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Abstract– The research behind this article primarily concerns 

the development of mobile robots for nuclear decommissioning. 
The robotic platform under study has dual, seven-function, 
hydraulically actuated manipulators, for which the authors are 

developing a vision based, assisted teleoperation interface for 
common decommissioning tasks such as pipe cutting. However, 
to improve safety, task execution speed and operator training-

time, high performance control of the nonlinear manipulator 
dynamics is required. Hence, the present article focuses on an 
associated dynamic model, and addresses the challenging 

generic task of parameter estimation for a highly non-convex 
and nonlinear system. A novel approach for estimation of the 
fundamental parameters of the manipulator, based on the idea 

of multi-objectivization, is proposed. Here, a single objective 
output error identification problem is converted into a multi-
objective optimization problem. This is solved using a multi-

objective genetic algorithm with non-dominated sorting. 
Numerical and experimental results using the nuclear 
decommissioning robot, show that the performance of the 

proposed approach, in terms of both the output error index and 
the accuracy of the estimated parameters, is superior to the 
previously studied single-objective identification problem.1 

1.  INTRODUCTION 

For several decades robots have been used to replace human 

workers in manufacturing environments [1], performing 

repetitive or dangerous jobs, as well as in hostile and 

dangerous environments such as subsea [2], mining [3] and 

nuclear [4], where the environment is unsuitable for humans 

to operate. Traditionally robots have mainly operated in 

structured environments, such as automotive production 

lines. Increasingly, however, they are now being used in 

unstructured and dynamically changing environments. This 

necessitates the development of smarter, faster and more 

flexible robotic systems, with the capability to show human-

like characteristics such as sensing, memory, dexterity and 

trainability. Progress in this area includes the development 

of semi-autonomous and tele-operated systems, where the 

human interacts with the robot in a way that assures safe and 

reliable operation for both manipulator and operator. 

To support research and development in this area, a mobile 

robotic platform, with dual seven degree of freedom (DOF) 

hydraulically actuated manipulators, has been developed at 

Lancaster University (see e.g. [5] and Fig. 1). This platform 

is primary being developed to accomplish specific tasks 

related to the decommissioning, maintenance and repair of 

nuclear power facilities. It consists of a BROKK–40 mobile 

base, to which two HYDROLEK manipulators have been 

attached. To replace the traditional direct joystick system 

                                                 
1* The authors are grateful for the support of the National Nuclear 
Laboratory and Nuclear Decommissioning Authority in the UK. 
  All the authors are with the Engineering Department, Lancaster University, 
United Kingdom (corresponding author: a.montazeri@lancaster.ac.uk)

 

used previously, a vision based, assisted teleoperation 

human machine interface (HMI) is under development by 

the present authors [6]. This uses a camera to obtain RGB 

video and 3D depth data for the scene in front of the 

manipulators. The system presents a straightforward 

graphical user interface (GUI) to the operator, who with just 

four mouse clicks can select target positions for each 

manipulator to e.g. perform a pipe grasp and cut action. 

However, designing high performance control algorithms 

that compensate for the nonlinear dynamics of this 

manipulator system requires a reliable model that accurately 

captures the dynamic behaviour of the system [7-8]. This 

further necessitates development of techniques to estimate 

the parameters of the model using experimental data under 

different operating conditions. The importance and challenge 

of this task in the context of robotics is considered by many 

authors including, for example, research into trajectory 

optimization [9] and equation error parameter estimation 

[10-11]. The major problems in estimation using equation 

error methods result from the uncertainties due to the 

modelling errors and measurement noise in the observation 

matrix. To address this, one approach is to use output error 

identification. However, as discussed in section 3, this leads 

to a challenging non-linear and non-convex optimization 

problem, solved here using a multi-objectivization concept. 

