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Modern Cloud computing systems are massive in scale, featuring environments that can execute highly dynamic In-
ternetware applications with huge numbers of interacting tasks. This has led to a substantial challenge − the straggler
problem, whereby a small subset of slow tasks significantly impede parallel job completion. This problem results in longer
service responses, degraded system performance, and late timing failures that can easily threaten Quality of Service
(QoS) compliance. Speculative execution (or speculation) is the prominent method deployed in Clouds to tolerate strag-
glers by creating task replicas at runtime. The method detects stragglers by specifying a predefined threshold to calculate
the difference between individual tasks and the average task progression within a job. However, such a static threshold
debilitates speculation effectiveness as it fails to capture the intrinsic diversity of timing constraints in Internetware
applications, as well as dynamic environmental factors such as resource utilization. By considering such characteristics,
different levels of strictness for replica creation can be imposed to adaptively achieve specified levels of QoS for different
applications. In this paper we present an algorithm to improve the execution efficiency of Internetware applications by
dynamically calculating the straggler threshold, considering key parameters including job QoS timing constraints, task
execution progress, and optimal system resource utilization. We implement this dynamic straggler threshold into the
YARN architecture to evaluate it’s effectiveness against existing state-of-the-art solutions. Results demonstrate that the
proposed approach is capable of reducing parallel job response times by up to 20% compared to the static threshold, as
well as a higher speculation success rate, achieving up to 66.67% against 16.67% in comparison to the static method.
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1. INTRODUCTION
Modern Cloud applications are typically deployed in datacenters composed of thousands of

heterogeneous servers [Buyya et al. 2009]. Parallel execution models have become dominant
within such large-scale infrastructure; technologies such as MapReduce [Dean and Ghemawat
2008], Hadoop [Hadoop 2016] and Spark [Zaharia et al. 2010] decompose jobs into multiple tasks
that executed in parallel within different machines in order to leverage system resources and
significantly accelerate final job completion times.

A Service Level Agreement (SLA) [Patel et al. 2009] is often enforced in such systems, de-
tailing the level of acceptable service delivered. One important element provisioned by the SLA
is the Quality of Service (QoS) [Xu et al. 2016] composed by numerous parameters including
performance, timing deadlines and security constraints. For example, soft real-time applications
typically emphasize a boundary on acceptable service response time, with violations resulting in
late timing failures [Avizienis et al. 2004] that hinder software dependability.

Guaranteeing timely application completion becomes increasingly difficult due to the growing
scale and complexity of Cloud systems [Garcı́a-Valls et al. 2014]. For Internetware, the emerging
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software paradigm for Internet computing, application quality assurance (including performance,
reliability and usability) also becomes one of the most significant challenges [Mei and Liu 2011]
due to its dynamic and emergent properties [Mei et al. 2012].

One challenge that hinders application response performance is the straggler problem [Zaharia
et al. 2008], where the completion time of a parallel job is significantly impeded due to a small
subset of its parallelized tasks experiencing abnormally longer duration. The delayed tasks which
perform slower compared to their sibling tasks are defined as stragglers. It has been identified
that stragglers are caused by numerous factors including contention of shared resources, node
disk failures and imbalanced task workloads [Kumar and Kumar 2014].

In order to tolerate stragglers, methods such as speculative execution (also known as specula-
tion) [Hadoop 2016] [Zaharia et al. 2008] [Kumar and Kumar 2014] have been adopted, creating
replicas for slow tasks to shorten job completion under the assumption that the replicated task
will complete prior to the straggler. Stragglers are detected by measuring or predicting when
an individual task duration is proportionally greater than the average task execution within a
job, expressed as a threshold. Current research and industrial practice adopts this threshold as
a pre-defined value, typically 50% larger than the average duration [Zaharia et al. 2008]. How-
ever, this static approach comes with a significant limitation − it cannot reflect optimal straggler
detection in accordance with job diversity and system operation. Capturing these characteris-
tics allows stricter or more relaxed thresholds for task replication while adhering to desired QoS
timing constraints. For example, if the system is exhibiting high utilization, the overhead in-
curred by additional task replicas will reduce system availability, as well as increase straggler
occurrence probability due to higher contention. In contrast, low utilization allows for additional
leniency towards speculative replica generation to improve job completion, and benefits jobs that
emphasize quick response.

This paper proposes an algorithm that dynamically determines the optimal straggler thresh-
olds for parallel applications in Clouds in order to improve job completion times while reducing
resource overhead on speculation under high system utilization. Specifically, our approach fac-
tors service QoS timing constraints, task execution progress, and the cluster resource utilization
to calculate the optimal value for defining straggler tasks in parallel jobs. Our approach is vali-
dated through implementing the system based on YARN [Vavilapalli et al. 2013] and conducting
real experimentals representing different operational scenarios on top of the OpenNebula plat-
form [OpenNebula 2016]. Results show that the proposed algorithm is capable of improving job
completion against static threshold as well as improving speculation success rate.

The paper is structured as follows: Section 2 presents the background, introducing basic con-
cepts relating to the straggler problem; Section 3 proposes the dynamic straggler threshold algo-
rithm design and formulation; Section 4 illustrates the algorithm with two theoretical examples;
Section 5 presents the implementation of the straggler tolerant system based on YARN adopting
the dynamic threshold; Section 6 details the experiment setup and the evaluation; Section 7 sur-
veys the related work, detailing different types of threshold in production environments; Section
8 discusses the conclusions and the future work.

Table I: Notation Table.

Ji The ith job Tik The kth task in job Ji
Mj The jth machine in the cluster t Time stamp
Ct

ik The estimated completion time Ct
i The average estimated completion

for Tik at time t of Ji at time t
Thti,dyn The dynamic threshold for Ji at time t Thti,stat The static threshold for Ji at time t
Qt

i The QoS adjustor for Ji at time t P t
i The progress adjustor for Ji at time t

Rt The cluster resource utilization PSt
i The average progress over all tasks

adjustor at time t of Ji at time t
PSt

ik The progress score of Tik at time t α The progress weight parameter
β The resource utilization weight parameter µ The progress standard parameter
φ The CPU utilization standard parameter ω The memory utilization standard parameter
Ωt

j The memory requirement of machine Mj Φt
j The CPU requirement of machine Mj

at time t at time t
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2. BACKGROUND: THE STRAGGLER PROBLEM
Stragglers that hinder timely parallel job response time have become a concern for both Cloud

consumers and system providers, especially for Internetware applications that run in the dy-
namic operational environments. The “HOW-WELL” issue (mainly refers to application perfor-
mance including timely response) has become the core issue in the practices and pervasiveness
of the Internetware paradigm [Mei 2010]. For jobs that have specified QoS timing constraints,
stragglers can lead to late timing failure which decreases application reliability [Ouyang et al.
2016b]. The MapReduce framework is introduced in this section, followed by an explanation
of the reasons why such parallel computing frameworks frequently encounter difficulties with
stragglers. The influence stragglers impose within production systems has been analyzed, and
the basic concepts of task progress and straggler threshold are discussed as well. Table I sum-
marizes the notation used in this paper.

