alrabghi and Tiwari,

2016), manufacturing (Detty and Yingling, 2000) and logistics (Cheng and Duran,

2004). Brailsford and Hilton (2001) describe DES as ‘arguably the most widely used

OR technique in practice’.

2.2.2 Comparison of SD and DES

A number of previous works compare the SD/DES approaches. In attempting to an-

swer the question of when each approach should be used, Brailsford and Hilton (2001)

provide two detailed example models; Hilton’s is a SD model for cardiac surgery and

Brailsford’s is a DES model for AIDS. These examples illustrate the types of system

that are suitable for each modelling approach. In addition a general guide is provided

for when to use each approach. The authors also argue that when deciding between

which approach to use, the model’s purpose is more important than the type of sys-

tem being modelled. The authors highlight a hospital outpatient clinic as an example

and claim the following. SD would be used if interest was in the interaction between

neighbouring departments and if there were a large number of homogeneous patients

– i.e. to model the system as a whole. DES would be used if the clinic had low in-

teraction with other departments and there were a smaller number of heterogeneous

patients – i.e. to model a part of the system in detail.

Chahal and Eldabi (2008) offer a similar view when observing the difference between

‘detail complexity’ and ‘dynamic complexity’ as follows. Detail complexity arises from

the complex interactions in the system and the more distant view from SD simply
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cannot capture the detail – hence DES is more appropriate. Dynamic complexity is

captured well by SD but the detailed view provided from DES models “lack the global

vision”.

Morecroft and Robinson (2005) also consider the question of when each approach

should be used, by developing a SD and DES model of the same system, a fishery,

and comparing results. It was found that both models offered ‘plausible explanations’

for the behaviour of the system. The authors suggest that neither method has any

overall advantage over the other and that developing both types of models for a spe-

cific system can be beneficial.

It is clear that although each approach has its strengths, each also has limitations.

In addition to lacking the global vision, other limitations of DES are the need to run

the model multiple times – often causing long run times, the high data requirements

and the lack of ability to sufficiently represent the feedback loops present in a system

(Viana et al., 2014). The main limitations of SD are that its low detailed approach

cannot capture the ‘detail complexity’ as it cannot represent individual entities in the

system. In addition, there is no way of representing the stochastic variation in the

behaviour of these individuals.

It seems apparent that where one approach’s limitations are exposed the other is

able compensate. Chahal and Eldabi (2008) and Morecroft and Robinson (2005) go

a step further and argue that the limitations of the approaches actually complement
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each other. To overcome the limitations of using each approach separately, there is

a clear need to use SD/DES hybrid models. Pidd (2012) observes that in practice,

solving a problem often requires use of multiple methods and argues that combining

other methods with DES ‘should be the norm’. Brailsford et al. (2010) point out

that the software to combine the two approaches is available, it’s now the ‘conceptual

philosophy and practical methodology’ that need to be developed. More generally,

Kotiadis and Mingers (2006) explore the theoretical challenges associated with com-

bining different modelling paradigms and argue that overcoming these challenges is

achievable.

2.2.3 SD/DES hybrid models

The use of SD/DES hybrid simulation models has grown in recent years. Heath et

al. (2011) provide an overview of the different simulation paradigms and also discuss

cross-paradigm modelling and its challenges. A number of works have demonstrated

the added benefits of constructing hybrid models such as Brailsford et al. (2010),

Alvanchi et al. (2011) and Viana et al. (2014). Brailsford et al. (2014) dedicates

a significant proportion of its material to the details of how both techniques can be

combined and discusses the conceptual and practical challenges of doing so. Two

chapters in particular, Pidd (2014) and Borschev (2014), explore the technical details

of these practical challenges.

At the conceptual level, the question of which technique will be used to represent

which part of the system needs to be considered carefully by the modeller. Chahal
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and Eldabi (2008) define three formats for combining SD and DES as follows. Hierar-

chical ; where two distinct models (SD at strategic level and DES at operational level)

pass information between them. Process environment ; which also consists of two dis-

tinct models passing information between them, but the distinction is not ‘strategic

and operational’. This time DES models the ‘process’ (a part of the system) and

is contained within the SD model, which models the surrounding relationships and

interactions. Integrated ; where there is a single hybrid model; DES and SD are each

used to capture elements of the system but there is no longer any separation between

these parts of the model. For the integrated format, Brailsford et al. (2010) argues

that this ‘Holy Grail’ has yet to be achieved.

Morgan et al. (2017) proposes a ‘toolkit’ of 6 designs for mixing SD and DES meth-

ods and a set of questions for modellers to ask when deciding which design to use.

However, only the following 4 designs actually link SD and DES. Sequential, the use

of one approach to identify the need for (and also to inform) the use of the other – e.g.

Brailsford et al. (2004); Enrichment, an aspect of one approach is transferred into a

model using the other approach – e.g. SD remains the core method and is enriched

by the inclusion of discrete events; Interaction, the 2 models run independently but

periodically stop and exchange data at fixed time steps – this includes both hierarchi-

cal and process environment formats above; Integration, as for the integrated format

above.

Brailsford et al. (2010) present two healthcare case studies that each use the pro-
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cess environment format and interaction design above in a hybrid approach. Both

models use DES to represent a part of the system in detail and SD to model the sur-

rounding interactions. The authors argue that it would have been extremely difficult

to model either of the problems without a hybrid approach – and also that the process

environment and hierarchical formats above (and hence the interaction design) are

not true hybrid models since there are essentially two separate models passing data

to each other. One of the case studies of Brailsford et al. (2010) is a Chlamydia

infection model. The details of this are presented in much greater detail in (Viana et

al., 2014).

The practical challenges faced in constructing a model that adequately represents

the different paradigms must be overcome. In his book chapter, Pidd (2014) points

out that linking SD and DES requires the modeller to take into account the differ-

ences of each approach in three areas: time handling, causes of variation in system

behaviour and degrees of aggregation. He details the contrast in the approaches and

we summarise his points below.

• Time handling : SD models use a ‘time slicing’ approach, where the simulation

clock moves forward using equal time intervals of length dt. On the other hand,

after each event in a DES model, the simulation clock skips ahead to the next

event and the length of intervals between each event can vary. Pidd explains

that a hybrid model must be able to incorporate these differences in time han-

dling as follows: ‘either both models must briefly cease operation in order to
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exchange data, or the discrete-event model must schedule some regular, time-

sliced events so that interaction can occur with the system dynamics model

at those regular events’. Borshchev (2014) explains that the latter approach

is adopted by the multi-method software AnyLogic (The AnyLogic Company,

2016).

• Causes of variation in system behaviour : The use of probability distributions in

DES models means that each simulation run is effectively a sampling experiment

– hence in order to form meaningful conclusions, multiple runs of a DES model

are required. Some researchers have devised automated procedures for making

decisions about the required number of model runs, see for example Hoad et

al. (2011). On the other hand, as Pidd points out, since SD models are based

on the assumption that ‘system structure leads to system behaviour’, in general

they only require a single run. Pidd states that the modeller must be careful

when interpreting the results of a hybrid model since ‘the two different types of

variation can lead to a factorial explosion when attempting to understand the

results’.

• Degrees of aggregation: DES models are ‘atomistic’, since ‘system behaviour

is a result of interactions between individual entities and the resources they

use’. In a SD model, he describes the variables are ‘quasi-continuous’, since

the stocks and flows only change at each time slice dt and are held constant

in between these. As SD models do not capture the behaviour of individuals,

and instead concentrate on how their aggregated variables change over time,
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he describes SD models as ‘quasi-continuous aggregations’, in which ‘variation

in behaviour occurs as a result of relationships between the variables included’.

Pidd highlights the emphasis that the hybrid model should place on discrete

entities or continuous variables as an issue that must be resolved.

For the issue of degrees of aggregation, Pidd (2014) states that it is ‘relatively straight-

forward’ to use the value of a continuous variable to trigger a discrete event. This is

one of a number of possibilities for linking parts of SD and DES models. In his book

chapter, Borshchev (2014) thoroughly discusses the technical aspects of linking SD

and DES (and also agent-based) models and provides numerous examples of models

with links from SD to DES, from DES to SD, and links both ways.

One approach for coding a hybrid model is to code the SD and DES models in separate

environments and then use a method for linking the two models. This is the approach

adopted in Brailsford et al. (2010) and Viana et al. (2014). In constructing each

hybrid model, the SD and DES models are built separately in a dedicated software

package – Vensim (2010) for SD and Simul8 (SIMUL8 Corporation, 2015) for DES –

and the link between them is automated using VBA. Zulkepli et al. (2012) use the

same packages for their SD and DES models in a hybrid approach applied to health-

care, though the link between the models is not automated. Abduaziz et al. (2014)

also produce a hybrid model using dedicated packages – iThink (ISEE systems, 2012)

for SD and Arena (Rockwell Automation, 2016) for DES – applied to the automotive

industry. These are examples of the interaction design above.
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Another approach is to work entirely within a DES environment such as Witness

(2012). Ziegler et al. (2000) show that elements of the SD modelling approach can

be incorporated within a DES framework. Ziegler (2006) points out the behavioural

features that need to be supported in a DES framework when incorporating both

SD and DES parts and the interfaces between them. Heath et al. (2011) and Viana

et al.(2014) point out that many DES software packages can represent continuous

variables and can ‘therefore be adapted to provide the underlying structures of SD

models’. An advantage of using DES software over linking separate SD and DES en-

vironments is that there is no need to devise a method that automates the linking of

the models, such as the additional VBA code required in Viana et al. (2014). As the

models are likely to exchange information at regular intervals, additional code to link

separate modelling environments would be required to run regularly. Hence instead

including all code within the DES environment, and not requiring any additional code

to link the models, may also improve the model’s run times.

Another option for coding the hybrid model is to use dedicated multi-method software

such as AnyLogic. AnyLogic can produce DES and SD models (and also agent-based

models) in one environment with nearly all the main features of individual SD and

DES packages (Heath et al., 2011). Pruckner and German (2013) use AnyLogic to

produce a hybrid model for electricity generation systems. Mazaeda et al. (2012) use

EcosimPro (EA Internacional, 2016) to produce a hybrid model for sugar manufac-

turing.
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According to the arguments in Borshchev (2014), in which the flexibility of the Any-

Logic software is demonstrated, use of such multi-discipline software for our hybrid

model may be easier to implement than in a dedicated DES environment. However,

we propose to construct the hybrid model in the DES package Witness. We have no

requirement for agent-based methods and in addition, there appear to be few exam-

ples in the literature of SD/DES hybrid models built in a dedicated DES environment,

so it is hoped that the approach used in this chapter may serve as a guide for future

researchers.

It is worth highlighting that Heath et al. (2011) point out that when using multi-

discipline software such as AnyLogic or DES software such as Witness, these packages

‘remain essentially either a DES environment with some continuous features, or a SD

environment with some discrete or stochastic features.’ They proceed to argue that

there is currently no ‘genuinely hybrid modelling methodology that combines the char-

acteristic features of both DES and SD’.

Wynn et al. (2012) use DES to model information flows within BT with feedback

loops provided by SD methods in a hybrid approach, using Cambridge Advanced

Modeller (Wynn et al., 2010) software. The feedback examines the current system

performance relative to targets and adjusts workforce levels according to the size of

the backlog of jobs. This feedback is similar in nature to the feedback provided by the

SD part of our hybrid model, a simplified version of the hydraulics model, introduced
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in section 2.3.

2.3 BT Application

In this section we present the BT hydraulics model. We explain how it is used within

the organisation and also outline a key limitation of the model. We present a sim-

plified version of this SD model. This version will be used to construct the SD/DES

hybrid model in section 2.4.

Access to the UK’s growing telecommunications network is essential for organisations,

businesses and public services. The network has a complex structure, so faults can

occur frequently and for many reasons – e.g. due to weather conditions. When a fault

occurs it is important that repair work is performed as soon as possible. BT (through

Openreach), is solely responsible for repair and maintenance of the vast majority of

the UK’s network. To perform this work effectively they must ensure that at any time

they have sufficient workforce numbers available to meet demands – which can vary

considerably. The SD model that assists with this is known as the hydraulics model.

It is important that BT understands the impact of changes in demand on the system.

The hydraulics model helps them to be sufficiently aware of their own work flows to

ensure that when an increase in demand occurs, measures that are required to com-

plete the additional jobs fast enough are put into place to ensure customer satisfaction.

The rationale behind the hydraulics model and their choice of the SD approach is
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described in detail in the book chapter Jensen et al. (2013); written by the BT sci-

entists who devised and developed the model. The SD model that we use in this

chapter is a simplified version of the full hydraulics model. As we see in chapter 5

where the full hydraulics model is introduced, the full model contains a number of

similar additional feedback mechanisms compared to the simplified model. These

feedback mechanisms control other aspects of the system such as the engineers’ over-

time and ‘shrinkage’ (time on training or leave), again attempting to replicate the

decisions of management. Hence, although the SD model used in this chapter is a

simplified version of the hydraulics model, it nonetheless represents the key aspects of

the full model’s behaviour and enables us to learn more about the full model. We also

note that the simplified model represents repair jobs only and not other job types such

as ‘provision’ (installation) jobs. A stock and flow diagram of this simplified model is

shown in Figure 2.3.1.

From Figure 2.3.1, we see that the simplified model is effectively a single feedback

mechanism that adjusts workforce numbers in response to changes in demand. The

nature of this feedback mechanism has been carefully modelled to replicate the man-

agement decisions if such a situation were to be observed in the real system. For

example when an increase in demand is observed in the model, the increase of the

engineer numbers, and the speed of this increase, is designed to match that of how

management decisions would determine such increases in the real system.

There are three stocks in the model; the ‘backlog’ (job queue), ‘capacity deployed’
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Figure 2.3.1: Stock and flow diagram of the simplified BT hydraulics model.

and ‘capacity not deployed’. The model consists of two separate flows of entities; jobs

and engineers. In the upper part of the model, jobs enter the system to the backlog

and then are either cancelled or cleared (completed). In the lower part, maintenance

engineers flow between the two stocks ‘capacity deployed’ and ‘capacity not deployed’.

The ‘capacity deployed’ stock represents engineers that are available to work on repair

jobs. The ‘capacity not deployed’ stock represents engineers that are not currently

available (e.g. on leave or training etc.), but are present in the system. Hence, engi-

neers in ‘capacity not deployed’ can be transferred across to ‘capacity deployed’ when



CHAPTER 2. SD/DES HYBRID SIMULATION MODELS 25

the demand for engineers becomes great enough. This is determined by the feedback

mechanism within the model.

The nature of this feedback is determined by the three model parameters; the ‘target

cycle time’, ‘weight of cycle time in target setting’ and ‘delay in changing deployment’.

For full details of these see chapter 4. This demand for engineers essentially involves

comparing the queuing time of jobs in the backlog to the ‘target cycle time’ (TCT) –

which is the time that BT wish to complete each job within. If queuing times are large

relative to the TCT, the system pulls engineers towards the capacity deployed stock,

increasing the engineer numbers to deal with the extra jobs in the queue. If queuing

times small relative to the TCT, the system pushes engineers back towards capacity

not deployed. There is a delay in this process represented in the model by the ‘de-

lay in changing deployment’ model parameter. In reality, the process of transferring

engineers, reassigning work and arranging all the required meetings etc. all takes time.

In Figure 2.4.1, the variable ‘cycle time’ is the time that each job spends in the

system from first being reported, to being completed by the engineers. That is,

cycle time = queue time + engineer completion time, (2.3.1)

where the engineer completion time is the service time. A key performance mea-

sure that is of particular interest to BT is referred to as ‘right first time’ (RFT).

This is the percentage of repair jobs that are completed correctly at the first attempt

within 2 days, hence RFT is calculated using job cycle times. Accurate forecasts of
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RFT are crucial for an organisation such as BT, where customer satisfaction is crucial.

The limitations of the SD approach described in section 2.2.2 are apparent in the

hydraulics model. Ideally, to model RFT, individual jobs would be tracked through

the system and their cycle times measured. It would be simple to identify the per-

centage of jobs that fail to meet the 2 day target. However, the low-detailed approach

of SD means that the hydraulics model can’t track individual jobs through the system

and so cannot model RFT directly.

The current approach for modelling RFT is to use a regression relationship between

RFT and average cycle time. This has been derived from historical data. Weekly

estimates of the average cycle time are output from the model. These are calculated

using Little’s law (Little, 1961); see chapter 3 for more on this. For each week, the

regression relationship is applied to the average cycle time to obtain an estimate of

the RFT. In section 2.5 we demonstrate that relying on the regression relationship has

the potential for misleading results. We also show the advantages of using a hybrid

approach that can model RFT directly since individual jobs are tracked through the

system.

2.4 Methodology

This section presents the details of our approach for constructing the hybrid model.

Section 2.4.1 presents an overview of the approach, while sections 2.4.2 – 2.4.4 describe
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the details of each of the three stages in the process. Section 2.4.5 describes some of

the challenges faced when constructing hybrid models in a DES environment.

2.4.1 Overview of approach

As we explained in section 2.3, the simplified hydraulics model contains feedback loops

that replicate the decisions of management to transfer engineers to where they’re re-

quired – i.e. to either ‘deployed’ or ‘not deployed’. We propose to build a hybrid

model that retains this feedback. In order to represent individual jobs and engineers

in the system, we propose to model a part of the system in detail using DES. In

this part of the model, individual jobs will enter the system, wait in the queue and

proceed to one of the engineers before leaving the system. The tracking of individual

jobs will enable the cycle time of each job to be measured and hence the RFT to be

modelled directly. The SD and DES models will then be linked to enable the passing

of information at regular intervals dt.

As we saw in section 2.2.3, using DES to model a part of the system in detail and SD

to model the surrounding interactions, with the models passing information regularly,

means that we are using the process environment format of Chahal and Eldabi (2008)

and the interaction design of Morgan et al. (2017).
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2.4.2 Stage 1: System dynamics model in Witness

The first stage of the hybrid modelling process is to build the SD model entirely within

the Witness environment. To ensure that the model is operating correctly, the output

of this model is carefully validated against the output from the same model produced

in the SD software Vensim, before proceeding to stage 2.

Since SD variables are ‘quasi-continuous’, only changing at each time slice dt and

remaining constant in between these (Pidd, 2014), the SD model equations are effec-

tively difference equations that are updated at each dt interval. As we explained in

section 2.2.3, Pidd (2014) suggests that one way to handle simulated time in a hybrid

approach is for the DES model to schedule regular events at each dt interval, so that

interaction can occur with the SD model. One way to achieve this in Witness is to set

up ‘pseudo’ entities that arrive at a ‘pseudo’ activity at the start of each dt interval.

The activity contains a block of code that is activated upon the arrival of each entity.

This block of code contains the difference equations of the SD model – and hence

these difference equations update at the start of each dt interval.

It is worth highlighting that when the SD part of the model updates in this way,

i.e. when the SD model’s difference equations update via this ‘pseudo’ updating pro-

cess, this does not progress the simulation clock in the DES environment. Hence we

can update the SD model at the start of each dt interval without advancing the simu-

lation clock. In later stages when we add the DES parts of the model, the DES model
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can update throughout the dt interval, with no concerns about overlapping updates.

When coding the difference equations of the SD model in a DES environment, it

is important to determine the order of which the SD variables should update. Even

for the simple BT model in Figure 2.3.1, it is not immediately apparent which vari-

ables should update first. In a SD package such as Vensim, at each dt interval, the

stocks are updated first, followed by the flows and other variables. Essentially, the

greater the separation between a variable and its ‘furthest away’ stock (in terms of

how many variables lie in between) that influences its update, the later in the or-

der that variable should be updated. For example the ‘changing capacity deployed’

variable in Figure 2.3.1 requires the update of the variable ‘pull for capacity’, which

itself requires the update of ‘target clear rate’, which requires the update of ‘target

clear rate from cycle time’ and the ‘backlog’ stock. In this way it is clear that the

variable ‘changing capacity deployed’ must be updated last at each dt after all other

variables have been updated. When building a SD model in dedicated packages such

as Vensim, this issue is automatically taken into account.

2.4.3 Stage 2: Intermediate model – SD to DES one way

In stage 2, the DES model is added to the existing SD model in Witness from stage

1. However, at stage 2 we restrict ourselves to constructing an ‘intermediate’ model

that only passes information one way, from SD to DES. This allows us to check that

the DES part of the model is operating correctly when receiving information from the

SD model.
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The part of the system that is modelled in detail using DES is shown in the stock and

flow diagram of Figure 2.4.1. This part of the SD model represents the ‘flow’ of jobs

as they enter the system through the ‘new tasks’ rate, enter the backlog stock, then

leave the system either through the cancel or clear rate – a proportion of all jobs are

cancelled according to the parameters of the SD model. DES will represent jobs, the

backlog and engineers as follows. Each job will be represented as an individual entity

that passes through the system. The backlog will be represented as a queue where

jobs must wait until there is an available engineer to work on them. Each engineer

will be represented by an activity that jobs arrive at and then leave after a certain

interval – which represents the job completion time.

Figure 2.4.1: The focus of the DES part of the model.

In this way each job enters the system according to a specified inter–arrival time. The

job then waits in the queue, either for as long as is necessary for an engineer activity

to be available, or until it is cancelled. If the job is not cancelled it proceeds to an

available engineer. After spending a certain amount of time at the engineer activity,

the job then leaves the system. The tracking of individual jobs in this way enables
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the cycle time of each job to be measured and hence the RFT to be modelled directly.

The SD and DES parts are linked in two ways. The first link involves the mod-

elling of job arrivals. The SD model defines the rate ‘new tasks’ over the interval

dt as the average number of job arrivals per dt interval. Denote this rate by λ. For

each dt interval, we code the DES model to use the value of λ to set the inter–arrival

times for the job entities as they enter the system. The rate λ can be converted to

an inter–arrival time of 1/λ within each dt interval. This will result in jobs arriving

at regular intervals. One approach for introducing stochastic variability in the inter–

arrival times Y in a DES model is as follows: set Y ∼ Exp(1/λ) (Robinson, 2004).

Hence on average there are λ job arrivals per dt interval with irregular inter–arrival

times. Examples of the conversion of rates from the SD part of the model, to become

the parameters for distributions of inter–arrival times in a DES part of the model,

can be found in Viana et al. (2014) and Borshchev (2014).

Figure 2.4.2: Stage 2 model structure.
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The second link between the SD and DES parts of the model involves the number

of available engineers. The SD model defines ‘capacity deployed’ as the number of

available engineers over each dt interval. As the DES model represents each engineer

as an activity, the DES model must represent all available engineers in the model

as an activity – both those that are available (‘capacity deployed’ in the SD model)

and those that are not available (‘capacity not deployed’) in the SD model. Hence to

ensure that the correct number of available engineers are working on jobs throughout

each dt interval, the DES model ‘switches off’ certain engineers that are not avail-

able. At the start of each dt interval, the SD model passes the value for ‘capacity

deployed’ over to the DES model. The DES model uses this value to determine how

many engineers should be ‘switched off‘ for that dt interval. Any engineers that are

not ‘switched off’ are available to complete jobs. A diagram of the one-way sharing

of information between the two parts of the model is shown in Figure 2.4.2.

2.4.4 Stage 3: Full hybrid simulation model

In stage 3 we link the DES model back to the SD model to form the hybrid model.

The hybrid includes links both ways; from SD to DES and from DES to SD. The link

from DES back to SD is achieved as follows. At the end of each interval dt, the DES

model has fully updated. The current length of the job queue in the DES model is

fed back into the SD model by using this value to represent the ‘backlog’ stock in the

SD model’s difference equations. Hence, the SD model updates using the length of

the job queue that was determined by the previous update of the DES part of the

model. We use the number of entities in the DES queue to update a stock in the SD
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model. Borshchev (2014) includes an example of using the number of entities in a

DES queue to switch a SD rate on or off. Communication between the two models is

now operating in both directions, as we see in Figure 2.4.3.

Figure 2.4.3: Stage 3 model structure.

The updating process of the stage 3 model is as follows. At the start of each new dt

interval, the SD model’s difference equations update, using the current value of the

job queue from the DES model – that was updated over the previous dt interval – to

represent the ‘backlog’ stock. Then, throughout the duration of the new dt interval,

the DES model updates using the SD variables ‘new tasks’ and ‘capacity deployed’,

to set the inter–arrival times of jobs and available engineer numbers respectively. At

the start of the next dt interval, the SD model’s difference equations update again,

and so on.

A hybrid model such as this has the advantages of both the feedback provided by the

SD model so that it can replicate the decisions of management to adjust workforce
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numbers, and also the detail provided from the DES model to represent individual

jobs and engineers, enabling us to model RFT directly.

2.4.5 Challenges of hybrid modelling in DES software

In this section we describe some of the challenges that are faced when constructing

hybrid models in dedicated DES software such as Witness. These challenges involve

the ordering of updating of continuous variables and discrete elements within the hy-

brid model. These were revealed when the links between the SD and DES parts of

the model were included.

The order of updating within each part of the hybrid model, i.e. within each of

the SD and DES parts, can be important. Although the two models update sepa-

rately, for certain aspects of BT’s system, we require each part of the two models to

update in the same order. For example in the SD model, the stocks are updated at the

start of the SD updating process and as part of this, cancelled jobs (a percentage of

the jobs in the backlog) are removed from the backlog stock – hence this percentage

of cancelled jobs are removed at the start of the SD model update. Therefore the

DES model must also remove cancelled jobs from the backlog queue at the start of

its updating interval – to ensure that an appropriate number of jobs are cancelled.

Although this requirement was for BT’s system only, aspects of other systems may

require such considerations.

The order of updating across each part of the hybrid model is also important. We do
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not want the updates of each part of the model to overlap. For the updating process

of the hybrid, we want the SD part to update at each dt interval – updating the SD

difference equations requires no passage of time in the DES environment – and then

the DES part to update within each dt interval. A timeline of this process is shown

in Figure 2.4.4, where dt = 1.

Figure 2.4.4: Desired timeline of hybrid model updating process for each dt interval.

A problem can arise when we have a DES event scheduled at the same time as the

SD model update – at the end of a dt interval, e.g. at time t or t+ 1 in Figure 2.4.4.

When this occurs, DES software such as Witness examines the priority of activities to

determine which event to perform next. If these priorities are equal then it examines

the order in which the events were created. However, on some occasions the SD model

updates before the DES part has finished updating. Even after making adjustments to

the priorities of events, this issue was still apparent for certain updating intervals. On

these occasions, the SD part updated prior to the final job arrival or job completion

in the DES model.
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2.5 Results

In this section we use the simplified version of the BT hydraulics model within the

SD/DES hybrid approach outlined in section 2.4, to demonstrate the potential ben-

efits of hybrid modelling in the context of the hydraulics model. We investigate the

behaviour of the hybrid model under a simple artificial scenario – a temporary stepped

increase in the average job arrivals per day. The effects of stochastic variation on sys-

tem performance are investigated by adjusting standard deviations for engineer job

completion times (service times), and examining the resulting cycle times and RFT.

In addition, we demonstrate that when not modelling RFT directly, relying on a re-

gression relationship to model RFT can be misleading.

The model runs for 500 days in total. On all days except days 70-79, average job

arrivals are set at 900 per day. On days 70-79, this increases to 1200. Days 70-79

were chosen for the stepped increase, since this gives the system sufficient time to

return to steady state, both prior to the stepped increase, and after the stepped in-

crease before the simulation terminates.

A key decision is the length of the updating interval dt for the SD part of the model.

Setting dt too large means the model’s response to changes in the system is too slow

– i.e. the feedback in the SD model is not able to respond fast enough to the increases

in job arrivals. Setting dt too small increases computational time unnecessarily. A

range of values were investigated ranging from dt = 1 day down to dt = 1/16 day.
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By visual inspection of the time series and comparing model run times, dt = 1/4 day

was found to be a suitable compromise.

We introduce stochastic variability into the hybrid model as follows. Inter-arrival

times Yi of jobs entering the system are modelled as Yi ∼ Exp(1/λ), with λ = 225.

Hence on average, for all days except days 70-79, there are 225 job arrivals per dt

interval (1/4 day) and so 900 arrivals each day. The Lognormal distribution is often

selected to model service times due to the right-skew being a good representation of

the actual data (Robinson, 2004). After consultation with BT, the completion times

Xi of jobs by the engineers are modelled as Xi ∼ Lognormal (µ, σ), where E[X] = 1
3

days, since on average each engineer completes 3 jobs per day and hence 3
4

jobs per

dt interval. To investigate the effects of stochastic variability we use the following

standard deviation values: s.d.[X] = 0.1, 0.2, 0.3 and 0.5. In total 400 engineers are

present in the model, with only 300 of these initially deployed.

As we highlighted in section 2.2.3, Pidd (2014) points out that multiple runs of a

DES model are required and also that the modeller must be careful when interpret-

ing the results of a hybrid model. As such, for each value of s.d.[X], 25 model runs

are performed in Witness, each with different pseudo random number streams. For

each variable in the model, an average is taken across all these runs at each updating

interval dt. Note that for the settings of this experiment, and after consultation with

BT, the threshold of RFT was increased to around 2.5 days (rather than 2 days) in

order to obtain realistic RFT values.
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Figure 2.5.1: Effects of stochastic variation on RFT.

Recall that cycle time = queue time + engineer completion time. Figure 2.5.1 shows

the averages across the 25 runs of the RFT values at each interval dt, for each of

the 4 values of s.d.[X]. The sudden decrease in the RFT around day 70 is caused

by the stepped increase in job arrivals. However it is the steady state sections of the

RFT time series of Figure 2.5.1 that are most interesting. These show that increasing

s.d.[X], decreases the RFT when the system is in steady state. In other words, in-

creasing the variability of engineer completion times has reduced system performance,

as a greater number of jobs ‘fail’ to meet the completion target. In fact, this drop

in performance is greater than 10%, when comparing RFT’s resulting from s.d.[X] =

0.1 and 0.5. The effect of this variability does has limitations. Use of larger values
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of s.d.[X] were also investigated and increases beyond s.d.[X] ≈ 0.7 resulted in little

change in RFT.

Figure 2.5.2: Effect of stochastic variation on cycle time distributions.

Figure 2.5.2 presents histograms of the distributions of cycle times for the highest

and lowest values of s.d.[X]; 0.1 and 0.5. We can see that for s.d.[X] = 0.5, the

distribution has heavier tails. In particular, it is the heavier right tail that causes

a greater proportion of jobs to ‘fail’ to meet the completion target, hence the lower

corresponding RFT value. The jobs that fail to meet the target are coloured in orange.

For single–server systems, the Pollaczek-Khintchine formula (Pollaczek, 1930; Khint-

chine, 1932), shows that the mean queueing time (and hence the mean cycle time) is

influenced by the standard deviation of the service time (increasing standard devia-

tion increases the mean queueing time); see for example Harrison and Patel (1992).
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For multi–server systems, empirical results, see for example Hillier and Yu (1981),

show that this also holds, but with the scale of this influence gradually decreasing as

the number of servers increases. This decrease continues until there is no influence

when we have infinite servers. Hence, the results of this section are not unique to our

selection of the lognormal distribution for modelling service times. Similar results,

i.e. the effects of increasing s.d.[X], would have been observed for other reasonable

choices of service time distributions.

As we explained in section 2.3, the hydraulics model cannot estimate the RFT di-

rectly. Currently at BT, the average cycle time from the SD model is used to es-

timate RFT, via a linear regression relationship between the two variables, derived

from historical data. As we have seen, adjusting the values of s.d.[X] influences the

tails of the distribution of cycle times and hence the RFT. Determining the influence

of s.d.[X] on the daily average cycle time for our system is less straightforward.

Our hybrid model does not contain an infinite number of servers (engineers), but

does contain a large number; between 300 and 400 depending on how many are ac-

tive. This means that for our system, according to the Pollaczek-Khintchine formula

and empirical results above, s.d.[X] should have an (albeit reduced) influence on the

daily average cycle time. Figure 2.5.3 shows the time series of the average daily cycle

times from the hybrid, averaged over the 25 runs. For the range of s.d.[X] values

used here, it is not clear whether s.d.[X] is influencing the average cycle time in our

system.
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Figure 2.5.3: Effects of stochastic variation on daily average cycle time.

What is clear is that the influence of s.d.[X] on RFT is not the same as the influence

of s.d.[X] on the average cycle time. In other words, if we increase s.d.[X] to an extent

that results in an average cycle time increase of 1%, the tail probabilities of the cycle

time distribution will increase by more than 1%. Since the regression approach used

at BT assumes a fixed relationship between RFT and average cycle time, this also

assumes one of the following: either that s.d.[X] is constant over time (which is not

true according to system experts at BT) or that changes in s.d.[X] have an equal effect

on both average cycle time and RFT. Since our results show that the latter of these

is not the case, our results suggest that relying solely on the regression relationship

to model RFT may not always be reliable.
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In order to investigate this, we compare RFT values output directly from the hy-

brid model with RFT estimates obtained using regression. Our hybrid model is based

on the simplified version of the hydraulics model, hence it is a smaller-scale version

of the full system. We therefore must use the same regression model structure as

BT’s, but estimate the parameters separately for our scaled–down system. If cti is

the average cycle time of day i, then rfti, the RFT for day i, is estimated at BT as

in (2.5.1).

rfti = α + β cti + εi (2.5.1)

BT assume that this regression relationship is fixed – regardless of the variability in

cycle times. We investigate the use of two values of s.d.[X] (0.1 and 0.5) in the hybrid

model and run the model for i = 1, ... , 500 days. Denote the resulting time series for

these 500 days as CT and RFT , for cti and rfti respectively. We then fit a regression

model to the hybrid’s simulated data for series RFT and CT , for each value of s.d.[X].

These models are denoted by M0.1 and M0.5 respectively. The estimated parameters

of each of these models, α̂ and β̂, can be considered to be the ‘true’ regression param-

eters for this scaled–down system.

In order to assess the use of the regression relationship in estimating RFT , we imag-

ine that like BT, we have no RFT data directly from a hybrid model and must rely

entirely on a regression approach based on historical data using a single set of fixed

parameters. We apply the regression relationships of each of the models M0.1 and
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M0.5, to the corresponding CT data using s.d.[X] = 0.1 or 0.5, to obtain two sets of

RFT estimates, denoted by ˆRFT 0.1 and ˆRFT 0.5 respectively. Since BT use a fixed

regression relationship, we can demonstrate the approach’s potential for misleading

results as follows. If we take the CT data for the s.d.[X] = 0.5 runs from the hybrid,

but rather than using the regression relationship of model M0.5 to estimate the RFT

values, we instead use regression model M0.1, Figure 2.5.4 shows the resulting RFT

estimates.

Figure 2.5.4: Misleading RFT estimates from the regression approach.

The black lines of Figure 2.5.4 are the directly measured RFT series from the hybrid

model, for runs with s.d.[X] = 0.1 (upper line) and s.d.[X] = 0.5 (lower line). The

green line is ˆRFT 0.1, the estimated RFT series resulting from the correct regression
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model M0.1, whose parameters were estimated using CT data with s.d.[X] = 0.1. As

one would expect, ˆRFT 0.1 values lie close to the directly measured RFT values from

the hybrid. The red line is not ˆRFT 0.5. Instead the red line is the estimated RFT

series using the (incorrect) regression model M0.1 rather than M0.5, using the CT

data with s.d.[X] = 0.5. These values lie far away from the corresponding directly

measured RFT series resulting from s.d.[X] = 0.5 (lower black line) and instead lie

closer to the RFT series resulting from s.d.[X] = 0.1. So by assuming a fixed regres-

sion relationship, and hence assuming that changes in s.d.[X] have an equal effect on

both average cycle time and RFT, two sets of CT data with different s.d.[X] values

have resulted incorrectly in similar RFT estimates. This example demonstrates that

if s.d.[X] changes over time, relying on a fixed regression relationship can lead to

misleading results.

2.6 Discussion

In this section we present a discussion. We begin by discussing the benefits of a hy-

brid model to BT. We then reflect on our approach for coding the model within a

dedicated DES environment. We conclude with a discussion of the contribution of

this chapter to the literature.

The results from the hybrid model using the simple artificial scenario for job ar-

rivals have demonstrated some of the benefits of a hybrid approach to BT. Results

have revealed the effect of the standard deviation of service times on cycle time dis-
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tributions and RFT – increasing the standard deviation results in decreased system

performance in steady state. As we explain in section 2.5, this effect is well known

in queuing theory. However, the hybrid model has enabled us to understand the size

of this effect, by allowing us to directly model the important performance measure

RFT. BT previously had no such insights into the behaviour of RFT. In addition,

the hybrid model has enabled us to demonstrate the potential for misleading results

when relying solely on the regression relationship to estimate RFT.

The work of this chapter demonstrates that a simple SD/DES hybrid model can

be constructed in dedicated DES software such as Witness, although a requirement is

that this software must offer a programming language facility in order to incorporate

the SD model’s difference equations. However, as section 2.4.5 reveals, hybrid mod-

elling in a dedicated DES environment poses a number of challenges.

Perhaps the most important of these is ensuring the correct order of updating across

each part of the hybrid model. As we explained in section 2.4.5, an issue can occur

when DES events and SD model updates are scheduled simultaneously– at the end

of each dt interval. For some dt intervals, in the DES model, one fewer job arrives

or is completed than is required, before the SD model updates again. Although not

significant enough to impact the results of section 2.5, this is problematic and for

more complex models may become a more serious issue. Ultimately, incorporating

SD difference equations within a DES environment has limited the control we have

over the order of events that are due to occur simultaneously.
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It is also worth highlighting that overcoming some of the challenges faced in us-

ing DES software, was not straightforward and sometimes required a fairly lengthy

investigation. These challenges were effectively caused by the software assuming (nat-

urally) that the modeller is using a DES approach. Two alternative approaches for

constructing hybrid models were discussed in section 2.2.3. These were the use of

separate SD and DES software with some method for linking the models, and the use

of dedicated multi-discipline software such as AnyLogic.

If using separate SD and DES software, although separate checks of the SD and

DES models would still be required, it could be taken for granted that each model is

operating as a SD or DES model should, within its dedicated software. Hence there

would be no issues regarding the ordering of updating of continuous variables and

discrete elements within the hybrid model, such as those reported for a DES environ-

ment in section 2.4.5. Hence no additional tests would be required in order to check

that each part of the model is updating appropriately. The modeller would have con-

fidence that at the end of each dt interval, the DES part updates fully prior to the

SD part updating. If automating the link between the two models, as in Viana et al.,

(2014), although not straightforward, this process is potentially less time–consuming

than overcoming the challenges faced when using a DES environment.

We can make similar observations regarding the use of multi-discipline software such

as AnyLogic. This environment is dedicated to the use of combining multiple meth-
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ods such as SD and DES. Borshchev (2014) demonstrates with detailed examples the

highly specialised solutions that are offered in the AnyLogic software for linking the

two methods. Therefore, overall we can observe that it is likely that both of these

alternative approaches would be easier to apply in a hybrid modelling approach and

would require a less lengthy testing process.

