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Abstract

The k-partition problem is an NP-hard combinatorial optimisation
problem with many applications. Chopra and Rao introduced two inte-
ger programming formulations of this problem, one having both node
and edge variables, and the other having only edge variables. We
show that, if we take the polytopes associated with the ‘edge-only’
formulation, and project them into a suitable subspace, we obtain the
polytopes associated with the ‘node-and-edge’ formulation. This result
enables us to derive new valid inequalities and separation algorithms,
and also to shed new light on certain SDP relaxations. Computational
results are also presented.

Keywords: graph partitioning; polyhedral combinatorics; branch-
and-cut; semidefinite programming.

1 Introduction

The k-partition problem (k-PP) is a strongly NP-hard combinatorial opti-
misation problem, first defined in [5]. We are given an undirected graph G,
with vertex set V and edge set E, a rational weight we for each edge e ∈ E,
and an integer k with 2 ≤ k ≤ |V |. The task is to partition V into k or fewer
subsets (called “clusters”), such that the sum of the weights of the edges
that have both end-vertices in the same cluster is minimised. The k-PP has
applications in statistical clustering, numerical linear algebra, telecommu-
nications, VLSI layout, sports team scheduling and statistical physics (see,
e.g., [14, 18, 31]).

Note that the k-PP is equivalent to the max-k-cut problem, in which one
wishes to maximise the sum of the weights of the edges that have exactly one
end-vertex in the same cluster (see [15]). In particular, when k = 2, we have
the well-known max-cut problem, which is known to be strongly NP-hard
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(see [16]). Moreover, the problem of checking whether G is k-colourable can
be reduced to the k-PP. Thus, the k-PP is strongly NP-hard for all fixed k,
and this is so even when k = 3 and G is planar (see again [16]). Not only
that, but the special case of the k-PP in which G is a complete graph and
k = |V |, called the clique partitioning problem (CPP), is strongly NP-hard
as well [21].

In their seminal paper [7], Chopra and Rao presented two different 0-1
linear programming (0-1 LP) formulations of the k-PP. One of these for-
mulations has both node and edge variables, whereas the other has only
edge variables. For each formulation, several families of strong valid linear
inequalities (a.k.a. cutting planes) have been discovered (e.g., [7, 8, 11, 21]).
For some of these families, we also have efficient separation algorithms (e.g.,
[3, 4, 12, 27]). There is also a parallel literature concerned with semidefinite
programming (SDP) relaxations of the k-PP (e.g., [14, 15, 18, 25, 31, 33, 34]).

The main result in this paper is the following. If we take the polytopes
associated with the ‘edge-only’ formulations, and project them into a suit-
able subspace, we obtain the polytopes associated with the ‘node-and-edge’
formulations. Although this result is fairly easy to derive, it is very use-
ful. Specifically, it leads to new valid inequalities and separation algorithms
for the ‘node-and-edge’ formulations, and it sheds new light on the SDP
relaxations given in [15, 25, 31].

The paper is structured as follows. A literature review is given in Section
2. The projection results are given in Section 3. The new inequalities
and separation algorithms, along with our remarks on SDP relaxations, are
presented in Section 4. Some computational results are given in Section 5.
Finally, some concluding remarks are given in Section 6.

We use the following (standard) notation throughout the paper. The
number of nodes and edges in G is denoted by n and m, respectively. For
a given positive integer p, we let Kp denote the complete graph on p nodes.
Its vertex set is {1, . . . , p}, which we denote by Vp. Its edge set is denoted
by Ep. We also let Ip, ep and Jp denote the identity matrix of order p,
the all-ones vector with p components, and the (square) all-ones matrix of
order p, respectively. Given a real symmetric matrix M , we write M � 0 to
indicate that M is positive semidefinite (psd).

We also use the following (again standard) terminology. A clique is a set
of pairwise adjacent nodes. A set C ⊆ E is a cycle if it induces a connected
subgraph of G in which every node has degree 2. The nodes in the subgraph
are denoted by V (C). Two disjoint sets R,S ⊂ E form a wheel if R is a cycle
and there exists a node h ∈ V \ V (R) such that S =

{
{v, h} : v ∈ V (R)

}
.

(The set R is called the rim, the edges in S are called spokes, and h is called
the hub.) Two disjoint sets R,S ⊂ E and an edge {h, h′} ∈ E \ R form a
bicycle wheel if R is a cycle and S =

{
{v, h}, {v, h′} : v ∈ V (R)

}
.
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2 Literature Review

We now review the relevant literature. We cover the two 0-1 LP formulations
in Subsections 2.1 and 2.2, separation algorithms in Subsection 2.3, and SDP
relaxations in Subsection 2.4.

2.1 The node-and-edge formulation

Chopra & Rao [7] present the following 0-1 LP formulation of the k-PP,
which has nk +m variables. For each v ∈ V and for c = 1, . . . , k, let xvc be
a binary variable, indicating whether node v lies in the cth cluster. Also, for
each e ∈ E, let ye be a binary variable, indicating whether the end-nodes of
e lie in the same cluster. Then:

min
∑

e∈E weye (1)

s.t.
∑k

c=1 xvc = 1 (v ∈ V ) (2)

yuv ≥ xuc + xvc − 1 ({u, v} ∈ E, c = 1, . . . , k) (3)

xuc ≥ xvc + yuv − 1 ({u, v} ∈ E, c = 1, . . . , k) (4)

xvc ≥ xuc + yuv − 1 ({u, v} ∈ E, c = 1, . . . , k) (5)

xvc ∈ {0, 1} (v ∈ V, c = 1, . . . , k) (6)

yuv ∈ {0, 1} ({u, v} ∈ E). (7)

We will let P xy(G, k) denote the associated polytope, i.e., the convex hull
in Rnk+m of pairs (x, y) satisfying (2)–(7). We remark that the inequalities
(4) and (5) can be removed when all of the edge weights are non-negative,
but this leads to a different polytope, which has not been studied.

