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Abstract

Graphene provides a two-dimensional platform for contacting individual molecules,

which enables transport spectroscopy of molecular orbital, spin and vibrational states.

Here we report single-electron tunneling through a molecule that has been anchored

to two graphene leads. Quantum interference within the graphene leads gives rise to

an energy-dependent transmission and fluctuations in the sequential tunnel-rates. The

lead states are electrostatically tuned by a global back-gate, resulting in a distinct

pattern of varying intensity in the measured conductance maps. This pattern could
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potentially obscure transport features that are intrinsic to the molecule under investiga-

tion. Using ensemble averaged magneto-conductance measurements, lead and molecule

states are disentangled, enabling spectroscopic investigation of the single molecule.

Graphene electrodes are advantageous for use in single-molecule devices,1–5 because un-

like metal electrodes, they do not suffer from high atomic mobility and screening.1,3 Large

area single-layer graphene can be grown and patterned into devices with electrodes separated

by nanogaps,6,7 and molecules bridging the gap can be anchored to the electrodes via covalent

bonding4 or π−π-stacking.1–3,8,9 However, the non-trivial density of states and transmission

in graphene nanostructures, combined with the fact that graphene can be electrostatically

gated, can lead to the observation of transport features in graphene-based single-molecule

devices that are not intrinsic to the molecule under investigation, but are rather a property

of the leads. Experimental and theoretical studies have shown that quantum interference in

graphene ribbons10–13 and nanoconstrictions14 lead to conductance fluctuations at cryogenic

temperatures. Quantum confinement in the source and drain electrodes of semiconductor

single-electron transistors results in the observation of density of states oscillations in the

sequential electron tunneling transport through these devices.15,16 It is therefore to be ex-

pected that quantum interference effects in graphene electrodes will also influence the charge

transport in single-molecule devices.

Here we present a transport spectroscopy investigation of a graphene-based single-electron

transistor where we attribute the sequential electron tunneling to the presence of a single

molecule bridging the graphene nanogap. While the charge island is most likely formed by an

individual zinc-porphyrin dimer, the observed transport features are completely independent

of the type of molecule used, and in fact can also be observed in graphene quantum dots in a

similar device geometry (in the Supplementary Information, where we present experimental

data of a zinc-porphyrin monomer and a graphene quantum dot). Our experiments show

how the graphene leads couple electrostatically to a global back-gate, and that hybridization

between the lead and molecule states results in distinct fluctuation patterns as function of

2
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Electrostatic gating of molecule and lead states. We measured charge transport

in single-molecule transistors at 4.2 K (sample A) and 20 mK (sample B) as a function of

bias voltage Vb and gate voltage Vg. Individual molecules were contacted using chemical

vapor deposition (CVD) grown graphene nanogaps on a silicon substrate with a 300 nm

thermally grown oxide layer that was pre-patterned with metal (Cr/Au) contacts. The

graphene nanogaps were fabricated using feedback-controlled electroburning.7 Single zinc-

porphyrin dimer molecules were deposited from a chloroform solution, and were identified

by comparing current maps as a function of Vb and Vg before and after deposition (see

Supplementary Information).

The conductance through the single zinc-porphyrin dimers was investigated via single-

electron tunneling from a metallic source reservoir via the left graphene lead, through the

molecule, to the metallic drain reservoir via the right graphene lead (Fig. 1a). The silicon

substrate was used as a backgate to apply Vg. In contrast with metal-based single-molecule

transistors, where the metal electrodes screen the gate electric field, in our devices the elec-

trostatic gating influences both the molecular orbital states and the states in the graphene

leads (Fig. 1b). Previous experiments using partially electroburnt graphene nanoconstric-

tions have shown that the transmission of our graphene leads fluctuates as a function of

Vb and Vg, which we attribute to either universal conductance fluctuations (UCFs) result-

ing from random disorder or the presence of multi-mode Fabry-Pérot interferences.14 These

fluctuations in the graphene leads influence the transmission through the molecule as orbital

states are tuned in and out of resonance with the lead states.

Figure 1c shows the differential conductance measured as a function of the applied bias

and gate voltage. The data reveal a dense set of positive and negative conduction resonances

visible as red and blue lines of positive slope that we attribute to fluctuations in the graphene

leads. A striking feature of the data is that the red and blue lines do not run parallel to

the lines at the edges of white regions of suppressed conductance. In what follows, we will

discuss the origin of the conduction resonances and analyze the electrostatic gating of the

4
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molecule and the lead states.

For charge to flow through a molecule, electrons need to be added and removed from it.

