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ABSTRACT  
 

The oxygen isotope ratio of dissolved inorganic phosphate (δ18Op) represents a 

novel and potentially powerful stable isotope tracer for biogeochemical research. 

Analysis of δ18Op may offer new insights into the relative importance of different 

sources of phosphorus within natural ecosystems. Due to the isotope fractionations 

that occur alongside metabolism of phosphorus-containing compounds, δ18Op could 

also be used to better understand the intracellular and extracellular reaction 

mechanisms that control phosphorus cycling.  

In this thesis, new methods were developed and tested for the extraction of 

dissolved inorganic phosphate (Pi) from freshwaters and its isolation from other 

oxygen-containing compounds, including nitrate, sulfate and dissolved organic matter. 

Excluding contaminant sources of oxygen during δ18Op analysis is a critical analytical 

challenge that has constrained δ18Op research in freshwaters to date. These new 

methods were evaluated against existing protocols for analysis of δ18Op. While the 

protocol developed in this thesis exhibited greater accuracy and precision for 

freshwater matrices compared to the traditional approach reported by McLaughlin et 

al. (2004), further development work is required to increase the accuracy of this 

protocol compared to that reported by Gooddy et al. (2016). 

Through the application of δ18Op within two exemplar freshwater ecosystems in 

this thesis, the in-stream fate of Pi derived from the effluent of a wastewater treatment 

plant and from groundwater discharge was examined. Within both ecosystems, δ18Op 

revealed the occurrence of metabolic processes that influenced the in-stream fate of P 

yet were masked in the hydrochemical data. In addition, the data reported here 

increase the worldwide groundwater δ18Op dataset nearly threefold. These 

groundwater data highlight the important potential differences in δ18Op due to bedrock 

geology, alongside the potential to use δ18Op to better understand the importance of 

groundwater-derived P following discharge to surface water ecosystems.  
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Chapter 1: 

Introduction and aims of the thesis 

 

 
 

 

1.1   Introduction 

 

Phosphorus (P) is an essential element for all life, being integral to the structure and 

function of key biomolecules including deoxyribonucleic acid (DNA), ribonucleic 

acid (RNA), adenosine-5’-triphosphate and phospholipids. Under ambient conditions 

in natural ecosystems, P is tightly cycled within the biosphere and can limit or co-limit 

primary producer and microbial communities (Ruttenberg, 2003). Therefore, due to 

the essential role played by P in the biosphere, alterations to the natural 

biogeochemical cycles of P have been linked to undesirable ecosystem changes, 

particularly following inputs of bioavailable P from anthropogenic sources. Within 

aquatic ecosystems, these changes include increases in primary production, shifts in 

community composition, increased frequency of algal blooms and hypoxia, and 

reduced biodiversity (Sondergaard and Jeppesen, 2007; Smith and Schindler, 2009). 

 

Although bioavailable P enters aquatic ecosystems from a range of sources, models 

have indicated that, globally, over 50% of dissolved inorganic phosphate (Pi) exported 

to surface waters is derived from anthropogenic sources and that in Europe 

anthropogenic sources account for 92% of the 0.27 Tg Pi-P.yr-1 that is exported by 

rivers to coastal regions (Harrison et al., 2010). Anthropogenic sources are dominated 

by agricultural P (e.g. associated with export of inorganic fertiliser from agricultural 

land) and waste water (both human and industrial in origin) (Ott and Rechberger, 

2012; Withers et al., 2015). Fluxes of P from anthropogenic sources have increased 

significantly as a result of global population growth and attempts to expand and 

intensify food production for human society (Filippelli, 2008; Liu et al., 2008; 

Haygarth et al., 2014).  
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Despite an increased awareness of the adverse effects that could result from the input 

of bioavailable P to ecosystems, and recent attempts to reduce P inputs through 

regulation, including under the European Union Water Framework Directive (WFD), 

the Urban Waste Water Treatment Directive and the United States Clean Water Act 

(U.S. Senate, 1972; Council Directive (EC), 1991; European Parliament, 2000), recent 

research has highlighted the potential for long-term effects of the pool associated with 

legacy P that has accumulated within the environment, particularly within agricultural 

soils following a prolonged period of excessive P inputs given crop demand (Jarvie et 

al., 2013; Haygarth et al., 2014; Rowe et al., 2015). Global estimates suggest that 815 

Tg of legacy P has accumulated within soils between 1965 and 2007, with Western 

Europe having the highest cumulative P input at an average of approximately 

1115 kg P.ha-1 (Sattari et al., 2012; Rowe et al., 2015). Remobilisation of P from this 

legacy pool may continue to input significant quantities of P into aquatic ecosystems, 

for years to decades after the initial input of P to a terrestrial ecosystem (Haygarth et 

al., 2014; Powers et al., 2016).  

 

 

Figure 1.1: A model describing a possible peak in phosphorus production from rock reserves in 2033, 

due to the finite supplies of these reserves. Figure taken from Cordell and White (2011). 

 

Beyond the potential for adverse impacts of enhanced P availability within aquatic 

ecosystems, human society has become increasingly concerned over the long-term 

sustainability of global P rock reserves (Figure 1.1), with future exhaustion of 

reserves being likely without major advances in P mining and recycling technologies 

(Cordell et al., 2011; Cordell and White, 2011; Vaccari and Strigul, 2011; Seyhan et 
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al., 2012). Whilst estimates of mineral P reserves have increased dramatically in 

recent years, estimates of the size of remaining mineral P reserves remain highly 

uncertain and yet these reserves are critical for supporting future food production 

(Cordell et al., 2009; Childers et al., 2011; Elser and Bennett, 2011; Jasinski, 2012). 

At present there is a lack of alternative sources for P beyond mineral reserves and, 

globally, only a small fraction of P is recovered from waste streams, such as urine, and 

reused through recycling schemes (Cordell et al., 2009; Vaccari and Strigul, 2011; 

Seyhan et al., 2012). Therefore, while steps to address inefficient P use are being 

enforced, securing future access to P remains a globally-significant issue due to the 

lack of effective P recycling within urban and agricultural areas, the lack of a suitable 

alternative source beyond phosphorite deposits, and the limited range of geographical 

locations within which economically viable mineral P reserves are found (Beardsley, 

2011).  

 

However, despite the fundamental importance of P to human society and the 

implications of perturbations to the P cycle for natural ecosystems, understanding of 

the sources and reaction mechanisms controlling biogeochemical cycling of P within 

natural ecosystems remains relatively limited (Blake et al., 2005; Slomp, 2011). A 

critical reason for this is the lack of inherent tracers for analysing the sources and the 

metabolism of P in natural ecosystems (Karl, 2000). For example, quantifying the 

importance of different sources of P in aquatic ecosystems has relied on mass flux 

budgets, spatial and temporal analysis of P concentration, export coefficient models 

and indirect tracers, such as boron, as a marker for waste water treatment plant 

(WWTP) effluent, or microbial source tracking to identify human versus agricultural 

sources of faecal contamination (Dillon and Kirchner, 1975; Smith et al., 1989; Neal 

et al., 2000a; Jarvie et al., 2002; Scott et al., 2002; Simpson et al., 2002; Holt et al., 

2003; Bowes et al., 2008). However, none of these approaches provide an inherent 

label for P. As a result, none offer a direct means of tracing specific sources or 

biogeochemical processes relevant to the P cycle.  

 

Analysis of the stable isotope ratio of an element in a molecule can potentially 

represent an inherent label for that molecule, and a label that is not altered by the same 

radioactive decay processes which would occur in radioisotope studies. Stable isotope 

ratios have been widely used to understand long-term trends and processes in both 
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local and global biogeochemical cycles (Beveridge and Shackleton, 1994; Newton and 

Bottrell, 2007 and references therein). This analysis requires an element to have a 

minimum of two naturally occurring stable isotopes, with changes in the ratio of 

individual isotopes of an element in a sample, against a known ratio in a reference, 

providing insight into biogeochemical processes controlling the cycle of that element. 

Carbon (C), nitrogen (N) and oxygen (O) are commonly used in stable isotope 

research on the basis of ratios of 13C/12C, 15N/14N and 18O/16O respectively. Stable 

isotope analyses cannot be conducted on the P atom in P-containing compounds, 

because 31P is the only stable P isotope. However, in natural aquatic ecosystems P is 

often bound strongly to O in the form of the dissolved inorganic phosphate ion (Blake 

et al., 2001), defined hereafter as Pi. Under typical temperature and pressure 

conditions in the Earth’s surface water and groundwater ecosystems, the P-O bonds in 

Pi are resistant to inorganic hydrolysis (O'Neil et al., 2003). Therefore, under most 

ambient conditions and given only abiotic reactions, the stable isotope ratio of oxygen 

within the Pi molecule will remain constant. However, biological mediation can cause 

the P-O bond to break and reform, potentially causing isotope exchange between 

oxygen in Pi and oxygen in water within an ecosystem (Tudge, 1960; Blake et al., 

2001). Therefore, the stable oxygen isotope ratio within Pi (hereafter, δ18Op) has 

recently emerged as a novel and potentially powerful inherent tracer for the sources 

and metabolism of P in natural ecosystems (McLaughlin et al., 2004; Elsbury et al., 

2009; Young et al., 2009; Goldhammer et al., 2011a; Li et al., 2011).  

 

In recent research, a protocol was established to extract Pi from marine water matrices, 

convert Pi to silver phosphate (Ag3PO4) and measure δ18Op (McLaughlin et al., 2004). 

Subsequent research has applied this method to determine biogeochemical processing 

of P within marine environments (McLaughlin et al., 2004; Colman et al., 2005; 

McLaughlin et al., 2006a; McLaughlin et al., 2006b; McLaughlin et al., 2006c; 

Goldhammer et al., 2011a; McLaughlin et al., 2013). Adaptation of the McLaughlin et 

al. (2004) protocol (Weiner et al., 2011) or the development of a new extraction 

protocol (Tamburini et al., 2010) has also allowed the application of δ18Op to soil and 

plant systems (Angert et al., 2011; Angert et al., 2012; Tamburini et al., 2012; 

Tamburini et al., 2014). However, beyond a relatively intensive study of Lake Erie 

reported by Elsbury et al. (2009), the catalogue of δ18Op data for freshwater 

ecosystems remains much more constrained than for marine and terrestrial 
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ecosystems. A limited number of initial studies have sought to use δ18Op to explore the 

sources and metabolism of Pi in freshwater ecosystems (Blake et al., 2001; Gruau et 

al., 2005; McLaughlin et al., 2006a; McLaughlin et al., 2006c; Young et al., 2009; Li 

et al., 2011). One critical reason for the relative lack of application of δ18Op to 

freshwater ecosystems lies in the uncertainty that surrounds the use of an extraction 

protocol initially developed for marine environments to freshwater matrices. Some 

research has applied the McLaughlin et al. (2004) protocol without modification to 

freshwater matrices, whilst other research has adapted the Ag3PO4 precipitation 

protocol to include clean-up stages for samples containing high concentrations of 

particulate and dissolved organic matter (DOM). In organic-rich sample matrices, 

including many freshwaters, inefficient removal of DOM could significantly influence 

measured δ18Op, because DOM can consist of up to 45% O by weight and has been 

shown to persist until the precipitation of Ag3PO4 (Ma et al., 2001; Lécuyer, 2004; 

McLaughlin et al., 2004; Zohar et al., 2010). For accurate determination of δ18Op, all 

O-containing contaminants, especially DOM, must be removed from an Ag3PO4 

precipitate prior to δ18Op analysis. This remains a significant challenge for research 

seeking to apply δ18Op to complex freshwater matrices.   

 

Therefore, if a robust protocol for extracting Pi from freshwater matrices can be 

developed and tested, this would potentially support far more extensive application 

and evaluation of δ18Op within research to understand biogeochemical cycling of P 

within freshwater ecosystems. This research could range from better constraining the 

relative importance of different sources of P within freshwater ecosystems, to the 

extent to which P from individual sources is linked to metabolic activity within an 

ecosystem. Such research would have potentially important implications for 

understanding the reaction mechanisms controlling P biogeochemistry in natural 

ecosystems, and for the design and targeting of future policies and practices to deliver 

more sustainable stewardship of P. This provides the broad context for the research 

reported within this thesis. 
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1.2   Aims and objectives 

 

This thesis firstly aims to develop a robust method for the accurate determination of 

δ18Op in freshwater matrices and, subsequently, to apply δ18Op as an inherent tracer of 

P within two exemplar freshwater ecosystems. In order to achieve these aims, the 

following objectives have been developed for this thesis: 

 

1. To develop, optimise and test extraction protocols for analysis of δ18Op in 

surface water and groundwater matrices. 