Section 2 of the article briefly reviews the robotic platform 

and assisted teleoperation HMI. Section 3 provides the 

background to the generic optimisation problem, which is 

investigated in section 4 by sensitivity analysis. This leads to 

a new formulation of the estimation problem in section 5, 

using the multi-objectivization concept and associated 

Genetic Algorithm (GA) methods. In section 6, the 

parameters of the proposed multi-objective GA are tuned for 

the best performance and the estimation results are compared 

with a simple GA, as applied to the decommissioning robot. 

This is followed in section 7 by the conclusions. 

2.  HUMAN–MACHINE INTERFACE 

The previously developed robotic platform, illustrated in 

Fig. 1 and described in more detail by references [5, 7, 8], 

has some similarities to the Hitachi Astaco-Sora system [12]. 

The Hitachi consists of two hydraulic manipulators on a 

tracked vehicle and is teleoperated using a complex user 

interface. This complexity arises from the many cameras and 

sensors, as well as from the teleoperated control system. By 

contrast, the assisted teleoperation system developed by the 

present authors, is designed to keep the user engaged and in 

control at all times, whilst being as straightforward as 

possible. A multiple camera approach is not always practical 

in a nuclear decommissioning environment anyway, where 



 

 

 

 

 
Fig. 1 Top: BROKK–based nuclear decommissioning robot. Lower photos: 

imagine processing: (a) original and (b) simplified image of the target pipe. 

electronics are easily damaged by radiation. In general, it is 

preferable to reduce the number of sensors and other 

electronics, limiting the amount of scene information that 

can be collected and creating restrictions that need to be 

considered when developing assisted teleoperation. 

Due to such limited sensor data availability, a system that 

can grasp generic objects would be unreliable. As a result, 

the developed vision system is based on the concept of 

multiple subsystems for common tasks under one user 

interface. This includes, for example, one subsystem for pipe 

cutting and another for pick and place operation. This 

approach reduces the complexity of the problem, potentially 

leading to improved performance and reliability. 

Furthermore, cognitive workload is generally reduced by 

tailoring the information shown to the user to one particular 

decommissioning task. 

Preliminary work has focused on pipe cutting as an 

illustration of the generic approach (Fig. 1), since this is a 

common repetitive task in decommissioning. The user 

selects the object to be cut from an on-screen image with a 

mouse click, whilst the computer control system determines 

the required position and orientation of the manipulators in 

3D space, and calculates the necessary joint angles for the 

manipulator to grasp the object. The approach has some 

similarities to recent work by Kent et al. [13]. However, 

testing of the new interface, even in a laboratory 

environment, has identified the need for improved control 

systems to provide more accurate movement of the hydraulic 

manipulators, leading to the research in the present article. 

3. OPTIMISATION BACKGROUND 

One approach to address the nonlinear and non-convex 

nature of the performance index used for parameter 

estimation in an output error format, is to use multi-start 

gradient-based search techniques. The major problem with 

such techniques is their dependency on the initial conditions. 

For manipulator parameter estimation, the problem can be 

alleviated using a closed-loop technique [10]. Another major 

problem for the present robot, however, is that unlike in 

references [10-11], calculating the gradient of the 

performance index with respect to the unknown parameters 

is not possible analytically: lack of an analytical model 

prohibits analytical derivation of the gradients, whilst using 

a performance index such as the infinity norm of the output 

error leads to a non-differentiable performance index. Other 

approaches include evolutionary-based optimization, such as 

differential evolution (DE), particle swarm optimization 

(PSO) and GAs.  

Reference [14] presents an overview of evolutionary 

algorithms for system identification and filtering. In the 

context of multi-objective evolutionary optimization, [15] 

suggests that none of these approaches have been applied in 

a system identification framework. In fact, quite a few 

attempts are reported to use multi-objective optimization for 

the trade-off between the order of the model and the quality 

of the identification. However, the motivation for the present 

article is quite different. Here, we use the concept of multi-

objectivization [16] to convert a single-objective output error 

identification problem into a multi-objective one. We have 

formulated the optimization problem to be solved using the 

well-known NSGA-II algorithm. Many multi-objective 

evolutionary algorithms use the idea of non-dominant 

sorting similar to NSGA-II. GAs are also used by [17-18] for 

tuning the model parameters of a 3-DOF serial manipulator 

powered by electric motors and gearboxes. A multi-objective 

GA is also used in [19] to estimate and tune the parameters 

of a PID controller for a 2-DOF robot arm. However, other 

options include replacing the GA with PSO or DE. 