Chopra and Rao show that the inequalities (3)–(5), together with non-
negativity constraints, define facets of P xy(G). They also show that the
following inequalities define facets for k ≥ 3:

• Clique inequalities, which take the form:∑
u,v∈C

yuv ≥
(
t+ 1

2

)
r +

(
t

2

)
(k − r), (8)

for all C ⊆ V inducing a clique in G with t = b|C|/kc ≥ 1 and
r = |C| mod k 6= 0.

• Cycle inequalities, which take the form:

yf ≥
∑

e∈C\{f}

ye − |C|+ 2, (9)

for all chordless cycles C ⊆ E and for all f ∈ C.
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• Odd wheel inequalities, which take the form:∑
e∈R

ye ≥
∑
e∈S

ye − b|R|/2c , (10)

for all R,S forming a wheel in G with |R| ≥ 3 and odd.

• Odd bicycle wheel inequalities, which take the form:

yhh′ +
∑
e∈S

ye ≥
∑
e∈R

ye − (|R| − 1), (11)

for all R,S, {h, h′} forming a bicycle wheel in G with |R| odd.

• Odd cycle inequalities:∑
e∈C

ye ≥
∑

v∈V (C)

xic − b|C|/2c , (12)

for all cycles C ⊆ E with |C| odd, and for c = 1, . . . , k.

2.2 The edge formulation

Chopra & Rao [7] also presented the following 0-1 LP formulation. Add
dummy edges (of zero weight) so that G becomes Kn. Have one y variable
for each e ∈ En, but no x variables. Then:

min
∑

e∈E weye (13)

s.t. yuv ≥ yuw + yvw − 1 ({u, v, w} ⊂ Vn) (14)∑
u,v∈C yuv ≥ 1 (C ⊂ Vn : |C| = k + 1) (15)

ye ∈ {0, 1} (e ∈ En). (16)

Note that the constraints (14) are equivalent to the inequalities (9) when
G = Kn, and the constraints (15) are a special case of the inequalities (8).
We will let P y(Kn, k) denote the associated polytope.

By definition, any valid inequality for P xy(Kn, k) that involves only y
variables is valid also for P y(Kn, k). This includes not only the inequalities
(14), (15), but also inequalities (8), (10) and (11). Still more inequalities for
P y(Kn, k) are presented in [8, 11].

The polytope P y(Kn, n), called the clique partitioning polytope, has been
studied in depth [1, 11, 12, 20, 21, 22, 28, 29, 30, 32]. Among the many
families of strong valid inequalities known for it are, e.g., the 2-partition
and 2-chorded odd cycle inequalities [21] and the weighted (s,T) inequalities
[30]. Note that any valid inequality for P y(Kn, n) is valid also for P y(Kn, k)
and P xy(Kn, k) for all k ≤ n.

It would be attractive to have a 0-1 LP formulation with onlym variables,
i.e., one y variable for each edge in E. Chopra & Rao [7] state that they
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do not know of such a formulation for 2 < k < n. (When k = 2, one can
use the standard formulation of the max-cut problem [2]. When k = n, the
cycle inequalities are enough to get a formulation [6].) We return to this
issue in Subsection 3.1.

2.3 Separation algorithms

For a given family of inequalities, a separation algorithm is a routine that
takes a solution of an LP relaxation as input, and searches for violated in-
equalities in that family [19]. Chopra and Rao [7] point out that separation
can be done in polynomial time for the cycle inequalities (9) and odd cy-
cle inequalities (12) using the approach in [2]. Separation is NP-hard for
the clique inequalities (8), by a trivial reduction from the maximum clique
problem [13]. Heuristics for clique separation are presented in [13, 24]. Deza
et al. [12] show that separation for the odd wheel inequalities (10) can be
done in polynomial time, and point out that separation for the odd bicycle
wheel inequalities (11) can also be done in polynomial time, by adapting the
approach in [17].

The complexity of separation for the other known families of inequalities
is unknown. Separation heuristics for 2-partition and weighted (s, T ) in-
equalities are given in [20] and [30], respectively. It is shown in [3, 4, 27, 29]
that one can separate in polynomial time over various families of valid in-
equalities that include all 2-chorded odd cycle inequalities.

2.4 SDP relaxations

Finally, we briefly review SDP relaxations of the k-PP. Freize & Jerrum [15]
use the relaxation:

min k−1
k

∑
e∈E we

(
Ye + 1

k−1

)
s.t. diag(Y ) = en

Ye ≥ −1
k−1 (e ∈ En)

Y � 0.

The idea here is that Y represents a feasible solution if Yuv takes the value
1 when nodes u and v are in the same cluster, and −1/(k − 1) otherwise.

Observe that Y is related to the vector y in the edge formulation via
the identities ye = k−1

k Ye + 1
k and Ye = k

k−1ye −
1

k−1 for all e ∈ En. Using
these mappings, valid inequalities for P y(Kn, k) can be used to strengthen
the SDP [14, 18, 34]. The same observation led Rendl [31] to propose the
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following equivalent, yet more natural SDP:

min
∑

e∈E weỸe

s.t. diag(Ỹ ) = en

Ỹuv ≥ 0 ({u, v} ∈ En)

kỸ − Jn � 0.

