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Abstract. We analyse the asymptotics of ruin probabilities of two in-

surance companies (or two branches of the same company) that divide be-

tween them both claims and premia in some specified proportions when the

initial reserves of both companies tend to infinity and generic claim size is

subexponential.
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1. INTRODUCTION

We consider a model of two-dimensional risk process with renewal in-
put: claims ~σn = (σn,1, σn,2) arrive in a random input at arrival epochs {tn}
with interarrival times {τn}. There are two insurance companies, company
i has initial capital xi and premium rate pi, and covers claims σn,i, i = 1,
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2. We assume that the two sequences {~σn} and {τn} are mutually indepen-
dent and that each of them consists of i.i.d. random variables.

Let N(t) be the number of claims by time t ­ 0,

N(t) = max{n : tn ¬ t},

then

~S(t) = (S1(t), S2(t)) :=
N(t)∑
n=1

~σn

is the vector of total claim sizes by time t. Further, let

~b(t) = (b1(t), b2(t)) := ~x+ ~pt

be the sum of initial capitals and of total premiums by time t, here ~x =

(x1, x2) and ~p = (p1, p2). Introduce ruin probabilities of two types: for any
T ∈ (0,∞], these are

ψ∧(~x, T ) = P{S1(t) > b1(t) or S2(t) > b2(t) for some t ¬ T},

ψ∨(~x, T ) = P{S1(t) > b1(t) and S2(t) > b2(t) for some t ¬ T}.

Here ψ∧(x1, x2, T ) describes the ruin probability of at least one insurance
company, while ψ∨(x1, x2, T ) corresponds to the ruin of the both insurance
companies.

There are several papers—see e.g., Konstantinides and Li [15] and list
of references therein—where it is assumed that the pairs (σn,1, σn,2) are i.i.d.
and have a multivariate regularly varying distribution. We like to consider
claim sizes with distributions from a more general subexponential class
that includes Pareto and also log-normal and Weibull distributions. We are
unaware of any reasonable concept of subexponentiality here. So only two
extreme options seem to be doable: either
(i) σn,1 and σn,2 are independent or
(ii) they are dependent deterministically, say

σn,1 = l(σn) and σn,1 = σn − l(σn)

where 0 ¬ l(x) ¬ x and σn is the cumulative claim of the client n that is
covered by the two insurance companies together.
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There are several papers that study related problems in direction (i)—
see e.g. Li et al. [17], Chen et al. [8], Chen, Wang, Wang [6, 7], Hu and Jiang
[14], Lu and Zhang [19], see also references therein. In particular, in the
paper by Lu and Zhang [19], a uniform asymptotics over finite intervals
have been obtained under some restrictive assumptions on distributions.

Avram et al. [3, 4] studied boundary crossing probabilities of a stochas-
tic process with light-tailed increments. This study was also motivated by
ruin probabilities of two insurance companies with proportional claims
and the steady state distribution of a tandem queue with two servers (see
[18]). Similar considerations were done in Badila et. al. [5] (for mutidimen-
sional risk process) and in [14] (for the two-dimensional risk process with
constant interest rate).

The key message of this paper is that in both cases results on the uni-
form asymptotics may be obtained for a general class of strong subexponen-
tial distributions, no further restrictions are needed. We only consider the
second direction using approach developed in a series of works of Denisov,
Foss, Korshunov, Palmowski, and Zachary (see e.g. [9, 11, 12, 13, 16]); sim-
ilar arguments apply in the first direction.

To make it simple, we assume l(x) to be linear, l(x) = lx for some l ∈
(0, 1). Then, after some transformations we can reformulate the problem as
follows. Let us define

(1.1) St =
Nt∑
i=1

σi,

where Nt is a renewal process with positive i.i.d. inter-arrival times τi, and
the claim sizes σi are positive i.i.d. random variables that do not depend on
N(t) and have a common distribution function F (x). Note also that Nt =

max{k ­ 0 : tk ¬ t} for a random walk constructed from the interarrival
times:

tn =
n∑
k=1

τk.

Let the boundaries b1 and b2 be given by

b1(t) = b1(t;x1) = x1 + p1t, b2(t) = b2(t;x2) = x2 + p2t.

