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Abstract

In this paper we consider a new approach to multicriteria decision making problems. Such problems are, usually, cast

into a Pareto framework where the objective functions are aggregated into a single one using certain weights. The problem

is embedded into a statistical framework by adopting a posterior distribution for both the decision variables and the Pareto

weights. This embedding dates back to Pinkus (1968) but in this work we operationalize the concept further. We propose

a Metropolis-Hastings and a Sequential Monte Carlo (SMC) to trace out the entire Pareto frontier and / or �nd the global

optimum of the problem. We apply the new techniques to a multicriteria portfolio decision making problem proposed in

Xidonas et al. (2010) and to a test problem proposed by Qu et al. (2013). The good performance of new techniques suggests

that SMC and other algorithms, like the classical Metropolis-Hastings algorithm, can be used pro�tably in the context of

multicriteria decision making problems to trace out the Pareto frontier and / or �nd a global optimum. Most importantly

SMC can be considered as an o�-the-shelf technique to solve arbitrary multicriteria decision making problems routinely and

e�ciently.
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1 Introduction

Multiobjective programming is an attractive method when we have multiple con�icting objectives (see, Das & Dennis, 1998;

Handi, Kell, & Knowles, 2007). In fact, portfolio analysis, for example, a well known tool in operations research can be cast in

terms of multiobjective programming instead of the classical Markowitz formulation of the problem. The nature of the problem

has been emphasized as multicriteria diecision making by many researchers in the �eld (Mavrotas et al. 2008; Xidonas and

Psarras 2009; Xidonas et al. 2009a, b, c, d; Steuer et al. 2005, 2006a, b, 2007a, b; Zopounidis and Doumpos 2002; Zopounidis

1999; Hurson and Zopounidis 1993, 1995, 1997; Spronk and Hallerbach 1997; Zeleny 1977, 1981, 1982; Colson and Zeleny 1979,

1980).

One may proceed in two ways. One is the so called scalarization approach in which a single objective is fomrulated and

corresponding Pareto optima are found (Das & Dennis, 1998). The alternative is to solve the �rst order conditions for Pareto

optimality in multiobjective programming (see Fliege, Grana drummond, & Svaiter, 2009; Vieira, Takahashi, & Saldnha, 2012).

Qu et al. (2011) present a quasi-Newton method for smooth problems. Qu, Goh, and Liang (2013) and Neto, Silva, Ferreira,

and Lopes (2013) consider methods for non-smooth objectives. Qu et al. (2014) propose an extension of the quasi-Newton

method in Qu et al. (2011) to the nonsmooth case and present a new algorithm to compute the critical point of nonsmooth

multiobjective programming under non-convexity. As they notice: �At each iteration, the descent direction is obtained by

solving a linear programming subproblem with convex quadratic constraints. This subproblem improves the performance by

constraining the descent direction norms with an small positive scalar which can control the descent direction approaching zero�.

Other approaches are explored in Angilella et al. (2016), Chica et al. (2016), Cardoso et al. (2016), Kadzi«ski et al. (2017),

Mavrotas et al. (2015), Paul et al. (2017), Teresinha Arns Steiner et al. (2016) and Tsai and Chen (2017).

In this paper we propose a new approach to multiobjective programming by considering an equivalent posterior disrtibution

for the decision variables and the Pareto weights, which are often unknown. Although scalarization involves some complications

even when the individual objectives are simple (Donoso & Fabregat, 2007) algorithms such as the Metropolis-Hastings and

Sequential Monte Carlo (SMC) can explore the posterior and yield the global optimum using simulation techniques. Related to

our work is the paper by Zhou and Chen (2013) who proposed SMC in the context of global optimization of scalar objective

functions. Zhou and Chen (2013) showed that their SMC is more preferable than the multi-start simulated annealing (SA)

method when the sample size is su�ciently large. As they write: �We carried out numerical experiments on several benchmark

problems. The numerical results show that SMC-SA is a great improvement of the standard SA on all the test problems; SMC-SA

outperforms multi-start SA and CE on badly-scaled problems and problems with a small number of local optima; the CE method

works better on well-scaled problems with a large number of local optima. We also compared the performance of SMC-SA and

multi-start SA as the sample size varies, and the results veri�ed our analytical results.� Our SMC is di�erent compared to Zhou

and Chen (2013) and the method can be applied to multicriteria decision making unlike Zhou and Chen (2013).