The hybrid model has advantages over both standalone SD and DES models, for

the BT application, but also more generally, by combining key attributes of each

approach. Unlike SD models, the hybrid can track individual entities in the system

and so can model individual service times and hence key performance measures. In

addition, the effects of stochastic variation on the behaviour of individual entities can

be thoroughly explored. Unlike DES models, the hybrid incorporates a complex feed-

back structure from an SD model that has been validated in a major organisation so

that it can replicate the decisions of management to adjust workforce numbers. DES

models can themselves incorporate feedback mechanisms, however this is usually of

a more ‘discrete’ nature – such as drafting extra engineers if the backlog reaches a

critical level or certain engineers checking the queue size after completing each job

and going off duty if not required.

We believe that this chapter adds to the literature by providing another example

of the benefits of using a hybrid modelling approach, over a standalone SD or DES

model. Although the hybrid model is scaled–down and relatively simple, it demon-

strates that a more complex scaled–up version may provide considerable benefits to
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a large organisation like BT. This chapter also demonstrates some of the challenges

that need to be overcome by researchers considering hybrid modelling within a DES

environment. The hybrid model constructed in this chapter however, demonstrates

that solutions can be found.



Chapter 3

Data-driven techniques for

structural validation of system

dynamics models

3.1 Introduction

3.1.1 Background

This chapter presents an approach for validating specific aspects of the structure of

a system dynamic model. We present a data-driven approach that can be used to

strengthen existing structural validation tests of SD models. We demonstrate the

insights provided from this approach using the example of the BT hydraulics model.

An exploratory analysis of historical time series data is presented that aims to inves-

tigate three core assumptions of the hydraulics model. Fundamental to the feedback

49
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loops within the hydraulics model is the assumption that BT respond to increased

demand by increasing engineer numbers, as we explained in chapter 2. The nature of

this increase in workforce is assumed to be linear. In addition, different geographical

regions are assumed to exhibit the same behaviour.

Validation of the first of these core assumptions, that workforce numbers increase

as demand increases, is also necessary step prior to chapters 4 - 6, where we attempt

to estimate the parameters of the hydraulics model. This is because our method for

parameter estimation relies on the structure of the hydraulics model being an accu-

rate representation of BT’s system. This core assumption of how the organisation

responds to increases in demand is a key part of the model’s structure.

More specifically, the following are the main assumptions of how the model responds

to changes in demand:

1. The organisation increases workforce numbers for job flows experiencing periods

of increased demand.

2. This increase in workforce is approximately linear.

3. Behaviour of the system across different regions is assumed uniform.

The objective of this chapter is to investigate these three hydraulics model assump-

tions using historical time series data from BT. One would expect assumption (1) to

be an essential strategy for any organisation attempting to perform effective service
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delivery. This is the core assumption that we refer to above. As part of our analysis

we will also investigate assumption (2). As the dataset contains time series for 74

geographical regions across Great Britain, the analysis can investigate assumption (3)

and determine system behaviour at a more detailed regional level.

The BT historical time series data are effectively queuing data providing information

for job arrivals, queue size, job completions and workforce numbers. Investigating

how the system responds to increased demand requires a particular focus on certain

intervals within the time series. These are the periods where high demand is observed.

Throughout, we refer to these periods as ‘spike’ periods. However it is worth noting

that these increased demand periods are not always sharp sudden increases and may

be steady increases observed over a couple of weeks. When the job arrivals increase,

the job queue increases, placing extra strain on the system as current performance

begins to fall away from the targets. These are the periods during which an observ-

able response from the system, i.e. to increase workforce numbers, can be considered

most likely to occur. The analysis of this chapter attempts to determine if (and to

what extent) workforce numbers are increased as the organisation makes decisions

that determine its response to the increased demand.

3.1.2 Validation of system dynamics models

In this section we explain some of the standard tests that are used for validating a SD

model. Although these are usually subject to much iteration, Barlas (1996) defines

the three main stages in the validation of a SD model as the following:
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• Direct structure tests : These determine if the structure of the model is compa-

rable to knowledge about the structure of the real system. This stage in the

validation process is performed before the model has been coded and involves

various stakeholders involved in the project. These tests assess the validity of

individual model equations and are divided into two types; empirical and the-

oretical. These are summarised well in Barlas (1994). Empirical tests compare

model equations to knowledge of relationships in the real system. Theoretical

tests compare model equations with general knowledge of the system from the

literature. See also Barlas (1989a), Barlas (1989b) and Forrester & Senge (1980)

for more details. Barlas (1989a) points out that the order of the validation pro-

cess is essential; the direct structure tests must come first. The reason given by

the author is that unless we have confidence in the model’s structure, there is

no point in proceeding with the behaviour tests below as a model with serious

structural flaws can still produce accurate behaviour with sufficient ‘parameter

tuning’. This view on the ordering of tests reflects the general view in the lit-

erature, see for example Forrester & Senge (1980), Qudrat-Ullah (2011) and

Barlas (1996). Barlas (1989b) defines these as ‘strong’ tests as they directly as-

sess the model’s structure, but points out that their weakness is their qualitative

nature meaning that they can be difficult to communicate.

• Structure-oriented behaviour tests : These are tests that use model output to as-

sess the model’s structure indirectly, by applying certain behavioural tests. For

example, the extreme-condition test assigns extreme values to certain model pa-
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rameters and compares the model’s behaviour to observed or expected behaviour

of the real system. Barlas (1989a) points out that although the characteristics

of SD models mean that standard statistical tests are unsuitable, a process con-

sisting of only qualitative methods such as direct structure tests is insufficient

for model validation. Barlas (1989b) argues that this stage of tests are the

most important as they are ‘behaviour tests that can provide some structural

information’. Only when the model has passed the first two validation stages is

it possible to proceed to behaviour pattern testing.

• Behaviour pattern tests : These involve comparing behaviour patterns from the

model output to those of the observed data. Barlas (1989a) suggests a 6-stage

process incorporating a number of quantitative methods that analyse time pat-

terns rather than individual data points. These include comparisons of trend,

period, mean and amplitude variation, phase lag detection and calculation of an

overall summary measure which is to be used strictly as a reporting tool after the

model has passed all previous tests. Modifications of this process are outlined in

Barlas (1994). Several tests discussed in Forrester & Senge (1980) also fall into

this category. Sterman (1984) describes an overall summary statistic based on

the historical fit of the model to calculate the behaviour discrepancy in terms of

bias, variance and covariance. Behaviour testing is generally considered to be

weaker than structural tests. Barlas (1989a) warns that if these tests are used

without structural tests, ‘spurious behaviour accuracy’ (where structural errors

are present in the model but sufficient ‘parameter tuning’ has been performed)
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cannot be separated from true behaviour validity where the model has an ac-

curate structure and behaviour. However the author points out the usefulness

of these tests for models where the structure has been shown to be accurate; a

poor performance in these tests shows that some parameters or exogenous vari-

ables are not represented correctly. A strong performance increases the user’s

confidence in the model.

The hydraulics model has already undergone a formal validation process by special-

ists at BT. This involved tests from all three stages of the validation process out-

lined above. In this chapter we present a data-driven approach that can be used

to strengthen existing structural validation tests of SD models. We claim that this

data-driven approach can be considered as an addition to the direct structure tests

described earlier. Although this type of test is not normally data-driven, we argue

that this type of direct structure test can offer additional insights in the validation

process. In this chapter this is demonstrated by assessing the three assumptions of

the BT hydraulics model highlighted in section 3.1.1, through analysis of historical

time series data from the system.

The structure of this chapter is as follows. Section 3.2 gives an overview of the

methods used in the analysis and describes the historical time series data. Section 3.3

explains how spike periods are detected. Section 3.4 describes how system changes

are measured within spike periods. Section 3.5 presents details of the algorithm that

is used for the analysis, with the results presented in section 3.6. Section 3.7 presents
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the discussion.

3.2 Methodology

3.2.1 Overview

In this section we present an overview of the methods used in this analysis. We begin

by summarising below the three main stages of the analysis.

1. Spike detection: In order to investigate system behaviour around ‘spikes’ in

job arrivals, criteria are defined for what constitutes a spike and how far above

normal fluctuations job arrivals must be. For details see section 3.3.

2. Definition of variables: Having defined spike periods of interest, key variables are

defined that measure changes in system behaviour. For details see section 3.4.

3. Regression: Using the variables defined above, the important factors that affect

the system’s response to the spike are determined. This allows us to investigate

the validity of assumptions (1)-(3) in section 3.1.1. Results of these regression

models are presented in section 3.6.

In section 3.5 we provide full details of the algorithm that is used in the analysis

of this chapter. The regression models of step (3) include 4 explanatory variables

X1, X2, X3, X4 and a single response variable Y . We give a brief description of these

here.

• X1 Additional job arrivals : Number of additional repair jobs that arrive within

the spike period.
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• X2 Reserve repair capacity : The system’s ability to increase workforce numbers

if required for repair jobs.

• X3 Repair tension: The current performance of the system relative to targets.

• X4 Reserve provision capacity : The system’s ability to increase workforce num-

bers if required for provision jobs (e.g. the installation of telephone lines or

broadband equipment).

• Y Additional engineers : Numbers of additional engineers that are utilised within

the spike period.

For each detected spike, linear regression models are used in an attempt to use the

variables X1, ..., X4 to explain the behaviour of the region’s response Y . For each

spike i, we therefore model the region’s additional engineers as:

Yi = β0 + β1X1,i + β2X2,i + β3X3,i + β4X4,i + εi,

where βi, i = 1,...,4 represent the estimates of the coefficients of the variablesX1, ..., X4.

3.2.2 Regional time series data

In this section we describe the BT regional time series data. The data consists of 74

sets of 8 daily time series, each set representing a geographical region of Great Britain.

The approximately 20 different BT job flows have been aggregated into only 2; repair

and provision jobs. For each region, 4 of the time series describe the behaviour of

the repair job flow, while the remaining 4 describe the behaviour of the provision job

flow. We describe below the daily time series for each region. Note that these 4 series
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are present for both repair and provision jobs - hence we have 8 time series for each

region.

• job arrivals: number of jobs that arrived on that day.

• job queue size: the size of the job queue at the start of that day.

• job completions: number of jobs completed on that day.

• engineers: number of engineers working that day.

Within each region, all 8 series are of the same length but lengths of series differ

between regions, ranging from 750 days up to 903 days. The only exception to this is

a single region from the South-East of England encompassing the towns of Aldershot,

Guildford and Haslemere which has a length of only 60 days due to missing data.

This region was excluded from the analysis, leaving 73 regional sets remaining. All

series commence on July 1st 2010, with the longest series expiring on December 19th

2012.

3.3 Spike detection

In this section we describe the process of detecting spike periods. This is made more

challenging due to a seasonal pattern present in the data. Of the two job flows, repair

and provision, the repair jobs are of highest priority to BT, since repairing the network

is more urgent than installations of equipment for new customers. Hence repair job

arrivals drive the system changes for each region, as the region attempts to maintain

its job queue within performance targets. Hence the spike detection methods of this
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section are applied to the repair job arrivals for each region.

A popular class of techniques for identifying changes in time series are known as

change point detection methods, see for example Chen and Gupta (2011). These de-

tect changes in the mean or variance of a time series at a particular point in time.

However, the analysis of this chapter investigates core assumptions of BT’s hydraulics

model. This model responds to changes in the system observed over a period of time,

usually a matter of weeks. Hence, our approach for spike detection focusses on grad-

ual, longer-term changes in system behaviour, such as an increase in trend, over

periods of up to 21 days. Hence for our analysis change point detection methods are

not appropriate.

For each regional set of time series, 3 of the 4 series (job arrivals, job completions

and engineer numbers), for both the repair and provision job flows, show a strong

weekly seasonal pattern, with values decreasing considerably for weekend days. An

example of this seasonality over a 10 week period for a region’s repair job arrivals is

shown in Figure 3.3.1.

In order to detect spikes, in sections 3.3.1 - 3.3.3 we present three alternative methods

and define how a spike is detected for each. Each method has a different approach

for treating the seasonality present in the data.
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Figure 3.3.1: Example of weekly seasonality in the job arrivals.

3.3.1 Simple moving average

A simple method for smoothing a time series is to take a centred 7 day moving average

(MA). This smooths out the seasonal effect and provides an estimate of the trend. In

calculating the average values, observations are given equal weighting.

For spike detection, let at be the MA on day t. Then a spike is defined as any

period where the MA increases above a threshold of 25% within 7 days, i.e. any at

such that:

max (at, ..., at+7) ≥ 1.2 at.

The value of the series at at is effectively used as a ‘base’ value and any increase

beyond the threshold within 7 days is classified as a spike. In other words, at provides

a ‘counter-factual’, i.e. the expected value of the series on day t if there was no spike.

Use of the MA in this way, means that the detection of any significant changes in
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trend, indicates that a spike in job arrivals has occurred.

3.3.2 Holt-Winters method

In this section we present an alternative method for providing a ‘counter-factual’.

MA estimates the trend of a series, but ignores any seasonality exhibited by the data.

Hence using MA on a series that exhibits seasonality produces an estimate of the

trend that may be corrupted by the seasonality in the data. As the BT data exhibits

both a trend and seasonality, we investigate the use of the Holt-Winters method. This

models level, trend and seasonality using separate components.

This method lies in the category of exponential smoothing techniques. Charles Holt’s

classic paper, Holt (1957), on exponentially weighted moving averages initially ap-

peared in 1957, see Holt (2004) for an updated version. This technique extends to

time series that also exhibit seasonality, where it is known as the Holt-Winters method

(Winters, 1960). The notation below which uses the additive treatment of the sea-

sonal component is similar to that used in Hyndman et al. (2008). The authors point

out that the multiplicative treatment is more common than the additive, however this

requires non-zero values in the time series. This was not always the case for the BT

data, mainly due to behaviour on Sundays and Bank Holidays.

Like any exponential smoothing method, the method outlined here is an algorithm

that produces a point forecast (Hyndman et al., 2008). For job arrivals series

y1, y2, ..., yn with a seasonal period of 7, the one step ahead point forecast using the
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additive Holt-Winters method is ŷt+1|t = lt + bt + st−6, where lt is the level term, bt is

the trend term and st is the seasonal term, with each defined on day t as follows:

lt = α(yt − st−7) + (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− β)bt−1

st = γ(yt − lt−1 − bt−1) + (1− γ)st−7.

α, β and γ are the smoothing parameters for the level, trend and seasonal components

respectively. These are defined such that 0 < α, β, γ < 1. The point forecasts ŷt+1|t

derived in this way represent a weighted moving average of past observations with

weights decreasing exponentially (Hyndman et al., 2008).

We estimate these smoothing parameters by maximum likelihood, in order to min-

imise the squared prediction error of the 1 step ahead forecasts;
∑n

t=1 e
2
t , where

et = yt − ŷt|t−1. We use the maximum likelihood estimates, α̂, β̂ and γ̂, to calculate

the fitted values ŷt of the series for each day t. These fitted values ŷt can be broken

down into fitted values for the individual level l̂t, trend b̂t and seasonal components

ŝt, since:

ŷt = l̂t + b̂t + ŝt.

For the purposes of spike detection, our interest is not in the seasonal component,

rather it is in estimating the trend in the series. Therefore after obtaining the overall

fitted values ŷt, we subtract the fitted values for the seasonal component ŝt from the

overall fitted values as follows:

ỹt = ŷt − ŝt = l̂t + b̂t.
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Whereas MA’s estimate of trend may be corrupted as it ignores the seasonality in the

data, by estimating the seasonal component in this way via Holt-Winters and then

removing it from the fitted values, we can estimate the trend in the data, without

this estimate being corrupted by the seasonality. Hence we select this approach as

the default for spike detection.

This filtered series ỹt : t = 1, ..., n, also provides a smoothed representation of the

original series y1, y2, ..., yn, as we see in Figure 3.3.2. This compares the filtered series

with MA, applied to the arrivals for an example region. For the purposes of spike

detection, let at = ỹt be the filtered series on day t. A spike is defined as for MA

in section 3.3.1, but the threshold is decreased to 20% to ensure that both methods

detect similar numbers of spikes for analysis. Hence a spike is defined as any period

where the filtered series increases 20% or more within 7 days.
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Figure 3.3.2: Holt-Winters and 7 day MA.
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3.3.3 Seasonal differencing

MA and (our use of) Holt-Winters filtering, result in smoothed series that provide an

estimate of the trend. However, a smoothed job arrivals series means that we may

potentially be unable to detect any short-term increases. We investigate the use of an

alternative to these methods, seasonal differencing; see for example Box et. al (2015).

In the previous section we use Holt-Winters to model the seasonality and then remove

it. Seasonal differencing removes the seasonality (and often the trend also), rather

than modelling it.

To perform seasonal differencing on the BT data, the raw series are differenced for

each weekday. We define the resulting series as dt, the differenced series on day t. This

differenced series in many respects resembles a stationary series. A spike is defined as

any increase in dt resulting in a value greater than or equal to 1.8 standard deviations

of the raw series for job arrivals y1, ..., yn. That is, any dt such that

dt ≥ 1.8 s.d. (y1, ..., yn).

3.4 Definition of variables

In this section we explain how system changes are measured within the spike inter-

vals of the time series. In doing so we calculate explanatory variables X1, ..., X4 and

response variable Y for the regression modelling.

The spike detection approaches of section 3.3 presented the use of 3 methods for
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treating the raw time series data. When defining variables, we must be consistent,

and use the same method that was used to treat the data. E.g. if Holt-Winters filter-

ing is used to treat the data, this method is also used in the definition of the variables.

Since the 3 methods treat the data differently, using one method to detect a spike and

then another to define the variables, may not sufficiently reveal any system changes.

The only exception to this is in the definition of the variable X3 which requires use

of smoothed series as we explain below.

All variables defined in this section are calculated within a certain period of the

spike arriving. From here on this is referred to as the spike interval. The length of

this spike interval would seem to be an important issue. On the one hand, it must be

sufficiently long to track system changes, for example giving the region a ‘fair’ chance

to respond to the increased demand. On the other hand it should not be so long

that it is detecting trends in time series rather than short-term effects/responses to

a spike. A default interval of 14 days is chosen, with alternatives of 7 and 21 days

also investigated. A multiple of 7 days must be used for the interval length due to

the seasonality in the data.

In sections 3.4.1 - 3.4.4 we define the 4 explanatory variables X1, ..., X4 and response

variable Y for the regression modelling. Section 3.4.5 describes some additional vari-

ables that were investigated.
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3.4.1 X1: Additional job arrivals

This variable attempts to measure how many additional jobs arrived within the spike

interval.

(a) Holt-Winters and MA spike detection: Let ht represent the smoothed job

arrivals series on day t, using either Holt-Winters or MA methods (although for MA

this was denoted by at in section 3.3.1). If a spike is detected on this day t and the

default spike interval length of 14 days is used, then this interval covers the period

(t, t+13); i.e. the day of the spike and the following 13 days. Figure 3.4.1 shows

an example of the behaviour of ht during a spike interval. The interval is contained

by the two vertical red dashed lines. X1,t is calculated by measuring values of ht in
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Figure 3.4.1: Variable definition for smoothed series.
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this spike interval relative to a ‘base’ measure of ht on day t − 1; ht−1. This base

measure is the value of the smoothed series on the day prior to the spike arriving,

represented by the horizontal black dashed line in Figure 3.4.1. For each day of the

spike interval, the additional arrivals are calculated as that day’s arrivals minus the

base arrivals. An example of these daily differences between ht and the base ht−1 is

plotted in Figure 3.4.1. X1,t is the mean of these differences and hence is calculated

as follows:

X1,t =
1

14
Σ13
i=0(ht+i − ht−1)

As is the case in Figure 3.4.1, not all these differences will be positive; for some days

within the spike interval ht may lie below the base value. To ensure that no important

information is missed, negative differences were also taken into account. This provides

a complete record of the behaviour of the series throughout this interval. There is a

risk that measuring system changes of interest such as X1,t in this way may become

obscured by highly negative differences later in the 14 day interval. However if this is

the case it is likely to be exposed by investigating use of shorter interval lengths. The

results presented in section 3.6 reveal the effects of using alternative interval lengths

of 7 and 21 days.

(b) Differencing spike detection: Let yt be the raw job arrivals (for repair jobs)

on day t, as was defined in section 3.3. Rather than using a single base value,

we now calculate the difference between the raw arrivals series in the spike inter-

val (yt, ..., yt+13) and a base value for each of the previous 7 days prior to the spike



CHAPTER 3. DATA-DRIVEN STRUCTURAL VALIDATION 67

arriving, (yt−7, ..., yt−1).

X1,t =
1

7
Σ6
i=0(yt+i − yt+i−7) +

1

7
Σ13
i=7(yt+i − yt+i−14)

So that for example each of the two Mondays within the spike interval is differenced

with the latest Monday prior to the spike arriving. The first summation calculates

the difference between arrivals on days 1-7 of the spike interval and the base values

while the second summation calculates the differences for days 8-14.

3.4.2 X2: Reserve repair capacity and X4: Reserve provision

capacity

These variables attempt to measure the system’s ability to increase workforce num-

bers if required. Throughout this section we provide the definition for variable X2.

Note however that the definition of X4 is exactly the same as that for X2, except that

all the time series involved in the definition are the corresponding series for provision

jobs, rather than repair jobs.

(a) Holt-Winters and MA spike detection: Let st be the smoothed repair engi-

neer numbers on day t and mt be the previous 28 days’ average on this day. Calculate

X2,t as follows:

X2,t = mt − st.
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Thus X2,t provides an estimate of the current engineer numbers relative to the pre-

vious month, by comparing short and longer-term averages. If the value of st when

the spike arrives is considerably lower than mt, we may reasonably expect that it is

possible for the system to increase workforce numbers if required. If however st is

greater than mt, we may expect limitations in the system’s ability to respond.

(b) Differencing spike detection: Let rt be the raw engineer numbers on day

t. Values for each day of the week prior to the spike arriving (rt−7, ..., rt−1) are com-

pared with their average values over the previous 4 weeks, mt. Hence this time we

calculate mt as follows:

mt =
1

4
Σ4
i=1rt−(7i−1) =

1

4
(rt−6 + rt−13 + rt−20 + rt−27).

For each day of the week prior to the spike arriving, the average difference between

the raw arrivals rt and the previous 4 week average mt is calculated by the variable

X2,t and takes the form below:

X2,t =
1

7
Σ7
i=1(mt − rt−i)

So for example one part of the summation involves comparing the Monday’s value in

the week prior to the spike with the average of the previous 4 Mondays.

3.4.3 X3: Repair tension

Defining this variable requires knowledge of the cycle time (CT). The cycle time is

the time measured from when the repair job is first reported to BT, up until the time
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the job is completed; i.e. the time that it takes for a job to pass through the system.

This variable was not present in the regional dataset and was therefore estimated for

each day t using Little’s law on the smoothed series for the job queue (qt) and job

completions (ct). See Little (1961) for the original proof of Little’s law and Little

(2011) for the updated 50th anniversary edition.

Little’s law states that the average cycle time is equal to the size of the job queue

divided by the rate of job completions. This formula is exact in a steady state sys-

tem where job arrivals into the queue are equal to the number of departures from

the system; the job completions. This was not always the case for the dataset under

analysis. However Little’s law is often used as an approximation to this relationship,

e.g. see Sterman (2000). The BT organisation also use this method extensively as

an approximation. Since we have daily series, Little’s law was used for each day t to

estimate a daily average cycle time for the repair job flow as follows:

CTt =
qt
ct
.

Tension (Tt) for repair jobs on day t is a measure of how well the system is performing

relative to targets. This is based on the estimate of the average cycle time and also

the target cycle time, which is known to be around 2 days. The value of this target

implies that the organisation seeks to complete all repair jobs within 2 days of their

arrival. Tension compares current performance with the target, so that if a spike

arrives on day t:

X3,t = Tt =
CTt
CTtar

=
CTt

2
,
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where CTt is an estimate of the average cycle time on day t and CTtar is the target

cycle time. A tension value of 1 or less means that the performance of the system

is meeting the targets. As tension increases above 1, the system performance dimin-

ishes further away from the targets and the need for increased workforce numbers

increases. This variable can be considered to be a measure of the system’s repair job

performance when the spike arrives.

For all of the spike detection methods used, X3,t was calculated with the method

described above using smoothed series. There was no equivalent variable based on

differencing methods, since smoothed series were required to estimate the average cy-

cle times. For MA and differencing spike detection, the series used to calculate X3,t,

qt and ct, were smoothed using moving averages. When Holt-Winters was used for

spike detection, this was also used to smooth qt and ct.

3.4.4 Y : Additional engineer numbers

This variable attempts to measure how many additional engineer numbers were utilised

within the spike interval. The definition of this is the same as for X1, the additional

job arrivals; the only difference is that the smoothed series ht is now the smoothed

repair engineer numbers rather than the job arrivals. Effectively we use ht−1; the day

prior to the spike as a base value and measure the average of any changes in this series

within the spike interval.
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3.4.5 Additional variables

The 4 explanatory variables X1, ..., X4 described above are those that were found to be

significant (at worst at the 5% level) in the regression models in section 3.6. However,

in total during the analysis, use of a number of additional variables was investigated.

We describe some of these variables here.

• Duration of spike: number of consecutive days that the spike criteria were sat-

isfied.

• Peak of spike: maximum of the smoothed series within the spike interval.

• Provision tension.

• Job queue and cycle time increases.

• ‘Speed’ of response: the relative speed of increase in engineer numbers, e.g. by

calculating steepest gradients in the smoothed series.

3.5 Algorithm details

In this section we present the algorithm used to analyse the BT data. As we saw in

section 3.4, values of our variables Y , X1, X2, X3, X4, are calculated using intervals

of time series. We fit regression models to these variables in section 3.6. Hence later

in this section, we also investigate any time-dependence within these variables.

The spike detection methods and variable definitions of sections 3.3 and 3.4 respec-
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tively require subjective choices. These include the following, with the default selec-

tions given in parentheses:

• Spike interval length (14 days).

• Treatment of raw data (Holt-Winters).

• Spike detection threshold (20%).

The default selections are used for the national–level model of section 3.6.1, and the

area–level models of section 3.6.2. In order to investigate the sensitivity of results to

these choices, in section 3.6.3 we compare results for the national–level model using

alternative selections.

We present the algorithm below. This assumes that the model choices are the default

selections above.

1. For each geographical region r where r = 1, ... , 73:

(a) Treat repair job arrivals series using Holt-Winters filtering.

(b) Detect spike s when job arrivals of region r exceeds the defined threshold

of 20%.

(c) For each spike s, detected in region r, perform the following:

• Calculate values for variables Yr,s, X1r,s , X2r,s , X3r,s , X4r,s using the

relevant time series within the 14 day spike interval.
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• To ensure that no spike intervals overlap, remove spikes lying within

14 days of other spikes by deleting the spike(s) with the smallest cor-

responding value of variable X1. X1 effectively measures how many

‘additional’ job arrivals result from the spike. E.g. for spikes s1 and

s2 detected in region r, remove spike s1 if X1r,s1
< X1r,s2

. Otherwise

remove spike s2.

2. National–level model: A single regression model is formed using concatenated

data, collected from all spikes across all regions in a national-level model. The

results of this model are presented in section 3.6.1. In this model, for each spike

s, the additional engineers are modelled as follows:

Ys = β0 + β1X1,s + β2X2,s + β3X3,s + β4X4,s + εs,

where s = 1, ..., n; with n being the total number of spikes across all regions in

the dataset.

3. Area–level models: Separate area–level regression models are formed for each of

the 9 geographical areas (groups of regions defined by BT’s regional mapping)

using concatenated data from all spikes across regions located within the geo-

graphical area. The results of these models are presented in section 3.6.2. For

each spike sa, detected within area a, the additional engineers are modelled as

follows:

Ysa = β0 + β1X1,sa + β2X2,sa + β3X3,sa + β4X4,sa + εsa ,

where sa = 1, ..., na; with na being the total number of spikes across all regions
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within area a.

As we see in the algorithm, our regression variables Y,X1, ..., X4 are defined using

isolated intervals of the time series for each region. An example of these isolated

intervals is presented in Figure 3.5.1 for an example region; Aylesbury. This shows

the time series for both the smoothed repair engineer numbers (upper plot) and the

variable Y (lower plot) – which is defined using the engineer numbers series, as we

see in section 3.4.4.
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Figure 3.5.1: Time series of Y variable for Aylesbury region.
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The vertical blue lines mark locations in both series where a spike has been detected

in the corresponding job arrivals. The vertical green lines mark days of the repair

engineers series that are 14 days after each spike has been detected – i.e. at the end of

the spike interval. The value of variable Y at each spike location (intersected by the

blue lines), is defined using only data within the spike intervals of the repair engineer

series – the 14 day intervals starting at each blue line and ending at each green line

in Figure 3.5.1. As we see in section 3.4, a similar process is used for the explanatory

variables, X1, ..., X4, which are also defined using data from relevant time series that

lie within these isolated spike intervals.

As we see in steps (2) and (3) of the algorithm, the spike data for each region is

concatenated, either across all regions, or across groups of regions. For each of the

regression variables, we refer to the indexing of these concatenated values as the spike

index, which is best explained with an example. If the algorithm for the national–level

model detects 10 spikes in region 1; s1,1, ..., s1,10, 11 spikes in region 2; s2,1, ..., s2,11

and also 8 spikes in the final 73rd region; s73,1, ..., s73,8, the spike index would con-

catenate data as follows: (s1,1, ..., s1,10), (s2,1, ..., s2,11), ... , (s73,1, ..., s73,8). Spike data

for the remaining regions would be entered in sequential order between regions 2 and

73. Hence the spikes of geographically neighbouring regions are adjacent in the spike

index. In this way, data for each of the regression variables consists of spike data

collected over all 73 regional time series. Since for each region, spike data is collected

using isolated intervals in time, the spacing of the data over time within each of the

regression variables is highly variable. Hence, adjacent data in the spike index is not
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necessarily – and is usually not – adjacent in time.

In Figure 3.5.2 we present autocorrelation plots of the regression variables Y,X1, ..., X4

of the national–level model. The spike data within each of these variables are ordered

by the spike index. These plots show the autocorrelations between spike data of each

regression variable that lie close in the spike index – i.e. the autocorrelations at lower

lags are between spike data obtained from the same or neighbouring regions. Due to

the partially sequential nature of the spike index involved in the formulation of these

variables, some notable autocorrelations exist, particularly at low lags. This is partly

because spike data from the same region is likely to exhibit similar properties.

3.6 Results

In this section we present the results of the analysis. We begin by presenting results

from the national-level model, analysing spikes across all 73 regions in section 3.6.1,

in order to understand overall system behaviour. Section 3.6.2 presents results from

9 area-level models in order investigate regional differences in system behaviour. In

section 3.6.3 we investigate the robustness of results to the subjective choices outlined

in section 3.5.
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Figure 3.5.2: Autocorrelations within the spike index of the regression variables.

3.6.1 National-level model

In this section we present results from the national-level model, analysing spikes de-

tected across all 73 regions in order to understand overall system behaviour across

the whole of Great Britain.

For the national–level model, 639 spikes are detected in total. Initially Y was re-

gressed on each of X1, ..., X4 in turn, with the variable from the model resulting in

the lowest AIC (which was X1) being retained in the model. This was repeated until
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the addition of another variable no longer improved the model; i.e. the AIC no longer

decreased. The details of this stepwise regression are shown in table 3.6.1. Note that

the model described in each row of the table includes both the variable for that row, in

addition to any variable(s) in rows above.

Model Explanatory variables AIC Adjusted R2

1 X1: Extra job arrivals 3889 0.26

2 X2: Reserve repair workforce 3680 0.47

3 X3: Repair tension 3639 0.50

4 X4: Reserve provision workforce 3635 0.51

Table 3.6.1: Model selection: stepwise regression.

From table 3.6.1 it is clear that in terms of explaining the behaviour of response vari-

able Y , X1 and X2 are the most important variables. This implies that in a region’s

response to a spike, the key factors in understanding the number of additional en-

gineer numbers utilised is the size of the spike (extra job arrivals) and whether the

region is able to respond (repair reserve capacity). X3 and X4 are less important in

explaining the response but are retained in the model since their additions improve

AIC – which penalises over-fitting. Hence model 4 is used throughout this section.

Figure 3.6.1 plots the explanatory variables against the response variable Y. For X1,

X2 and X4 in particular, an approximately linear relationship can be observed. Hence

a linear model is an appropriate choice.
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Figure 3.6.1: Explanatory variables vs response variable.

Table 3.6.2 provides the estimates, 95% confidence intervals and p-values from the

regression model. The estimates of all four β coefficients are positive. That is, a spike

consisting of more job arrivals, a greater reserve repair workforce capacity, a larger

repair tension and a greater reserve repair workforce capacity are all associated with

a response from the region resulting in an increased number of engineer numbers.

Quadratic and cubic terms of the explanatory variables were also tested in the regres-

sion model but were not found to be significant. Estimates and confidence intervals

for X3 are provided for an increase of 0.1, rather than 1. This is because the standard

deviation of the observations of this variable is around 10% of that of the other three

explanatory variables.
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Explanatory variable Unit Increase Estimate 95% CI p-value

X1: job arrivals jobs/day 1 0.18 (0.16,0.20) < 10−16

X2: reserve repair eng/day 1 0.22 (0.19,0.26) < 10−16

X3: rep tension NA 0.1 0.18 (0.13,0.23) < 10−10

X4: reserve prov eng/day 1 0.05 (0.01,0.09) 0.01

Table 3.6.2: Regression results for model 4.

The estimate of the coefficient of X4 suggests that a region with a greater reserve

provision workforce capacity is likely to have a slightly greater response in terms of

engineer numbers. This is not as intuitive as the estimates of coefficients of X1, X2, X3.

A possible explanation is that a region’s response consists in the main of overtime and

also to a lesser extent the transfer of workforce; e.g. from provision to repair jobs. If a

region has a greater reserve provision workforce when a spike arrives, then it may also

have a greater total workforce. This would mean that more engineers are available

for overtime and for transfers to other jobs such as repairs. We can also observe from

table 3.6.1 that X4 is the least important of the variables in terms of explaining the

behaviour of Y . The estimate of its coefficient also has by far the largest p-value

(0.01), as we see in table 3.6.2.

It is sensible to check that the explanatory variables do not exhibit multicollinearity.

Table 3.6.3 shows the correlations between the 4 explanatory variables. The correla-
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X1 X2 X3 X4

X1 1.00 0.13 0.08 0.26

X2 0.13 1.00 0.24 0.24

X3 0.08 0.24 1.00 0.15

X4 0.26 0.24 0.15 1.00

Table 3.6.3: Correlations between the explanatory variables.

tions are all relatively low and hence do not cause any concerns for the national-level

regression model.

The diagnostic plots from model 4 in table 3.6.1 are shown in Figure 3.6.2. Up-

per left of this figure are the observations of Y plotted against the fitted values from

the model. Aside from a small number of outliers and a slight ‘fanning out’ of points

observed for higher values, the fitted values appear to be lying close to the observa-

tions, with no clear asymmetry in spread of points around the ‘observed = fitted’ line.

In other words the model is fitting the data reasonably well.

Lower right of Figure 3.6.2 plots the residuals versus the spike index. Figure 3.6.3,

presents a larger version of this plot for the standardised residuals, complete with

vertical blue lines dividing the spike index into the 9 geographical areas. Recall from

section 3.5, that due to our methods for obtaining and concatenating spike data, the

x-axis here is not time. We can see that there are a number of outliers and in addition,



CHAPTER 3. DATA-DRIVEN STRUCTURAL VALIDATION 82

−10 0 10 20 30

−
2

0
0

2
0

4
0

Observations vs fitted values

Fitted values

O
b

se
rv

a
tio

n
s

−3 −2 −1 0 1 2 3

−
2

0
−

1
0

0
1

0
2

0

Normal Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
til

e
s

Residuals histogram

Residuals

F
re

q
u

e
n

cy

−20 −10 0 10 20

0
5

0
1

0
0

1
5

0

0 100 200 300 400 500 600

−
2

0
−

1
0

0
1

0
2

0

Residuals by spike

Spike index

R
e

si
d

u
a

l

Figure 3.6.2: Regression diagnostics from model 4.

these outliers seem to appear in clusters. This is particularly evident for areas 1 and

7 – when counting from the left.

Since spike data for neighbouring regions lies close together in the spike index, the

clusters of residual outliers in Figure 3.6.3 correspond to spike data from the same

or neighbouring regions. This suggests that the national model is fitting some re-

gions (and hence some geographical areas), better than others. As we will see, this

is supported by results in section 3.6.2 – the national model is attempting to capture

overall relationships between variables, but these relationships change across different
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Figure 3.6.3: Standardised residuals ordered by the spike index.

geographical areas. This effect is also apparent in Figure 3.6.4 – which shows the au-

tocorrelations of the residuals – with some low (but significant) correlations at lower

lags. In addition, some correlations are also significant at higher lags, although these

values are low and lie close to the 95% confidence interval.

Another assumption of linear regression is that the residuals have constant variance.

Figure 3.6.5 plots residuals against explanatory variables. As the explanatory vari-

ables increase, there is no clear increase in variance of the residuals.

As we have already highlighted, the residuals of the national model have a number

of outliers. These are revealed in both the Q-Q plot of Figure 3.6.2 and also Fig-



CHAPTER 3. DATA-DRIVEN STRUCTURAL VALIDATION 84

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (spike index)

A
C

F

Figure 3.6.4: Autocorrelations of residuals

ure 3.6.3. The majority of the outliers are from geographical area 1; Scotland. A

visual inspection of job arrivals for Scottish regions reveals generally more ‘spiky’ be-

haviour, compared to other geographical areas. More spikes per region are detected

in Scotland (21.3) than any other area. This value is nearly triple the average for the

other 8 areas (7.75). The behaviour of Scotland is well known amongst BT scientists.

Certain parts of Scotland are known for having in general more extreme weather con-

ditions than England and Wales. Extreme weather such as high winds or heavy rain

increases the number of faults that occur in the network – hence leading to more

spikes in the job arrivals series.

Another regression assumption is that the residuals are normally distributed. We
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Figure 3.6.5: Explanatory variables against residuals.

can use the Shapiro–Wilk test (Shapiro and Wilk, 1965) to investigate the normality

of the residuals. The resulting p-value of this test is p < α = 0.05, meaning that we

reject the null hypothesis (that these residuals are Gaussian) at the 95% confidence

level. The Normal Q-Q plot of the residuals from the regression in the upper right

of Figure 3.6.2 raises further concerns about the normality of the residuals. A likely

reason for these results is the large number of outliers highlighted above.

To ensure that the outliers identified in Figure 3.6.3 are not excessively influencing

the results, robust regression was performed and compared with the existing results.
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Huber & Ronchetti (1981) and Hampel et al. (1986) discuss a common method of

robust regression using M-estimation to minimise the objective function. Fitting is

performed using iterated re-weighted least squares (IWLS). Three common estimators

were investigated, defined by Huber, Hampel and an additional bisquare estimator.

Use of Huber’s estimator is effectively a convex optimisation problem, and the results

are shown in table 3.6.4. Use of Hampel and bisquare estimators lead to similar re-

Explanatory variables Estimate 95% CI (Robust) 95% CI (Model 4)

X1: job arrivals 0.17 (0.18) (0.15,0.18) (0.16,0.20)

X2: reserve repair 0.19 (0.22) (0.16,0.21) (0.19,0.26)

X3: rep tension 0.13 (0.18) (0.09,0.18) (0.13,0.23)

X4: reserve prov 0.07 (0.05) (0.04,0.10) (0.01,0.09)

Table 3.6.4: Robust regression results (Huber estimator).

sults. The second column from the left of this table shows the β estimate using robust

regression with the previous estimate in parentheses. Although all four explanatory

variables remain significant, the β estimates are now slightly different. Although per-

haps a more notable difference for X3 can be observed, the results are largely similar

across the 4 variables. For X1 and X2, the two most important variables in the model,

this similarity is particularly clear. This provides reassurance and suggests that that

the regression results are not driven by the outliers identified in Figure 3.6.3.