We assume that Eσ <∞, Eτ <∞ and that

(1.2) p1 > p2, p2 > ρ := E[σ]/E[τ ]
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for generic τ and σ. In this paper for T > 0, we will consider the following
boundary crossing probabilities:

ψ∧(x1, x2, T ) = P{τ∧(x1, x2) ¬ T},

ψ∨(x1, x2, T ) = P{τ∨(x1, x2) ¬ T},

for

τ∧(x1, x2) = inf{t ­ 0 : St > b1(t) ∧ b2(t)},(1.3)

τ∨(x1, x2) = inf{t ­ 0 : St > b1(t) ∨ b2(t)},(1.4)

where x ∧ y = min{x, y} and x ∨ y = max{x, y}.
The ψ∧(x1, x2, T ) describes the ruin probability of at least one insur-

ance company before time T (if T =∞ then

ψ∧(x1, x2) := ψ∧(x1, x2,∞)

is a ruin probability of at least one company). The ψ∨(x1, x2, T ) and

ψ∨(x1, x2) := ψ∨(x1, x2,∞)

correspond to the ruin of both insurance companies. The first assumption
in (1.2) means that the second company has a smaller premium rate than
the first company, and the second assumption is the condition under which
reserves of both insurance companies tend to infinity. The solutions to the
”degenerate two-dimensional” ruin problems strongly depend on the rel-
ative position of the vector of premium rates p = (p1, p2) with respect to
the proportions vector (1, 1). Namely, if the initial reserves satisfy x2 ¬ x1,
the two lines do not intersect. It follows therefore that ψ∧ and ψ∨ are ruin
probabilities of the second and first companies respectively. In this case the
asymptotics follows from one-dimensional ruin theory—see e.g. Rolski et
al. [20]. Therefore we focus here on the opposite case where

(1.5) x1 < x2.

In this paper we derive the exact first order asymptotics of these ruin
probabilities if x1, x2 tend to infinity and when the claims follow a subexpo-
nential distribution. We model the claims by subexponential distributions
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since many catastrophic events like earthquakes, storms, terrorist attacks
etc are used in their description. Insurance companies use e.g. the lognor-
mal distribution (which is subexponential) to model car claims—see Foss et
al. [13], Rolski et al. [20] or Embrechts et al. [10] for the further background.

The paper is organized as follows. In next section we present the main
results which will be proved in Section 3.

2. MAIN RESULTS

In order to state our results we recall basic notation and notions. Here-
inafter we write f(x, y) ∼ g(x, y) if f(x, y)/g(x, y) → 1 as x, y → ∞ and
f(x) ∼ g(x) if f(x)/g(x)→ 1 as x→∞. For a distribution F , F denotes the
tail distribution function given by F (x) = 1− F (x).

A distribution F on R+ is called subexponential (F ∈ S) if and only if
F (x) > 0 for all x and

(2.1) F ∗2(x) ∼ 2F (x) as x→∞,

where F ∗2 is the convolution of F with itself.
A distribution F on R+ is called strong subexponential (F ∈ S∗) if and

only if F (x) > 0 for all x and

(2.2)
x∫
0

F (x− y)F (y) dy ∼ 2mFF (x) as x→∞,

where

mF =
∞∫
0

F (x) dx

is the expectation of F . It is known that the property F ∈ S∗ is a tail prop-
erty of F , namely, if F1 ∈ S∗ and F 1(x) ∼ F 2(x) as x → ∞, then F2 ∈ S∗.
Further, if F ∈ S∗ then F ∈ S and also F s ∈ S where

F s(x) = min
(

1,
∞∫
x

F (t) dt
)

is the integrated tail distribution function determined by F ; see [13] for de-
tails.

Denote

(2.3) mi = piEτ − Eσ, i = 1, 2.

Since p1 > p2, we have m1 > m2.
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THEOREM 2.1. Assume that the distribution F of generic σ ­ 0 is strong

subexponential. Then, as x1, x2 →∞,

(2.4) ψ∧(x1, x2, T ) ∼ HT (x1, x2) :=
ENT∫
0

F (min{x1 + tm1, x2 + tm2}) dt

and

(2.5) ψ∨(x1, x2, T ) ∼ UT (x1, x2) :=
ENT∫
0

F (max{x1 + tm1, x2 + tm2}) dt

holds uniformly for all T > 0.

COROLLARY 2.1. In conditions of Theorem 2.1, as x1, x2 and T →∞,

(2.6) ψ∧(x1, x2, T ) ∼
T/Eτ∫
0

F (min{x1 + tm1, x2 + tm2}) dt,

and

(2.7) ψ∨(x1, x2, T ) ∼
T/Eτ∫
0

F (max{x1 + tm1, x2 + tm2}) dt.

COROLLARY 2.2. Assume that F is strong subexponential and a < 1 is

fixed. Then we have the following asymptotics, as x→∞:

(2.8) ψ∧(ax, x) ∼ H(x) :=
∞∫
0

F (min{ax+ tm1, x+ tm2}) dt,

and

(2.9) ψ∨(ax, x) ∼ U(x) :=
∞∫
0

F (max{ax+ tm1, x+ tm2}) dt.