We present the model in Section 2. In Section 3 we provide details for our numerical techniques based on the Metropolis-

Hastings and SMC. In Section 4 we present an empirical application to portfolio analysis, previously analyzed by Xidonas et al.

(2010).

2 The model

Suppose we have the multiobjective programming problem where we have multiple con�icting objectives. Following Qu et al.

(2014) suppose we have a set of objective functions F (x) = F (x) + U , where x ∈ X ⊆ Rk, U represents noise, and:

F1(x) = F 1(x) + U1,

F2(x) = F 2(x) + U2,

· · ·
Fn(x) = Fn(x) + Un,

(1)
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where F = (F1, ..., Fn)
′ ∈ Rn, F = (F 1, ..., Fn)

′ ∈ Rn, and U = (U1, ..., Un)
′ ∈ Rn. The objective is to solve the problem:

min
x∈X⊆Rk

F (x). (2)

As in Qu et al. (2014) we settle for global Pareto optimality, meaning that x∗ is a solution if and only if there does not exist

x ∈ X and F (x) ≤ F (x∗), F (x) 6= F (x∗).

In multicriteria decision making the problem is:

min
x∈X

n∑
i=1

αiFi(x), (3)

for a certain vector of Pareto weights α = (α1, ..., αn)
′ which belong to the unit simplex, S = {α ∈ Rn : αi ≥ 0, i =

1, ..., n,
∑n

i=1 αi = 1}. In this problem, we can get a solution for any given set of αs although it is much better if we let the

�data� F speak for themselves about these weights. Indeed, suppose we have a prior, p(α), about the weights, possibly uniform

over S and, possibly, also a prior p(x) de�ned over X. Moreover, if we solve (3) for a range of values of α ∈ S we can trace out

the Pareto frontier.

As F (x) is unobserved, we cannot take advantage of (1) by using, for example joint normality of Us to formulate a statistical

problem. Therefore, we proceed as follows. Problem (3) is equivalent to �nding the mean of the following posterior distribution:

p(x, α|h, F ) =
exp {−h

∑
αiFi(x)} p(x)p(α)´

X×S
exp {−h

∑
αiFi(χ)} p(χ)p(α)dχdα

, (4)

for a given positive constant h. We re-emphasize that we can condition on the αs. Letting θ = (x′, α′)′ ∈ X × S, the posterior

mean is:

θ =

´
X×S

θ · exp {−h
∑

αiFi(x)} p(α)dθ´
X×S

exp {−h
∑n

i=1 aiFi(χ)} p(χ)p(a)dθ
. (5)

This result goes back to Pinkus (1968) and we know that h must be �small�. If we consider the kernel posterior:

p(x, α, h|F ) ∝ exp

{
−h

n∑
i=1

αiFi(x)

}
p(x)p(α)p(h), (6)

for a certain prior p(h) then h becomes part of the parameter vector. For example, we can use a gamma prior of the form:

p(h) ∝ ha−1 exp {−bh} , h > 0, a, b > 0, (7)

where the parameters a and b can be chosen so that the prior mean E(h) = a
b is small and the prior variance V ar(h) = E(h)

b

is also small. For example, we can set a = 0.01 and b = a
100 . In this way, we do not have to worry about di�erent values of h,

although it might be useful to examine sensitivity. Integrating analytically h out of (6) using (7) we obtain:

p(θ|F ) ∝

{
b+

n∑
i=1

αiFi(x)

}−a

. (8)

Further analytical integration with respect to x or α is not possible. Therefore, the posterior mean has to be computed

numerically.
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3 Numerical techniques

3.1 Independence Metropolis algorithm

One way to do so is to employ Markov Chain Monte Carlo (MCMC) techniques with the posterior kernel in (8). This depends

on prior parameters a and b and not on h explicitly.