CHAPTER 3. DATA-DRIVEN STRUCTURAL VALIDATION 87

3.6.2 Area-level models

In this section we focus on investigating system behaviour at area-level. This will en-

able a better understanding of the differences in behaviour at a more localised level.

We have 639 spikes in total and 73 different geographical regions; meaning that on

average there are less than 9 spikes detected per region. This is insufficient data to

form a regression model for each region. However, these 73 regions can be divided into

9 geographical areas, so that each area includes a sufficient number of detected spikes

to construct a regression model with sufficient data for inference. Each geographical

area is a group of regions based on BT’s regional mapping. Table 3.6.5 presents the

results of fitting the regression model of section 3.6.1 (model 4 of table 3.6.1), sepa-

rately to spike data from each of the 9 geographical areas.

The left most column of table 3.6.5 lists the 9 geographical areas across Great Britain.

For each area, estimates of the regression coefficients are provided with a 95% confi-

dence interval (CI) in parentheses. Line 10 shows the results obtained for the national

model of section 3.6.1. For clarity, all values in the table except for spike numbers –

i.e. values of β estimates and CI’s – have been multiplied by 100. For example when

analysing the spikes from the Scotland area, the estimate of β1 for X1 is 0.18, with a

95% CI of (0.13,0.24).

Although virtually all the CI’s from the 9 area-level models have some overlap with

the national model CI’s, the majority of the β estimates from the 9 area-level models,
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Area spikes β1 β2 β3 β4

Scotland 128 18 (13,24) 27 (18,36) 05 (-08,17) -02 (-13,09)

North-East 52 19 (08,29) 29 (19,39) 31 (13,49) -06 (-20,08)

North-West 77 17 (07,27) 17 (08,26) 15 (02,28) 13 ( 06,20)

N Wales/Mid 41 36 (25,48) 08 (-09,25) 23 (04,41) 08 (-15,30)

S Wales/Mid 64 12 (01,22) 33 (24,41) 03 (-10,17) 15 ( 04,26)

South-West 96 20 (15,26) 19 (10,27) 23 (03,43) 03 (-06,13)

South-East 73 17 (09,25) 22 (12,32) 51 (35,68) 14 ( 02,27)

London 35 13 (00,25) 25 (10,39) -22 (-65,22) 00 (-13,12)

East Anglia 73 08 (-02,19) 09 (02,15) 09 (-11,30) 05 (-04,15)

National model 639 18 (16,20) 22 (19,26) 18 (13,23) 05 (01,09)

Table 3.6.5: Regression coefficient estimates for the 9 geographical areas (x100).

22 out of 36, fall outside of the corresponding national model CI’s. In addition there

are many cases where the area-level CI is considerably different to the national model

CI. These area-level estimates alone are not sufficient to prove that we have signifi-

cant regional differences. However they do raise the question as to what extent these

differences are present, as one may reasonably expect these estimates to lie closer to-

gether (and more of them to lie within the main CI), if we are to believe that similar

system behaviour exists across each of the regions. In addition, when performing the

Shapiro–Wilk test on the residuals from each of the 9 models, results for 8 of the 9

models do not reject the null hypothesis (that the residuals are Gaussian) at the 95%
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confidence level. These results provide some reassurance regarding the assumption of

Gaussian residuals for the 9 models.

However it is worth highlighting that the inference that we can draw from these

area-level results is limited. These results are based on considerably less data than

the national model and hence less confidence can be placed in the β estimates, the CI’s

(which are considerably wider) and also the results of Shapiro–Wilk tests of normality.

3.6.3 Robustness of results

Due to the nature of this analysis, a number of subjective methods were required

during spike detection and the tracking of system changes for variable definitions. We

present alternative selections in this section and compare results to the national model

results. Table 3.6.6 shows the effects on the regression coefficients and 95% CI’s of

some alternative selections, with the defaults used in the main analysis in bold font.

Again these values have been multiplied by 100. The upper 3 rows compares methods

for treating the seasonality and detecting spikes. The middle 3 rows compares use of

different spike detection thresholds. The lower 3 rows compares different lengths of

spike intervals. Each of the three sets of rows compares different selections, with the

other two selections taking the default choice. For example, row 2 of table 3.6.6 uses

moving averages to estimate the trend, a detection threshold of 20% and an interval

length of 14 days.

All the estimates in the table lie within 0.1 of the default selections. The exception
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β1 β2 β3 β4 spikes

Treat data:

Holt-W 18 (16,20) 22 (19,26) 18 (13,23) 05 (01,09) 639

Mov ave 13 (11,16) 45 (39,50) 25 (18,33) -05 (-09,00) 698

Diff 14 (12,16) 38 (31,45) 28 (17,38) -03* (-03,-02) 698

Threshold:

15% 20 (18,22) 19 (16,21) 20 (16,25) 04 (00,07) 997

20% 18 (16,20) 22 (19,26) 18 (13,23) 05 (01,09) 639

25% 19 (16,21) 22 (18,26) 10 (03,18) 03 (-02,07) 446

Interval:

7 15 (12,17) 16 (12,19) 21 (16,26) 08 (04,11) 639

14 18 (16,20) 22 (19,26) 18 (13,23) 05 (01,09) 639

21 26 (23,28) 24 (21,27) 18 (12,23) 00* (-04,04) 639

Table 3.6.6: Robustness of results (x100).

are values of β2 in the upper 3 rows, where there are more considerable variations –

in particular when using moving averages β2 is around twice as large as when using

Holt-Winters; 0.45 compared to 0.22. However since both estimates are positive the

overall effect is the same; increases in X2 still cause a greater response. It is the

magnitude of this effect that has increased. In addition, although estimates of β4 in

the upper 3 rows lie with 0.1 of the default, the estimates using moving average and

differencing are negative, unlike the default. Combined with the fact that X4 had the
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highest p-value and was the least important of the 4 variables in the model, this raises

questions as to how much faith can be placed in the results involving X4. Overall,

these estimates can be seen to be fairly robust to these selections. Although values of

certain coefficients change under different selections, the overall conclusions from the

results of the national model are largely unchanged.

3.7 Discussion

The analysis of this chapter has attempted to determine whether key assumptions of

the hydraulics model are validated by BT’s historical time series data. We have found

fairly strong evidence for assumption (1); that in general a measurable response to

a spike is observed. In addition, there is evidence to support assumption (2); that

this response is linear. Approximately linear relationships were observed between the

explanatory variables and the response. In addition, during testing of the regression

models, quadratic and cubic terms were included in the models but were not found to

improve the model fits. Results however raise questions over assumption (3); whether

this response is the same across different regions.

The national model revealed some interesting relationships in terms of how the system

behaves as a whole across all the 73 regions. However certain regression assumptions,

such as the requirement that the residuals are independent and Gaussian, do not

strictly hold. Although there are a number of outliers, the robust regression results

provide reassurance that outliers are not unduly influencing the results of the regres-
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sion. Results suggest that the national-level model is fitting some geographical areas

better than others. A limitation of the analysis was that subjective methods were

required in the processes of spike detection and variable definitions. However, sec-

tion 3.6.3 demonstrated that the national model results are fairly robust to some of

these selections, with the overall conclusions largely unchanged.

Results of the area-level models suggest that the responses of each geographical area to

increases in demand may not be the same. These models violated fewer assumptions

than the national model, such as normality of the residuals. However the inference

that we can draw is limited, since these area–level results are based on considerably

less data (i.e. fewer spikes) than the national model. Hence less confidence can be

placed in the tests and results of these models. This highlights a more general limi-

tation of our approach. To obtain meaningful results from the regression model, we

need a sufficient amount of spike data. This means that we cannot form conclusions

separately for individual regions as the number of spikes detected in each is insufficient.

At this exploratory stage we are not able to make further claims regarding these

potential differences in the behaviour of different regions. There is some evidence to

support these claims, but these claims can only be substantiated by further investiga-

tion. We explore these regional differences through an alternative approach presented

in chapters 4 - 6 where we attempt to calibrate the hydraulics model across geograph-

ical regions. Our method relies on the structure of the hydraulics model being an

accurate representation of system behaviour. As such, the validity of assumption (1),
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a core assumption of the model’s feedback mechanism, is of particular significance for

the approach used in these chapters.

This chapter has demonstrated that it is possible to investigate key assumptions of a

SD model from historical time series data using regression methods. We have shown

that such an analysis can be used to strengthen existing structural validation tests of

SD models. We also suggest that this approach can be considered as an additional

test to the group of direct structure tests described in section 3.1. More generally,

this chapter demonstrates the insights that can be obtained from using data-driven

methods to validate the structure of a SD model.



Chapter 4

Linear state-space models and the

Kalman filter

4.1 Introduction

In this chapter we present an approach for estimating the parameters of system dy-

namics (SD) models from time series data. This is tested on simulated data from a

simplified version of the hydraulics model. Unlike chapters 2 and 3 which presented

self-contained research contributions, this chapter and the following two are related

by their use of an approach to estimate the parameters of different versions of the hy-

draulics model. After commencing with the simplified version of the hydraulics model

in this chapter, we progress in chapter 5 to applying the approach to simulated data

from more complex versions of the hydraulics model – including the full version. We

then attempt to estimate the hydraulics model parameters for different geographical

regions using BT’s historical time series data in chapter 6.

94
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This introductory section is structured as follows. In section 4.1.1 we introduce the

background for this research and its motivation from the perspective of an organ-

isation such as BT that wishes to calibrate their models as accurately as possible.

Section 4.1.2 describes the existing methods for estimating the parameters of SD

models and explains the reasons for our chosen approach.

4.1.1 Background

The hydraulics model, used by BT to model their workflows and evaluate their ser-

vice delivery, was introduced in section 2.3. The rationale behind this model and

their choice of the SD approach is described in detail in the book chapter Jensen et

al. (2013); written by the BT scientists who devised and developed the model. The

authors state that the use of the word ‘hydraulics’ is used as a metaphor in order to

describe the methodology used in the model “due to its analogy with reservoirs, flows

and pressures in fluid mechanics”.

BT analysts have a great deal of confidence in the structure and core assumptions

of the hydraulics model. Chapter 3 demonstrated that BT’s historical time series

data for the 74 geographical regions of Great Britain supports a key assumption of

the model; that BT increase workforce numbers during periods of increased demand.

However analysts have considerably less confidence in the values of the hydraulics

model parameters.
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In a complex dynamic system, parameters are often not observable and therefore

historical data cannot be collected to determine sensible values. When the hydraulics

model was originally formulated, a combination of system knowledge/opinion (from

relevant stakeholders) and best guesses were used to devise parameter values; i.e. they

were not derived directly from data. This perspective of modelling approach within

SD has been termed the ‘classical’ school of thought, see section 4.1.2. Although the

model is used to represent 59 geographical regions across the UK, these parameters

were originally assumed to be the same and a “default” set of parameters were used

across the different regions.

More recently, there has been considerable interest at BT in calibrating the model,

i.e. determining a set of parameters that are a good match to historical time series,

for each geographical region. At BT, the current approach for calibrating the model

involves using a cumbersome trial and error procedure that requires repeated runs of

the model for different values of the parameters. We can demonstrate this as follows.

If we denote the hydraulics model by Hyd, its model parameters as θ, exogenous vari-

ables as U and the output time series produced from the model as y, we see that

due to the nature of SD modelling, the hydraulics model is effectively a deterministic

function of the parameters θ and U as follows:

θ ⇒ Hyd (θ, U)⇒ y.

The current process at BT for calibrating the hydraulics model involves repeatedly

running the model for different values of the parameters θ and each time comparing
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the output time series y to historical data. This process is repeated until y is a suffi-

ciently good match to the historical data, with each set of parameters θ selected with

the aim of improving this match. This school of thought has been termed the ‘hand

calibration’ school, see section 4.1.2. This procedure can be time-consuming and there

is no guarantee that the parameters found are optimal. This is an issue particularly

when there are a large number of datasets, as is the case for BT’s 59 geographical

regions.

BT analysts are aware of sometimes considerable differences in behaviour between

these regions, so relying on a default set of parameters is likely to limit the accuracy

of the model. Chapter 3 highlighted potential weaknesses in assuming that system

behaviour is the same across all regions by demonstrating differences in the response

to increased demand. This chapter, and the following two, aim to go a step further

and quantify these differences through the hydraulics model parameters. If the model

can be accurately calibrated for each region, BT can understand their systems at a

local regional level and system performance can be improved.

In this chapter we improve an existing method that uses a state-space approach to

automate the procedure of estimating parameters of SD models using historical time

series data from the system under investigation. Effectively the approach attempts

to solve the inverse problem by working backwards from historical data y∗ in order to
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obtain estimates θ̂ of the hydraulics model parameters θ:

θ̂ ⇐ ...⇐ y∗

The approach relies on the assumption that the structure of the hydraulics model is

a reasonable representation of the system - and hence that historical data y∗ has a

similar structure to y which is defined as above; the time series which would have been

output from the hydraulics model using parameters θ. Starting with the historical

time series data y∗, we assume that this has the same structure as the hydraulics model

output y but is corrupted by some Gaussian noise; i.e y∗ = y+ ε with ε ∼ N(0, R), for

some covariance matrix R. In other words we represent the system as a state-space

model, as we explain in section 4.2.1. In state-space terms, this means assuming that

each of the historical time series y∗ has a latent state y which cannot be observed

directly, but matches the structure of the SD model.

Since SD models are based on differential equations, to represent this in practice,

we first discretise the model to form difference equations. These equations are re-

arranged to represent the structure of each of the latent variables in the state-space

model. We can estimate the value of these latent variables at each time series ob-

servation using a method known as the Kalman filter (Kalman, 1960), described in

section 4.2.3. Terms calculated from the Kalman filter also enable the calculation

of the log-likelihood at each time series observation, allowing the calculation of an

overall log likelihood for the data, given a set of model parameters. Optimisation

algorithms can then be used in a maximum likelihood approach to determine the best
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set of parameters for the SD model to best represent the historical data.

4.1.2 Estimating parameters of system dynamics models

In this section we describe existing methods for estimating the parameters of SD

models and explain why we selected our chosen approach. However, the question of

whether it is even necessary to estimate the parameters of a SD model has been a

divisive issue amongst system dynamicists for years. Radzicki et al. (2004) presents

an excellent exposition of the two ‘schools of thought’ amongst modellers and suggests

a third:

1. The ‘classical’ school, as termed in Peterson (2003), do not place any impor-

tance on estimating parameters and fitting SD models to historical data. In-

stead, Radzicki et al. (2004) point out their belief that “it is the stock-flow-

feedback loop structure of a system, and not its particular parameter values,

that determines its behaviour.” Their belief is that the structure is so impor-

tant that when it is properly represented in the model, parameter values can

be increased/decreased at least 10% without significantly changing the model

behaviour - hence estimating these parameters is considered unimportant. Radz-

icki et al. (2004) refer readers to Legasto and Macariello (1980) and Forrester

(1980a; 1980b). To estimate the parameters in the model, the modeller must

obtain information at the required level. This could involve interviewing the

system’s decision makers or measuring delays in the system (Sterman, 2000).

Due to the lack of scientific rigour in estimating the parameters, this school has
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been criticised by a number of sources, particularly from the field of economics

(Nordhaus, 1973; Radzicki et al., 2004).

2. The ‘statistically inclined’ school, termed by Richardson (1981), place a high

importance on comparing simulated output with historical time series data.

Unlike the other two schools, these methods use statistical rigour to estimate

parameters. An appropriate objective function is selected and optimisation

algorithms search for the best solution from the parameter space. A number

of approaches have been successful in estimating SD model parameters from

historical time series data. Chen et al. (2011) contains an excellent review of

these approaches. One such approach, explained in sections 4.2.5 and 4.2.6, will

be the focus of the next 3 chapters.

3. The ‘hand calibration’ school, which Radzicki et al. (2004) suggest offers a com-

promise between the other two. Hand calibration involves an iterative process

of simulating the SD model, comparing the output to historical time series and

adjusting the parameters to improve the fit. Lyneis and Pugh (1996) give a

good exposition of this and highlight the following flaws:

• The method relies more on the skills of the individual modeller, rather than

a well-defined set of steps; as Radzicki et al. (2004) point out it’s “more of

an art than a science”.

• The results may not be replicable, as different modellers are likely to find

different estimates of parameters.
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• When the ‘best’ set of parameters are found, there is no guarantee that

these parameters are optimal.

The method introduced in sections 4.2.5 and 4.2.6 does not suffer from these

limitations.

Within the statistically inclined school, Dangerfield and Roberts (1996) present the

two uses of optimisation for SD models.

• Policy optimisation to improve performance: There is often a necessity to set

the model parameters to optimise a particular variable, for example to maximise

profit. The authors explain that in this context, optimisation determines how

parameters guiding workforce numbers (hiring & firing) and inventory control

should be set to keep costs down. Chen et al. (2011) includes a thorough

review of the different approaches that exist for policy optimisation. Many of

the approaches detailed can also be used for model calibration.

• Optimisation to fit data: This involves estimating the model parameters to

produce output that best matches historical time series data. This process

is sometimes called model calibration (Oliva, 2002). Dangerfield and Roberts

point out that a reasonable fit to historical data can be useful as a means of

reinforcing confidence in the model for clients.

For estimating the parameters of the BT hydraulics model, it is the latter of these

that is our focus. When attempting to calibrate a SD model, there are two sub-schools

within the statistically inclined school for how best to achieve this:
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• ‘Fully integrated maximum likelihood via optimal filtering’ (FIMLOF): This

was devised by Schweppe (1973) and uses Kalman filtering together with his

representation of the log-likelihood in (4.2.14) in a maximum likelihood approach

for parameter estimation. This is our chosen method and we introduce this in

more detail in sections 4.2.5 and 4.2.6.

• Model reference optimisation (MRO): Estimating model parameters is specified

as an optimisation problem, adjusting parameters to minimise some function of

the difference between simulated and historical data (Oliva, 2002). For more

details see Lyneis and Pugh (1996). This method does not rely on any filtering

approaches like FIMLOF.

When using optimisation techniques for SD models, Coyle (1996; 1999) highlights

the importance of selecting an appropriate objective function and states that a poor

choice could be ‘truly disastrous’. As the objective function for MRO is a function of

the errors (between simulated and historical data), for this objective function to be

suitable, we must have sufficient confidence in the historical data and for example a

high belief that it is not distorted by noise. Although the use of Kalman filtering in

FIMLOF is more computationally intensive, an important advantage of the FIMLOF

approach is that it is applicable to data that is known to be corrupted by noise (Peter-

son, 1976). Indeed, this is exactly the type of data that the Kalman filter is designed

for. The historical BT time series data analysed in chapter 6 is believed by system

experts to have been corrupted by noise.
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For this chapter we restrict ourselves to linear systems. A commonly highlighted

limitation of FIMLOF is that for nonlinear systems there is a need to linearise the

system (Radzicki et al., 2004; Oliva 2002; Dangerfield & Roberts 1996). In chapter 5

where we proceed to nonlinear systems, we employ a sophisticated modern Kalman

filtering technique known as the Unscented Kalman filter, an extension to the classical

Kalman filter, proposed by Julier et al. (2000). This is capable of accurately approx-

imating a nonlinear system. We show that the use of this method largely addresses

this limitation.

An additional advantage of FIMLOF is that it involves optimising a log-likelihood.

Although in practice computational difficulties may exist, in theory with an appro-

priate optimisation technique we are guaranteed to optimise the likelihood surface.

There is no such guarantee when a function of the errors is the objective function as in

MRO. There are a number of examples in the literature where FIMLOF has success-

fully estimated SD model parameters, even for complex nonlinear models (Peterson,

1975; 1976; Ryzhenkov, 2002; Radzicki et al., 2004).

The objective of this chapter is to explain the background and details of the FIMLOF

approach and demonstrate its effectiveness at estimating the known parameters of

simulated data. In this chapter, we use data simulated from the simplified version of

the hydraulics model. This was the model introduced in chapter 2 and from here on

is referred to as hydraulics model 1. Section 4.2 contains the literature review and

relevant background theory. Section 4.3 explains how we apply FIMLOF to estimate
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the parameters of hydraulics model 1. Section 4.4 is a simulation study presenting

the results of estimating the known parameters of hydraulics model 1 from noisy

simulated data. Section 4.5 presents the discussion.

4.2 Literature review

Chapters 2 and 3 introduced background on SD modelling. In this section we present

details of the FIMLOF method for estimating SD model parameters from historical

time series data. We begin by introducing the necessary background theory on state-

space models, Gaussian state-space models and the Kalman filter in sections 4.2.1 -

4.2.3 respectively. In section 4.2.4 we evaluate some popular techniques for estimating

parameters of state-space models. The origins and early research using FIMLOF are

then presented in section 4.2.5. The modern applications of FIMLOF are presented

in section 4.2.6.

4.2.1 State-space models

In time series modelling, a vector of data points x = x1, ..., xT explains the behaviour

of a population of random variables X over time. Hence for data that is continuous

and observed at regular (e.g. daily) intervals, for each interval at time t, observation

xt describes the behaviour of Xt. There are occasions however when it may not be

possible to observe the series x directly. For example, observations y = y1, ..., yT may

be corrupted by noise and it may therefore be necessary to infer the behaviour of xt

from yt for each interval at time t. One approach for dealing with this problem is to
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represent the system as a state-space model. The structure of this type of modelling

approach can be represented in Figure 4.2.1. The noisy series of observations y is

Figure 4.2.1: State-space model structure.

assumed to be dependent on a series of unobservable states x. These unobservable

states x are sometimes called latent states. For each interval at time t, the updating

structure of noisy observation yt and the underlying state xt takes the following form:

xt = f(xt−1, ut) + ε1,t (4.2.1)

yt = g(xt, ut) + ε2,t (4.2.2)

where ut is an exogenous variable or control input at time t. The state equation (4.2.1),

describes a Markov process representing the updating structure of the state xt as some

function f of the previous state xt−1 and current value of the exogenous variable ut,

with the addition of some noise ε1,t. The observation equation (4.2.2), assumes that

the observation yt is some function g of the current state xt and exogenous variable

ut, plus some noise ε2,t. For a general state-space model we make no assumptions on

the distributions of the noise, ε1,t and ε2,t. However, for the modelling approach in

this chapter these are both assumed to be zero mean white noise processes. For a

more thorough explanation of state-space models, see Durbin and Koopman (2001).
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4.2.2 Gaussian state-space models

Gaussian state-space models are a special case of the general state-space model of

(4.2.1)-(4.2.2). This class of models assume that the noise of both the state and

observation equations has a Gaussian distribution. Again observations yt are assumed

to be dependent on unobservable state xt at each update at time t. In the next three

chapters, we focus on a particular set of Gaussian state-space models where the state

and observation equations are defined as follows:

xt = f(xt−1, ut) + ε1,t (4.2.3)

yt = xt + ε2,t. (4.2.4)

The state equation (4.2.3) has the same representation as (4.2.1), but note that the

observation equation (4.2.4) has now dropped the g function of (4.2.2); yt is simply

the state xt plus some noise. We drop this function for simplicity as it is not required

in the systems that are studied as we show in section 4.3.3 when we form a Gaussian

state-space model from hydraulics model 1. The noise terms have a Gaussian dis-

tribution as follows: ε1 ∼ N (0, Q) and ε2 ∼ N (0, R), with Q representing the state

covariance and R the observational covariance.

The nature of the state update function f(.) in (4.2.3) has important consequences.

If f(.) is a linear function, then we have a special case, the linear Gaussian state-

space model. For this class of models, inference on observations y to understand the

behaviour of the underlying states x is a much simpler task.
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Linear Gaussian state-space models

For the general state-space model representation in section 4.2.1, if updating functions

f and g in (4.2.1)-(4.2.2) are linear and we have ε1 ∼ N (0, Q), ε2 ∼ N (0, R) for some

Q and R, then we have a linear Gaussian state-space model. These are sometimes

referred to as dynamic linear models or DLMs. See Petris et al. (2009) for more

details and an excellent introduction to this class of models, including methods for

parameter estimation. West & Harrison (1999) also provides a thorough background

text with details of the wide variety of models in this class.

The state-space models shown so far have been univariate with one series of ob-

servations y and a single underlying vector of states x. Of course all these models

extend to the multivariate case, where we have p different series of observations and

q underlying states. Throughout this chapter and chapters 5 and 6, we study state-

space models where p = q. That is, we have p different series of observations, each

with its own underlying state, so that at time t, xt and yt have the same dimension.

We can also have r different exogenous variables, though for the system studied in

this chapter we have only one, so that ut is a scalar. Due to the linear nature of the

equations in a DLM, we can express the state and observation equations as follows:

xt = Fxt−1 +Hut + ε1,t (4.2.5)

yt = Gxt + ε2,t, (4.2.6)

where again we have ε1 ∼ N (0, Q), ε2 ∼ N (0, R) for some Q and R. F , G, and H

are constant or time-varying (p x p) matrices that preserve the updating structure of
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linear functions f and g. Q and R are time-invariant (p x p) matrices that specify

the covariance structure of the noise between the p different states and observations

respectively. Estimating the underlying states x of a linear Gaussian state-space model

is straightforward thanks to the celebrated Kalman filter which we now describe.

4.2.3 The Kalman filter

This is used to estimate the underlying states x of a linear Gaussian state-space model,

such as that represented in (4.2.5)-(4.2.6). This was devised by Rudolf Kalman (1960)

and it can be shown that the Kalman filter estimate of the state is optimal in terms

of minimising the mean squared error. The Kalman filter is effectively a succession

of Gaussian distributions, the mean and covariance of which are calculated at each

recursive update. These Gaussian distributions update in a Bayesian system consist-

ing of a two-step process; sometimes known as the prediction and correction steps.

We use similar notation to Petris et al. (2009), where the reader is directed for proofs.

For the linear Gaussian state-space model of (4.2.5)-(4.2.6), in which the matrices

F , G, H, Q, R are time-invariant, let Xt−1|y1:t−1 ∼ N (mt−1, Ct−1). Then the follow-

ing statements are true.

(a) Prediction step: The predictive distribution Xt|y1:t−1 ∼ N (at, Vt) where

at = E(Xt|y1:t−1) = Fmt−1 +Hut, (4.2.7)

Vt = Var(Xt|y1:t−1) = FCt−1F
T +Q. (4.2.8)
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(b) Predictive distribution Yt|y1:t−1 ∼ N (ft,Wt) where

ft = E(Yt|y1:t−1) = Gat, (4.2.9)

Wt = Var(Yt|y1:t−1) = GVtG
T +R. (4.2.10)

(c) Correction step: Filtering distribution Xt|y1:t ∼ N (mt, Ct) where

mt = E(Xt|y1:t) = at + VtG
TW−1

t et = at +Ktet, (4.2.11)

Ct = Var(Xt|y1:t) = Vt − VtGTW−1
t GVt, (4.2.12)

where et = Yt − ft is the forecast error, and Kt = VtG
TW−1

t is known as the Kalman

gain.

The prediction step uses information from matrices F , H and Q in the state up-

date equation (4.2.5). The correction step however uses information from matrices G

and R from the observation update equation (4.2.6), but is also influenced by the ob-

servations y. The extent of this influence is determined by the Kalman gain. We see

this effect in (4.2.11), which as Petris et al. (2009) point out, shows that “filter mean

mt equals the prediction mean at plus a correction depending on how much the new

observation differs from its prediction.” Peterson (1976) provides a good description

of the Kalman gain’s effect on the updating process by highlighting two extremes.

At each update, one option is to rely entirely on the updating process outlined in

the underlying state-space model, totally ignoring the observations y. Peterson refers

to this as naive simulation (NS). In contrast to this, another option is to ignore the

state-space model and rely totally on the observations; this is effectively OLS.
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The Kalman gain is influenced by noise covariance matrices Q and R and more specif-

ically, their ratio – sometimes referred to as the signal to noise ratio. Effectively if

Q < R, the Kalman gain will cause the correction step of the Kalman filter to update

nearer to NS – i.e. more faith is placed in the underlying state-space model than the

observations. If Q > R more faith is placed in the observations than the state-space

model. See Petris et al. (2009) for a more thorough discussion of this effect. The

Kalman gain determines the optimal location of the correction step by finding a point

somewhere between NS and OLS that minimises E[||xt −mt||2] where xt is the true

underlying state at time t. This is demonstrated in Figure 4.2.2.

Figure 4.2.2: The Kalman gain’s influence on the update.

With p sets of observations and states, F , G, Vt, Wt, Ct, Kt and covariance matrices Q

and R are (p x p) matrices. The diagonal elements of Q and R represent the variance

terms of the noise for each series. Hence for a multivariate state-space model, we may

have different signal to noise ratios for each series.

Terms from the Kalman filter recursions can also be used to calculate the log-likelihood



CHAPTER 4. LINEAR STATE-SPACE MODELS AND THE KF 111

at each update. If we have n random vectors Y1, ..., Yn and their distributions depend

on unknown parameter θ, let p(y1, ..., yn; θ) be the joint density of the observations

for a particular value of θ. For a linear Gaussian state-space model we can express

this joint density as

p(y1, ..., yn; θ) =
n∏
t=1

p(yt|y1:t−1; θ). (4.2.13)

Since the densities on the RHS of (4.2.13) are Gaussian we can express the log-

likelihood as

l(θ) = −np
2

log (2π)− 1

2
Σn
t=1(log |Wt|+ eTt W

−1
t et), (4.2.14)

where p is the number of series and n is the number of observations in each series. This

representation was first devised by Schweppe (1965). The log-likelihood of (4.2.14)

can be numerically maximised to find θ̂, the maximum likelihood estimate (MLE) of θ.

A number of packages exist for implementation of the Kalman filter in the R (2013)

programming language. These are well documented by (Tusell, 2011). Among these

are dlm, the R package that accompanies Petris et al. (2009) and dse (Gilbert, 2013).

dlm provides a user-friendly way of creating dynamic linear models and implement-

ing the Kalman filter, though one limitation is its inability to represent exogenous

variables, unlike dse which can. Calculating the log-likelihood as in (4.2.14) involves

the inversion of the matrix Wt. This can lead to numerical errors, especially when

applying the Kalman filter to complex systems with large matrices. To circumvent

this issue, an approximation to the log-likelihood devised by Anderson and Moore
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(1979) can be used which avoids inverting Wt:

l(θ) ≈ −np
2

log (2π)− 1

2
Σn
t=1(log |Wt|+ 1). (4.2.15)

This is also the default method for calculating the log-likelihood in the dse R package.

We show in section 4.4, that using the likelihood in this form can have advantages as

many computational issues are avoided.

4.2.4 Parameter estimation of state-space models

Now that we have an expression for the log-likelihood, in this section we evaluate

some commonly used methods for parameter estimation of state-space models. We

then turn our attention to the FIMLOF method in sections 4.2.5 and 4.2.6.

The EM algorithm is a popular algorithm for maximum likelihood estimation. It

was introduced by Dempster et al. (1977) and early developments were made by

Shumway and Stoffer (1982) and Watson and Engle (1983). The algorithm is an iter-

ative process based on the assumption that at iteration j+ 1 there exists a parameter

estimate θj from the previous iteration. Each iteration has two steps; an E-step (ex-

pectation) and an M-step (maximisation). The E-step calculates the expected value

of the log-likelihood function, with respect to the conditional distribution of X given

observations y1:T under the current estimate of the parameter θj. In the context of

state-space modelling this is as follows:

Q(θj, θ) = E[log p(X1:T , y1:T |θ)|y1:T , θj] =

∫
log p(x1:T , y1:T |θ) p(x1:T |y1:T , θj) dx1:T .
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The M-step finds the parameter that maximises this expectation with respect to θ:

θj+1 = arg max
θ∈Θ

Q(θj, θ).

The algorithm has been found to be particularly effective in cases where data are

incomplete.

Although the algorithm usually has a fast convergence in its early stages, its rate

of convergence near the maximum is often considerably slower than numerical max-

imisation (NM) techniques (Watson and Engle, 1983). Shumway and Stoffer (2006)

also point out that the EM algorithm has generally been found slower than the use of

some NM techniques such as quasi-Newton methods. It is also well known that the

EM algorithm is only able to find the local optima, and as such the algorithm is not

robust to the choice of starting values - see for example Barber (2012). Some authors,

such as Macdonald (2014), have also questioned whether the additional computational

effort of the EM algorithm is worthwhile and argued that it should not necessarily be

the default approach over NM, with good numerical optimisers now freely available.

Macdonald presents seven different models that demonstrate advantages of NM over

the EM algorithm.

An alternative to maximum likelihood estimation is to use a Bayesian approach. For

a thorough exposition of Bayesian estimation of state-space models, see Petris et al.

(2009), sections 4.2 - 5.4. In a Bayesian approach, inference on X0:T and parameter
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θ, given observations y1:T , is expressed through their joint posterior density:

p(X0:T , θ|y1:T ) = p(X0:T |θ, y1:T ) p(θ|y1:T ). (4.2.16)

This is based upon Bayes theorem (Bayes, 1763). A conjugate prior, when combined

with the likelihood to form the posterior distribution in a Bayesian analysis, results in

a posterior from the same family of distributions as the prior. The simplest technique

using a Bayesian approach here would be to sequentially update using conjugate pri-

ors in a conjugate Bayesian analysis. This is possible for a few special cases where the

posterior distribution of (4.2.16) can be expressed in closed form. For example, if the

observational variance, denoted by R in (4.2.6), is assumed unknown and constant -

with all other parameters known - this can be estimated using a conjugate Bayesian

analysis based on gamma prior/posterior distributions for the precision parameter

φ = 1/R; see West and Harrison (1997), section 4.5. Petris et al. (2009), section

4.3.1, presents a similar approach for estimating a scale parameter, denoted by σ2,

when state and observational variances Q and R are both known to be multiples of σ2.

In chapters 5 and 6, we attempt to estimate the parameters of state-space models

representing highly nonlinear systems. In addition, our estimation process will not

be restricted to variance parameters, but also parameters contained within matrices

F , G and H of (4.2.5)-(4.2.6). We are not able to estimate these parameters using a

conjugate Bayesian analysis, as the joint posterior distribution of (4.2.16) can not be

expressed in closed form. Hence, this approach would not be suitable for these sys-

tems. In general, for Bayesian estimation of state-space models, Monte Carlo methods
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are required to draw a sample from the posterior distribution of interest (Petris et al.,

2009).

One such approach that is popular is to use a Gibbs sampler (Geman and Geman,

1984), which is a special case of Markov Chain Monte Carlo (MCMC). This involves

draws in turn from the conditional distributions p(θ|X0:T , y1:T ) and p(X0:T |θ, y1:T ) to

obtain samples from the joint posterior distribution. However, as we will see later

in this chapter - and especially in chapter 5 where we progress to nonlinear models -

the parametric forms of matrices F , G and H of (4.2.5)-(4.2.6), suggest that imple-

menting a Gibbs sampler will not be possible without substantial restrictions on the

model. This suggests that more general MCMC algorithms would be a more appro-

priate choice for a Bayesian approach to parameter estimation for our systems.

Alternative algorithms to MCMC are used when online inference is required. MCMC

algorithms are of limited use here, since each time a new observation becomes avail-

able, an entirely new Markov chain must be simulated, which causes a linear increase in

the computational cost. For online inference, a popular approach which also decreases

computational cost compared to MCMC, is to use sequential Monte Carlo methods -

more commonly known as particle filters, when applied to state space models. These

are based on importance sampling techniques. See Gordon et al. (1993) for an ex-

ample of a simple and popular particle filter. Online inference however, is beyond

the scope of this thesis as we restrict ourselves to offline estimation. In addition, all

of these algorithms, MCMC in particular, are computationally intensive and as such,
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will not be pursued here.

We now turn our attention to the FIMLOF method. Section 4.2.5 describes the ori-

gins of the method and some early examples. Section 4.2.6 outlines its development

over time and provides some modern examples of its application.

4.2.5 Early examples of FIMLOF

As shown in section 4.2.3, Schweppe (1965) was the first to represent the likelihood in

the form of (4.2.14). This showed how to derive the likelihood for a linear Gaussian

state-space model using terms from the Kalman filter recursions, in the context of

engineering and control systems. This representation of the likelihood was used in

Schweppe (1973) and Peterson & Schweppe (1975), to devise the FIMLOF method.

Peterson & Schweppe (1975) apply FIMLOF to estimate parameters of SD models.

A summary of the theory and key results from the thesis can be found in Peter-

son (1976). Using Schweppe’s representation of the likelihood in (4.2.14), they use

Powell’s method, (Powell, 1964), to find the local optima of the likelihood surface.

Powell’s method does not require the objective function to be differentiable.

Peterson & Schweppe (1975) includes two simulation studies and an application to fuel

demand data. There are few examples of FIMLOF simulation studies in the literature

where known parameters are estimated and as such, we present details of those two

studies in this section and attempt to highlight their limitations. The most important

of these limitations is that due to the limited computational power that was available
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at the time, both simulation studies only estimate a single set of parameters. In our

simulation studies in sections 4.4 and 5.3.5, we perform Monte Carlo experiments to

give a more thorough exposition of the FIMLOF algorithm.

Simulation study 1 : The first study is a simple state-space model representing a

single underlying state as an autoregressive process:

xt = sxt−1 + ε1,t (4.2.17)

yt = xt + ε2,t, (4.2.18)

with s = 0.75 and ε1 ∼ N (0, q), ε2 ∼ N (0, r) with q = r = 1. The authors define a

distinction between structural parameters such as s in (4.2.17) or those found in ma-

trices F, G and H in (4.2.5)-(4.2.6); and variance parameters such as q and r above or

those that form the diagonals of Q and R in (4.2.5)-(4.2.6). From here on we use the

same terms to distinguish between the two types of parameters. In (4.2.17)-(4.2.18),

three parameters, a single structural parameter s and two variance parameters q and

r are estimated for simulated data of n = 100 and 1000. s is estimated well for both

run lengths, but the variance parameters are estimated less well, especially with a run

length of 100. The authors state that they have found this to be the case generally;

maximum likelihood estimates of structural parameters are more accurate than vari-

ance parameters. Wider confidence intervals for variance parameters than structural

parameters is further evidence of this.

Simulation study 2 : The second simulation study involved a more complex realis-
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tic model of a firm described in (Forrester, 1968a). The state-space model formed

consisted of 9 state and 7 observation equations with 13 structural parameters (and

no variance parameters) for estimation. The exact conditions of the experiment were

chosen to match that of Senge (1974) that estimated parameters using OLS. Peter-

son & Schweppe (1975) showed that estimates using FIMLOF were a considerable

improvement on Senge’s OLS estimates and were able to estimate the 13 parameters

to a high degree of accuracy. Peterson (1976) also includes details of this particular

simulation study.