Here, Ỹe plays the same role as ye in the edge formulation.
De Klerk et al. [25] consider an alternative approach. Let z ∈ {0, 1}nk

be a vector such that, for v = 1, . . . , n and c = 1, . . . , k, node n lies in cluster
c if and only if the component of z in position n(c− 1) + v takes the value
1. From a consideration of the matrix(

1
z

)(
1
z

)T

=

(
1 zt

z zzT

)
,

they derive an SDP relaxation in which the matrix variable is of order nk+1.
It is shown in [25] that this relaxation gives the same lower bound as the
relaxations mentioned above, but provides extra information that can be
exploited in an approximation algorithm.

Finally, we mention two recent papers. Van Dam & Sotirov [10] examine
an SDP relaxation whose solution has a closed form (involving Eigenvalues).
De Sousa et al. [34] show empirically that odd wheel and odd bicycle wheel
inequalities can be useful for strengthening SDP relaxations.

3 The Projection Results

In this section, we present our projection results. We proceed in two steps,
which are covered in the following two subsections.

3.1 From P xy(G, k) and P y(Kn, k) to P y(G, k)

We start with the following definition.

Definition 1 Let G = (V,E) be an undirected graph with n nodes and m
edges. The projection of P xy(G, k) into y-space, which is also the projection
of P y(Kn, k) into Rm, will be denoted by P y(G, k).

Finding valid and even facet-defining inequalities for P y(G, k) is rather
easy, as shown by the following two lemmas.

Lemma 1 The clique inequalities (8), cycle inequalities (9), odd wheel in-
equalities (10) and odd bicycle wheel inequalities (11) are valid for P y(G, k),
and they define facets of P y(G, k) if and only if they define facets of P xy(G, k).
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Proof. These inequalities are valid for P xy(G, k) and have zero coefficients
for all x variables. �

Lemma 2 Any valid inequality for P y(Kn, k) is valid also for P y(G, k),
provided that the variables with non-zero coefficients correspond to edges in
E.

Proof. This follows directly from the fact that P y(G, k) is the projection
of P y(Kn, k) into Rm. �

So, for example, the 2-partition, 2-chorded odd cycle and weighted (s, T )
inequalities are valid for P y(G, k) whenever G contains the corresponding
graph as a subgraph.

The main reason that we are interested in P y(G, k) is that, as we will
see in the next subsection, valid inequalities for P y(G′, k), where G′ is a
suitable graph, can be used to derive new valid inequalities for P xy(G).
There is however another motivation for studying P y(G, k): it is possible
to compute lower bounds for the k-PP with a cutting-plane algorithm that
has only m variables, in which the cutting planes are valid inequalities for
P y(G, k).

Now, recall from the end of Subsection 2.2 that, for 2 < k < n, Chopra
and Rao were unable to find a formulation of the k-PP that uses only m
variables. In fact, a simple formulation is:

min
∑

e∈E weye

s.t. yf ≥
∑

e∈C\{f} ye − |C|+ 2 (C ∈ C, f ∈ C)∑
e∈F ye ≥ 1 (F ∈ F)

ye ∈ {0, 1} (e ∈ E),

where C contains all chordless cycles C ⊂ E, and F contains all minimal
sets F ⊂ E that induce a subgraph of G that is not k-colourable. Unfor-
tunately, this formulation seems to be of little practical use, since testing
k-colourability is NP-hard.

To close this subsection, we remark that, when k = 2, the polytope
P y(G, k) reduces to the cut polytope of G (or, more precisely, a reflection
of the cut polytope, obtained by complementing all variables). In [2], it
is shown how to obtain new facets of the cut polytope from old ones, by
applying graph operations such as “edge subdivision” and “node splitting”.
We suspect that one could obtain new facets of P y(G, k) in a similar way,
but we do not explore this here, for brevity.

3.2 From P y(G, k) (almost) to P xy(G, k)

To proceed further, we will need the following definition and lemma.
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Definition 2 Given a graph G = (V,E) and a positive integer k, the “k-
augmented graph”, denoted by Gk, is a graph with node set V ∪{d1, . . . , dk}
and edge set D ∪ E ∪ F , where D =

{
{v, dc} : v ∈ V, c = 1, . . . , k

}
and

F =
{
{dc, dc′} : 1 ≤ c < c′ ≤ k

}
. The nodes d1, . . . , dk are called “dummy”

nodes. The edges in D and F are called “dummy” edges and “forbidden”
edges, respectively.

Lemma 3 Suppose that y ∈ {0, 1}|D|+|E|+|F | is an extreme point of P y(Gk, k)
such that ye = 0 for all forbidden edges e ∈ F . Then, in the corresponding
k-PP solution, there are exactly k clusters, and exactly one dummy node lies
in each cluster.

Proof. From the definition of F , we have ye = 0 for every edge connecting
two dummy nodes. This means that no two dummy nodes can lie in the
same cluster, which implies in turn that each dummy node lies in a separate
cluster. The result then follows from the fact that there are k dummy nodes,
and the fact that a feasible k-PP solution has no more than k clusters. �

The main result in this section is then the following.

Theorem 1 For a given G and k, let Gk be the corresponding augmented
graph. Suppose we take P y(Gk, k) and perform the following operations:

1. Take the face of P y(Gk, k) induced by the hyperplanes ye = 0 for all
e ∈ F .

2. Project the face into RD+E.

3. For each dummy edge e = {v, dc}, change the name of the variable ye
to xvc.

The resulting polytope is P xy(G, k).