As the number of �observations�, n, will, typically, be smaller than the number of parameters, which is 2k − 1 (k values

of x and k − 1 values in α) the prior must take care of whatever information we have about the problem. For example, it is

likely that many of the elements of α are zero so that we do not care about certain functions. Alternatively, the xs may be

expected to be concentrated in a certain subset of X. As an example, we can enforce a LASSO prior (least absolute shrinkage

and selection operator, Tibshirani, 1997) on all elements of x and α if we expect some sparsity. Alternatively we may choose

θ = (x′, α′) ∼ N(θ, ω2I) for some parameter ω > 0 and θ is adjusted so that most values of θ are in X × S.

As a MCMC method for inference we can use a Metropolis-Hastings sampler. Suppose q(θ) is a certain proposal or importance

density from which random drawings can be generated easily and we wish to generate a large sample {θ(s), s = 1, ..., S} that
converges in distribution to the distribution whose kernel is given by (8). Let a candidate draw from q(θ) be θc and we currently

have θ(s). Then, we set θ(s+1) = θc with probability min
{
1, p(θc|F )/q(θc)

p(θ(s)|F )/q(θ(s))

}
, else we set θ(s+1) = θ(s) . Then the posterior mean

in (5) can be estimated as: θ ' S−1
∑S

s=1 θ
(s). This includes both an approximation to the solution of problem (3) plus estimates

of the Pareto weights α.

3.2 Sequential Monte Carlo

Sometimes, MCMC can be slow to converge and, therefore, it is prevented from exploring fully the posterior, which means that

sub-optimal values of the solution may be found. As an alternative, we can use Sequential Monte Carlo (SMC) techniques also

known as particle �ltering (PF). The version of SMC we use here was proposed by Durham and Geweke and seems to perform

excellently in applications.

Chopin (2002) proposed a sequential PF for static models. Given a target posterior p(θ|Y ) := p(θ|Y1:T ) a particle system is

a sequence {θj , wj} such that E(h(θ)|Y ) :=
´
h(θ)p(θ|Y )dθ ∼= limJ→∞

∑J
j=1 wjh(θj)∑J

j=1 wj
, almost surely, for any measurable function

h, provided the expectation exists. We consider the sequence of posterior distributions pt := p(θ|Yt). The PF algorithm is as

follows.

Step 1. Reweight: update the weights wj ← wj
pt+1(θj)
pt(θj)

, j = 1, ..., J .

Step 2: Resampling: resample {θj , wj}Hj=1 → {θrj , 1}Jj=1.

Step 3. Move: draw θmj ∼ Kt+1(θ
r
j ), j = 1, ..., J , where Kt+1 is any transition kernel whose stationary distribution is pt+1.

Step 4. Loop: t← t+ 1, {θj , wj}Jj=1 ← {θmj , 1}Jj=1 and return to Step 1.

Chopin (2002) recommends the independence Metropolis algorithm to select the kernel, which requires a source distribution.

A possible choice, if we sampled from pn (n < T ), with respect to pn+s is N (Ên+s, V̂n+s) where

Ên+s =

∑J
j=1 wjθj∑J
j=1 wj

, V̂n+s =

∑J
j=1 wj (θj − En+p) (θj − En+p)

′∑J
j=1 wj

.

The strategy can be parallelized easily. If K processors are available, we can partition the particle system into K subsets,

say (Sk, k = 1, ...,K), and implement computations for particles of Sk in processor k. The algorithm can deal with new data at

a nearly geometric rate and therefore the frequency of exhanging information between processors (after reweighting) decreases

at a rate exponential to n, which is highly e�cient.

Resampling according to θmj ∼ Kt(θ
r
j , .) reduces particle degeneracy (Gilks and Berzuini, 2001) since identical replicates of a

single particle are replaced by new ones without altering the stationary distribution. For this application using J = 212 particles

gave a mean squared error in posterior means of 10−5 over 100 runs.

4



Chopin (2004) introduces a variation of MSC in which the observation dates at which each cycle terminates (say t1, ..., tL) and

the parameters involved in specifying the Metropolis updates (say λ1, ..., λL) are speci�ed. Therefore, 0 = t0 < t1 < ... < tL = T

and we have the following scheme (we rely heavily on Durham and Geweke, 2013).