4.  PROBLEM DESCRIPTION 

The present article builds on the work in [21, 22] and [20] 

that used a simple GA in relation to estimating the unknown 

parameters of the model in robotic application, and further 

develops the results presented in [8] in using multi-objective 

GA, with the aim to improve both the parameter estimation 

accuracy and the output error performance index of the 

problem. Joint 2 (‘shoulder’ elevation) is used as an 

example. In contrast to these earlier articles, to find the 

minimum set of parameters suitable for estimation, a 

comprehensive first order identifiability analysis is first 

discussed. Note that the dynamic model of the manipulator is 

not described below because of space constraints: the 

equations and implementation form are in references [7-8]. 

4.1  Sensitivity Analysis 

To find a suitable set of parameters for optimisation, an 
identifiability analysis of the dynamic parameters of the 
manipulator model was conducted. The sensitivity of the 
cost function 𝐽𝑁(𝛉) defined later in (2) is calculated with 
respect to the nine mechanical system model parameters in 
vector 𝛉. Since no analytical model of the robot dynamics is 
available, derivatives of the cost function with respect to 
these parameters are calculated numerically using 



 

 

 

perturbation analysis. The local sensitivity of the cost 
function  𝐽𝑁(𝛉) is investigated with respect to random 
changes of individual parameters of the system. Each of the 
nine parameters are randomly perturbed around the nominal 
value, with a variance of 0.1 and 1.0, and the ratio of change 
in the cost function output over change in parameter value, 

 NJ θ θ , determined. For each variance, the average for 
each parameter over 100 perturbations is shown in Table 1. 

The second stage of the sensitivity analysis was to evaluate 

the sensitivity of the model output �̂�(𝑘; 𝛉) for different 

values of the parameters, observed by plotting them 

numerically. This is achieved by changing the value of one 

parameter at a time to cover the full range of possible values 

and plotting the model output. Figures 2 and 3 show the 

simulation output for varying joint spring stiffness and 

damping coefficient respectively. 

Table 1 – Average sensitivity of the performance index for 

random perturbations. The parameters are defined in [7-8]. 

Parameter Variance 0.01 Variance 0.1 

Gain 23.303 1803.014 

Damping 19251.758 1803.868 

Spring Stiffness 23010.938 1817.792 

Mass 1 24420.943 1841.055 

Mass 2 25777.600 1921.174 

Mass 3 26938.055 1929.087 

Mass 4 27339.732 2085.842 

Mass 5 249642.931 2166.694 

Mass 6 250412.766 2212.637 

 
Fig. 2  Simulation output (Joint 2 angle) for varying the 

spring stiffness from 5 mN/rad to 100 mN/rad. 

 
Fig. 3  Simulation output (Joint 2 angle) for varying the 

damping coefficient from 10msN/rad to 400msN/rad. 

 

 

Fig. 4 Comparison of the sensitivity of the simulation output 

to four parameters (i.e. spring stiffness, damping coefficient 

and the mass of links 4 and 6) over the same time segment. 

Sensitivity is much lower for the link masses, with the mass 

of link 6 being the most sensitive and sensitivity decreasing 

towards link 1. This result is in agreement with the data in 

Table 1. An important point to observe is that the sensitivity 

of the output, as shown in Figures 2 and 3, is a function of 

time. For some time segments, the output is more sensitive 

to change of parameters than for other time segments. As is 

evident from Fig. 2, the output is less sensitive to parameter 

changes around the starting time and becomes increasingly 

sensitive as time goes on. Alternatively, by looking at the 

sensitivity of different parameters in an identical time frame, 

as shown in Fig. 4, it is possible to obtain a better idea of 

how the output sensitivity differs for various parameters. 