We can also identify the joint distribution of the ruin times (1.3) and
(1.4) and the position at the moment at these ruin times. To do this we will
require additional assumptions. Let e(x) be a function tending to infinity
as x→∞. For fixed y ­ 0 and v ­ 0 we denote:

(2.10) Hy,v(x) =
∞∫

ye(x)

F (min{ax+ tm1, x+ tm2}+ ve(x)) dt
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and

(2.11) Uy,v(x) =
∞∫

ye(x)

F (max{ax+ tm1, x+ tm2}+ ve(x)) dt.

Note that H(x) = H0,0(x) and U(x) = U0,0(x). We will assume that there
exists some continuous distribution function G such that

(2.12) lim
x→∞

Hy,v(x)

H(x)
= G(m1y + v)

and that

(2.13) lim
x→∞

Uy,v(x)

U(x)
= G(m2y + v).

THEOREM 2.2. Assume that there exist a function e(x) ↑ ∞ and a continu-

ous probability distribution G on the positive half-line (0,∞) such that (2.12) and

(2.13) are satisfied. Then, for a < 1, we have:

(2.14)

lim
x→∞

P
{
τ∧(ax, x)

e(x)
­ y,

Sτ∧(ax,x) − b∧(t)

e(x)
­ v
∣∣∣τ∧(ax, x) <∞

}
= G(m1y+ v)

and

(2.15)

lim
x→∞

P
{
τ∨(ax, x)

e(x)
­ y,

Sτ∨(ax,x) − b∨(t)

e(x)
­ v
∣∣∣τ∨(ax, x) <∞

}
= G(m2y+ v).

For similar statements for a linear boundary, see Asmussen and Klüppelberg
[2] and Foss et al. [13] in the case of i.i.d. jumps and Asmussen and Foss [1]
in the case of Markov modulation.

REMARK 2.1. To provide examples where assumptions (2.12) and (2.13)

are satisfied, we choose strong subexponential distribution F for which F s

is self-neglecting. That is, let us assume that there exist a function e(x) ↑ ∞

and a continuous probability distribution G on the positive half-line (0,∞)

such that, for any y > 0,

(2.16)
F
s
(x+ ye(x))

F
s
(x)

→ G(y) as x→∞.
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From [10, Thm. 3.4.5, p. 158] it follows that F s is either in the domain

of attraction of Frechet distribution or in the the domain of attraction at-

traction of Gumbel distribution. In the first case

(2.17)

F ∈ RV(α+ 1), F s ∈ RV(α), G(y) = (1 + α−1y)−α, e(x) = α−1x,

with α > 0 (then Eσ < ∞) for the family RV(α + 1) of regularly varying

distributions. In the second case,

(2.18) G(y) = e−y, e(x) =
mFF

s
(x)

F (x)
.

To check (2.12) it is convenient to use the following representation

Hy,v(x) =
1

m1
F
s
(ax+ (m1y + v)e(x))

+

(
1

m2
− 1

m1

)
F
s
(ax+m1T̂ + ve(x))

+
1

m2
F
s
(x+m2T̂ + ve(x))(2.19)

for the moment when two lines ax+m1t and x+m2t cut each other:

T̂ =
(1− a)x

m1 −m2
.

Recall also that H(x) = H0,0(x). Now one can check that if (2.17) holds

true then indeed (2.12) is satisfied. Similarly, one can prove that in this case

assumption (2.12) is also satisfied.

The case (2.18) is much more advanced and it should be analysed case

by case using for example [10, Example 3.3.35, p. 149].

In our proof of Theorem 2.1, we use the following simple result that
may be of use in other settings.

LEMMA 2.1. Let z(t) ­ 0 be an increasing function, F a distribution and Nt

a renewal process. Then

E
NT∫
0

F (x+ z(t))dt ¬
ENT∫
0

F (x+ z(t))dt for all x and T > 0(2.20)
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and

E
NT∫
0

F (x+ z(t))dt ∼
ENT∫
0

F (x+ z(t))dt as x, T →∞.(2.21)

If, in addition, the distribution F is a long-tailed, then

(2.22)

E
NT∫
0

F (x+ z(t))dt ∼
ENT∫
0

F (x+ z(t))dt as x→∞ uniformly for all T > 0.

Notice that, in general, the last result is not applicable to an upper limit
N% where % is a stopping time like in (3.16) and (3.17) below.

3. PROOFS

3.1. Proof of Theorem 2.1. As discussed above, it is sufficient to consider
the case x2 > x1. For any x > 0 and T̂ > 0, let x̂ = x+ p1T̂ and

b̂(t) :=

{
x+ p1t for t ¬ T̂
x̂+ p2(t− T̂ ) for t > T̂ ,

which is a continuous piece-wise linear function. Then both assertions of
the theorem, (2.4) and (2.5), will follow if the following tail asymptotics is
proven for all p1 > 0 and p2 > 0, without assumption p2 < p1:

ψ(x, T̂ , T ) := P{St > b̂(t) for some t ¬ T}

∼
ENT∫
0

F (x̂(t))dt as x→∞ uniformly for all T̂ and T,(3.1)

where

x̂(t) :=

{
x+m1t for t ¬ T̂ /Eτ
x+m1T̂ /Eτ +m2(t− T̂ /Eτ) for t > T̂/Eτ.