Step 1. Initialize l = 0 and θ
(l)
jn ∼ p(θ), j ∈ J , n ∈ N .

Step 2. For l = 1, ..., L:

(a) Correction phase:

(i) wjn(tl−1) = 1, j ∈ J , n ∈ N
(ii) For s = tl−1 + 1, ..., tl

wjn(s) = wjn(s− 1)p(ys|y1:s−1, θ
(l−1)
jn ), j ∈ J , n ∈ N .

(iii) w(l−1)
jn := wjn(tl), j ∈ J , n ∈ N .

(b) Selection phase, applied independently to each group j ∈ J : Using multinomial or residual sampling based on{
w

(l)
jn , n ∈ N

}
, select

{θ(l,0)jn , n ∈ N}

from {θ(l−1)
jn , n ∈ N}.

(c) Mutation phase, applied independently across j ∈ J , n ∈ N :

θ
(l)
jn ∼ p(θ|y1:t, θ(0)jn , λl) (9)

where the drawings are independent and the pdf above satis�es the invariance condition:

ˆ
Θ

p(θ|y1:tl , θ∗, λl)p(θ
∗|y1:tl)dν(θ∗) = p(θ|y1:tl). (10)

Step 3. θjn := θ
(l)
jn , j ∈ J , n ∈ N .

At the end of every cycle, the particles θ
(l)
jn have the same distribution p(θ|y1:tl). The amount of dependence within each

group depends upon the success of the Mutation phase which avoids degeneracy.

The SMC-PF algorithm produces draws from the posterior distribution of the parameters. As such, there is no formal

�stopping criterion�. In the statistical literature it is common to use 15,000 iterations the �rst 5,000 of which are discarded to

mitigate possible start-up e�ects. Convergence to the posterior can be tested using, for example, Geweke's (1992) diagnostic. If

convergence is rejected, one has to take more iterations and re-examine using the same diagnostics.

4 Empirical application

We follow closely Xidonas, Mavrotas and Psarras (2010) who develop a multi-objective mixed integer programming problem for

stock selection in the Athens Stock Exchange, 66 stocks, weekly data from January 2004 to June 2007, T = 183. We use the

same criteria as in Xidonas, Mavrotas and Psarras (2010), namely:

i) Capital return per share (+): Rt =
Pt−Pt−1+Dt

Pt−1
, where Pt is stock price and Dt is dividend yield.

ii) Relative dividend yield (+): Security's dividend yield/Subsector's dividend yield, where Dividend yield of a security =

Dividend in period t/Share price closed in period t. See Hurson and Zopounidis (1995, 1997) and Zopounidis et al. (1998).

iii) Mean Absolute Deviation (-): MADp = T−1
∑T

t=1 |rpt−E(rp)| = T−1
∑T

t=1 |
∑n

i=1 wi[rit−E(ri)]|, where n is the number

of stocks, E(ri) is the expected capital return on stock i, E(rp) is the expected capital return of the portfolio and wi is the

amount invested in stock i.

iv) Beta coe�cient (-): cov(Ri, Rm)/var(Rm) where Ri is the return of stock i and Rm is the return of the market portfolio.

This is a well known measure of risk.
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v) Relative price-earnings ratio (-): Security's P/E/Subsector's P/E, where P/E = Share price in the stock market in period

t / Earnings per share in period t.

vi) Marketability (+): Number of transactions of shares of a company during period t / Total number of shares of a company

during period t (see Hurson and Zopounidis, 1995, 1997; Zopounidis et al., 1998).

