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Abstract

Linearity tests against smooth transition nonlinearity are typically based
on the standard least-squares (LS) covariance matrix estimator. We derive
an expression for the bias of the LS estimator in the presence of ARCH
errors. We show that the bias is downward, and increases dramatically
with the persistence of the variance process. As a consequence, conven-
tional tests spuriously indicate nonlinearity. Next, we examine an alterna-
tive maximum likelihood approach. Our findings suggest that this approach
has substantially better size properties than tests based on least-squares and
heteroskedasticity-consistent matrix estimators, and performs comparably
to a bootstrap technique.
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1 Introduction
During the last few decades nonlinear models have become very popular in eco-
nomic theory and in econometrics (Ruge-Murcia, 2012, Haldrup, Meitz, and Saikko-
nen, 2014). This popularity has led to the development of several tests that exam-
ine whether a time series exhibits nonlinear dynamics. At the same time, a vast
empirical literature has emerged that suggests that many economic and financial
variables exhibit volatility clustering.

A question that naturally arises is what are the properties of linearity tests in
the presence of time-varying volatility. Granger and Teräsvirta (1993) highlight
that ARCH errors may cause complications of linearity tests. Wong and Li (1997)
show that a test for threshold autoregression can be heavily oversized in the pres-
ence of ARCH innovations. A similar finding is provided by Hurn and Becker
(2009) for the neural network test of Teräsvirta, Lin, and Granger (1993), and by
Pavlidis, Ivan, and Peel (2010) for the test of Escribano and Jordá (1999).

The findings of Wong and Li (1997), Hurn and Becker (2009), and Pavlidis
et al. (2010) are based on Monte Carlo simulations. In this paper, we adopt a sim-
ple theoretical framework to investigate analytically the properties of three popu-
lar linearity tests against smooth transitional nonlinearity in the presence of ARCH
dynamics. We show that because ARCH dynamics induce a downward bias in the
LS covariance matrix estimator, all three tests frequently indicate the presence of
nonlinearity in mean even when the process under examination is in fact linear.
Having established the poor performance of linearity tests based on LS, we exam-
ine an alternative maximum likelihood approach, and compare its performance
to that of four widely-used non-parametric methods: three heteroskedasticity-
consistent covariance matrix estimators and the fixed design wild bootstrap.

2 Testing Linearity
Consider a basic Smooth Transition Autoregressive (STAR) model given by

yt = π0 +π1yt−1 +π2yt−1F(yt−1;γ,c)+ εt , t = 0, . . . ,T, (1)

where εt ∼N (0,σ2
t ). The transition function F(·) is at least fourth order continu-

ously differentiable with respect to γ and bounded between 0 and 1. The selection
of the transition function specifies the two common forms of the STAR model.
For the exponential STAR, the transition function is given by

F(yt−1;γ,c) = 1− exp
(
−γ (yt−1− c)2

)
, (2)
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and for the logistic STAR, the transition function is

F(yt−1;γ,c) = [1+ exp(−γ (yt−1− c))]−1 , (3)

where c is a constant, yt−1 is the transition variable, and γ ∈ (0,∞) is the smooth-
ness parameter that determines the speed of transition of F(·) towards the inner or
outer regime of the process and, therefore, the degree of nonlinearity.

Several testing procedures have been proposed in the literature to examine
whether a series exhibits STAR nonlinearity (see, e.g., Teräsvirta, 2006). Testing
for the nonlinear part of Equation (1) is not trivial due to an unidentified parameter
problem (Davies, 1987). Specifically, linearity corresponds to two null hypothe-
ses, H0: π2 = 0 and H0: γ = 0. Under the first, the parameters γ and c are not
identified. Under the second, the unidentified parameters are π2 and c. Conse-
quently, classical test statistics do not follow standard distributions.

A way to overcome this problem is to replace the transition function by a
Taylor series approximation around γ = 0. This re-parameterization resolves the
identification problem since it does not involve nuisance parameters. Luukko-
nen, Saikkonen, and Teräsvirta (1988) suggest replacing the transition function
by a first order Taylor series approximation. This yields the following auxiliary
regression

yt = β0 +β1yt−1 +β2y2
t−1 +β3y3

t−1 +ut , (4)

where ut = εt +R(γ,yt−1) and R(·) is the remainder term of the Taylor series. The
null hypothesis of linearity takes the form H0: β2 = β3 = 0. A drawback of the
Luukkonen et al. (1988) test is that it may exhibit low power when yt is an LSTAR
process and only intercept changes are significant across regimes (Escribano and
Jordá, 2001). To achieve better performance, Teräsvirta (1994) advocates the use
of a third order Taylor series approximation of the logistic function. This gives
rise to the auxiliary regression

