
Exploit Dynamic Data Flows to Protect Software Against Semantic Attacks

Kaiyuan Kuang†, Zhanyong Tang†∗, Xiaoqing Gong†, Dingyi Fang†, Xiaojiang Chen†, Heng Zhang†, Zheng Wang‡
†School of Information Science and Technology, Northwest University, P.R. China.

‡School of Computing and Communications, Lancaster University, UK

Abstract—Unauthorized code modification based on reverse
engineering is a serious threat for software industry. Virtual
machine based code obfuscation is emerging as a powerful
technique for software protection. However, the current code
obfuscation techniques are vulnerable under semantic attacks
which use dynamic profiling to transform an obfuscated
program to construct a simpler program that is functionally
equivalent to the obfuscated program but easier to analyze.
This paper presents DSA-VMP, a novel VM-based code ob-
fuscation technique, to address the issue of semantic attacks.
Our design goal is to exploit dynamic data flows to increase
the diversity of the program behaviour. Doing so can reduce
the effectiveness of dynamic profiling. Our approach using
multiple bytecode handlers to interpret a single bytecode and
hiding the logics that determine the program execution path
(it is difficult for the attacker anticipate the program execution
flow). These two techniques greatly increase the diversity of the
program execution where the protected code regions exhibit
a complex data flow across multiple runs, making it harder
and more time consuming to trace the program execution
through profiling. Our approach is evaluated using a set of
real-world applications. Experimental results show that DSA-
VMP can well protect software against semantic attacks at the
cost of little extra runtime overhead when compared to two
commercial VM-based code obfuscation tools.

Keywords-VM-based software protection; Data flow obfusca-
tion; Semantic attack; Data flow analysis

I. INTRODUCTION

Unauthorized code analysis and modification based on re-
verse engineering is a major concern for software companies.
By making the program harder to be traced and analyzed,
code obfuscation based on a virtual machine (VM) is emerg-
ing as a promising way for implementing code obfuscation
is a viable means to protect applications from unauthorized
code modification[1, 2]. The underlying principle of VM-
based code obfuscation is to replace the native instructions
with virtual bytecodes which will then be translated into
native instructions at runtime by a VM interpreter. This
forces the attacker to move from a familiar environment of
native instruction set (e.g. x86) into an unfamiliar computing
environment. As a result, such techniques can significantly
increase the cost of attacks. There are a number of VM-based
code obfuscation approaches have been proposed[1–6].

Despite much progress has made for VM-based code
obfuscation, it remains an open problem to protect software

*Corresponding author. Email address: zytang@nwu.edu.cn

against semantic code transformation, a technique that trans-
lates an obfuscated program to produce a simpler program
that is functionally equivalent to the obfuscated code but
easier to analyze. To extract the program semantics, existing
semantic code transformation techniques [7–9] all rely on
data flow analysis to understand how the virtual instructions
are scheduled. Existing VM-based code obfuscation cannot
effectively protect software against semantic attacks, because
traditional virtual machine protection methods pay their
attention to improve the security of virtual machine structure,
but ignore the security of data flow information and that
will cause the execution of the program and data flow
information are easily obtained by an attacker. The key to
address this problem is to introduce a certain degree of
complexity and diversity to the program data flows, so that
it becomes much difficult to track the program execution to
reconstruct a semantically equivalent program.

This paper presents DSA-VMP, a novel VM-based code
obfuscation system, to protect software against semantic
attacks. The design methodology of DSA-VMP is to increase
the data flow complexity of the protected code region. It
will be much more difficult for the attacker to analyze the
code if the data flow has dynamic and diverse behavior.
We do so by employing multiple (two in our current
implementation) separated processes to execute the VM,
so that the virtual bytecode interpretation much be done
across multiple processes that are scheduled in arbitrary
order. To further increase the diversity and complexity,
we also employ multiple procedures (handlers) to translate
a bytecode instruction. For the same bytecode, multiple
handlers produce semantically equivalent results, but are
implemented (or obfuscated) in different ways and follow
different program execution paths. During runtime, our VM
instruction scheduler randomly selects a handler to translate
a virtual instruction to the native code. Since the choice
of handlers is randomly determined at runtime for each
bytecode and the implementation of different handlers are
different, the dynamic program execution path is likely to
be different in different runs.