2.1. MapReduce Framework
In order to effectively leverage large-scale cluster infrastructure, programming models such

as MapReduce have been proposed [Dean and Ghemawat 2008]. The MapReduce framework
mainly consists of the following procedures: 1) Fork: the MapReduce library splits input files
into M pieces of data chunks stored on HDFS; 2) Assign map/reduce: the scheduler selects idle
machine nodes to assign map / reduce tasks; 3) Read: a mapper reads the contents of the input
split and passes each key-value pair to the map function; 4) Local write: the intermediate data
pairs produced by the map function are written to the local disk; 5) Remote read: the reducer
is notified by the scheduler about the location of the intermediate results, and it uses a remote
procedure call (RPC) to read the data from the mappers local disks; 6) Write: the reduce worker
iterates over the sorted intermediate data, passes the key and the corresponding intermediate
value sets to the users’ reduce function. The output of the reduce function is appended to a final
output file. Following the above steps, MapReduce framework splits jobs into parallelized tasks
running on different machines to improve completion performance.

2.2. Straggler Problem and Causes
To present an example of the straggler phenomenon, Figure 1 shows three completed jobs

within a Google cluster [V2 2016] [Reiss and Wilkes 2011]. It is observable that although each
job exhibits different task size and duration, each are characterized by a tailing shape, with
the slowest task taking up to more than 10 times longer compared to average task duration.
In [Dean and Barroso 2013], Google further demonstrates how this straggler problem becomes
an increasingly common phenomenon in the face of increased growth of system scale.

Fig. 1: Task completion pattern for jobs exhibiting straggler phenomena in Google cluster.

Stragglers occur due to multiple causes, ranging from skewed input data size, unbalanced
workload, heterogeneous node capacities, shared resource contention, queuing, network conges-
tion [Kumar and Kumar 2014], daemons, maintenance activity, power limits and garbage collec-
tion [Dean and Barroso 2013], to fault activation within tasks and servers [Li et al. 2014]. Among
these causes, [Wang et al. 2011] categorizes them into internal and external reasons within the
context of MapReduce. Internal causes are categorized by behavior which could be addressed by
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the MapReduce service provider (e.g. block size and slot number), while external reasons are re-
sultant on user behavior and the system environment (e.g. facility temperature, poor user code,
sudden surge in user demand).

2.3. Straggler Influence within Production Systems
Stragglers are not exceptional cases limited to Google, but a common problem in many pro-

duction systems. We analyzed straggler occurrence from trace data generated by the OpenCloud
research cluster at Carnegie Mellon University [OpenCloud 2016]. The cluster is composed of
116 homogeneous nodes, and is used to conduct research in areas such as machine learning, nat-
ural language processing and social networking analysis for different schools and departments
within the University. After filtering a ten month period tracelog (covering from January to Oc-
tober 2012) running Hadoop, altogether 18,935 jobs and 8,734,974 tasks have been analyzed.

Fig. 2: Straggler statistics in OpenCloud Hadoop cluster compared with (a) average job duration, (b) median
job duration, and (c) overall tailing job proportion.

Figure 2 shows straggler occurrence within this OpenCloud cluster and the percentage of jobs
that experience stragglers. Figure 2 (a) and (b) show the distribution of individual task dura-
tion compared to the mean and median completion of tasks within the same job, respectively.
It is observable that tasks exhibit similar percentages of completion around 100%, with a small
portion of tasks completing earlier or much later, with the longest being 10 times slower. Approx-
imately, 5% of tasks exhibit straggler behavior. However, because of the cascading effect, when
moving to job level, almost half of the parallel jobs are affected (detailed in Figure 2 (c), por-
traying the percentage of jobs containing stragglers). Such proportions are also identified within
other large-scale production Cloud datacenters [Garraghan et al. 2016b], demonstrating that
even rare performance abnormalities of stragglers can affect a significant portion of all jobs in
Cloud environments.

2.4. Task Progress and Straggler Threshold
In order to identify stragglers, two important concepts are defined: the task progress score

(PS) and the straggler threshold. The former measures the execution progress of a task while the
latter sets the standard to define to what extent a slow task should be classified as a straggler.

According to [Zaharia et al. 2008], the calculation of PS is given by

PStik =

{
L/N For map tasks
1/3 ∗ (P + L/N) For reduce tasks

(1)

where PStik represents the progress score of task Tik at time t, the kth task of job Ji. The value of
PStik is bounded between 0 and 1, representing the start and the end point of Tik, respectively. For
a map task, PS is the fraction of input data read. In Equation (1), the number of key/value pairs
needed to be processed is denoted by N , while L stands for the number of key/value pairs that
have already been processed. For a reduce task, the execution is divided into three phases (copy,
when the task fetches map output; sort, when map outputs are sorted by key; and reduce, when
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the user-defined function is applied to the list of map outputs with each key), and each phase
accounts for 1/3 of the final PS (this even weighting can be modified through changing scheduler
settings [Chen et al. 2010]). The number of finished phases is represented by P , and within each
phase, the score is the fraction of data processed. For example, 0.667 for a map task means that
two thirds of key/value pairs have been processed, while 0.667 for a reduce task indicates that it
has finished the copy and sort phases, and will shortly commence the reduce phase.

Once the progress score has been collected, a straggler is identified after applying a threshold.
If the task’s estimated completion time (ECT) is longer than a certain percentage compared to the
average value within the same job, it will be identified as a straggler. For example, if the average
task completion of a parallel job is estimated to be 100s, a threshold of 200% would result in any
tasks that take more than 200s to complete being flagged as stragglers. Changing the threshold
value directly impacts the number of stragglers identified. Figure 3 shows how the proportion of
stragglers and the corresponding tailing jobs (job containing stragglers) within the OpenCloud
cluster are affected by different threshold values ranging from 120% to 260%. Since speculation
results in the creation of task replicas upon straggler detection, different straggler numbers will
directly impacts the availability of the system and further inflence resource allocation.

Fig. 3: Relation between threshold setting and straggler/tailing jobs proportion in OpenCloud cluster. Tail-
ing jobs are the ones that containing stragglers.

3. DYNAMIC THRESHOLD CALCULATION MODEL
In order to fill the gap caused by the static threshold and to improve speculation efficiency,

we propose an algorithm that calculates a dynamic threshold which can automatically adjust its
value according to different operation situations. This algorithm leverages three key factors - job
QoS timing constraints, task lifecycle progress, and system resource utilization to indicate when
a task replica should be created to tolerate task stragglers.