Proof. From Lemma 3, every extreme point of P y(Gk, k) lying on the
stated face corresponds to a k-partition in which exactly one dummy node
lies in each cluster. For c = 1, . . . , k, let us call the cluster containing node
dc “cluster c”. Then, for any given dummy edge e = {v, dc} ∈ D, ye = 1 if
and only if node v lies in cluster c, i.e., if and only if xvc = 1 in the node
and edge formulation. Moreover, |D| = nk, and therefore the projection lies
in Rnk+m, the same space in which P xy(G, k) lies. �

Theorem 1 has the following useful corollary:

Corollary 1 If the inequality αT y ≤ β is valid for P y(Gk, k), then the
“projected” inequality ∑

e={v,dc}∈D

αexvc +
∑
e∈E

αeye ≤ β

is valid for P xy(G, k).
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Corollary 1 sheds light on the valid inequalities for P xy(G, k) given in
Chopra & Rao [7]. In particular:

• The inequalities (14) are valid for P y(Gk, k), provided that {u, v, w}
induces a triangle in Gk. If we assume that {u, v} ∈ E and identify
node w with the dummy node dc, we obtain the inequalities (3).

• If instead we assume that {u,w} ∈ E and identify node v with the
dummy node dc, we obtain (up to a relabelling of the remaining nodes)
the inequalities (4) and (5).

• The odd wheel inequalities (10) are valid for P y(Gk, k), provided that
Gk contains the odd wheel as a subgraph. If we assume that R ⊆ E
and identify the hub h with the dummy node dc, we obtain the odd
cycle inequalities (12).

Further implications of Theorem 1 and Corollary 1 are given in the next
section.

We remark that a necessary condition for a “projected” inequality to
define a facet of P xy(G, k) is that the original inequality defines a facet of
P y(Gk, k). We do not know whether this condition is also sufficient.

4 Implications

In this section, we show how the results of the previous subsection lead
to new valid inequalities and separation algorithms for the node-and-edge
formulation. We also make some remarks about SDP relaxations.

4.1 New valid inequalities

One way to derive new valid inequalities for P xy(G, k) is to use Lemma 1 to
project from P xy(Gk, k) to P y(Gk, k), and then use Corollary 1 to project
from P y(Gk, k) to P xy(G, k). Here is an example. Let T ⊆ V be a clique
in G, let S be any subset of {1, . . . , k}, and let S′ = {dc : c ∈ T} be the
corresponding set of dummy nodes in Gk. By construction, C = T ∪S′ forms
a clique in Gk. Then, provided that t = b|C|/kc ≥ 1 and r = |C| mod k 6= 0,
the clique inequality (8) defines a facet of P xy(Gk, k). By Lemma 1, it also
defines a facet of P y(Gk, k). Corollary 1 then yields the following valid
inequality for P xy(G, k):∑

v∈T

∑
c∈S

xvc +
∑
u,v∈T

yuv ≥
(
t+ 1

2

)
r +

(
t

2

)
(k − r). (17)

We call inequalities of this type projected clique inequalities.
Note that projected clique inequalities reduce to (standard) clique in-

equalities if S = S′ = ∅. Moreover, we have the following lemma:
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Lemma 4 If S = {1, . . . , k}, then the projected inequality (17) is equivalent
to the clique inequality on T .

Proof. Consider what would happen if we changed S from {1, . . . , k} to ∅.
The effect on the left-hand side of (17) is that the term involving x variables
would disappear. Due to the equations (2), the net decrease in the left-hand
side would be |S|. As for the right-hand side of (17), note that the stated
change in S causes us to remove the elements of S′ from C, which in turn
causes t to decrease by 1. As a result, the net decrease in the right-hand
side is tr + (t− 1)(k − r) = (tk + r)− k = |C| − k = |S|. �

For 1 ≤ |S| < k, the projected clique inequalities are new. Moreover, we
have the following result.

Theorem 2 Projected clique inequalities define facets of P xy(G, k).

Proof. See A. �

In a similar way, one can derive projected versions of the cycle, odd
wheel and odd bicycle wheel inequalities. For the sake of brevity, we do not
explore this in detail here. We note however that:

• The only projected cycle inequalities that define facets are the cycle
inequalities themselves. (This is because a cycle that passes through
a dummy node in Gk can never be chordless.)

• The odd cycle inequalities (12) are an example of facet-defining pro-
jected odd wheel inequalities. (This follows from the remark at the
end of Section 3.)

Another way to derive new valid inequalities for P xy(G, k) is to take a
family of valid inequalities for the clique partitioning polytope P y(Kn+k, n),
note that they are valid also for P y(Kn+k, k), use Lemma 2 to find out when
they are valid also for P y(Gk, k), and finally use Corollary 1 to project them
from P y(Gk, k) to P xy(G, k). Here is an example. Oosten et al. [30] showed
that, for any set T ⊂ V with |T | ≥ 3, any node s ∈ V \ T , and any integer
α between 1 and |T | − 2, the following weighted (s, T ) inequality defines a
facet of P y(Kn, n): ∑

u,v∈T
yuv ≥ α

∑
v∈T

ysv −
(
α+ 1

2

)
.

It is valid, though not necessarily facet-defining, also for P y(Kn+k, k). By
Lemma 2, it is valid also for P y(Gk, k), provided that T is a clique in Gk.
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Now, if we identify s with a dummy node, say dc, Corollary 1 yields the
following valid inequality for P xy(G, k):∑

u,v∈T
yuv ≥ α

∑
v∈T

xvc −
(
α+ 1

2

)
. (18)

We call inequalities of this type weighted clique inequalities.
The weighted clique inequalities are valid for all k ≥ 2, all cliques T ⊆ V

with |T | ≥ 3, all cluster indices c ∈ {1, . . . , k}, and all α between 1 and
|T |−2. It turns out that they define facets of P xy(G, k) when α is sufficiently
large.

Theorem 3 Weighted clique inequalities define facets of P xy(G, k) if and
only if k ≥ 3 and |T | − k < α ≤ |T | − 2.