Since F ∈ S∗, F is particularly subexponential and long-tailed. For any
fixed T , the random variable NT has a light tail, that is, it possesses a finite
exponential moment. In addition,NT is independent of σ’s. Hence, by The-
orem 3.37 in [13], for every fixed T ,

(3.2)

P
{ ∑
i:ti¬T

σi > x
}

=
∞∑
j=0

P{NT = j}F ∗j(x) ∼ ENTF (x) as x→∞,
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and this equivalence holds uniformly on any T -compact set. This observa-
tion together with the following lower and upper bounds

P
{ ∑
i:ti¬T

σi > x+ max{p1, p2}T
}
¬ ψ(x, T̂ , T ) ¬ P

{ ∑
i:ti¬T

σi > x
}

and long-tailedness of F yields that, uniformly on any T -compact set,

ψ(x, T̂ , T ) ∼ ENTF (x) as x→∞.

Taking into account that

NTF (x+ max{m1,m2}T ) ¬
NT∫
0

F (x̂(t))dt ¬ NTF (x)

and that F is long-tailed, we prove that (3.1) holds as x→∞ uniformly on
T -compact sets.

Therefore, it remains to prove (3.1) for the case T →∞. If T ¬ T̂ , then

ψ(x, T̂ , T ) = P
{ n∑
j=1

σj > x+ p1tn for some n ¬ NT

}
,

so, as proven in [16, Theorem 3] for the supremum of a compound renewal
process with negative drift Eσ/Eτ − p1 = −m1/Eτ , as x → ∞ uniformly
for T ¬ T̂ ,

ψ(x, T̂ , T ) ∼ 1

m1

m1ENT∫
0

F (x+ t)dt(3.3)

=
ENT∫
0

F (x+m1t)dt ∼
ENT∫
0

F (x̂(t))dt,(3.4)

where the last equivalence follows because ENT ∼ T/Eτ as T → ∞ and,
for any ε > 0,

(1− ε)
T/Eτ∫
0

F (x+m1t)dt ¬
(1−ε)T/Eτ∫

0

F (x+m1t)dt

¬
(1+ε)T/Eτ∫

0

F (x+m1t)dt ¬ (1 + ε)
T/Eτ∫
0

F (x+m1t)dt,(3.5)

and similar bounds for the integral of F (x̂(t)).
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Let us now consider the case T →∞ and T > T̂ . If T̂ is bounded, then
we make use of the inequalities

P{St > x+ p1T̂ + p2t for some t ¬ T} ¬ ψ(x, T̂ , T )

¬ P{St > x− p1T̂ + p2t for some t ¬ T},

which reduce—due to long-tailedness ofF—the problem to the case T̂ = T ,
a particular case of considered above.

The case where T →∞, T̂ →∞ and T > T̂ , but T − T̂ is bounded, is
very similar. Indeed, in this case it is enough to notice that

P{St > x+ p2(T − T̂ ) + p1t for some t ¬ T} ¬ ψ(x, T̂ , T )

¬ P{St > x− p2(T − T̂ ) + p1t for some t ¬ T}.

Let us now consider the last remaining case where T → ∞, T̂ → ∞,
and T − T̂ → ∞. We demonstrate two approaches, where the first one is
based on the uniform equivalences in the case of linear functions obtained
in [16] and the second on the discrete time results from [12].

3.2. Proof based on [16]. Since F is particularly long-tailed, there exists
an increasing function h(x)→∞ such that h(x) = o(x) and

F (x+ h(x)) ∼ F (x) as x→∞,(3.6)

see [13, Lemma 2.19]. For T > T̂ ,

ψ(x, T̂ , T ) ¬ P
{ n∑
j=1

σj > x+ p1tn − h(x) for some n ¬ N
T̂

}
+P
{ n∑
j=1

σj ¬ x+ p1tn − h(x) for all n ¬ N
T̂
,

n∑
j=1

σj > x̂(tn) for some n ∈ (N
T̂
, NT ]

}
= P1 + P2.(3.7)

Again by [16, Theorem 3],

P1 ∼
EN

T̂∫
0

F (x− h(x) +m1t)dt ∼
EN

T̂∫
0

F (x+m1t)dt as x→∞,(3.8)
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as follows from (3.6).
The second probability on the right hand side of (3.7) equals