The objective functions are as follows:

i) Maximize portfolio's return:

max z1 =

n∑
i=1

riXi, (11)

where ri is the return of stock i and Xis are the decision variables.

ii) Maximize portfolio's dividend yield:

max z2 =

n∑
i=1

rdiXi, (12)

where rdi is the relative dividend's yield for stock i.

iii) Minimize portfolio's MAD:

max z3 = −T−1
T∑

t=1

|
n∑

i=1

Xi(rit − E(ri))|. (13)

We keep this constraint in its nonlinear form instead of using the Konno and Yamazaki (1991) transformation as in Xidonas

et al. (2010). IN Xidonas et al. (2010) the cost of the linear approximation is the addition of 183 continuous variables and 366

constraints.

iv) Minimize portfolio's beta coe�cient:

max z4 = −
n∑

i=1

biXi, (14)

where bi is the beta coe�cient for stock i.

v) Minimize portfolio's relative P/E ratio:

max z5 = −
n∑

i=1

rpeiXi, (15)

where rpei is the relative P/E ratio for stock i.

vi) Maximize portfolio's marketability:

max z6 =

n∑
i=1

miXi, (16)

where mi is the marketability index for stock i.

We have the following constraints:
n∑

i=1

Xi = 1, (17)

implying that all available capital is invested. We impose the constraint that we have at least 5 and at most 15 stocks in the

portfolio:

5 ≤
n∑

i=1

Bi ≤ 15, (18)

where Bi = 1 if stock i is in the portfolio and 0 otherwise.

The maximal share of each stock cannot be more than 20%:

Xi − 0.2Bi ≤ 0, i = 1, ..., n. (19)
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The minimum share must be 0.1%:

Xi − 0.001Bi ≥ 0, i = 1, ..., n. (20)

Upper bound for investment in stocks with negative average return (sectors 5, 11, 16):∑
i∈S1

Xi ≤ 0.05. (21)

Lower bound of investment in speci�c securities (sectors 1, 10, 61):

Xi ≥ 0.05, i ∈ S2. (22)

Lower bound for the investment amount in securities with beta less than one (35 securities):∑
i∈S3

Xi ≥ 0.5. (23)

Lower bound for the investment amount in securities with high capitalization (41 securities):∑
i∈S4

Xi ≥ 0.65. (24)

All data are available in Table 2 of Xidonas et al. (2010). For the Metropolis algorithm we have used 15,000 iterations the

�rst 5,000 of which are discarded to mitigate possible start-up and convergence e�ects. For the SMC algorithm we used the same

con�gurations with 216 particles. The results using 214 or 218 particles were identical. All constraints are treated using rejection

sampling and sampling the binary variables is performed explicitly from their respective conditional posterior distributions. For

each Bi its conditional posterior takes only two values, say fi0 and fi1, corresponding to 0 and 1 respectively. After normalization

the posterior conditional cdf takes values fi0
fi0+fi1

and 1. Sampling random numbers from this distribution is, of course, trivial.

The output from the two algorithms is quite similar. In Table 1 below we summarize posterior moments for the Pareto

weights, α.

Table 1. Posterior moments for the Pareto weights, α.

post. mean post s.d.

objective 1 0.281 0.045

objective 2 0.102 0.023

objective 3 0.317 0.014

objective 4 0.103 0.005

objective 5 0.072 0.013

objective 6 0.125 0.017

The marginal posteriors are reported in Figure 1. Evidently, the marginal posterior distributions are highly nonnormal and

show preference over objectives 3 and 1 which account jointly for almost 40%. The marginal posterior of α1is clearly bimodal with

modes around 28% and 37% so the �rst two objectives can account up to nearly 60%. The other objectives receive non-trivial

weights, for example objective 6 receives weight 12.5% followed by objectives 4 and 2 (10.3% and 10.2% respectively). Finally,

objective 5 receives only 7.2% on the average, although from Figure 1 it is evident that this can be between 4% and 10% with

high posterior probability.
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Figure 1. Marginal posterior distributions of Pareto weights

To understand how close are our results to those in portfolio 153 in Xidonas et al. (2010), the maximum absolute di�erence

is less than 0.01% and the rank correlation of Xis is 98%. Portfolio 153 was found to �combine satisfactory rate of return with

satisfactory relative dividend yield, relative P/E and MAD, in comparison to the other portfolios.� according to experts they

consulted. Therefore, the posterior-mean-solution replicates successfully the best portfolio which was, in fact, generated from

268 di�erent portfolia in Xidonas et al. (2010) using a quite di�erent methodology, based on successive �ltering of the original

Pareto solutions.