The energy required to add one electron to the molecule, i.e. its electron affinity, is given by

the electrochemical potential µM(N) = U(N)−U(N − 1), where U(N) is the total energy of

the N -electron redox state.17 This electrochemical potential consists of the discrete orbital

energy plus the electrostatic contribution to the energy, which depends linearly on the source

(drain) Vs(d) and gate Vg voltage as µM = −|e|(Cs,MVs + Cd,MVd + Cg,MVg)/(Cs,M + Cd,M +

Cg,M), where the capacitance Cs(d,g),M describes the electrostatic interaction between the

source (drain, gate) electrode and the molecule.18 Electrons can tunnel through the molecule

when its electrochemical potential is within the bias window defined by the electrochemical

potentials µs = −|e|Vs and µd = −|e|Vd in the source and drain reservoirs respectively. When

µd is outside this bias window, electrons do not have the necessary energy to occupy/empty

an orbital, resulting in diamond-shape regions of Coulomb blockade in the conductance

versus bias and gate voltage map. The slopes of these Coulomb diamonds are given by the

conditions µM = µd and µM = µs. When the device is biased asymmetrically and the gate

voltage is set relative to one of the electrodes, in our case the drain, i.e. Vs = Vb and Vd = 0,

these conditions yield the slopes Cg,M/(Cd,M + Cg,M) and −Cg,M/Cs,M.

Similar to the molecular orbital states, the states in the graphene leads shift linearly as a

function of the applied bias and gate voltage. The energy shift of the states in the left lead,

which is coupled to the source reservoir, is given by ∆ǫL = −|e|(Cs,LVs+Cg,LVg/(Cs,L+Cg,L),

and for the right lead coupled to the drain reservoir ∆ǫR = −|e|(Cd,RVd+Cg,RVg/(Cd,R+Cg,R).

In the case of asymmetric biasing, lines in the conductance map for which a molecular orbital

aligns with a state in the left lead have a slope given by µM = ∆ǫL, which yields

dVb

dVg

=
Cg,L(Cs,M + Cd,M)− Cs,LCg,M

Cg,LCs,M − Cs,L(Cg,M + Cd,M)
, (1)

5
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and for states in the right lead µM = ∆ǫR yields

dVb

dVg

=
Cg,R(Cs,M + Cd,M)− Cd,RCg,M

Cg,RCs,M + Cd,RCs,M

. (2)

When the lead states are clamped to the electrochemical potential of the reservoirs, i.e. if

the capacitive coupling between the leads and the gate is zero, the slope of the lines for which

the molecular orbitals align with the lead states run parallel to the edges of the Coulomb

diamonds. Parallel lines in conductance maps resulting from disorder and confinement in

the leads of single-electron transistors have been studied extensively, for example in STM-

fabricated devices in silicon.15 However, when there is capacitive coupling between the leads

and the gate, these lines no longer run parallel to the edges of the Coulomb diamonds, and

resonances between molecular and lead states shift in and out of the bias window.

From the slopes of the edges of the Coulomb diamonds in Fig. 1c we infer that the ratio

Cg,M/Cs,M = (33±1)×10−3, and Cg,M/Cd,M = (20±1)×10−3. The relatively strong coupling

to the source and drain electrodes compared to the gate electrode is due to the fact that

the backgate is separated from the device by a 300 nm layer of SiO2. Next, we estimate

the electrostatic coupling of the lead states to the backgate. We only observe conduction

resonances with negative slopes, which implies that we predominantly probe the left lead.

From the negative slope of the conduction resonances we find Cg,L/Cs,L = (7 ± 1) × 10−3,

indicating that the gate coupling to the molecule is approximately 3− 5 times stronger than

to the lead states. We attribute the difference in gate coupling between the molecule and the

lead states to the higher carrier concentration in the graphene leads, which results in a more

effective screening of the gate electric field. The average spacing between the conduction

resonances is approximately 5 meV, which is consistent with the conductance fluctuations

we have previously observed in partially electroburnt graphene nanoconstrictions.14

6
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Orbital hybridization between molecule and lead states. We will now discuss the

hybridization between the lead states and the molecular orbitals as they are tuned in and out

of resonance. The current through a molecular orbital is given by the Landauer formula19

I = −2|e|
h

∫
T (E)[fL(E)− fR(E)]dE, (3)

where fL,R denotes the Fermi distribution of the reservoirs, which in the case of asymmetric

biasing depends on the bias voltage Vb and temperature T as fL = [exp((E−eVb)/kBT )+1]−1

and fR = [exp(E/kBT ) + 1]−1.