2. To determine δ18Op in river water, wastewater treatment plant (WWTP) 

effluent and groundwater to constrain δ18Op in potential sources of Pi to 

freshwater stream ecosystems. 

3. To examine changes in δ18Op within river water as an indicator for the in-river 

fate of Pi derived from sources including WWTP final effluent and 

groundwater. 

4. To determine whether δ18Op within groundwater can act as a tracer for the 

sources and metabolism of Pi within groundwater and the discharge of 

groundwater-derived Pi to surface water ecosystems.  

 

This thesis will be structured in two main sections followed by a concluding 

discussion chapter. The first section (Chapters 2 and 3) focuses on the development 

of δ18Op extraction protocols and their potential application to freshwaters. Chapter 2 

provides a synthesis of the current application of δ18Op in aquatic ecosystems and the 

development of methodologies for δ18Op analysis within aqueous matrices. Chapter 3 

reports research that developed and tested a new δ18Op extraction protocol, 

specifically designed to support the application of δ18Op within freshwater ecosystems. 

This chapter also reports work to validate and compare previously published protocols 

against those developed within this thesis.  

 

The second section (Chapters 4 and 5) reports the application of protocols that were 

established in Chapter 3 to freshwater ecosystems. Chapter 4 explores the initial 

application of δ18Op as a tracer of P cycling following the input of Pi-enriched WWTP 

effluent into a headwater river system. Chapter 5 investigates the potential use of 



 

 – 7 – 

δ18Op as a label of sources of P within groundwater and as a tracer of P sources and 

cycling within streams that are potentially fed by groundwater discharge. 

 

Chapter 6 concludes the thesis with a discussion of the potential applications of δ18Op 

to address questions surrounding P biogeochemistry within freshwater ecosystems. In 

addition, a comparison of multiple methods for δ18Op determination is provided, based 

on samples collected and analysed as part of the research reported in Chapters 4 and 

5. 
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Chapter 2: 

A synthesis and review of phosphate oxygen isotope 

research within aquatic ecosystems 

 

 
 

 

The chapter presented here has been modified from a paper published in 2014 in 

Science of the Total Environment:  

Davies, C.L., Surridge, B.W.J. & Gooddy, D.C. 2014. Phosphate oxygen 

isotopes within aquatic ecosystems: Global data synthesis and future 

research priorities. Science of the Total Environment. 496, 563-575.  

 

CLD performed analysis on all samples, interpreted data and wrote the manuscript. 

BWJS and DCG supervised the development of work, helped in data interpretation 

and edited the manuscript.  
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This review focuses on the use of δ18Op in aquatic ecosystems and particularly within 

freshwater ecosystems. The objectives are to: i) examine the theoretical basis to the 

use of δ18Op in P research; ii) consider the methodological challenges involved in the 

analysis of δ18Op in aquatic ecosystems; and iii) synthesise global data from initial 

application of δ18Op within aquatic ecosystems.  

 

 

2.1   Stable isotopes and P biogeochemistry: theoretical background 

 

Biogeochemical cycling of P in aquatic ecosystems has previously been explored 

using two radioactive isotopes 32P (t1/2=14.36 days) and 33P (t1/2 = 25.34 days, Salonen 

et al., 1994; Benitez-Nelson, 2000; Smith et al., 2011). Although studies have been 

conducted using P radioisotopes at natural abundance (Benitez-Nelson and Buesseler, 

1998; Benitez-Nelson and Buesseler, 1999), the combination of a trace natural 

abundance of both 32P and 33P with such short half-lives limits the use of radioisotopes 

as an inherent tracer of P in ecosystems, such as freshwaters, in which P 

concentrations may be relatively low. Therefore, the use of radioisotopes in P 

biogeochemical studies is constrained by short isotope half-lives, perturbation of 

experimental systems associated with labelling, or the use of incubations which omit 

irregular events in natural ecosystems, such as seasonal algal blooms (Levine et al., 

1986; Thingstad et al., 1993; Salonen et al., 1994; Benitez-Nelson, 2000). Stable 

isotope studies analyse the ratio between two individual stable isotopes of the same 

element. Whilst P has three major isotopes, 31P is constitutes the majority of the 

natural P pool (100%) and is its only stable isotope (de Laeter et al., 2003). 

Consequently, stable isotope analyses cannot be conducted on the P atom in P-

containing compounds. 

 

In natural aquatic ecosystems, P is often bound strongly to O in the form of the 

dissolved inorganic phosphate ion (Blake et al., 2001), defined hereafter as Pi. 

Therefore, attention has recently focussed on whether the stable isotope composition 

of O in Pi can be used to gain insight into the biogeochemical cycling of P. Isotope 

fractionation involves the preferential incorporation of one isotope over another from 

a starting material into a reaction product. Kinetic fractionation describes a process 
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that preferentially selects one isotope (generally the lighter isotope) due to a faster 

reaction rate in a unidirectional reaction. In contrast, equilibrium fractionation is a 

thermodynamic effect in which a system has time to exchange isotopes continuously 

in order to achieve the lowest energy system, wherein the heavier isotope forms the 

strongest bond possible (Hoefs, 2008). The P-O bonds in Pi are resistant to inorganic 

hydrolysis under typical temperature and pressure conditions in the Earth’s surface 

water and groundwater ecosystems (O'Neil et al., 2003). Therefore, without biological 

mediation, negligible isotope exchange occurs between Pi and water within these 

ecosystems (Tudge, 1960; Blake et al., 2001). Whilst the initial stages of some abiotic 

reactions, including the sorption of Pi to solid-phase iron-oxide or the formation of 

apatite, may be associated with kinetic fractionation, this does not persist and through 

time the stable isotope composition of the solid-phase Pi approaches that of the 

aqueous-phase Pi (Liang and Blake, 2007; Jaisi et al., 2010; Jaisi et al., 2011). In 

contrast, enzyme-catalysed processes cleave P-O bonds leading to fractionation 

between the isotopes of O in Pi and O in a surrounding fluid, either within a cell or 

within the extracellular environment (Blake et al., 2005). The fractionation between 

the stable isotopes of O (16O and 18O) within a sample is expressed as δ18O, relative to 

Vienna Standard Mean Ocean Water (VSMOW), defined as 0‰VSMOW on the δ18O 

scale (Equation 1).  

 

𝛿18𝑂𝑠𝑎𝑚𝑝𝑙𝑒 =  1000 [

(
𝑂18

𝑂16 )
𝑠𝑎𝑚𝑝𝑙𝑒

(
𝑂18

𝑂16 )
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1] ‰VSMOW       (1) 

 

Phosphate oxygen isotopes have previously been used within both the archaeological 

and environmental communities to determine palaeoclimate conditions at the time of 

formation of biogenic phosphatic material, such as apatite in fossil bones and teeth, as 

well as to reconstruct historical salinity and water temperatures from biogenic 

phosphate derived from fish remains (Longinelli and Nuti, 1973; Bryant et al., 1994; 

Fricke and O'Neil, 1996; Lécuyer et al., 1996; Stephan, 2000). Recent methodological 

advances in the analysis of δ18Op now provide the opportunity to use δ18Op as both a 

tracer of source and of the extent of metabolism of P in aquatic ecosystems 

(McLaughlin et al., 2004; Elsbury et al., 2009; Goldhammer et al., 2011b).  
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2.2   Isotope effects controlling δ18Op during biogeochemical cycling 

of P  

 

A range of isotope effects associated with metabolic processes have the potential to 

influence δ18Op. These effects are summarised in Figure 2.1 and described in Sections 

2.2.1 to 2.2.3. 

 

 

Figure 2.1: Schematic diagram describing the major isotope effects that can occur within the 

intracellular or extracellular environment due to metabolic processes. Porg = organic P 

compounds; Pi = dissolved inorganic phosphate ion; H2O = water molecule.  

 

2.2.1   Intracellular metabolism of Pi 

 

A variety of P-containing compounds are present within aquatic ecosystems, including 

Pi, inorganic polyphosphates and organic compounds such as proteins, sugars and 

phospholipids (Karl and Tien, 1997). However, Pi is the species preferentially utilised 

by organisms as it is capable of diffusion across cytoplasmic cell membranes 

(Björkman and Karl, 1994; Liang and Blake, 2006b). Consequently, Pi is required for 

a number of intracellular reactions, including cellular signalling through 

phosphorylation and dephosphorylation, as well as being incorporated within biomass 

during cell growth (Blake et al., 1997; Blake et al., 2005). The major enzyme that 

catalyses intracellular P cycling is inorganic pyrophosphatase, due to its ability to 

mediate reversible reactions such as the cleavage of adenosine-5’-triphosphate to 
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adenosine-5’-diphosphate (Figure 2.2, Cohn, 1958; Blake et al., 2005). Intracellular 

reactions catalysed by inorganic pyrophosphatase cause complete and very rapid (in 

the order of minutes) O isotope exchange between O atoms in Pi and O atoms in 

surrounding water molecules that donate O atoms to newly produced Pi molecules 

(Kolodny et al., 1983; Blake et al., 1997). Thermodynamic fractionation characterises 

the exchange of O between Pi and the surrounding fluid, resulting in temperature-

dependent equilibrium between O in Pi and O within intracellular water (δ18Ow, 

expected to be identical to extracellular δ18Ow (Fricke et al., 1998)). 

 

 

Figure 2.2: Reversible reaction of the dephosphorylation of adenosine-5’-triphosphate to adenosine-5’-

diphosphate, in which Pi is generated as a by-product (Gajewski et al., 1986). 

 

Release of P from biomass into the extracellular environment is driven by two 

mechanisms. Firstly, from live biomass as a by-product of uptake and intracellular 

metabolic reactions, in order to maintain constant intracellular P concentrations 

(Cooperman et al., 1992), and secondly, following death and lysis of cells. Within 

environments in which Pi is extensively taken up and recycled through live biomass, 

an initially distinctive δ18Op composition in the extracellular environment, potentially 

reflecting sources of P, could be overprinted following intracellular, equilibrium 

fractionation and release of Pi to the extracellular environment. The δ18O value of a Pi 

molecule in equilibrium with surrounding water can be predicted, based on the 

measured δ18Ow and temperature of the surrounding water, using empirically-derived 

Equation 2 (Longinelli and Nuti, 1973). This is the basis for using historical δ18Op in 

solid-phase samples, such as tooth enamel, as a palaeothermometer, given an 

ecosystem in equilibrium via intracellular metabolism (Kolodny et al., 1983; Fricke et 

al., 1998).  
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𝑇( 𝐶𝑜 ) = 111.4 − 4.3(𝛿 𝑂18 𝑝 − 𝛿 𝑂18 𝑤)  (2) 

 

where T is the average growth temperature and δ18Op and δ18Ow refer to the isotopic 

compositions of Pi and environmental water (at 25.2°C) respectively. Whilst 

predominantly based on biogenic apatite from marine organisms, one freshwater 

species, Unio pictorum, was included in the empirically-derived Equation 2, 

suggesting no significant difference between seawater and freshwater equilibria 

equations. Although Equation 2 has been used widely, more recent development of 

techniques for purification of Pi from solid materials and for determination of δ18Op 

has led Pucéat et al. (2010) to propose a revised phosphate–water fractionation 

equation based on empirical analysis of biogenic apatite samples (Equation 3) and, 

most recently, Chang and Blake (2015) to form Equation 4 for the fractionation of Pi 

with water under controlled laboratory conditions:  

 

𝑇( 𝐶𝑜 ) = 118.7(±4.9) − 4.3(±0.20)(𝛿 𝑂18 𝑝 − 𝛿 𝑂18 𝑤)       (3) 

 

1000 ln 𝛼𝑝−𝑤 = (14.43(±0.39) ×
1000

𝑇(𝐾)⁄ ) − 26.54(±1.33)      (4) 

 

where, 

 

 𝛼𝑝−𝑤 =
(𝛿 𝑂18 𝑝 + 1000)

(𝛿 𝑂18 𝑤 + 1000)
⁄        (4a) 

 

Based on empirical equations 2, 3 or 4, if both the ambient water temperature and 

δ18Ow are determined then the expected equilibrium value for δ18Op can be calculated. 