We evaluated DSA-VMP on five widely used real-world
applications. Experimental results show that DSA-VMP can
successful protect software against semantic attacks with
little extra runtime overhead when compared to two com-
mercial VM-based code obfuscation tools: VMProtect[1]
and Code Virtualizer[2]. The contributions presented in this

Key

Code

Target Program

Native Instr Virtual Instr Bytecode

Atomic

handlers

set

Improved

handlers

set

VMcontext VMinit

Diapatcher VMexit

VM Components

jmp VMinit

 junk

 code

VM Section

VMcontext

VMinit

Dispatcher

Handlers

VMdata

VMexit

Output Program

Virtual Machine Protection System

Code

Extraction Virtualization Encoding
Binary

Rewriting

Virtual IS Encoding

Scheme

Deformation
engine

Data Flow

Obfuscation

Figure 1: The overview of DSA-VMP system framework. The basic idea of the virtual machine software protection method transform the protected native
instructions(Intel x86) to virtual instructions and then virtual instructions will be encoded into bytecodes(VMdata), which will be interpreted by VM
interpreter, also introduce data flow obfuscation techniques to the virtual interpreter to resist semantic attack.

Control

Dependencies

Constraint

Solver

Data Flow

Analysis

P1

attack Simplification

Control

Dependencies

Constraint

Solver

Data Flow

Analysis

P2

attack Simplification

Succeed

Failure

Control

PP1 P2

Protect by

Our approach

Protect by

Traditional approach

Figure 2: The effect of defending semantic attack. After the software
protected by the method of anti-semantic attack, the attacker cannot obtain
the Control Dependence and Constraint Solver of the program through the
data flow analysis, finally the attacker get a wrong or inaccurate control
flow graph.

paper are summarized as follows. It is the first work to
• Employ multiple VM processes to provide stronger

protection for VM-based code obfuscation;
• Exploit dynamic data flows to protect software against

semantic attacks.

II. BACKGROUND

VM based software protection method is to transform the
certain protected code segment to virtual instructions. These
virtual instructions could be encoded into bytecodes (VMda-
ta).The VM interpreter will be responsible for interpretation
and execution of these byte codes.It follows the decode-
dispatch approach, and consists of a Dispatcher and the
handling procedures of byte-code instructions (Handlers).

As illustrated in the Figure 2, we can know the semantic
attack technologies and the corresponding protection mech-
anism.The key of semantic attack method is to analyze the
control flow and data flow of the program. Firstly, the at-
tacker use test input generation tools to explore the space of
execution paths, and then use the dynamic stain analysis and
symbolic execution technology to analyze the accessibility
of the path, obtain the Control Dependence and Constraint
Solver of the program. Since the numbers of the execution
path maybe large when the program is complicated, the
attacker need to simplify the original program control flow

graph and the internal logical structure. Using these well-
known techniques, the core algorithm of the program can
be reversed. As stated above, this kind of attack method is
not limited to the structure of the virtual machine, so the
program protected based VM will cause potential cracking
risks. This paper mainly aims at this kind of attack method
to put forward one kind of the virtual machine protection
method that can defense the semantic attack.

III. ATTACK MODEL

In our attack model, we assume that the attacker has an
executable program of the target VM-protected software, and
he can run it in the malicious host environment[10]. The
attacker has full access to the system, he can execute the
program at any time and take advantages of any static and
dynamic analysis tools [11–13] to help trace and analyze
instructions, monitor registers and process memory, and
even change instruction bytes and control flows at runtime,
etc. In our attack model, the attacker uses a variety of
techniques to understand the code and reverse the program
logic and internal implementation, because of understands
the inner logical structure of program is the foundation of
tampering, cracking, or re-implementation. we also assume
that the attacker completely understand the virtual machine
protection principle and the structure of the virtual machine.
The ultimate goal of the attacker is completely reversing the
program’s internal structure and logic.

IV. DESIGN DETAILS

The protection program of DSA-VMP is executable file
on Windows platforms (.exe, .dll , etc.), it mainly focuses
on the virtualization protection of critical code in the target
program. Figure 1 shows the overview of the DSA-VMP.

A. DSA-VMP Fundamental Principles

The DSA-VMP works as follows.
Step1: Extracting the key code in target program and dis-

assembling it. SDK(defined by the DSA-VMP) is embedded
as start marker and end marker respectively in critical code

jmp VMinit

 junk

 code

VM Sect ion

VMcontext

VMinit

Dispatcher

Handlers

VMdata

VMexit

Exception

handling

mechanism

Interrupt address

table

Child Process Parent Process

Figure 3: The execution procedure of the protected software.

section. After the PE files are generated, you can locate the
start and end address of the critical code section as long as
you find the SDK marker, and then to disassemble and get
the key code segment.

Step2: Converting the native x86 instructions into a virtual
instruction. Make sure the semanteme equivalent, and then
convert the x86 instruction into VI according to correspon-
dence between the x86 instruction and VI.