To investigate the role of scattering in the leads on the transmission through the molecular

orbital we employ a simple Hückel (tight-binding) model as shown in Fig. 2a. The molecule

is represented by a single site at n = 0 with an on-site energy µM and a hopping integral

γL,R to the left and right lead respectively. The left and right leads are represented by semi-

infinite chains with on-site energies ǫL,R and nearest-neighbour hopping integrals αL,R. We

introduce scattering into the left and right compound electrodes at n = −NL and n = NR

by adjusting the hopping integrals βL,R.

Traditionally one would regard this structure as a complicated scatterer (S) consisting

of the region between −NL ≤ n ≤ NR (shaded grey in Fig. 2b) and two simple crystalline

leads (shaded orange in Fig. 2b) along which electrons propagate ballistically into and from

the reservoirs. For such a system,

T (E) = 4Tr[ΓAGSSΓBG
†
SS], (4)

where ΓA and ΓB describe the level broadening due to contact with the crystalline semi-

infinite leads, A and B. In this expression, the scatterering region is a complex combination

of the molecule and graphene and GSS is the Green’s function of the scattering region in the

presence of the simple crystalline leads. Our aim is to separate the contributions to scattering

from the molecule and graphene and therefore we adopt an alternative formulation20 in

7
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which the left graphene, and left semi-infinite lead, i.e. the region n < 0, are regarded as a

compound electrode (L) and the right graphene and right semi-infinite lead (n > 0) form the

right compound electrode (R). This viewpoint is encapsulated in the following alternative

expression for the transmission coefficient, which is mathematically equivalent to Eq. 4

T (E) = 4Tr[ΓLGMMΓRG
†
MM ]. (5)

In this equation, the level broadening due to contact between the molecule and the left and

right compound electrodes are described by

ΓL = HML
gLL − g†LL

−2i
HLM, (6)

ΓR = HMR
gRR − g†RR

−2i
HRM, (7)

where gLL(RR) is the Green’s function of the isolated left(right)-hand compound electrode, and

HL(R)M denotes the coupling between the left(right) compound electrode and the molecule.

The Green’s function of the molecule in the presence of the compound electrodes is given by

GMM = (E − µM − ΣL − ΣR)
−1, (8)

where the self-energies of the left and right compound electrode are

ΣL = HMLgLLHLM = σL − iΓL, (9)

ΣR = HMRgRRHRM = σR − iΓR. (10)

Using Eq. 5 and 6–10, we obtain the Breit-Wigner formula

T (E) =
4ΓLΓR

(E − µM − σL − σR)2 + (ΓL + ΓR)2
. (11)

In the case of the simple Hückel model, this implies that the tunnel-rate ΓL is proportional

8
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to the local density of states at site n = −1 and ΓR is proportional to the local density of

states at site n = +1. Both the tunnel-rates and the energy shifts depend on the electrode

density of states, which in turn is determined by the random locations of scattering centres

within the graphene electodes. The self-energies of the compound electrodes in the Hückel

model can be found numerically by decimation (for details see Supplementary Information),

or analytically by solving Dyson’s equation (see Supplementary Information). The latter

yields

ΣL = − γ2
L

αL

eikL
e−ikLNL sin kL − xL sin kL(NL − 1)

e−ikL(NL+1) sin kL − xL sin kLNLeikL
, (12)

where xL = β2
L/α

2
L − 1 and kL = cos−1(ǫL − E)/2α. Similarly ΓR is obtained by replacing L

by R in the above expression.

Figure 3a and b show the real and imaginary part of the self-energies for strong and

weak reflections in the leads. For strong reflection (β2
L,R = 0.1α2

L,R) we find sharp peaks

in the imaginary part of the self-energies, i.e. the density of states at the surface sites

(n = ±1), arising from quasi-bound states between the molecule and the reflection sites

(n = −NL, NRl). By contrast, for weak reflections (β2
L,R = 0.9α2

L,R) we find a small sinusoidal

modulation of both the tunnel-rates ΓL,R and the energy shift σL,R. The tunnel-rate is

maximum on resonance with the quasi-bound lead states while the hybridization energy

changes sign upon crossing the resonance condition. The transmission as a function of

energy and electrochemical potential of the molecule µM (Fig. 3c) shows both the effect of the

modulation of the tunnel-rate and the hybridization energy. The transmission is a maximum

upon resonance, reflecting the increase in tunnel-rate, and avoided crossing appear around

the resonance condition due to level repulsion resulting from the hybridization between the

molecular orbital and the lead states.