Figure 4 illustrates the goal of the design and the need for a dynamic threshold. When a job
exhibits a strict QoS timing constraint (i.e. where QoS deadline is smaller than 1.5 average
completion as shown in Figure 4 (a)), a static threshold will only detect Task A as a straggler to
be speculated. However, it is possible for Task C to break QoS constraints, leading to a late timing
failure. Therefore, we believe that it would be more effective for the threshold to capture this QoS
characteristic in order to create replicas not only for task A but also for task C. Furthermore, if
the system load is light, it is possible to also launch additional replicas for Task E due to idle
resources available to improve overall application performance. On the other hand, in cases when
an application has a lax QoS timing constraint as shown in Figure 4 (b) (with QoS larger than 1.5
average completion), since predicted task completion does not violate the QoS constraint, it is not
necessary to create replicas for task A and task C. This is an important consideration when there
is already high resource contention within the system. We believe that there is an opportunity to
enhance the current threshold approach capable of dynamically capturing these scenarios.
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Fig. 4: Dynamic threshold motivation dealing with (a) strict and (b) lax QoS timing constraint.

The dynamic threshold is periodically updated at a certain time interval t in order to allow the
algorithm to adapt to the current system environment. The scheduler will label task Tik as strag-
gler if Ctik > Thti,dyn ∗Cti is fulfilled. When stragglers are detected, within current Hadoop YARN
implementation [Vavilapalli et al. 2013], a duplicate task will then be created and assigned for
running using the addSpeculativeAttempt(taskID) function. Equation (2) depicts the calculation
of the dynamic threshold value per job at a high level:

Thti,dyn = Qti + α ∗ P ti + β ∗Rt (2)

where Qti denotes the threshold baseline determined by job QoS timing constraints. P ti is the
progress adjustor, altering the value for optimal replica creation based on task lifecycle, and Rt

represents the resource adjustor according to the cluster current average resource utilization
levels. Weight parameters α and β can be specified by the system administrator to demonstrate
a particular emphasize for resource utilization or progress. The weighted sum of Qti, P ti and Rt

produce the threshold for detecting stragglers.

ALGORITHM 1: DynamicStragglerThreshold
Inputs:

Jobs: the list of all jobs within the cluster
Tasks: the list of tasks per job
Interval: threshold calculation interval
PS: a list of progress score of every task
alpha, beta: α, β, the adjustor weightings

1 while Jobs.size > 0 do
2 for each Jobs[j] in Jobs do
3 Q[j] = TimingConstraintsBaseline;
4 P[j] = TaskLifeCycleAdjustor;
5 R[j] = UtilizationAjustor;
6 Th[j] = Q[j] + alpha*P[j] + beta*R[j];
7 for each Tasks[i] in Jobs[j].Tasks do
8 PR[i] = PS[i] / (CurrentT ime − Jobs[j].startTime);
9 ETC[i] = CurrentT ime + (1 − PS[i]) / PR[i];

10 if (ETC[i] > (Th[j] * average (ETC))) then
11 if (Tasks[i].AlreadySpeculated == False) then
12 AddSpecAttempt(Tasks[i]);
13 Tasks[i].AlreadySpeculated = True;
14 Jobs[j].size += 1;
15 end
16 end
17 end
18 end
19 sleep(Interval);
20 end

ALGORITHM 2: TimingConstraintsBaseline
Inputs:

Job: the parallel job
Tasks: the list of tasks per job
PS: a list of progress score of every task
QoS: QoS timing constraints

Output:
Q: the timing constraints baseline

1 for each Tasks[i] in Tasks do
2 PR[i] = PS[i] / (CurrentT ime − Job.startTime);
3 ETC[i] = CurrentT ime + (1 − PS[i]) / PR[i];
4 end
5 if (QoS 6= null) then
6 Sort(ETC);
7 Q = (ETC > QoS).first;
8 if (Q 6= null) then
9 Q = Q / average(ETC);

10 else
11 Q = QoS / average(ETC);
12 end
13 else
14 Q = 1.5;
15 end

The pseudo code for this dynamic straggler threshold calculation algorithm is given in Algo-
rithm 1. Every time t, stragglers are identified according to the calculated threshold and their
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estimated finish time Ctik, which is calculated by

Ctik = t+
1− PStik
PStik

(t− t0) (3)

where PStik is the task PS recorded at time stamp t for task Tik, while t0 is the start time of job
Ji. A higher value for Thti,dyn indicates a stricter straggler threshold enforced at that particular
time, in which case fewer task would meet the standard to be defined as stragglers and trigger
the speculation, while a lower Thti,dyn value allows a more relaxed condition when generating
speculated replicas. The values for Qti, P ti and Rt are derived by lower levels of calculation.

3.1. QoS Timing Constraints
The QoS timing constraint is an important factor to be considered when deciding how rigor-

ous the time threshold should be based on the nature of the application. For example, a real-
time service might emphasize a compulsory response time frame in their QoS. Jobs which fail to
complete prior to the specified deadline result in late timing failures and degraded application
performance, therefore guaranteeing the rapidness of task execution is more important than sav-
ing resources on speculation. In our design, we use this QoS Timing Constraints parameter to
set the threshold baseline. This allows for different degrees of strictness for generating replicas
when tolerating the impact of task stragglers.

The calculation of the QoS baseline at time t is given in Equation (4)

Qti =


QoS/Cti if QoS ≥ max(Cti )

mink{Ctik : Ctik > QoS}/Cti if QoS < max(Cti )

1.5 else
(4)

where Ctik represents the ECT for task Tik within the cluster and QoS stands for the time require-
ment defined as a QoS parameter. To give two examples of how this is calculated, first, assume
that a job with QoS timing constraint of 300ms has five tasks with ECTs at time t to be 290ms,
290ms, 300ms, 380ms, 400ms, respectively. In this scenario, the minimal Ctik greater than QoS
is 380ms, and the average ECT is 300ms. Therefore the value for Qti to be used calculating the
final threshold Thti,dyn is 127% (380 ÷ 300). If all tasks are estimated to complete prior to the
specified QoS (change QoS in this example from 300ms to be 450ms, then all Ctik values will be
smaller than QoS), the value for Qti will then change to 150% (450 ÷ 300). This results in no tasks
detected as stragglers (if P ti and Rt are zero as in this example).

It is worth highlighting that the dynamic straggler threshold algorithm also functions well
for applications that do not have an explicit QoS timing request specified. In such an event, a
static time proportion value of 150% used in current literatures [Zaharia et al. 2008] [Rosen
2012] [Kwon et al. 2012] can be applied to set the threshold baseline, and the dynamic change
for Thti,dyn will then depend on P ti and Rti. Algorithm 2 details the calculation process.