These two simulation studies were limited by the computational power available at

the time. As such, there are some limitations to these studies. Firstly, as we men-

tioned at the start of this section, only one set of parameter estimates are given for

each of the two studies. If these estimates are the global optima of the likelihood

surface, then this is not a problem. In an optimisation problem, the choice of starting

values (initial guesses for the parameters) that are input to the algorithm should not

affect the output – in other words the output should be robust to the starting values.

However, Peterson and Schweppe use the Powell method for optimisation which can

only find the local optima (Vierhaus et al. 2014). As we show in section 4.4, when

using FIMLOF, methods such as the Powell method are not robust to starting values.

We provide full details of simulation studies in sections 4.4 and 5.3.5, giving a full

exposition of all parameter estimates from multiple starting values. We also explain

some of the difficulties involved in an attempt to assist the interested researcher in this

area. For optimising the likelihood surface, instead of the Powell method we use the
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Nelder-Mead simplex method (Nelder & Mead, 1965). Although this also finds the

local optima and as such is not robust to starting values, in section 4.4 we show that

this is an improvement over the Powell method, both in terms of speed and accuracy.

Another issue with Peterson and Schweppe’s simulation studies are the variance pa-

rameters. These were estimated in the first study, but this is effectively a simple ‘toy’

model. The variance parameters were not estimated in the second study. This simpli-

fies the problem, and the likelihood surface, considerably. When the variance param-

eters are known, the number of unknown parameters contained within the Kalman

gain at each update is decreased considerably, especially for a complex (7 x 9) system

with 7 observation equations and 9 state equations. Even if assuming zero values

for the off-diagonal terms in the covariance matrices Q and R, there would still be

9 variance parameters in Q and 7 variance parameters in R forming the diagonals of

these matrices. Eberlein and Wang (1985) highlight the importance of noise terms in

FIMLOF as follows: “In order to implement a FIMLOF estimator, the way in which

noise enters the system must be carefully specified. ... not only which equations the

noise enters but what the characteristics of the noise are. Changing the specified

noise characteristics can have rather profound effects on the resulting estimate. This

is because the Kalman gain ... is strongly influenced by the characteristics of noise

entering the equations.” In our simulation studies in sections 4.4 and 5.3.5, all the

variance parameters, the diagonals of covariance matrices Q and R, are estimated as

parameters. This considerably increases the complexity of the model and therefore

the likelihood surface, however this avoids making inaccurate assumptions regard-
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ing the variance terms. Although Radzicki et al. (2004) also highlights the detailed

knowledge of the system’s noise that is required for FIMLOF, in the modern appli-

cations of FIMLOF discussed in section 4.2.6, the covariance matrices Q and R are

given relatively little attention. In contrast, our simulation studies demonstrate the

importance of the terms within these matrices.

Peterson and Schweppe (1975) then applied FIMLOF to a SD model for fuel de-

mand in the United States. The historical data was cross-sectional; for each of the

49 states time series of 5 observations were available – all believed to have same un-

derlying structural and variance model parameters. The resulting state-space model

had 3 state and 3 observation equations. The state equations were linear, though

the observation equations were nonlinear. 20 parameters were estimated; 14 struc-

tural and 6 variance parameters. FIMLOF parameter estimates were compared to the

weighted least squares (WLS) estimates of Boughman & Joskow (1975) by examining

the log-likelihood values. The FIMLOF estimates were found to improve on the WLS

estimates by more than a factor of 2 in terms of the log-likelihood. However there

were no comparisons of the SD model output (using the estimated parameters) with

the historical data. Therefore no indication was provided on the performance of the

parameter estimates in terms of the resulting prediction error.

Instead of calculating prediction error, a series of tests were proposed by Peterson

& Schweppe for validation of the state-space model based on the estimated param-

eters. In these tests, the estimated parameters were used in the Kalman filter and
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residuals inspected. It was argued that when the parameters used in the Kalman filter

represent the ‘true’ model, the normalised predicted residuals of the filter should be a

white process, with constant unit variance and a Gaussian distribution. It was argued

that since these properties of the residual process are not used directly in maximising

the log-likelihood, they provide an independent test of model validity. The tests were

said to be sensitive to small errors in the model specification and the authors state

that even when the model parameters selected are from the global maximum of the

likelihood surface, the residuals are not guaranteed to pass. The tests also included

use of Durbin-Watson statistics and tests on the correlation matrices. The final state-

space model for the fuel demand data performed well in these tests. Any correlations

in the residuals were shown to be caused by the cross-sectional nature of the data.

For the fuel demand model variance parameters were not estimated outright. In-

stead they were assumed proportional to the initial values of the relevant states or

observations. That is, the variance of the underlying state i that is the diagonal term

(i, i) of covariance matrix Q was assumed proportional to the initial value of state i,

x0,i: σ
2
Q,i = αi x0,i, for i = 1, 2, 3. Similarly, the variance of observation j that is the

diagonal term (j, j) of R was assumed proportional to the initial value of observation

j, y0,j: σ
2
R,j = βj y0,j, for j = 1, 2, 3. The 6 constants of proportionality α and β

were estimated as unknown parameters. Initial values of these were found by visual

inspection of sample standard deviations of the data. This can be seen as an attempt

to inform the model on how to scale the variance parameters, when searching the

parameter space.



CHAPTER 4. LINEAR STATE-SPACE MODELS AND THE KF 122

4.2.6 Modern applications of FIMLOF

Although there are additional early examples of the application of FIMLOF, such as

Moore and Schweppe (1973) and Mehra and Tyler (1973), which apply FIMLOF to

nuclear power plants and engineering systems respectively, there are relatively few

examples of FIMLOF’s use over the 40 or so years since its conception. After show-

ing such early promise, it is perhaps difficult to understand why FIMLOF (and also

MRO) did not become more widely used. Perhaps the main reason for this was that

at the time (and maybe right up to present day), the majority of SD modellers be-

longed to the classical school of thought. Not only did they attach little importance

to the estimation of model parameters, they also distrusted use of quantitative data,

not only in this way, but in SD modelling in general (Graham, 2002).

Another reason likely concerns the computational intensity of the methods; both for

FIMLOF and MRO. Although much less of an issue nowadays, in the 1970’s where

computer power was considerably less, this was a major issue. In the estimation of SD

model parameters, the importance of computational power, and the difficulty of the

task overall, is demonstrated well in Dangerfield and Roberts (1996) – even with sta-

tistically rigorous methods such as FIMLOF and MRO. The authors provide a helpful

guide for overcoming many of the practical issues and also highlight the difficulty of

the problem with a simple example. A 30 parameter model in which each parameter

can take a range of 10 discrete values (which is a very conservative estimate) has 1030

parameter combinations. The authors point out that a computer calculating 1 million
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of these per second would take 3.17 x 106 years to work out all combinations. For

a complex, nonlinear system with a continuous parameter space, it is not difficult to

imagine the enormous size of the parameter space and consequently the difficulty of

the task in hand.

It is perhaps not surprising that there have been attempts to simplify this prob-

lem to make the task more achievable. Eberlein (1986) presents two such approaches.

The first is to approximate the Kalman gain by estimating the state and observational

covariance matrices (Q and R). Rather than optimising the likelihood, the Kalman

filter, with the estimated covariance matrices and Kalman gain is run on the data.

Errors are inspected and optimisation involves minimising the square error loss. The

second method involves breaking a complex SD model up into simpler sub-models

in a process termed ‘sectorization’ which simplifies the problem. Although these are

shown to be successful on a simple inflation model, there are few additional examples

of these methods being applied.

There are some notable examples of more modern applications of FIMLOF. The

popular simulation software Vensim (2010), has a feature that enables FIMLOF to

be applied to historical data. As we explained in 4.2.3, the Kalman filter gives an

optimal estimate of the underlying state for a linear Gaussian system. However, when

the system is nonlinear the optimality no longer holds (Durbin and Koopman, 2001)

and Schweppe’s representation of the log-likelihood in (4.2.14) becomes an approx-

imation (Peterson, 1976). Despite this, Peterson & Schweppe (1975) and Peterson
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(1976) applied FIMLOF to nonlinear systems and used the standard Kalman filter

in 4.2.3 to estimate the underlying state of the system. For nonlinear systems, Vensim

uses the extended Kalman filter (Jazwinski, 1970; Bar-Shalom et al., 2001) instead of

the standard Kalman filter and this has been shown to be a more accurate approx-

imation. In chapter 5 we introduce an alternative Kalman filtering technique that

has been shown to be more accurate than the extended Kalman filter for estimating

the state of nonlinear systems. A commonly highlighted weakness of FIMLOF is the

requirement that the system is linear (Dangerfield & Roberts, 1996; Radzicki et al.,

2004). We show in chapter 5 that when using an appropriate Kalman filter this re-

quirement is now less of an issue. The remainder of this section is dedicated to two

examples of recent applications of FIMLOF to complex, nonlinear systems. These are

of interest for comparisons with the BT system.

In the first example Ryzhenkov (2002) applies FIMLOF (within Vensim) to a complex

nonlinear SD model for economic data. The economic system under inspection is (7 x

8) with 7 observation equations and 8 (nonlinear) state equations. The total number

of observations, N = 34. Although it is not entirely clear exactly how many struc-

tural parameters are estimated, there appear to be approximately 20. In addition 15

variance parameters are also estimated. High measurement errors are assumed, since

there is said to be much uncertainty about the initial values of the state of system,

x0. Some of these initial states and covariances are also estimated as additional pa-

rameters. Powell’s method is used for optimisation.
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The state-space model formed from the SD model is referred to as the stochastic dy-

namic model. When assessing the performance of FIMLOF in estimating the model

parameters, the focus is on comparing output of the stochastic dynamic model with

the historical time series data. This is not the equivalent of using the estimated

structural parameters in the deterministic SD model because of the noise terms in

the stochastic dynamic model. The author admits that when comparing this model

to historical data, the state and observational noise are used as exogenous inputs.

This suggests that the state and observational noise series are obtained by running

the extended Kalman filter on the historical data, using the estimated structural and

variance parameters to obtain the noise terms. These noise terms are then used as

exogenous inputs for the stochastic dynamic model. The stochastic dynamic model

is a good match to historical data, with low prediction error for most of the series.

However, using noise terms in this way to improve the match between simulations and

historical data could be argued in some ways as cheating. The purpose of estimating

parameters of a SD model is to enable the model, with the use of only the estimated

structural parameters and any exogenous variables, to represent the behaviour of his-

torical time series as accurately as possible. This is how we assess the performance of

our parameter estimates for the historical BT regional time series in chapter 6.

In the second example, Radzicki et al. (2004) formed a SD model based on Har-

rod’s (1939) economic growth model. He added new parts to the model to represent

managerial expectations. This nonlinear model consisted of 5 stocks with 9 param-

eters and 4 initial values to be estimated. There was no mention of any variance
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parameters. It is not clear whether the variance terms were also estimated as param-

eters or if fixed values were used. FIMLOF was applied to historical economic data

to estimate the parameters and initial values. When using these estimated parame-

ters in the SD model, the output resulted in an impressive match to historical time

series data. However, in terms of prior understanding of economic systems, some pa-

rameter estimates were deemed to be unreasonable, (i.e. when expected to be larger

than others they were smaller – and vice versa). However, the author admits that

“experimentation with the model uncovered FIMLOF runs that yielded much more

reasonable parameter estimates”, but these corresponded to poorer fits when match-

ing SD model output to historical time series. However it is not clear exactly what

this “experimentation” was. 95% confidence intervals are provided for some, but not

all estimated parameters. As Radzicki et al. (2004) explain, FIMLOF was “not able

to zero-in on a particular value due to integration and round-off errors encountered

during simulation ... [these errors] are unavoidable when simulating continuous-time

dynamical systems on a digital computer”.

The author states that system dynamicists don’t take the view of defining a model as

valid/invalid and instead subject the model to a large number of tests. Confidence in

the model is said to increase with the number of tests passed. There is no mention

of Peterson’s validation tests using the Kalman filter residuals. Instead, a helpful de-

tailed list of the tests that a modeller should use to validate a systems dynamics model

is presented. Similar references are given for these validation tests as we provide in

chapter 3. One category of these tests, termed tests of overall model behaviour, effec-
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tively describe how well output from the model matches historical data. The modified

Harrod SD model is subjected to this category of tests. It is argued that the model

passes all these tests since it “nicely mimics some of the observed behaviour” from

the real system. However doubts are raised as to whether the “model’s parameter

values are consistent with the relevant descriptive and numerical knowledge of the

actual system”. This is a validation test included within the category of structural

assessment tests. This test could have been passed with more “reasonable” parameter

estimates, but the author used the parameter estimates from FIMLOF that resulted

in better time series fits. This demonstrates an interesting conflict in this application

of FIMLOF. Should the modeller use more realistic parameter estimates (in terms of

prior system knowledge) that do not fit the historical data as well? Or should the

‘best’ parameters be chosen in terms of fitting the data? Using FIMLOF forces the

user towards the latter approach. In situations where such a choice is required, the

model is going to fail at least some validation tests.

Both Ryzhenkov (2002) and Radzicki et al. (2004) present only one set of parameter

estimates and both use the Vensim simulation package for implementing FIMLOF.

The Vensim help files state that the default method for optimisation is the Powell

method, but do not give details of any other method(s). Ryzhenkov includes the

output file from Vensim which explicitly states that the Powell method was used for

optimisation. Although it is not stated explicitly whether implementing FIMLOF

in Vensim is robust to the starting values or not, the Vensim help files provide a

clue. They state that when multiple starting values for the optimisation are selected
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as an option, the optimisation will continue and not stop until the user cancels it.

At this point, the optimiser “shuts down cleanly, writing out the best values found”

to the output file. This implies that multiple sets of estimates are found from the

optimisation. In other words, that the method in Vensim is not robust to starting

values. Indeed Ryzhenkov (2002) used multiple starting values that were set at ran-

dom for each parameter in the optimisation algorithm. He highlights the difficulty

of estimating the parameters and explains this process when implementing in Ven-

sim as follows: “Typically maximising the log likelihood function by a hill climbing

algorithm with random multiple starts cannot be finished”. He argues that when

terminating the process prematurely, the modeller relies “not only on logic but in-

tuition as well”. He adds, “therefore to find a genuine optimal solution is hardly

possible in practice”; highlighting the difficulty of implementing the approach as the

Powell method can only find the local optima. The simulation studies we present in

sections 4.4 and 5.3.5 are also not robust to the starting values. However we provide

full details of the parameter estimates produced to give a more thorough exposition

of the method, rather than providing a single set of estimates.

We introduce the full version of the BT hydraulics model in chapter 5 and estimate

its parameters to match historical data in chapter 6. We argue that this model is

considerably more complex and nonlinear than the models discussed in this section.
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4.3 Applying FIMLOF to hydraulics model 1

In this section we explain the details of how the FIMLOF method was applied to

hydraulics model 1, the simplified version of the hydraulics model, to estimate its

parameters. In section 4.3.1 we highlight the key aspects of hydraulics model 1 from

the perspective of applying FIMLOF; the parameters to be estimated and the stocks

of the model. In section 4.3.2 we lay the foundations of representing the structure of

hydraulics model 1 as a state-space model by substituting out the auxiliary variables

in the model to represent hydraulics model 1 as two Markovian difference equations.

A state-space model is formed from these difference equations in section 4.3.3. We

then outline the FIMLOF algorithm in section 4.3.4.

4.3.1 Hydraulics model 1 parameters

A reminder of the stock and flow diagram of this model is provided in Figure 4.3.1.

Hydraulics model 1 is effectively a deterministic function of the model parameters

θ and the exogenous time series U ; the job arrivals (or ‘new tasks’ in Figure 4.3.1).

Hence the model simulates output time series y according to the following structure:

θ, U ⇒ Hyd (θ, U)⇒ y

The job arrivals series is classed as an exogenous variable because the behaviour of this

series is not itself of interest to us – rather it is the effect of this series on the system.

As such, U can be considered to be an additional input to the model. θ consists of

3 model parameters as follows: θ = (θd, θw, θt). Each of these is time-invariant in

hydraulics model 1 and hence these are the (structural) model parameters that we
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Figure 4.3.1: Stock and flow diagram of hydraulics model 1.

wish to estimate. Each of these three model parameters is described below and circled

in red in Figure 4.3.1.

• θd = ‘delay in changing capacity’ in Figure 4.3.1. When the system experiences

an increase in demand and more engineers are required, this is the delay (in days)

associated with transferring workforce due to the time taken for rescheduling

work and the necessary meetings etc.. In Figure 4.3.1, this transfer is represented
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by moving engineers from ‘capacity not deployed’ to ‘capacity deployed’.

• θw = ‘weight of cycle time in target setting’ in Figure 4.3.1. The ‘target clear

rate’ in the model (the target for how fast jobs are completed) is set using a

weighting of the job arrivals and the cycle time (or wait time). θw determines

the weighting that is attached to the cycle time.

• θt = ‘target cycle time’ in Figure 4.3.1. This is the target time (in days) that

BT aim to complete all repair jobs within.

In SD terms, the model output y corresponds to the stocks of the model. See chapter 2

for a full explanation of SD modelling. For hydraulics model 1, y consists of two daily

time series; the ‘backlog’ and the ‘capacity deployed’. The backlog is the length of

the job queue. This is a key performance metric in the model. The capacity deployed

corresponds to the number of people deployed on jobs each day. This can be seen

as a measure of the system’s response. In Figure 4.3.1 the third stock, ‘capacity not

deployed’, is simply a constant minus the capacity deployed stock and therefore for

the sake of simplicity we are not interested in the output of this stock.

4.3.2 Deriving hydraulics model 1 difference equations

In order to implement the FIMLOF method we must represent the structure of hy-

draulics model 1 as a state-space model. The first step towards this is to represent

hydraulics model 1 as Markovian difference equations. The previous contributions

to the literature described in sections 4.2.5 and 4.2.6, that attempt to use FIMLOF

to estimate the parameters of SD models, provided either the underlying SD model
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equations or the state-space model - but not both. In this section we provide a step

by step guide for the conversion of a SD model into Markovian difference equations.

This process involves the following:

1. Grouping the SD model variables into stocks, exogenous variables and auxiliary

variables.

2. Determining the order in which auxiliary variables update in the SD model.

3. Performing substitutions to form Markovian difference equations.

In section 4.3.3, a state-space model is constructed from these difference equations.

This process of the formulation of a state-space model from a SD model is a novel

contribution to the area. It is worth highlighting that the technique described in this

section can be applied to any SD model.

Like any SD model, variables within the hydraulics model are continuous, with dif-

ferential equations capturing the relationships between them (Sterman, 2000). In

practice however, during computation these differential equations are discretised to

form difference equations. These difference equations update regularly in time, with

a suitably small interval dt selected by the modeller.

The variables within SD models can be divided into 3 categories: stocks, auxiliary

variables and exogenous variables. In Figure 4.3.1 we have already highlighted the

stocks, exogenous variable and the model parameters; auxiliary variables are simply
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any other variables. When a SD model updates, it is the stocks that drive the updat-

ing process. To understand this, we must examine the difference equations at each dt

update. We examine the updating structure of a model with dt = 1 that updates from

time t−1 to time t. At time t, the stocks are the first variables in the model to update,

using the previous values of stocks and auxiliary variables at t− 1. The parameters θ

and the new value (at time t) of the exogenous variable(s) may also be used as follows:

stocks(t) = Hydraulics (stocks(t− 1), auxiliary variables(t− 1), U(t), θ).

For example in Figure 4.3.1, the backlog and the capacity deployed are the first

variables to update for time t. After these stocks have updated at time t, the aux-

iliary variables are then updated using the updated value of the stocks. The order of

the updating process amongst the auxiliary variables is determined by how close they

lie to the stocks in the model structure – shown in the stock and flow diagram. For

example, in Figure 4.3.1, ‘target clear rate from cycle time’ updates before ‘target

clear rate’ since it is closer to the backlog stock. At the conclusion of the updating

process for time t, all auxiliary variables will have updated either from the updated

stocks at time t, or from other auxiliary variables that have updated first at time t as

they are closer to the stocks in the model structure:

auxiliary variables(t) = Hyd(stocks(t), auxiliary variables(t), U(t), θ).

From this updating process, we can observe that the auxiliary variables can be seen
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to act as intermediate variables between stocks – assisting in their update at each dt.

Clearly the difference equations for the stocks and auxiliary variables have the Markov

property. However, there is a simpler, more concise way of representing hydraulics

model 1. The nature of this updating process means that by substitution, it is possi-

ble to simplify the representation of the difference equations of a SD model, removing

the auxiliary variables entirely. This reorganising process results in each stock at time

t being represented only in terms of other stocks at t − 1, some function g() of the

model parameters θ and the exogenous variable(s) U as follows:

stocks(t) = Hydraulics (stocks(t− 1), U(t), g(θ)).

In order to obtain this more concise representation of hydraulics model 1, we present

the full difference equations for the model and proceed to show how these substitu-

tions are implemented. Table 4.3.1 gives the notation used for the hydraulics model 1

variables. The equations of the stocks of hydraulics model 1 take the following form:

bt = bt−1 + nt−1 − ct−1 (4.3.1)

ct = ct−1 + cct−1. (4.3.2)

(4.3.1) requires no substitutions, since the backlog is already expressed in terms of only

stocks and the exogenous variable, the new tasks. This is not the case for (4.3.2), since

capacity deployed is expressed in terms of an auxiliary variable; changing capacity
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Symbol hydraulics model 1 parameter

b backlog

c capacity deployed

n new tasks

cn capacity not deployed

cm maximum capacity deployed

tct target clear rate from cycle time

cl cleared jobs

ct cycle time

tcr target clear rate

pf pull factor

cc changing capacity deployed

Table 4.3.1: Notation for hydraulics model 1 variables.

deployed. The full set of difference equations for hydraulics model 1 are shown below.

cnt = cm− ct

tctt =
bt
θt

clt = ct

ctt =
bt
clt

tcrt = θw(tctt) + (1− θw)(nt)

pft =
tcrt
ct

cct =
ct
θd

(pft − 1)
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In order to obtain the difference equation for capacity deployed in the required form,

we must perform substitutions as follows:

cct =
ct
θd

(pft − 1) (4.3.3)

=
ct
θd

[(
tcrt
ct

)− 1] (4.3.4)

=
ct
θd

[(
θw(tctt) + (1− θw)(nt)

ct
)− 1] (4.3.5)

=
ct
θd

[(
θw( bt

θt
) + (1− θw)(nt)

ct
)− 1] (4.3.6)

(4.3.3)-(4.3.6) are obtained by substituting in the terms for pft, tcrt and tctt respec-

tively. (4.3.6) now represents the changing capacity deployed variable in the required

form; that is in terms of only stocks, the model parameters θ and the exogenous

variable. We can use this representation to obtain the required form for (4.3.2) by

substituting in cct and rearranging as follows:

ct = ct−1 + cct

= ct−1 +
ct−1

θd
[(
θw( bt−1

θt
) + (1− θw)(nt)

ct−1

)− 1]

= ct−1 +
ct−1

θd
(
θw( bt−1

θt
) + (1− θw)(nt)

ct−1

)− ct−1

θd

= ct−1 +
θw( bt−1

θt
) + (1− θw)(nt)

θd
− ct−1

θd

= (
θw
θdθt

) bt−1 + (1− 1

θd
) ct−1 + (

1− θw
θd

)nt

= φ1 bt−1 + φ2 ct−1 + φ3 nt.
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φ1, φ2 and φ3 are defined as follows:

φ1 = g1(θ) =
θw
θdθt

(4.3.7)

φ2 = g2(θ) = 1− 1

θd
(4.3.8)

φ3 = g3(θ) =
1− θw
θd

. (4.3.9)

Hence, substituting out the auxiliary variables of hydraulics model 1 in this way pro-

duces the following difference equations:

backlog(t+1) = backlog(t) - capacity deployed(t) + job arrivals(t)

cap deployed(t+1) = φ1 backlog(t) + φ2 cap deployed1(t) + φ3 job arrivals(t).

If we take dt to equal 1, i.e. the model updates once for each day, the equation

for the backlog is intuitive; today’s queue is equal to yesterday’s queue minus the

people deployed (and hence the jobs completed – since in this simple model each

engineer completes one job per day) plus the new job arrivals. The equation for the

capacity deployed is more complex and is determined by a set of parameters φ1, φ2

and φ3 which are simple functions of θ. The difference equations formed above, along

with the φ parameters, preserve the exact structure of hydraulics model 1. By substi-

tuting out the auxiliary variables we have simplified the representation considerably,

yet preserved the Markov property of the equations. Representing the system in this

way provides us with a framework for constructing a state-space model in the next

section.
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4.3.3 Deriving the state-space model equations

The difference equations formed in the previous section are a concise way of repre-

senting hydraulics model 1’s structure. To implement FIMLOF we need to construct

a state-space model from these equations.

In chapter 2 we explained that hydraulics model 1 is a much simplified version of

the full model and represents a single feedback loop only. However, if hydraulics

model 1 was a more complex model representing a real system, it would be hoped

that these difference equations would represent the structure of the real system well.

In practice however, even for a very accurate model, this would not be an exact rep-

resentation; some noise is likely to be present. Under this assumption, we obtain the

following equations by adding noise terms to the difference equations of hydraulics

model 1:

bt+1 = bt − ct + nt + v1,t (4.3.10)

ct+1 = φ1 bt + φ2 ct + φ3 nt + v2,t (4.3.11)

where b represents the backlog, c the capacity deployed and n the new job arrivals.

v1 and v2, the noise associated with updating the backlog and capacity deployed

respectively, represent any inaccuracies in the fit of the hydraulics model difference

equations to the real system.

In state-space terms, we assume that these relationships represent the underlying

state of the system; a state that is not directly observable. In other words, (4.3.10)-
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(4.3.11) are the state equations of our state-space model. To implement FIMLOF, we

further assume that the noise is Gaussian and hence v1 ∼ N(0, σ2
Q1

), v2 ∼ N(0, σ2
Q2

).

We can complete the state-space model by defining the observation equations. If

we assume that the observable data has some additional observational noise (for ex-

ample caused by measurement error), then the observable data can be represented as

follows:

b∗t = bt + w1,t (4.3.12)

c∗t = ct + w2,t, (4.3.13)

where b∗ is the observable data for the backlog, c∗ is the observable data for ca-

pacity deployed and we again assume Gaussian noise as follows: w1 ∼ N(0, σ2
R1

),

w2 ∼ N(0, σ2
R2

). It is also worth noting that (4.3.10)-(4.3.13) are all linear equa-

tions. Therefore, under this representation for (4.3.10)-(4.3.13), we now have a linear

Gaussian state-space model, or dynamic linear model (DLM). As we explained in

section 4.2.3, the assumption of Gaussian noise allows the use of the Kalman filter to

estimate the underlying states bt, ct from observations at time t, b∗t and c∗t . The linear

nature of (4.3.10)-(4.3.13) also mean that the Kalman filter will give optimal estimates

of the states in terms of mean squared error and therefore the representation of the

log-likelihood in (4.2.14) will be exact. We can represent the DLM in (4.3.10)-(4.3.13)

in matrix form as follows:

y
t

= Gxt + wt (4.3.14)

xt = Fxt−1 +Hut + vt, (4.3.15)
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where

y
t

=

b∗t
c∗t

 , xt =

bt
ct

 , G =

1 0

0 1

 , wt ∼ N(0, R), R =

σ2
R1

0

0 σ2
R2

 ,
and

ut =

nt
nt

 , F =

 1 −1

φ1 φ2

 , H =

1 0

0 φ3

 , vt ∼ N(0, Q), Q =

σ2
Q1

0

0 σ2
Q2

 .

For each update at time t, the vectors y
t
, ut and matrices F , G, H, Q and R are used

in the Kalman filter equations (4.2.7)-(4.2.12) to estimate the latent states xt.

The off-diagonal terms of matrices Q and R are assumed to be zero. Assuming a

zero covariance structure in both the state and observational noise for backlog and

capacity deployed is not a problem in the simulation studies in section 4.4 and chap-

ter 5, where we know that the simulated data possesses this structure. This structure

simplifies the problem, and the number of parameters that are to be estimated. How-

ever, in chapter 6 when we progress to BT time series data, this assumption must be

re-evaluated.

4.3.4 Modified FIMLOF algorithm 1

Now that we have constructed the state-space model using the structure of hydraulics

model 1, we now have the necessary terms, associated with (4.3.14)-(4.3.15), to present
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an algorithm for implementing the FIMLOF method.

The matrices Q and R, associated with (4.3.14)-(4.3.15), represent the system and

observational covariances respectively. The diagonal elements of these; σ2
Q1

, σ2
Q2

and

σ2
R1

, σ2
R2

, correspond to the variance of noise terms v1, v2 and w1, w2 respectively

from (4.3.10)-(4.3.13). In the simulation study in section 4.4, noisy data will be arti-

ficially simulated within both the state and observation equations, so that σ2
Q1

, σ2
Q2

,

σ2
R1

and σ2
R2

will all be non zero. Therefore these terms will be treated as additional

parameters that will also be estimated.

The algorithm that we present in this section also includes two modifications to the

standard FIMLOF algorithm devised in Schweppe (1973) and Peterson & Schweppe

(1975). These were discovered through experimentation and were found to improve

performance in terms of the accuracy of estimated parameters. The first of these is

to use the approximation of the log-likelihood in (4.2.15) instead of the exact repre-

sentation in (4.2.14). The second of these is to use the Nelder-Mead simplex method

(Nelder and Mead, 1964) rather than Powell’s method for the optimisation. The

results demonstrating the improved performance of these two modifications are pre-

sented in section 4.4.6.

For noisy observable time series data y for the backlog and capacity deployed, we

estimate the structural parameters θ = (θd, θw, θt) and the variance parameters σ2 =

(σ2
Q1

, σ2
Q2

, σ2
R1

, σ2
R2

) of the state-space model in (4.3.14)-(4.3.15) using the algorithm
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below. From here on we refer to this as algorithm 1.

1. The Nelder-Mead simplex method selects a candidate set of parameters (θ, σ2),

(or in the first iteration the user selects suitable starting values θ = θ0 and

σ2 = σ2
0).

2. φ = g (θ) is calculated using (4.3.7)-(4.3.9).

3. Kalman filter proceeds along time series y and for each update at time t:

• The φ parameters in matrices F and H and the variance parameters σ2

influence the Kalman filter’s estimate of latent states xt.

• Terms from these calculations are used to calculate the log-likelihood, us-

ing the approximation of (4.2.15), for the candidate set of parameters,

log(L(θ, σ2), t).

4. After the Kalman filter has calculated the log-likelihood for each t, an overall

log-likelihood for the time series is calculated by summing the individual log-

likelihood terms: log(L(θ, σ2)) = ΣT
t=1 log(L(θ, σ2, t)).

5. The optimisation algorithm repeats the process until a local optimum is found

and maximum likelihood estimates φ̂ and σ̂2 are determined.

Having obtained the maximum likelihood estimates (MLEs) φ̂, it is straightforward

to calculate the MLEs for structural parameters θ̂ = (θ̂d, θ̂w, θ̂t). We simply use the

inverse of the relevant g() function in (4.3.7)-(4.3.9). This is possible since the maxi-

mum likelihood estimates are invariant to such reparameterisations (Pawitan, 2001).
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The algorithm above explains how we get from the noisy data y to the structural

parameters θ̂ for hydraulics model 1. The logic of this process can be summarised as

follows:

θ̂ ⇐ g−1(φ̂)⇐ φ̂⇐ FIMLOF ⇐ y

In the simulation study in section 4.4, artificial noisy data y is simulated from hy-

draulics model 1 with known structural and variance parameters. This algorithm is

used for the estimation of these parameters and its performance is assessed.

4.4 Simulation study 1

In this section we assess the performance of algorithm 1 in estimating the parameters

of hydraulics model 1. The objectives of this study are explained in section 4.4.1.

Section 4.4.2 presents the details of the experiments, while section 4.4.3 explains the

details of the job arrivals used to simulate data from hydraulics model 1. Section 4.4.4

verifies the Gaussian assumptions of the simulated data that are required for Kalman

filtering. Section 4.4.5 presents the results of the study and details the amount of

noise added to the simulated data for each experiment. Section 4.4.6 describes some

adjustments that were made to the standard FIMLOF algorithm that improved per-

formance.
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4.4.1 Objectives of study

In this section we present results of a simulation study aimed at assessing the perfor-

mance of algorithm 1 in estimating the parameters of hydraulics model 1 from noisy

simulated data. In chapter 6 we apply a modified version of this algorithm to esti-

mate the hydraulics model parameters from historical BT time series data in order to

calibrate the hydraulics model at a regional level. Although this modified algorithm

is based on a more complex version of the hydraulics model, and uses an adjusted

version of the Kalman filter for nonlinear systems, the underlying process is the same

as in this study. Whilst it is highly unlikely that this BT data will be represented

exactly by the relevant hydraulics model, successful estimation of parameters from

noisy simulated data can be seen as a first step towards this application to BT data.

It can also be seen as validation that, for a simplified model at least, it is possible to

successfully estimate the parameters of this type of SD model.

The objectives of the simulation study are to determine the following:

• Performance of algorithm 1 in estimating the structural parameters θ of noisy

data from hydraulics model 1

• The effects of system noise (σ2
Q1

, σ2
Q2

) and observational noise (σ2
R1

, σ2
R2

) on the

accuracy of the structural parameter estimates θ̂

In sections 4.2.5 and 4.2.6 we highlighted the relatively little attention given to the

variance parameters in previous examples of FIMLOF. This is in spite of a number of

authors explaining the importance of modelling the noise appropriately when using
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FIMLOF, see for example Eberlein and Wang, (1986). In chapter 6 it is highly likely

that our model will not be an exact representation of each regional system, i.e. some

noise will be present. It will thus be useful at this stage to have some idea of the

effects that the different types of noise have on the accuracy of our estimates. There

is also the question of a noise threshold, i.e. whether there is some limit when noise

is added beyond which parameter estimation becomes impractical.

4.4.2 Experiment details

For each dataset, 7 parameters in total will be estimated; the 3 structural hydraulics

model parameters θ = (θd, θw, θt) and the 4 variance parameters σ2
Q1

, σ2
Q2

and σ2
R1

,

σ2
R2

– though it is the structural parameters that are the focus of the study. For each

experiment, we simulate 100 sets of noisy data from hydraulics model 1, each of length

n = 500 days. Variation is created across these datasets by simulating stochastic job

arrivals. For each of the 100 datasets, 5 sets of starting values are input to the optimi-

sation algorithm – resulting in 500 sets of parameter estimates for each experiment.

These estimates are compared to the true parameter values. The effects of adding

different levels of noise to the data are also investigated.

Across all the experiments, we set θ to the default hydraulics model 1 parameters.

These are the values that, if the model was sufficiently complex to represent the full

system, BT analysts believe should be used: θ = (θd, θw, θt) = (3, 0.2, 2). Such a

model assumes the following:
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• The delay associated with changing workforce numbers is 3 days

• When determining the ‘target clear rate’ in the model, 20% weighting is given

to the cycle time and 80% to the job arrivals

• The target wait time for all jobs is within 2 days

Across all the experiments, when updating hydraulics model 1 we set dt = 1. The unit

of time for the model is in days, so with dt = 1 the variables within the model update

once per day – producing daily time series for the backlog and capacity deployed. A

smaller dt value would update the model more often and the variables in the model

would be closer to being theoretically continuous, see chapter 2. This would more ac-

curately represent the behaviour of the model. However, when we apply our approach

to BT regional time series data in chapter 6, we have only daily series. The real

system will of course be continuously updating – but we will only have access to data

updated once per day. Our state space method requires data for each dt update. So

if in the real system we have daily time series data, we cannot update the state-space

model more than once per day. Therefore for this simulation study, we select dt to be

the smallest possible interval where we have access to time series data from the real

system; dt = 1 day.

Peterson & Schweppe (1975) and Peterson (1976) found that the accuracy of param-

eter estimation with FIMLOF is improved with longer time series, by investigating

series of lengths 100 and 1000. The BT data presented in chapter 6 has a length of

nearly 1000. However, rather than opting for this length, we simulated datasets of
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length 500 in order to create a more challenging set of experiments.

As we explain in sections 4.2.5 and 4.2.6, current implementations of FIMLOF are

not entirely robust to the starting values input to the optimisation routine. That is,

the selection of starting values may affect the parameter estimates produced. As part

of our experiments, we investigate this by testing 5 distinct sets of starting values

for each of the 100 datasets. Sets 1-5 (denoted by columns s1 - s5), are shown in

table 4.4.1. The values for each parameter across the 5 sets are spaced at regular

intervals. Set 1 takes the lowest values, which then increase up to set 5 which has the

highest values. Set 3 takes the median of these values - these are also equal to the

true values of the model parameters. The starting values of the 4 variance parameters

σQ1 , σQ2 , σR1 , σR2 are set around 0 at e−10, despite the parameters taking sometimes

relatively high values as we see later. We do this to test the algorithm’s ability to

estimate parameters from noisy data – when have no initial idea of the scale of that

noise.

Parameter s1 s2 s3 s4 s5

θd 2 2.5 3 3.5 4

θw 0.1 0.15 0.2 0.25 0.3

θt 1 1.5 2 2.5 3

Table 4.4.1: Starting values for optimisation.
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For the optimisation routine, certain parameters can be constrained to reduce the

field of search. This is one of a number of recommendations that Dangerfield and

Roberts (1996) present as strategies for making the search of the large parameter

space more practical. Since φ1 = θw
θdθt

from (4.3.7) and the θ parameters have the con-

straints 0 ≤ θw ≤ 1 and θd, θw ≥ 0, we can deduce that φ1 is constrained as follows:

0 ≤ φ1 ≤ 1. In addition, since σ2
Q1

, σ2
Q2

, σ2
R1

and σ2
R2

represent variance terms, these

must be non negative. Therefore these are constrained using exponential functions,

for example σ2
Q1

= exp(ρ2
Q1

).

4.4.3 Job arrivals

In chapter 2, the response of hydraulics model 1 to an artificial scenario, a single

stepped increase in job arrivals, was examined. This response consisted of increasing

workforce numbers (capacity deployed) because of the increasing backlog. In order

for this step in job arrivals to ellicit a response from the model, a sufficiently large

step was required. In other words the job arrivals series was required to possess a

sufficient change in demand for a response to be observed from the hydraulics model.

The step chosen was a 33% increase for 10 days. In this simulation study, two of

the parameters in particular, θd and θw, determine the dynamics of how the model

responds to changes in demand. Therefore it is essential that sufficient changes in

demand are present in the job arrivals in order to ellicit a response from hydraulics

model 1. We present a small study here that was used to determine which job arrivals

should be used in the main experiments detailed in section 4.4.5.
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In this study, experiments were set up according to the details in section 4.4.2. No

noise was added to the data simulated from hydraulics model 1. Stepped increases

were introduced at certain periods along the job arrivals series U . The five scenarios

below were simulated, increasing in levels of changes in demand for U . Except for

periods of the time series stated otherwise, each realisation of series U is simulated

from Ut ∼ N(µ, σ2) with µ = 930 and σ = 5.

1. Steady state: no steps.

2. Single step: for days 300-350 increase µ to 1200.

3. Double step: for days 150-200 increase µ to 975, days 350-400 increase µ to

1050, otherwise µ = 900.