To calculate the current and differential conductance as a function of bias and gate voltage

as shown in Fig. 1e, we introduce the experimentally extracted capacitive coupling parame-

ters to the on-site energies as discussed in the previous section. By choosing αL,R = 1 eV and

NL = NR = 1000 we obtain an energy-level spacing between the quasi-bound lead states of 2

9
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Figure 3: Tunnel-rate and hybridization energy. (a) Schematic depiction of the Hückel
model. (a,b) Real and imaginary part of the surface Green’s function calculated for αL,R =
3 eV, ǫL,R = 0 eV and l = 1000. (c) Transmission as a function of energy E and on-site
potential µM for γL,R = 20 meV.
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waves acquire an additional phase due to the vector potential, resulting in an Aharonov-

Bohm phase ∆BAB = Φ0/S, where Φ0 = h/e, for a trajectory enclosing an area S. When

the conductance is measured for different magnetic fields within the correlation field scale

∆Bc ≈ Φ0/(Lx + Ly), where Lx and Ly correspond to the smallest relevant dimension

in x and y direction, similar features corresponding to a specific impurity configuration are

observed in each conductance curve.21,22 However, when the increments in external magnetic

field are larger than ∆Bc, a different impurity configuration is probed for each conductance

curve. As a result, UCFs can be suppressed by ensemble averaging measurements recorded

at B > ∆Bc, denoted by 〈. . .〉B. This technique was successfully used to distinguish between

UCF and weak-localization effects in nanowires23 and carbon nanotubes.24 Theoretically,

the UCFs can be reduced by a factor of
√
N where N is the size of the ensemble.24 Figure

4f shows bias traces as a function of magnetic field recorded at Vg = 29.75V (indicated

by the dotted line in Figure 4c. We recorded 40 traces in B⊥ = Bz (Figure 4d) and 40

traces in B|| = Bx,y (Figure 4e). For a phase coherence length lφ ≈ 400 nm14 found in our

graphene samples ∆Bc ≈ 25 mT, and therefore ∆B⊥,∆B|| > ∆Bc. While the out-of-plane

magnetic field changes the conductance fluctuations (Figure 4e, the in-plane field up to 6 T

does not affect the oscillations (see Figure 4d). The fact that only the out-of-plane magnetic

field influences the conductance fluctuations further strengthens our assumption that they

are intrinsic to two dimensional graphene leads rather than the molecule. By comparing

the conductance at B = 0 with the data averaged over B we find a reduction of UCFs of

var(G(B = 0))/var(〈G(B)〉B) ≈ 6 very close to the theoretical value of
√
40 ≈ 6.3.

Single- and multi-mode FP interference effects have previously been observed in graphene

ribbons and nanoconstrictions.14 The Lorentz force acting on the electrons in a FP cavity

will curve their trajectories when an external magnetic field is applied, which leads to the

semiclassical (kinetic) phase difference φWKB between two neighbouring trajectories.25 In

addition, bent trajectories enclosing an area S will accumulate an Aharonov-Bohm phase

φAB = eB⊥S/~ = Φ/Φ0. Finally, back-reflected electrons in graphene acquire a Berry

12
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Discussion

In this work we have investigated the role of density of states fluctuations in single-molecule

devices contacted to single-layer graphene nanoelectrodes. By analyzing local measurements

of the quasi-bound lead states, we find that the electrostatic coupling to the global back-gate

is weaker than the gate coupling to the molecule. This enables electrostatic control over the

hybridization between lead and molecule states. While the effect of quantum interference is

in most cases detrimental to the investigation of molecular properties, because intensity vari-

ations in the conductance maps are hard to distinguish from the molecular features, it may

provide a pathway towards interference-based molecular transistors. If the energy-spacing

between the quasi-bound lead states can be increased by further quantum confinement, they

may act as an energy filter for the transport through the molecular orbitals.27,28

Our approach of ensemble averaging magnetoconductance traces provides an effective

way of distinguishing between features that are intrinsic to the molecule and those that are

the result of quantum interference in the leads. This provides a useful tool for the spec-

troscopic investigation of single molecules, for example for the identification of vibrational

states.29 In the case where magnetic ensemble averaging is not possible, e.g. when studying

magnetic molecules, a co-planar gate30 could potential reduce the effects of density of states

fluctuations in the leads as it will only gate the lead states locally.

To conclude, our results highlight the importance of the electronic properties of the

lead electrodes in single-molecule electronics. While graphene may be a material system

that is very well suited to host these devices, further understanding of the hybridization

between graphene and molecules will be needed to develop these devices into a technology.

Atomically precise control of the structure and edge termination of the graphene leads,31

together with stacked two-dimensional material approaches32 could pave the way towards

functional graphene-molecule hybrid systems.
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