ALGORITHM 3: TaskLifeCycleAdjustor
Inputs:

Job: the parallel job
Tasks: the list of tasks per job
PS: a list of progress score of every task
mu: µ, the progress threshold

Output:
P: the task lifecycle adjustor

1 sumPS = 0;
2 for each Tasks[i] in Tasks do
3 sumPS += PS[i];
4 end
5 P = sumPS / Job.size − mu;

ALGORITHM 4: UtilizationAdjustor
Inputs:

phi, omega: φ, ω, the CPU and the memory threshold
C Uti, M Uti: the nodes CPU and memory utilization
Nodes: the machine nodes list within the cluster

Output:
R: the utilization adjustor

1 sumCPU = 0, sumMem = 0;
2 for each Nodes[n] in Nodes do
3 sumCPU += C Uti[n];
4 sumMem += M Uti[n];
5 end
6 C Adjustor = sumCPU / Nodes.size − phi;
7 M Adjustor = sumMem / Nodes.seze − omega;
8 R = max(CPUadjustor, MEMadjustor);
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3.2. Task Lifecycle Progress
It is also important to consider the current execution progress completed for effective replica

generation. Specifically, a replica should ideally be spawned at an early phase of the task life-
cycle when it is likely to complete prior to the task straggler, otherwise the replica will likely
result in unnecessary resource consumption with no improvement towards job completion time.
For example, when a task experiences slow down in its later phase, the newly created replica has
less probability to complete prior to the straggler as it is already too late to catch up. As a result,
it is reasonable to increase the threshold in response to late progress to avoid ineffective spec-
ulation, and lower the threshold value at early phase within task lifecycle to encourage replica
generation, because the replica should have a higher probability to outpace the original task in
that case. Adhering to this reasoning, it is important to consider current task execution progress
when launching speculative replicas.

The calculation of the progress adjustor at time t is given in Equation (5)

P ti = PSti − µ (5)

where PSti is the average progress score for job Ji at time t, representing the current task life-
cycle. Progress standard parameter µ is used to denote the specified maximum point within the
whole lifecycle suitable for generating a replica. For example, µ = 0.5 represents that any task
with a progress score smaller or equal to 0.5 will still be considered as early stage, leading to a
smaller Thti,dyn by generating a negative P ti value, increasing the likelihood of replica generation.
And any tasks that progress past half of the entire lifecycle will be treated as in their late stages,
resulting in a positive P ti value to higher the threshold to limit replica generation. This procedure
is detailed in Algorithm 3.

3.3. System Resource Usage
An important consideration for straggler tolerant systems is the overhead incurred by specu-

lations toward different conditions. Creating replicas in a high system resource utilization situa-
tion poses a greater threat to system stability and can further increase the likelihood of straggler
occurrence [Ouyang et al. 2016b], while low system utilization allows for additional speculation
to improve job completion. Furthermore, replicas themselves also have the potential to become
stragglers. Observations proposed in [Ananthanarayanan et al. 2010] state that 3% of replica
executions still take ten times longer than normal task executions in Bing’s production cluster.
Considering the fact that replicas will execute with data identical to the original straggler and
will be configured with the same resource requests, the expense of tasks should also be consid-
ered when deciding whether to perform speculation. If the resource requirement of the original
task is high, then generating a corresponding replica can result in a higher resource cost with no
substantial improvement towards overall job completion. Based on this reasoning, the dynamic
straggler threshold calculation should consider current levels of system resource utilization.

The resource adjustor is represented as parameter Rt in the algorithm to tune the value of
Thti,dyn dependent on system utilization at time t. This calculation is given as

Rt = max

(∑n
j=1 Ωtj

n
− ω,

∑n
j=1 Φtj

n
− φ

)
(6)

where n denotes the number of servers within the cluster, while Ωtj and Φtj represent the memory
and CPU utilization of machine Mj , respectively. If either one of these two parameters hits the
optimal utilization specified by the user (memory standard ω and CPU standard φ), the equation
will increase the threshold by generating a positive Rt value, resulting in stricter requirements
for replica generation. Algorithm 4 summarizes this process.

4. THEORETICAL EXAMPLES
In this section, we explain the key idea of the proposed algorithm by giving two theoretical

examples, illustrating how the threshold value changes according to different parameters and
what impact this change would exhibit upon final job completion. The progress scores are given
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one timestamp at a time. One example summarizes the case when the job starts in a low system
utilization state while the other is for high utilization.

We apply static and dynamic threshold approaches to both examples and the results are pre-
sented in four tables. In both examples, we consider an instance of a single job J consisting of
ten tasks T1, . . . , T10 for illustration simplicity. The progress standard parameter, the memory
and CPU standard parameter are set to be µ = 0.5, ω = 0.6, φ = 0.6, respectively, and values for
weighting parameters are α = 0.5 and β = 0.5. This setting represents a common configuration
and can be changed according to different interests.

4.1. Example 1: Job Starts in Low Utilization Environment
Table II shows the job PSs and the ECTs at each time interval for the (a) dynamic and (b) static

threshold, respectively. The initial system utilization starts from 15% to represent idle cluster
conditions. We assume the job does not have an QoS deadline in this example, and the values for
T1, . . . , T10 in the table are ECTs of the initial tasks, while R-Ti stands for corresponding replicas.

Table II: Example 1 job speculative execution with (a) dynamic threshold, (b) static threshold.

Observed from Table II (b), the static threshold identifies two stragglers and the job completes
at timestamp 12. Task T7 is the first straggler identified, being detected at timestamp 2 when
its ECT is found to be larger than 1.5 ∗ ECT . Replica R-T7 is created upon detection, and its
ECT is calculated at time 3 when PS is first generated. The other straggler identified is task
T3 with R-T3 created at timestamp 7. Among the two replicas, R-T7 completes at time 8 prior to
task T7, however for T3, due to the late detection, R-T3 does not have sufficient time to catch up.
From this demonstration we see that the static threshold cannot capture slow tasks such as T3
promptly; even in its early stage, it already shows slow progress (at timestamp 3 when its ECT
is 13, however this number does not pass the 1.5 threshold because it is smaller than 13.5).

For the dynamic threshold demonstrated in Table II (a) this gap of late detection is reduced.
Altogether four stragglers are identified to shorten the job execution from timestamp 12 to 10. Al-
though the larger replica number imposes a greater overhead, due to the idle system state, it will
not cause severe burden towards the system. It is also observable that the threshold value gets
larger through job execution. This is due to two reasons: first, the dynamic approach encourages
replica creation in early stages of the life cycle by generating smaller threshold values according
to Equation 5. Second, as the system utilization is low when the job executes, the usage of the
resource adjustor defined in Equation 6 yields even smaller threshold values. This is why tasks
T3, T5, T7 and T10 are identified in comparison to only T3 and T7 using the static approach. The
dynamic approach makes use of the low system utilization to create more replicas in a prompt
way so that a better response time is obtained.

4.2. Example 2: Job Starts in High Utilization Environment
Table III shows applications that adopt the (a) dynamic and (b) static straggler thresholds for

example 2, in which job starts at a high utilization state. This time a job with a QoS constraint

ACM Transactions on Internet Technology, Vol. XX, No. XX, Article XX, Publication date: September 2017.



XX:10 X. Ouyang et al.

QoS = 12 is used to demonstrate the algorithm methodology. Other attributes including task
number and the algorithm parameter settings are identical to the previous example.

Table III: Example 2 job speculative execution with (a) dynamic threshold, (b) static threshold.