P2 = P
{
S
T̂
¬ x+ p1T̂ − h(x),

S
T̂
− p1T̂ +

n∑
j=N

T̂
+1

σj − p2(tn − T̂ ) > x for some n ∈ [N
T̂

+ 1, NT ]
}
.(3.9)

We need to exclude dependence caused by the interval (T̂ , tN
T̂
+1]. We do it

in the following way:

sup
n∈[N

T̂
+1,NT ]

( n∑
j=N

T̂
+1

σj − p2(tn − T̂ )
)
¬ σN

T̂
+1

+ sup
n∈[N

T̂
+2,NT ]

( n∑
j=N

T̂
+2

σj − p2(tn − tN
T̂
+1)
)
,

where the two random variables on the right are independent because
tN

T̂
+1 is a stopping time. Further, extending the interval (tN

T̂
+1, T ] to the

interval (tN
T̂
+1, tN

T̂
+1 + T − T̂ ] of length T − T̂ we conclude that

sup
n∈[N

T̂
+2,NT ]

( n∑
j=N

T̂
+2

σj − p2(tn − tN
T̂
+1)
)
,

is stochastically not greater than

ζ
T−T̂ := sup

t¬T−T̂
(St − p2t),

whose tail is equivalent to, again by [16, Theorem 3],

P{ζ > z} ∼
EN

T−T̂∫
0

F (z +m2y)dy as z →∞.

Fix any ε > 0 such thatm1 = p1Eτ −Eσ > ε. Then it follows from (3.9) that,
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with ζ̃
T−T̂ being an independent copy of ζ

T−T̂ ,

P2 ¬
x−h(x)∫
−∞

P{S
T̂
− p1T̂ ∈ dy}P{σN

T̂
+1 + ζ̃

T−T̂ > x− y}

=
x−h(x)∫
−∞

P{S
T̂
− p1T̂ + (m1 − ε)T̂ /Eτ ∈ dy + (m1 − ε)T̂ /Eτ}

P{σN
T̂
+1 + ζ̃

T−T̂ > x− y}

=
x+(m1−ε)T̂ /Eτ−h(x)∫

−∞
P{S

T̂
− (Eσ + ε)T̂ /Eτ ∈ dy}

P{σN
T̂
+1 + ζ̃

T−T̂ > x+ (m1 − ε)T̂ /Eτ − y}.(3.10)

We have

P{σN
T̂
+1 + ζ̃

T−T̂ > u} ∼ P{ζ̃
T−T̂ > u}+ F (u) as u→∞,

by [13, Corollary 3.16]. Since the process St − (Eσ + ε)t/Eτ has negative
drift −ε/Eτ and its value at time T̂ does not exceed the value of its maxi-
mum at the same time, we also have

P{S
T̂
− (Eσ + ε)T̂ /Eτ > u} ¬ c1(ε)P{ζT̂ > u},

where

ζ
T̂

:= sup
t¬T̂

(St − p1t).

Integrating (3.10) by parts, applying the last upper bound and then inte-
grating by parts back we deduce that

x+(m1−ε)T̂ /Eτ−h(x)∫
h(x1)

P{S
T̂
− (Eσ + ε)T̂ /Eτ ∈ dy}

P{σN
T̂
+1 + ζ̃

T−T̂ > x+ (m1 − ε)T̂ /Eτ − y}

= o
(
P{ζ

T−T̂ > x+ (m1 − ε)T̂ /Eτ}+ P{ζ
T̂
> x+ (m1 − ε)T̂ /Eτ}

)
,
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by [13, Theorem 3.28], because F ∈ S∗. Hence,

P2 ¬
h(x)∫
−∞

P{S
T̂
− (Eσ + ε)T̂ /Eτ ∈ dy}

P{σN
T̂
+1 + ζ̃

T−T̂ > x+ (m1 − ε)T̂ /Eτ − y}

+o
(
P{ζ

T−T̂ > x+ (m1 − ε)T̂ /Eτ}+ P{ζ
T̂
> x+ (m1 − ε)T̂ /Eτ}

)
¬ P{σN

T̂
+1 + ζ̃

T−T̂ > x+ (m1 − ε)T̂ /Eτ − h(x)}+ o(...)

∼ P{ζ̃
T−T̂ > x+ (m1 − ε)T̂ /Eτ}+ o(P{ζ

T̂
> x+ (m1 − ε)T̂ /Eτ})

∼
ENT−ENT̂∫

0

F (x+ (m1 − ε)T̂ /Eτ +m2t)dt

+o(P{ζ
T̂
> x+ (m1 − ε)T̂ /Eτ})

¬
ENT∫

(m1−ε)T̂ /Eτ
F (x+m2t)dt+ o(P{ζ

T̂
> x+ (m2 − ε)T̂ /Eτ}).

for all sufficiently large T̂ . Being substituted together with (3.8) into (3.7) it
implies that

ψ(x, T̂ , T ) ¬ (1 + o(1))
(ENT̂∫

0

F (x+m1t)dt+
ENT∫

(m1−ε)T̂ /Eτ
F (x+m2t)dt

)
.