4. Multiple steps: where µ takes the following values for each 50 day interval,

starting with the interval from days 0-50 up to days 450-500. µ ∈ (900, 1000,

900, 950, 900, 975, 900, 1025, 950, 900).

5. High activity system: where µ takes the following values for the same 50 day

intervals as (4). µ ∈ (850, 975, 800, 1200, 1050, 900, 1100, 1200, 875, 930).

Time series for job arrivals scenarios 3 and 5 are shown in Figure 4.4.1, taking the up-

per and lower plots respectively. Figure 4.4.2 shows the results of the study. Each row

shows the histograms for each job arrivals scenario. The histograms in each column

represent one of the 3 structural parameters; θd the left column, θw the centre and θt

on the right. Each histogram shows the 500 estimates for that column’s parameter

for that row’s job arrivals scenario. The vertical red line on each histogram is the true
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Figure 4.4.1: Job arrivals scenarios 3 and 5.

parameter value.

With the steady state scenario (no spikes) on the first row, there is a noticeable

drop in performance compared to the other 4 scenarios, especially for the parameter

θd, with a wider spread of parameter estimates. With change in demand set at a single

step or above, the change in performance is less obvious. Therefore it makes sense

to use a scenario with at least a single step. Conversely, it also makes sense to use

a scenario that does not have unrealistically high levels of changes in demand. The

high activity scenario 5, the lower plot in Figure 4.4.1, is likely to suffer from this.

Indeed, this is confirmed when comparing this series with the job arrivals in the BT

historical data in chapter 6. Scenario 3, the 2 step job arrivals scenario, was selected

for the main experiments presented in section 4.4.5. This was seen as a compromise
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Figure 4.4.2: Effect of job arrival patterns on accuracy of estimates.
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between possessing sufficient changes in demand to ellicit a response from hydraulics

model 1 whilst not being unrealistically variable. In section 4.4.4, where we verify

the Gaussian requirements of the simulated data for Kalman filtering, we also present

example time series for the backlog and capacity deployed, simulated from hydraulics

model 1 using job arrivals scenario 3.

4.4.4 Verifying Gaussian assumptions for Kalman filtering

In the experiments of section 4.4.5, we estimate the parameters of data simulated

from the state-space model of (4.3.10)-(4.3.13), which is based on hydraulics model

1. We already know from (4.3.10)-(4.3.13) that we have a linear system, and that

both the state and observation errors are Gaussian. In this section we demonstrate

that this simulated data is suitable for Kalman filtering - which is applied within the

FIMLOF algorithm.

We begin by observing that the time series data y simulated from hydraulics model

1 consists of non-integer values. That is, although the model effectively represents

counts of jobs in the backlog and counts of deployed engineers in the system, the data

simulated from the model are not counts and take non-integer values. This is the

case for SD modelling in general where variables are treated as continuous. To verify

the Gaussian nature of the errors, we simulate time series from hydraulics model 1

using job arrivals scenario 3 (the upper plot in Figure 4.4.1) as the exogenous variable

and one of the sets of model parameters θ that are used in section 4.4.5 - we select

the same parameter values as for experiment 1. That is, θ = (θd, θw, θt) = (3, 0.2, 2)
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with state noise σQ = 1 and observational noise σR = 10 and set the length of the

time series n = 500 days. One realisation of the time series produced from hydraulics

model 1 for the backlog and capacity deployed is shown in Figure 4.4.3.

In Figure 4.4.3 we see that each of the stepped increases in the job arrivals of scenario

3 (of Figure 4.4.1) causes a slightly delayed step in the backlog, as the uncompleted

jobs cause the queue size to increase. A step in capacity deployed, delayed slightly

further, can be observed. This can be viewed as hydraulics model 1 replicating the

behaviour of management to increase the workforce numbers to deal with the extra

jobs. In other words, aside from an initial period of around 30 days where the backlog

and capacity deployed series have not yet reached steady state, we can see that the

trend present in these two series is caused by the trend in the job arrivals; the two

temporary stepped increases. If the system was in steady state, i.e. if the job arrivals

had no trend - which would rarely be the case in a complex system such as BT’s - the

raw backlog and capacity deployed series would be Gaussian distributed. To assess

the suitability of our data for Kalman filtering, we remove the trend from the backlog

and capacity deployed series and inspect the residuals.

We remove the trend by taking a centred 3 point moving average of each series and

inspecting the residuals when subtracting the moving average series from the raw

series. Histograms and Q-Q plots of these residuals are presented in Figure 4.4.4.

These demonstrate that when the trend has been removed, the backlog and capacity

deployed series are Gaussian and as such, are appropriate for Kalman filtering. It is
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Figure 4.4.3: Hydraulics model 1 output time series using job arrivals scenario 3.
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worth highlighting that the data simulated from hydraulics models 2 and 3, intro-

duced in chapter 5, after removal of the trend, can similarly be shown to be Gaussian.

4.4.5 Results

In this section we present the the results of the simulation study. Both state noise

and observational noise are added to simulated data from hydraulics model 1. The

effect of these noise terms on the accuracy of the structural parameter estimates θ̂

is investigated. We present the results of two experiments. Experiment 1 fixes the

state noise and varies the amount of observational noise, while experiment 2 fixes the

observational noise and varies the amount of state noise. Both experiments will test

the performance in terms of the accuracy of parameter estimation, while comparing

the results of each will determine the individual effect of state and observational noise.

For experiment 1, we fix both the observation noise terms w1 and w2 of (4.3.12)-

(4.3.13) to have a standard deviation of 10. That is, w1 ∼ N(0, σ2
R1

), w2 ∼ N(0, σ2
R2

)

where σR1 = σR2 = 10. This means that white noise processes w1 and w2 have a

variance of 102 = 100. This variance is around 5% of the mean of the simulated

backlog series and 10% of the mean of the capacity deployed series, as can be seen

in Figure 4.4.3. We then vary the state noise terms, σQ1 and σQ2 , using the follow-

ing values: 1, 5, 10, 20, 50, 80. These higher value terms are included to assess

the possible drop in performance when high levels of noise are present. Table 4.4.2

shows the six parameter sets used to add noise to the simulated data in experiment 1.
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Histograms of the parameter estimates from experiment 1 are shown in Figure 4.4.5.

Expt 1 Expt 2

Parameter set σQ σR σQ σR

1 1 10 10 1

2 5 10 10 5

3 10 10 10 10

4 20 10 10 20

5 50 10 10 50

6 80 10 10 80

Table 4.4.2: Parameter sets for the noise terms of experiments 1 and 2.

These take a similar form to the histograms in Figure 4.4.2, with each row showing the

histograms for each noise parameter set and each column again representing one of

the 3 hydraulics model 1 structural parameters; θd the left column, θw the centre and

θt on the right. Each histogram shows the 500 parameter estimates for that column’s

structural parameter for that row’s noise parameter set.

In experiment 2 we effectively do the opposite, fixing the state noise terms and varying

the observational noise. We now fix both the state noise terms v1 and v2 of (4.3.10)-

(4.3.11) to have a standard deviation of 10. That is, v1 ∼ N(0, σ2
Q1

), v2 ∼ N(0, σ2
Q2

)

where σQ1 = σQ2 = 10. We then vary the observational noise terms, σR1 and σR2 ,

using the same values as for the state noise terms in experiment 1; 1, 5, 10, 20, 50,
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Figure 4.4.5: Experiment 1 histograms of parameter estimates.
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80. These 6 parameter sets used to add noise to the simulated data in experiment 2

are shown in table 4.4.2. Histograms of the parameter estimates for experiment 2 are

shown in Figure 4.4.6.

To compare the results from experiments 1 and 2, we examine the relative differ-

ence of each of the parameter estimates compared to the true value. Let θ̂i be the

estimate of true parameter θi, for i = d, w, t. Then τi = |θ̂i−θi|
θi

, for i = d, w, t, is the

absolute value of the relative difference between θ̂i and θi. τ i = 100 × 1
n

Σn
1τi, where

n = 500, represents the mean absolute percentage error (MAPE). τ i is calculated for

i = d, w, t, for each different setting of system and observational noise, for experiments

1 and 2. These values of τ i are shown in table 4.4.3.

Expt 1 (σR = 10) Expt 2 (σQ = 10)

Parameter set σQ τ d τw τ t σR τ d τw τ t

1 1 1.9 0.4 0.1 1 1.2 0.2 0.0

2 5 5.6 1.0 0.2 5 5.0 0.9 0.2

3 10 8.3 1.4 0.2 10 8.3 1.4 0.2

4 20 9.6 1.4 0.3 20 11.5 1.9 0.3

5 50 9.2 0.7 0.3 50 14.2 2.6 4.6

6 80 8.8 0.4 0.4 80 17.1 3.5 0.4

Table 4.4.3: MAPE of parameter estimates for experiments 1 and 2.
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Figure 4.4.6: Experiment 2 histograms of parameter estimates.
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From table 4.4.3 and the histograms in Figures 4.4.5 - 4.4.6, the following are imme-

diately apparent:

1. With lower and mid-range noise parameters, parameter estimation is to a high

degree of accuracy.

2. For each experiment, increasing the noise added to the data results in generally

less accurate parameter estimates.

3. An interesting exception to observation (2) are parameter sets 5 and 6 of exper-

iment 1 for parameters θd and θw. In other words parameter estimation is more

robust to added state noise σQ than added observational noise σR.

4. For both experiments, θt is the most accurately estimated parameter, followed

by θw and then θd.

Observation (1) can be reasoned as follows. For parameter sets 1-3, θd is the most

poorly estimated parameter with the least accuracy observed when using noise pa-

rameter set 3, where σQ = σR = 10. Even with these noise parameters, the MAPE

of estimates for θd is 8.3%. All other parameter estimates from using noise param-

eter sets 1-3 have MAPE values well below this. In experiment 1, even with higher

amounts of state noise added with parameter sets 4-6, the MAPE of all estimates

remain within 10%. The same cannot be said for experiment 2 where for parameter

sets 4-6, the MAPE for θd increases above 10%.

Observation (2) is not surprising; as we add more noise to the simulated data we



CHAPTER 4. LINEAR STATE-SPACE MODELS AND THE KF 162

obtain less accurate parameter estimates. With greater amounts of added noise, the

structure of the data is corrupted more, so that it represents the hydraulics model

to a lesser extent. Although the Kalman filter is designed for noisy Gaussian data,

its accuracy in estimating the latent state from noisy data lessens as the amount of

noise increases. When this estimate of the latent state – which is in this case the

true output from hydraulics model 1 – is less accurate, estimates of the structural

parameters θ are likely to be less accurate.

Observation (3), the greater robustness of estimates to higher state noise than obser-

vational noise is interesting. A closer inspection of table 4.4.3 reveals the following:

• For parameter sets 1 & 2 with lower amounts of added noise, experiment 2

produces the more accurate parameter estimates. With these parameter sets,

σQ is fixed at 10 while σR is 1 or 5.

• The opposite is observed for parameter sets 4-6 with greater amounts of added

noise; experiment 1 produces the more accurate estimates. With these param-

eter sets, σR is fixed at 10 while σQ is 20, 50 or 80.

Across parameter sets 1-6, there is one common aspect of the noise parameters that

result in these more accurate estimates; the σQ/σR ratio. The σQ/σR ratio is often

called the signal to noise ratio in the engineering literature. Petris et al. (2009)

contains a good introduction and examples of this important aspect of state-space

modelling. In these experiments, the best parameter estimates result when σQ is

larger than σR; i.e. a larger signal to noise ratio exists in the noise added to the
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data. Although there is a general pattern in the results of less accurate parameter

estimates from data with greater amounts of added noise, the signal to noise ratio

is a likely explanation for the difference in success between experiments 1 and 2 at

estimating parameters from data with higher levels of added noise; parameter sets

5 and 6. Whilst we observe a considerable drop in performance in experiment 2 for

parameter sets 5 and 6 - even for the normally reliable estimate of θt, the opposite

is observed for experiment 1 and the accuracy of estimates improves. The signal to

noise ratios for parameter sets 5 and 6 are 5 and 8 for experiment 1 and 1
5

and 1
8

for

experiment 2. For experiment 1, the effect of the added noise which would normally

result in less accurate estimates, is overridden by the large signal to noise ratios. The

small signal to noise ratio of experiment 2 is not able to override the effect of the

added noise. For parameter sets 1 & 2 with lower amounts of added noise, the larger

signal to noise ratio also explains the improved performance of experiment 2. This

has signal to ratios of 10 and 2 compared to 1
10

and 1
2

for experiment 1.

To explain observation (4) we must discuss the concept of identification of parame-

ters. This is the ability of the data to distinguish between different model parameters.

Eberlein and Wang (1985) include a good discussion of this issue for econometric mod-

els. The authors highlight an example of two model parameters that always appear

in the SD model multiplying one another; then doubling one and halving the other

would have no effect on model output. The two parameters individually would not

be identified. Although that is not the case here, identification of parameters is still

an issue. θt is the most accurately estimated parameter because it is the most easily
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identified. The value of this parameter, the target cycle time, determines the capacity

deployed levels relative to the backlog. In other words, given the backlog it determines

how fast the jobs need to be completed. It is straightforward to estimate this directly

from data: θt ≈ backlog/capacity deployed. As such, the shape of the data (trend or

steps in job arrivals) is almost irrelevant in estimating this parameter. The opposite is

true however for parameters θd and θw which certainly cannot be estimated in a simple

manner directly from the data. Information that may reveal the values of these pa-

rameters is only provided when the system is responding to changes. In Figure 4.4.3,

changes occur in the system in response to steps in job arrivals to either increase

workforce numbers (when the steps begin) or decrease numbers (after the step). This

occurs on only 4 occasions across the entire time series. Therefore, there is consid-

erably less information available to estimate these parameters θd or θw than there is

for θt. Peterson and Schweppe (1975) and Eberlein and Wang (1985) both describe

examples of models where identification of parameters has proved to be a serious issue.

As we explain in sections 4.2.5 and 4.2.6, the standard FIMLOF approach in the lit-

erature finds the local minima rather then the global minima and hence is not robust

to the choice of starting values. This is still the case when applying our modifications

to the FIMLOF algorithm for this simulation study. In the study, for each of the 100

datasets, parameter estimates from 5 different sets of starting values were calculated.

As expected, for many of the 100 datasets, slightly different parameter estimates re-

sulted from choosing different starting values. However, it is worth highlighting that

when comparing parameter estimates from each of the 5 sets of starting values, there
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is only a marginal change in accuracy between them. In other words, although the

values of the parameter estimates are not robust to choice of start values, the accu-

racy of those estimates is robust to that choice, at least for the 5 sets used in this study.

Another important aspect of the results is the choice of starting values that were

used for the variance parameters σQ1 , σQ2 , σR1 and σR2 in the optimisation routine.

It is worth highlighting that in the simulation study, although we were adding in

some cases considerable noise to the data, we did not inform the optimisation routine

of this (via the starting values) and deliberately used values close to zero of e−10.

In other words, although we assumed that we knew the correct noise structure (the

diagonal nature of the covariance matrices), we made no assumptions regarding the

scale of this noise by using starting values that were close to zero. The reasoning for

this is that in chapter 6, although assumptions will again be made regarding the noise

structure of the historical BT time series, we will have no prior knowledge of the scale

of this noise. It was therefore considered reasonable at this stage to investigate the

effects of this noise on performance without prior knowledge of the scale of this noise.

It is worthwhile comparing the results to determine any changes in performance when

the algorithm is given the correct noise structure in the starting values of the optimi-

sation routine. We choose parameter sets 3-5 from experiment 1 in table 4.4.2, so that

σR = 10 is fixed and σQ takes values of 10, 20 and 50. However, unlike experiment

1 where ‘naive’ starting values were set at σQ0 = σR0 = exp(−10), this time we set

‘informed’ start values at the true parameter value by squaring the relevant standard
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deviation parameter. This means we set σQ0 = σ2
Q and σR0 = σ2

R. These results

are shown in table 4.4.4. It is clear that although there is a slight improvement in

performance for parameter set 3 when using informed start values, performance actu-

ally drops for parameter sets 4 and 5. Understanding this drop in performance when

using informed starting values is not immediately apparent. Even for this simplified

model, when estimating both the structural and variance parameters the 7 param-

eter likelihood surface is likely to be extremely complex. The Nelder-Mead simplex

method used here, although shown to be an improvement on the Powell method in

section 4.4.6, can only find the local optima. It is possible that when using informed

variance start values for parameter sets 4 and 5, the optimisation routine gets stuck

in a local optima.

Although for this study the effect of using naive starting values for variance param-

eters actually improved performance, this issue is a concern. It is not desirable for

the starting values used to estimate variance parameters to affect the accuracy of the

resulting estimates of the variance, but more serious is that these variance starting

values can actually affect the accuracy of estimates for the structural parameters θ,

as table 4.4.4 demonstrates. However, what is promising overall at this stage is that

experiments 1 and 2 show that the structural parameters θ can be estimated to a

good degree of accuracy with no prior knowledge of the scale of the added noise. This

is an important step towards applying this method to the historical BT time series in

chapter 6.
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Expt 1 (σR = 10)

Parameter set σQ Start values σQ0 , σR0 τ d τw τ t

3 10 Naive: e−10 8.3 1.4 0.2

Informed: σ2
Q, σ

2
R 8.2 1.4 0.2

4 20 Naive: e−10 9.6 1.4 0.3

Informed: σ2
Q, σ

2
R 10.9 1.4 0.3

5 50 Naive: e−10 9.2 0.7 0.3

Informed: σ2
Q, σ

2
R 12.6 0.8 0.3

Table 4.4.4: MAPE of parameter estimates for experiment 1 using naive and informed

starting values for the variance parameters in the optimisation routine.

4.4.6 Modifications to FIMLOF

This section describes how two of our modifications to the FIMLOF algorithm re-

sulted in improved performance in terms of the accuracy of parameter estimates. The

details of these modifications are described and we present the results of comparing

these modifications with the standard FIMLOF settings.

As we explain in section 4.2.5, the standard FIMLOF algorithm was devised in the

1970’s by Schweppe (1973) and Peterson & Schweppe (1975). In the years since there

have been relatively few examples of works that have incorporated the FIMLOF al-

gorithm and possible reasons for this were discussed in section 4.2.6. The only two

recent examples of applications of the FIMLOF algorithm, Ryzhenkov (2002) and
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Radzicki et al. (2004), were described in section 4.2.6. These however did not develop

the FIMLOF algorithm and simply applied it ‘off-the-shelf’ within the Vensim (2010)

SD simulation package.

Through experimentation, we discovered two modifications to the standard FIMLOF

algorithm devised in Schweppe (1973) and Peterson & Schweppe (1975) that resulted

in improvements to performance, in terms of the accuracy of estimated parameters. In

order to estimate the parameters as accurately as possible, these modifications were

incorporated in the main experiments in section 4.4.5.

Firstly, the use of different representations of the log-likelihood calculation was in-

vestigated. Performance using the approximation of the log-likelihood of (4.2.15)

within the FIMLOF algorithm was compared to the exact representation of (4.2.14).

The setup of an experiment to compare the two was the same as the experiments

described in the main results in section 4.4.5. The only difference here was that no

state noise σQ was added to the simulated data from hydraulics model 1. Six different

levels of observational noise σR were added. The standard deviations of this added

noise again took the values 1, 5, 10, 20, 50 and 80. The results of this experiment are

presented in table 4.4.5.

Contrary to what may be expected, results show that estimates obtained using the

approximation of the log-likelihood are consistently superior than the exact represen-

tation, for all three parameters. This is particularly noticeable for parameter sets 1
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Approximate Exact

Parameter set σR τ d τw τ t τ d τw τ t

1 1 0.2 0.1 0.0 72.2 21.9 2.4

2 5 0.8 0.2 0.0 16.9 9.7 0.2

3 10 1.6 0.4 0.0 2.2 0.8 0.1

4 20 3.5 0.9 0.1 4.5 1.6 0.1

5 50 8.9 1.7 0.2 16.3 3.6 0.2

6 80 26.0 5.4 0.3 41.4 9.3 0.3

Table 4.4.5: MAPE of parameter estimates using the exact and approximate forms of

the log-likelihood calculation within FIMLOF.

and 2 with low levels of added noise, where the MAPE for the exact representation is

considerably higher. The poor performance of the exact representation for low levels

of noise is due to a large number of parameter estimates out of the 500 that are con-

sistently over or underestimated. The algorithm appears to become stuck in a local

minima, sometimes far from the true parameter value.

The approximation in (4.2.15) does not involve the inversion of matrices. It is possible

that by avoiding this operation, an accumulation of numerical errors is avoided that

actually distort the accuracy of the likelihood greater than it is improved by using an

exact, rather than approximate, representation. It is worth highlighting that while

this applies for the simulation study in this section, it does not apply for the full
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version of the hydraulics model introduced in chapter 5 where we switch to using the

exact form in (4.2.14).

The use of alternative optimisation algorithms was also investigated. One such

method was the Nelder-Mead simplex method (Nelder & Mead, 1965). The per-

formance of using this within FIMLOF was compared to Powell’s method. The setup

of an experiment to compare the two was the same as the log-likelihood experiment

above, again with no state noise σQ added to the simulated data from hydraulics

model 1, and the same six levels of added observational noise σR. The results of this

experiment are presented in table 4.4.6.

Nelder-Mead Powell’s method

Parameter set σR τ d τw τ t τ d τw τ t

1 1 0.2 0.1 0.0 4.6 2.2 0.2

2 5 0.8 0.2 0.0 3.4 2.3 0.2

3 10 1.6 0.4 0.0 2.9 2.0 0.8

4 20 3.5 0.9 0.1 8.1 2.1 0.5

5 50 8.9 1.7 0.2 10.7 3.0 0.9

6 80 26.0 5.4 0.3 20.1 4.2 0.5

Table 4.4.6: MAPE of parameter estimates using Nelder-Mead and Powell’s method

within FIMLOF.
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Results show that with the exception of parameter set 6, estimates obtained using

the Nelder-Mead method are consistently superior, for all three parameters. The re-

sults for parameter sets 1–4 in particular show that the Nelder-Mead method offers

a considerable improvement over Powell’s method. Note also that computations for

the Nelder-Mead method were on average around 30% faster than Powell’s method.

The results shown here both use the approximation to the log-likelihood of (4.2.15).

Note that use of Powell’s method using the exact log-likelihood of (4.2.14) resulted in

a further drop in performance.

4.5 Discussion

In this chapter we have presented an improved version of an existing approach for

estimating the parameters of linear Gaussian state-space models, formed from the

structure of a simplified SD model. Gaussian noise was added to simulated data from

the SD model and the effect of this noise on the accuracy of estimates was studied.

Results showed that despite having no prior information on the values of the vari-

ance parameters, the methods demonstrated success in estimating the parameters to

a good degree of accuracy, especially for lower amounts of added noise. The signal to

noise ratio of the added noise was considered to be an important factor in the ability

of the method to estimate parameters.

A process for the formulation of a state-space model from a SD model has also been

presented. This consisted of grouping the SD variables, determining the order in which
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each should update and then performing substitutions to form Markovian difference

equations; the addition of state and observational noise terms forms the state-space

model. The step by step guide that we provide for this process is a novel contribution

to the area. Although this was demonstrated for a simple SD model, the process

extends to more complex SD models, as we see in chapter 5.

As we explain in sections 4.2.5 and 4.2.6, the FIMLOF method has had relatively

little testing on simulated data with known model parameters in the literature. The

simulation study in section 4.4 makes a claim to contribute towards this area. Al-

though the analyses of Ryzhenkov (2002) and Radzicki et al. (2004) are applications

to historical data and not simulation studies, they present only a single set of esti-

mates – the ‘best’ estimates produced from the Vensim (1994) package using random

multiple start values for the optimisation. Likewise, the simulation studies in Peter-

son & Schweppe (1975) and Peterson (1976) present only one set of estimates. In

our simulation studies, we perform Monte Carlo experiments and hence explore more

thoroughly the performance of the FIMLOF algorithm and reveal the effects of the

starting values.

The results of the simulation study can be taken as an important first step towards

estimating the parameters of the BT time series data in chapter 6. Although using

a simplified version of the SD model, we have demonstrated success in estimating its

parameters without any prior knowledge of the scale of the added noise. In chapter 5

we take a further step by advancing to more complex versions of the hydraulics model
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and conduct more simulation studies.



Chapter 5

Nonlinear state-space models and

the Unscented Kalman filter

5.1 Introduction

The modified FIMLOF method detailed in chapter 4 is limited to linear Gaussian

state-space models. Hydraulics model 1, described in chapter 4, is an extremely sim-

ple version of the full system dynamics model used by BT. The difference equations

formed from this model in section 4.3.2 were linear in nature. This is not generally the

case. System dynamics models that are used in practice are usually highly nonlinear

(Sterman, 2000). In this chapter we present two versions of the hydraulics model that

produce nonlinear difference equations, and therefore form nonlinear state-space mod-

els. An existing modified version of the Kalman filter for nonlinear systems, known

as the unscented Kalman filter, is applied within the FIMLOF algorithm. The objec-

tive of this chapter is to present further modifications to the FIMLOF algorithm in

174
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chapter 4, extending the method to more realistic, nonlinear systems.

Below we briefly describe the two more complex BT models; hydraulics models 2

and 3. Full details of these are provided in sections 5.3.1 and 5.4.1 respectively.

• Hydraulics model 2: This model is similar to hydraulics model 1 in chapter 4,

except for a few simple adjustments. These are made to accommodate a weekly

profile exhibited by the exogenous variable, the job arrivals, and effectively

consist of smoothing certain variables. Although simple in nature, these ad-

justments are sufficient to cause the model’s difference equations to become

nonlinear. Estimating the parameters of this model effectively tests our modi-

fied algorithm on a model that is only marginally more complex than hydraulics

model 1, but is nonlinear.

• Hydraulics model 3: This is a considerably more complex version of the hy-

draulics model. Although non-repair jobs such as installation jobs have been

removed, this is otherwise the full version of the model. As such, it is capable

of representing the real BT system. Estimating the parameters of this model

effectively tests our modified algorithm on a model that is considerably more

complex than hydraulics models 1 and 2 and which contains far more variables.

It also has a much higher degree of nonlinearity than hydraulics model 2. Suc-

cess with this model can be seen as the final step before applying our method

to historical BT time series data in chapter 6.
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This chapter is organised as follows. Section 5.2 introduces the unscented Kalman

filter and the advantages of this over other techniques for nonlinear systems. Sec-

tion 5.3 explains the details of hydraulics model 2 and describes further modifications

to the FIMLOF algorithm that incorporate the unscented Kalman filter. A simulation

study presents results of estimating the known parameters of hydraulics model 2 from

simulated data. Section 5.4 has a similar structure to section 5.3, but provides details

of hydraulics model 3 and a simulation study aimed at estimating its parameters.

Section 5.5 presents the discussion.

5.2 Unscented Kalman filter

5.2.1 Nonlinear filtering

A more general form of the Gaussian state-space model introduced in (4.2.3)-(4.2.4),

is shown in (5.2.1)-(5.2.2), where y are the vector of observations, x are the latent

states and u are the exogenous variable observations. Noise terms have a Gaussian

distribution as follows: ε1 ∼ N (0, Q) and ε2 ∼ N (0, R). f(.) is the state update

function and g(.) the observation update function. At time t we have the following

representation:

xt = f(xt−1, ut) + ε1,t, (5.2.1)

yt = g(xt, ut) + ε2,t. (5.2.2)

When (one or more) of functions f and g are nonlinear, the Kalman filter is unable

to find the optimal estimate of latent states x and can only find an approximation.
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Other methods have been developed, effectively including modifications to the stan-

dard Kalman filter, that while not exact, are able to find a more accurate approxi-

mation of the latent state. One such method is the extended Kalman filter (EKF)

(Jazwinski, 1970). This attempts to find a linear approximation of the state and

observation equations and then apply the Kalman filter to the linearised model. See

chapter 10 of Durbin & Koopman (2001) for more details. However, the EKF has

been shown to give poor performance for systems that are highly nonlinear. Shiryaev

et al. (2002) demonstrates the weaknesses of using the EKF in the context of estimat-

ing system dynamics model parameters. The authors point out that the linearisation

of the EKF does not always provide a good approximation of the nonlinear model.

They also state that increased dimension of a system is another factor in reducing

performance.

A popular alternative to the EKF is the unscented Kalman filter (UKF) (Julier &

Uhlmann, 1997). Rather than attempting to approximate a nonlinear function, the

UKF works on the principle that it is easier to approximate a probability distribution.

This is achieved by deterministically selecting a set of points that when transformed

through the nonlinear functions are able to give a Gaussian approximation of the

mean and covariance of the filtered distribution. This is called the unscented trans-

form (Julier and Uhlmann, 1997). The EKF is based on a first order approximation.

However, Wan & van der Merwe (2000) show that the UKF is a third order approxi-

mation and as such, this more accurately represents the filtered distribution. Because

of this, the UKF has been shown to outperform the EKF in many applications (Julier
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& Uhlmann 1997; Wan & van der Merwe, 2000; Durbin & Koopman, 2001). In ad-

dition, the EKF requires a matrix of partial derivatives (Jacobians) to be calculated

at each step. This is not required for UKF which is argued to be conceptually simple

and straightforward to apply (Julier and Uhlmann, 2004).

As explained in section 4.2.6, Ryzhenkov (2002) and Radzicki et al. (2004), via the

Vensim system dynamics simulation package, use the EKF when applying FIMLOF

to nonlinear systems. Motivated by the argument above, for the nonlinear systems

in this chapter (hydraulics models 2 and 3) and chapter 6, we choose to use the

UKF, rather than the EKF. We describe the details of the unscented transform in

section 5.2.2 and proceed to describe how it is incorporated in the UKF.

5.2.2 Unscented Kalman filter

Unscented transform

We begin this section by explaining the concept of the unscented transform before

proceeding to describe how it is used within the UKF. The unscented transform is

based on the idea that it is easier to approximate a Gaussian distribution than it is

to approximate an arbitrary nonlinear function or transformation (Uhlmann, 1994).

A diagram of the approach, taken from Julier and Uhlmann (1997), is shown in Fig-

ure 5.2.1. Below we present a description of the unscented transform, using the same

notation as Julier and Uhlmann (1997), where the reader is directed for full details.

For further expositions, see also Wan & van der Merwe (2000) and Julier & Uhlmann
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Figure 5.2.1: The unscented transform, taken from Julier & Uhlmann (1997).

(2004).

Suppose we have a random variable x with mean x̄ and covariance Px. Random

variable y is related to x through the nonlinear function y = f(x). The objective of

the transform is to calculate the mean and covariance of y, ȳ and Py. A set of points

called sigma points are deterministically selected so that their sample mean is x̄ and

sample covariance is Px. The nonlinear function f is applied to each point and the

mean ȳ and covariance Py of these transformed points are calculated. Effectively the

unscented transform works by examining the changes in the mean and covariance of

the random variable after the nonlinear transformation.
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If x has n dimensions, it is approximated by 2n + 1 sigma points X . These are

selected as follows:

X0 = x̄

Xi = x̄ +
(√

(n+ λ)Px)
)
i

where i = 1, ..., n

Xi+n = x̄−
(√

(n+ λ)Px)
)
i

where i = n+ 1, ..., 2n

with each sigma point Xi having an associated weight Wi

W0 =
λ

n+ λ

Wi =
λ

n+ λ
+ (1− α2 + β)

Wi+n =
1

2(n+ λ)

where λ = α2(n+κ)−n. Note that this representation of the sigma points is a modern

update, given for example in Wan & van der Merwe (2000). The authors point out

that α determines the spread of the sigma points around x̄ and has a default of 10−3.

κ is a secondary scaling parameter usually set to zero, whereas β is used to incorporate

prior knowledge of the distribution of x; β = 2 is said to be optimal for Gaussian

distributions (Wan & van der Merwe, 2000). The unscented transform works by using

these sigma points as follows:

1. Transform each sigma point through the nonlinear function: Yi = f(Xi).

2. Calculate the mean of the new distribution using the weighted average of the

transformed sigma points: ȳ = Σ2n
i=0WiYi.

3. Calculate the covariance of the new distribution using the weighted outer prod-

uct of the transformed sigma points: Py = Σ2n
i=0Wi(Yi − ȳ)(Yi − ȳ)T .
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Unscented Kalman filter algorithm

When both the noise terms of the nonlinear state-space model are additive, as in (5.2.1)-

(5.2.2), the full UKF algorithm can be simplified slightly. We present this algorithm

here, as can be found in Haykin et al. (2001) chapter 7 - written by Wan & van der

Merwe. For terms of the UKF that correspond to terms of the standard Kalman filter

in section 4.2.3, we use similar notation for consistency.

The initial state x0 is a random vector with known mean m0 = E[x0] and covari-

ance C0 = E[(x0 −m0)(x0 −m0)T ]. For t = 1, ... ,∞:

1. Calculate sigma points:

Xt−1 =
[
mt−1 mt−1 + γ

√
Ct−1 mt−1 − γ

√
Ct−1

]
(5.2.3)

Note that γ is defined as γ =
√
n+ λ.

2. Time update:

Xt|t−1 = f [Xt−1,ut−1] (5.2.4)

at =
2n∑
i=0

WiXi,t|t−1 (5.2.5)

Vt =
2n∑
i=0

Wi

[
Xi,t|t−1 − at

] [
Xi,t|t−1 − at

]T
+Q (5.2.6)

Yt|t−1 = g
[
Xt|t−1

]
(5.2.7)

ft =
2n∑
i=0

WiYi,t|t−1 (5.2.8)
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3. Measurement update:

Wt =
2n∑
i=0

Wi

[
Yi,t|t−1 − ft

] [
Yi,t|t−1 − ft

]T
+R (5.2.9)

Cxtyt =
2n∑
i=0

Wi

[
Xi,t|t−1 − at

] [
Yi,t|t−1 − ft

]T
(5.2.10)

Kt = CxtytW
−1
t (5.2.11)

mt = at +Kt(yt − ft) (5.2.12)

Ct = Vt −KtWtKTt (5.2.13)

For the UKF, the unscented transform is effectively incorporated whenever a nonlinear

function is present in the state or observation equation. Therefore, if functions f(.)

and g(.) of the state-space model in (5.2.1)-(5.2.2) are both nonlinear, i.e. we have

nonlinear state and observation equations, the unscented transform is performed in

both the prediction and correction steps of the filter. However, later in this chapter,

when we form state-space models from hydraulics models 2 and 3, nonlinear functions

will be present in the state equations only. That is, for (5.2.1)-(5.2.2), f(.) will be

nonlinear and g(.) will be linear. In fact, g(.) will be the identity function. In these

cases, we can simplify the UKF algorithm further and skip steps (5.2.7)-(5.2.8), since

Yt|t−1 = Xt|t−1 and ft = at.

5.3 Applying FIMLOF to hydraulics model 2

In this section we incorporate the unscented Kalman filter into a modified FIMLOF

algorithm and attempt parameter estimation on hydraulics model 2. Section 5.3.1

presents the details of hydraulics model 2 and highlights the key differences between
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this and hydraulics model 1. We derive the difference equations for hydraulics model

2 in section 5.3.2 and form the resulting nonlinear state-space model in section 5.3.3.

Details of modified FIMLOF algorithm 2 are provided in 5.3.4 and results of the sim-

ulation study in section 5.3.5. In section 5.3.6 we investigate the accuracy of FIMLOF

algorithm 2 and section 5.3.7 evaluates the assumption of diagonal covariance matri-

ces.

5.3.1 Hydraulics model 2 details

Hydraulics model 2 has a similar structure to hydraulics model 1 and as such, can be

represented using the same stock and flow diagram in Figure 4.3.1. However there

are two key differences between this model and hydraulics model 1. The first of these

is that certain variables use values that are smoothed over the previous 7 days. This

is to enable the model to respond appropriately to job arrivals that exhibit a weekly

profile. This profile was presented in chapter 3 and is typical of the pattern of repair

job arrivals to the BT system. This profile consists of a repeating sequence of 7

constants that describe the expected relative numbers of job arrivals for each day of

the week. Without the adjustment for this profile, the model would respond to the

weekly profile in the job arrivals, rather than a trend in their behaviour. All difference

equations in the model are the same as for model 1, except for the following three
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which replace the terms bt, ct and nt with s(bt), s(ct) and s(nt):

tctt =
s(bt)

θt

tcrt = θw(tctt) + (1− θw)(s(nt))

pft =
tcrt
s(ct)

.

The same notation as for hydraulics model 1 in table 4.3.1 is used. The function s()

denotes smoothing over the previous 7 days. For example, smoothing the backlog

would take the form s(bt) = 1
7

∑t
j=t−6 bj. The second difference between this model

and hydraulics model 1 is how the cleared jobs are modelled. We see from the dif-

ference equations of hydraulics model 1 that the cleared jobs are simply the capacity

deployed: clt = ct. For model 2, the weekly profile is incorporated into this equation

as follows:

clt = wpt ct,

where wpt is the weekly profile on day t. This effectively gives the model a simple

version of a roster profile, so that it can attempt to approximately match the job

arrivals for that day when clearing jobs.

5.3.2 Derivation of difference equations

In order to implement the FIMLOF method we must represent the structure of hy-

draulics model 2 as a state-space model. We follow the novel process, outlined for

hydraulics model 1 in section 4.3.2, in order to formulate a state-space model from a

SD model. This consists of grouping the SD variables, determining the order in which
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each should update and then performing substitutions to form Markovian difference

equations. The addition of state and observational noise terms forms the state-space

model in section 5.3.3. We extend this process here to a nonlinear system.

As the structure of hydraulics model 2 is similar to model 1, we already know how

to group the variables into stocks, exogenous variables and auxiliary variables. From

section 4.3.2, we also know the order in which the auxiliary variables update within

the model. All that remains is to perform the necessary substitutions in order to rep-

resent the stocks in the model as Markovian difference equations. As in section 4.3.2,

this again requires the stocks to be represented in terms of only the stocks, model pa-

rameters θ and exogenous variables. Since section 5.3.1 revealed differences between

the model equations of hydraulics models 1 and 2, we cannot use the same difference

equations as for model 1 and must again substitute out the auxiliary variables in order

to obtain the difference equations for model 2.

The equations of the stocks for hydraulics model 2 are similar to those for hydraulics

model 1 and take the following form:

bt = bt−1 + nt − wpt ct−1 (5.3.1)

ct = ct−1 + cct−1. (5.3.2)

(5.3.1) now includes the weekly profile term, wp. This changes its value for each

day of the week and as such, can be considered as an additional exogenous variable.