As presented in Table III (b), due to the slow progress, the static approach identifies three tasks
T1, T4 and T8 as stragglers regardless of the utilization level, followed by the creation of replicas
R-T1, R-T4 and R-T8 at times 3, 4 and 2, respectively. These additional replicas further increase
utilization, potentially increasing the probability of straggler occurance. In addition, some of
them do not generate obvious improvement toward execution performance, for example R-T1, R-
T4 are both only one step earlier than the original task. For the dynamic method demonstrated in
III (a), due to the awareness of the environmental conditions through using the resource adjustor
defined in Equation 6, it only identifies the most noticeable straggler T8. As a result of taking
QoS into consideration (QoS = 12), the slower ECT of T1 and T4 (12) are ignored as a trade off
for better resource efficiency while still guarantees acceptable response time. To summarize, the
dynamic threshold creates less replicas in the case of a high system utilization to avoid overload
of the system while garanteeing the fulfillment of QoS requirement.

5. IMPLEMENTATION
Considering the decentralized nature and its advantage in scaling compared to Hadoop V1, we

build our straggler tolerant system on top of Hadoop YARN [Vavilapalli et al. 2013]. The default
YARN system consists of three main components shown in Figure 5: Application Master (AM),
Resource Manager (RM) and Node Manager (NM). By spliting the original Hadoop V1 JobTracker
into AM and RM, YARN is capable of de-coupling resource management functionalities (such
as request and release containers) with application management responsibilities (such as job
scheduling and monitoring). NM is a per-node slave in charge of launching containers, reporting
resource usage back to RM and heartbeat. AM is responsible for handling job execution including
MapReduce job creation, request resources from RM, communicate with NM to run containers,
monitor job running status and do speculation, etc. In accordance with this implementation, we
give our system design as follows.

5.1. System Model
In our design, the Speculator residing within the AM is responsible for straggler detection,

and consists of two components: the Progress Monitor which is responsible for recording and
reporting task progress and the Threshold Calculator which generates the straggler threshold
dynamicly. The Executor is developed aside the scheduler to launch replicas in our design, which
is detailed in Figure 5.

5.2. Default Speculator Component
The default speculation component in current YARN 2.5.2 [Hadoop 2016] implementation

mainly consists of three key classes: the TaskRuntimeEstimator which is responsible for esti-
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Fig. 5: Hadoop YARN architecture with embedded
Straggler Tolerant System which contains Dynamic
Threshold Calculator component. Fig. 6: Parameter configuration example.

mating task ECTs; the AppContext in charge of sharing information between objects; and the
Speculator. Key methods and parameters are detailed in Figure 7. Every time when the “spec-
ulation” event is triggered (by default, this time interval is set to be 1 second after no specu-
lation and 15 seconds after speculation), the Speculator will check whether a speculation ac-
tion should be launched according to conditions given by the parameters including the mini-
mum allowed speculative tasks (default value is 10), the proportion total tasks speculatable (de-
fault value is 0.01) and the proportion running tasks speculatable (default value is 0.1). If every
condition is fulfilled, the Speculator will calculate the speculation value (SV) as:

SV = ECT − ERCT (7)

where ERCT is short for estimated replacement completion time. This represents the total time
it can save from launching a replica for that specific task. Once this value is calculated for each
task, the scheduler will create a replica for the task with the largest speculation value by trig-
gering the event of adding the task ID into a waiting queue.

Fig. 7: Class diagram of the speculator component.

5.3. Speculator Modification
Based on the above analysis of the YARN architecture and the default speculator component,

it is known that Hadoop already includes several reporting counters such as the progress info for
each task attempt in TaskAttemptHistoryStatistic class, and provides functions to calculate sev-
eral key intermediate results such as the estimated task completion. Therefore, our algorithm
does not introduce additional monitoring and computation overheads to the system. The only
“extra work” performed is at O(1) cost, calculating Thti,dyn according to Equation (2) to replace

ACM Transactions on Internet Technology, Vol. XX, No. XX, Article XX, Publication date: September 2017.



XX:12 X. Ouyang et al.

the “SpeculationValue” function described in the previous section. All external APIs for the Spec-
ulator class remain unchanged. For the Thti,dyn calculation, P ti is straight forward, since all PS
values are recorded, it is simple to get the average. As for the resource utilization Rt, two extra
attributes are added in the AppContext class (namely “cluster capacity” and “cluster available”)
in order to record the available CPU and memory resources from RMContainerAllocator, which
is responsible for communicating with the RM to get the cluster information for AM.

In addition, the parameters used in the calculation can be passed in through modifying the
mapred-site.xml file like other YARN related parameters (an example is given in Figure 6). In
this way, the algorithm can easily be customized without recompiling the whole YARN platform
each time new configurations are added. An automatic log extract tool is developed to locate the
precise log position within the cluster and visualize key information such as threshold value,
replica number and job execution time.

6. EVALUATION
We developed the straggler tolerant system based on the proposed dynamic threshold algo-

rithm. The system model is illustrated in Figure 5 to evaluate the algorithm effectiveness.

6.1. Experiment Setup
Our experiments were deployed on the OpenNebula platform [OpenNebula 2016] with a typical

virtual machine (VM) configuration of 1 GB memory, 1 virtual core with 2.34 GHz capacity and
10GB disk space on potentially shared hard drive. The VM uses KVM virtualization software
and runs an Ubuntu 12.04 x86 64 operating system. In all experiments, we configured the HDFS
to maintain two data replicas of each chunk. The job types we run include Sort, WordCount, and
Hive query (Group By). These three benchmarks were selected as they are frequently used for
straggler evaluation, such as in the Google paper [Dean and Ghemawat 2008], in LATE [Zaharia
et al. 2008], in Mantri [Ananthanarayanan et al. 2010] as well as in MCP [Chen et al. 2014]. In
addition, a number of features of Sort make it a desirable benchmark [Blelloch et al. 1993]. For
the Sort and the WordCount, the input size is 10GB and 5GB, respectively, while for the Hive,
the Group By query is conducted on a table with more than 10 million rows.

Table IV: Cluster configurations.

Node Num 5 10 30
Default VM 3 15 22
I/O injected 0 1 1

CPU injected 0 1 2
Mem injected 1 1 2

Combined 1 2 3

Table V: Results for different threshold performance.

Job
Type

Cluster
Size

Response Time (s)
Dynamic Static No Speculation

Avg Stdev Avg Stdev Avg Stdev

Word
Count

5 103 1.69 110 4.03 107 2.49
10 96 3.09 96 1.69 98 4.32
30 63 4.19 75 5.25 88 4.92

Average 87.34 93.67 97.67

Sort
5 1089 2.16 1164 1.89 1201 3.27

10 571 1.25 626 2.49 712 4.19
30 400 3.09 500 2.49 580 4.78

Average 686.67 763.34 831

Hive
Groupby

5 67 9.09 82 0.73 80 0.59
10 61 2.21 73 0.23 77 1.48
30 56 1.89 61 1.02 64 0.44

Average 61.33 72 73.67

For the cluster size, we evaluate the system with 5 data nodes, 10 data nodes and 30 data
nodes. We injected faults and extreme resource contention situations into the system to reveal
a more realistic environment for the experiments. An I/O intensive program (mainly consisting
of the “dd” and “rm” command to create and delete files that take up most I/O throughput of
the machine), a memory intensive tool (which intensively creates arrays to occupy memory) as
well as a CPU intensive program (which continuously calculates the π value) are deployed on
specific VMs. The machine number settings are listed in Table IV, with “Default VM” represent-
ing VMs without injected faults. “I/O injected”, “CPU injected” and “Mem injected” refer to VMs
with a certain interfere program deployed, while “Combined” indicates VMs with all three (I/O
intensive, CPU intensive and memory intensive) applications deployed.
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6.2. Experiment Results
We analyze the experiment results from four aspects: the performance improvement which

focuses on job response time; the speculation overhead which measures the replica number gen-
erated; the speculation success rate which calculates replica number that actually outpace the
straggler in the system; and the parameter sensitivity which observes how the threshold value
will change along with time and utilization.