Proof. See B. �

We remark that the inequalities (14) can be regarded as ‘degenerate’
weighted (s, T ) inequalities with |T | = 2 and α = 1, and the inequalities (3)
can be regarded as ‘degenerate’ weighted clique inequalities with |T | = 2
and α = 1.

4.2 New separation algorithms

In addition to new inequalities for the node-and-edge formulation, we obtain
new separation algorithms. The key is the following proposition.

Proposition 1 Let F be a family of valid inequalities for P y(Gk, k), and
let F ′ be the corresponding family of projected inequalities for P xy(G, k).
Also let (x∗, y∗) ∈ [0, 1]nk+m be a solution to an LP relaxation of the node-

and-edge formulation. We construct a point ỹ ∈ [0, 1]nk+m+(k2) by setting y∗e
to:

• x∗vc if e = {v, dc} for some v ∈ V and c ∈ {1, . . . , k},

• y∗e if e ∈ E,

• 0 if e = {dc, dc′} for some c, c′ with 1 ≤ c < c′ ≤ k.

Then ỹ violates an inequality in F if and only if (x∗, y∗) violates an inequality
in F ′.

Proof. This follows from Theorem 1 and the definition of “projected”
inequalities in Corollary 1. �
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Example: Suppose that k = 3 and G = K3. Setting x∗12, x
∗
13, x

∗
22, x

∗
23,

x∗32, x
∗
33 to 1/2 and all other variables to zero, we obtain a pair (x∗, y∗)

that satisfies all of the inequalities mentioned in Subsection 2.1. Using the
mapping in the proposition, we obtain a point ỹ with

ỹ1,d2 = ỹ1,d3 = ỹ2,d2 = ỹ2,d3 = ỹ3,d2 = ỹ3,d3 = 1/2

and all other variables equal to zero. This point violates the following clique
inequality by 1:

y1,d1 + y2,d1 + y3,d1 + y12 + y13 + y23 ≥ 1.

The corresponding projected clique inequality is

x11 + x21 + x31 + y12 + y13 + y23 ≥ 1.

The point (x∗, y∗) violates it by 1. �

We have the following corollary.

Corollary 2 There exist polynomial-time separation algorithms for pro-
jected odd wheel and projected odd bicycle wheel inequalities, and for a family
of inequalities that includes all projected 2-chorded odd cycle inequalities.

Proof. This follows from Proposition 1 and the known results mentioned
in Subsection 2.3. There is however one minor complication in the case of
the third family of inequalities mentioned: the separation algorithms given
in [3, 4, 27] assume that the underlying graph is complete, but the graph
Gk need not be complete. Fortunately, the separation algorithm given in
[29] works on general graphs, and the algorithms in [3, 4, 27] can be easily
adapted to the case of general graphs. �

In a similar way, the heuristics for clique, 2-partition and weighted (s, T )
separation, mentioned in Subsection 2.3, can be used to derive heuristics for
the corresponding projected inequalities.

4.3 On SDP relaxations

We now present a modified SDP relaxation for the k-PP. Although we are
not yet sure whether it is of any practical value in itself, we will see that
it yields a new family of valid inequalities for P xy(Kn, k), along with an
efficient separation algorithm for them.

Let X ∈ {0, 1}nk be a matrix in which Xvc = 1 if and only if node v lies
in cluster c. (Rendl [31] calls X a partition matrix.) Note that Xvc plays
the same role as xvk in the node-and-edge formulation, and that Xek = en.
Now consider the matrix:

Z =

(
Ik
X

)(
Ik
X

)T

=

(
Ik XT

X XXT

)
.
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By definition, this matrix is psd. Moreover, the submatrix XXT is nothing
but the matrix Ỹ used in Rendl’s SDP relaxation. This leads naturally to
the following SDP relaxation:

min
∑

e∈E weỸe

s.t. diag(Ỹ ) = en

Ỹuv ≥ 0 ({u, v} ∈ En)

Xek = en

Z =

(
Ik XT

X Ỹ

)
� 0.

Note that this relaxation involves a matrix variable of order k + n.
We have the following proposition:

Proposition 2 The new SDP relaxation gives the same lower bound as the
Freize–Jerrum SDP relaxation (and therefore also the Rendl and De Klerk
et al. relaxations).

Proof. As mentioned in Subsection 2.4, the Freize–Jerrum, Rendl and De
Klerk et al. relaxations all give the same bound. Now, let Ỹ ∗ be a feasible
solution to Rendl’s relaxation. Suppose we set X∗vc to 1/k for all v and c.
Then our claim is that the pair (X∗, Ỹ ∗) is a feasible solution to the new
relaxation. To see this, note that all linear constraints are satisfied. As for
the psd constraint on Z, Schur complement implies that Z � 0 if and only
if Ỹ − XXT � 0. But this latter constraint is satisfied by (X∗, Ỹ ∗), since
kỸ ∗ − Jn � 0 and X∗(X∗)T = Jn/k by construction.

Now, let (X∗, Ỹ ∗) be a feasible solution to the new relaxation. Since the
corresponding matrix Z∗ is psd, we have(

a

b

) (
Ik (X∗)T

X∗ Ỹ ∗

)(
a

b

)T

≥ 0 (19)

for all a ∈ Rk and b ∈ Rn. Now consider what happens if we set a to ε ek
for some ε ∈ R. Since ek Ik e

T
k = k and X∗ ek = en, the inequality (19) then

reduces to: (
ε

b

)(
k en
en Ỹ ∗

)(
ε

b

)T

≥ 0.

Since this true for all ε and all b, we have:(
k en
en Ỹ ∗

)
� 0.