Since EN
T̂
∼ T̂ /Eτ as T̂ →∞ and due to (3.5) with T = T̂ , we get

ψ(x, T̂ , T ) ¬ (1 + o(1))
(T̂ /Eτ∫

0

F (x+m1t)dt+
ENT∫
T̂ /Eτ

F (x+m2t)dt
)

as x, T, T̂ , T − T̂ →∞. So,

ψ(x, T̂ , T ) ¬ (1 + o(1))
ENT∫
0

F (x̂(t))dt as x, T, T̂ , T − T̂ →∞.(3.11)

For the lower bound, let us fix an ε > 0 and follow the standard argu-
ments based on the strong law of large numbers and the single big jump
principle. By the strong law of large numbers, there exists an A such that

P{|tn − nEτ | < nε+A for all n ­ 1} ­ 1− ε.(3.12)
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On the event introduced in (3.12), if n ¬
[
T̂−A
Eτ+ε

]
=: n̂, then tn ¬ T̂ and hence

n ¬ N
T̂

. Further, on the event introduced in (3.12), if n1 :=
[
T̂−A
Eτ−ε

]
< n ¬[

T−A
Eτ+ε

]
=: n2, then T̂ < tn ¬ T and hence N

T̂
< n ¬ NT .

Then, since σ̄’s do not depend on the renewal processNt, we obtain the
inequality

ψ(x, T̂ , T ) ­ (1− ε)P
{ n∑
i=1

σ̄i > b̂(n(Eτ + ε) +A)− nEσ(3.13)

for some n ¬ n̂ or n ∈ (n1, n2]
}
.

Then the standard arguments based on the strong law of numbers—now
for σ’s—and the single big jump principle finally imply the lower bound

ψ(x, T̂ , T ) ­ (1 + o(1))
ENT∫
0

F (x̂(t))dt as x, T, T̂ , T − T̂ →∞,

which together with (3.11) concludes the proof. �

3.3. Proof based on [12]. Let us now give an alternative proof of the
asymptotic behaviour of ψ(x, T̂ , T ) in the case T →∞ based on the results
for discrete time from [12].

Let Sn =
∑n

k=1 σk, σ̄n = σn − Eσ, and S̄n =
∑n

k=1 σ̄k ≡ Sn − nEσ be a
centered random walk. From either Corollary 3 of [11] or Theorem 1 of [9],
it follows that, for any random variable γ having a light-tailed distribution
(that is, E exp(δγ) <∞ for some δ > 0), we have, for any real C,

(3.14) P{S̄n > x+ nC for some n ¬ γ} ∼ EγF (x).

Take ε > 0 sufficiently small, such that p1(Eτ − ε)−Eσ > 0 and p2(Eτ −
ε)− Eσ > 0. We take

γ = min{n ­ 1 : tk ­ (Eτ − ε)k for all k ­ n},

which is finite almost surely due to the strong law of large numbers. More-
over, this random variable γ is light-tailed because, for δ > 0,

P{γ > n} = P{tk < (Eτ − ε)k for some k ­ n}

= P{eδ((Eτ−ε)k−tk) > 1 for some k ­ n}

¬ (Eeδ(Eτ−ε−τ))n,
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by Doob’s inequality provided that Eeδ(Eτ−ε−τ) < 1; it holds for all suffi-
ciently small δ > 0, since the random variable Eτ − ε− τ is bounded above
and has negative mean.

Then

P{S̄n > b̂(tn)− nEσ for some n ¬ γ}

¬ P{S̄n > x− nEσ for some n ¬ γ} ∼ EγF (x),

by (3.14). Therefore, for all T > 0,

ψ(x, T̂ , T ) ¬ P{S̄n > b̂(tn)− nEσ for some n ¬ γ}

+P{S̄n > b̂(n(Eτ − ε))− nEσ for some n ∈ (γ,NT ]}

¬ O(F (x)) + P{S̄n > b̂(n(Eτ − ε))− nEσ for some n ¬ NT }

as x→∞ uniformly for all T > 0.
Now we recall the following result where the class Γ is a class of all

counting random variables γ such that, for all n, the event {γ ¬ n} does
not depend on {σk}k>n. For c > 0, let Gc be the class of functions g such
that g(n+ 1) ­ g(n) + c for all n = 1, 2, . . ..