Therefore, comparing the theoretical value for δ18Op at equilibrium with δ18Op 

observed in an environmental sample can provide insight into the extent to which Pi 

has been recycled through intracellular metabolic reactions, assuming that δ18Op in the 

sources of P to an ecosystem were originally at disequilibrium. Equation 4 will be 

used to determine δ18Op at thermodynamic equilibrium for Chapters 3-6 within this 

thesis.   
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2.2.2   Uptake of extracellular Pi  

 

Many biologically-mediated processes associated with isotope effects are kinetically 

controlled, for example bacterial sulfate reduction and methanogenesis (Nakai and 

Jensen, 1964; Whiticar, 1999). During bacterial sulfate reduction, bacteria 

preferentially reduce 32S- and 16O-containing sulfate molecules, because these 

molecules have lower bond energies due to a lower combined mass. Thus, bacteria 

can metabolise isotopically lighter sulfate at a faster rate, resulting in the formation of 

isotopically light sulfide relative to the starting sulfate pool, assuming that only partial 

reduction of the available sulfate occurs (Nakai and Jensen, 1964; Habicht and 

Canfield, 1997). A similar kinetic fractionation may also be imparted on the Pi pool 

during biological uptake of Pi from the extracellular environment. For example, initial 

research reported by Blake et al. (2005) has shown that Escherichia coli grown in 

controlled laboratory conditions preferentially take up 31P16O4
3- compared to the 

isotopically-heavier 31P18O4
3-, resulting in enrichment of the extracellular environment 

with 31P18O4
3-. If this kinetic isotope effect operates more widely in natural 

ecosystems, the effect would only be observed given unidirectional reactions in which 

the reactants are not fully consumed and where competing fractionations do not over-

print that associated with biological uptake of Pi. 

 

2.2.3   Extracellular hydrolysis of organic P compounds 

 

Organic P (Porg) compounds can be used to support metabolism given low bioavailable 

Pi concentrations within the extracellular environment. However, Porg compounds are 

too large for direct diffusion across cytoplasmic cell membranes (Liang and Blake, 

2006b). Therefore, Porg must be hydrolysed through enzyme-mediated reactions 

involving phosphohydrolases that are either attached to the outside of a cell membrane 

or are secreted by organisms into the extracellular environment (Liang and Blake, 

2006b). These extracellular metabolic reactions release Pi as a by-product (Figure 2.3) 

that can be transported into a cell via diffusion or via ATP-driven pumps or transport 

proteins (Ammerman, 1991). 

 

During enzyme-catalysed hydrolysis of Porg, P-O bonds are cleaved and O atoms 

within the original Porg compound are replaced with O atoms from surrounding water 
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molecules in the newly created Pi. The specific enzyme and associated hydrolysis 

pathway will influence the extent of O isotope exchange. For hydrolysis catalysed by 

a phosphomonoesterase, one O atom within the newly produced Pi will be 

incorporated from the surrounding water-O and the remaining three O atoms are 

inherited from the Porg compound. With hydrolysis catalysed by a phosphodiesterase, 

two O atoms will be incorporated from the surrounding water-O (in a two-stage 

process involving incorporation of one O atom due to the action of the 

phosphodiesterase and the second O atom due to phosphomonoesterase-catalysed 

hydrolysis of the newly produced monoester), with the remaining two O atoms 

inherited from the Porg compound. Therefore, because extracellular hydrolysis of Porg 

does not result in complete exchange of all four O atoms in Pi with O atoms in water, 

inheritance isotope effects occur in which δ18Op of the newly produced Pi lies between 

that of the starting Porg compound and δ18Ow (Blake et al., 1997; Colman et al., 2005). 

Incorporation of water-O within Pi during extracellular hydrolysis of Porg is also 

accompanied by a large kinetic fractionation, due to more rapid incorporation of the 

isotopically lighter 16O atom compared to the 18O atom from water molecules in the 

resulting Pi (Blake et al., 2005). To date however, the magnitude of the fractionation 

factor associated with this process has only been quantified for a small number of 

enzyme–substrate combinations (e.g. Liang and Blake (2006b)). 
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Figure 2.3:  Schematic diagram representing extracellular metabolism of Pi, in which enzymes are 

released to the extracellular environment beyond the cytoplasmic membrane to 

metabolise Porg and release Pi which is subsequently transported across the cell 

membrane. Reactions include: A: Hydrolysis of a 5’nucleotide molecule through the 

action of 5’nucleotidase; and B: Hydrolysis of glucose-6-phosphate through the action of 

glucose-6-phosphatase. Both reactions yield a Pi molecule as a by-product. 

 

In aquatic environments, extracellular hydrolysis is significant in the regeneration of 

Pi (Ammerman and Azam, 1985; Chróst, 1991; Colman et al., 2005; Goldhammer et 

al., 2011a). The fate of Pi regenerated from Porg depends on the initial driver for Pi 

regeneration from organic matter. Under conditions of Pi limitation, regenerated Pi is 

required to meet the metabolic demand for P among heterotrophic microorganisms. 

Alternatively, dephosphorylation of particulate or dissolved Porg may be required prior 

to uptake of C compounds to meet intracellular energy or C requirements among 

heterotrophic organisms (Colman et al., 2005; Goldhammer et al., 2011a). Because C 

rather than P demand drives dephosphorylation under these conditions, not all Pi 
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regenerated from Porg is necessarily taken up and recycled extensively through 

biomass. For example, it has been estimated that in coastal waters only 10-15% of Pi 

produced through the action of secreted 5’-nucleotidase was taken up by 

microorganisms (Ammerman and Azam, 1985). The remaining 85-90% may enter the 

Pi pool of the water column and affect the bulk δ18Op value of the extracellular 

environment. Effects on extracellular δ18Op due to regeneration of Pi from Porg that is 

driven by C-limitation have also been observed in deep-ocean water and in marine 

sediment porewater (Colman et al., 2005; Goldhammer et al., 2011a).  

 

 

2.3   Analytical protocols for determining δ18Op 

 

Historically, δ18Op has been determined through fluorination or bromination of a 

phosphate precipitate, traditionally bismuth(III) phosphate (BiPO4), or more recently 

silver(I) phosphate (Ag3PO4) (Lécuyer, 2004). Fluorination (Equation 5) and 

bromination (Equation 6) halogenate the metal ion, reducing the bromine present and 

releasing gaseous O2 which can be quantitatively converted into CO2 for analysis 

(Vennemann et al., 2002; Lécuyer, 2004). However, fluorination (which can also be 

achieved using BrF5) and bromination reactions can suffer from the use of hazardous 

materials, poor O2 yields, time intensive preparation (e.g. precipitation of BiPO4 

requires 6 days of extraction time relative to the 3 days of the Ag3PO4 precipitation 

method) and the requirement for large sample sizes in both methods (typically 4-5 mg 

Ag3PO4) (Lécuyer et al., 1993; Vennemann et al., 2002; Lécuyer, 2004; Gruau et al., 

2005). 

 

𝐵𝑖𝑃𝑂4 +
8

3
𝐵𝑟𝐹3 → 𝐵𝑖𝐹3 + 𝑃𝐹5 +

4

3
𝐵𝑟2 + 2𝑂2  (5) 

2𝐴𝑔3𝑃𝑂4 + 𝐵𝑟2 → 𝐴𝑔4𝑃2𝑂7 +
1

2
𝑂2 + 2𝐴𝑔𝐵𝑟  (6) 

 

Isotope ratio mass spectrometry (IRMS) allows for the precise measurement of small 

mass differences between different isotopes within a compound and, when coupled to 

a thermal conversion/elemental analyser (TCEA), the system can carry out relatively 

rapid on-line measurements of isotope ratios (LaPorte et al., 2009). These systems 

have been automated, while retaining both precision and accuracy, for δ13C, δ15N and 

δ18O solid sample analysis. A further advantage of TCEA-IRMS is the relatively small 
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sample mass required for analysis (typically 400-500 µg Ag3PO4). To establish similar 

TCEA-IRMS protocols for δ18O measurements in Pi, aqueous samples containing Pi 

must be converted from dissolved to solid form. In this conversion, particular care 

must be taken to ensure that: i) the original isotope composition of Pi is retained by 

using non-fractionating reactions or ensuring reactions go to completion; ii) Pi is not 

introduced through hydrolysis within Porg-rich natural samples; and iii) other O-

bearing compounds including dissolved organic carbon (DOC), nitrate    (NO3
-), 

sulfate (SO4
2-) and calcium carbonate (CaCO3) are excluded from the final solid 

product. 

 

Bismuth(III) phosphate (BiPO4) is a hygroscopic material, with full rehydration after 

dehydration possible after 15 minutes in air. The BiPO4 precipitate requires significant 

preparation before isotopic analysis to remove adsorbed water which can otherwise 

increase O yields by up to 12.5% in δ18Op analysis (Karhu and Epstein, 1986), with 

δ18Op enrichment possible when drying at temperatures greater than 200 ˚C (Mooney-

Slater, 1962; Shemesh and Kolodny, 1988). Such constraints limit the utility of BiPO4, 

leading to consideration of alternative solid-phase compounds for analysis of δ18Op. 

Silver(I) phosphate (Ag3PO4) has been identified as a suitable alternative, due to its 

weakly hygroscopic nature, stability, low solubility and relatively short preparation 

time (Lécuyer, 2004; McLaughlin et al., 2004; Tamburini et al., 2010). Firsching 

(1961) was among the first to precipitate Ag3PO4 in order to gravimetrically determine 

the phosphate concentration of a homogeneous solution. Whilst silicates and 

multivalent ions were observed to interfere with Ag3PO4 precipitation, ions with lower 

valences did not significantly interfere (e.g. NO3
-, ammonium (NH4

+) and potassium 

(K+)), or exerted only a slight effect at high concentrations (sodium (Na+) and SO4
2-). 

However, Ag3PO4 has only more recently become a viable basis for analysis of δ18Op 

in aqueous environmental samples, following advances in extraction protocols that 

enable the precipitation of a sufficient mass of Ag3PO4 for analysis from complex 

matrices that often contain low concentrations of Pi (Colman, 2002; McLaughlin et 

al., 2004).  
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2.3.1   Pi extraction protocols for aqueous matrices 

 

The major published protocols for extraction of Pi via precipitation of Ag3PO4 are 

summarised in Figure 2.4. None of the protocols in Figure 2.4 currently represents a 

definitive approach for all aquatic matrices. Development and evaluation of extraction 

protocols is required across the range of aquatic samples in which δ18Op research is 

undertaken, to ensure that accurate determination of δ18Op is achieved within these 

complex matrices.  

 

There are commonalities across these protocols, particularly across procedures 1-4:    

i) concentration of Pi through co-precipitation of Pi with brucite following the 

magnesium-induced co-precipitation (MagIC) method of Karl and Tien (1992);         

ii) redissolution of the brucite precipitate in an acid matrix; iii) removal of other 

potential sources of O using anion exchange resins and/or sequential precipitations; 

iv) removal of cations that have the potential to interfere with Ag3PO4 precipitation, 

using a cation exchange resin; iv) precipitation of Ag3PO4. The method of Gruau et al. 

(2005) in Figure 2.4 was developed for freshwaters and includes an initial dissolved 

organic matter (DOM) removal step using activated carbon. This protocol is based on 

the BiPO4 method of Longinelli et al. (1976), with the benefit of a weakly 

hygroscopic end precipitate (Ag3PO4) relative to BiPO4.  
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SOM: soil organic matter; DOM: dissolved organic matter; DOC: dissolved organic carbon; DAX-8, AG1X8, 

AG50X8 and IRA400 are all types of solid phase exchange resins. 
†Weiner et al. (2011) method is based on soil extracts using anion-exchange membranes 

‡Tamburini et al. (2010) method is based on HCl extracts of soil samples. 

 

Figure 2.4: Categorisation of published protocols for the precipitation of Ag3PO4 from aqueous 

samples.  
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Final precipitation of Ag3PO4 is accomplished using either ‘slow’ or ‘fast’ approaches. 

Both precipitation methods involve the addition of silver nitrate (AgNO3), ammonium 

hydroxide (NH4OH) and ammonium nitrate (NH4NO3) to form a near-neutral pH 

solution. Whilst ‘slow’ precipitation is achieved by holding a solution at  ~50 ˚C over 

several days to allow large Ag3PO4 crystals to grow, ‘fast’ precipitation can achieve 

full precipitation in a matter of minutes (Dettman et al., 2001; Tamburini et al., 2010). 

The ‘fast’ precipitation also has the added advantage of 100% Ag3PO4 yields 

independent of sample sizes, whereas lower recovery has been observed using the 

‘slow’ precipitation, particularly for smaller Pi masses (Dettman et al., 2001). 

However, the isotopic difference in Ag3PO4 generated by the two methods has been 

found to be within expected interlaboratory variation (Dettman et al., 2001). 