yt = β0 +β1yt−1 +β2y2
t−1 +β3y3

t−1 +β4y4
t−1 +ut . (5)

and the null hypothesis of linearity becomes H0: β2 = β3 = β4 = 0. While
Teräsvirta (1994) uses a third order Taylor expansion of the logistic function and
a first order expansion for the exponential function, Escribano and Jordá (1999)
suggest augmenting the regression equation with a second order expansion of the
exponential function. The idea of using a second order Taylor expansion is based
on the fact that the logistic function has one inflection point but the exponential
has two. The resulting auxiliary regression is

yt = β0 +β1yt−1 +β2y2
t−1 +β3y3

t−1 +β4y4
t−1 +β5y5

t−1 +ut , (6)
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and the null hypothesis of linearity H0: β2 = β3 = β4 = β5 = 0.
A general representation that encompasses all auxiliary regressions is

yt = β
′xt +ut , (7)

where β =(β0, · · · ,βn)
′ and xt =(1,yt−1,y2

t−1, · · · ,yn
t−1)

′. For the tests of Luukko-
nen et al. (1988), Teräsvirta (1994), and Escribano and Jordá (1999) n is equal to
3, 4, and 5, respectively. Using matrix notation, the null hypothesis of linearity
can be written as H0: Rβ̂ = 0, where R is the appropriate selector matrix. The
corresponding Wald test statistic is given by

W =
(

Rβ̂

)′(
RV

β̂
R′
)−1(

Rβ̂

)
, (8)

where V
β̂
= (X ′X)−1X ′ΩX(X ′X)−1 denotes the covariance matrix of the least

squares estimator β̂ . Typically, residuals are assumed to be homoskedastic, Ω0 =
Iσ2

u , which implies that W follows a χ2 distribution with degrees of freedom equal
to the number of restrictions n−1, and W/(n−1) follows an F distribution with
degrees of freedom n−1 and T −n−1.

2.1 Linearity Testing in the Presence of ARCH Errors
Suppose that the true DGP for yt is the ARCH(1) process of Engle (1982)

yt = εtσt , (9)
σ

2
t = ω +αy2

t−1, (10)

with εt ∼N (0,1) and α ∈ [0,1), and consider the ratio of the true generalized
variance to the generalized variance based on the assumption of homoskedastic
errors

det(V
β̂
)

det(V 0
β̂
)
=

det( 1
T X ′ΩX)

det( 1
T X ′Ω0X)

. (11)

In the presence of ARCH, Ω and Ω0 are diagonal matrices with tt element equal to
the conditional variance σ2

t = ω +αy2
t−1 and the unconditional variance ω/(1−

α), respectively. It follows that the i j element of (1/T )X ′ΩX is

vi j = 1/T (ω ∑yi+ j−2
t−1 +α ∑yi+ j

t−1)' ωEyi+ j−2
t +αEyi+ j

t , (12)
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where i, j = 1, . . . ,n+ 1, and Eyi+ j
t is the i+ j moment of yt . Similarly, the i j

element of (1/T )X ′Ω0X is

hi j = 1/T
ω

1−α
∑yi+ j−2

t−1 ' ω

1−α
Eyi+ j−2

t . (13)

Because all the odd moments of an ARCH process are equal to zero, both matrices
have a chessboard structure (i.e., vi j = hi j = 0 for i+ j odd). Further, we can see
from (12) and (13) that the true generalized variance is a function of the first n+1
even moments of yt while the generalized variance based on the assumption of
homoskedasticity is a function of just the first n moments.

The regularity condition for the existence of the 2mth moment of an ARCH(1)
process (Engle, 1982, Theorem 1) is

ξmα
m < 1, (14)

where

ξ1 = 1, ξ j =
j

∏
i=1

(2i−1), j = 1,2, . . .

For the tests of Luukkonen et al. (1988), Teräsvirta (1994), and Escribano and
Jordá (1999) n = 3,4, and 5 and, hence, the moments required are the 8th, 10th
and 12th, respectively. From (14), these moments exist if α is smaller than 0.31,
0.25, and 0.21. In general, as higher powers of the lag dependent variable enter in
the auxiliary regression (i.e., as n increases), the region for the ARCH coefficient
for which all the required moments exist becomes smaller. Unfortunately, even
for relatively small values of n, as for example for the test of Luukkonen et al.
(1988), there is no guarantee that the regularity condition (14) will be satisfied in
empirical applications.