THEOREM 3.1. (see [12, Theorem 2(ii)]). Assume S̄n =
∑n

1 σ̄n is a centered

random walk where the common distribution of σ̄n belongs to the class S∗. Then,

for any c > 0, uniformly for all g ∈ Gc and for all random times γ ∈ Γ, we have

P{max
n¬γ

(S̄n − g(n)) > x} ∼
∑
n­1

P(γ ­ n)P(σ̄1 > x+ g(n))

∼
∑
n­1

P(γ ­ n)F (x+ g(n)) as x→∞.(3.15)

Consider function g of the form

g(n) = b̂(n(Eτ − ε))− nEσ − x,

which is in the class Gp1∧p2 . By Theorem 3.1, we get that

P{S̄n > b̂(n(Eτ − ε))− nEσ for some n ¬ NT }

∼
∑
n

P{NT ­ n}F (x+ g(n)),
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as x→∞ and T →∞. Further, since ε > 0 is arbitrary, we may follow the
proof of the upper bound for ψ and let ε→ 0 to obtain an upper bound of
the form

(1 + o(1))
∑
n

P(NT ­ n)F (x̂(n)).

The last sum may be rewritten as

E
∑
n

I(NT ­ n)F (x̂(n)) = E
NT∑
n=1

F (x̂(n))

∼ E
NT∫
0

F (x̂(t))dt as x→∞.

Here the last equivalence follows from the long-tailedness of F . Finally, we
may use Lemma 2.1 to conclude with the upper bound (3.11).

Theorem 3.1 is also applicable to (3.13), so hence the correct lower
bound for ψ(x, T̂ , T ) follows too. �

3.4. Proof of Lemma 2.1. For any fixed x, the function

f(y) :=
y∫
0

F (x+ z(t))dt

is a concave function in y because f ′(y) = F (x + z(y)) is decreasing in y.
Then the upper bound (2.20) follows by Jensen’s inequality for concave
functions.

Concerning (2.21), notice that, for any fixed ε > 0,

E
NT∫
0

F (x+ z(t))dt ­ P{NT > (1− ε)ENT }
(1−ε)ENT∫

0

F (x+ z(t))dt,

where P{NT > (1 − ε)ENT } → 1 as T → ∞ by the law of large numbers
for the renewal process and

(1−ε)ENT∫
0

F (x+ z(t))dt ­ (1− ε)
ENT∫
0

F (x+ z((1− ε)t))dt

­ (1− ε)
ENT∫
0

F (x+ z(t))dt,

which implies lower bound

E
NT∫
0

F (x+ z(t))dt ­ (1 + o(1))
ENT∫
0

F (x+ z(t))dt as x, T →∞,



18 S. Foss , D. Korshunov, Z. Palmowki and T. Rolski

which together with upper bound (2.20) justifies (2.21).
Finally, for any fixed T and A, since z(t) ­ 0 increases,

E
NT∫
0

F (x+ z(t))dt ­ E
{NT∫

0

F (x+ z(t))dt; NT ¬ A
}

­ F (x+ z(A))E{NT ; NT ¬ A}

∼ F (x)E{NT ; NT ¬ A} as x→∞,

provided F is long-tailed in which case also

ENT∫
0

F (x+ z(t))dt ∼ F (x)ENT as x→∞,

so hence the asymptotics (2.22) follows uniformly on T -compact sets. To-
gether with (2.21) it completes the proof. �

3.5. Proof of Theorem 2.2. The proof of this result is very similar to the
proof of (2.5) of Theorem 2.1. For example to prove (2.14) it suffices to ob-
serve that

P
{
τ∧(ax, x)

e(x)
­ y,

Sτ∧(ax,x) − b∧(t)

e(x)
­ v; τ∧(ax, x) <∞

}
= P

{
S̄n > min{ax+ p1tn − nEσ, x+ p2tn − nEσ}+ ve(x)

for some n ­ ye(x)} .

�

3.6. Generalisation to n insurance companies. It is more or less clear that
a very similar proof works for (3.1) if x̂(t) is a continuous piece-wise linear
increasing function. Then it allows to go beyond two insurance companies
and consider a model with an arbitrary number of them. Clearly in high
dimension one has to overcome extra combinatorial problems that seem to
be doable.

3.7. Open question. We strongly believe that an analogue of Theorem
2.1 holds for stopping times, say % instead of T . We expect the following to
be correct:

(3.16) ψ∧(x1, x2, %) ∼ E
N%∫
0

F (min{x1 + tm1, x2 + tm2}) dt
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and

(3.17) ψ∨(x1, x2, %) ∼ E
N%∫
0

F (max{x1 + tm1, x2 + tm2}) dt

hold as x→∞ uniformly for all stopping times % with respect to the filtra-
tion generated by the renewal process Nt.