 

Some research has applied the McLaughlin et al. (2004) protocol that was originally 

developed for marine systems without modification to freshwater matrices, whilst 

other research has adapted one of the major Ag3PO4 precipitation protocols to include 

clean-up stages for samples containing high concentrations of particulate organic 

matter and DOM. Particulate organic matter in environmental samples is typically 

removed through filtration at a maximum filter pore size of 0.45 μm (Elsbury et al., 

2009; Li et al., 2011). In organic-rich sample matrices, including many freshwaters, 

inefficient removal of DOM could significantly influence measured δ18Op, because 

DOM can consist of up to 45% O by weight and has been shown to persist until the 

precipitation of Ag3PO4 (Ma et al., 2001; Lécuyer, 2004; McLaughlin et al., 2004; 

Zohar et al., 2010). For accurate determination of δ18Op, all O-containing 

contaminants, especially DOM, must be removed from the Ag3PO4 precipitate prior to 

TCEA-IRMS. This remains a significant challenge for research seeking to apply δ18Op 

to complex freshwater matrices. Removal of DOM from samples has been attempted 

through adsorption of organic compounds to activated carbon (Gruau et al., 2005), 

washing the final Ag3PO4 precipitate with hydrogen peroxide to oxidise organic 

compounds (Tamburini et al., 2010; Zohar et al., 2010), using resins to specifically 

remove DOM (Tamburini et al., 2010), repetition of precipitation steps such as MagIC 

in order to isolate Pi from a matrix of potential contaminants (Goldhammer et al., 

2011b), and pH-specific precipitations to remove fulvic and/or humic acids (Zohar et 

al., 2010).  
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Beyond a source of contaminant O, DOM includes Porg compounds that may undergo 

acid hydrolysis during the protocols described in Figure 2.4, for example during the 

dissolution of brucite. Hydrolysis of Porg that is co-precipitated with brucite can yield 

Pi, with potential incorporation of water-O from the extracellular environment during 

acid hydrolysis (McLaughlin et al., 2006d). The Pi generated from hydrolysis of Porg 

will subsequently be incorporated within an Ag3PO4 precipitate, potentially altering 

the bulk δ18Op composition. Therefore, if the original δ18Op of Pi is to be retained, 

effective removal of DOM must be achieved prior to introduction of conditions that 

could hydrolyse Porg compounds. 

 

Although research to date has focussed on analysis of δ18Op in Pi, the oxygen isotope 

composition of the phosphate moieties within Porg compounds (δ18OPorg) is also of 

significant interest, both as a constraint on inheritance effects on δ18Op in Pi
 

regenerated from Porg, but also, potentially, as an inherent tracer of Porg cycling within 

aquatic ecosystems. Analysis of δ18OPorg requires extraction of Pi from Porg followed 

by precipitation of a solid-phase P compound. Following a review of several 

extraction methods, Liang and Blake (2006a) concluded that extraction using UV 

radiation does not result in significant isotope effects on δ18OPorg. However, there is a 

lack of any published research that has sought to characterise δ18O in Porg compounds 

from aquatic samples using the apparently robust UV radiation extraction method, and 

only one study has been found to apply it to aqueous samples of phosphonate in a 

laboratory setting (Sandy et al., 2013).  

 

2.3.2   Determination of δ18Op through TCEA-IRMS  

 

On-line TCEA-IRMS has been utilised for analysis of Ag3PO4. Dried samples 

(typically 400-500 µg) are introduced in silver capsules as the traditional and cheaper 

tin alternatives can lead to significant deterioration of chromatography results 

(Lécuyer et al., 2007). Conversion of Ag3PO4 to CO for analysis is achieved through 

pyrolysis at 1270 to 1450 ˚C in the presence of a carbon source to aid full conversion, 

typically nickelised graphite and/or glassy carbon (Vennemann et al., 2002; Lécuyer 

et al., 2007; Halas et al., 2011). Water vapour is removed through a water trap and CO 

is separated from other gaseous impurities through gas chromatography using purge-

and-trap technology or a packed GC column (Meier-Augenstein, 1999; Fourel et al., 
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2011). Helium is used as a carrier gas to transfer the sample gas into a mass 

spectrometer via a continuous flow mode. Mass signals of 28 (12C16O) and 30 (12C18O; 

14C16O; 13C17O) are integrated and compared to those in an independently introduced 

pulse of pure CO reference gas to calculate the 18O/16O ratio. Subsequently, these 

ratios are calibrated to the VSMOW scale in per mille notation (‰VSMOW) using 

international reference materials, typically benzoic acids and barium sulfates (LaPorte 

et al., 2009; Halas et al., 2011). The precision for isotopic analysis is generally quoted 

as better than  0.3‰VSMOW (1 standard deviation) (Lécuyer et al., 2007; LaPorte et 

al., 2009; Halas et al., 2011). For the purposes of this thesis, the notation ‰VSMOW 

will be abbreviated to ‰. 

 

A major analytical challenge remains the lack of internationally certified Ag3PO4 

standards, despite the long-term use of Ag3PO4 in the determination of δ18Op in 

archaeological and palaeoclimate studies (Stephan, 2000; Vennemann et al., 2002; 

Halas et al., 2011). Using materials other than Ag3PO4 as calibration standards, such 

as benzoic acids, can introduce matrix effects in which differences in chemical 

composition between materials can influence the analysis, for example through 

differing temperatures at which efficient pyrolysis is achieved (Lécuyer et al., 2007). 

Some researchers have produced internal synthetic Ag3PO4 standards from either 

internationally recognised δ18O standards such as NBS120c (phosphate rock (Florida), 

distributed by NIST), or KH2PO4 solutions equilibrated with 18O-enriched water 

(Lécuyer et al., 2007; Fourel et al., 2011; Halas et al., 2011). These synthetic Ag3PO4 

materials have been shown to be stable over long periods (at least 8 years), a key 

requirement for any international reference material (Lécuyer et al., 2007). A number 

of these uncertified compounds have been distributed to other laboratories and initial 

inter-laboratory comparison undertaken (Lécuyer et al., 2007; Halas et al., 2011). 

However, the finite availability of such material and the lack of a quality control 

network in the production of these materials represent significant challenges for 

broader use of these materials.  

 

Linearity effects, referring to a change in the reported isotope ratio due to a change in 

sample mass introduced to the TCEA-IRMS and thus the peak size of the CO ion in 

the mass spectrometer (Brand, 2004), can also affect determination of δ18Op. If this 

effect is consistent and can be quantified then the measured isotope ratios can be 
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corrected (Brand, 2004). One alternative solution to address linearity effects is to 

match CO ion peak heights across a run for both samples and standards by using a 

narrow sample mass range. However this is made more complicated by variable 

Ag3PO4 pyrolysis efficiency and CO yield between samples, which can cause 

variations in peak heights. Difficulties have been found in ensuring complete 

conversion of Ag3PO4 to CO in the TC/EA, with Ag3PO4 requiring pyrolysis in the 

hot spot of a furnace (LaPorte et al., 2009). While many compounds can achieve 

complete conversion easily (especially at temperatures exceeding 1400 ˚C), ensuring 

accurate analysis of the bulk δ18O, incomplete conversion of other matrices, such as 

carbonates, has been implicated in isotope fractionation (Koziet, 1997; Kornexl et al., 

1999). If conversion to CO is not complete then the reaction order of the O atoms in a 

compound becomes significant, with those being most strongly bound to the P atom 

being under-represented in the CO product. If this fractionation can be shown to affect 

all samples equally then the results can be properly calibrated. However, if the kinetic 

fractionation is not equivalent across all samples due to variable conversion to CO 

then correction becomes problematic. This highlights the need to ensure the pyrolysis 

of Ag3PO4 is efficient and standardised across a sample run, which requires that 

samples are pyrolysed within the hot spot of a furnace. 

 

 

2.4   Synthesis of global δ18Op data from aquatic ecosystems 

 

Recent research has highlighted the potential to use δ18Op as both a tracer of P sources 

and as a dynamic tracer of metabolic processes affecting P cycling in aquatic 

ecosystems (McLaughlin et al., 2004; Elsbury et al., 2009; Goldhammer et al., 

2011b). The characterisation of significant sources of Pi within an ecosystem can be 

achieved using δ18Op assuming: 

i) δ18Op for major sources of Pi is constrained; 

ii) individual sources of Pi possess distinct δ18Op signatures; 

iii) δ18Op for Pi sources is not equal to the theoretical equilibrium; 

iv) δ18Op signatures for Pi sources are maintained and not rapidly over-

printed by fractionation associated with metabolic processes. 
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Given these prerequisites, if δ18Op within an ecosystem tends towards the value of a 

particular source, inferences regarding the dominant Pi sources within ecosystems can 

be made. However, under conditions in which iv) above is not met and δ18Op tends 

towards the theoretical equilibrium (Equations 2-4), δ18Op can then be used to probe 

the extent of intracellular metabolism of Pi. Insights into other metabolic processes, 

including Pi uptake by cells and extracellular hydrolysis of Porg, may be gained 

through the kinetic and disequilibrium isotope effects associated with these processes. 

Table 2.1 synthesises published δ18Op data currently available across a range of 

aquatic ecosystems. Below, ways in which recent research has begun to explore the 

use of δ18Op in aquatic ecosystems have been considered, highlighting the insights into 

P biogeochemistry that can be derived using this stable isotope technique.  

 

2.4.1   Marine ecosystems 

 

Marine upwelling zones, in which nutrient-rich bottom water is driven towards the 

surface, are areas of enhanced primary production and potentially rapid P turnover 

(Pennington and Chavez, 2000). Research in upwelling zones has reported δ18Op 

values that approach equilibrium with water-O, indicating substantial intracellular 

metabolism of Pi in these coastal ecosystems (Colman et al., 2005; McLaughlin et al., 

2006b). However, the lack of complete equilibrium between δ18Op and water-O in 

upwelling zones suggests biological turnover of Pi relative to inputs from terrestrial 

and deep-water sources is lower in coastal upwelling zones compared to the open 

ocean (McLaughlin et al., 2006b). 

 

In the surface water of the open ocean, Pi concentrations in the photic zone can be 

extremely low (e.g. 0.2 – 1 nM in the Sargasso Sea), often limiting or co-limiting 

primary production (Wu et al., 2000). Under these conditions, δ18Op values that tend 

towards temperature-dependent equilibrium with water-O have been reported, 

indicating extensive cycling of Pi through biomass (Colman et al., 2005). Insights into 

temporal variations in P sources and the extent of biological turnover of P within 

marine ecosystems can also be gained through δ18Op. For example, in Monterey Bay, 

California, McLaughlin et al. (2006b) observed δ18Op values in the upper water 

column (<200m) that were significantly influenced by source contributions from 

terrestrial freshwater and from deeper water (500-800m) inputs. However, during the 
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spring-summer periods of upwelling, δ18Op in the upper water column was 

isotopically heavier relative to non-upwelling autumn/winter periods, and more 

closely reflected the δ18Op value expected at theoretical equilibrium. The most likely 

explanation for this trend is enhanced intracellular cycling of Pi by phytoplankton 

relative to Pi inputs during periods of upwelling. Upwelling periods provide nutrients 

to the surface zone that, combined with a greater intensity of sunlight in the spring-

summer months, can enhance productivity and consequently biological turnover of Pi 

(McLaughlin et al., 2006b). Extensive extracellular-intracellular-extracellular cycling 

of Pi during the upwelling periods would lead to an over-printing of source δ18Op 

signatures and a shift of δ18Op in the extracellular environment towards equilibrium 

values. However, the data reported by McLaughlin et al. (2006b) suggest that the 

extent of extracellular-intracellular-extracellular cycling was still not sufficient, even 

in the spring-summer period, to establish complete equilibrium between δ18Op and 

water-O.   

 

The preferential remineralisation of P over C from dissolved organic compounds has 

been observed in marine ecosystems, particularly in the euphotic zone (Clark et al., 

1998; Aminot and Kerouel, 2004). This selective remineralisation of Porg is caused by 

the presence of extracellular enzymes and their action on Porg substrates, meaning that 

the turnover rate of Porg molecules in this environment is dependent on the specific 

enzymes and Porg compounds present. For example, it has been shown that the flux of 

dissolved ATP through an oligotrophic ocean ecosystem can be up to five-fold greater 

than for the bulk Porg compound pool (Bjorkman and Karl, 2005). McLaughlin et al. 