Step3: Encoding the virtual instruction code to generate
the corresponding bytecode instructions. Final virtual in-
struction will be stored in the protected program in the form
of bytecode. Encode all virtual instructions, and then obtain
the VMdata after the encryption.

Step4: Obfuscation the Handlers set. The data stream of
the Handlers set is obfuscated by using the deformation
engine.

Step5: Reconstructing the target file. To embed the ob-
fuscated Handler set, VMdata and other key components
of the virtual machine into a new section, and fill the
critical section with junk instruction, redirect the entry of
the protected code region to the VM setion.

B. The execution procedure of the protected software

The execution procedure of the protected software is
shown in Figure 3. Specific steps are as follows:

Step1: After running the protected software, the added
jump instruction jumps to VMinit when the program runs
on original cirtical code. Then initialize the VMcontext, and
map the actual register context to VMcontext.

Step2: Execute Dispatcher. Handler sequence is obtained
after decryption, and an abnormal interruption which is cap-
tured by an abnormal capture mechanism in parent process
is generated.

Step3: When an abnormal interruption is captured by
the mechanism, the handling of this interruption will be
performed.

Step4: Check the information list of the interruption
address through the handling mechanism to determine the
address of the interruption.

Step5: Return to the handling mechanism, and perform
next step.

1 asm
2 {
3 l o d s b y t e p t r ds : [e s i]
4 xor a l , b l
5 add a l , 5 2
6 sub a l , 0AA
7 xor bl , a l
8 movzx eax , a l
9 push dword p t r ds : [e d i +eax *4]
10 }

Figure 4: The virtual machine atomic handler without obfuscation.

1 asm
2 {
3 l o d s b y t e p t r ds : [e s i]
4 xor a l , b l
5 add a l , 52
6 sub a l , 0AA
7 xor bl , a l
8 push ebx / / I n t r o d u c e a r e g i s t e r ebx

/ / t h a t i s n o t s t a i n e d .
9 mov bl , 0 FF
10 i n c b l
11 cmp a l , b l
12 j n z 10
13 mov a l , b l
14 pop ebx
15 movzx eax , a l
16 push dword p t r ds : [e d i +eax *4]
17 }

Figure 5: The virtual machine atomic handler after obfuscation.

Step6: Jump to the corresponding Handler and execute
according to the obtained address.

Step7: After the Handler is executed, run Dispatcher
repeatedly until running all the critical code section, and
then jump to VMexit.

Step8: VMexit restores the virtual register context to the
actual register context, and then jump to the end address
of the original critical code section, continually running the
instruction following the critical code section.

C. DSA-VMP key technology implementation

1) Data flow obfuscation of atomic Handler: Virtual
machine bytecode is ultimately interpreted and performed
by the handler of the virtual machine, so the obfuscation of
handler data flow is crucial, next, we analyze and explain
based on the analysis of an atomic handler.

As shown in Figure 4 that is a handler which has not
been obfuscated with the data flow. The mission of atomic
handler is to read a bytecode from VMdata (line 3), and
then to decrypt the ciphertext bytecode (line 4-7), according
to decrypt, the plaintext bytecode compute a virtual ad-
dress(line 8-9), and push this address into the stack. The
starting address of the register of esi points to the starting
address of VMdata, edi points to the starting address of
VMcontext.

The analysis to the atomic handler shows that when
analyzing a program, the attacker first gives an input value
of the program and marks it as a stain data (eg: to stain
the bytecode in VMdata data), when the program execution
runs to the handler, it executes the instruction lods byte ptr
ds:[esi]. The stain will be spread to the register of al, and in

1 code before

2 jmp L

3 code after

4 L ...

1 code before

xception instruction

Replace the jmp

instruction with exception

instruction

3 code after

4 junk code

5 L ...

Figure 6: An example of a simple hidden predicate.

the following calculation to the virtual address of context,
the stain will last spreading, from which the attacker can
use data flow accurately to analyze the layout of the virtual
register address in the context, and then to continue the
subsequent analysis.

In order to prevent the data flow analysis of virtual
machine interpreter handler from trackers, we need to ob-
fuscate the data flow of handler. For prevent the stains from
spreading further, we need to cut off the transmission path
of stains data and bleach it. Figure 5 shows the data flow of
atom handler after obfuscation, from which the adding of a
new register ebx can be seen, and the role of this register is
to prevent the spread of stain path.

As shown in Figure 5 that is a handler obfuscated with
data streams, this handler to complete the operation is same
as shown in Figure 4, they are functional equivalence.