By Schur complement, this is equivalent to kỸ ∗ − Jn � 0. Thus, Ỹ ∗ is
feasible for Rendl’s relaxation. �
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As mentioned above, it is not clear to us whether the new relaxation
could be of practical use in itself. Although it gives the same bound as
Rendl’s relaxation, the matrix X∗ gives additional information, which could
perhaps be exploited in a randomised rounding heuristic for the k-PP. We
leave this as a possible topic for future research. Our main interest in the
new relaxation is that it leads to new valid inequalities for P xy(Kn, k), along
with an efficient separation algorithm for them.

Proposition 3 The following “psd” inequalities are valid for P xy(Kn, k),
for all a ∈ Rk and b ∈ Rn:

k∑
c=1

∑
v∈V

acbvxvc +
∑
{u,v}∈E

bubvyuv ≥ −
(
||a||22 + ||b||22

)
/2.

Proof. This follows from the inequalities (19), the definition of Z, the fact
that X encodes the x variables, the fact that diag(Ỹ ) = en, and the fact
that the off-diagonal elements of Ỹ encode the y variables. �

Proposition 4 The separation problem for the psd inequalities can be solved
in polynomial time (to arbitrary precision).

Proof. Let (x∗, y∗) be the point to be separated, with x∗ ∈ [0, 1]kn and

y∗ ∈ [0, 1](
n
2). Construct the corresponding matrix Z∗, and compute its

minimum Eigenvalue to the desired precision. If the Eigenvalue is positive,
Z∗ is psd, and therefore no psd inequality is violated. Otherwise, let

(
a
b

)
be

the associated Eigenvector, where a ∈ Rk and b ∈ Rn. The inequality (19)
is violated by Z∗, and therefore the corresponding psd inequality is violated
by (x∗, y∗). �

We remark that a similar argument was used in [26] to derive valid inequal-
ities for the cut polytope, or, equivalently, for P y(Kn, 2), along with an
efficient separation algorithm for them.

We close this section with two further remarks. First, the psd inequalities
are valid for P xy(G, k) even when G is not complete, as long as the nodes
with non-zero bv values form a clique in G. Second, if one takes the so-called
hypermetric inequalities for P y(Kn, k), presented in [8], and then applies
our projection procedure, the resulting projected hypermetric inequalities
for P xy(Kn, k) dominate the psd inequalities. We skip the details, partly for
brevity, and partly because the complexity of separation for the hypermetric
inequalities is unknown.

5 Computational Experiments

In this section, we describe some preliminary computational experiments
with projected clique inequalities. The experiments were run on a desktop
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computer with a 4-core Intel Core i5-4690 CPU clocked at 3.50GHz and
running under Linux with kernel version 4.4. We used the software package
igraph [9] to construct graphs and enumerate maximal cliques, and Gurobi

version 7 [23] to solve all LPs and 0-1 LPs.

5.1 Test instances

Recall that the “node-and-edge” formulation is most suitable for k-PP in-
stances in whichG is sparse. We therefore constructed ten sparse disk graphs
as follows. We take the unit torus and place 50 nodes at random. We then
include an edge between a given pair of nodes if and only if their Euclidean
distance exceeds a constant r. (We chose r = 0.25, which led to graphs
with average degree around 9.5.) Each edge in the resulting graph is given
a random integer weight between 1 and 10. For each of the ten graphs, we
then considered k ∈ {2, 3, 4}. This makes 30 k-PP instances in total.

The motivation for restricting attention to k-PP instances with positive
edge weights is that clique inequalities work well for such instances. For
instances with a mixture of positive and negative weights, other families of
inequalities (such as odd wheel inequalities) are more useful [34].

5.2 Experimental setup

For each instance, we compare three algorithmic settings:

1. Solve the 0-1 LP problem (1)–(7) by plain branch-and-bound.

2. Run a cutting plane algorithm, in which the separation problem for
the clique inequalities (8) is solved by brute-force enumeration. At
termination, delete all clique inequalities with slack larger than 0.1
and run branch-and-bound.

3. As in option 2, except that, between the termination of the cutting-
plane algorithm and the start of branch-and-bound, we run a second
cutting-plane algorithm, in which the separation problem for the pro-
jected clique inequalities (17) is solved by enumeration.

For the instances considered, the time taken in the cutting-plane phases was
negligible compared to the branch-and-bound time. (For larger instances
and/or larger values of k, one would probably have to separate over the
clique and projected clique inequalities heuristically, rather than exactly.)

5.3 Results

Table 1 shows, for each value of k and each of the three settings, the average
branch-and-bound time and the average number of branch-and-bound nodes.
We see that the addition of clique inequalities leads to a dramatic reduction
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No Cuts Clique Gen. Clq.

k nodes time nodes time nodes time

2 5410.10 15.10 17.30 0.19 15.60 0.20
3 38665.90 157.72 3117.70 3.68 4650.90 9.05
4 210040.60 183.78 3973.80 3.20 30665.40 33.60

Table 1: Branch-and-bound results for random k-PP instances.

No Cuts Clique Gen. Clq.

k nodes time nodes time nodes time

2 5079.60 6.80 5.60 0.17 3.60 0.12
3 24217.90 202.45 2715.60 7.68 1004.30 3.30
4 7478.20 77.01 1870.30 8.13 780.00 3.86

Table 2: Branch-and-bound results for node-weighted variant.

in both measures. Surprisingly, however, the projected clique inequalities
do not lead to any further reduction. In fact they sometimes make things
worse.

Examination revealed that the addition of projected clique inequalities
that are not ordinary clique inequalities led to no improvement in the lower
bound from the LP relaxation. This may be because they involve x variables,
which do not appear in the objective function. To test this hypothesis, we
modified the 30 k-PP instances by giving each x variable a random integer
cost between 1 and 10. The results obtained are shown in Table 2. We see
that, as expected, the projected clique inequalities now lead to a significant
improvement.