(2013), in research conducted in the Sargasso Sea, used δ18Op to investigate the role of 

Porg hydrolysis in P-cycling in marine ecosystems. Based on the fractionation imparted 

on δ18Op when Pi is regenerated from a specific Porg molecule following a specific 

hydrolysis pathway, McLaughlin et al. used Equation 7 to estimate the fraction of Pi 

in samples that had been regenerated from Porg: 

 

%𝑃𝑖  𝑓𝑟𝑜𝑚 𝑃𝑜𝑟𝑔𝑟𝑒𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 =
(𝛿18𝑂sample−𝛿

18𝑂𝑒𝑞)

(𝛿18𝑂𝑟𝑒𝑚−𝛿18𝑂𝑒𝑞)
× 100%          (7) 

 

where δ18Orem is the calculated value of δ18Op based on a particular combination of P 

substrate and hydrolysis pathway; δ18Oeq is the expected equilibrium value of δ18Op 

and δ18Osample is the measured δ18Op in a sample. McLaughlin et al. concluded that 5-
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80% of Pi present in the upper 200m of an oligotrophic marine ecosystem was the 

product of Porg remineralisation, dependent on which enzyme/substrate system was 

used in Equation 7. These data, combined with expressed enzyme activity and low Pi 

concentration, suggest that Pi regeneration from Porg was coupled with uptake by 

organisms to support metabolism. The proportion of Pi thought to derive from Porg 

remineralisation was significantly reduced (12-35%) at a monitoring station closest to 

the shoreline, suggesting increased Pi availability in this region and thus reduced 

requirement for Porg mineralisation. Despite the limited number of samples and large 

contrasts between differing enzyme/substrate systems, the research highlights the 

potential for using δ18Op to gain new insights into P cycling within the marine 

ecosystem, without the need to directly determine the concentrations or fluxes 

affecting Pi and Porg pools. 

 

Colman et al. (2005) also demonstrated that δ18Op was also close to or at theoretical 

equilibrium in deep water samples from both the Atlantic (900-4000 m) and Pacific 

(300-3000 m) oceans. These data are consistent with intracellular equilibration 

between δ18Op and water-O in surface waters, followed by advection of Pi to depth. 

However, small offsets from the expected theoretical equilibrium (-1.5‰) in Pi from 

deep-ocean samples collected below the thermocline were used by Colman et al. 

(2005) to infer that significant Porg mineralisation occurred in this zone, imparting a 

disequilibrium fractionation on δ18Op. The disequilibrium effects were not fully 

overprinted by equilibrium fractionations, supporting estimates that 80-95% of the 

remineralised Pi was not utilised by the surrounding microorganisms in these deep-

ocean waters to meet their P requirements, because metabolism in these zones is 

hypothesised to be limited by C and energy rather than by P. However, the size of the 

δ18Op offset from equilibrium was smaller than that expected on the basis of Pi 

regeneration from Porg through the action of phosphohydrolases, suggesting partial 

biological turnover of Pi in these deep ocean environments (Colman et al., 2005).  



 

 

–
 2

8
 –

 

 

 

 

Table 2.1: Synthesis of global δ18Op data derived from a range of aquatic ecosystems. 

Type Setting 

Min 

δ18Op 

/‰ 

Max 

δ18Op 

/‰ 

Mean 

δ18Op 

/‰ 

1σ 
Number of 

samples 
Geographical Locations Reference 

Marine 

Coastal surface waters 15.9 22.3 20.0 1.34 141 
Monterey Bay, California; Long 

Island Sound, USA 

McLaughlin et al. (2004); Colman et 

al. (2005); McLaughlin et al. (2006b) 

Open ocean surface 

(<200m depth) 
13.8 23.7 18.5 3.27 17 

Monterey Bay, California; Sargasso 

Sea 

McLaughlin et al. (2004); McLaughlin 

et al. (2013) 

Deep ocean (>200 m 

depth) 
17.4 25.4 22.6 2.08 31 

North Atlantic and Pacific Ocean 

tropical gyres; Sargasso Sea 

McLaughlin et al. (2004); Colman et 

al. (2005); McLaughlin et al. (2013) 

Estuarine  7.8 20.3 15.9 2.78 54 

North San Francisco Bay 

California; Elkhorn Slough, 

California; 

McLaughlin et al. (2004); McLaughlin 

et al. (2006a); McLaughlin et al. 

(2006c) 

Freshwater 

River (main) 8.6 15.2 12.4 1.46 32 
San Joaquin River and Lake Tahoe 

California; Lake Erie, USA 

Elsbury et al. (2009); McLaughlin et al. 

(2006a); Young et al. (2009) 

River (tributaries) 9.2 17.2 12.5 2.03 32 

Elkhorn Slough, San Joaquin River 

and Lake Tahoe California; Lake 

Erie, USA 

McLaughlin et al. (2006a); Young et 

al. (2009) 

Groundwater 15.1 22.4 18.6 2.13 9 
Elkhorn Slough and San Joaquin 

River, California 

Blake et al. (2001); McLaughlin et al. 

(2006a); Young et al. (2009) 

Lake (surface water – 

1 m) 
10 17.1 14.1 1.57 34 Lake Erie, USA Elsbury et al. (2009) 

Lake (5.5 - 22 m) 8.4 15.8 13.6 1.58 25 Lake Erie, USA Elsbury et al. (2009) 

Lake (58 m) - - 12.7 - 1 Lake Erie, USA Elsbury et al. (2009) 

WWTP final effluent 8.4 18.4 12.9 4.02 14 Brittany, France; 
Gruau et al. (2005); Young et al. 

(2009); McLaughlin et al. (2006c) 

Constructed wetlands 

(canals, inlet, interior 

and outlet) 

20.0 25.5 21.5 1.32 25 Florida Everglades, USA Li et al. (2011) 

 Marsh 21.6 25.1 23.5 1.61 4 Florida Everglades, USA Li et al. (2011) 

Sediments Marine porewater 12.8 26.6 22.2 2.59 119 
Benguela Upwelling, South 

Atlantic 
Goldhammer et al. (2011a) 
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2.4.2   Estuarine ecosystems 

 

Source δ18Op signatures have been shown to be retained within some estuarine 

ecosystems (e.g. McLaughlin et al., 2006a). Source signals representing inputs 

derived from surrounding land (e.g. chemical fertilisers associated with runoff from 

agricultural land) and from other aquatic ecosystems (e.g. groundwater and surface 

water tributaries) are thought to dominate the bulk δ18Op composition in many 

estuarine ecosystems, due to the short residence time of P compounds in tidal estuaries 

(McLaughlin et al., 2006a). The limited contact time with biomass in these 

ecosystems constrains the opportunity for metabolism of P, increasing the potential for 

source δ18Op signatures to be retained. McLaughlin et al. (2006a) demonstrated that 

towards the mouth of Elkhorn Slough in California, δ18Op was dominated by that of 

oceanic-derived Pi (~20‰) due to tidal flushing of the ecosystem in this area. Similar 

δ18Op values were also found upstream in the estuary. However, these were attributed 

to chemical fertilisers, entering the estuarine ecosystem through agricultural field 

runoff, that have an isotopic composition similar to that of the marine ore from which 

the fertilisers were formed. One mid-estuary site had a significantly lower δ18Op 

composition. This observation, combined with the use of other natural tracers, 

suggested that groundwater discharge significantly affected bulk δ18Op at this 

sampling location. δ18Op can also provide insights into the presence of temporal and 

spatial patterns in Pi sources to estuaries. For example, it was observed that δ18Op 

composition throughout the main estuary channel was not affected by either tidal or 

seasonal variations (McLaughlin et al., 2006a). However, a nearby harbour, close to 

the mouth of the estuary, did show evidence of tidal patterns through δ18Op, with high 

tide displaying δ18Op values higher and closer to that of oceanic-derived Pi and low 

tide exhibiting lower δ18Op values towards those observed upstream in the estuary.   

 

2.4.3   Sediments within aquatic ecosystems 

 

δ18Op has also been used as a tracer of particulate inorganic P sources and sinks within 

aquatic ecosystems (Markel et al., 1994; Jaisi and Blake, 2010). The first major 

lacustrine site for this application was Lake Kinneret, situated in the Dead Sea Rift 

Valley (Markel et al., 1994). Markel et al. (1994) showed that δ18Op in sediment 

bound-Pi varied significantly with sediment grain size, with clay bound-Pi having a 



 

 – 30 – 

significantly heavier δ18Op than silt or sand bound-Pi. These δ18Op signatures enabled 

an internal P-cycling model of Lake Kinneret to be developed, which included major 

processes such as the sedimentation of both detrital and authigenic apatite and CCP 

(Ca3(HCO3)3(PO4)), as well as the dissolution of these materials. In conjunction with 

other internal P-cycling studies of Lake Kinneret, δ18Op was used as a tool to both 

elucidate the interaction pathways that P can undergo in this environment and support 

the quantitative analyses of sediment-lake interactions found in other studies. Further 

work has also shown that δ18Op may act as a tracer of P source and as a 

paleotemperature proxy (particularly in detrital and authigenic P phases) in other 

ecosystems, such as continental margins (Jaisi and Blake, 2010). 

 

More recent methodological advances that enable accurate measurements of δ18Op in 

samples containing a small mass of Pi have underpinned studies of δ18Op within 

porewaters of deep marine sediments (Goldhammer et al., 2011a; Goldhammer et al., 

2011b). These studies demonstrate that δ18Op in extracted porewater, Pi concentration 

profiles and two-endmember isotope mixing models can be used to determine whether 

marine sediments are dominated by P release (regeneration of Pi during microbial 

respiration of organic matter and the desorption of Pi from mineral phases), P burial 

from sources in the overlying water column, or Pi movement within the sediment 

column, through advection or diffusion (Goldhammer et al., 2011a; Goldhammer et 

al., 2011b). In particular, it was shown that marine sediments demonstrate significant 

disequilibrium in δ18Op, reflecting the dominance of disequilibrium effects associated 

with Pi regeneration from organic matter (Goldhammer et al., 2011a). However, it was 

noted that simple isotope mass balance models can overlook processes which could be 

significant within these environments and thus improvements need to be made for 

future analyses, including the construction of more complex and realistic isotope 

models that allow for the incorporation of physical mixing processes such as diffusion 

and advection.  
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2.5   Freshwater ecosystems 

 

Beyond the relatively intensive study of Lake Erie reported by Elsbury et al. (2009), 

the catalogue of δ18Op data for freshwater ecosystems remains more constrained than 

for marine and terrestrial ecosystems. However, a limited number of initial studies 

have explored δ18Op to assess sources and metabolism of Pi in freshwater ecosystems. 

 

2.5.1   Application of δ18Op to identify sources of P in freshwater ecosystems 

 

A range of potential sources of P to freshwater ecosystems may be distinguished on 

the basis of δ18Op, as long as the source isotopic signature is not rapidly over-printed 

by isotopic fractionations associated with metabolism (e.g. Young et al. (2009); Li et 

al. (2011)). However, this emerging dataset also shows potential for significant 

overlap in δ18Op between a number of individual sources. For example, whilst δ18OP 

may be used to distinguish P derived from fertilisers compared to WWTP effluents, no 

significant differences were found between δ18Op across other potential sources, such 

as vegetation and detergents (Young et al., 2009). Table 2.2 synthesises currently 

available data regarding δ18Op in potential sources of P to freshwaters, with average 

δ18Op in these sources ranging from 13.2 to 21.5‰. However, note that for many of 

these sources, the size of the available dataset is currently small and geographically 

constrained.  
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Table 2.2:  Observed δ18Op values for potential P sources to freshwater ecosystems (Ayliffe et al., 

1992(^); Gruau et al., 2005($); McLaughlin et al., 2006a(#); Young et al., 2009(*); Li et al., 

2011(~); Gross et al., 2013(£)). 

Source 

Min 

δ18Op 

/‰ 

Max 

δ18Op 

/‰ 

Mean 

δ18Op 

/‰ 

1σ 

Number 

of 

samples 

Geographical 

location 

Chemical fertilisers*#$~ 15.5 25.3 22.1 2.32 33 -- 

Fertiliser ore and 

processing* 
18.2 21.6 20 1.43 5 Israel 

†Aerosols and dust*£ 14.2 24.9 20.1 2.17 17 Israel 

WWTP final effluent and 

during processing*$ 
8.4 18.4 13.5 3.5 18 USA; France 

Detergent* 13.3 18.6 16.8 1.83 7 -- 

Toothpaste* -- -- 17.7 -- 1 -- 

†Animal faeces*^ 15.7 23.1 20 1.82 11 
South Pacific; 

California, USA 
†Soil leachate* 17.9 19.1 18.5 0.474 5 Israel 

Compost# 23.3 27 25.2 2.62 2 California, USA 
†Vegetation leachate (Live, 

Dead and Decayed)* 
14.2 23.1 16.8 2 27 California, USA 

†Water soluble Pi fractions 

 

Gruau et al. (2005) compared δ18Op across three commonly-used inorganic P 

fertilisers and effluent samples from three WWTPs in France. The origin of the 

phosphatic rock used in the production of the fertilisers was found to be significant in 

the resulting δ18Op value with the samples analysed in this study lying in the range 

19.6 to 23.1‰, which is consistent with the typical ranges for the two largest 

phosphatic rock suppliers to France – Morocco (18.5‰ to 20.5‰) and Florida (17.2‰ 

to 23.2‰) respectively. Laboratory dissolution experiments demonstrated no 

significant fractionation of δ18Op within the bulk fertiliser, suggesting that fertiliser 

δ18Op could be preserved in runoff from agricultural land (Gruau et al., 2005). 

