
1

Probability of Partially Decoding Network-Coded Messages
Jessica Claridge and Ioannis Chatzigeorgiou

Abstract—In the literature there exists analytical expressions
for the probability of a receiver decoding a transmitted source
message that has been encoded using random linear network
coding. In this work, we look into the probability that the receiver
will decode at least a fraction of the source message, and present
an exact solution to this problem for both non-systematic and
systematic network coding. Based on the derived expressions,
we investigate the potential of these two implementations of
network coding for information-theoretic secure communication
and progressive recovery of data.

Index Terms—Random linear network coding, rank-deficient
decoding, probability analysis, information-theoretic security.

I. INTRODUCTION

Random linear network coding (RNLC) is the process of
constructing coded packets, which are random linear combi-
nations of source packets over a finite field [1]. If k source
packets are considered, decoding at a receiving node starts
after k linearly independent coded packets have been collected.
The probability of recovering all of the k source packets
when at least k coded packets have been received has been
derived in [2]. However, the requirement for a large number
of received coded packets before decoding can introduce
undesirable delays at the receiving nodes. In an effort to
alleviate this problem, rank-deficient decoding was proposed
in [3] for the recovery of a subset of source packets when
fewer than k coded packets have been obtained. Whereas
the literature on network coding defines decoding success as
the recovery of 100% of the source packets with a certain
probability, the authors of [3] presented simulation results that
measured the fraction of decoding success, that is, the recovery
of a percentage of the source packets with a certain probability.

The fundamental problem that has motivated our work is
the characterization of the probability of recovering some
of the k source packets when n coded packets have been
retrieved, where n can be smaller than, equal to or greater
than k. This idea was considered in [4] for random network
communications over a matroid framework. The authors show
that partial decoding is highly unlikely. This problem has also
been explored in the context of secure network coding, e.g.,
[5], [6]. Strict information-theoretic security can be achieved
if and only if the mutual information between the packets
available to an eavesdropper and the source packets is zero [7].
When network coding is used, weak security can be achieved
if the eavesdropper cannot obtain k linearly independent
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coded packets and, hence, cannot recover any meaningful
information about the k source packets [5]. The authors of [5]
obtained bounds on the probability of RLNC being weakly
secure and showed that the adoption of large finite fields
improves security. A different setting but a similar problem
was investigated in [6]. Intermediate relay nodes between
transmitting and receiving nodes were treated as potentially
malicious, and criteria for characterizing the algebraic secu-
rity of RLNC were defined. The authors demonstrated that
the probability of an intermediate node recovering a strictly
positive number of source packets tends to zero as the field
size and the number of source packets go to infinity.

This paper revisits the aforementioned problem and obtains
an exact expression for the probability that a receiving node
will recover at least x of the k source packets if n coded
packets are collected, for x ≤ n. The derived expression can
be seen as a generalization of [2, eq. (7)]. The paper also looks
at the impact of transmitting source packets along with coded
packets, known as systematic RLNC, as opposed to transmit-
ting only coded packets, referred to as non-systematic RLNC.

In the remainder of the paper, Section II formulates the
problem, Section III obtains the probability of recovering a
fraction of a network-coded message, Section IV presents
results and Section V summarizes the conclusions of this work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a receiving network node, which collects n
packets and attempts to reconstruct a message that consists of
k source packets. The n packets could have been broadcast by
a single transmitting node or could have been originated from
multiple nodes that possess the same message.

In the case of non-systematic communication, transmitted
packets are generated from the k source packets using RLNC
over Fq [1], where q is a prime power and Fq denotes the
finite field of q elements. In the case of systematic RLNC, a
sequence of nT transmitted packets consists of the k source
packets and nT−k coded packets that have been generated as
in the non-systematic case. In both cases, a coding vector of
length k, which contains the weighting coefficients used in the
generation of a packet, is transmitted along with each packet.
At the receiving node, the coding vectors of the n successfully
retrieved packets form the rows of a matrix M ∈ Fn×k

q , where
Fn×k
q denotes the set of all n × k matrices over Fq . The k

source packets can be recovered from the n received packets if
and only if k of the n coding vectors are linearly independent,
implying that rank(M) = k for n ≥ k. The probability that
the n×k random matrix M has rank k and, thus, the receiving
node can reconstruct the entire message is given in [2] for non-
systematic RLNC and [8] for systematic RLNC.