6 Concluding Remarks

We have shown that known results for the “edge-only” formulation of the
k-PP yield, via projection, both known and new results for the “node-and-
edge” formulation. In particular, we have obtained several new families of
valid inequalities for the latter, along with new separation algorithms. As
a by-product, we have obtained a new variant of the SDP relaxations given
in [15, 25, 31].

One possible issue for future research is to find a rule for deciding when to
use the edge-only formulation, when to use the node-and-edge formulation,
and when to use an SDP approach. Another interesting question is whether
our SDP relaxation can be of practical use. Although we have shown that
it gives the same lower bound as the relaxations in [15, 25, 31], it could
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perhaps form the basis for a new heuristic. Finally, we believe that more
work is needed on valid inequalities and separation algorithms for problems
related to the k-PP, such as the clique partitioning problem and other graph
partitioning problems.
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Program., 74, 221–235.

[5] R. Carlson & G.L. Nemhauser (1966) Clustering to minimize interaction
costs. Oper. Res., 14, 52–58.

[6] S. Chopra (1994) The graph partitioning polytope on series-parallel and
4-wheel free graphs. SIAM J. Discr. Math., 7, 16–31.

[7] S. Chopra & M.R. Rao (1993) The partition problem. Math. Program.,
59, 87–115.

[8] S. Chopra & M.R. Rao (1995) Facets of the k-partition polytope. Discr.
Appl. Math., 61, 27–48.

[9] G. Csardi & T. Nepusz (2006) The igraph software package for complex
network research. InterJournal, Complex Systems, 1695, 1–7.

[10] E.R. van Dam & R. Sotirov (2016) New bounds for the max-k-cut and
chromatic number of a graph. Lin. Alg. Appl., 488, 216–234.

[11] M. Deza, M. Grötschel & M. Laurent (1991) Complete descriptions of
small multicut polytopes. In P. Gritzmann & B. Sturmfels (eds) Applied
Geometry and Discrete Mathematics. Providence, RI: AMS.

[12] M. Deza, M. Grötschel & M. Laurent (1992) Clique-web facets for mul-
ticut polytopes. Math. Oper. Res., 17, 981–1000.

[13] A. Eisenblätter (2001) Frequency Assignment in GSM Networks: Mod-
els, Heuristics, and Lower Bounds. PhD Thesis, Technical University
of Berlin.

17



[14] A. Eisenblätter (2002) The semidefinite relaxation of the k-partition
polytope is strong. In W.J. Cook & A.S. Schulz (eds.) Integer Program-
ming and Combinatorial Optimization IX, pp. 273–290. Lecture Notes
in Computer Science, vol. 2337. Berlin: Springer.

[15] A. Frieze & M. Jerrum (1997) Improved approximation algorithms for
max-k-cut and max bisection. Algorithmica, 18, 67–81.

[16] M.R. Garey, D.S. Johnson & L.J. Stockmeyer (1976) Some simplified
NP-complete graph problems. Theoret. Comput. Sci., 1, 237–267.

[17] A.M.H. Gerards (1985) Testing the odd bicycle wheel inequalities for
the bipartite subgraph polytope. Math. Oper. Res., 10, 359–360.

[18] B. Ghaddar, M.F. Anjos & F. Liers (2011) A branch-and-cut algorithm
based on semidefinite programming for the minimum k-partition prob-
lem. Ann. Oper. Res., 188, 155–174.

[19] M. Grötschel, L. Lovász & A.J. Schrijver (1988) Geometric Algorithms
and Combinatorial Optimization. New York: Wiley.

[20] M. Grötschel & Y. Wakabayashi (1989) A cutting plane algorithm for
a clustering problem. Math. Program., 45, 59–96.

[21] M. Grötschel & Y. Wakabayashi (1990) Facets of the clique partitioning
polytope. Math. Program., 47, 367–387.

[22] M. Grötschel & Y. Wakabayashi (1990b) Composition of facets of the
clique partitioning polytope. In R. Bodendieck & R. Henn (eds.) Topics
in Combinatorics and Graph Theory, pp. 271–284. Heidelberg: Physica-
Verlag.

[23] Gurobi Optimization, Inc. (2017) Gurobi Optimizer Reference Manual.
Available at http://www.gurobi.com

[24] V. Kaibel, M. Peinhardt & M.E. Pfetsch (2011) Orbitopal fixing. Discr.
Optim., 8, 595–610.

[25] E. de Klerk, D.V. Pasechnik & J.P. Warners (2004) On approximate
graph colouring and max-k-cut algorithms based on the θ-function. J.
Comb. Optim., 8, 267–294.

[26] M. Laurent & S. Poljak (1996) Gap inequalities for the cut polytope.
Eur. J. Combinatorics, 17, 233–254.

[27] A.N. Letchford (2001) On disjunctive cuts for combinatorial optimiza-
tion. J. Combin. Optim., 5, 299–315.

18



[28] A.N. Letchford & M.M. Sørensen (2012) Binary positive semidefinite
matrices and associated integer polytopes. Math. Program., 131, 253–
271.

[29] R. Müller & A.S. Schulz (2002) Transitive packing: a unifying concept
in combinatorial optimization. SIAM J. Optim., 13, 335–367.

[30] M. Oosten, J.H.G.C. Rutten & F.C.R. Spieksma (2001) The clique
partitioning problem: facets and patching facets. Networks, 38, 209–
226.

[31] F. Rendl (2012) Semidefinite relaxations for partitioning, assignment
and ordering problems. 4OR, 10, 321–346.

[32] M.M. Sørensen (2002) A note on clique-web facets for multicut poly-
topes. Math. Oper. Res., 27, 740–742.