Phosphate in WWTP effluents from the study by Gruau et al. was assumed to 

originate from two main sources: human waste, including faeces, urine and waste food 

disposal (30-50%) and phosphate-based detergents (50-70%). For the same WWTP 

effluents, δ18Op values fell in a narrow range of 16.6 to 18.1‰VSMOW, whilst δ18Op for 

a phosphate builder used in detergents fell within the same range (17.9‰VSMOW), 

indicating a possible maintenance of source δ18Op composition in the final WWTP 

effluent. However, the δ18Op composition of WWTP effluents could also reflect the 

result of microbial metabolism of Porg, as reported values also fall in the δ18Op range 

expected following fractionation due to mineralisation of Porg (Blake et al., 1997; 

Gruau et al., 2005). The difference between δ18Op ranges for fertiliser- and sewage-

derived phosphate (<2‰) reported by Gruau et al. (2005) was statistically significant. 
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However, given the relatively small absolute difference, and the variability in δ18Op of 

the two sources (ranges for both sources were ≥1.5‰), these authors conclude that 

δ18Op may not be suitable for distinguishing between sources of anthropogenic 

phosphate. 

 

However, the δ18Op of other potentially significant sources of Pi to freshwaters have 

not been thoroughly characterised, including soil leachate, waste from aquaculture 

and, in particular, groundwater and septic tank discharge. Where sources such as 

inorganic fertiliser or WWTP effluent have begun to be characterised, available data 

tend to focus on specific geographical regions such as California (USA) (Young et al., 

2009), the Great Lakes (USA) (Elsbury et al., 2009; Young et al., 2009) and Brittany 

(France) (Gruau et al., 2005). A larger body of research is required to extend the 

isotopic characterisation of sources of Pi to other geographical locations. Further, the 

majority of existing studies provide only snapshots in time, and the potential for 

temporal changes in δ18Op of sources has not been fully constrained, for example 

within WWTP effluent in which the dominant sources and treatment efficiency may 

change significantly over annual, seasonal or daily timescales. 

 

Analysis of δ18Op in natural freshwater samples has demonstrated that disequilibrium 

isotopic compositions can persist in these environments (Young et al., 2009; Li et al., 

2011). Young et al. (2009) compared δ18Op in the tributaries to three major US 

freshwater bodies, Lake Erie, the San Joaquin River and Lake Tahoe, to a theoretical 

equilibrium value. Only two of the 40 samples analysed in the study fell within the 

95% confidence limit for the theoretical isotopic equilibrium. This was also true for 

two groundwater samples in the San Joaquin catchment, in which data indicated that 

both groundwater samples were enriched in 18O relative to the expected equilibrium 

isotopic composition.  

 

Similar conclusions were reached by Li et al. (2011) who showed that anthropogenic 

phosphate fertilisers could be traced within a freshwater wetland in the Everglades 

National Park, USA. Inputs of P from artificial fertilisers in the Everglades 

Agricultural Area (EAA) have contributed to mean concentrations of P in runoff being 

20-fold greater than in non-agricultural areas of the national park. The average δ18O 

value of fertilisers used within the EAA was found to be 24.4±0.7‰ between April 
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2005 and March 2006. Analysis revealed that δ18Op was at equilibrium with the 

ambient water in one constructed wetland (April 2005), although later sampling in 

July and March 2006 determined that the δ18Op values were strongly governed by 

fertiliser inputs, being enriched with δ18O compared to the expected equilibrium, 

particularly close to the inlet from the EAA. Seasonal variation was also observed, 

with δ18Op being enriched in the colder, winter months relative to samples collected in 

July. These observations may reflect differences in metabolic activity between 

summer and winter months, or alternatively reflect the timing of fertiliser applications. 

At least within the specific catchments reported in research by Li et al. (2011), 

disequilibrium isotope composition was shown to be maintained in Pi under certain 

circumstances. However, the maintenance or otherwise of disequilibrium δ18Op 

remains to be evaluated across a wider range of spatial and temporal scales for 

freshwater ecosystems. 

 

If disequilibrium isotope compositions do persist in freshwater ecosystems and the 

major Pi sources have statistically different δ18Op values, then it would be possible to 

utilise δ18Op in source apportionment calculations. Li et al. (2011) estimated the 

proportion of Pi derived from artificial fertiliser inputs (F) using a two-system mass 

balance model (Equation 8), the theoretical equilibrium isotope composition 

(δ18Orecycled), the isotopic composition of fertiliser (δ18Ofertliser) and the isotopic 

composition of Pi measured in a sample (δ18Op).  

 

𝐹 =
(𝛿18𝑂p−𝛿

18𝑂𝑟𝑒𝑐𝑦𝑐𝑙𝑒𝑑)

(𝛿18𝑂𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑠𝑒𝑟−𝛿
18𝑂𝑟𝑒𝑐𝑦𝑐𝑙𝑒𝑑)

× 100%          (8) 

 

This mass balance equation is based on the assumption that only fertiliser inputs and 

biologically recycled phosphate make up the Pi of the wetland. Using this equation, it 

was estimated that artificial fertiliser inputs into the wetland contributed between 15-

100% of the total dissolved Pi content, with the lowest and highest proportions found 

in samples collected in April and in March respectively. Clearly, more complicated 

mass balance approaches would be required for more complex ecosystems with 

multiple sources. If sources, and any fractionation effects, could be sufficiently well 

constrained, then it would be theoretically possible to build mixing models to estimate 

the relative contribution from different sources to P within receiving waters. 
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2.5.2   Evidence from δ18Op analysis of P metabolism in freshwater ecosystems  

 

Evidence of temperature-dependent equilibrium fractionation between δ18Op and 

δ18Ow has also been used to infer evidence of full or partial metabolism of Pi in some 

freshwater ecosystems (Blake et al., 2001; Elsbury et al., 2009). For example, Blake 

et al. (2001) analysed δ18Op within groundwater samples from a shallow Pi-rich 

aquifer in Cape Cod, Massachusetts, USA. Significant inputs of Pi to groundwater 

resulted from sewage contamination, causing Pi concentrations to rise to 30-108 

µmol.L-1. Full equilibration between δ18Op and δ18Ow in the surrounding groundwater 

was not achieved, probably due to a low DOC concentration meaning that elevated Pi 

concentrations were above metabolic requirements. However, a strong positive 

correlation was found between δ18Op and δ18Ow, suggesting partial metabolism of P 

and that δ18Op could be used to provide insights into metabolism of Pi in groundwater.  

 

The first major study of the application of δ18Op in the water column of a lacustrine 

setting was conducted in Lake Erie, USA (Elsbury et al., 2009) and emphasises the 

potential to use δ18Op within freshwater P cycling studies to identify trends that cannot 

be observed by determining concentration alone. Despite strict regulations on point 

sources of P since the 1970s and no observed increase in influx to the lake, Pi 

concentration in the Central Basin of Lake Erie has increased since 1990 (Elsbury et 

al., 2009). As changes in inflow Pi fluxes could not explain the observed increase in Pi 

concentration, analysis of δ18Op was initially applied to identify additional sources of 

Pi.  

 

Weighted riverine δ18Op average feeding the lake was considerably depleted in 18O 

compared to that of the theoretical equilibrium δ18Op, whereas the δ18Op values 

observed in Lake Erie were generally enriched in 18O compared to those of the seven 

sampled tributaries, particularly in the Central Basin. Any samples with δ18Op between 

that of the theoretical equilibrium and the weighted riverine signal (+11‰) could 

potentially be attributed to incomplete equilibration of the O within riverine phosphate 

with water-O in the lake though metabolism of Pi. Consequently, Elsbury et al. (2009) 

concluded that samples with δ18Op values outside of the potential mixing region must 

be derived from an additional (unconstrained) source of Pi. Potential sources included 

smaller tributaries that were not sampled in the study; however this was deemed 
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improbable given the large Pi fluxes required to achieve the observed concentration 

increase in the Central Basin. Alternatively, disequilibrium isotopic effects could be 

operating in the lake, leading to an increase of δ18Op in lake Pi though processes 

associated with a kinetic fractionation (Blake et al., 2005). However, the most likely 

explanation for the observed increase in Pi concentration was concluded to be end-

member mixing of riverine Pi with an isotopically enriched source(s) of Pi (>+17‰), 

which was suggested by Elsbury et al. to be associated with remineralisation of 18O-

enriched Porg within the bed sediments, followed by release of Pi from the lake 

sediment to the water column. 

 

 

2.6   Concluding remarks 

 

The use of δ18Op in research examining P cycling in natural ecosystems is at an 

embryonic stage, particularly with respect to freshwater ecosystems. This stable 

isotope tracer has the potential to offer new insights into both the relative importance 

of different sources of P to ecosystems, and the extent to which P from individual 

sources is linked to metabolic activity within ecosystems. These insights would have 

important implications for understanding the reaction mechanisms controlling P 

biogeochemistry in nature, and for the design and targeting of future policies and 

practices to deliver more sustainable stewardship of P.  

 

Given the review reported above, and the importance of analytical protocols that are 

specifically designed to address the challenges of determining δ18Op in freshwater 

matrices, Chapter 3 reports the development and testing of new techniques for the 

precipitation of Ag3PO4 from these matrices. 
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Chapter 3: 

Development and evaluation of new protocols for the 

robust determination of δ18Op in freshwaters 

 

 

 

 
 

3.1   Introduction 

 

This chapter reports the development and testing of new protocols for the 

determination of δ18Op within freshwater environments. Specifically, new sample 

preparation stages have been combined with the McLaughlin et al. (2004) protocol 

(Method 1, Figure 3.1), in order to more robustly apply δ18Op analyses to freshwater 

matrices. The protocol in Method 1 was first designed for use within shallow and 

deep marine waters (McLaughlin et al., 2004). The first step (1a) in this protocol 

extracts Pi from the bulk 0.45µm filtered sample using a magnesium-induced co-

precipitation (MagIC) step, to form a solid-phase brucite (Mg(OH)2) pellet with co-

precipitated Pi, thereby removing Pi from the remaining sample matrix. The 

intermediate steps (2a-7a) in Method 1 were included in an attempt to ensure the 

removal of any species that might chemically interfere with step 8a, the precipitation 

of Ag3PO4, which is subsequently analysed via TCEA-IRMS. In addition, these steps 

were included to minimise the incorporation of contaminant O in the final Ag3PO4 

precipitate. However, this chapter presents data to show that these steps do not 

necessarily remove contaminants effectively from the Ag3PO4 when applied to 

freshwater matrices. 

 

Species that might chemically interfere with step 8a include both cations and anions 

that either prevent the formation of Ag3PO4, e.g. by participating in competing 

reactions that prevent the full conversion of Pi into Ag3PO4, or reduce its purity by 

forming insoluble compounds which could be a source of contaminant O. For 

example, a cerium phosphate (CePO4) precipitation at pH 5.5 (steps 2a-4a) is included 
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to isolate Pi from Cl- anions that may have derived from the original sample matrix or 

from the addition of magnesium chloride as part of the MagIC precipitation; step 5a 

ensures the precipitate is washed thoroughly to achieve full removal of Cl- ions. This 

is imperative because any Cl- ions present in step 8a can competitively react with Ag+ 

ions to form a very poorly soluble AgCl precipitate in water (1.334x10-5 mol.L-1 at 

25˚C (Davies and Jones, 1955)). This competitive reaction would cause the final 

Ag3PO4 precipitate to be impure, potentially interfering with the TCEA-IRMS 

analysis by reducing the mass of O within the measured sample; although a reduced O 

yield should not alter the measured δ18Op, it is possible that with sufficiently low O 

yields, a linearity effect could be imparted, in which δ18Op is altered due to a change 

in sample mass introduced to the TCEA-IRMS and thus the peak size of the CO ion in 

the mass spectrometer (Brand, 2004). Furthermore, if there is incomplete precipitation 

of Pi during step 8a due to an insufficient concentration of Ag+ ions remaining in 

solution after AgCl precipitation, a potential kinetic isotope effect could be imparted 

on the Pi pool, introducing an error into the measured δ18Op. 