We exploit this property in minimization of the performance 

index (2), by splitting the model output into a number of 

segments and treating each segment as a separate objective 

for the multi-objective GA. One advantage of using multiple 

segments is that it introduces cross validation in parallel to 

parameter estimation when the GA is running. For each 

segment, the estimated parameters are validated against the 

fitness value for other segments. A good parameter set in the 

sense of the multi-objective performance index should have 

a low fitness value across all segments. Since, in the ideal 

case, there is only one parameter set that ensures the 

minimum fitness value across all segments, i.e. the global 

optimum solution, it is expected that the algorithm achieves 

an improved convergence to the optimum parameter values 

in this way. Finally, note that a similar analysis is performed 

for the parameters of the hydraulic actuator subsystem. 

4.2  Performance Surfaces 

Another measure that provides an improved understanding 

for selection of a suitable optimization algorithm is the 

nature of the performance surface. To obtain a visual 

understanding of the type of non-linearity and non-convexity 

of the problem, the performance surface is plotted as a 

function of two exemplar parameters from Table 1. 

Examples of these surfaces are shown in Figures 5 and 6.  

 



 

 

 

 

Fig. 5  Performance surface showing the infinity norm of the 

cost function as a function of the mass of link 6 and the 

damping coefficient. 

 

Fig. 6  Performance surface showing the infinity norm of the 

cost function as a function of mass of link 6 and damping 

coefficient, with a smaller range of output error than Fig. 5, 

hence showing the non-flat surface. 

 

Fig. 7  Performance surface showing the infinity norm of the 

output error as a function of the flow discharge coefficient 

and cylinder piston area for the hydraulic actuator. 

Fig. 5 shows the infinity norm of the performance index (2) 

as a function of the damping coefficient and Mass of link 6. 

A ‘zoomed-in’ version of this plot around the optimum 

values is shown in Fig. 6. These figures show that the 

performance index has an almost flat surface around a range 

of values for the desired parameters, which makes the 

estimation problem a difficult task. This result demonstrates 

the non-convex nature of the estimation problem. As will be 

shown later, by using the concept of multi-objectivization of 

the performance index, it is possible to find performance 

indices that are more sensitive to the unknown parameters 

and hence result in a better overall estimation performance. 

The performance surface to estimate the parameters of the 

hydraulic actuator with respect to the piston area and flow 

discharge coefficient is shown in Fig. 7. The surface for the 

hydraulic parameters is more irregular than the mechanical 

parameters, revealing more information on the nonlinearity 

of the optimization problem. Finally, Fig. 5 also justifies the 

use of GA methods due to their parallel processing 

capabilities and hence capability for climbing steep surfaces. 

5. ESTIMATION PROBLEM FORMULATION 

The mechanical model parameters to be estimated are listed 

in Table 1 and represented by a vector 𝛉. The excitation 

input used for estimation is the voltage sent to the hydraulic 

actuator system for a single joint 𝑖, i.e. 𝑢𝑖(𝑘),  and the output 

is the joint angle measured by the potentiometer at joint 𝑖, 
i.e. 𝑦𝑖(𝑘). To ensure that realistic parameter values are found 

by the algorithm, the search space Ω is defined in a way to 

include all prior knowledge about the physical system. As an 

example, the search space for the mechanical subsystem 

Ω𝑀 ⊂ ℝ9 is defined as: 

Ω𝑀 = {𝜽|𝜽 = (𝜃1, 𝜃2, … , 𝜃9),    𝜃𝑚𝑖𝑛𝑖

𝑀 ≤ 𝜃𝑖 ≤ 𝜃𝑚𝑎𝑥𝑖
𝑀    𝑖 =

1,2, … 9}            (1) 

To formulate the single objective output error system 

identification problem into a multi-objective optimisation 

problem, the output signal is split into several segments, and 

a separate objective function is defined for each segment. 