[33] R. Sotirov (2014) An efficient semidefinite programming relaxation for
the graph partition problem. INFORMS J. Comput., 26, 16–30.

[34] V.J.R. de Sousa, M.F. Anjos & S. Le Digabel (2016) Computational
study of valid inequalities for the maximum k-cut problem. Ann. Oper.
Res., to appear.

A Proof of Theorem 2

In [7], it is pointed out that a (standard) clique inequality is satisfied at
equality by an extreme point of P xy(G, k) if and only if, in the corresponding
k-PP solution, each cluster contains either t or t+ 1 nodes from C. Due to
the structure of the augmented graph Gk, this implies that a projected clique
inequality (17) is satisfied at equality by an extreme point of P xy(G, k) if
and only if the following two conditions hold:

• For all c ∈ S, the cth cluster contains either t− 1 or t nodes from T .

• For all c ∈ {1, . . . , k}\S, the cth cluster contains either t or t+1 nodes
from T .

We will call such extreme points roots. By abuse of terminology, the corre-
sponding k-PP solutions will also be called roots.

Now suppose that all roots satisfy an equation of the form αTx+βT y = γ.
We will perform a series of exchange arguments to show that the equation is
equivalent to a projected clique inequality (in equation form). Throughout,
we assume that 1 ≤ |S| < k, since, if |S| ∈ {0, k}, we obtain a standard
clique inequality (see Lemma 4).

Let c, c′ be any two cluster indices, and let W and W ′ be the correspond-
ing clusters. Consider any root that satisfies the following two conditions:
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(i) |W ∩ T | is equal to t if c ∈ S, and equal to t+ 1 otherwise, (ii) |W ′ ∩ T |
is equal to t − 1 if c′ ∈ S, and equal to t otherwise. Let u be any node in
W . One can check that, if u is any node in W , we can obtain another root
by moving u from W to W ′. This yields the equation

αuc +
∑

v∈W\{u}:{u,v}∈E

βuv = αuc′ +
∑

v∈W ′:{u,v}∈E

βuv. (20)

Now let u′ be any node in W ′\T . If we move u′ from W ′ to W , the equation
(20) becomes:

αuc +
∑

v∈(W\{u})∪{u′}:{u,v}∈E

βuv = αuc′ +
∑

v∈W ′\{u′}:{u,v}∈E

βuv.

Together with (20), this implies that βuu′ = 0. Applying this argument
repeatedly, we see that βuu′ = 0 for all u ∈ V and all u′ ∈ V \ T . This in
turn implies that αuc = αuc′ for all pairs c, c′ and for all u ∈ V \ T . Thus,
for any u ∈ V \ T , the coefficients αuc must take a constant value for all
c ∈ {1, . . . , k}. Since all feasible k-PP solutions satisfy the equations (2),
we can assume that this constant is zero for all u ∈ V \ T . In this way, the
nodes in V \ T can be removed from consideration.

Now let c, c′ be cluster indices with c ∈ S and c′ /∈ S, and let W and
W ′ be the corresponding clusters. Consider any root such that |W ∩ T | =
|W ′ ∩ T | = t. We can obtain another root by taking any node u ∈ W ∩ T
and moving it from W to W ′. This shows that

αuc +
∑

v∈(W∩T )\{u}

βuv = αuc′ +
∑

v∈W ′∩T
βuv.

Observe that the right-hand side of this equation contains one more β term
than the left-hand side. By symmetry, we have βuv = αuc−αuc′ for all c ∈ S,
c /∈ S and {u, v} ⊂ T . This implies in turn that βuv takes a constant value
for all {u, v} ⊂ T , that αuc takes a constant value for all u ∈ T and c ∈ S,
and that αuc′ takes a constant value for all c′ /∈ S. Since all feasible k-PP
solutions satisfy the equations (2), we can assume that the αuc′ are zero,
which then implies that the αuc are equal to the βuv. Finally, by scaling, we
can assume that the αuc and βuv are equal to one. �

B Proof of Theorem 3

As in the proof of Theorem 2, we call a k-PP solution a root if the corre-
sponding extreme point of P xy(G, k) satisfies the weighted clique inequality
(18) at equality.

Consider a feasible k-PP solution such that cluster c contains exactly t
nodes from T . This solution must use at least

(
t
2

)
of the edges that have
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both end-nodes in T , and it will use exactly
(
t
2

)
of those edges if and only if

each of the other nodes in T lies in a unique cluster. From this it follows that
a k-PP solution is a root if and only if (i) cluster c contains either α or α+1
nodes from T , and (ii) each of the other nodes in T lies in a different cluster.
This can only happen if there are at least |T |−α clusters, i.e., if k ≥ |T |−α.
Moreover, if there were exactly |T | −α clusters, then all roots would satisfy
the equation

∑
v∈T xvc = α + 1, and the weighted clique inequality could

not define a facet. This shows α must lie between |T | − k + 1 and |T | − 2 if
we want to obtain a facet. This in turn implies that k must be at least 3.
So, we have proved necessity.

The proof of sufficiency is similar to that of Theorem 2. For brevity, we
only give a sketch. We suppose that all roots satisfy an equation of the form
βTx+ γT y = δ. An exchange argument, in which nodes in V \ T are either
included in or excluded from cluster c, enables us to show that γuv = βvc = 0
whenever v ∈ V \ T . Another exchange argument, in which a node u ∈ T
is moved between clusters, enables us to show that βuc′ = 0 for all u ∈ T
and for all c′ ∈ {1, . . . , k} \ {c}, and that βuc = −αγuv for all {u, v} ⊂ T .
Finally, by scaling, we can assume that γuv = 1 for all {u, v} ⊂ T and that
βuc = −α for all u ∈ T . �
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