The objective of this paper is to derive the probability that
a receiving node will reconstruct at least x ≤ k source packets
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upon reception of n network-coded packets. To formulate this
problem, let ei denote the i-th unit vector of length k. A coding
vector, or a row of M, equal to ei represents the i-th source
packet. Let X be the set of indices corresponding to the unit
vectors contained in the rowspace of M, denoted by Row(M),
so that X = {i : ei ∈ Row(M)}. We write |X| to denote
the cardinality of random variable X . Furthermore, we define
random variables R and N to give the rank of M and the
number of rows in M, respectively. The considered problem
has been decomposed into the following two tasks:

1) Obtain the probability of recovering at least x source
packets, provided that r out of the n received packets are
linearly independent, for x ≤ r ≤ k. This is equivalent to
finding the probability of Row(M) containing at least x
unit vectors, given M has n rows and rank r. We denote
this probability by P (|X| ≥ x |R = r, N = n).

2) Obtain the probability of recovering at least x source
packets, provided that n ≥ x packets have been collected.
We write P (|X| ≥ x |N = n) to refer to this probability.

Derivation of the probabilities P (|X| ≥ x |R = r, N = n)
and P (|X| ≥ x |N = n) is the focus of the following section.

III. PROBABILITY ANALYSIS

The analysis presented in this section relies on the well-
known Principle of Inclusion and Exclusion [9, Prop. 5.2.2],
which is repeated below for clarity.

Lemma 1. Principle of inclusion and exclusion. Given a set
A, let f be a real valued function defined for all sets S, J ⊆ A.
If g(S) =

∑
J:J⊇S f(J) then f(S) =

∑
J:J⊇S(−1)|J\S|g(J).

For non-negative integers m and d, we denote by
(
m
d

)
the

binomial coefficient, which gives the number of d-element
sets of an m-element set. The q-analog of the binomial
coefficient, known as the Gaussian binomial coefficient and
denoted by

[
m
d

]
q
, enumerates all d-dimensional subspaces of

an m-dimensional space over Fq [9, p. 125].
Given M has rank r, let P (|X| = x |R = r, N = n)

denote the probability of recovering exactly x ≤ r source
packets or, equivalently, the probability of Row(M) containing
exactly x ≤ r unit vectors. The following theorem obtains an
expression for P (|X| = x |R = r, N = n), which is then
used in the derivation of P (|X| ≥ x |R = r, N = n).

Theorem 1. Given a random n× k matrix M of rank r, the
probability that the rowspace of M contains exactly x ≤ r
unit vectors is given by

P (|X| = x |R = r, N = n)

=

(
k
x

)[
k
r

]
q

k−x∑
j=0

(−1)j
(
k−x
j

)[
k−x−j
r−x−j

]
q
. (1)

Proof: For S ⊆ J ⊆ {1, . . . k}, let g(S) be the prob-
ability that {ei : i ∈ S} ⊆ Row(M), that is, the
probability that S ⊆ X . This is just the probability that
Row(M) contains a fixed |S|-dimensional subspace, namely
the space V = Span{ei : i ∈ S}. We see that, by considering
the quotient space Fk

q/V , there is a direct correspondence

between r-dimensional subspaces of Fk
q containing V , and

(r − |S|)-dimensional subspaces of a (k − |S|)-dimensional
space. Hence, there are

[
k−|S|
r−|S|

]
q
r-dimensional subspaces of

Fk
q containing V . The probability that Row(M) contains the

space V is equal to

g(S) =
[
k−|S|
r−|S|

]
q

/[
k
r

]
q

(2)

where the denominator in (2) enumerates the r-dimensional
subspaces of Fk

q . Now, let f(S) be the probability that S = X ,
that is, the probability that {ei : i ∈ S} ⊆ Row(M) and
ei /∈ Row(M) for i /∈ S. It follows that g(S) =

∑
J⊇S f(J).

Invoking the Principle of Inclusion and Exclusion (Lemma 1)
and using (2), we can write f(S) =

∑
J⊇S(−1)|J\S| · g(J)

and expand it to

f(S) =
∑
J⊇S

(−1)|J\S| ·

[
k−|J|
r−|J|

]
q[

k
r

]
q

=
1[
k
r

]
q

∑
J′⊆{1,...,k}\S

(−1)|J
′|
[
k − |S| − |J ′|
r − |S| − |J ′|

]
q

(3)

=
1[
k
r

]
q

k−|S|∑
j=0

(−1)j
(
k − |S|

j

)[
k − |S| − j

r − |S| − j

]
q

(4)

where (3) follows by setting J ′ = J \S, and (4) follows since
there are

(
k−|S|

j

)
sets J ′ of size j. Considering that f(S) is

the probability that X = S, we can write

P (|X| = x |R = r, N = n) =
∑

S:|S|=x

f(S) =

(
k

x

)
f(S′) (5)

where S′ is any subset of {1, . . . , k} of size x. The second
equality in (5) holds since there are

(
k
x

)
sets S ⊆ {1, . . . , k}

of size x. Substituting (4) in (5) gives the result.
Remark 1. Theorem 1 can be seen as a special case of [4,
Proposition 6]. Whereas the proof in [4] uses elements of
matroid theory, our paper proposes an alternative and more
intuitive proof strategy.