Bollerslev (1986, Theorem 2) provides a recursive expression for the 2mth
moment of an ARCH process

E(y2m
t ) =

ξm

1−ξmαm

[
m−1

∑
k=0

ξ
−1
k E(y2k

t )ωm−k
(

m
m− k

)
ξkα

k

]
. (15)

Given the moments of yt , the ratio of generalized variances (11) can be calculated
using the Leibniz formula for determinants. For example, for the Luukkonen et al.
test, we obtain

det(V
β̂
)

det(V 0
β̂
)
=

v11v22v33v44 + v2
22v2

33− v11v3
33− v3

22v44

h11h22h33h44 +h2
22h2

33−h11h3
33−h3

22h44
. (16)
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The expressions for the Teräsvirta (1994) and the Escribano and Jordá (1999)
tests are lengthy and we omit them to save space. Figure 1 plots the log of
det(V

β̂
)/det(V 0

β̂
) against the ARCH coefficient for the three linearity tests. We

observe that the ratio of generalized variances increases rapidly with the value for
the ARCH coefficient, and with the number of regressors n in the auxiliary re-
gression. Strikingly, for values close to the upper bound implied by the moment
condition, the true generalized variance is about 104 times larger than the general-
ized variance based on the assumption of homoskedasticity. The extreme bias of
V 0

β̂
highlights why caution should be taken when testing a series for nonlinearity

and there are suspicions of conditional heteroskedasticity.

alpha

Lo
g R

ati
o o

f G
en

era
lise

d V
ari

an
ce

s

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

2

4

6

8

10 Luukonen et al.
Terasvirta
Escribano and Jorda

Figure 1: The figure plots the log of the true generalized variance to the
generalized variance based on the assumption of homoskedastic errors,
det(V

β̂
)/det(V 0

β̂
), against the value of the ARCH coefficient for the linear-

ity tests of Luukkonen et al. (1988) (solid line), Teräsvirta (1994) (dashed
line), and Escribano and Jordá (1999) (dotted line).
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To illustrate the effect of the bias of the least squares variance estimator on
the performance of linearity tests, we estimate the empirical size of the tests (i.e.,
the number of times each test rejects the null of linearity when the null is true)
when y is an ARCH process. Table 1 reports results for α ∈ {0.00,0.05, . . . ,0.40}
and sample size T = 100,500 and 5000. The nominal significance level is set
equal to 5 percent and the number of Monte Carlo simulations equal to 5000. In
line with the theoretical results, the degree of oversizing increases with the ARCH
coefficient and with n. Furthermore, it increases with the sample size. As T and
α take larger values, it becomes more likely to reject the null of linearity than not,
even though the process under consideration is linear. For instance, for n = 4,
α = 0.4, and T = 5000, the tests of Luukkonen et al. (1988), Teräsvirta (1994),
and Escribano and Jordá (1999) falsely reject linearity in 61, 73 and 80 percent of
the cases, respectively.

T=100 T=500 T=5000
α LST T EJ LST T EJ LST T EJ

0.00 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05
0.05 0.07 0.07 0.07 0.08 0.09 0.09 0.10 0.12 0.12
0.10 0.08 0.09 0.09 0.11 0.13 0.14 0.14 0.18 0.21
0.15 0.11 0.12 0.13 0.16 0.18 0.20 0.21 0.28 0.32
0.20 0.14 0.15 0.17 0.20 0.24 0.27 0.27 0.36 0.42
0.25 0.15 0.17 0.19 0.25 0.29 0.33 0.36 0.46 0.54
0.30 0.18 0.21 0.23 0.30 0.36 0.41 0.45 0.57 0.66
0.35 0.20 0.24 0.27 0.36 0.43 0.48 0.52 0.63 0.71
0.40 0.24 0.27 0.31 0.42 0.49 0.55 0.61 0.73 0.80

Table 1: The table reports the empirical size of the linearity tests of
Luukkonen et al. (1988) (LST), Teräsvirta (1994) (T), and Escribano and
Jordá (1999) (EJ).