6.2.1. Performance Improvement.
Three platforms are deployed in order to compare their efficiencies in job completion with

straggler presence: Hadoop YARN with 1) the static and 2) the dynamic straggler threshold, and
3) Hadoop YARN with the speculation mechanism forbidden. For two platforms A and B, we
calculate the improvement of job response time IAB for platform A versus platform B by

IAB =
JCB − JCA

JCB
, (8)

where JCA and JCB denote the average completion time of benchmark jobs running on plat-
form A and B, respectively. Table V shows the results for both workload types. Each experiment
case was executed three times in order to determine the average and standard deviation value.
We keep the total input size constant throughout different cluster sizes (e.g. for Sort, the files
of 10Gb in size have been sorted, therefore in 5 VM cluster, each node holds a 2Gb file while
for 10 VM cluster, each node only holds 1Gb). From this result, it is shown that the average job
response time for WordCount using dynamic straggler threshold speculation is 87.34s, while a
static threshold and no speculation is 93.67s and 97.67s, indicating an improvement of 6.76%
and 10.58%, respectively. Figure 8 (a) summarizes the improvement for the dynamic and static
thresholds versus no speculation in different cluster sizes. It is observable that in the five node
cluster, static speculation performs worse than no speculation, leading to a negative improve-
ment value. This is a result of the system experiencing an extremely high utilization state, with
additional replication sometimes further burdening the system instead of causing performance
improvements. The dynamic threshold on the contrary captures this information, thus obtaining
a better performance. Similar negative improve case is observed for Hive in 5 node cluster as well
(static threshold VS no speculation). The improvement is more apparent for the Sort workload
in comparison to Wordcount and Hive, achieving 10.04% and 17.37% on average when compared
with the static threshold and no speculation framework. The most noticeable improvement is
achieved when the system is in an idle state (under cluster size 30, the achievement versus no
speculation is 31.03% while 20% compared with static threshold). This is consistent with the al-
gorithm design of creating more replicas to reduce job execution time when utilization is low. In
busy states (such as cluster sizes 5 or 10), although the dynamic threshold identifies less repli-
cas, it reduces the chance of tasks becoming stragglers due to contention as well, therefore still
performs better than the static method.

Fig. 8: Job response time improvement of the dynamic threshold and the static threshold comparing to no
speculation for jobs (a) WordCount, (b) Sort, and (c) Hive.
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Table VI: T test results for response time difference significance.

wd5 wd10 wd30
ws5 p = 0.089 ws10 p = 0.5000 ws30 p = 0.038
wn5 p = 0.079 wn10 p = 0.289 wn30 p = 0.006

sd5 sd10 sd30
ss5 p = 0.000 ss10 p = 0.001 ss30 p = 0.000
sn5 p = 0.000 sn10 p = 0.000 sn30 p = 0.000

hd5 hd10 hd30
hs5 p = 0.069 hs10 p = 0.008 hs30 p = 0.026
hn5 p = 0.089 hn10 p = 0.002 hn30 p = 0.013

In addition, we observe that the execution time performance improvement varies not only with
cluster sizes, but with different workload types as well. Table VI details the significance value p
after applying independent t-tests between different algorithms. wd5 (ws5, and wn5) in the ta-
ble represents the Wordcount workload with the Dynamic straggler threshold (Static threshold,
and No speculation) running in a 5 node cluster, while sd5 and hd5 represents workload Sort
and Hive under the same condition (dynamic threshold, and 5 node cluster). The null hypothe-
sis of the tests are mean(dynamic) = mean(static) and mean(dynamic) = mean(no speculation),
while the alternative hypothesis are mean(dynamic) < mean(static) and mean(dynamic) <
mean(no speculation), representing dynamic threshold performs better as it gives a shorter re-
sponse time. From the results it is observable that, for Sort jobs, the mean difference is quite
significant, all tests reject the null hypothesis and admit the fact (with 95% confidence) that the
dynamic threshold provides a quicker job response. While for WordCount and Hive jobs, some of
the p values are larger than 0.05, indicating a vague improvement. This is due to a limitation of
all speculation based techniques which will be analyzed in detail in Section 6.2.3.

6.2.2. Speculation Overhead.
Further comparison regarding the speculation overhead is conducted between static and dy-

namic threshold methods, primarily measuring the number of replicas generated under each
algorithm. The detailed results are listed in Table VII, from which we see that if the cluster size
is small, the dynamic threshold can save resources through creating less replicas compared to
the static algorithm. In contrast, the dynamic threshold in a larger cluster size will generate
more replicas as a result of trading resources for time to achieve better response performance.
This auto adjustment is important, especially for jobs with QoS timing constraints.

Table VII: Experiment results for speculation overhead comparison.

Workload
Type

Cluster
Size

Task
Number

Replica
Number

Successful
Speculation

Speculation
Effectiveness

Dynamic Static Dynamic Static Dynamic Static

Word
Count

5 8 3 6 2 1 66.67% 16.67%
10 14 5 6 3 2 60% 33.33%
30 36 12 5 5 1 41.67% 20%

Sort
5 89 4 8 2 2 50% 25%
10 110 16 10 5 2 31.25% 20%
30 153 23 11 12 3 52.17% 27.27%

Hive
Group By

5 8 2 1 1 0 50% 0%
10 13 3 2 2 1 66.67% 50%
30 33 5 3 3 1 60% 33.33%

6.2.3. Speculation Effectiveness.
We measure speculation effectiveness by comparing successful speculations (replicas success-

fully overpace the straggler and contribute to the response time improvement) with total specu-
lations launched using Equation (9).

Effectiveness =
SuccessfulSpeculationNumber

TotalReplicaNumber
(9)
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Fig. 9: WordCount task progress in (a) no fault injection, (b) I/O contention fault injection cluster.

We observe in Table VII that the speculation success rate is much higher for Sort jobs compared
to WordCount and Hive. This indicates that more replicas outpace the identified stragglers for
Sort, and contribute towards improving job execution time. This is due to a limitation of the
speculation mechanism; when stragglers are caused by imbalanced workload or uneven input
data sizes, speculative copy will still suffer from the same reason and ended up being killed. This
can be improved by importing straggler reason-aware mechanisms with mitigating methods such
as SkewTune [Kwon et al. 2012] and micro-task technique [Rosen 2012].