Corollary 1. Given a random n× k matrix M of rank r, the
probability that the rowspace of M contains at least x ≤ r
unit vectors is given by

P (|X| ≥ x |R = r, N = n) =
1[
k
r

]
q

r∑
i=x

(
k

i

)
·

·
k−i∑
j=0

(−1)j
(
k − i

j

)[
k − i− j

r − i− j

]
q

. (6)

Proof: By definition, P (|X| ≥ x |R = r, N = n) is
equal to

∑r
i=x P (|X| = i |R = r, N = n). Substituting in

(1) gives the result.
Note that, although M is an n×k matrix, the probabilities in

(1) and (6) hold for any value of n≥r. Having obtained an ex-
pression for P (|X|≥x |R=r, N=n), we now proceed to the
derivation of P (|X|≥x |N =n). This probability is denoted
by Pns(|X| ≥ x |N = n) and Ps(|X| ≥ x |N = n) for non-
systematic and systematic RLNC, respectively. Expressions for
each case are derived in the following two propositions.
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Proposition 1. If a receiving node collects n random linear
combinations of k source packets, the probability that at least
x ≤ k source packets will be recovered is

Pns(|X| ≥ x |N = n) =
1

qnk
·

·
min(n,k)∑

r=x

(
r∑

i=x

(
k
i

)k−i∑
j=0

(−1)
j
(
k−i
j

)[
k−i−j
r−i−j

]
q

)
r−1∏
ℓ=0

(qn − qℓ). (7)

Proof: Let P (R= r |N =n) denote the probability that
the n × k matrix M has rank r. This is equivalent to the
probability that r out of the n collected packets are linearly
independent. The probability that at least x of the k source
packets will be recovered can be obtained from

Pns(|X| ≥ x |N = n)

=

min(n,k)∑
r=x

P (R = r |N = n)P (|X| ≥ x |R = r,N = n). (8)

The probability P (R = r |N=n) is equal to [10, Sec. II.A]

P (R = r |N=n) =
1

qnk

[
n

r

]
q

r−1∏
ℓ=0

(
qk − qℓ

)
. (9)

Substituting (6) and (9) into (8) and taking into account that[
n
r

]
q[

k
r

]
q

r−1∏
ℓ=0

(qk − qℓ) =

r−1∏
ℓ=0

(qn − qℓ) (10)

leads to (7).

Proposition 2. If k source packets and nT−k random linear
combinations of those k source packets are transmitted over
single-hop links, the probability that a receiving node will
recover at least x ≤ k source packets from n ≤ nT received
packets is

Ps(|X| ≥ x |N = n) =
1(
nT

n

) ·
·
min(n,k)∑

r=x

r∑
h=hmin

((
k

h

)(
nT − k

n− h

)
q−(n−h)(k−h)

r−h−1∏
ℓ=0

(qn−h − qℓ)·

·
r−h∑

i=xmin

(
k − h

i

)k−h−i∑
j=0

(−1)
j

(
k − h− i

j

)[
k − h− i− j

r − h− i− j

]
q

)
(11)

where hmin=max (0, n− nT + k) and xmin=max(0, x−h).

Proof: Let us assume that some or none of the k trans-
mitted source packets have been received and let X ′ ⊆ X
be the set of indices of the remaining source packets that
can be recovered from the received coded packets. If n′ of
the nT − k coded packets have been received and k′ source
packets remain to be recovered, the respective coding vectors
will form an n′ × k′ random matrix M′. The probability that
r′ ≤ min(k′, n′) coding vectors are linearly independent and
at least x′ ≤ r′ source packets can be recovered is given by

P (|X ′| ≥ x′, R′ = r′ |N ′ = n′) =

P (R′ = r′ |N ′ = n′)P (|X ′| ≥ x′ |R′ = r′, N ′ = n′)

where the two terms of the product can be obtained from
(9) and (6), respectively. The random variables N ′ and R′

denote the number of received coded packets and the rank of
matrix M′, respectively. If n of the nT transmitted packets
are received, the probability that h of them are source packets
and the remaining n− h are coded packets is

P (N ′ = n− h |N = n) =
(
k
h

)(
nT−k
n−h

)/ (
nT

n

)
. (12)