Hence, like for model 1, (5.3.1) requires no substitutions, since the backlog is already
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expressed in the required form. (5.3.2) is unchanged from model 1 as we see in

its equivalent in (4.3.2). The changing capacity auxiliary variable cc must again be

substituted out. This is achieved as follows:

cct =
ct
θd

(pft − 1) (5.3.3)

=
ct
θd

[(
tcrt
s(ct)

)
− 1

]
(5.3.4)

=
ct
θd

[(
θw(tctt) + (1− θw)(s(nt))

s(ct)

)
− 1

]
(5.3.5)

=
ct
θd

[(
θw( s(bt)

θt
) + (1− θw)(s(nt))

s(ct)

)
− 1

]
(5.3.6)

(5.3.3)-(5.3.6) are obtained by substituting in the hydraulics model 2 terms for pft,

tcrt and tctt respectively. (5.3.6) now represents cc in the required form. We substitute

this form of cc into (5.3.2) and rearrange as follows:

ct = ct−1 + cct−1

= ct−1 +
ct−1

θd

[(
θw( s(bt−1)

θt
) + (1− θw)(s(nt))

s(ct−1)

)
− 1

]

= ct−1 +
ct−1

θd

(
θw( s(bt−1)

θt
) + (1− θw)(s(nt))

s(ct−1)

)
− ct−1

θd

= ct−1 +
ct−1

s(ct−1)

(
θw( s(bt−1)

θt
) + (1− θw)(s(nt))

θd

)
− ct−1

θd

= ct−1 +
ct−1

s(ct−1)

[(
θw
θdθt

)
s(bt−1) +

(
1− θw
θd

)
s(nt)

]
− ct−1

θd

= ct−1

(
1− 1

θd
+

1

s(ct−1)

[(
θw
θdθt

)
s(bt−1) +

(
1− θw
θd

)
s(nt)

])
= ct−1(φ2 +

1

s(ct−1)
[φ1 s(bt−1) + φ3 s(nt)])

= fc(bt−1, ct−1, nt, φ),

where φ1, φ2 and φ3 are as defined in (4.3.7)-(4.3.9). The function fc represents

the updating function for the capacity deployed. Two things are apparent from this
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representation of hydraulics model 2. Firstly, fc is not a linear function of the stocks

and exogenous variables. It is because of this nonlinearity that we will need a modified

version of the Kalman filter. Secondly, the system no longer appears to be Markovian,

since the smoothed terms rely on states as far back as 6 time intervals. However, on

closer inspection we see that this is not actually the case, and the Markov property

holds. This is because the smoothing variables s(bt), s(ct) and s(nt) are contained

within the underlying model, in this case hydraulics model 2. In the implementation

of hydraulics model 2, these smoothing variables rely on additional variables to store

the average of the previous 6 days of the relevant variable(s), so that when the relevant

variable(s) update, only the new updated value is required to update the smoothing

variable. In other words, for the backlog, the smoothing variable is calculated as

s(bt) = 1
7

∑t−1
j=t−6 bj + 1

7
bt, where an additional variable tracks the behaviour of bt

over the previous 6 days and hence calculates 1
7

∑t−1
j=t−6 bj at each update. The final

difference equations of hydraulics model 2 are shown in (5.3.7)-(5.3.8).

bt = bt−1 + nt − wpt ct−1 (5.3.7)

ct = ct−1(φ2 +
1

s(ct−1)
[φ1 s(bt−1) + φ3 s(nt)]) (5.3.8)

These can be used as the basis of a state-space model. This is formed in the next

section.

5.3.3 Forming the state-space model

We now use difference equations (5.3.7)-(5.3.8) constructed in the previous section

to form a state-space model. In (4.2.3)-(4.2.4) of section 4.2.2 we gave the general
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form for a Gaussian state-space model. Due to the nonlinear nature of (5.3.8), the

state-space model formed from hydraulics model 2 in this section will have a nonlinear

state update function f(.).

To form the state-space model we follow the same approach as for hydraulics model

1 and add Gaussian noise terms to difference equations (5.3.7)-(5.3.8). This gives

us the state update equations of the model, shown in (5.3.9)-(5.3.12). As for hy-

draulics model 1, noise terms v1, v2 have a Gaussian distribution represented as fol-

lows: v1 ∼ N(0, σ2
Q1

), v2 ∼ N(0, σ2
Q2

).

bt = bt−1 + nt − wpt ct−1 + v1,t (5.3.9)

= f1(xt−1, ut, θ) + v1,t (5.3.10)

ct = ct−1(φ2 +
1

s(ct−1)
[φ1 s(bt−1) + φ3 s(nt)]) + v2,t (5.3.11)

= f2(xt−1, ut, θ) + v2,t (5.3.12)

We again assume that Gaussian observation noise is present. The observation equa-

tions of the state-space model in (5.3.13)-(5.3.14) are formed by adding further noise

terms.

b∗t = bt + w1,t (5.3.13)

c∗t = ct + w2,t (5.3.14)

These observational noise terms w1 and w2 are as follows: w1 ∼ N(0, σ2
R1

), w2 ∼

N(0, σ2
R2

). Covariance matrices Q and R are as before so that again we have:
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y
t

=

b∗t
c∗t

 , xt =

bt
ct

 , ut =

nt
nt

 , R =

σ2
R1

0

0 σ2
R2

 , Q =

σ2
Q1

0

0 σ2
Q2

 .

When the unscented Kalman filter is used, the updating functions f() for the states

in (5.3.9)-(5.3.12), are represented by the difference equations (5.3.7)-(5.3.8). The

equivalent update functions for the observations are simply the identity g(x) = x

since (5.3.13)-(5.3.14) are not a transformation of the states and simply add noise.

Hence for the simulation study in section 5.3.5, as we explain in section 5.2.2, we

only require the unscented transform to be incorporated in the prediction step of the

Kalman filter. The correction step can be computed as for the standard Kalman filter.

In the next section we outline the modified FIMLOF algorithm that will be used

in the simulation study in section 5.3.5.

5.3.4 Modified FIMLOF algorithm 2

Having formed the state-space model using the structure of hydraulics model 2, we are

now ready to present an algorithm for implementing modifications to the FIMLOF

method.

For noisy observable time series data y for the backlog and capacity deployed, we

estimate the structural parameters θ = (θd, θw, θt) and the variance parameters σ2 =

(σ2
Q1

, σ2
Q2

, σ2
R1

, σ2
R2

) of the state-space model in (5.3.9)-(5.3.14) using the algorithm
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below. We refer to this as algorithm 2.

1. The Nelder-Mead simplex method selects a candidate set of parameters (θ, σ2),

(or in the first iteration the user selects suitable starting values θ = θ0 and

σ2 = σ2
0).

2. φ = g (θ) is calculated using (4.3.7)-(4.3.9).

3. The unscented Kalman filter proceeds along time series y and for each update

at time t:

• The φ parameters in the nonlinear state update (5.3.9) and the variance

parameters σ2 of covariance matrices Q and R influence the filter’s estimate

of latent states xt.

• Terms from these calculations are used to calculate the log-likelihood (us-

ing (4.2.15) for the approximate representation) for the candidate set of

parameters, log(L(θ, σ2), t).

4. After the Kalman filter has calculated the log-likelihood at each discrete interval

t in the series, an overall log-likelihood for the time series is calculated by sum-

ming the individual log-likelihood terms: log(L(θ, σ2)) = ΣT
t=1 log(L(θ, σ2, t)).

5. The Nelder-Mead method repeats the process until a local optimum is found

and maximum likelihood estimates φ̂ and σ̂2 are determined.

Having obtained the maximum likelihood estimates (MLEs) φ̂, we calculate the MLEs

for structural parameters θ̂ = (θ̂d, θ̂w, θ̂t) as before using the inverse of the relevant
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g() function in (4.3.7)-(4.3.9). Note that the approximation for the log-likelihood of

(4.2.15) is again chosen over the exact representation, due to improved parameter

estimates.

In simulation study 2 in section 5.3.5, artificial noisy data y is simulated from hy-

draulics model 2 with known structural and variance parameters. This algorithm is

used for the estimation of these parameters and its performance is assessed.

5.3.5 Simulation study 2

In this section we test the modified FIMLOF approach of algorithm 2 for estimating

parameters of noisy data simulated from hydraulics model 2. This model is similar in

complexity to hydraulics model 1, with the important difference of being a nonlinear

system. Success in this study can be viewed as a further step towards chapter 6 when

we estimate parameters of historical BT data. The objectives of the study are as

follows:

• Assess performance of algorithm 2 in estimating the structural parameters θ of

noisy data from hydraulics model 2.

• The effects of system noise σQ and observational noise σR on the accuracy of

the parameter estimates.

In this study, the differences in behaviour between hydraulics models 1 and 2 meant

that in order to simulate realistic data from hydraulics model 2, the value of the delay

parameter θd was changed from 3 to 5. Consequently, different starting values were



CHAPTER 5. NONLINEAR STATE-SPACE MODELS AND THE UKF 192

required for θd in the optimisation routine. The 5 sets of starting values for θ in

simulation study 2 are as shown in table 5.3.1.

Parameter s1 s2 s3 s4 s5

θd 4 4.5 5 5.5 6

θw 0.1 0.15 0.2 0.25 0.3

θt 1 1.5 2 2.5 3

Table 5.3.1: Starting values for the optimisation in experiments 1 and 2.

These were the only changes from simulation study 1 in section 4.4; the study in

this section follows the same format. 100 sets of data are simulated for each set of

parameters and 5 sets of starting values are used in the optimisation routine; giving

500 parameter estimates. When simulating data from hydraulics model 2, run lengths

were again set at 500. The same 2 step job arrivals scenario as simulation study 1

was used to simulate data and this study has the same two experiments as simulation

study 1. When simulating artificial data from hydraulics model 2 and adding noise,

experiment 1 fixes σR = 10 and adjusts σQ = 1, 5, 10, 20, 50, 80. In experiment 2 we

fix σQ = 10 and adjust σR = 1, 5, 10, 20, 50, 80. Histograms of parameter estimates

from experiments 1 and 2 are shown in Figures 5.3.1 and 5.3.2 respectively.

To compare the results from experiments 1 and 2, as for simulation study 1 we examine

the relative difference of each of the parameter estimates compared to the true value



CHAPTER 5. NONLINEAR STATE-SPACE MODELS AND THE UKF 193

sd = 1

delay

F
r
e

q
u

e
n

c
y

4.0 4.5 5.0 5.5 6.0
0

sd = 1

weight

F
r
e

q
u

e
n

c
y

0.15 0.20 0.25

0

sd = 1

target

F
r
e

q
u

e
n

c
y

1.95 2.00 2.05

0

sd = 5

delay

F
r
e

q
u

e
n

c
y

4.0 4.5 5.0 5.5 6.0

0

sd = 5

weight
F

r
e

q
u

e
n

c
y

0.15 0.20 0.25

0

sd = 5

target

F
r
e

q
u

e
n

c
y

1.95 2.00 2.05

0

sd = 10

delay

F
r
e

q
u

e
n

c
y

4.0 4.5 5.0 5.5 6.0

0

sd = 10

weight

F
r
e

q
u

e
n

c
y

0.15 0.20 0.25

0

sd = 10

target

F
r
e

q
u

e
n

c
y

1.95 2.00 2.05

0
sd = 20

delay

F
r
e

q
u

e
n

c
y

4.0 4.5 5.0 5.5 6.0

0

sd = 20

weight

F
r
e

q
u

e
n

c
y

0.15 0.20 0.25

0

sd = 20

target

F
r
e

q
u

e
n

c
y

1.95 2.00 2.05

0

sd = 50

delay

F
r
e

q
u

e
n

c
y

4.0 4.5 5.0 5.5 6.0

0

sd = 50

weight

F
r
e

q
u

e
n

c
y

0.15 0.20 0.25

0

sd = 50

target

F
r
e

q
u

e
n

c
y

1.95 2.00 2.05

0

sd = 80

delay

F
r
e

q
u

e
n

c
y

4.0 4.5 5.0 5.5 6.0

0

sd = 80

weight

F
r
e

q
u

e
n

c
y

0.15 0.20 0.25

0

sd = 80

target

F
r
e

q
u

e
n

c
y

1.95 2.00 2.05

0

Figure 5.3.1: Experiment 1 histograms of parameter estimates.
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Figure 5.3.2: Experiment 2 histograms of parameter estimates.
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by calculating the mean absolute percentage error (MAPE). Let θ̂i be the estimate

of true parameter θi, for i = d, w, t. Then τi = |θ̂i−θi|
θi

, for i = d, w, t, is the absolute

value of the relative difference between θ̂i and θi. τ i = 100× 1
n

∑n
1 τi, where n = 500,

again represents the MAPE. The values of τ i for experiments 1 and 2 are shown in

table 5.3.2.

Expt 1 (σR = 10) Expt 2 (σQ = 10)

Parameter set σQ τ d τw τ t σR τ d τw τ t

1 1 4.0 0.4 0.3 1 23.1 2.0 2.0

2 5 16.3 1.3 1.0 5 23.3 2.0 2.0

3 10 25.3 2.0 2.0 10 25.3 2.0 2.0

4 20 31.4 2.6 4.0 20 27.7 2.1 2.0

5 50 34.6 3.0 9.8 50 32.1 2.1 2.1

6 80 33.0 3.1 15.6 80 34.9 2.1 2.0

Table 5.3.2: MAPE of parameter estimates for experiments 1 and 2.

From table 5.3.2 and the histograms in Figures 5.3.1 - 5.3.2, the following observations

are immediately apparent:

1. For each experiment, increasing the noise added to the data results in generally

less accurate parameter estimates.

2. Parameter estimates are less accurate overall than for hydraulics model 1.
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3. Across all parameter sets, whichever experiment has the highest σQ has the

least accurate estimates. The only exception to this are the θd estimates of

parameter set 6. Increasing σQ has a considerable effect on the accuracy of

estimates whereas increasing σR has a relatively small effect, especially for θw

and θt which hardly change. In other words parameter estimation is less robust

to added state noise σQ than added observational noise σR – which is the opposite

of simulation study 1.

4. θd is again the least accurately estimated parameter, but the difference in accu-

racy between θw and θt has disappeared.

As we saw in simulation study 1, observation (1) is not surprising. As more noise

is added to the simulated data, its structure becomes more corrupted so that it rep-

resents hydraulics model 2 to a lesser extent. Observation (2) is a consequence of

the nonlinear system exhibited by hydraulics model 2. In simulation study 1, the

simulated data from hydraulics model 1 possessed a linear structure and hence the

Kalman filter was able to compute an optimal estimate of the underlying state. In

this study the UKF is only able to find an approximation of this underlying state.

As is the case when adding greater amounts of noise, when the estimate of the latent

state is less accurate, estimates of the structural parameters θ are likely to be less

accurate.

Observation (3) is perhaps the most interesting. The amount of state noise σQ that

is added to the data appears to be the main factor in the accuracy of the resulting
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parameter estimates. In experiment 1 when σQ is increased from 1 up to 80, the

accuracy of estimates decays considerably, especially for θd, but also for θt which was

consistently estimated accurately in simulation study 1. It is clear that our results

are the opposite of simulation study 1 where a larger signal to noise ratio (σQ/σR) in

the simulated data produced more accurate estimates. For this study, it is a smaller

signal to noise ratio that produces more accurate estimates.

One possible explanation of this observation is that the nonlinear equation in the

system is one of the state equations, (5.3.11). The observation equations in the

state-space model (5.3.13)-(5.3.14) are both linear. As we explained previously it is

therefore for the state equations of the state-space model, i.e. the prediction step,

that the unscented transform is required within the UKF. When using the unscented

transform, the UKF’s estimate of the latent state of the noisy data is not as accurate

as when using the standard Kalman filter on a linear Gaussian system – which is

optimal in terms of minimising the mean squared error. Since the nonlinearity lies

in the state equations, adding state noise σQ to these may cause the more serious

effect on the accuracy of parameter estimates, compared to observational noise σR.

Hence the approximations made by the UKF for this system are more robust to ob-

servational noise than state noise. Another explanation may be that the differences

in the likelihood surfaces that are produced when applying FIMLOF to hydraulics

models 1 and 2 cause the Nelder-Mead method to get stuck in a local minima – and

the location of these local minima are affected differently by state and observational

noise for the different models.
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Unlike σQ, added observational noise σR appears to have a relatively small effect

on the accuracy of parameter estimates. In experiment 2 when σQ is fixed, adjusting

the value of σR up to 20 appears to have little effect on the accuracy of estimates.

Even when σR > 20, estimates of θw and θt are largely unchanged from when σR = 1.

These results can be viewed in two ways. On the one hand, experiment 2 provides

evidence for claiming that the approach has some robustness to observational noise

σR. However, it is more likely that the relatively unchanging results of experiment 2

can be explained by the dominant effect of σQ. Setting this to a relatively low value

of 10 has such a significant effect on the accuracy of parameter estimates that changes

in σR go almost unnoticed. The considerable changes in experiment 1 as σQ increases

are further support of this. To investigate further the dominant effect of σQ, an ad-

ditional experiment was conducted that fixed σQ = 0 and σR again varied from 1 up

to 80. The results of this (experiment 3) are given in table 5.3.3. The considerable

improvements in these results demonstrate further the effect of the added state noise

σQ – and also the relative robustness of our approach to observational noise σR.

Observation (4) can again be explained by the concept of identification of parameters,

discussed in section 4.4. It is interesting to observe the sudden drop in performance

of θt compared to simulation study 1 where it was estimated considerably better than

both θd and θw. For experiment 2 of this study, θt and θw are estimated to a similar de-

gree of accuracy but for experiment 1, estimates of θt are less accurate when σQ ≥ 20.

Although hydraulics model 2 is similar to model 1, it is worth highlighting that they
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Expt 3 (σQ = 0)

Parameter set σR τ d τw τ t

1 1 1.6 0.3 0.1

2 5 2.3 0.4 0.2

3 10 1.1 0.2 0.1

4 20 0.7 0.2 0.0

5 50 1.5 0.2 0.1

6 80 2.5 0.3 0.1

Table 5.3.3: MAPE of parameter estimates for experiment 3.

are still entirely different systems, as their difference equations (5.3.7)-(5.3.8) demon-

strate. As such, the identifiability of the parameters in each model is likely to be

different.

As for simulation study 1, although the values of the estimates of the structural

parameters θ are affected by the choice of the 5 sets of starting values in the op-

timisation routine, the accuracy of those estimates is not affected. The same vari-

ance starting values as simulation study 1 were used in the optimisation routine, i.e.

σQ0 = σR0 = e−10, despite the sometimes high amounts of artificial noise. Like sim-

ulation study 1, although we assumed that we knew the correct noise structure (the

diagonal nature of the covariance matrices), we made no assumptions regarding the

scale of this noise by using starting values that were close to zero. The results obtained
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are less accurate than simulation study 1, but nonetheless demonstrate the effective-

ness of the approach in estimating the parameters of a nonlinear system. Although

for data simulated from hydraulics model 2 our approach is less robust to added state

noise σQ, the results for experiment 3 are particularly promising. As we explain in

sections 4.2.5 and 4.2.6, a number of researchers, e.g. Eberlein and Wang (1985),

have highlighted the importance of the variance terms in FIMLOF and their effect on

parameter estimates. The ability to estimate parameters without prior knowledge of

the scale of the added noise, as we have shown in this study and in simulation study

1, is therefore an important achievement.

Using our modified FIMLOF algorithm we have been able to estimate parameters

of a nonlinear system, without prior knowledge of the noise structure. The dominant

effect of added state noise σQ to reduce the accuracy of parameter estimates has been

revealed. Without the effect of this noise in experiment 3, estimates are considerably

more accurate. The progression to the nonlinear system of hydraulics model 2 from

the linear system of hydraulics model 1 can be viewed as a further step towards es-

timating parameters of the historical BT time series in chapter 6, which is a highly

nonlinear system.

In section 5.3.6, we investigate how much accuracy is lost through each of the two

approximations of algorithm 2; the UKF’s approximation for a nonlinear system and

the parameter estimation process.
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5.3.6 Investigating the accuracy of FIMLOF algorithm 2

For a linear Gaussian system, the standard Kalman filter introduced in section 4.2.3

gives an optimal estimate of the system’s underlying state, when the model parame-

ters and initial conditions are known. Hence for simulation study 1 in section 4.4, the

only approximation made by modified FIMLOF algorithm 1 was in estimating the

maximum likelihood estimates of parameters via the optimisation part of the algo-

rithm - the Nelder-Mead simplex method. However, for a nonlinear Gaussian system,

the UKF’s estimate of a system’s underlying state is not optimal. As we explain

in section 5.2.1, the UKF attempts to find the closest Gaussian approximation to a

probability distribution. Therefore, modified FIMLOF algorithm 2, used in simula-

tion study 2, includes two approximations - the optimisation part of the algorithm

and an additional approximation made by the UKF. In this section we investigate the

accuracy of these two approximations through a simulation study.

In order to investigate the two approximations made by algorithm 2, we fit the UKF

to noisy data simulated from hydraulics model 2 under two different conditions - us-

ing known parameters and using estimated parameters. The accuracy of the UKF’s

estimation of the latent states of the time series is determined for each of these two

conditions and compared. When simulating noisy data from hydraulics model 2, we

simulate three sets of time series, each using a different set of structural parameters.

This is to ensure that any conclusions are robust to different sets of hydraulics model

2 parameters. These sets of parameters are presented in table 5.3.4. The variance pa-
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rameters are the same for all three datasets, with the standard deviations as follows:

σQ = 10 and σR = 10. As in simulation studies 1 and 2, run lengths are set at 500

days and the same 2 step job arrivals scenario is used.

Parameter set θd θw θt

1 3 0.1 1

2 5 0.2 2

3 7 0.3 3

Table 5.3.4: Parameter sets for investigating UKF’s approximation.

We describe below the process followed for each of the three sets of data simulated

from hydraulics model 2, when using known and estimated parameters when fitting

the UKF.

• Known parameters: The UKF is fitted to the noisy time series using the known

parameters θ. The mean squared error (MSE) of the residuals is calculated. The

residuals are the differences between the latent states of the noisy time series and

the state estimate from the UKF - at each interval in time. When using known

parameters in the UKF, we have only a single approximation in this process -

the approximation made by the UKF. Hence these results are the benchmark,

providing a measure of how accurately the UKF is able to approximate the

nonlinear system when the parameters are known.

• Estimated parameters: 100 sets of starting values are simulated from N (µi, σi),
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with µi = θi for i = d, w, t; where θi is the true parameter used in hydraulics

model 2. σi = 0.5, 0.05, 0.25 for i = d, w, t respectively. For example, to

simulate starting values in order to estimate θd of parameter set 1 in table 5.3.4,

we use N (3, 0.5). The 100 sets of starting values are used in algorithm 2 to

obtain 100 sets of parameter estimates θ̂. Each of these sets of parameters is

then used within the UKF which is fitted to the time series, with the MSE

of the residuals (defined as above) and log-likelihood being calculated. When

using estimated parameters in the UKF, we have the additional approximation

from the optimisation routine. Hence these results reveal how much additional

accuracy is lost via our parameter estimation method.

To measure the accuracy of the estimated parameters, as for simulation studies

1 and 2 we again calculate the MAPE. Let θ̂i be the estimate of true parame-

ter θi, for i = d, w, t. Then τi = |θ̂i−θi|
θi

, for i = d, w, t, is the absolute value of

the relative difference between θ̂i and θi. However, since n = 100, now we have

τ i = 100 × 1
n

∑n
1 τi =

∑n
1 τi representing the MAPE. The values of τ i for the es-

timated parameters are shown in table 5.3.5. Across the three parameter sets, θt

is the most accurately estimated parameter, as was the case for simulation study 2.

Although we see noticeable differences in the accuracy of θd and θw if we compare

these results to those from parameter set 3 of simulation study 2 (which also sets

σQ = σR = 10), it is worth highlighting that these results are not equivalent. The

results of this section are based on 100 parameter estimates rather than 500 and

different starting values are used, with the simulated starting values of this section
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spanning a wider range than those selected for simulation study 2.

Parameter set τ d τw τ t

1 5.3 15.0 0.9

2 10.7 3.1 0.8

3 9.7 9.5 0.7

Table 5.3.5: MAPE for estimated parameters.

The 100 sets of estimated parameters θ̂ are used in the UKF which is fitted to the

three sets of time series. The results are compared in table 5.3.6 with results from

using the known parameters θ in the UKF. Results for the estimated parameters - in

rows 2, 4 and 6 - show the mean of the resulting 100 log-likelihoods, denoted by l(θ̂),

and the mean of the 100 sets of MSE’s of the residuals, denoted by MSE. These

are compared with results for the known parameters in rows 1, 3 and 5. Note that

results using the known parameters show the single resulting log-likelihood l(θ) and

MSE values - although the columns of table 5.3.6 are labelled as for the unknown

UKF parameters.

When using estimated parameters, MSE total increases by around 45%, compared

to the MSE total values resulting from using the known parameters. This increase in

MSE total is entirely due to the effect of MSE backlog, which increases by around

90%. MSE capacity actually decreases by around 10%, contrary to what would be
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Param set UKF params MSE backlog MSE capacity MSE total l(θ̂)

1 Known 101.6 84.0 185.6 -5364.6

Estimated 192.0 76.3 268.3 -4760.5

2 Known 100.8 81.9 182.7 -5353.1

Estimated 186.7 74.0 260.7 -4753.8

3 Known 100.5 81.5 182.0 -5351.3

Estimated 186.4 73.2 259.6 -4753.8

Table 5.3.6: Comparing the use of 100 sets of estimated parameters with use of known

parameters in the UKF.

expected. This slight gain in accuracy for the capacity series is more than offset by

the considerable drop in accuracy for the backlog series. Therefore, in terms of the

objectives specified at the start of this section, the additional loss in accuracy in terms

of MSE total, resulting from using our parameter estimation process is around 45%,

compared to the benchmarks set using the true parameter values. In the next section

we assess our assumption of diagonal covariance matrices.

5.3.7 Evaluating the assumption of diagonal covariance ma-

trices

In simulation studies 1 and 2 - and also in simulation study 3 in section 5.4.4 - we

assume that the off-diagonal terms of covariance matrices Q and R are zero. In other

words we assume that the noise series of (5.3.9) - (5.3.14), v1 and v2, are uncorre-
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lated; and similarly for w1 and w2. This was the case for the noisy data generated in

simulation studies 1 and 2, and will be the case for simulation study 3. However, as

we will see in chapter 6, the historical BT time series data are cross-correlated and as

such, are likely to have correlated noise series. It would be preferable then to include

these off-diagonal terms and estimate these additional parameters in the estimation

process. In this section we explain why these are omitted - both from the simulation

studies and when attempting to calibrate the hydraulics model using historical BT

data in chapter 6.

For all three versions of the hydraulics model, (hydraulics model 3 will be intro-

duced in section 5.4), data was simulated using non-diagonal covariance matrices Q

and R, and attempts were made to estimate all parameters. The estimation of the

off-diagonal elements of Q and R was generally poor, with considerably greater MAPE

values than the structural parameter estimates reported in the simulation studies. The

accuracy in estimating these off-diagonal parameters decreased as the complexity of

the hydraulics model increased - so that they were least accurate when estimating

parameters of hydraulics model 3. To make matters worse, in many cases estimation

of the diagonal elements of Q and R, the sets of variance parameters σ2
Q and σ2

R, de-

clined in accuracy when including the off-diagonal elements in the estimation process.

Including the off-diagonal parameters also increased run times, sometimes consid-

erably. For example, when estimating parameters for hydraulics model 3 and running

on the University’s high performance cluster, for many sets of starting values the al-
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gorithm was unable to output any estimates even after a week. It is likely that these

issues with the estimation process arose due to the added complexity of the resulting

likelihood surface when including off-diagonal parameters.

As we explain at the start of this section, assuming that Q and R are diagonal means

that it is likely in chapter 6 that our estimation process will assume that we have di-

agonal covariance matrices - when that is not actually the case. For the remainder of

this section we investigate the effect of this. We simulate noisy data from hydraulics

model 2 using non-diagonal covariance matrices - then attempt to estimate the pa-

rameters under the assumption that these matrices are diagonal.

For this study, the structural parameters are the same as simulation study 2; θd = 5,

θw = 0.2 and θt = 2. The variance parameters are the same as section 5.3.6 and

parameter set 3 from simulation study 2; σ2
Q1,1

= σ2
Q2,2

= σ2
R1,1

= σ2
R2,2

= 102. Run

lengths are again set at 500 days and the same 2 step job arrivals scenario is used. Five

values for the off-diagonal elements of covariance matrices Q and R are set as follows;

σQ1,2 = σQ2,1 = σR1,2 = σR2,1 = c, where c = 10, 20, 30, 40, 50. Their corresponding

correlation values ρ, along with the MAPE of parameter estimates, are presented in

table 5.3.7. In obtaining these parameter estimates, the same 5 sets of starting values

as simulation study 2 are used, this time on 20 sets of simulated data - giving 100 sets

of parameter estimates for each value of ρ. Hence the MAPE calculation is exactly

the same as section 5.3.6.
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ρ τ d τw τ t

0.1 7.25 15.08 0.96

0.2 6.98 15.70 0.97

0.3 6.31 14.94 1.01

0.4 6.57 14.60 1.00

0.5 6.79 14.06 1.04

Table 5.3.7: MAPE for estimated parameters from simulated data with correlated

noise.

From table 5.3.7, as we increase ρ (and therefore the covariance between the backlog

and capacity noise), there does not appear to be any noticeable increase in the MAPE

of the parameter estimates. θt is an exception to this with slight increases in MAPE,

however this is more than offset by decreases in MAPE for θw. Therefore for this

system, the incorrect assumption of diagonal covariance matrices does not increase

the error for estimated parameters as we increase ρ. This is reassuring for chapter 6

where the BT data is likely to possess correlated noise series.

In the next section we introduce hydraulics model 3. This is considerably more com-

plex than hydraulics models 1 and 2 and as such, can be viewed as the final step

towards estimating parameters of the historical BT time series.
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5.4 Applying FIMLOF to hydraulics model 3

In this section we test our modified FIMLOF algorithm on hydraulics model 3. Al-

though some job types have been removed, this is the full version used by BT analysts

and as such, is considerably more complex than hydraulics models 1 and 2. This model

contains many more variables and has a higher degree of nonlinearity. Successfully

estimating the parameters of this model can be seen as the final step before applying

our approach to historical BT time series data in chapter 6.

The structure of this section is as follows. We begin by explaining the details of

hydraulics model 3 and the key differences between this and models 1 and 2 in sec-

tion 5.4.1. We derive a state-space model from hydraulics model 3 in section 5.4.2.

Section 5.4.3 presents the modified FIMLOF algorithm. Section 5.4.4 presents details

of simulation study 3 which aims to assess the performance of our modified FIMLOF

algorithm at estimating the parameters of hydraulics model 3. This study aims to

represent the conditions of the real system as accurately as possible in preparation

for the historical BT data of chapter 6.

5.4.1 Hydraulics model 3 details

Hydraulics models 1 and 2 are effectively examples of a single feedback mechanism

to adjust workforce numbers according to changes in demand. In some respects,

hydraulics model 3 can be viewed as containing a number of similar feedback mech-

anisms, though some of these have different purposes. The model is far too complex
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to summarise in a stock and flow diagram here. However, Figure 5.4.1 presents a

diagram constructed by BT analysts that attempts to represent the complexities of

the model. Note however that this is far from a full representation. This model has

5 stocks which are summarised below.

• Backlog: the length of the job queue as before (units: jobs).

• People deployed: no. of employees working standard hours.

• Shrinkage: inactive employee time such as training, leave etc..

• Overtime (OT): no. of employees working overtime hours.

• Unused OT: employees that can be called upon for overtime if required.

From Figure 5.4.1 we can see that we now have a number of feedback mechanisms

for the different deployed resources. There are also additional mechanisms to ensure

that overtime and shrinkage levels are sensible. All of these mechanisms attempt to

replicate management decisions within the real system to maintain these 5 stocks at

sensible levels.

Hydraulics model 3 also consists of 8 exogenous variables, a considerable increase

on the 1 and 2 of models 1 and 2 respectively. Effectively, the two exogenous vari-

ables of interest are the job arrivals and a new variable, the total employees in the

system. These two are of interest because in chapter 6 when we examine the BT

regional time series, these are the only exogenous variables that differ for each region.

The remaining exogenous variables relate to roster profiles, seasonal modifiers and
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Figure 5.4.1: The complexities of hydraulics model 3, reproduced with permission

from BT.
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bank holiday indicators – and these are unchanged across the different regions. In

total, hydraulics models 1 and 2 contained around 10 variables. For hydraulics model

3 the figure is around 100. This difference gives us some idea of the leap in complexity

between model 3 and the other two.

Rather than the 3 structural parameters of hydraulics models 1 and 2, we now have

6. These are a mixture of time constants and targets and are summarised below with

their units and current default values used by BT.

• θ1, TCT (units = days, default = 2.5): target cycle time – as for models 1 and

2 the target time for jobs to be completed after entering the system.

• θ2, TOT (units = hours per employee per day, default = 0.5/7): target overtime

– since overtime hours are at a greater financial cost to BT this needs to be kept

low.

• θ3, TS (units = % of workforce, default = 20): target shrinkage – each employee

requires a certain amount of leave and training.

• θ4, TCS (units = days, default = 30): time constant for moving resources to

shrinkage – there is a long delay associated with moving resources to shrinkage

as a lower importance is attached to this than for example overtime.

• θ5, TCOT (units = days, default = 4): time constant for moving resources

to overtime – even in a crisis situation of extreme demand, there is a delay

associated with this to represent meetings and rescheduling of jobs.
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• θ6, TCCTT (units = days, default = 5): time constant to adjust to cycle time

target – there is another delay associated with adjusting standard (non overtime)

employees.

We summarise the difference between the 3 versions of the hydraulics model in ta-

ble 5.4.1. The bottom row of this table provides the total number of variables in

each of the models. These values sum the number of stocks, auxiliary variables and

exogenous variables in each of the models. This table demonstrates the considerable

leap in terms of model complexity of hydraulics model 3 compared to the first two

models.

Model 1 Model 2 model 3

Stocks 2 2 5

Exogenous variables 1 2 8

Structural parameters θ 3 3 6

Total variables 11 12 100

Table 5.4.1: Comparison of hydraulics models 1, 2 and 3.

When we attempt to form difference equations for each of the stocks in the model,

they are now too complex to be represented as simple functions of the other stocks

and exogenous variables, as we obtained for hydraulics models 1 and 2. Instead, we

can represent each stock by including necessary auxiliary variables from the model,

within the difference equation. These auxiliary variables are denoted by a capital A.
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Any exogenous variables are denoted by capital E. The notation for all variables is

shown in table 5.4.2. Rows 1-5 represent the stocks, rows 6-14 represent the auxiliary

variables and rows 15-16 represent the two most important exogenous variables.

Symbol hydraulics model 3 parameter

b backlog

p people deployed

s shrinkage

o overtime

u unused overtime

Ao output (jobs completed)

Ats employees moved to shrinkage

Afs employees moved from shrinkage

Asp shrinkage pull

Atn tension

Aap adjust total people

Aup unused overtime pull

Afu employees moved from unused overtime

Atu employees moved to unused overtime

En new job arrivals

Ete total employees

Table 5.4.2: Notation for hydraulics model 3 variables.
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Difference equations for the stocks can now be represented in (5.4.1)-(5.4.5) and for

the auxiliary variables in (5.4.6)-(5.4.14). For simplicity, we omit the suffix t from

the auxiliary variables and exogenous variables. The two key exogenous variables En

and Ete; new job arrivals and total employees respectively, are the only two that are

labelled. Exogenous variables E1 - E5 represent roster profiles and seasonal factors.

ψ1 and ψ2 from (5.4.6) represent constants that will not be estimated as parameters.

bt = bt−1 + En − Ao = f1(xt−1, ut, θ) (5.4.1)

pt = pt−1 − Ats + Afs = f2(xt−1, ut, θ) (5.4.2)

st = st−1 + Ats − Afs + Aap = f3(xt−1, ut, θ) (5.4.3)

ot = ot−1 − Atu + Afu = f4(xt−1, ut, θ) (5.4.4)

ut = ut−1 + Atu − Afu + Aap = f5(xt−1, ut, θ) (5.4.5)

Ao = ψ1pt + ψ2ot (5.4.6)

Ats = E1(pt + st) +
(Asp − Atn)pt

θ4

(5.4.7)

Afs = −E1(pt + st) +
(Atn − Asp)pt

θ4

(5.4.8)

Asp =

[
(E2 + θ3)(pt + st)

st + 0.01

]PFs
(5.4.9)

Atn =

1 +
S7

([(
bt
θ6

+
[
1− θ1

θ6

]
E3

)
E4

]
− Ao

)
E5S7(Ao)

PP (5.4.10)

Aap = Ete − pt − st (5.4.11)

Aup =

[
(1− θ2

1.23
)(ot + ut)

ut

]PFu
(5.4.12)

Afu =

[
(Atn − Aup)ut

θ5

]
(5.4.13)

Atu =

[
(Aup − Atn)ot

θ5

]
(5.4.14)
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These equations demonstrate the complexity of the model and its highly nonlinear

nature. Despite this, some simplifications have been made to the equations. Many of

them contain ‘safety’ functions to keep values within sensible ranges. Use of these is

common in system dynamics modelling. For example, to ensure that a variable takes

non-negative values, the following function is used so that the variable equals zero

when negative: max(0,f(.)). Many such functions are described in Sterman (2000).

From the perspective of a FIMLOF approach in attempting to estimate the model’s

parameters, use of these functions only adds to the complexity and nonlinearities of

the model.

5.4.2 Derivation of the state-space model

From the difference equations formed in the previous section, we can now form the

state-space model. The process is similar to that in sections 4.3.3 and 5.3.3. The

state equations are formed by adding noise terms to the difference equations; these

are shown in (5.4.15)-(5.4.19). State update functions f1(.) − f5(.) are as defined in

the previous section in (5.4.1)-(5.4.5).

bt+1 = f1(xt, ut, θ) + v1,t (5.4.15)

pt+1 = f2(xt, ut, θ) + v2,t (5.4.16)

st+1 = f3(xt, ut, θ) + v3,t (5.4.17)

ot+1 = f4(xt, ut, θ) + v4,t (5.4.18)

uot+1 = f5(xt, ut, θ) + v5,t (5.4.19)
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We then proceed to add further noise terms to form the observation equations, given

in (5.4.20)-(5.4.24).

b∗t = bt + w1,t (5.4.20)

p∗t = pt + w2,t (5.4.21)

s∗t = st + w3,t (5.4.22)

o∗t = ot + w4,t (5.4.23)

uo∗t = uot + w5,t (5.4.24)

The observation terms can be represented as y
t

= (b∗t , p
∗
t
, s∗t , o

∗
t , uo

∗
t )
T and the state

terms as xt = (bt, pt, st, ot, uot)
T . The state noise terms vi and observational noise

terms wi for i = 1, ..., 5 are assumed to be as follows: vi ∼ N(0, σ2
Qi

) and wi ∼

N(0, σ2
Ri

). Covariance matrices Q and R then take the following form:

Q =



σ2
Q1

0 0 0 0

0 σ2
Q2

0 0 0

0 0 σ2
Q3

0 0

0 0 0 σ2
Q4

0

0 0 0 0 σ2
Q5


, R =



σ2
R1

0 0 0 0

0 σ2
R2

0 0 0

0 0 σ2
R3

0 0

0 0 0 σ2
R4

0

0 0 0 0 σ2
R5


.

In section 5.4.4 we present simulation study 3 where we attempt to estimate the

parameters of this model. Note that we now have 16 parameters in total, the 6

structural parameters the structural parameters θ = (θ1, θ2, θ3, θ4, θ5, θ6) and the 10

variance parameters that form the diagonals of Q and R. This is a considerable leap

from the 7 parameters that were estimated in the first two simulation studies. As

for simulation studies 1 and 2, we again assume a diagonal structure for covariance
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matrices Q and R. This was evaluated in section 5.3.7.