  

Step 6a in Figure 3.1, like step 2a, re-dissolves the precipitate formed in the previous 

step of the protocol. This is an efficient way to solubilise Pi; however, any other ions 

or molecules contained within, or bound to, the precipitate will also be released into 

solution. Removal of cations that have the potential to interfere with Ag3PO4 

precipitation, such as Ce3+, is achieved using an H+-form cation exchange resin to 

exchange cations present with H+ ions in solution (7a). However, the risk that 

oxyanions that are co-adsorbed or co-precipitated alongside Pi in the MagIC step are 

also released on redissolution of a precipitate and remain in solution until the Ag3PO4 

precipitation is not addressed through the use of a cation exchange resin. As these 

oxyanions could introduce error to the δ18Op measurement in the TCEA-IRMS, this 

issue needs to be addressed. Finally, the final step (8a) in the Method 1 protocol is a 

‘fast’ precipitation of Ag3PO4, achieved by the addition of silver nitrate (AgNO3) 

when the solution is at a near-neutral pH. The ‘fast’ precipitation allows the Ag3PO4 

to form within minutes with 100% yields, ensuring that the bulk Pi is precipitated and 

analysed for δ18Op in the TCEA-IRMS (Dettman et al., 2001; Tamburini et al., 2010). 
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Figure 3.1: Method 1 – a protocol developed for Pi extraction from 0.45µm filtered seawater 

prior to determination of the stable oxygen isotope composition of Pi (McLaughlin et 

al., 2004). 

  

 

Chapter 2 highlighted that a priority for future applications of δ18Op analyses within 

freshwaters was to consider how the effects of potential sources of contaminant O can 

be minimised within analytical protocols. Inaccurate δ18Op data can result from two 

types of oxygen contamination: incorporation of contaminant oxygen within the PO4 

moiety of the Ag3PO4 molecule itself, or the pyrolysis of impure Ag3PO4 in which the 

impurity(s) contains an additional source of O. Impurities could include oxyanions 

(other than Pi) and organic compounds, each of which may have co-precipitated 

during Ag3PO4 formation or adsorbed to the surface of, or become incorporated 

within, the precipitate. These impurities have the potential to act as sources of O 

within the TCEA-IRMS determination that are not associated with Pi. These 

contaminants could include nitrate and sulfate oxyanions which are both frequently 

present in freshwater matrices. Like Pi, nitrate is a key concern because of its 

potentially controlling role in primary production within marine and freshwater 

ecosystems. However, average nitrate concentrations are geographically highly 

variable, with many areas exceeding the 50 mg NO3
-.L-1 World Health Organisation 

drinking water standard (Neal et al., 2006; Stuart et al., 2007; SI 2000 No. 3184). It 

has been estimated that for some rural English rivers up to 97% of the in-stream 
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nitrate concentration is derived from diffuse sources and attributed to agricultural 

practices, for example following the application of N fertilisers such as NH4NO3 (Neal 

et al., 2006). Sulfate is also a potential source of oxyanion contamination; although 

the sulfate concentration in many UK surface waters has decreased in recent decades 

due to a reduction of anthropogenic inputs from acid rain, concentrations are still 

variable with some sites averaging more than 170 µeq SO4
2-.L-1 of anthropogenically-

derived sulfate between 2003 and 2008 (Monteith et al., 2014).  

 

Incorporation of contaminant oxygen in the PO4 moiety of the Ag3PO4 molecule itself 

either results from an exchange of oxygen atoms between the water molecules and the 

Pi molecules originally present in a sample, or from the generation of new Pi prior to 

the precipitation of Ag3PO4 within a protocol. The source of P in any newly generated 

Pi is typically from P-containing organic compounds (Porg), and thus Porg is a 

potentially important contributor to this form of contamination. For example, 

hydrolysis of Porg (see Section 2.2.3) can yield Pi that has incorporated water-O from 

the extracellular environment and/or inherited O from the source Porg compound 

(McLaughlin et al., 2006d). Thus, the δ18Op ratio of a sample may be altered, because 

the final Ag3PO4 precipitate is derived from an unknown mixture of the original 

sample Pi pool and Pi derived from the hydrolysis of Porg. Therefore, a robust protocol 

for δ18Op would remove any potential contaminants before the TCEA-IRMS stage, 

without degrading them to a product that could contribute to the Ag3PO4 formed at the 

end of the protocol.  

 

Freshwater matrices, in comparison to marine matrices for which the original δ18Op 

protocol described in Figure 3.1 was developed, typically contain higher 

concentrations of dissolved organic matter (DOM) compounds (Harvey et al., 2015; 

Kubo et al., 2015). Inefficient removal of DOM could significantly influence 

measured δ18Op, because DOM can consist of up to 45% O by weight and has been 

shown to persist until the precipitation of Ag3PO4 (Ma et al., 2001; Lécuyer, 2004; 

McLaughlin et al., 2004; Zohar et al., 2010). In addition, samples that contain a larger 

mass of DOM are also likely to have a larger mass of Porg. Consequently, there is a 

greater risk in freshwater, compared to marine, matrices of δ18Op being affected due to 

the generation of new Pi from Porg during a protocol. A more complete discussion of 
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typical Porg compounds found in freshwaters in the context of their potential influence 

on δ18Op can be found in Section 3.2.1. 

 

In light of the considerations described above, this chapter aims to develop and 

evaluate a range of modifications to Method 1 – the McLaughlin et al. (2004) 

protocol – in order to improve the protocol in the context of application to freshwater 

matrices. Particular consideration is given to the effect that Porg and DOM compounds 

within a sample could have on δ18Op, including the potential for hydrolysis of Porg that 

leads to the production of contaminant Pi.  

 

 

3.2   Potential Porg contamination during brucite precipitation 

 

In each of the previously published protocols for the precipitation of Ag3PO4 from an 

aqueous matrix (Figure 2.4), an initial precipitate is formed from the bulk sample 

matrix that is subsequently re-dissolved. In the case of Method 1 and the 

Goldhammer et al. (2011b) protocol, this precipitate is brucite (MgOH2) which has 

been shown to co-precipitate Pi through a magnesium-induced co-precipitation 

(MagIC) (Karl and Tien, 1992). However, it is assumed in these protocols that no 

other P-containing molecules (particularly Porg) are co-precipitated alongside the 

brucite. In effect, the MagIC step in these previously published protocols is the 

primary route through which Pi is deemed to be isolated from sources of contaminant 

O within a sample matrix. Whilst this assumption may be valid within marine sample 

matrices, the greater concentration and range of possible sources of contaminant O 

within freshwater matrices means that direct translation of protocols between marine 

and freshwater matrices may not be feasible. Therefore, the first stage in the 

development of a revised protocol in this thesis was to evaluate the extent to which the 

MagIC step could isolate Pi from other constituents in a freshwater sample matrix.  

 

Previous work by Thomson-Bulldis and Karl (1998), prior to any of the published 

protocols for δ18Op determination in aqueous samples, did begin to consider whether 

P-containing molecules other than Pi co-precipitated in the MagIC process in seawater 

and tap water matrices. This work primarily focused on modifying MagIC to more 
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accurately determine Pi concentrations within seawater samples. Standard procedures 

to measure Pi often involved measuring what is termed as soluble reactive phosphate 

(SRP) concentrations, in which Pi may only account for 30-75% of the measured P 

concentration, with the remaining concentration being a mixture of other dissolved 

inorganic and organic P compounds (Thomson-Bulldis and Karl, 1998). Thomson-

Bulldis and Karl (1998) used radio-labelled 32Pi to show that certain Porg molecules did 

co-precipitate with brucite and modified the original Karl and Tien (1992) method to 

alter to the ratio of NaOH volume to sample volume used within the MagIC method 

and added radio-labelled 32Pi compounds to the system. This modification was 

performed in order to more accurately measure the concentration of the non-

precipitated P pool in marine matrices. The research reported within this current 

chapter first aims to quantify the extent of Porg contamination of brucite that could 

potentially result from the co-precipitation of a range of non-labelled Porg compounds 

typically found within freshwater matrices, under the same MagIC reagent conditions 

as Method 1.  

 

3.2.1   Selection of Porg compounds 

 

In natural freshwaters, the main Porg compounds that are likely to be present can be 

grouped in five main classes: phosphonates, orthophosphate diesters, polyphosphates, 

pyrophosphates and orthophosphate monoesters (Worsfold et al., 2008; Monbet et al., 

2009). Phosphonates are a class of compound with the general structure of 

RPO(OR’)(OR’’) and are found in water industry processes, including water softening 

and through their use as anti-scalants and chelating agents (Nowack, 2003; Demadis et 

al., 2007). Orthophosphate diesters – PO2(OR)(OR’) – support the functionality of 

many biological molecules, for example as a key component of the backbone of DNA 

and RNA, and can form the majority of Porg inputs into agricultural soils (Turner and 

Haygarth, 2005). Polyphosphates are constructed of chains of [PO3] units that can 

form compounds by themselves, for example when chains are ended by hydroxyl 

groups, or form sections of larger molecules, such as adenosine-5’-triphosphate (ATP) 

a key compound in biological energy transfers (Kornberg, 1999). ATP acts as a 

coenzyme in many biological reactions and plays a key role in energy storage, 

respiration and metabolism within cells. One of the compounds that ATP interacts 
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with during the process of energy transfer within the cell is pyrophosphate. 

Pyrophosphate is the common name for the P2O7
4- anion which can form salts, which 

allows it to act as a metal complexing agent (Manahan, 2004). Finally, orthophosphate 

monoesters are a general class of Porg compounds in the form of RO-PO(OH)2 and, for 

example within freshwater sediments, are typically found in higher abundance than 

orthophosphate diesters (Jorgensen et al., 2011). This class of Porg compound can also 

be separated into two major subclasses - labile orthophosphate monoesters and 

inositol hexakisphosphate (phytic acid salt). Labile orthophosphate monoesters, such 

as glucose-6-phosphate, can be highly biologically-active compounds and can undergo 

dephosphorylation reactions in the presence of enzymes to act as, or release, energy 

stores within the body. Phytic acid has a similar role within plant biology and can also 

play a role in DNA repair.  

 

Compared to the volume of research that has focussed on Pi, much less is known 

about the concentration or the cycling of specific groups of Porg compounds in natural 

freshwater environments. A summary of research that has determined the relative 

concentrations of these Porg classes in natural samples is reported in Table 3.1 

(Espinosa et al., 1999; Turner et al., 2002; Toor et al., 2003; Cade-Menun et al., 2006; 

Koopmans et al., 2007). However, there remains insufficient research that has fully 

speciated the Porg compounds found in freshwaters (Monbet et al., 2009). This gap 

remains to be addressed by future research, particularly considering the potential role 

of Porg as a factor influencing δ18Op in freshwaters. However, for the purposes of the 

experiments reported in this chapter, the choice of appropriate Porg compounds was 

determined on the basis of the research reported in Table 3.1. 
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Table 3.1: Relative concentrations of Porg compounds in a range of freshwater matrices for 

which suitable speciation work has been undertaken 

Study Type of sample Units 

P
h

o
sp

h
o

n
a

te
s Orthophosphate 

monoesters 

O
rt

h
o

p
h

o
sp

h
a

te
 

d
ie

st
er

s 

P
o

ly
p

h
o

sp
h

a
te

s 

P
y

ro
p

h
o

sp
h

a
te

s 

Labile 

Inositol 

hexakis-

phosphate 

Cade-Menun 

et al. (2006) 

River inlet of 

PeeDee River 
% DP 2.1 8.3 0.7 2.1 4.1 

Espinosa et al. 

(1999) 

Grassland soil 

leachates 
%TP 1.21 4.12 3.3 --- 1.23 --- 

Turner et al. 

(2002) 

Water extracts of 

air-dried soils 
%MUP --- <0.1-4.8 12.3-33.5 9-23 --- --- 

Koopmans et 

al. (2007) 

NaOH-EDTA 

extracted from 

unfertilised soils 

%TP <0.1 60.2 0.7  <0.1 

Toor et al. 

(2003) 

Soil leachate 

from treated 

soils 

%TUP --- 23 20 15 --- --- 

As: 1(±)1-aminoethylphosphonic acid, 2D-glucose-6-phosphate, 3Adenoise-5’-triphosphate 

DP = dissolved P, TP = total P, MUP = molybdate-unreactive P and TUP = total unreactive P. 