3 A Maximum Likelihood Approach
The results of the previous section demonstrate in a clear manner how ARCH er-
rors can induce substantial downward bias in the LS covariance matrix estimator.
A direct implication of this bias is that Wald statistics do not follow standard dis-
tributions, and F and χ2 tests can frequently lead to spurious results. A number

7



of alternative methods have been put forth in the literature for drawing statistical
inference in this context. The most popular, due to their easy implementation and
low computational cost, are methods based on heteroskedasticity-consistent (HC)
covariance matrix estimators. These estimators include, among others, the HC0:
Ω̂ = diag(û2

t ) of White (1980), and two estimators proposed by MacKinnon and
White (1985), HC2: Ω̂ = diag(û2

t /(1− htt)) and HC3: Ω̂ = diag(û2
t /(1− htt)

2),
where htt denotes the tth diagonal element of the hat matrix.

In addition to HC estimators, researchers have also employed alternatives
based on bootstrap techniques (Hurn and Becker, 2009). The basic idea behind
these techniques is to approximate the unknown distribution of the test statistic by
simulating under the null. Although computationally intensive, these techniques
appear to display good size and power properties. A bootstrap technique that
appears to perform particularly well in the context of linearity testing is the fixed-
design wild bootstrap (WB) of Wu (1986) and Mammen (1993). For a detailed
description of the WB, see Pavlidis et al. (2010).

The HC and WB methods are non-parametric, in that they do not require the
specification of the functional form of the variance process. It may well be the
case, however, that a parametric approach which involves modelling both the
mean of yt and the error variance displays superior performance. Perhaps sur-
prisingly, there is little, if any, work on this topic. We contribute to the existing
literature by examining the performance of a simple approach that consists of es-
timating the general auxiliary regression (7)

yt = β
′xt +ut ,

together with an ARCH process for the error variance

σ
2
t = ω +αu2

t−1,

by maximum likelihood (ML), and testing the null of linearity H0: Rβ̂ = 0.1 The
conditional log-likelihood function of (7) given ut , t = 1, . . . ,T , is

l(θ) =−1
2

T

∑
t=1

(
lnσt)+u2

t /σt
)
,

where θ =(β ,ω,α)′, and the corresponding ML estimator is θ̂ = argmaxθ∈Θl(θ),
with Θ being a compact subset of R. As shown by Engle (1982), the information

1We are grateful to a referee for motivating the use of a ML approach, and for bringing the
reference of Pantula (1988) to our attention.
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matrix associated with θ̂ is block-diagonal. Therefore, the estimation of param-
eters in the conditional mean and conditional variance functions can be imple-
mented in two stages while maintaining asymptotic efficiency. In related work,
Weiss (1984) and Pantula (1988) illustrate that ML estimates are strongly consis-
tent and asymptotically normal for stationary autoregressive models with ARCH
errors, and Chan and McAleer (2002) derive similar results for stationary STAR-
GARCH models.

3.1 Monte Carlo Simulations
To compare the properties of the LS, HC, ML, and WB tests, we employ two
Monte Carlo experiments. For both experiments, we set, as before, the nominal
significance level to 5 percent, the number of simulations to 1000, the value of the
ARCH coefficient to α = {0.0,0.1,0.2,0.3,0.4}, ω = 1−α , and the sample size
to T = 100,500, and 5000.

T=100 T=500 T=5000
LST T EJ LST T EJ LST T EJ

α = 0.0
LS 0.05 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05

HC0 0.17 0.29 0.40 0.11 0.19 0.31 0.06 0.08 0.12
HC2 0.11 0.17 0.20 0.09 0.13 0.18 0.06 0.07 0.10
HC3 0.06 0.08 0.08 0.07 0.09 0.11 0.06 0.06 0.08
ML 0.06 0.03 0.03 0.05 0.02 0.03 0.06 0.04 0.03
WB 0.04 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.05

α = 0.1
LS 0.08 0.09 0.09 0.11 0.13 0.14 0.14 0.18 0.21

HC0 0.18 0.33 0.46 0.12 0.23 0.35 0.06 0.11 0.18
HC2 0.12 0.19 0.22 0.09 0.16 0.20 0.05 0.10 0.13
HC3 0.07 0.09 0.09 0.07 0.11 0.10 0.05 0.08 0.09
ML 0.08 0.04 0.03 0.05 0.03 0.04 0.05 0.05 0.04
WB 0.04 0.05 0.06 0.05 0.05 0.04 0.04 0.06 0.06

α = 0.2
LS 0.14 0.15 0.17 0.20 0.24 0.27 0.27 0.36 0.42

HC0 0.21 0.39 0.52 0.16 0.28 0.41 0.10 0.17 0.28
HC2 0.14 0.22 0.29 0.12 0.19 0.26 0.09 0.13 0.17
HC3 0.09 0.10 0.11 0.09 0.12 0.13 0.08 0.10 0.11
ML 0.07 0.03 0.06 0.05 0.04 0.05 0.05 0.06 0.04
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WB 0.07 0.06 0.06 0.07 0.07 0.06 0.06 0.06 0.05
α = 0.3