5.4.3 Modified FIMLOF algorithm 3

Having formed the state-space model using the structure of hydraulics model 3, we are

now ready to present an algorithm for implementing modifications to the FIMLOF

method.

Firstly however, we make a change to the core of the algorithm compared to al-

gorithms 2 and 3. For hydraulics model 3 we now discard the approximate method

of (4.2.15) for calculating the log-likelihood when Kalman filtering and use the exact

method of (4.2.14). It is the exact method that now brings improved performance

in terms of the accuracy of parameter estimation. In section 4.4 we speculated that

the approximate method performed better than the exact method as it required no

inversion of matrices, therefore reducing numerical error during computation. It is

likely that for a more complex and realistic system such as hydraulics model 3, the

added accuracy of using the exact representation of the log-likelihood overrides any

loss of accuracy of numerical errors.

For noisy observable time series data y = (b∗, p∗, s∗, o∗, uo∗)T , we estimate the struc-

tural parameters θ = (θ1, θ2, θ3, θ4, θ5, θ6) and the variance parameters σ2 = (σ2
Q1

,...,

σ2
Q5

, σ2
R1

,..., σ2
R5

) of the state-space model in (5.4.15)-(5.4.24) using the algorithm

below. We refer to this as algorithm 3.
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1. The Nelder-Mead simplex method selects a candidate set of parameters (θ, σ2),

(or in the first iteration the user selects suitable starting values θ = θ0 and

σ2 = σ2
0).

2. The unscented Kalman filter proceeds along time series y and for each update

at time t:

• The θ parameters in the nonlinear state update equations (5.4.15)-(5.4.19)

and the variance parameters σ2 of covariance matrices Q and R influence

the filter’s estimate of latent states xt = (bt, pt, st, ot, uot)
T .

• Terms from these calculations are used to calculate the log-likelihood for

the candidate set of parameters, log(L(θ, σ2), t), using the exact represen-

tation of (4.2.14).

3. After the Kalman filter has calculated the log-likelihood at each discrete interval

t in the series, an overall log-likelihood for the time series is calculated by sum-

ming the individual log-likelihood terms: log(L(θ, σ2)) = ΣT
t=1 log(L(θ, σ2, t)).

4. The Nelder-Mead method repeats the process until a local optimum is found

and maximum likelihood estimates θ̂ and σ̂2 are determined.

In the simulation study in section 5.4.4, artificial noisy data y is simulated from

hydraulics model 3 with known structural and variance parameters. Algorithm 3 is

used for the estimation of these parameters and its performance is assessed.
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5.4.4 Simulation study 3

In this section we present results of simulation study 3; aimed at assessing the perfor-

mance of our modified FIMLOF algorithm when estimating the parameters of noisy

simulated data. We begin by describing how the study is set up. There are a number

of adjustments that are different to simulation studies 1 and 2. Some of these are by

necessity due to the greater complexity of the problem. Many however are an attempt

to create a study that replicates many of the conditions that will also be present when

we apply the method to the historical BT data in chapter 6. This ensures that the

progression from the simulation studies up to the regional data is as small as possible.

Having demonstrated in the first two studies the success of the approach and observed

the effects of added state and observational noise, we now shift our focus more towards

creating experiments that are as realistic as possible when compared to the BT system.

As we saw in section 5.4.2, we now have 5 states and 5 observations for each t. Co-

variance matrices Q and R are now 5× 5. This means that the computations within

the UKF involve 5 × 5 matrices. For simulation study 1 using the standard Kalman

filter, parameter estimates were computed in R in around 20 seconds on average. For

simulation study 2, this increased to nearly 3 minutes. For this study, estimates were

taking considerably longer; in some cases over an hour. The Rcpp package Eddelbuet-

tel (2013) allows seamless integration between R and C++. This allows the user to

use C++ functions within the R language, enabling faster computation. Effectively

it provides the user with the benefits of using C++, by enabling C++ functions
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to be embedded within the R code. Coding the key functions in this way dramat-

ically speeded up the computations; parameter estimates taking on average 3 minutes.

The job arrivals for this study, unlike the previous ‘two step’ artificial scenarios, are

a far more realistic representation of the job arrivals that we can expect in chapter 6.

Job arrivals in this study were obtained by comparing simulations with the historical

data and through discussions with BT analysts in an attempt to simulate series that

are as realistic as possible. This involved generating an autoregressive process with

ρ = 0.3, adding a constant to this series and giving the data a weekly profile. A char-

acteristic of using such job arrivals – which will also be the case in chapter 6 – is that

compared to the simple artificial scenario we now have a considerably greater level

of activity throughout the series. This will ellicit a greater response from hydraulics

model 3 – which may provide more information on some or all of the parameters θ.

With the added complexities of this system and also the likelihood surface compared

to the first two simulation studies, this greater response from the model may be a

helpful factor.

The simulated data from hydraulics model 3 will use the same exogenous variables

(e.g. roster profiles, seasonal modifiers etc.) as would be input to this model in prac-

tice at BT. To ensure that the exogenous variable for total employees is realistic, this

variable for one of the BT regional series (Lancashire) was used throughout the study.

The length of the simulated time series from hydraulics model 3 is another selec-
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tion that we attempt to make as realistic as possible. This was set at 500 days for

the first two studies, however we now increase this to 959 days. This is the length

of the BT regional time series in chapter 6. Peterson & Schweppe (1975) showed

that a longer time series results in more accurate FIMLOF estimates. As such, this

adjustment for realism may be an additional helpful factor in parameter estimation.

The experiments take a similar form to simulation studies 1 and 2, with 100 sets

of data simulated and 5 starting values used for the optimisation, giving 500 sets of

parameter estimates for each setting of added noise. Simulation study 2 showed the

dominant effect of adding state noise σQ to the data. Hydraulics model 3 is a con-

siderably more complex system than model 2 and is also highly nonlinear. As such,

parameter estimates for this study are likely to be less accurate. Rather than the

effects of added state noise σQ dominating the study again, we instead wish to de-

termine the effects of observational noise σR on the accuracy of parameter estimates.

Therefore, unlike the previous two studies, we now restrict ourselves to the case of

added observational noise only. As such, we fix σQ = 0 and again add 6 different

levels of observational noise σR.

Due to the nature of hydraulics model 3 it is no longer sensible to add the same

amounts of noise to the data as for simulation studies 1 and 2. For example, for data

simulated from hydraulics model 3 and using the job arrivals described above, the

backlog series takes values well into the thousands but the shrinkage series is a per-

centage between 0 and 100. More importantly, the standard deviation of the shrinkage
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series is a fraction of that of the backlog series. Any noise added to the data must

be scaled by an appropriate standard deviation profile to reflect the considerably dif-

ferent level of variability exhibited by each series. In order to determine this profile,

we examined the historical BT time series for the 59 geographical regions that will

be presented in chapter 6. An average standard deviation value for each of the five

series (backlog, people, shrinkage, overtime, unused overtime) across the regions was

calculated. By dividing each of these by the smallest value the following standard

deviation profile was determined: (200, 1, 1, 3, 4) for the five series respectively. This

means that on average, the backlog standard deviation was 200 times greater than

the people deployed and shrinkage series.

When adding observational noise σR to the data, to create six levels of added noise,

this standard deviation profile was multiplied by six values of a ‘multiplication factor’

(mf). These values were 1, 2, 3, 5, 8 and 10. These are the six levels of adding

observational noise σR for this study. Hence, the true values of the covariance matrix

R defined in section 5.4.2 are as follows, with the diagonals σ2
R1
, ..., σ2

R5
representing

the variance of the added noise:

R =



(200mf)2 0 0 0 0

0 (mf)2 0 0 0

0 0 (mf)2 0 0

0 0 0 (3mf)2 0

0 0 0 0 (4mf)2


,
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for mf = 1, 2, 3, 5, 8, 10.

As we have different parameters θ1 - θ6 with different default values to the first two

studies, we must now define another 5 sets of starting values for the optimisation

routine. In a similar pattern to the first two studies, we select sets s1 and s2 less

than the true parameter values, s3 equal and sets s4 and s5 to be greater than the

parameters. The spacing between values of these sets is again at regular intervals, as

we see in table 5.4.3.

Parameter s1 s2 s3 s4 s5

θ1 1.5 2 2.5 3 3.5

θ2 0.1/7 0.3/7 0.5/7 0.7/7 0.9/7

θ3 0.1 0.15 0.2 0.25 0.3

θ4 25 27.5 30 32.5 35

θ5 3 3.5 4 4.5 5

θ6 4 4.5 5 5.5 6

Table 5.4.3: Starting values for the optimisation routine.

We again assumed that we knew the correct noise structure – i.e. the diagonal na-

ture of the covariance matrices Q and R. The starting values of the 5 state variance

parameters σQ of covariance matrix Q were again set around zero; i.e. σQ0 = e−10.

Since there is no added state noise, i.e. σQ = 0, for this study these starting values
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are close to the true parameter values.

As the observational noise added to the data now has a standard deviation profile

(in that different amounts of noise are added to each series), this may cause the es-

timation of the observational variance parameters σR to become more challenging.

Rather than setting the starting values σR0 at naive values close to zero as in the two

previous studies, a more informed method was used. The starting values σR0 of these

5 σR parameters were set by estimating the variance directly from the 5 time series

of the data. This was intended as further preparation for the BT data in chapter 6,

where the standard deviation profile is apparent. The variance was estimated by fit-

ting smoothing splines to the noisy data and examining the differences between these

and the raw data. These estimates of the variances were used as starting values in

the optimisation routine. Note that this process still assumes no prior knowledge of

the scale of the added noise.

The two sets of 5 variance parameters σQ and σR are again constrained to be positive

using the exponential function. As θ3 represents a probability, we constrain this be-

tween 0 and 1 using the inverse of the logit function: logit−1(θ3) = eθ3

eθ3+1
.

The histograms in Figure 5.4.2 show estimates of parameters θ1 - θ3 and the his-

tograms of Figure 5.4.3 show estimates of parameters θ4 - θ6. ‘mf’ refers to the

multiplicative factor used on the standard deviation profile when adding noise. To

assess the performance of parameter estimation, we again examine the relative differ-
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ence of each of the parameter estimates compared to the true value by calculating the

mean absolute percentage error (MAPE) using the same method as in section 5.3.5.

Again, the MAPE for parameter estimate θ̂i is represented by τ i, for i = 1, ... , 6. The

values of τ i for this study are shown in table 5.4.4.

Parameter set τ 1 τ 2 τ 3 τ 4 τ 5 τ 6

1 18.3 4.4 0.7 187.2 32.9 22.7

2 16.8 4.0 0.7 189.4 34.6 22.0

3 22.4 5.4 0.9 235.8 38.6 28.4

4 19.0 4.5 0.8 231.6 41.3 25.9

5 27.8 5.7 1.1 292.6 56.1 35.4

6 41.7 8.2 1.6 423.4 87.6 55.9

Table 5.4.4: MAPE of parameter estimates.

From table 5.4.4 and the histograms of Figures 5.4.2 - 5.4.3 the following observations

are immediately apparent:

1. Parameter estimates are noticeably less accurate than for studies 1 and 2.

2. Increasing the added observational noise results in less accurate estimates.

3. The difference in accuracy between different parameters has widened compared

to the first two studies.
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Figure 5.4.2: Simulation study 3 results for parameters θ1 - θ3.
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Figure 5.4.3: Simulation study 3 results for parameters θ4 - θ6.
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There are a number of possible reasons for observation (1). Hydraulics model 3 is

a far more complex and realistic system than the first two models. As such, the

identifiability of some or all of the 6 parameters is likely to have decreased, causing

parameter estimation to be more difficult. Hydraulics model 3 is also highly nonlinear,

considerably more so than hydraulics model 2. Therefore the approximation made

by the UKF is likely to be less accurate than it was for hydraulics model 2. Due to

the required scaling we have added different levels of noise in this study. It is worth

highlighting that for multiplicative factors of 5, 8 and 10, we have standard devia-

tions for the added noise to the backlog of 1000, 1600 and 2000 respectively. This is

a considerable leap from the first two studies. Despite this, our results demonstrate

some degree of success in estimating the parameters. Another important consequence

of the added complexity of hydraulics model 3 is that in this study we are estimating

16 parameters, rather than the 7 that we estimated in the first two studies. This is

likely to result in a considerably more complex likelihood surface, making parameter

estimation more challenging.

Observation (2), like the previous two studies is not surprising. Greater amounts

of added noise corrupt the data more so that the UKF’s estimate of the latent state

become less accurate.

Observation (3) is an interesting exposition of the challenges associated with esti-

mating the parameters of hydraulics model 3. The widened gap between the accuracy

of estimates for different parameters, most obvious for parameters θ3 and θ4, is likely
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caused by the differences in the identifiability of parameters. This was confirmed

by BT analysts who investigated the ‘importance’ of each parameter by repeatedly

running hydraulics model 3 for different parameter values. This included fixing the

parameters and adjusting a single parameter in turn. It is not surprising to learn that

the parameters that we found the hardest to estimate, θ4 and θ5, were found to be

the least important in terms of the behaviour of the model. That is, only extreme

changes in these parameters had any noticeable effect on the simulations of hydraulics

model 3. This is a likely explanation for our difficulties in estimating these and the

high MAPE values observed in the results.

5.5 Discussion

In this chapter, the novel process for the formulation of a state-space model from a SD

model, presented in chapter 4, has been extended to more complex, nonlinear systems.

Two simulation studies, studies 2 and 3, present results of applying modified FIMLOF

algorithms to estimate the parameters of these nonlinear state-space models – that

are based on hydraulics models 2 and 3 respectively. Results of study 2 demonstrate

success in estimating the parameters, especially for lower amounts of added noise.

The amount of added state noise σQ was shown to be an important factor in the

performance of the algorithm. Results of study 3 showed a loss of accuracy compared

to studies 1 and 2 due to the significantly more complex model structure and greater

number of parameters, but nonetheless demonstrate some success, especially for lower

amounts of added noise. The identifiability of the 6 structural parameters was also
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shown to be an important issue.

In section 5.2 we highlighted the modern applications of FIMLOF in the literature that

all use the extended Kalman filter for use on nonlinear systems, despite the evidence

in favour of the unscented Kalman filter. There are no examples that we are aware

of that have applied FIMLOF using the UKF. By applying the UKF successfully to

estimate the parameters of two nonlinear systems in this chapter, we make a claim

to contribute to the literature. The second of these systems, hydraulics model 3, is

also more complex and nonlinear than any other models that we have seen FIMLOF

applied to in the literature. This chapter demonstrates that the approach can give

useful insights into a complex industrial model, the output of which is relied upon by

a large multinational organisation.

Simulation study 2 provided reassurance that the FIMLOF algorithm, modified with

the UKF, can be successful at estimating the parameters of a nonlinear system. Sim-

ulation study 3 was designed to recreate the conditions of the real system as far as

possible. The relative success of our modified algorithm in this study is promising at

this final stage. The study also exposed the importance of identification of param-

eters in hydraulics model 3 and the considerable differences in accuracy across the

6 parameters estimated in the model. Knowledge of which are the most challenging

parameters to estimate may be useful when progressing to the real system. Therefore

the results in this chapter can be viewed as a final step towards progressing to the

historical BT time series data in chapter 6.



Chapter 6

Application: Parameter estimation

for BT regional data

6.1 Introduction

In this chapter we apply a modified FIMLOF algorithm to estimate the parameters

of hydraulics model 3 from historical BT time series data. This data represents 59

geographical regions across the UK. As system behaviour is known by BT analysts

to vary across the regions, which the results of chapter 3 supported, there is interest

at BT in calibrating the model for each geographical region – this is the objective

of this chapter. Calibrating for each region is considered preferable to relying on a

set of fixed ‘default’ parameters across all regions. As we explain in chapter 4, a

method that automates the process of calibration is more desirable than the modeller

manually calibrating the model by hand in a cumbersome trial and error procedure –

which is the approach currently adopted by BT.

232
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The results of chapters 4 and 5 have enabled the progression in this chapter to the

real BT system. The test of concept on hydraulics model 1 in chapter 4 provided the

foundations for this chapter as results demonstrated success of our modified FIMLOF

algorithm on a simple linear system. In chapter 5, incorporating the UKF enabled

progression to two nonlinear models; hydraulics models 2 and 3. The simulation study

involving the latter of these was based on the full version of the hydraulics model and

was designed to replicate as far as possible the real BT system. Results of this study

demonstrated that we are now ready to estimate the parameters of the BT system.

The structure of the chapter is as follows. Section 6.2 presents the exploratory anal-

ysis and describes the details of the time series data. Section 6.3 explains the adjust-

ments that were required in applying the method to this regional dataset. Section 6.4

presents the results, with the discussion in section 6.5.

6.2 Exploratory analysis

In this section we present an exploratory analysis of the BT regional dataset. This

examines the variation within regions in section 6.2.2 and the variation between the

different regions in section 6.2.3. We begin with an overview of the data in sec-

tion 6.2.1 and explain some of the data processing requirements that were necessary

for certain series.
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Before proceeding we note that the data presented in this section is not the same

as that presented in chapter 3. This data has a different geographical breakdown of

regions and many of the time series have different units.

6.2.1 Overview of the BT regional dataset

There are 59 geographical regions in total, each representing a region within Eng-

land, Scotland and Wales. The lengths of all time series for each region are 959 days,

covering the period between 1st January 2012 to 16th August 2014. For each of the

59 regions, we have daily time series data for the 5 endogenous variables, the stocks

of hydraulics model 3, and also for the same 8 exogenous variables as described in

section 5.4.1. Unlike simulation study 3 however, the two key exogenous variables, the

new job arrivals En and the total employees Ete, are different for each geographical

region.

As we demonstrated in section 4.4.4, although the time series y output from the

three hydraulics models represent data that are effectively counts, the models’ output

non-integer values. We added state and observational level Gaussian noise, hence

our simulated datasets were suitable for the FIMLOF approach. For BT data of this

chapter, to ensure that we again have non-integer values, the units of many series

change from those in our simulated data of chapters 4 and 5. Instead of counts of

jobs in the backlog, jobs are now measured in units of man hours – that are required

for the workforce to complete them. Similarly for the people deployed, overtime and

unused overtime series, workforce is also measured in man hours. Shrinkage remains
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unchanged as a percentage of workforce. This means that the BT data consists of

non-integer values. Accordingly, exogenous variables such as En and Ete, the new

job arrivals and the total employees, are also measured in man hours. The necessary

calculations for the conversions in units for all of these variables were performed by

BT analysts.

To estimate the parameters of hydraulics model 3 we require daily time series data.

This presented a problem for some series. We were only provided with weekly time

series data for endogenous variables people deployed p∗ and shrinkage s∗ and the

exogenous variable total employees Ete. In order to convert these into daily series,

cubic spline interpolation was used. The method chosen is described in Forsythe et

al. (1977). The results of this interpolation were used as our estimate of the unknown

daily time series.

The 59 series for overtime were provided in units of hours per employee per day.

To ensure that the data remained in the same units as hydraulics model 3, number of

employees per day, required transforming the overtime data. This involved dividing

by a weekly overtime profile contained within hydraulics model 3. For certain days

(e.g. Wednesday), this profile has a low value and therefore when dividing by the

profile, large values can result. Consequently for many of the overtime series, some

spikes can be observed at certain periods along the series as we see in Figure 6.2.1

around days 650-800. The time series for the unused overtime was derived directly

from the overtime series and total employees Ete. Therefore this series suffers from
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the same issues.
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Figure 6.2.1: Overtime data corrupted by spikes.

6.2.2 Within region variation

In this section we investigate ‘within region’ properties of the BT data by examining

correlations between different time series within the same region. Figure 6.2.2 presents

boxplots of the main correlations between the series, within each of the 59 regions.

On the plot, the following notation ‘Bk’, ‘Ppl’, ‘Shk’ and ‘Ot’ is used to represent the

backlog, people deployed (standard workforce hours), shrinkage and overtime (over-

time hours) series respectively. So that for example, the notation ‘Bk:Ppl’ is used to

indicate a boxplot of the correlations between the backlog and people deployed series.
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Figure 6.2.2: Boxplots of correlations between time series from the same region.

We observed from the BT dataset of chapter 3 that regions respond to increases in

job arrivals (and hence increases in the backlog) by increasing people numbers. The

two greatest medians in the plot (0.49 and 0.41) are for the correlations ‘Bk:Ppl’

and ‘Bk:Ot’ respectively. These positive values suggest that for this dataset also,

the regions may indeed be responding to changes in the backlog by increasing peo-

ple numbers and overtime. The relationships between backlog and people deployed

and between backlog and overtime are key elements of a region’s behaviour. These

relationships determine how well the backlog is controlled, and hence how effectively

the region meets its performance targets for completing jobs. We can also observe

that the inter-quartile range is around 0.2 for each of these two sets of correlations –

hence there is some variability between the different regions for these key relationships
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within each region.

Figure 6.2.2 also reveals largely positive correlations between people deployed and

overtime, though these correlations vary considerably. These positive correlations

are to be expected, not only because both series have positive correlations with the

backlog, but also due to the following. Each region can adjust workforce numbers

by adjusting both people deployed and overtime numbers. For example in situations

where the backlog must be reduced, BT analysts explained that often both the peo-

ple deployed and overtime will be increased. Shrinkage correlates poorly with the

backlog, people deployed and overtime. Shrinkage includes many activities such as

training, leave, sickness etc. and many of these activities are not influenced by the

current performance of the region.

Examining the lagged correlations reveals some interesting properties. Correlations

between backlog and people deployed and also between backlog and overtime, with

people deployed and overtime lagged to reveal any delayed correlation, are shown in

Figure 6.2.3. These values are averaged over the 59 regions. For the lagged correla-

tions between backlog and people deployed, the correlation increases until a lag of 16

days where it peaks, and then declines. Therefore on average, the strongest correla-

tion between backlog and people deployed is achieved when people deployed is lagged

by 16 days. This suggests that on average across the regions, the most clear response

in terms of people deployed, to changes in the backlog, is most evident around day

16.
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Figure 6.2.3: Lagged correlations averaged over the 59 regions.

On the other hand, the average lagged correlations between backlog and overtime

reach their peak at a lag of only 8 days, increasing prior to this and declining after.

So on average across the regions, the most clear overtime response to changes in the

backlog is most evident around day 8. This suggests that on average, a region is able

to increase overtime man hours faster than standard man hours. This is a property

of the BT system that is well known amongst BT analysts. Of course, these values

are purely based on lagged correlations and not isolated for example to only exam-

ine cases where there are increases in the backlog - which was studied in chapter 3.

However these exploratory plots reveal some interesting differences in the rates of a

region’s response.
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6.2.3 Between region variation

In this section we investigate ‘between region’ properties of the BT data by examining

correlations between similar time series from different regions.

When investigating the ‘between region’ effects, an immediate question to ask is

whether neighbouring regions are more similar to each other than regions geograph-

ically further apart. To answer this, we first group the 59 regions into 9 different

areas as defined by BT. Although the regional boundaries within each area and the

regional datasets are different, these are the same 9 areas as those in chapter 3;

Scotland, North-East England, North-West England, North Wales/Midlands, South

Wales/Midlands, South-West England, South-East England, London and East An-

glia. Each of the areas contain between 5 and 9 regions.

To investigate whether neighbouring regions are more similar than regions further

away, we calculate two sets of correlations; ‘within area’ correlations (between regions

from the same area) and ‘between area’ correlations (between regions from different

areas). These correlations are calculated for all regions for each of the backlog, people

deployed, shrinkage and overtime series. This means that in total, for each series, the

correlations between each region with all other regions are calculated. These are then

grouped into either ‘within area’ or ‘between area’ correlations. Boxplots of these

correlations are presented in Figure 6.2.4. In the plot, ‘within’ represents within area

correlations and ‘between’ represents between area correlations.
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For each plot there are considerably more ‘between area’ correlations than ‘within

area’ correlations; 2872 compared to 320. This difference in sample sizes limits the

confidence that can be placed in the comparisons, however it’s clear that regions

within the same area appear to be better correlated than regions of different areas.

This suggests that regions that are geographically closer do exhibit more similar be-

haviour than regions further apart.

These correlations however should be placed in context. In addition to the corre-

lations of Figure 6.2.4, it is important to consider similar correlations for the job

arrivals. For each region, the behaviour of series such as the backlog, people de-

ployed, shrinkage and overtime are partly driven by the nature of the job arrivals, as

the region attempts to complete the jobs fast enough to meet performance targets.

Similar boxplots as above are presented in Figure 6.2.5 which show the ‘within area’

and ‘between area’ correlations for the job arrivals. We can see that the job arrivals

have higher correlations than any of the other series. This is especially so for ‘within

area’ correlations, with a median correlation close to 0.9. Since the nature of the

job arrivals partly drive each region’s response, and considering that the performance

targets are the same across all regions, we would actually expect some differences

between the ‘within area’ and ‘between area’ correlations - which were shown in Fig-

ure 6.2.4. Hence the differences observed in Figure 6.2.4 are likely to be at least partly

due to the differences between the ‘within area’ and ‘between area’ correlations of the

job arrivals.
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Figure 6.2.4: Comparing correlations between regions within the same area and be-

tween different areas.
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Figure 6.2.5: ‘Within area’ and ‘between area’ job arrivals’ correlations.

The results in this section suggest that there is some evidence that geographically

closer regions are more similar than regions further apart - although it is difficult

to determine exactly how much of the differences observed are due to the ‘within

area’ and ‘between area’ differences of the job arrivals. If there was more confidence

in these results and clear evidence existed that geographically closer regions exhibit

more similar behaviour, then in general spatial statistics methods would be a possible

approach. Spatial statistics is based on the assumption that nearby entities are asso-

ciated in some way. For more details see for example Diggle (2013), Ripley (2005) and

Cressie (2015). However we explain in the following paragraph why we have chosen

not to use a spatial model.
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In practice, the different regional workforces of BT operate across the UK as fol-

lows. Each region is effectively an independent entity that must manage its own

backlog by scheduling appropriate workforce engineers. BT experts with extensive

system knowledge therefore instructed us to assume that each region operates inde-

pendently. For example if regions A and B are neighbours and region A has a high

backlog of jobs while region B has a low backlog, we can assume that region A will

not be allowed to transfer extra engineers from region B and will have to deal with

the high backlog independently. So although we have seen that there are higher corre-

lations between series from nearby regions, each region must manage its backlog and

workforce independently. Due to this independence of regions and the non-sharing of

resources, rather than using a spatial model, we instead apply FIMLOF algorithms

(modified further from those in chapter 5) for the analysis of this chapter, where we

estimate the parameters of hydraulics model 3 for each of the BT regions.

6.3 Adjustments for the BT data

In this section we explain the adjustments required for estimating hydraulics model 3

parameters from the BT regional data, compared to simulation study 3 in section 5.4.4.

These are divided into two sections. Section 6.3.1 outlines the necessary adjustments

to the set up of experiments when using the BT dataset. Section 6.3.2 describes further

modifications to the FIMLOF algorithm that resulted in improved performance.
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6.3.1 Adjustments to the experiments

In this section we explain the necessary adjustments that are required to the set up of

experiments when progressing to the BT dataset from simulation study 3. However it

is worth highlighting that the analysis in this chapter is much like simulation study 3,

albeit we are now estimating its parameters from historical time series data and not

simulated data. We assume the same state-space model structure as (5.4.15)-(5.4.24)

and estimate the same structural parameters θ = (θ1, θ2, θ3, θ4, θ5, θ6) and variance

parameters σ2 = (σ2
Q1

,..., σ2
Q5

, σ2
R1

,..., σ2
R5

).

In the simulation studies, for each experiment 100 sets of data were simulated and

5 sets of starting values were used when estimating the parameters of each dataset.

This resulted in 500 sets of parameter estimates for each experiment. For the BT

data we have 59 regions and hence 59 sets of data. We again use the same 5 sets of

starting values for structural parameters θ as simulation study 3. Therefore, for each

experiment we have 59 x 5 = 295 parameter estimates.

It is important to distinguish between the two types of models used in section 6.4; the

deterministic hydraulics model 3 described in section5.4.1, and the stochastic state-

space model constructed from the equations of hydraulics model 3 in section 5.4.2.

The BT parameters are sets of parameters for hydraulics model 3. This is a deter-

ministic model as we see from the model equations of (5.4.15)-(5.4.24). Hence these

BT parameters include no variance parameters and consist only of the 6 structural
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parameters θ = (θ1, θ2, θ3, θ4, θ5, θ6), described in section 5.4.1. As we see in (4.2.14),

calculation of the log-likelihood for our system requires values for the variance param-

eters σ2 = (σ2
Q1

,..., σ2
Q5

, σ2
R1

,..., σ2
R5

), the diagonal elements of the covariance matrices

Q and R. Hence we cannot compute log-likelihoods when using the BT parameters.

Unlike the three simulation studies, the true parameter values θ are of course un-

known for the BT data. Hence we cannot compare our parameter estimates to the

true values. Since we also cannot compute log-likelihoods when using the BT pa-

rameters, to compare our parameter estimates with BT’s, we must use a different

approach. Our estimates of the state-space model’s structural parameters θ̂ are used

in the deterministic hydraulics model 3 to simulate data ŷ. This data is compared to

the BT historical data y. We compare the performance of our parameter estimates θ̂

with the default parameters θBT for each region in the process outlined below:

1. Use both estimated θ̂ parameters and default θBT parameters to simulate data

ŷ and y
BT

from hydraulics model 3.

2. Compare output of both simulations with historical data by calculating the

prediction error. We choose to calculate the root mean square error (RMSE) of

the standardised residuals. Using the standardised residuals takes into account

the variance of the residuals. We then compare R̂MSE with RMSEBT , the

resulting RMSE’s of the standardised residuals for our estimated parameters

and the BT parameters respectively, which are defined as below.
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R̂MSE =

√√√√ 1

n

n∑
t=1

(
ŷt − yt

sd(ŷ − y)

)2

RMSEBT =

√√√√ 1

n

n∑
t=1

(
yBT,t − yt

sd(y
BT
− y)

)2

Throughout this chapter, unless stated otherwise, RMSE refers to the root mean

squared error of the standardised residuals. We can calculate the respective RMSE

values across the 59 regions to determine if our parameter estimates θ̂ perform better

than the defaults θBT . We can also compare performance for individual regions.

An additional set of BT parameters exist for a subset of 8 regions. During exper-

imentation these 8 were amongst the most difficult regions to estimate parameters

for that would closely replicate the behaviour of historical data. For these 8 regions,

BT analysts hand calibrated hydraulics model 3 and obtained parameter estimates

that were an improvement on the default parameters. In section 6.4 we compare our

parameter estimates to these hand calibrated estimates.

6.3.2 FIMLOF algorithm modifications

In this section we describe further modifications to the FIMLOF algorithm, compared

to algorithm 3. The modifications that we describe were found by experimentation to

improve the performance of the algorithm. This improvement was measured in terms

of reducing RMSE and obtaining parameter estimates that when used in hydraulics

model 3 more closely match the historical data.
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In order to reduce the complexity of the problem, we introduce further constraints for

the optimisation. For simulation study 3 in section 5.4.4, of the structural parameters

θ, only parameter θ3 was constrained; the inverse logit function was used to constrain

values between 0 and 1. However the remaining parameters (θ1, θ2, θ4, θ5, θ6) all rep-

resent measures that must be positive. We therefore constrain these in the algorithm

using the exponential function as follows: θi = exp(φi) where φi can be any real num-

ber, for i = 1, 2, 4, 5, 6.

In simulation study 3, smoothing splines were used to estimate the noise added to the

data and hence set the starting values of the variance parameters in the algorithm.

However as we explain in section 6.2.1, some of the time series of the BT data, the

people deployed and shrinkage series in particular, are smooth series due to the in-

terpolation that was required to convert the weekly series into daily series. The BT

backlog series are also considerably smoother than the simulated series (with added

Gaussian noise) which were used in the simulation studies. As such, attempting to

set the starting values directly from the data by using techniques such as smoothing

splines is not appropriate.

Although we have no prior information on the noise structure for the BT data, a

range of starting values for the variance parameters were tested. The most successful

of these introduced a relative variance profile for the time series of each region. This is

based on a similar principle for the noise added to the data in simulation study 3. As

we explain in the study, the 5 time series that represent the stocks; the backlog, people
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deployed, shrinkage, overtime and unused overtime have different levels of variability.

Consequently when adding noise to these series we wished to take this scaling into

account. Similarly for the BT data, when setting the variance starting values for each

geographical region, we measure the variance of each of the 5 time series, then divide

these by the smallest of the values. For each region the smallest value was for the

shrinkage series. We then obtain a relative variance profile for each region r denoted

by Vprofr . In the results presented in section 6.4, parameter estimates obtained using

different sets of variance starting values are presented. All of these sets use the profile

Vprofr .

When BT analysts performed hand calibration on hydraulics model 3, they discovered

that adjusting one term in the model that was previously kept constant (with a value

of 1), could have a dramatic improvement for some regions. This term is the ‘priority

power’, denoted by PP in (5.4.10). This equation for the tension Atn at time t is effec-

tively a ratio of the backlog and target backlog. For example if the backlog is greater

than the target, then tension > 1. A tension greater than 1 indicates that targets are

not being met and the model responds by increasing overtime. The priority power is

the power to which the tension is raised. Hence it is effectively a measure of how des-

perate a particular region becomes to reduce the tension when targets are not being

met. As we show in section 6.4, our results on the whole are improved by adjusting the

FIMLOF algorithm to estimate PP as an additional parameter θPP for each region.

When this is the case, its default value of 1 is used as a starting value in the algorithm.
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In section 6.4, we apply this modified FIMLOF algorithm to the BT regional time

series data and attempt to estimate the parameters of hydraulics model 3.

6.4 Results

In this section we present the results of parameter estimation on hydraulics model

3 using the regional BT time series data. Ideally, these parameter estimates would

be robust to the starting values that are used in the optimisation routine. As we

have seen in the simulation studies in chapters 4 and 5, this is not the case. Al-

though many sets of starting values for the structural parameters θ were investigated,

reassuringly, changes in these were not found to significantly affect the accuracy of

estimates. However, starting values for the two sets of five variance parameters, σ2
Q

= (σ2
Q1

,..., σ2
Q5

) and σ2
R = (σ2

R1
,..., σ2

R5
), were found to be an important factor in the

accuracy of parameter estimates. We denote the starting values for these two sets of

parameters as σ2
Q0

and σ2
R0

.

Consequently we split this section into three parts. In section 6.4.1 we present param-

eter estimates that result from using the same set of starting values for the variance

parameters across all the regions. In section 6.4.2 we examine the effects of allow-

ing the use of different variance starting values for each region. In these first two

sections, our parameter estimates are compared with the default BT parameters. In

section 6.4.3 the best of our estimates are compared with hand calibrated parameter

estimates for a subset of 8 regions.
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6.4.1 Fixed variance start values

In this section we present the parameter estimates that result from using the same

set of starting values for the variance parameters (σ2
Q0

, σ2
R0

) in the modified FIMLOF

algorithm, across all 59 regions. We compare two sets of parameter estimates, ‘Set

1’ and ‘Set 2’, with the BT defaults. Set 1 fixes PP while Set 2 estimates PP as

an additional parameter θPP ; the reasoning behind this was explained in section 6.3.2.

Set 1 and Set 2 parameter estimates use the same starting values for structural pa-

rameters in the algorithm. Although results from the same 5 sets of starting values

for the structural parameters as simulation study 3 were investigated (sets s1-s5 in

table 5.4.3), these were not found to be a significant factor in the accuracy of param-

eter estimates. As such the starting values for the structural parameters θ are s3 in

table 5.4.3, the default parameter values used in simulation study 3; (2.5, 0.5/7, 0.2,

30, 4, 5).

Set 1 and Set 2 parameter estimates also use the same starting values for the variance

parameters. The preferred starting values were found by experimentation. Starting

the σ2
Q parameters at low values and incorporating the relative variance profile Vprofr

(see section 6.3.2) into starting values for the σ2
R parameters was found to result in

the most accurate parameter estimates. As such, the starting values for the vari-

ance parameters take the following form. The five σ2
Q parameters start close to 0;

σ2
Q0

= e−10. Starting values for the five σ2
R parameters are multiplied by the relative
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variance profile as follows: σ2
R0

= ex Vprofr . x was set at 2, but it is worth noting that

values of x between 2 and 3 generally produced the best estimates. In section 6.4.2 we

investigate the effects of using different σ2
R0

starting values by adjusting the value of x.

As we saw in section 5.4.1, data for the people deployed and unused overtime se-

ries are effectively derived from shrinkage and overtime respectively. Therefore our

results focus on the RMSE values for the backlog, shrinkage and overtime. In terms of

replicating the behaviour of historical data, BT analysts place the greatest importance

on the backlog series, as the length of the queue is a key indicator of performance in

any queueing system. Replicating the overtime is considered the next most impor-

tant, as this characterises how the system responds to periods of high demand. The

shrinkage series is considered the least important of the three.

In the process described in section 6.3.1, we compare Set 1 and Set 2 parameter

estimates with the BT default parameters by using the structural parameters from

each set in hydraulics model 3 and comparing the simulated series to historical data,

as we describe in section 6.3.1. Boxplots of the resulting RMSE’s of the standard-

ised residuals are presented in Figure 6.4.1. Averages of these RMSE’s, over the 59

regions, are shown in table 6.4.1. Set 1 fixes PP at its default value of 1, while set

2 estimates PP as an additional parameter θPP using a starting value of PP0 = 1 in

the optimisation routine.

Parameter Set 1 consists of 16 parameters; the 6 structural parameters θ = (θ1, ..., θ6)
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Figure 6.4.1: Boxplots of RMSE of standardised residuals.

Parameter set backlog overtime shrinkage

BT defaults 1.053 1.329 1.190

Set 1 1.137 1.043 1.067

Set 2 1.093 1.047 1.054

Table 6.4.1: Average RMSE of the standardised residuals across the 59 regions.

and 10 variance parameters σ2 = (σ2
Q1

,..., σ2
Q5

, σ2
R1

,..., σ2
R5

). Set 2 consists of the same

parameters as Set 1 and includes an additional structural parameter; θPP . Hence we

can compare the log-likelihoods of these nested models at the MLE’s using a like-

lihood ratio test for each individual region, see for example Cox et. al (1979). As
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the difference in parameter numbers between the two models is 1, for each region the

test statistic is approximately X 2 with 1 degree of freedom. Results show that for

21 regions, the more complex model, based on Set 2 parameters, gives a significantly

better fit. The estimates of θPP are equally dispersed above and below 1. In addi-

tion, the backlog is the most important series from BT’s perspective as this is a key

indicator of a region’s performance. Table 6.4.1 and the boxplots of Figure 6.4.1 show

that Set 2 parameters have an improved performance in terms of the backlog RMSE

over Set 1 parameters. Hence in section 6.4.2 we continue to investigate the effects of

estimating θPP .

The boxplots of Figure 6.4.1 and table 6.4.1 show that our estimated parameters,

Set 1 and Set 2, do bring a significant improvement in terms of the RMSE for the

overtime and shrinkage series over the BT default parameters. However, for the most

important series - the backlog, our parameters have an increased RMSE and the box-

plot reveals some relatively high outliers. In section 6.4.2, we show the significant

improvements that result from allowing the use of different sets of σ2
R0

starting values

for each region. For the fixed σ2
R0

starting values used in this section, we have been

unable to provide hydraulics model 3 with parameters to represent the historical data

as accurately as we had hoped. We devote the remainder of this section to under-

standing why this is the case.