To re�ne our understarding of the closeness of the solution to portfolio 153 in Xidonas et al. (2010) we perform the following

experiment to embed portfolio 153 in a stochastic setting. We set equal all Pareto weights and treat them as constant. In turn,

we craft a prior which pre-assigns the Bis equal to those in portfolio 153. The prior is normal for the Xis (conditional on the Bis)

with equal means and standard deviations all equal to 1. The standard deviations are quite large, yet our Metropolis and SMC

algorithms converge quickly to posterior means which are very close to the values of portfolio 153 in Xidonas et al. (2010). After

convergence (which takes 5,000 replications) we have two large sequences: One from our SMC (see Table 1 and Figure 1) and

another from SMC conditional on the Bis in portfolio 153 in Xidonas et al. (2010) which we will call the �Xidonas et al. (2010)

SMC sequence�. Each sequence consists of 10,000 replications of {Xi, i = 1, ..., 66}. For each one of the 10,000 replications we

can evaluate the rank correlation between our own SMC and the Xidonas et al. (2010) SMC sequence. The results are reported

in graphical form in Figure 2. In Figure 3, we report the maximum absolute di�erence of the elements of Xis between our own

SMC and the Xidonas et al. (2010) SMC sequence.

8



Figure 2. Rank correlations of Xis between SMC and Xidonas et al. (2010) SMC sequence

From Figure 2, it is evident that SMC replicates almost perfectly the global optimum in Xidonas et al. (2010) in all iterations

of the two SMC schemes that we considered.
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Figure 3. maximum absolute di�erence of the elements of Xis between and the Xidonas et al.

(2010) SMC.

The maximum absolute di�erence of the elements of Xis between our own SMC and the Xidonas et al. (2010) SMC sequence

turn out to be quite trivial as we can see in Figure 4, where the grand maximum is not larger than 0.0005 and less than 0.00015

in terms of its median, across all SMC replications. In terms of timing Xidonas et al. (2010) report 249 s in a Pentium Core 2

Duo 2.0 GHz. We have used High End Computing (HEC). The combined facility o�ers over 5,000 CPU cores, 23 TB aggregate

of memory, 70TB of high performance �lestore and 1.5PB of medium performance �lestore. A number of nodes o�er Nvidia

GPU cards, which suport CUDA and OpenCL applications. Xidonas et al. (2010) a mixed-integer programming formulation

(Exler et al., 2010) takes about 7.7 s, Metropolis-Hastings 11.12 s and SMC 22.13 s. The timings, of course do not account for

the fact that a three-pass �lter is required in Xidonas et al. (2010) after solving the problem to �nd the optimal solution, and

requires expert opinion to judge di�erent portfolios. The timings of the Metropolis-Hastings and SMC are trivial given the size

and di�culty of the problem.
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5 Further Validation

As extra validation we use the example presented in Qu et al. (2014):

F (x) = (F1(x), F2(x)) = (max{F11(x), F12(x},max{F21(x), F22(x))

where

F11(x) = −1 + 8x1 + 8x2 − 32x1x2,

F12(x) = 3.6− 12x1 − 4x3 + 4x1x3 + 10x2
1 + 2x2

3,

F21(x) = x1 + x2
2 + x2

3 + sin2(x1 + x2 + x3),

F22(x) = cos(x3)(0.1 + x2)
{
exp

(
− x1

0.1+x3

)}
,

−10−4 < xi < 1 + 10−4, i = 1, 2, 3.

(25)

In Qu et al. (2014) the weights assigned to two objectives F1 andF2 are 1
2 and 1

2 respectively. They used the the non-smooth

trust region method proposed by Qu, Goh, and Liang (2013). We solve the same problem using di�erent pre-assigned Pareto

weights to �nd di�erent optima which we present in Figure 4 which is the analogue of Figure 1 in Qu et al. (2014). We apply

the SMC algorithm using 15,000 iterations the �rst 5,000 of which are discarded. This con�guration is probably excessive as the

same results were obtained using 2,200 iterations discarding the �rst 200. We use 107 particles although the results were the

same when we used only 104 particles.