The successful replicas for WordCount are found when the testbed has been injected with
faults, where stragglers are caused by contention reasons. Figure 9 shows the comparison when
both are running the WordCount job using dynamic thresholds in different testbed settings, with
Figure 9 (a) contains only default VMs and 9 (b) has three VMs injected with I/O contention. Each
color in the figure represents a task attempt, while the ones with suffix zero indicate original
tasks and suffix one means it is a speculation of this specific task. In Figure 9 (a), it is observable
that all speculative replicas are killed by the system because the stragglers finish first, while in
Figure 9 (b), two out of three speculations succeeded in the end overpaceing the stragglers (only
task m03 has a failed speculation m03 1).

6.2.4. Parameter Setting Sensitivity.
The efficiency of the algorithm is dependent on selecting appropriate values for configurable

system parameters. This section studies how the threshold value changes to reflect different sys-
tem conditions and describes how different parameter settings influence algorithm performance.

Systems have different standards to judge their own “idle” or “busy” state, and different values
will lead to differing strictness of creating speculative replicas. The system administrator can
also adjust different emphasis toward progress adjustor and resource adjustor. Figure 10 plots
the map task threshold changing patterns of two sets of parameter settings for Sort job as an
example. The α and β for threshold 1 are both 0.5, representing an equal weighting toward task
progress phase and resource utilization level. µ is set with value 0.5, indicating the halfway
progress point, and ω is set to be 0.7, meaning any utilization below 70% will be treated as
“idle”. In the experiments, φ is not used as the RM in YARN 2.5.2 only focuses on memory for
now. According to the official website [Hadoop 2016], CPU will be considered in later versions. For
threshold 2, α and β are set to values of 0.4 and 0.6, respectively. This reveals more emphasis has
been put on resource utilization influence. We decreased the value of ω to be 0.6 for threshold 2
as well, indicating a stricter utilization standard for additional speculation.

From the results we notice that both curves exhibit a similar trend: the threshold values in-
crease in the begining due to tasks starting therefore raising utilization, followed by a relatively
flat period as a result of progress adjustor’s influence. We observe a decreasing trend because
tasks begin to complete and subsequently release resources. When the job is approaching its com-
pletion, at which time the probability of a replica outperforming the straggler is low, the threshold
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Fig. 10: Parameter configurations (a) α = 0.5, β = 0.5, µ = 0.5, ω = 0.7; (b) α = 0.4, β = 0.6, µ = 0.5, ω = 0.6.

values increase again to avoid needless speculation. Despite the similarity, we also see that the
turning point from value increase to decrease for threshold 2 is slightly earlier than threshold 1.
This is because the utilization fall caused by task completion generates a larger effect than late
phase increase. The highest threshold value for threshold 2 is greater than threshold 1 due to it
being more sensitive to utilization.

6.3. Simulation
We conducted a simulation in order to evaluate the advantages of the dynamic threshold algo-

rithm within a larger-scale system. We use SEED - an event-based simulator [Garraghan et al.
2016a] that can simulate Cloud datacenter operations such as the creation of jobs (comprising
multiple tasks) onto a set of machines for execution. The design of the simulation also adopts the
following five assumptions:

(1) All speculative replicas created are allocated with identical CPU and memory requirements
with the straggler task, and start re-execution from the beginning instead of continuing from
the detected point [Zaharia et al. 2008];

(2) The scheduler will create replicas immediately after a task has been defined as a straggler,
and will schedule the replica as a normal task;

(3) The maximum resource capacity of the cluster remains the same (i.e. no addition/removal of
servers) during threshold calculation;

(4) Replicas can potentially become stragglers as well [Ananthanarayanan et al. 2010];
(5) Once a certain level is exceeded, higher resource utilization within a system leads to a higher

probability of straggler occurrence [Ouyang et al. 2016b].

When simulating the task progress model, we adopted a simple probabilistic function. We as-
sume the probability of straggler occurrence follows the role given certain system utilization by:

P (Straggler) =


0.1 if utilization ∈ (0,0.6]
0.2 if utilization ∈ (0.6,0.8]
0.3 if utilization ∈ (0.8,0.9]
0.4 if utilization ∈ (0.9,1)

(10)

Tasks follow a linear progress function with the above straggler probability. For stragglers,
the duration will be slowed stochastically by a factor between 120% to 250% compared to the
average task duration. This is consistent with the statistics discovered in [Ananthanarayanan
et al. 2010]. Other sophisticated progress functions (straggler probability function and straggler
tailing duration function) such as the Pareto and the Zipf distributions [Calzarossa et al. 2016]
can easily be implemented to replace the linear progress.
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We constructed a simulated cluster with 100 servers and 500 tasks, and another with 800
servers and 10,000 tasks. The nodes in the simulations are configured with 4096MB memory
capacity, and tasks for the former with 512MB memory requirement while 256MB for the letter.
For the dynamic threshold calculation algorithm, we adopted equal weightings to progress and
resource adjustor, and we assign 0.5 to both standard parameters. The detailed results are shown
in table VIII.

Table VIII: Simulation results for different thresholds.

Threshold
Method

Number of
Servers

Number of
Tasks

Response
Time (step)

Replica
Number

Successful
Speculation

Straggler
Percentage

Speculation
Effectiveness

Dynamic 100 500 130 72 48 14.4% 66.67%
Static (1.5) 100 500 163 59 18 11.8% 30.5%
Dynamic 800 10,000 162 1,861 1,443 18.61% 77.54%
Static (1.5) 800 10,000 213 1,486 702 14.86% 47.24%

From the results we observe that, at the cost of an additional 2.6% replica numbers, the dy-
namic threshold can reduce job execution by 20.25%, and among all replicas lauched, 66.67%
catch up with the corresponding straggler while only 30.5% effective replicas for static thresh-
old. In the case of 10,000 tasks, the statistics follow the same trend: job execution time has been
reduced by 23.94% with 3.75% more replicas when adopting dynamic straggler threshold, with a
30.3% improvement in speculation effectiveness.

7. RELATED WORK
There exist numerous risks for Internetware applications due to the open and dynamic envi-

ronment they are situated in [Lü et al. 2013]. For example, risks of context inconsistency (en-
vironmental information that impacts computation) are discussed in [Xu et al. 2013a]. Environ-
mental contexts encompass time, which stragglers can directly undermine. In addition, a mid-
dleware layer is required for Internetware applications to successfully fulfill non-functional re-
quirements including dependability and QoS [Ye et al. 2010]. Since stragglers lead to late-timing
failures and potential QoS violation for latency-sensitive services, straggler tolerance should be
supported by such middleware platforms.

Current literature predominantly focuses on proposing straggler mitigating techniques, which
can be divided into avoidance and tolerance. Avoidance typically occurs within the task schedul-
ing phase [Yadwadkar and Wontae 2012; Xu et al. 2013b]. For example, a MapReduce scheduler
will typically assign map tasks to a node that stores the input data in order to reduce unneces-
sary network transmission [Dean and Ghemawat 2008]. The scheduler may also attempt to avoid
scheduling tasks onto known faulty nodes by adopting blacklist techniques [Zhang et al. 2014].
However, such techniques may be insufficient when stragglers are not restricted to a small set
of machines [Ananthanarayanan et al. 2013]. As a result, straggler tolerance, which is typically
performed at application run-time, becomes the most commonly applied mitigating method, and
speculative execution [Dean and Ghemawat 2008] is the most established approach of this kind.