First, read a bytecode from VMdata(line 3), and then
decrypt the bytecode (line 4-7), at this point, a new register
ebx is introduced to replace the register al, whose value
has been marked as stain value(line 8-12), the specific
operation is the self-add operation of the register ebx, when
the value of ebx is equal to that of al, assign the ebx values
to al (line 13), followed by the subsequent instruction of
handler to complete the corresponding functions(line 14-17).
Through this process, the stain register value is bleached,
which prevents the further downward spreading of stain,
thereby prevent the attacker from collecting the instruction
information in the program execution path. Basis on which
we can be perform various transforming operation to handler
to increase the complexity of the data flow of the program.

Transform all the handlers through handler’s deformation
engine to prevent them from analyzing based on data flow.

2) Resistance symbol execution analysis: The key of
resistance symbolic execution is to hide the predicate infor-
mation in the program , because when analyzing the program
by using of symbolic execution procedure, the attacker firstly
has to locate to the predicate information in the program,
and then to symbolize the instruction expressions, in hence
to infer the accessibility of the path. Ultimately build a graph
of control flow information of the program .

In the design of the virtual machine, after each execution
the handler will have a jump instruction to jump back to Dis-
patcher to fetch a bytecode and decode the execution, loop
the execution of fetch code-decode-execute until finished all

Figure 7: The program execution flow after DSA-VMP protected. The two
processes of P and M interaction completes the program function.

the bytecode execution, and then end the loop. Based on that,
we will transform the handler, hide every jump instruction
of the handler, meanwhile, adding some handler predicate
information randomly, construct a fake branch to further
confuse the attacker. when analyzing, the control flow graph
constructed by the attacker is either incomplete or is filled
up with false branch structure information.

We hide the predicate information in the program by
using the abnormal mechanism as shown in Figure 6, the
specified method is to modify the last jump instruction of the
handler in the virtual machine into an abnormal instruction
to produce an abrupt. When the abnormal instruction is
captured, search the address where the abnormal instruction
happens, find out the target address of the jump instruction,
and then jump to achieve the original purpose of the jump.

Abnormal instruction design adopt the common x86 in-
struction to do so with a certain covert action, so an attacker
can not easily find the abnormal instruction from a large
number of normal x86 instructions in the analyzing the
program instructions. First, construct the abnormal instruc-
tion library base when designing, and randomly selected
abnormal instruction to replace, as shown in Table I is some
abnormal instruction of x86, such as zero division abnormal,
memory access abnormal and interruption abnormal. And
the iteration change of abnormal instruction makes the
abnormal instructions various.

Table I: Exception instruction types and examples.

Exception Types Examples
Interrupt Int3 /*Int3 exception*/

Zero Divisor mov ebx,0
div ebx /*Divisor is zero */

Write Memory
mov byte ptr ds:[0x00150000],al
/*Memory address 0x00150000 is
read-only section*/

......

3) Dual process confusing program: After introducing
the exception, there needs an exception handling mechanism
to catch exceptions that occur, thus, making it possible to
reach the destination address of the original jump instruction
without changing the source code of the original features.

There are many forms of abnormal handling mechanism

in the Windows environment such as structured exception
handling (SEH), vectored exception handling (VEH), C++
exception handling mechanism, etc. we handle the exception
mechanism with the idea of double process thinking, as
shown in Figure 7, P is the source of the implementation
process, M is an exception handling process to capture,
process of the mutual cooperation of process P and M
complete the function of the original program. Meanwhile
adding a certain process for monitoring, real-time monitors
process P completing the mission according to the semantics
of the source program, so as to avoid the hijacked by an
attacker. compared to the original program when there is a
process P only, increasing the complexity of the execution
flow of the program makes it possible for an attacker to be
found during tracking, in order to make certain protections
such as interrupt program, send signal warnings, etc.

V. SECURITY EVALUATION

A. Experiment and Analysis

Collberg and others[14] proposed three indicators to eval-
uation obfuscating algorithm: strength, flexibility, and the
cost. Based on Collberg evaluation indicators, this paper
combining the characteristics of virtual machines and data
flows obfuscation, qualitatively estimating the virtualization
software protection with semantic attack-resistant.