LS 0.18 0.21 0.23 0.30 0.36 0.41 0.45 0.57 0.66
HC0 0.26 0.42 0.54 0.23 0.37 0.52 0.12 0.24 0.42
HC2 0.16 0.24 0.30 0.17 0.23 0.32 0.10 0.17 0.25
HC3 0.10 0.10 0.12 0.12 0.13 0.14 0.08 0.12 0.14
ML 0.09 0.04 0.06 0.05 0.06 0.06 0.05 0.05 0.04
WB 0.06 0.06 0.06 0.06 0.07 0.07 0.06 0.06 0.07

α = 0.4
LS 0.24 0.27 0.31 0.42 0.49 0.55 0.61 0.73 0.80

HC0 0.31 0.47 0.61 0.27 0.44 0.59 0.15 0.31 0.48
HC2 0.20 0.28 0.32 0.19 0.26 0.35 0.12 0.20 0.28
HC3 0.12 0.12 0.10 0.12 0.15 0.16 0.09 0.11 0.13
ML 0.08 0.05 0.06 0.07 0.05 0.06 0.07 0.06 0.06
WB 0.07 0.09 0.08 0.08 0.08 0.08 0.06 0.05 0.05

Table 2: The table reports the empirical size of the LS, HC0, HC2, HC3,
ML and WB versions of the linearity tests of Luukkonen et al. (1988)
(LST), Teräsvirta (1994) (T), and Escribano and Jordá (1999) (EJ).

We first examine the empirical size of the various tests by generating from
a white noise DGP, yt ∼N (0,σ2

t ). Table 2 reports the corresponding rejection
rates. As is evident from the table, with the exception of HC3, tests based on
heteroskedasticity-consistent covariance matrix estimators can display severe size
distortions when the sample size is small and the ARCH coefficient takes large
values. As the sample size increases, the degree of oversizing tends to decrease
but it does not disappear even for T = 5000. Turning to HC3, we observe that
it displays substantially better size properties than HC0 and HC2. However, the
best performing methods are the ML and the WB. The rejection rates for these
two methods are close to the 5 percent nominal significance level irrespective of
the sample size and the value of the ARCH coefficient.

T=100 T=500 T=5000
LST T EJ LST T EJ LST T EJ

α = 0.0
LS 0.19 0.17 0.24 0.74 0.74 0.91 1.00 1.00 1.00

HC0 0.16 0.06 0.08 0.61 0.44 0.34 1.00 1.00 1.00
HC2 0.16 0.07 0.10 0.56 0.41 0.64 1.00 1.00 1.00
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HC3 0.14 0.12 0.14 0.52 0.40 0.75 1.00 1.00 1.00
ML 0.15 0.13 0.26 0.70 0.74 0.93 1.00 1.00 1.00
WB 0.22 0.22 0.30 0.76 0.78 0.93 1.00 1.00 1.00

α = 0.1
LS 0.12 0.12 0.18 0.53 0.50 0.79 1.00 1.00 1.00

HC0 0.09 0.05 0.08 0.44 0.30 0.19 0.99 0.99 1.00
HC2 0.10 0.09 0.09 0.41 0.31 0.42 0.99 0.98 1.00
HC3 0.09 0.10 0.13 0.36 0.32 0.59 0.99 0.97 1.00
ML 0.12 0.12 0.20 0.70 0.68 0.91 1.00 1.00 1.00
WB 0.17 0.18 0.27 0.61 0.64 0.86 1.00 1.00 1.00

α = 0.2
LS 0.09 0.09 0.14 0.29 0.27 0.56 0.99 0.99 1.00

HC0 0.08 0.06 0.09 0.30 0.14 0.07 0.91 0.85 0.97
HC2 0.09 0.06 0.09 0.30 0.23 0.22 0.89 0.82 1.00
HC3 0.11 0.09 0.12 0.30 0.26 0.45 0.86 0.81 1.00
ML 0.09 0.13 0.17 0.68 0.68 0.88 1.00 1.00 1.00
WB 0.18 0.19 0.27 0.52 0.56 0.82 0.99 0.99 1.00