The coding vectors of the n received packets compose a matrix
of rank r, based on which x or more source packets can be
recovered when h of the n received packets are source packets.
Parameters x′, r′, k′ and n′, which are concerned with the
received coded packets only, can be written as x − h, r − h,
k − h and n − h, respectively. The probability of recovering
at least x source packets for all valid values of r and h is

P s(|X| ≥ x |N = n)

=

min(n,k)∑
r=x

r∑
h=hmin

P (N ′ = n− h |N = n) ·

· P
(
|X ′| ≥ max(0, x−h), R′ = r − h |N ′ = n−h

)
(13)

which expands into (11). Note that max(0, x−h) ensures that
the value of |X ′| is a non-negative integer when h > x.
Remark 2. In systematic RLNC, if the receiving node attempts
to recover source packets as soon as the transmission is
initiated, i.e., nT≤k, at least x source packets will certainly
be recovered when n≥x source packets are received, that is,

Ps(|X| ≥ x |N = n) =

{
1, if nT ≤ k and x ≤ n

0, if nT ≤ k and x > n.
(14)

IV. RESULTS AND DISCUSSION

In order to demonstrate the exactness of the derived expres-
sions, simulations that generated 60000 realisations of an n×k
random matrix M over F2 were carried out for n = 1, . . . , 30
and k = 20. In each case, matrix M was converted into
reduced row echelon form using Gaussian elimination. Then,
the rows that correspond to unit vectors ei, which represent
recoverable source packets, were counted and averaged over
all realisations. Fig. 1(a) and Fig. 1(b) show that measurements
obtained through simulations match the calculations obtained
from (7) and (11) for non-systematic RLNC and systematic
RLNC, respectively. In general, simulation results match ana-
lytical predictions for any finite field Fq of order q ≥ 2.

Fig. 2 considers the simple case of RLNC transmission over
a broadcast erasure channel. If the transmission of nT packets
is modeled as a sequence of nT Bernoulli trials whereby
ε signifies the probability that a transmitted packet will be
erased, the probability that a receiving node shall recover at
least x of the k source packets can be expressed as

P (|X|≥x)=

nT∑
n=x

(
nT

n

)
(1− ε)

n
εnT−n P (|X|≥x |N=n). (15)

The probability P (|X| ≥ x |N = n) is equal to (7) for non-
systematic RLNC and (11) or (14), depending on the value of
nT, for systematic RLNC.

Fig. 2(a) focuses on non-systematic RLNC and depicts
P (|X| ≥ x) in terms of nT for x ∈ {2, 4, 10, 16, 20} when
k = 20, and for x ∈ {3, 6, 15, 24, 30} when k = 30. Results
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have been obtained for q ∈ {2, 8} and ε = 0.2. For q = 2,
the transmission of only a few additional coded packets can
increase the fraction of the recovered message from at least
x/k = 0.1 to x/k = 1. However, for q as low as 8, the
range of nT values for which a receiving node will proceed
from recovering a small portion of the transmitted message to
recovering the whole message gets very narrow. Furthermore,
for q = 2, segmentation of the message into k = 20 source
packets permits a receiving node to recover the same fraction
(x/k) of the message with a higher probability than dividing
the same message into k=30 source packets.

Systematic RLNC is considered in Fig. 2(b). Besides the
reduced decoding complexity [11], we observe that system-
atic RLNC enables a receiving node to gradually reveal an
increasingly larger portion of the message as more packets
are transmitted. However, a large number of source packets
or a high order finite field impairs the progressive recovery of
the message for nT > k. This is because source packets are
transmitted for nT ≤ k but coded packets are sent for nT>k;
the decoding behaviour of a receiving node changes at nT=k
and causes a change in the slope of P (|X| ≥ x) for x/k=0.8.

The results show that, if information-theoretic security is
required, non-systematic RLNC over finite fields of size 8 or
larger can be used to segment each message into a large num-
ber of source packets. The number of transmitted packets can
then be adjusted to the channel conditions to achieve a balance
between the probability of legitimate nodes reconstructing the
message and the probability of eavesdroppers being unable to
decode even a portion of the message. If the objective of the
system is to maximize the number of nodes that will recover
at least a large part of a message, systematic RLNC over small
finite fields can be used to divide data into source packets. If
the receiving nodes do not suffer from limited computational
capabilities, the size of the finite field can be increased to
improve the probability of recovering the entire message.

V. CONCLUSIONS

This paper derived exact expressions for the probability of
decoding a fraction of a source message upon reception of an
arbitrary number of network-coded packets. Results unveiled
the potential of non-systematic network coding in offering
weak information-theoretic security, even when operations
are over small finite fields. On the other hand, systematic
network coding allows for the progressive recovery of the
source message as the number of received packets increases,
especially when the size of the finite field is small.
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