Handling data flows obfuscation from three aspects. 1)
Data flow obfuscation for atomic handler, introducing anti-
taint analysis technique by transferring the handler, make an
attacker cannot trace the tainted data propagation paths, gen-
erate error, increase the difficulty of analyzing. 2) The predi-
cate information hid introduce the exception mechanism, the
instruction constitute exception code is common instructions
in a program, such as arithmetic instructions, memory access
instructions, and so on. Symbolic execution is difficult to
accurately identify exception codes from a large number of
common instructions, thus increase the complexity of the
symbolic execution locate the path branching point. 3) Intro-
duce double process execution, increases the complexity of
program execution flow, makes a single execution flow into
the communication between two processes, meanwhile have
the function of monitoring main process execution with the
control flow as well, has some anti-debugging mechanism as
well, having greatly increased the difficulty of the attacker’s
analysis.

Through comprehensive data flows obfuscation virtual
software protection with anti-semantic attack has a high level
of protection, and is not easy to be analyzed by attackers.

B. Protection Effect Analysis

DSA-VMP is proposed to mainly deal with the present
semantic based analysis techniques, if an attacker want to
use semantic based method to reverse software typically
attack using two techniques, i.e., symbolic execution and

jz 004010BF

mov eax,edx

B1
cmp ecx, eax

mov ecx,0x1

jmp 004010C4

jmp [edi+ecx*4]

B2

 004010C4:L7

004010BF:L6

004010BD:L5

004010B8:L4

004010B6:L3

004010B4:L2

004010B2:L1

 mov ecx,0x2 B3

B4

ecx==edx

ecx=1

yes no

ecx=2

jmp []

edx

Figure 8: The code basic blocks and control flow graph of the program.

Table II: Symbolic execution of binary code.

Num Assembly code Symbolic execution process
1 mov eax,edx eax=fmov(var1)= var1
2 cmp ecx,eax fcmp(ecx,var1)

3 jz 004010BF
if(ecx-var1 ==0)

goto: 004010BF
4 mov ecx,0x01 ecx=fmov(0x01)=0x01
5 jmp 004010C4 goto:004010C4
6 mov ecx,0x02 ecx=fmov(0x02)=0x02
7 jmp[edi+ecx*4] goto:[edi+ecx*4]

taint analysis technology, or combination of the two tech-
niques. The first step is collecting a complete program
execution path used the mothod of taint marks. and then
do reachability analysis of this path combining symbolic
execution technique, so as to analyze the other path infor-
mation in the program. But an attacker is unable to collect
the complete implementation path of the program through
the taint analysis after we protect. Because when a tainted
data is marked, as the program executing, the program will
bleach the tainted data, Thus an attacker cannot collect
any path of execution, in addition, the protected program
hiding a large number of predicate information. This makes
it impossible for an attacker to perform an analysis using
symbolic execution, eventually lead to attackers to give up to
analysis the program. The following examples are analyzed
to illustrate the effectiveness of protection.

Figure 8 shows a code segment, according to the jump
instruction it is divided into the basic block, the left is
the basic block that has been divided, the right is the
control dependent relationship corresponding to basic block.
Analysis the code segment can know whether L3 executing
or not determine the basic block B2 or B3 executing,
also determine the register of ecx’s value, and ultimately
determine which is the destination address the basic block
B4 jump to.

When attackers analysis on this program segment, first use
the taint analysis technology to gain the program data flow
information, according to the data flow information collect
a program’s execution path, and then do path reachability
analysis use symbolic execution to construct the internal of
program’s control dependent relationships, the operation is
as follows, use the taint analysis technology to mark edx as a
tainted data, instruction L1 propagate taint to ecx, ecx is also

int3

mov eax,edx

B1
cmp ecx, eax

mov ecx,0x1

int3

jmp [edi+ecx*4]

B2

 004010C4:L7

004010BF:L6

004010BD:L5

004010B8:L4

004010B6:L3

004010B4:L2

004010B2:L1

 mov ecx,0x2 B3

B4

ecx==edx

ecx=1

ecx=2

jmp []

edx

Figure 9: The program basic blocks and control flow graph after hiding
predicate information.

marked as the taint data. At this point, if the ecx is equal
to eax, execute the jump instruction between L3 and L6,
and then execute L7 jump to the corresponding destination
address, this process collect an execution path:B1→B2→B4.
And then use the execution path combine with symbolic
execution technology to deduce the rest of execution path.

As shown in the above table II, the instruction 1 via the
instruction of mov transfer variable var1 to eax, instruction
2 compare register ecx and variable, instruction 3 judge the
compared results and determine execute the instruction 4
or 6, thus the corresponding value of ecx is 1 or 2. If the
instruction does not jump, then the constraint expression
for the execution path is ecx-var1!=0, if the expression is
satisfied, the execution path is B1→B3→B4. or else change
the constraint expression deducing another execution path
is B1→B2→B4. Eventually get the logical structure of the
program.