α = 0.3
LS 0.05 0.04 0.07 0.15 0.15 0.28 0.83 0.78 0.99

HC0 0.06 0.07 0.07 0.14 0.05 0.05 0.69 0.36 0.18
HC2 0.07 0.06 0.07 0.18 0.12 0.08 0.70 0.43 0.86
HC3 0.09 0.08 0.10 0.18 0.16 0.26 0.67 0.46 0.94
ML 0.09 0.12 0.16 0.66 0.59 0.86 1.00 1.00 1.00
WB 0.16 0.18 0.26 0.42 0.48 0.73 0.90 0.94 1.00

α = 0.4
LS 0.04 0.05 0.07 0.06 0.06 0.08 0.41 0.36 0.75

HC0 0.04 0.05 0.06 0.12 0.06 0.06 0.43 0.11 0.05
HC2 0.06 0.05 0.06 0.13 0.07 0.05 0.46 0.23 0.41
HC3 0.09 0.05 0.12 0.14 0.10 0.17 0.44 0.31 0.79
ML 0.08 0.11 0.19 0.63 0.67 0.88 1.00 1.00 1.00
WB 0.15 0.16 0.26 0.31 0.38 0.62 0.72 0.81 0.96

Table 3: The table reports the empirical size-adjusted power of the LS,
HC0, HC2, HC3, and ML versions of the linearity tests of Luukkonen
et al. (1988) (LST), Teräsvirta (1994) (T), and Escribano and Jordá (1999)
(EJ), and the empirical power of the WB.
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For the power experiment, we consider the following ESTAR DGP

yt = 0.3yt−1−0.9yt−1(1− exp(−y2
t−1))+ εt

which is similar to a STAR process employed by Escribano and Jordá (1999).
Table 3 reports the empirical size-adjusted power of LS, HC and ML tests, as
well as the empirical power of the wild bootstrap. At least two interesting con-
clusions emerge from the results. The first is that the test proposed by Escribano
and Jordá (1999) is more powerful than those of Luukkonen et al. (1988) and
Teräsvirta (1994). This result is expected since Escribano and Jordá (1999) aug-
ment their auxiliary regression with a second order expansion of the exponential
function. Because the exponential transition function (2) possesses two inflection
points, a second-order Taylor expansion leads to power improvements for ESTAR
processes. The second conclusion is that, though the WB test is superior to all
other tests for small samples, the ML test is the one that performs best for samples
greater than 100 observations. Specifically, the ML displays similar power to the
LS and WB methods in the case of homoskedasticity, and higher (in many cases
substantially) power when the error term is heteroskedastic. Most notably, the
difference in size-adjusted power between ML and LS (WB) tests reaches up to
80 (32) percentage points for T = 500 and α = 0.4. The fact that the ML method
exhibits good size and power properties, and its relatively low computational cost,
make it particularly attractive for high-frequency financial time series.

4 Conclusion
In this paper, we adopted a simple framework to examine the properties of three
linearity tests based on the LS covariance estimator in the presence of ARCH
errors. We showed that the LS estimator is biased for all three tests, with the
bias increasing with the persistence of the ARCH process and the order of the
Taylor series expansion used to derive the auxiliary test regression. As a con-
sequence, all tests heavily over-reject the null hypothesis of linearity for large
values of the ARCH coefficient. We also examined the performance of an al-
ternative maximum-likelihood approach to test for linearity. We showed through
Monte Carlo experiments that this approach, contrary to LS tests, displays good
size properties and, for relatively large samples, higher power than tests based on
heteroskedasticity-consistent covariance matrix estimators and the fixed-design
wild bootstrap. As such, it is particularly attractive for high-frequency financial
data.
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Teräsvirta, T. (2006): “Univariate nonlinear time series models,” Palgrave Hand-
book of Econometrics, 1, 396–424.

Teräsvirta, T., C.-F. Lin, and C. W. J. Granger (1993): “Power of the neural net-
work linearity test,” Journal of Time Series Analysis, 14, 209–220.

Weiss, A. A. (1984): “Arma models with arch errors,” Journal of Time Series
Analysis, 5, 129–143.

White, H. (1980): “A heteroskedasticity-consistent covariance matrix estimator
and a direct test for heteroskedasticity,” Econometrica, 48, 817–38.

Wong, C.-S. and W.-K. Li (1997): “Testing for threshold autoregression with con-
ditional heteroscedasticity,” Biometrika, 84, 407–418.

Wu, C. F. J. (1986): “Jackknife, bootstrap and other resampling methods in re-
gression analysis (with discussion),” Annals of Statististics, 14, 1261–1350.

14