It seems reasonable to begin by investigating how well hydraulics model 3 fits the

data. To provide us with an initial estimate of this, we select a single region that
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is a fair representation of how well the BT default parameters fit the regions on

average. As the most important series is the backlog, we select a region with a

backlog RMSE that equals the median backlog RMSE of all 59 regions. This region

is Derby & Nottingham and the RMSE values are 1.02, 1.21, 1.03 for the backlog,

overtime and shrinkage respectively. Comparing these values to the median of the

overtime/shrinkage RMSE’s across the 59 regions, in the boxplots of Figure 6.4.1, we

see that the Derby/Nottingham RMSE’s for overtime and shrinkage are considerably

better than the medians. Hence this region should be one of the better performing

regions using the BT default parameters. The time series from hydraulics model 3

using the BT default parameters for Derby & Nottingham are compared to the his-

torical data in Figure 6.4.2. The black lines represent the historical data and the blue

lines represent hydraulics model 3 output.

For the backlog, the most important series, many peaks and troughs of the historical

data are generally either grossly exaggerated by the simulated data, or missed out

altogether. It is also clear that due to the difference in the scales of the plots, the

backlog is by far the poorest fitted of the three series. The fits for the overtime and

shrinkage series miss out on many peaks and troughs and are not a good match in

terms of shape, though the discrepancies are not as large as those for the backlog. We

can also observe that the simulated overtime series is consistently lower throughout

than the historical data. It seems clear that simply because the default BT param-

eters outperform our estimates, it does not necessarily make them good parameters.

As we have seen, even regions that are ‘better’ fitted are not a good representation of
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Figure 6.4.2: Simulated series from hydraulics model 3 for the Derby & Nottingham

region using default BT parameters, compared to historical data.
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the historical data.

One possibility is that the algorithm is repeatedly becoming stuck in local optima,

leading to inaccurate parameter estimates. To investigate this, we repeated attempts

at parameter estimation for a sample of the 10 regions that performed poorest in terms

of RMSE, this time using carefully selected starting values that lie close together. The

objective was to determine whether use of start values lying close together would re-

sult in sufficiently similar values of parameter estimates. However, results did not

provide any evidence that the algorithm is becoming stuck in local optima.

We now consider the BT regional dataset. As we explained in section 6.2, the histor-

ical time series suffer from a number of issues. Firstly, we were only provided with

weekly time series data for endogenous variables people deployed p∗ and shrinkage

s∗ and also the exogenous variable total employees Ete. Although cubic spline inter-

polation was used to convert these to daily series, we do not know how accurately

these series represent the true historical data. Secondly, to ensure that the overtime

o∗ and unused overtime uo∗ data remained in the same units as hydraulics model 3,

units had to be changed in these series from the data we were initially provided with.

This required dividing by certain weekly profiles which caused numerous unnatural

spikes in the series as we demonstrated in Figure 6.2.1. In many regions these spikes

were considerable. This means that of the 5 time series that represent the endogenous

variables for each region, 4 of these possess flaws in that they have either been inter-

polated from weekly data or possess unnatural spikes. This is likely to have affected



CHAPTER 6. APPLICATION: BT REGIONAL DATA 258

the accuracy of our parameter estimates for each region.

In addition we can observe the following about the dataset. Like many large or-

ganisations, BT possess vast databases that record data from a number of different

sources. Over time, the methods of recording data and the types of sources can

change. Consequently, inconsistencies can creep into the data. Although the data

underwent extensive cleaning by BT analysts prior to its use in this analysis, they

admitted that it was unlikely that all of these inconsistencies were removed, leading

to further question marks surrounding the data. An example of this is the exogenous

series for the total employees Ete for each region. BT analysts admitted that the true

values could potentially be 10% lower or higher than the series provided. From the

difference equations of hydraulics model 3 (5.4.1)-(5.4.5), we see that total employees

Ete affects the overall level of the shrinkage s∗ and unused overtime uo∗ series. Hence

any inconsistencies in the Ete series would potentially further impact our results.

Our modified FIMLOF algorithm requires the errors to be Gaussian. However if we

re-examine the time series of Figure 6.4.2, representing the historical BT data (black

line) for the Derby & Nottingham region, even a simple visual inspection reveals that

this is assumption is questionable. The shrinkage s∗ series, due to the interpolation

that was required, is smooth in appearance. The backlog b∗ series is less smooth, but

this is due to the presence of a slight weekly profile. The overtime o∗ possesses many

unnatural spikes. These characteristics are typical for each series across all the regions.



CHAPTER 6. APPLICATION: BT REGIONAL DATA 259

One way to investigate the assumption of Gaussian noise is by taking a centred 3-

point moving average of each series, subtracting this and inspecting the residuals.

Figure 6.4.3 presents Q-Q plots of these residuals for the Derby & Nottingham re-

gion. We can see that none of the plots support the assumption of Gaussian residuals.

In addition, it is worth highlighting that these Q-Q plots are typical across all the

regions. We can investigate more formally as follows. For each of the 59 regions we

have 5 time series (each of length 959 days) representing the endogenous variables; b∗,

p∗, s∗, o∗ and uo∗. Hence we have 295 time series altogether. We can use the Shapiro–

Wilk test (Shapiro and Wilk, 1965) to investigate the normality of the residuals for

each of the the 295 series. From the resulting p -values of these tests, only 12 of the

295 p -values are greater than α = 0.05, meaning that for 283 of the 295 series, we can

reject the null hypothesis (that these residuals are Gaussian) at the 95% confidence

level.

We can also examine the residuals when comparing our state-space models to the

historical data. To investigate the residuals for each region, we use the region’s esti-

mated parameters (from parameter Set 1 of table 6.4.1) and exogenous variables in the

state-space model, and simulate 100 sets of time series representing the 5 endogenous

variables; b∗, p∗, s∗, o∗ and uo∗. We then obtain 100 sets of residuals for each of the

5 time series for each region by taking the difference between these simulated series

and the historical data. Across all the regions this gives us 100 x 59 = 5900 sets of

residuals for each of the 5 time series. Performing the Shapiro–Wilk test on all these

sets of residuals, table 6.4.2 shows the percentages where the resulting p -values can
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Figure 6.4.3: Q-Q plots of residuals for Derby & Nottingham region.

reject the null hypothesis (that residuals are Gaussian) at the 95% confidence level, for

each of the 5 series. The high percentages of Shapiro–Wilk tests that reject the null

hypothesis raise serious questions regarding the assumption of Gaussian residuals.

Time series backlog overtime shrinkage people deployed unused overtime

Percentage 81.2 56.5 44.9 48.6 57.7

Table 6.4.2: Percentage of p -values resulting from Shapiro–Wilk tests that reject the

null hypothesis at the 95% level.

We can investigate more closely by examining an individual region. Figure 6.4.4

shows the standardised residuals resulting from 1 realisation of the state-space model

for the Derby & Nottingham region. In addition, the blue lines connect the stan-

dardised residuals that result from the use of the structural parameters only; that
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is, using the structural parameters in the deterministic hydraulics model 3, rather

than the state-space model. For this single realisation of the state-space model, when

performing a Shapiro–Wilk test on the residuals for backlog, overtime and shrinkage,

the resulting p -values are 0.60, 0.25 and 0.11 respectively - hence there is insufficient

evidence to reject the null hypothesis. These residuals may not ‘fail’ the Shapiro–Wilk

test of normality, however Figure 6.4.4 reveals that there are clear trends apparent in

the residuals. This raises questions as to how well the model is fitting the historical

data; there is some behaviour that our model is not able to explain. Although Fig-

ure 6.4.4 shows residuals for a single realisation of the state-space model for a single

region, this is a typical example of the residuals observed for other realisations of the

state-space models for the majority of the regions.

It is worth investigating the estimated values of the variance parameters, σ2 = (σ2
Q,

σ2
R) = (σ2

Q1
,..., σ2

Q5
, σ2

R1
,..., σ2

R5
) of parameter Set 1 of table 6.4.1. We present the aver-

ages of these in table 6.4.3. It is clear that values of σ̂2
R are considerably greater than

corresponding values σ̂2
Q, especially for the backlog, overtime and unused overtime

series. These ‘signal to noise’ ratios (see section 4.2.3) suggest that the state-space

models place more trust in the deterministic hydraulics model 3 equations, rather

than the historical data. Note that similar ratios were observed when using a variety

of starting values in the algorithm, whether we set σ2
Q0

starting values low and σ2
R0

starts high, or vice versa.

We can observe in Figure 6.4.4 that the standardised residuals of the deterministic
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Figure 6.4.4: Standardised residuals for Derby & Nottingham region from 1 realisation

of state-space model.

hydraulics model 3 - the blue lines - appear to be further away from having a Gaussian

distribution than the residuals in the same figure from the state-space model. This

is confirmed when we examine p -values from Shapiro-Wilk tests of these residuals

across all regions for the 59 x 5 = 295 series. The null hypothesis (that the residuals
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Parameters backlog people dep. shrinkage overtime unused overtime

σ̂2
Q 0.01 0.07 3.77 5.87 10.34

σ̂2
R 3.45 x 105 7.95 8.00 396.81 484.90

Table 6.4.3: Average of estimated variance parameters for parameter Set 1.

are Gaussian) is rejected for 98.3%, 98.3%, 98.3%, 89.8% and 89.8% of the time series

that represent the endogenous variables b∗, p∗, s∗, o∗, uo∗ respectively. As we see from

table 6.4.2, residuals from the state-space models fail the normality tests less often

than residuals for the deterministic hydraulics model 3. In other words, the residuals

from the state-space models (with their high-valued σ̂2
R estimates), are generally closer

to having Gaussian distributions than the residuals from the deterministic hydraulics

model 3.

One possibility for the high-valued σ̂2
R parameter estimates in the state-space models

is that this is out of necessity in order to ensure Gaussian residuals - or residuals that

are as close to being Gaussian as possible. The large σ̂2
R estimates of table 6.4.3 show

that the observational noise parameters are the dominant terms. As these noise terms

are Gaussian, then for sufficiently large σ̂2
R values, the residuals will similarly appear

approximately Gaussian. These results add further weight to the concern that the

assumption of Gaussian errors may not be suitable for this BT dataset. In section 6.5

we discuss alternative methods that may be more suitable for this dataset.
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In this section we have attempted to explain why our estimated parameters are not

allowing hydraulics model 3 to represent historical data as accurately as we hoped.

Ideally, the variance starting values would not affect the parameters estimated from

the FIMLOF algorithm – but they do. Accepting that this is the case, the question

becomes the following; despite this issue, how can we improve the accuracy of our pa-

rameter estimates from those obtained in this section? In section 6.4.2 we investigate

the effects of selecting the ‘best’ variance starting values for each region.

6.4.2 Adjusting variance start values

In this section we investigate whether our parameter estimates are improved by al-

lowing use of the ‘best’ starting values for the variance parameters for each region.

It is reasonable to suppose that hydraulics model 3 will fit some regions better than

others. As such, different values of the variance parameters would result between

these regions when estimating parameters using FIMLOF. Due to the lack of robust-

ness of the approach to the starting values used in the optimisation that we describe

in the previous section, we select the ‘best’ set of variance starting values to use for

each region. The starting values for the structural parameters remain unchanged.

In table 6.4.4, we present two sets of parameter estimates and compare these to

the BT defaults. Again Set 1 involves fixing PP in the model while Set 2 estimates

this as an additional parameter θPP . For each region, results for both Set 1 and Set

2 were obtained using the ‘best’ set of variance starting values, from a choice of 5



CHAPTER 6. APPLICATION: BT REGIONAL DATA 265

sets. These best sets were determined by the value of the RMSE for the backlog, the

most important series in the model to fit to the data. The best sets were found by

experimentation. For each of these 5 possible sets, the σ2
Q0

starting values remain at

e−10 while the σ2
R0

start values took the following form: σ2
R0

= ex Vprofr with x taking

values of 0, 1, 2, 3 and 5.

Parameter set backlog overtime shrinkage

BT defaults 1.053 1.329 1.190

Set 1 1.017 1.080 1.068

Set 2 1.009 1.037 1.019

Table 6.4.4: Average RMSE of the standardised residuals across the 59 regions.

We now see a noticeable improvement in the results. Compared to fixing the variance

start values across the regions in table 6.4.1, the backlog RMSE has decreased from

1.137 to 1.017 for Set 1, and from 1.093 to 1.009 for Set 2. Both these values are

now an improvement over the backlog RMSE of the BT defaults; 1.053. The overtime

and shrinkage RMSE for Set 1 and Set 2 remain a considerable improvement over the

defaults, with Set 2 improving further on the results for fixed variance starting values,

while Set 1 show slight increases. This outcome was expected by BT analysts. The

‘best’ variance starting values were selected for each region based on the resulting

backlog RMSE. However as the backlog is fitted more accurately and backlog RMSE

reduces, other series may not fit as well.
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These results are based on estimates obtained using 5 different sets of variance starting

values for each region. An interesting question would be to ask what would happen

if we choose from a greater number of sets? We investigate this using an additional

6 sets of starting values; giving us 11 sets altogether. The σ2
R0

start values took the

following form σ2
R0

= ex Vprofr with x taking values of 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5,

4, 4.5 and 5. The reasoning for the values of these additional 6 sets is as follows.

The best starting values σ2
R0

found previously were towards the middle of the range

at x = 2 and 3. So rather than extending the range by using x < 0 or x > 5, use

of these smaller intervals within the range was investigated. The results of selecting

the best of both 5 and 11 sets of starting values σ2
R0

for each region are shown in

the boxplots of Figure 6.4.5 and table 6.4.5. Note that in the boxplots, parameter

set ‘S1A’ denotes Set 1A parameters - that is Set 1 parameters (where PP is fixed)

chosen from 5 sets of start values. Set ‘S1B’ denotes Set 1 parameters chosen from

11 sets of start values. Similarly for Set 2 (where PP is estimated as an additional

parameter θPP ) with ‘S2A’ and ‘S2B’.

With a greater choice of variance starting values, Set 1B is a further improvement

over Set 1A for all three series, in terms of the average RMSE, as we see from ta-

ble 6.4.5. Similarly for Set 2B. From the boxplots we see that Set 1B and Set 2B are

a considerable improvement over Sets 1A and 2A respectively, in terms of the backlog

RMSE. However in terms of overtime and shrinkage, the median RMSE increases. As

in section 6.4.1, improving the fit for one series, the backlog, has decreased the fit
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Parameter set Sets of σ2
R0

backlog overtime shrinkage

BT defaults - 1.053 1.329 1.190

Set 1A 5 1.017 1.080 1.068

Set 1B 11 1.003 1.056 1.034

Set 2A 5 1.009 1.037 1.019

Set 2B 11 1.003 1.036 1.017

Table 6.4.5: Average RMSE across the 59 regions – choosing from both 5 and 11 sets

of start values.

for the remaining series; the overtime and shrinkage. However this is to be expected

when selecting the best sets of starting values based solely on the backlog RMSE. It is

also worth highlighting that the performance of the results of parameter Sets 1B and

2B are a further improvement, not only on Sets 1A and 2A, but also on the default

parameters. For example the backlog RMSE for parameter Set 2B is an improvement

over the BT default parameters for 58 out of 59 regions.

We now compare the performance of models with fixed PP and estimated θPP , i.e.

we compare the performances of Set 1A with 2A and Set 1B with 2B. Sets 2A and 2B

have lower average RMSE’s than Sets 1A and 1B respectively, for all series. From the

boxplots we can see that Set 2A plots are more favourable than Set 1A. Comparing

boxplots for Set 1B and 2B is less clear cut, though the backlog plot, the most impor-

tant series, is more favourable for Set 2B than for 1B. On balance it appears slightly
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Figure 6.4.5: Boxplots of RMSE of standardised residuals.

more favourable to use parameter Set 2B over Set 1B - or in other words to estimate

PP as an additional parameter θPP rather than fixing it. The improved performances

of Sets 2A and 2B over Sets 1A and 1B respectively suggests that hydraulics model 3

more accurately represents the regional systems when estimating θPP for each region.

In other words, setting this to its default value of 1 may be missing key aspects of the

differences in behaviour across the regions.

We now demonstrate graphically the improvement resulting from choosing the ‘best’
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variance starting values for each region from a set of 11. In Figure 6.4.6 we use the

parameters of Set 2B in hydraulics model 3 and compare the resulting time series

to time series generated by the BT default parameters. Again the region selected

is Derby and Nottingham. As we explained in section 6.4.1, for this region, the BT

default parameters result in the median backlog RMSE but perform better than the

median for overtime and shrinkage. Set 2B parameters for this region have a slightly

poorer RMSE than the Set 2B median RMSE’s for backlog, overtime and shrinkage;

1.001, 1.031 and 1.018 compared to 1.000, 1.029 and 1.015 respectively.

The black lines in the time series again represent the historical data and the blue

lines represent hydraulics model 3 output using the default parameters. The red line

represent hydraulics model 3 output using estimated parameters, Set 2B. The backlog

for Set 2B parameters is a noticeable improvement, with peaks considerably less exag-

gerated than for the defaults. Although hydraulics model 3 using Set 2B parameters

still misses certain peaks that the default parameters miss. The overtime also shows

some improvement.

In this section we have demonstrated considerable improvements to the results by

allowing the use of different σ2
R0

starting values for each region. However, these re-

sults are not without their flaws. Inspecting time series for certain regions reveals

some undesirable behaviour. An example of this can be seen for the region represent-

ing Reading, the time series of which are shown in Figure 6.4.7.
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Figure 6.4.6: Comparing our estimated parameters with default BT parameters and

historical data for the Derby & Nottingham region.
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Figure 6.4.7: Strange behaviour of simulated overtime series using our parameter

estimates for the Reading region.
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Overall the series from our estimates are an improvement over the defaults for both

backlog and overtime. However closer inspection of the overtime series resulting from

our estimates between days 750-850 reveals sharp consecutive increases and decreases

in the series. This is the result of some unexpected parameter estimates that from

a practical point of view do not make sense. For example θ5, the delay associated

with moving employees to overtime, is estimated at 1.62 days. BT expect this value

to be around 4 days. In addition, θ1, the target cycle time, is estimated at 0.42 days

rather than the expected 2.5 days. This balance of parameters means that the system

is attempting to clear jobs faster than it should and adjusting overtime levels too

often. These unexpected parameter estimates are also observed when fixing PP at

its default values. Allowing this to be estimated as a parameter has not caused this

behaviour. Also, this undesirable behaviour is not limited to the overtime series; the

shrinkage in certain regions exhibits similar patterns. So, although on average our

results are an improvement over the defaults, having an improved backlog RMSE for

58 out of 59 regions, the overtime and shrinkage for a small number of regions exhibit

undesirable behaviour.

It is worth highlighting however that this behaviour could be prevented. The ‘best’

σ2
R0

start values were selected in this section based entirely on the resulting backlog

RMSE value, when comparing simulated data to historical. If instead, the best σ2
R0

start values were selected using the RMSE values for backlog, overtime and shrinkage,

it is unlikely that we would observe the undesirable behaviour of Figure 6.4.7 in the

simulated data. The trade off here would be that the backlog RMSE values would
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show slight increases.

In the last two sections we have compared our parameter estimates with the de-

fault BT parameters. We now compare the estimates to parameters that have been

hand calibrated by BT analysts.

6.4.3 Comparing to hand calibrated parameter estimates

In this section we compare the best of our results from section 6.4.2 with a set of

hand calibrated parameters. The hand calibration was performed by a Principal Re-

search Scientist at BT with the aim of determining whether this method could find

parameters that were an improvement on the defaults. The 8 most difficult regions

to estimate parameters for, i.e. those with the greatest RMSE values, were selected

for this. It is likely that the data for these regions is the least well fitted to hydraulics

model 3 compared to other regions due to differences in behaviour across the regional

systems.

The results are shown in Figure 6.4.8 and table 6.4.6. Rows 1 and 2 of table 6.4.6

represent the average RMSE values across the 8 regions calculated by comparing hy-

draulics model 3 output with the historical data, for the default and hand calibrated

parameters respectively. In the boxplots of Figure 6.4.8 these are denoted ‘BT’ and

‘HC’ respectively. Rows 3 to 5 represent parameter set 2, where PP is estimated as

an additional parameter, with different choices of sets of starting values. In row 3, a

single set of variance start values σ2
R0

are used throughout, the same as those from
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section 6.4.1; σ2
R0

= ex Vprofr with x = 2. For rows 4 and 5 we use parameter sets Set

2A and Set 2B of section 6.4.2, where the ‘best’ σ2
R0

start values are chosen for each

region from a set of 5 and 11 respectively. In the boxplots of Figure 6.4.8 these are

denoted ‘S2’, ‘S2A’ and ‘S2B’ respectively.

Parameter set Sets of σ2
R0

backlog overtime shrinkage

BT defaults - 1.044 1.327 1.197

BT hand calibrated - 1.064 1.042 1.157

Set 2 - 1.316 1.079 1.098

Set 2A 5 1.006 1.054 1.011

Set 2B 11 1.001 1.042 1.013

Table 6.4.6: Average RMSE of the standardised residuals across the 8 difficult regions.

Table 6.4.6 and Figure 6.4.8 demonstrate the improvements of using our estimated

parameters Set 2A and Set 2B, compared to both the BT defaults and hand cali-

brated parameters. In terms of the average RMSE’s, both sets are a considerable

improvement on the default parameters for all three series, and are an improvement

on the hand-calibrated parameters in all but one case; Set 2A has a greater average

overtime RMSE. Parameter Set 2B appears to perform best of all the parameter sets

when inspecting the average RMSE’s. Although the boxplots reveal that Set 2B is

outperformed by the hand-calibrated parameters for the overtime series, Set 2B has a

considerably lower mean and median RMSE for shrinkage and also backlog - the most
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Figure 6.4.8: Boxplots of RMSE of standardised residuals.

important series. Once again, allowing more fine-tuning for each region, in terms of

selecting from a wider range of σ2
R0

start values, has improved performance. If we ac-

cept the current limitations of our approach – i.e. its lack of robustness to the starting

values in the algorithm – this represents a clear improvement over the BT defaults

and hand calibrated parameters for these difficult regions. This improvement is still

evident for parameter Set 2A when reducing the choice of start values σ2
R0

from 11 to 5.

It should also be noted that Set 2, with fixed σ2
R0

start values, has the worst backlog
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RMSE – considerably poorer than both the default and hand-calibrated parameters.

Hence this parameter set shows an even poorer performance for these 8 difficult re-

gions than the results for all the regions in section 6.4.1. For some of our estimated

parameters, for example Set 2A, the improvements to the backlog RMSE come at a

price; we slightly lose performance for the overtime series. In addition, the undesirable

behaviour of the overtime and shrinkage series exposed in Figure 6.4.7 of section 6.4.2

is again apparent for at least a short interval in one of these series in 5 of the 8 regions.

As we see from table 6.4.6, the average RMSE for backlog is actually greater us-

ing hand-calibrated parameters than for the defaults. It is important to highlight

that the BT hand-calibration was performed in an attempt to minimise the RMSE of

the raw residuals, not the RMSE of the standardised residuals. However, if we pause

to examine the RMSE of the raw residuals, the BT default parameters have averages

of 902.24, 21.60 and 4.21 respectively for backlog, shrinkage and overtime. The BT

hand-calibrated parameters are a slight improvement on the defaults for the two most

important series backlog and overtime, 880.79 and 20.80 respectively, at the expense

of poorer average shrinkage RMSE of 4.96. As the backlog is the most important

series, if the hand-calibration had aimed to minimise the RMSE of the standardised

residuals, then the average of the backlog RMSE would be an improvement over the

BT defaults.

The hand-calibration was performed by a Principal Research Scientist at BT with

extensive experience of modelling (and in particular system dynamics) and the BT
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systems/data. This scientist also independently produced the hydraulics model. In

other words, there is surely nobody who is better qualified to hand-calibrate the model

for individual regions. However, whether we examine the RMSE’s of the raw residuals

or standardised residuals, it is clear that although the hand-calibrated parameters are

an improvement over the defaults, this improvement is not considerable.

Although we highlight the limitations of the hand calibration school of thought in

section 4.1.2, there are studies that claim this approach shows promise. In particular,

Lyneis and Pugh (1996) claim after an experimental study that “hand calibration

works, and is less of an art and is more replicable than might be expected. Moreover,

it produces results which are as close to the true values as automated calibration,

and are typically close enough to make no significant difference to the outcome of

policy interventions”. The relatively small improvement in performance that we have

observed using the hand-calibrated parameters over the defaults suggests one of the

following explanations; either hydraulics model 3 is simply not a sufficiently accurate

representation of the behaviour of individual regional systems, or the data issues de-

scribed in sections 6.2.1 and 6.4.1 (such as necessary interpolations, transformations

and potential inaccuracies of series such as Ete) have caused significant discrepancies

between hydraulics model 3 and the data.

The optimisation routine in the FIMLOF algorithm uses the log-likelihood and as

such, does not prioritise any of the 5 time series. We have selected the best of our

results based on the backlog RMSE as this is the most important series to BT. The
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drop in performance that we have on some occasions observed for the overtime and/or

shrinkage series when improving the backlog fit, not only in this section but in the

previous two, could be explained as in the previous paragraph; by either hydraulics

model 3 not sufficiently representing the behaviour of the regional systems, or the

data issues.

6.5 Discussion

In this chapter we have attempted parameter estimation for state-space models that

are based on the equations of hydraulics model 3, for 59 regional sets of historical BT

time series data. Parameter estimates were initially poorer than expected, offering no

improvement over the defaults. This exposed a lack of robustness to the starting val-

ues in the algorithm for the variance parameters. Compared to the simulation studies

1-3 (which added Gaussian noise) where this issue was not apparent, this issue had a

major influence on results for the BT data. In section 6.4.1 we provide evidence that

raises concerns regarding the assumption of Gaussian noise for the BT regional data –

which is a possible explanation for why the starting values of the variance parameters

were important. Issues with certain time series within the dataset and the necessary

interpolation of weekly series into daily were also considered as potential additional

reasons for the poor performance.

Selecting the ‘best’ σ2
R0

start values for each geographical region, as in sections 6.4.2

and 6.4.3, may not be ideal, but our results demonstrate that it is useful. This provides
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BT with an approach that results in significant improvements to parameter estimates.

Although this is not the fully automated approach that we hoped to achieve, it does

constitute methodology that can be used by BT. It is ready to be implemented im-

mediately using our estimated parameters and can be used to recalibrate the model

as the data changes in future. We argue that when necessary for certain parameters

such as σ2
R here, the selection of the appropriate starting values is an additional factor

that requires calibration. It should also be emphasised that although we adjust the

starting values for the optimisation, the parameters are still being estimated using

FIMLOF. The optimisation algorithm has not been influenced in any way.

In our view this represents the most complex application of FIMLOF yet seen. Hy-

draulics model 3 is an extremely complex and nonlinear system dynamics model that

is used by a large multinational organisation. Calibrating the model using the re-

gional data is not an easy task. We also argue that this is one of the most thorough

expositions of FIMLOF. The results exposed not only the limitations of the approach,

e.g. the lack of robustness to the starting values, but also included the full effects of

these. Consequently we were able to devise a solution that while not perfect, offers a

practical solution to the organisation until advances can be made.



Chapter 7

Conclusions

This thesis investigates the feasibility and value of implementing recent developments

in operational research and statistics, in order to enhance system dynamics models.

This is undertaken in three key areas:

• Adding a discrete-event model to capture greater levels of detail, track individ-

uals within the system and represent stochastic variation in the behaviour of

these individuals (chapter 2).

• Using data-driven techniques to assess core assumptions of SD models from

historical time series (chapter 3).

• Estimating the parameters of SD models using state-space models and Kalman

filtering (chapters 4-6).

In chapter 2, results from the SD/DES hybrid model demonstrated some of the ben-

efits of this approach for BT’s system, compared to using a standalone SD or DES

model. Incorporating the feedback from the SD model equations enabled the hybrid

280
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to replicate the decisions of management to adjust workforce numbers. By repre-

senting individual job and engineers in the DES part of the model, the hybrid was

able to directly model the important performance measure RFT. This enabled us to

understand the size of the effect of increasing the standard deviation of service times

on RFT, which would not have been possible without the hybrid model. Use of the

hybrid also demonstrated the potential for misleading results, when relying on BT’s

current process of estimating RFT via regression. These results add to the literature

by providing another example of the benefits of hybrid modelling over a standalone

SD or DES model.

A limitation of the hybrid model was that it was based on a scaled–down, simpli-

fied version of BT’s system. However, the relatively simple hybrid model can be

considered as a ‘proof of concept’ that such models can be constructed in dedicated

DES software, with the caveat that such software offers a programming language facil-

ity to enable the coding of the SD model’s difference equations. However, our choice

of a DES environment posed a number of additional challenges that would need to be

overcome. The chapter outlines these in order to assist future researchers considering

hybrid modelling within a DES environment. The successful operation of the model

demonstrated that these challenges can be overcome, however alternative approaches,

such as the use of separate SD and DES environments or the use of multi-discipline

software, were highlighted as likely to be easier to use.

An interesting area of future work would involve the construction of a hybrid model
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that represents the full–scale BT system. The SD part of such a model would be based

on the full version of the hydraulics model, introduced in chapter 5, which is consid-

erably more complex than the simplified version. The DES part would be required to

represent large numbers of jobs, their queues, and all the engineers. In addition, in

the full system there are multiple job types and engineer skill sets. Hence this hybrid

model would be considerably more complex than the hybrid model of chapter 2. Such

a model would enable BT to better understand the behaviour of the RFT measure

in the full system, which could potentially result in more effective system performance.

Chapter 3 investigated core assumptions of BT’s SD hydraulics model, using histori-

cal time series data. Subjective methods were used to detect ‘spikes’, the increases in

demand, and also in the definitions of the regression variables – which were designed

to track system changes around the periods of a spike to determine how the system

responds. A regression model was formed at a national–level to investigate overall

system behaviour, with 9 area–level regression models investigating more localised

behaviour.

Although certain regression assumptions did not hold, the national model revealed

that periods of increased demand were found to result in an observable response in

the data as management increased engineer numbers accordingly. In terms of how

a major organisation controls its backlog of jobs, this result makes sense. Since the

approach of chapters 4-6 relies on the structure of the hydraulics model being an

accurate representation of system behaviour, this result from the national model was
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of particular importance. A number of outliers were also found in the residuals, al-

though robust regression results provided reassurance that outliers were not unduly

influencing the results. A limitation of the analysis was that subjective methods were

required in the processes of spike detection and variable definitions. However, results

demonstrated that the national model results were fairly robust to changes in these

selections.

Area-level results suggested that the responses of each geographical area to increases

in demand may not be the same. These models violated fewer assumptions than the

national model, such as normality of the residuals. However the inference that can

be drawn from the area–level models was limited, since these results were based on

considerably less data than the national model. This highlighted a more general lim-

itation of our approach. To obtain meaningful results from the regression model, we

need a sufficient amount of spike data. This means that we cannot form conclusions

separately for individual regions as the number of spikes detected in each is insuffi-

cient. Chapter 6 investigates differences in regional behaviour more formally.

In the literature there is some disagreement regarding how SD models should un-

dergo validation tests – and whether data-driven methods are necessary. What is

universally accepted is that a number of tests must be passed to build confidence in

the model; the more tests that are passed increases confidence in the model. Chap-

ter 3 demonstrated that it is possible to investigate key assumptions of a SD model

from historical time series using regression methods. Such an analysis can be used to
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strengthen existing structural validation tests of SD models. We also suggest that the

approach followed in chapter 3 can be considered as an additional test to the group of

direct structure tests. More generally, chapter 3 demonstrates the insights that can

be obtained from using data-driven methods to validate the structure of a SD model.

Chapter 4 presented a novel, step by step process, for the formulation of a state-space

model from a SD model. This consisted of grouping the SD variables, determining

the order in which each should be updated and then performing substitutions to form

Markovian difference equations; the addition of state and observational noise terms

forms the state-space model. This was used to form a linear Gaussian state-space

model from hydraulics model 1.

A modified FIMLOF algorithm was used to estimate the parameters of this state-

space model. Simulation results demonstrated success of the method in estimating

the parameters to a good degree of accuracy, especially for low amounts of added

noise. The signal to noise ratio of the added noise was shown to be an important

factor. Previous examples of FIMLOF in the literature present results based on using

only a single simulation. Our simulation studies contribute to the literature by using

Monte Carlo experiments, which enable a more thorough exposition of the perfor-

mance of the FIMLOF algorithm. The simulation results can also be viewed as a first

step towards estimating the parameters of the full hydraulics model from historical

BT time series data in chapter 6.
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The simulation studies investigated the effects of using different starting values for

the structural parameters θ. However, a limitation of the studies was a lack of investi-

gation into the effect of starting values for the variance parameters σ2
Q1
, σ2

Q2
, σ2

R1
, σ2

R2
.

The studies revealed a key limitation of our modified FIMLOF algorithm; its sensitiv-

ity to starting values. With such a limitation, multiple sets of parameter estimates,

using different starting values, are required to ensure that the modeller can have con-

fidence in the results. In our view, a promising area of future work is to investigate

optimisation techniques that are robust to the choice of starting values and hence

able to consistently find the global optimum, for this type of problem. Vierhaus et

al. (2014) state that this is an area they are currently working on.

The methods outlined in chapter 4 are limited to estimating parameters of linear

Gaussian state-space models only. In addition, hydraulics model 1 is a considerably

simplified model of BT’s system – hence the state-space model formed from this is

relatively simple. Chapter 5 explored extensions of the methods to more complex

state-space models that are not restricted by the assumption of linearity.

In chapter 5, the novel process for the formulation of a state-space model from a

SD model, was extended to nonlinear SD models of varying complexity. Hydraulics

model 2 is similar in complexity to model 1. Hydraulics model 3 is considerably more

complex than models 1 and 2 – this is effectively the full version used by BT. The

state-space model, resulting from hydraulics model 3, is more complex and nonlinear

than other models in the literature to which FIMLOF has been applied.
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Two simulation studies, studies 2 and 3, presented results of applying modified FIMLOF

algorithms to estimate the parameters of these nonlinear state-space models – based

on hydraulics models 2 and 3 respectively. Results of study 2 demonstrated success in

estimating the parameters, with the amount of added state noise σQ shown to be an

important factor. Results of study 3, despite showing a loss in accuracy compared to

studies 1 and 2, demonstrated some success, especially for low levels of added noise.

Results also revealed key differences in the identifiability of each of the 6 structural

parameters, resulting in some being estimated more accurately than others. The re-

sults of this study demonstrate that even for a complex, industrial–scale model, the

algorithm can provide useful results, which would be of importance to an organisation

such as BT. Study 3 was designed to recreate the conditions of the real system as far

as possible and so was the final step prior to chapter 6 – applying FIMLOF algorithm

3 to historical BT data.

Previous uses of FIMLOF have used the extended Kalman filter for nonlinear sys-

tems. However, the literature supports the use of the UKF over the extended Kalman

filter. Hence, the UKF was used within the FIMLOF algorithm for studies 2 and 3.

This is the first modification of the FIMLOF method to successfully incorporate the

UKF for nonlinear systems.

The modified FIMLOF algorithms of chapter 5 suffer from many of the limitations of

the algorithm in chapter 4. The algorithms are again limited by their sensitivity to
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the starting values used. In addition, simulation studies 2 and 3 do not investigate

the effect of using different starting values for the variance parameters. However,

as in study 1 of chapter 4, although the algorithms were sensitive to the structural

parameter starting values, the choice of starting values did not affect the accuracy of

parameter estimates for studies 2 and 3.

A key limitation of FIMLOF algorithms 1-3 is the requirement for a Gaussian noise

structure. This assumption is possibly the most limiting when considering applying

these techniques to complex industrial SD models. Historical time series associated

with such models may be corrupted by non-Gaussian noise, but determining whether

or not this is true is not always possible. In our view a promising area of future

research would be to investigate approaches that enable this assumption of Gaussian

noise to be dropped. Modifying FIMLOF algorithms to include particle filters, rather

than the UKF, would seem to be the most promising avenue for this.

After further modifications to FIMLOF algorithm 3, chapter 6 applied this algo-

rithm to estimate parameters of 59 regional state-space models, each based on the

structure of hydraulics model 3. Historical BT time series data were used for each re-

gion. The objective was to calibrate hydraulics model 3 to enable accurate modelling

at a regional level. Parameter estimates were initially poorer than expected, offering

no improvement over the defaults. However during investigation a number of issues

arose surrounding the historical BT data. Evidence was provided that raised serious

questions over the assumption of Gaussian noise. In addition, the potential flaws of
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certain time series were exposed. These included the interpolation of weekly series

into daily series. Considering that the algorithms performed considerably better in

the simulation studies, these data issues were considered as potential reasons for the

poor performance with the BT data.

As in the three simulation studies, results exposed a lack of robustness to the starting

values used in the algorithm. However, unlike the simulation studies, chapter 6 results

demonstrated that the choice of different starting values for the variance parameters

affected the accuracy of parameter estimates. This lead to our approach of selecting

the ‘best’ observational variance parameters’ σ2
R0

start values for each geographical

region. This was far from ideal – and not the automated parameter estimation pro-

cedure that we aimed for. However our results demonstrated that such an approach

can be useful and enabled us to obtain parameter estimates that were a significant

improvement over the BT defaults. This provides BT with an approach that offers a

practical solution to calibrating their model, until advances can be made. We argue

that the selection of the best regional starting values is an additional factor that re-

quires calibration. In addition, due to the complexity and scale of hydraulics model

3, in our view, chapter 6 represents the most complex application of a FIMLOF algo-

rithm yet seen.

Two of the key limitations of the FIMLOF approach highlighted earlier in this chap-

ter were again apparent in chapter 6, and perhaps exposed more seriously. The

assumption of Gaussian noise was restrictive when attempting to apply the method
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to historical time series data from a complex system. The algorithm’s sensitivity to

starting values was problematic, since unlike the simulation studies, there were no

‘true’ values to compare parameter estimates against.

The concerns regarding the assumption of Gaussian noise for the BT data, further

motivate the earlier suggestion of investigating the use of particle filters within a

modified FIMLOF algorithm as an avenue of future work. Another interesting avenue

would be to investigate use of methods such as model reference optimisation (MRO),

explained in section 4.1.2. This involves the use of an objective function that attempts

to minimise the prediction error (e.g. RMSE) of time series directly. This approach

does not make any prior assumptions regarding Gaussian errors. MRO would also

give us the freedom to incorporate priorities in the different time series - such as giving

the backlog higher priority - as was the case for the BT data. MRO also does not

require the system to be linear.

In this thesis we have investigated the feasibility and potential value of solution meth-

ods, in each of the three key areas outlined at the start of this chapter. Collectively

for our research in the three areas, these results demonstrate the value that can be

added to SD models using statistical methods. It is worth emphasising that although

the focus of this thesis in terms of SD models have been the BT hydraulics models

1-3, the techniques applied in each of these three areas can be applied to a wide range

of SD models, provided that appropriate historical data is available.
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