The cost function 𝐽𝑁𝑠
𝑠 (𝛉) for output segment s  is defined as 

the p-norm of the absolute error signal for p = 1, 2, ∞: 

 𝐽𝑁(𝛉) = (
1

𝑁
∑ |ℰ𝑖

𝑠(𝑘; 𝛉)|𝑝𝑁
𝑘=1 )

1

𝑝
         (2) 

The identification error in (2) is calculated for each segment 

s of joint 𝑖 defined as: 

ℰ𝑖
𝑠(𝑘; 𝛉) =  𝑦𝑖

𝑠(𝑘) − �̂�𝑖(𝑘; 𝛉)                       (3) 

where �̂�𝑖(𝑘; 𝛉) represents the model output at joint 𝑖 for a 

specific parameter vector θ and 𝑦𝑖
𝑠(𝑘) is the measured 

output at segment s. The multi-objective cost function 

defined as a result of the multi-objectivization is: 

𝐽mul(𝛉) = [𝐽𝑁1
1 (𝛉), 𝐽𝑁2

2 (𝛉), ⋯ , 𝐽𝑁𝑛
𝑛 (𝛉)]           (4) 

where n is the number of objectives, in this case the number 

of segments the measured output is split into. To judge the 

quality of each vector θ, the fitness value for each segment is 

calculated separately. The optimal solution for each segment 

s is determined by selecting the parameter vector with the 

minimum fitness value, hence using the cost function in 

equation (2), the optimal estimated parameter vector �̂�N is: 

�̂�N = arg min
𝛉∈Ω𝑀

 
1

𝑁
∑ |ℰ𝑖

𝑠(𝑘; 𝛉)|𝑝𝑁
𝑘=1          (5) 

After the GA has completed a set number of iterations, a 

population containing the best solution is found. From this 

the optimal θ is found for each segment, yielding n sets of 

parameters. The average of each parameter is subsequently 

taken to yield the final compromised solution. 

 



 

 

 

6. THE PROPOSED MULTI-OBJECTIVE GENETIC ALGORITHM 

The algorithm proposed to estimate the parameter vector 𝛉 is 

based on the NSGA-II algorithm using non-dominant sorting 

and Pareto optimal solutions. The fitness function (2) for 

𝑝 = ∞ shows the best results, similar to the simple GA 

approach [24]. For effective use of the multi-objective GA, 

its parameters should be tuned for this particular problem. 

For this purpose a set of known parameters for the 

simulation model is assumed and the model output is used 

for tuning the multi-objective GA. To study the effect of 

different GA parameters, such as crossover, mutation, and 

population size, the data are split into eight segments and the 

relative parameter estimation error, as well as the sum of 

square errors, for each case are calculated and compared. 

Table 2 shows the results of the investigation into the 

crossover value, and the final set of estimated parameters are 

compared. The sum of relative errors for different estimated 

parameters is adopted as an indication of performance in 

Table 2. Similar results are generated for the population size, 

mutation rate, and number of segments but are not reported 

here due to lack of space. Table 2 suggests that a unity 

crossover rate yields the best performance in terms of 

estimation accuracy. However, since the goal is to improve 

the parameter estimation accuracy, along with a good output 

match, a compromise is necessary. 

The final values of the tuned parameters for both the simple 

GA and the new multi-objective GA are listed in Table 3. 

Finally, Table 4 compares the estimation results for the 

simple GA and multi-objective GA using two and eight 

segments. Comparison of the relative estimation error for the 

proposed methods shows that the multi-objective with eight 

segments yields the best results. 

7.  CONCLUSIONS 

The research behind this article concerns the development of 

an assisted teleoperation HMI for nuclear decommissioning 

tasks such as robotic pipe cutting. The article has focused on 

the parameter estimation problem, using a multi-objective 

GA, for a nonlinear mechanistic model of a dual manipulator 

robotic platform. The dynamic model of the device was 

developed in earlier articles [7-8]. The results in the present 

article have increased the accuracy of the model, so that the 

advanced control systems needed to improve the semi-

autonomous operation of the device can be developed. 