Acknowledgements. We thank Serban Badila for discussions and pre-
liminary results included in his thesis which motivated us to work on the
subject and to come to much shorter proofs of more general results given
in Theorems 2.1 and 2.2.

REFERENCES

[1] Asmussen, S. and Foss, S. (2014) On exceedance times for some processes with dependent

increments. J. Appl. Probab. 51, 136–151.

[2] Asmussen, S. and Klüppelberg, C. (1996) Large deviations results for subexponential tails,

with applications to insurance risk. Stoch. Proc. Appl. 64, 103–125.

[3] Avram, F., Palmowski, Z. and Pistorius, M. (2008) Exit problem of a two-dimensional risk

process from a cone: exact and asymptotic results, Ann. Appl. Probab. 18, 2421–2449.

[4] Avram, F., Palmowski, Z. and Pistorius, M. (2008) A two-dimensional ruin problem on the

positive quadrant, Insurance Math. Econom. 42, 227–234.

[5] Badila, S., Boxma, O., Resing, J. and Winands, E.M.M. (2014) Queues and risk models with

simultaneous arrivals, Adv. Appl. Probab. 46, 812–831.

[6] Chen, Y., Wang, Y. and Wang, K. (2013) Asymptotic results for ruin probability of a two-

dimensional renewal risk model, Stoch. Anal. Appl. 31, 80–91.

[7] Chen, Y., Wang, Y. and Wang, K. (2013) Uniform asymptotics for the finite-time ruin prob-

abilities of two kinds of nonstandard bidimensional risk models, J. Math. Anal. Appl. 401,

114–129.

[8] Chen, Y., Yuen, K. and Ng, K. (2011) Asymptotics for the ruin probabilities of a two-

dimensional renewal risk model with heavy-tailed claims, Appl. Stoch. Models Bus. Ind. 27

(3), 290–300.

[9] Denisov, D., Foss, S. and Korshunov, D. (2010) Asymptotics of randomly stopped sums in the

presence of heavy tails, Bernoulli 16(4), 971–994.

[10] Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997) Modelling Extremal Events for Insur-

ance and Finance, Springer, Berlin.



20 S. Foss , D. Korshunov, Z. Palmowki and T. Rolski

[11] Foss, S. and Zachary, S. (2003) The maximum of a random time interval of a random walk

with long-tailed increments and negative drift, Ann. Appl. Probab. 13, 37–53.

[12] Foss, S., Palmowski, Z. and Zachary, S. (2005) The probability of exceeding a high boundary

on a random time interval for a heavy-tailed random walk, Ann. Appl. Probab. 3, 1936–1957.

[13] Foss, S., Korshunov, D. and Zachary, S. (2013) An Introduction to Heavy-tailed and Subexpo-

nential Distributions, Springer.

[14] Hu, Z. and Jiang, B. (2013) On joint ruin probabilities of a two-dimensional risk model with

constant interest rate, J. Appl. Probab. 50, 309–322.

[15] Konstantinides, D. G. and Li, J. (2016) Asymptotic ruin probabilities for a multidimensional

renewal risk model with multivariate regularly varying claims, Insurance Math. Econom. 69,

38–44.

[16] Korshunov, D. (2016) On subexponential tails for the maxima of negatively driven compound

renewal and Lévy processes, https://arxiv.org/abs/1608.09004v2.

[17] Li, J., Liu, Z. and Tang, Q. (2007) On the ruin probability of a bidimensional perturbed risk

model, Insurance Math. Econom. 41, 185–195.

[18] Lieshout, P.M.D. and Mandjes, M. (2007) Tandem Brownian queues, Mathematical Methods

of Operations Research 66, 275–298.

[19] Lu, D. and Zhang, B. (2016) Some asymptotic results of the ruin probabilities in a two-

dimensional renewal risk model with some strongly subexponential claims, Statist. Probab.

Lett. 114, 20–29.

[20] Rolski, T., Schmidli, H., Schmidt, V. and Teugles, J.L. (1999) Stochastic processes for insurance

and finance, John Wiley and Sons, Inc., New York.

[21] Yuen, K., Guo, J., Wu, X. (2006) On the first time of ruin in the bivariate compound Poisson

model, Insurance Math. Econom. 38, 298–308.



Two-dimensional ruin probability 21

Sergey Foss

Heriot-Watt University, UK

Novosibirsk State University, Russia

Sobolev Institute of Mathematics, Russia

Edinburgh EH14 4AS, Scotland, UK

E-mail: Serguei.Foss@hw.ac.uk

Dmitry Korshunov

Lancaster University, UK

Novosibirsk State University, Russia

Lancaster, LA1 4YF, United Kingdom

E-mail: d.korshunov@lancaster.ac.uk

Zbigniew Palmowski

Faculty of Pure and Applied Mathematics

Wrocław University of Science and Technology
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