Figure 4. Value space.

Value space for 40 di�erent pre-assigned Pareto weights. The circles indicate the �critical points� (posterior means) we found using SMC.
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In Table 2 we provide timings and a comparison with Qu et al. (2013).

Table 2. Timings (average CPU) of di�erent algorithms

Qu et al. (2013)(a) 1.000

subgradient(a) 1.209

scalarization(a) 1.025

SMC, expensive choices(b) 3.212

SMC, cheap choices(c) 2.503
Notes: (a) Taken from Qu et al. (2013) and normalizing to 1.000 their timing which is 0.0234 CPU s. (b) The SMC algorithm using 15,000

iterations the �rst 5,000 of which are discarded, using 107 particles. (c) The SMC algorithm using 2,200 iterations the �rst 200 of which are discarded,

using 104 particles.

From Table 2 it is evident that timings of SMC are competitive to Qu et al. (2013) or other quasi-Newton methods although

higher: This is a well known drawback of Monte Carlo-based methods. However, timings still remain trivial from the point of

view of the user due to parallelization of SMC. An advantage of our technique is that we can vary systematically the Pareto

weights to trace out all Pareto optima, a task that would be quite di�cult in Qu et al. (2013).

Finally, we take up global optimization in problem (25). The marginal posterior distribution of the �rst Parteto weight,α1,

is reported in Figure 5. The distribution is bimodal with a mode near 0.3 and another near 0.52. As our priors are �at, the
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bimodality is likely due to the tension among the di�erent objective functions in (25). It arises also in the portfolio problem that

we examined in the previous section and it seems unavoidable in multiobjective programming problems where the objectives

point, naturally, to very di�erent solutions.

Figure 5. Marginal posterior distribution of the �rst Pareto weight,α1.

6 Concluding remarks

In this work we developed a statistical framework for multicriteria decision making problems by embedding them in a class of

Bayesian posterior distributions. The idea of using posterior distributions in optimization dates back to Pinkus (1968). In this

paper, we relaxed the assumption that we need a certain parameter h so that the posterior mean converges to the global optimum.

Our new approach to multiobjective programming considers an equivalent posterior disrtibution for the decision variables and

the Pareto weights jointly, which are often unknown. Therefore, statistical inferences can be performed for the decision variables

and the Pareto weights jointly. Of course the Pareto weights can be �xed in advance and, as a result, we can trace out the entire

Pareto frontier, a task that is di�cult when gradient-based or mixed integer programming - based methods are used. We applied

the new technique to a portfolio problem previously analyzed by Xidonas et al. (2010) and a test problem proposed by Qu et al.

(2013). The performance of the new approach yields similar if not identical results and timings are competitive although higher:

This is expected for any Monte Carlo approach to the problem, for example simulated annealing (Zhou and Chen, 2013).
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The new technique can be considered as an extension of Zhou and Chen (2013) to the multicriteria decision making. The

important features of the technique are: i) The Pinkus (1968) parameter h is no longer needed if we adopt a conditionally

conjugate prior for this parameter. ii) Posterior statistical inference for both the deicision variables and the Pareto weights is

possible. iii) Fixing the Pareto weights and tracing out the entire Pareto frontier can be performed in a systematic way without

the need for multistart gradient-based or mixed integer programming algorithms. iv) Binary or discrete variables can be handled

in a natural way as we showed in connection to the multicriteria portfolio problem of Xidonas et al. (2013).

The good performance of new techniques suggests that SMC and other algorithms, like the classical Metropolis-Hastings

algorithm, can be used pro�tably in the context of multicriteria decision making problems to trace out the Pareto frontier and /

or �nd a global optimum. Most importantly SMC can be considered as an o�-the-shelf technique to solve arbitrary multicriteria

decision making problems routinely and e�ciently. One may argue that the proposed approach is working in an uncontrollable

way and may produce arbitrary results, because here the decision maker is replaced by the data and the data may change over

time. However, by relying on the data we provide an objective approach to the problem. Of course, if a decision maker is

available, she can assign the weights and a Pareto solution can be found.
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