After our system protection, the same method is used for
analysis. The analysis processes as follows. As shown in
Figure 9, it is the program instruction information after pro-
tection (here we only analyzing added exception instruction,
and anti-taint analysis is shown in Figure 2), in which we
use the instruction exception using simple int3 exception
specification. What it is shown in right figure is the block
relationship between basic program blocks and does not
represent the specific implementation process.

When using the same method to carry on the analysis,
we found that taint propagates to L2 instruction, encoun-
tering int3 instruction, and could not continue to propagate
downward. In addition, we also added the taint bleaching
technology in the program, such as it is shown in section
4.3, further blocking the propagation of pollution source, so
the attacker is not able to collect a complete execution path
information.

As shown in Table III, when using symbolic execution to
do analysis again, it can be found, from symbolic execution
process, that attackers cannot calculate path constraint ex-
pression from symbolic expressions, and reason about other
execution paths to construct the control logic structure of
the internal program.

Through the analysis of the example above, it can be

Table III: Symbolic execution of the program after the protection.

Num Assembly code Symbolic execution process
1 mov eax,edx eax=fmov(var1)= var1
2 cmp ecx,eax fcmp(ecx,var1)
3 int3 Null
4 mov ecx,0x01 ecx=fmov(0x01)=0x01
5 int3 Null
6 mov ecx,0x02 ecx=fmov(0x02)=0x02
7 jmp[edi+ecx*4] goto:[edi+ecx*4]

Table IV: Test case description.

Program Critical Code IP IE
Calculator Windows calculator,

Multiplication operation 48 31

Compress File compression algorithm,
Processing 8KB size text file 110 312686

IpMsg Simple communication tools,
Send message algorithm 363 257

MatrixMul Matrix multiplication algorithm,
Computing the 6 order matrix 60 9150

Hanoi Hanoi algorithm,
Enter the plate number is 6 82 2628

explained that the role of protection is obvious and effective.

VI. EXPERIMENTAL EVALUATION

A. Experimentation hardware environment

We evaluated DSA-VMP on a PC with an 3.3 GHz
Intel(R) Core(TM) i3-2120 processor and 4GB of RAM. The
PC runs the Windows 7 Pack Service 1 operating system.

B. Experimental use cases

In order to test performance overhead of virtualization
software protection method of anti-semantic attack, we se-
lected five kinds of software using known algorithm achieve-
ment as test cases. They contain a calculator, compression,
message transmission, matrix multiplication, recursive algo-
rithm, and to some extend all of them are representative.
Detailed test cases are shown in table IV, in the table,
IP represents the number of x86 instructions for the key
code segment of the protection program, IE represents the
number of the instructions that actual program execute, and
the data is obtained and traced dynamically by Pin[15].
Among them, the IP of calculator and IpMsg are higher
than the IE of them, and this is because that the branch
instructions exist in programs and the programs did not
implement these instructions actually. The IP of Compress,
MatrixMul, Hanoi, are lower than IE of them, and this
is because there are large amount of circulation, recursion
instruction, and there will be more instructions are executed
during the actual execution.

C. DSA-VMP system performance analysis

Using DSA-VMP to protect test programs, recording the
execution time (average execution time) and file size of the
original programs and the protected programs. The results
are shown in Figure 10.

Calculator Compress IpMsg MatrixMul Hanoi
0

500

1000

1500

2000

2500

F
ile

 s
iz

e
 (

K
B

)

Normal

DSA−VMP

CV

VMProtect

(a)

Calculator Compress IpMsg MatrixMul Hanoi
0

1

2

3

4

5

6

7

8
x 10

4

A
v
e
ra

g
e
 R

u
n
ti
m

e
 O

v
e
rh

e
a
d
(T

im
e
/u

s
)

Normal

DSA−VMP

CV

VMProtect

(b)
Figure 10: (a) The comparison of impact on file size (KB) with VMProtect
and Code Virtualizer. (b) The comparison of average runtime overhead with
VMProtect and Code Virtualizer.

The impact caused by DSA-VMP on the size of files is
mainly because that DSA-VMP added new virtual machine
sections in the protected programs, and in each part of virtual
machine, only the bytecode size is not fixed, and the others
are fixed, this is no relationship to the test programs. In
Windows, the each section of PE files are aligned according
to a certain alignment number (0.5kb or 4 kb). So, from the
data in Figure 10, we can see that the size of IpMag files
increase by 16kb,and other four test programs increase by
8kb.It is because that the number of instructions protected
by IpMsg are more than that of other test programs. In the
meanwhile, produced bytecode are relatively large.