In particular, by inspection of the performance surface and 

sensitivity of the measured output with respect to different 

parameters, it is possible to find a suitable multiple objective 

performance index, for which the parameter estimation 

accuracy will be improved. The key concept is to split the 

single objective output error performance index into a multi-

objective performance index using a multi-objectivization 

concept; and subsequently to determine the estimated 

parameters from the pareto-optimal solution of the 

algorithm. Numerical results show that the new approach 

performs better than a simple GA studied previously for the 

same problem [20]. This involves a better accuracy in 

parameter estimation as well as lower values for the output 

error estimation. 

Although not the focus of the article, the vision based, 

assisted teleoperation system alluded to in section 2, 

provides the main motivation for this research. The new 

system has recently been tested using the decommissioning 

robot in a laboratory environment [6]. It is shown to work 

successfully, outperforming the currently used joystick-

based teleoperation approach, when tested with both 

experienced and inexperienced operators. Preliminary 

experiments suggest that standard tasks such as grasping a 

pipe are completed faster, and the user requires less training, 

in comparison to the traditional teleoperation approach. 

However, control of the nonlinear hydraulic manipulator 

dynamics needs improving and, for example, one limitation 

of the present prototype is the lack of a sophisticated 

collision avoidance system, something that is presently being 

developed using the dynamic model from this article. 
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Table 2 – Effect of crossover on the performance of the multi-objective GA. 

Table 3 – GA settings used to generate the parameter estimation results in Table 4. 

Setting Simple GA Value Multi-objective GA Value 

Coding scheme Multivariable binary coding Multivariable binary coding 

Crossover rate (Pc) 0.8 0.4 

Mutation rate (Pm) 0.05 0.2 

Parent selection proportional proportional 

Crossover type pointwise pointwise 

Population size 70 20 

Fitness function infinity norm infinity norm 

Table 4 – Evaluation of the effect of segmentation on the accuracy of parameter estimation. 
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Mass of link (kg) 

1 2 3 4 5 6 

True. 0.2 231.8 53.4 4.6 5.1 22.5 1.6 4.1 4.7 

Simple GA 0.4 343.2 89.4 4.6 10.60 0.80 10.0 19.5 5.9 

2 segments 0.38 430.60 79.27 3.29 9.05 22.33 9.55 15.02 13.26 

8 segments 0.1 112.4 37.5 2.3 2.3 13.3 5.1 2.2 4.5 

Relative Error 

Simple GA 1 0.48 0.67 0 1.08 0.96 5.25 3.76 0.26 

2 Segments 0.9 0.86 0.48 0.28 0.77 0.01 4.97 2.66 1.82 

8 Segments 0.5 0.52 0.29 0.5 0.55 0.41 2.19 0.46 0.04 
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Mass of link (kg)  

1 2 3 4 5 6  

True.  0.2 231.8 53.4 4.6 5.1 22.5 1.6 4.0 4.7  

Crossover 1.0 0.36 314.27 39.06 2.97 4.99 16.08 5.78 7.12 6.99  

Crossover 0.8 0.19 214.27 45.11 3.61 9.05 21.90 8.08 15.23 6.18  

Crossover 0.6 0.27 293.03 59.93 3.31 10.38 20.04 9.14 16.19 13.29  

Crossover 0.4 0.19 214.27 45.11 3.61 9.05 21.90 8.08 15.23 6.18  

Relative Error Sum 

Crossover 1.0 0.8 0.36 0.27 0.35 0.02 0.28 2.6 0.78 0.48 5.94 

Crossover 0.8 0.05 0.08 0.15 0.22 0.77 0.02 4.05 2.81 0.31 
8.46 

Crossover 0.6 0.35 0.26 0.12 0.28 1.03 0.10 4.7 3.05 1.83 11.72 

Crossover 0.4 0.05 0.08 0.15 0.21 0.77 0.03 4.05 2.81 0.31 8.46 