Although various improved versions of speculated execution have been proposed [Dean and
Ghemawat 2008; Chen et al. 2014], the basic foundation of task replication remains the same.
The scheduler observes the progress of each individual task within the same job. Once a strag-
gler has been identified, the system automatically creates a replica that performs identical work
without killing the original task, and uses whichever result completes first. Once a task finishes
(either the original straggler or the newly created backup), the scheduler discards the other un-
finished one and releases the computing resources. Speculative execution is commonly deployed
in production clusters such as Facebook, Google, Bing, and Yahoo [Dean and Ghemawat 2008].

The straggler threshold plays an important role in the straggler detection process, measuring
to what extent a slow task should be defined as a straggler. Currently, there exist three categories
of thresholds. The Hadoop V1 (version one) default scheduler [Dean and Ghemawat 2008] adopts
a PS based threshold, which monitors the PS of each task and identifies the tasks with 20% less
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PS compared with average as stragglers. This type of threshold has an unavoidable limitation
where tasks that have completed more than 80% progress can never be speculatively executed.

To avoid above problem, LATE [Zaharia et al. 2008] and Mantri [Ananthanarayanan et al.
2010] determine stragglers using a threshold based on the task’s estimated completion time
(ECT). This type of threshold focuses on the actual remaining time and performs better in im-
proving final response. LATE achieved an improvement by a factor of two compared with Hadoop,
and Mantri get a further 32%.

Dolly [Ananthanarayanan et al. 2013] adopts a progress rate (PR) based threshold in their
straggler-tolerant system. PR is a metric used to measure the task processing speed, and is
calculated by dividing the progress score with the corresponding elapsed time. Dolly classifies a
task as a straggler if its PR is less than 50% of the average PR compared to its siblings. This type
of threshold comes with its own limitations due to the ignorance of the changing nature of PR
and task progress phases. Taking the following scenario as an example, if task A is three times
slower in PR than the average yet has a PS of 0.9, while task B is two times slower but is only at
10% of its execution lifecycle, a PR based threshold would detect task A as a straggler due to its
slower progress rate than B. However, in reality, it is task B that will significantly impede total
job completion time. Based on above reasoning, within this paper, the ECT based threshold is the
primary type that we focus on enhancing rather than purely PR.

No matter which type, current work in [Dean and Ghemawat 2008] [Zaharia et al. 2008] [Anan-
thanarayanan et al. 2013] [Ananthanarayanan et al. 2010] all specify the straggler threshold as
a pre-defined value, typically 50% greater than average task execution. However, such a static
threshold can debilitate the effectiveness of speculative replica generation. Specifically, it fails
to consider the intrinsic diversity of job timing constraints within modern day systems. Further-
more, a static threshold value ignores the resource cost of launching a speculative replica and
its negative impact toward the system when the utilization is already high [Xu and Lau 2013],
which potentially increases straggler probability due to contention.

Dynamic Replication is a way to solve this problem, and has been widely adopted. Work in [Ra-
binovich et al. 1999] proposes a dynamic replication algorithm for Internet objects in order to
improve requests response. This method attempts to place replicas in the vicinity of a majority
of requests while ensuring no servers are overloaded. Work in [Wang et al. 2011] proposes a dy-
namic slot allocation optimization method for Hadoop clusters to improve job execution, by modi-
fying the pre-configuration of distinct map slots and reduce slots into dynamically assigned slots
based on resource utilization in runtime to avoid contention or under-utilization. Work in [Sun
et al. 2012] proposes a dynamic data replication algorithm in Cloud environments to improve sys-
tem availability. This algorithm evaluates and identifies popular data, and triggers a replication
operation when the popularity data passes a dynamic threshold. However, most of the current
work on dynamic replication focuses on data instead of tasks.

An effective straggler threshold should have the ability to impose different levels of strictness
for replica creation to coordinate with specified levels of QoS timing constraints. Our previous
work [Ouyang et al. 2016a] proposed the concept of the dynamic straggler threshold; and its per-
formance in reducing job response time is proved to be effective through simulation. In this paper,
we further implement the algorithm into YARN platform with three different workloads, reveal-
ing a more practical result. Meanwhile, new evaluation metrics of successful speculation rate is
discussed which focuses on algorithm efficiency, as well as a larger scale simulation evaluation.

8. CONCLUSION
Tolerating stragglers has become more difficult due to the increasing cluster scale and dynamic

operational environments of modern Internetware applications. Current state-of-the-art methods
attempt to improve application execution time using speculative execution, which creates repli-
cas for identified straggling tasks. The threshold is a key concept used in defining to what extent
a task can be identified as a straggler. In this paper, we propose a threshold calculation method
in speculative execution mechanism to mitigate the straggler effects that dynamically adapt to
different job types and system conditions to improve the efficiency of Internetware application
executions. Our conclusions are as follows:
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— The dynamic threshold is effective in improving job completion times and reducing late timing
failures. While current methods identify stragglers using a static threshold defined as 50%
greater than average execution, our approach allows for an adaptive threshold calculation
that automatically captures job QoS timing requirements, system resource utilization level,
and task progress. Experiment results demonstrate that the dynamic technique can improve
job completion by a factor up to 20% compared to static methods, while simulation results
indicate the same trend, achieved an improvement up to 23.94% in a large scale environment.

— Replica number trade-offs for different levels of resource utilizations to cope with the dynamic
operational environments. Improving job execution by speculation and saving resources can be
a conflict of interest and require trade-off balancing. Experiments are conducted to compare
the dynamic approach against the current static approach under different operational con-
ditions; results demonstrate that our approach creates fewer replicas under high utilization.
While under low resource utilizations, the dynamic threshold method proactively generates
more replicas to achieve a quicker response time.

— Enhanced speculation success rate and effective quality assurance. Not all replicas generated
can successfully outpace the identified stragglers; increasing this percentage plays a key role
in speculation efficiency. The dynamic threshold will chose the right timing and suitable envi-
ronment to launch replicas, therefore achieving a higher speculation success rate compared to
the static method. Results from experiments and simulations show the largest improvement
of 50% (from 16.67% to 66.67%) and 36.17% (from 30.5% to 66.67%), respectively.

Although the dynamic threshold has a better performance compared to the static threshold, we
also noticed that both methods have space for improvement, especially towards the speculation
success rate. The speculation framework itself meets a bottleneck when stragglers are caused by
data skew or inner logic design reasons rather than resource contention or outer environmen-
tal impacts. This leaves room for the future improvement of reason-aware straggler mitigating
methods. We can then integrate our dynamic threshold approach into such techniques to dis-
cover whether substantial gains in job completion can be achieved. Furthermore, there is also an
opportunity to extend our approach by exploring other factors through designing a cost function
beyond CPU and memory utilization, including disk volume and network speed.
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