We calculated the average consumption value of each
execution instruction in program to represent the perfor-
mance consumption from system, and the expressions are
as follows:

Costper instr = (TA − TB)/IE

• Costper instr: Performance overhead for each instruc-
tion(µs/per instr);

• TA: The execution time of the program after the pro-
tection;

• TB : The execution time of the original program;
• IE : The number of the instructions that actual program

Table V: Average runtime overhead per dynamically executed critical
instruction (µs/per instr).

Calculator Compress IpMsg MatrixMul Hanoi
1.032 0.008 6.124 0.346 4.700

execute.

The table V shows the average performance consumption
caused by DSA-VMP for each x86 instruction in the test
programs. From the data in the table, we can see that
the performance consumption of the every instruction in
IpMsg are relatively large, which is because that, most of
the key code segments in IpMsg are arithmetic instructions
and logical operation instructions, and need more Handler
to explain and execute. As a result, the consumption is
larger, and others are mainly based on data transmission
instructions. In the meanwhile, it need less executed Handler,
and the consumption is less as well.

In addition, we compared the protection effect of DSA-
VMP virtual machine with two commercial code virtualiza-
tion protection system, Code Virtualize[2]and VMProtect[1].
The Figure 10 shows the impact on test programs about file
size and execution time after the protection of Code Vir-
tualize and VMProtect. By comparing, we can see that the
impact caused by DSA-VMP on file is small in comparison
with by Code Virtualize and VMProtect, and furthermore
the impact caused by Code Virtualize and VMProtect are
relatively similar, which is because that the virtual instruc-
tion set Handler selected by Code Virtualize and VMProtect
are large. In addition, the impact on program execution time
caused by DSA-VMP and VMProtect are basically similar,
and that caused by Code virtualize is a bit larger, which
is because after the protection of the same x86 instructions
for different virtual machines, different Handler instructions
and the different order of explanation and execution would
result in the difference in execution time. But for the users
who need high strength protection, the certain consumption
of time is acceptable.

VII. RELATED WORK

Software protection are used to protect the intellectual
property encapsulated within software programs from been
pirated and modified, by transforming target program into
a more obscure and hard-understanding one. In the early
years, the protection of the binary code mainly depend-
s on some simple encryption and obfuscation methods,
these methods can improve code complexity. Typically, junk
instructions[16], equivalent instructions, packers[17, 18],
code encryption, above technology usually are used to
resist disassembly and some static analysis. There are also
other code protection techniques like code obfuscation[19],
Control flow and data flow obfuscation[20–22],etc. these
protection methods can only provide limited obscurity, So in
practical applications, these approaches are seldom caught

alone, and they usually combine with each other to protect
an instance.

Code virtualization protection technology in recent years
are more and more be used to protect the code from ma-
licious reverse engineering [1–6]. We’ve already introduced
some of the research work focuses on the protection based
on code virtualization in section I, introduced the general
process of classical virtual machine software protection
method in section II and some possible attacks in section
III.

DSA-VMP put forward a method of defending semantic
attack to improve security for software. (i) Improving the
atomic handlers, introduce data flow obfuscation techniques
to improve the flow of data complexity. (ii) Adopt double
process, the virtual machine’s structure is distributed in
different processes, which makes the implementation of the
program more complex and diverse. Our system by applying
the above approach to increase the complexity of the data
stream to resist semantic attack technology.

VIII. CONCLUSION AND FUTURE WORK

This paper presents DSA-VMP, a novel VM-based code
protection scheme to deal with the attacks based on se-
mantic analysis. DSA-VMP mainly from the obfuscation of
program data flow by using anti-stain technology for the
virtual machine handlers, hiding predicate information in
the program, and introduce the concept of double processes
obfuscation program execution flow. Eventually making the
program execution flow more complex after the protection
of the virtual machine, greatly improve the ability to resist
semantic attack. Through theoretical and experimental anal-
ysis, the results show that the method can resist attacks based
on semantic analysis and has little effect on performance.

When implementing anti-taint analysis and anti-symbol
execution for handlers in the virtual machine, we can
use a variety of anti-taint mechanism and hiding program
predicate information method to enhance the strength of
resistance based on semantic analysis. Therefore, in the next
step of work, we need to design and achieve more anti-stain
mechanism and hiding predicate mechanism, and increase
the diversity of the protection effect.

REFERENCES

[1] “Vmprotect software protection,” http://vmpsoft.com/.
[2] “Code virtualizer: Oreans technology: Software security de-

fined,” http://www.oreans.com/codevirtualizer.php.
[3] H. Fang, Y. Wu, S. Wang, and Y. Huang, “Multi-stage

binary code obfuscation using improved virtual machine.”
in Information Security, International Conference, ISC 2011,
Xi’an, China, October 26-29, 2011. Proceedings, 2011, pp.
168–181.

[4] H. Wang, D. Fang, G. Li, X. Yin, B. Zhang, and Y. Gu, “Nis-
lvmp: Improved virtual machine-based software protection,”
in International Conference on Computational Intelligence &
Security, 2013, pp. 479 – 483.

[5] H. Wang, D. Fang, G. Li, N. An, X. Chen, and Y. Gu,
“Tdvmp: Improved virtual machine-based software protection
with time diversity,” in ACM Sigplan on Program Protection
and Reverse Engineering Workshop, 2014, pp. 1–9.

[6] A. Averbuch, M. Kiperberg, and N. J. Zaidenberg, “Truly-
protect: An efficient vm-based software protection,” IEEE
Systems Journal, vol. 7, no. 3, pp. 121–128, 2011.

[7] K. Coogan, G. Lu, and S. Debray, “Deobfuscation of
virtualization-obfuscated software: a semantics-based ap-
proach,” in ACM Conference on Computer and Communi-
cations Security, CCS 2011, Chicago, Illinois, Usa, October,
2011, pp. 275–284.

[8] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse
engineering of malware emulators,” in IEEE Symposium on
Security and Privacy, 2009, pp. 94–109.

[9] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray,
“A generic approach to automatic deobfuscation of executable
code,” pp. 674–691, 2015.

[10] C. S. Collberg and C. Thomborson, “Watermarking, tamper-
proofing, and obfuscation - tools for software protection,”
IEEE Transactions on Software Engineering, vol. 28, no. 8,
pp. 735–746, 2002.

[11] “Ida pro,” https://www.hex-rays.com/index.shtml.
[12] “Ollydbg,” http://www.ollydbg.de/.
[13] “Sysinternals suite,” https://technet.microsoft.com/enus/

sysinternals/bb842062/.
[14] C. Collberg, C. Thomborson, and D. Low, “A taxonomy

of obfuscating transformations,” Department of Computer
Science the University of Auckland New Zealand, 1997.

[15] “Pin-a dynamic binary instrumentation
tool,” https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool.

[16] C. Linn and S. Debray, “Obfuscation of executable code to
improve resistance to static disassembly,” in Proceedings of
the 10th ACM conference on Computer and communications
security, 2003, pp. 290–299.

[17] “Execryptor: software protection,” http://strongbit.com/
execryptor.asp.

[18] “Upx: The ultimate packer for executables,” http://upx.
sourceforge.net/.

[19] Z. Wu, S. Gianvecchio, M. Xie, and H. Wang, “Mimimor-
phism: A new approach to binary code obfuscation,” in
Proceedings of the 17th ACM conference on Computer and
communications security. ACM, 2010, pp. 536–546.

[20] V. Balachandran, N. W. Keong, and S. Emmanuel, “Func-
tion level control flow obfuscation for software security,” in
Complex, Intelligent and Software Intensive Systems (CISIS).
IEEE, 2014, pp. 133–140.

[21] C. Liem, Y. X. Gu, and H. Johnson, “A compiler-based
infrastructure for software-protection,” in The Workshop on
Programming Languages and Analysis for Security, Plas
2008, Tucson, Az, Usa, June, 2008, pp. 33–44.

[22] J. Ge, S. Chaudhuri, and A. Tyagi, “Control flow based ob-
fuscation,” in ACM Workshop on Digital Rights Management,
Alexandria, Va, Usa, November, 2005, pp. 83–92.

http://vmpsoft.com/
http://www.oreans.com/codevirtualizer.php
 https://www.hex-rays.com/index.shtml.
 http://www.ollydbg.de/
https://technet.microsoft.com/enus/sysinternals/ bb842062/
https://technet.microsoft.com/enus/sysinternals/ bb842062/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://strongbit.com/execryptor.asp
http://strongbit.com/execryptor.asp
http://upx.sourceforge.net/
http://upx.sourceforge.net/

	Introduction
	Background
	Attack Model
	Design Details
	DSA-VMP Fundamental Principles
	The execution procedure of the protected software
	DSA-VMP key technology implementation
	Data flow obfuscation of atomic Handler
	Resistance symbol execution analysis
	Dual process confusing program

	Security Evaluation
	Experiment and Analysis
	Protection Effect Analysis

	Experimental Evaluation
	Experimentation hardware environment
	Experimental use cases
	DSA-VMP system performance analysis

	Related Work
	Conclusion and Future Work