 

3.2.2   Analytical approach 

 

In order to evaluate the potential extent of co-precipitation of Porg compounds with 

brucite, six Porg compounds were selected that were representative of the five major 

Porg classes identified above (Table 3.2). Tests were conducted to determine the extent 

to which each compound co-precipitated with brucite. Brucite was precipitated by the 

addition of 1M NaOH to n x 0.1M MgCl2 solutions (n given in Table 3.3) made in 

MilliQ (18.2 MΩ) water and containing a known concentration (~4 mg P.L-1) of each 

Porg compound in Table 3.2 and one inorganic Pi source (KH2PO4). The resulting 

mixture was allowed to stand for 10 minutes before being separated by centrifugation 

at 3500 RCF for 10 minutes, with the supernatant decanted and stored at ≤4 ˚C until 

analysis. The supernatant from this precipitation was analysed for SRP and total P 

concentration using a Seal Analytical AQ2 discrete autoanalyser (LOD = 0.005 mg 

P.L-1; matrix-matched calibration of 0 – 1 mg P.L-1; analytical quality controls: SPEX 

CertiPrep WR1 (0.6 mg P.L-1) and WR2 (0.3 mg P.L-1)), following digestion of the 

samples in a sulfuric acid (H2SO4) and potassium persulfate (K2S2O8) matrix for TP 

analyses.  
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Table 3.2: Porg compounds selected for analysis within this chapter 

Class Compound Further information 

Phosphonate 
2-aminoethylphosphonic 

acid 
 

Labile orthophosphate 

monoester 
D-glucose-6-phosphate As a disodium salt hydrate 

Inositol 

hexakisphosphate 

Inositol hexakisphosphate 

(phytic acid salt) 
As a sodium salt hydrate; from rice 

Orthophosphate diester DNA As a sodium salt; from herring testes 

Polyphosphate 
Adenosine-5’-triphosphate 

(ATP) 

As a disodium salt hydrate; microbial 

source 

Pyrophosphate 
Sodium pyrophosphate 

decahydrate 
 

 

The extent of co-precipitation for each Porg compound was calculated as a percentage, 

using the difference between the TP concentration in the supernatant following brucite 

precipitation and the initial TP concentration in the original solutions (Equation 9).  

 

𝐶𝑜 − 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑡𝑒𝑛𝑡 (%) =  
100[𝑆𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡 𝑇𝑃]

[𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇𝑃]
            (𝟗) 

 

3.2.3   Results and discussion 

 

Significant co-precipitation of all Porg compounds with brucite was observed in the 

experiments described above, ranging from 34.5% (2-aminoethylphosphonic acid) to 

97.5% (sodium pyrophosphate decahydrate) of the original spiked Porg concentration 

(Figure 3.2). From Table 3.3 it can be seen that the extent of co-precipitation for 

those compounds which were also analysed in the Thomson-Bulldis and Karl (1998) 

study is broadly similar in both MilliQ and seawater matrices. However, substantially 

greater co-precipitation of 2-aminoethylphosphonic acid with brucite was observed in 

the research reported in this chapter for a MilliQ matrix than was observed previously 

for a seawater matrix. These observations clearly indicate that the use of MagIC as the 

initial step in protocols for the precipitation of Ag3PO4 does not ensure that Pi is the 

only species removed from solution to be carried forward to later stages of a protocol. 

In particular, the data reported in Figure 3.2 and Table 3.3 demonstrate that a wide 

range of Porg compounds may co-precipitate with brucite. In freshwater matrices this is 

of particular concern as absolute concentrations of Porg may be considerably greater 

than in other matrices (Smith et al., 1999).  



 

 – 46 – 

 

Figure 3.2: Percentage of spiked Porg co-precipitated with brucite. Error bars based on ±1σ (n is 

given in Table 3.3). 

 

 

 

Table 3.3: Extent of Porg co-precipitation with brucite in a MilliQ water matrix and comparison 

with co-precipitation extents reported by Thomson-Bulldis and Karl (1998) when 

precipitated from a seawater matrix. 

Compound 

Measured co-precipitation 

extent in MilliQ matrix 

(3sf) ±1σ /% 

n 

Co-precipitation extent in 

seawater (n=3) /% 

(Thomson-Bulldis and Karl, 1998) 

Pi 97.0 ±0.6 8 99.9 ±0.9 

2-aminoethylphosphonic acid 34.5 ±10.8 18 26.9 ±1.7 

Glucose-6-phosphate 53.7 ±10.1 18 n.d. 

Phytic acid salt 95.9 ±6.8 32 95.7 ±5.7† 

DNA 92.8 ±3.7 3 n.d. 

Adenosine-5’-triphosphate (ATP) 97.1 ±3.5 30 97.1 ±1.3 

Sodium pyrophosphate 

decahydrate 
97.5 ±2.5 17 99.5 ±1.2¥ 

†named phytic acid; ¥ named pyrophosphate; n.d. not determined 
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3.3   Brucite-Porg susceptibility toward acid hydrolysis 

 

The potential importance of the data reported in Figure 3.2 and Table 3.3 is that 

previously published protocols for δ18Op analysis that include an initial step of brucite 

precipitation, also include a subsequent step that involves the re-dissolution of the 

brucite pellet in a strongly acidic matrix. However, many Porg compounds can undergo 

acid hydrolysis, yielding Pi that is derived from the original Porg compound. Therefore, 

co-precipitation of Porg with brucite has the potential to generate Pi within an acidic 

matrix in later stages of any extraction protocol. Acid hydrolysis involves the breaking 

of a chemical bond through a nucleophilic substitution of a water molecule, catalysed 

by surrounding aqueous protons, i.e. Equation 10 (Bender, 1960; Cox Jr and Ramsay, 

1964). 

 

𝑅𝐶𝑂𝑂𝑅′ + 𝐻2𝑂
𝐻(𝑎𝑞)
+

→   𝑅𝐶𝑂𝑂𝐻 + 𝑅′𝑂𝐻      (10) 

 

In the case of Porg compounds, this reaction is of particular importance, due to the 

formation of a free Pi molecule. The formation of free Pi from Porg could alter the final 

δ18Op determined for a sample through two mechanisms. Firstly, a proportion of the 

oxygen atoms included in the new Pi molecule would be derived from the extracellular 

water molecules. This could be associated with a kinetic fractionation, in which 16O 

atoms are preferentially incorporated into the newly formed Pi, due to a faster reaction 

rate during hydrolysis compared to 18O atoms. The second mechanism is an 

inheritance effect, in which the δ18Op of the newly formed Pi will partially reflect the 

δ18O ratio of the P moiety in the original Porg compound, because some oxygen atoms 

within the newly generated Pi will be inherited from the parent material, without any 

exchange with water-O (McLaughlin et al., 2006d). The relative importance of kinetic 

fractionation versus inheritance isotope effects depends on the Porg compound in 

question and its hydrolysis pathway (Sections 2.2.3). Both effects are likely to 

generate Pi that differs in terms of δ18Op from the “true” δ18Op of Pi that was originally 

present in a sample (Liang and Blake, 2006a; McLaughlin et al., 2006d). Therefore, 

the material in this section reports the outcomes of experiments that were designed to 

test whether the acidic solution used to re-dissolve brucite can be optimised, 

specifically in order to reduce any potential hydrolysis of Porg that is co-precipitated 

with brucite from the original sample matrix. 
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3.3.1   Analytical methods 

 

A range of analytical grade acids of different molarities and strengths were selected 

and 3 x 100 mL 0.4 mg P.L-1 MgCl2 solutions were produced for each Porg and acid 

system combination. The volumes of each acid to be used were determined 

experimentally by the minimum volume required to consistently result in the full 

dissolution of the brucite pellet formed from a 100 mL 0.4 mg P.L-1 MgCl2 solution. 

This resulted in the following final acid systems being selected:  

 

- 2M hydrochloric acid (HCl, 2 mL);  

- 0.1M nitric acid (HNO3, 3 mL); 

- concentrated acetic acid (c.AA, 0.5 mL and 4 mL); 

- the standard Method 1 (McLaughlin et al. (2004)) conditions (1 mL c.AA and 

1 mL 10M HNO3); 

- concentrated aqua regia (0.2 mL). 0.4 mL was required to dissolve the brucite 

pellet, however this concentration adversely affected the formation of the 

phosphomolybdate compound for the colorimetric analysis of SRP 

concentration, so the mass of brucite was reduced two-fold to enable 0.2 mL of 

aqua regia to be used without changing the relative concentrations of reagents.  

Aqua regia was freshly made prior to analysis as a 3:1 mixture of c.HCl to 

c.HNO3. 

 

Within the Method 1 protocol, it is possible that a “standing time” will exist between 

the addition of the acid and the subsequent pH adjustment (steps 2a and 3a in Figure 

3.1). Therefore, a kinetic study was also conducted on the ATP and phytic acid salt 

compounds as exemplars, using the same acid systems described above, to determine 

whether the length of time that a Pi solution is at a low pH has an effect on the extent 

of Porg hydrolysis. These exemplar compounds were chosen because they had 

exhibited the greatest extent of acid hydrolysis in the preliminary stages of the 

experiment reported in Section 3.3.2, meaning that differences between standing 

times were more likely to be identified. Standing time periods from 5 to 60 mins 

between the dissolution of brucite in acid and the addition of molybdenum blue 

method reagents for SRP determination were evaluated. All solutions were shaken 

after the addition of acid to dissolve the brucite pellet but were kept still between the 
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dissolution of brucite and the addition of the colour reagents. However, to determine 

whether agitation could also affect the extent of hydrolysis, three additional replicates 

were continuously shaken for the samples that had a standing time of 15 minutes. 

Soluble reactive P concentrations in the re-dissolved acidic matrices were determined 

using a modified matrix-matched Murphy and Riley (1962) molybdenum blue 

method. Thirty mins after the reagents were added, the solutions were analysed 

colourimetrically using a Jenway UV-vis 6300 spectrophotometer (882 nm, LOD = 

0.025 P.L-1; matrix-matched calibration of 0-1 mg P.L-1; analytical quality controls: 

SPEX CertiPrep WR1 (0.6 mg P.L-1) and WR2 (0.3 mg P.L-1)).  

 

3.3.2   Results and discussion 

 

Figure 3.3 illustrates clearly that individual Porg compounds differ in terms of their 

susceptibility to acid hydrolysis and, therefore, Pi production following the MagIC and 

acid dissolution stages of the protocol for Ag3PO4 precipitation. For example, when a 

brucite precipitate was dissolved in c.AA, up to 17% and 5% of the mass of TP that 

co-precipitated with brucite underwent hydrolysis to yield SRP (assumed to be Pi) for 

the ATP and pyrophosphate compounds respectively. In contrast, when a 2M HCl acid 

system was used to dissolve the brucite, Pi concentrations were below the limit of 

detection for 2-aminoethylphosphonic acid and sodium pyrophosphate and the ATP 

conversion was reduced to 11%. A two factor analysis of variance (ANOVA) test was 

undertaken, establishing that the extent of SRP production following co-precipitation 

with brucite varied significantly with both the Porg compound and the acid system 

used. There was also a significant interaction between the two factors (Table 3.4).  

 

Table 3.4: Two factor ANOVA analysis output for the extent of TP hydrolysis after co-

precipitation with, and dissolution of, brucite across six different acid systems. 

 
SS (3sf) df MS (3sf) F (3sf) 

p-value 

(3sf, ɑ = 0.05) 
Significant? 

Porg compound 1310 4 328 3630 6.85 x 10-67 yes 

Acid system 76.0 5 15.2 168 2.12 x10-32 yes 

Inter 132 20 6.58 72.6 7.96 x10-33 yes 

Within 5.07 56 0.0905 
   

Total 1550 85 18.3 
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Figure 3.3: Mean percentage of total starting P from five individual Porg compounds that formed 

SRP following brucite precipitation and acidic dissolution across a range of acid 

systems (n ≥3 for each bar). 

 

 
Figure 3.4: A more detailed expansion for the extent of ATP hydrolysis after co-precipitation 

with, and dissolution of, brucite using minimum volumes (for complete dissolution) 

of five different acid systems, and one system when an 8-fold volume excess of acid 

was used (4 mL c.AA). Mean values given, error bars show ± 1σ (n = 3 for each acid 

system). 
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Figure 3.5: Comparison of mean percentage conversions of P in Porg compounds to form SRP, 

using the minimum volume of c.AA (x-axis) and an 8-fold excess volume (y-axis). 

Individual data points represent individual Porg compounds in Table 3.2. 

 

A more focussed study dealing only with ATP, chosen as the Porg compound most 

susceptible to acid hydrolysis based on Figure 3.3, was also undertaken to further 

evaluate the effect on Porg hydrolysis of the acid system used for brucite re-dissolution. 

Figure 3.4 demonstrates that the conversion of Porg to Pi can be reduced when using 

concentrated acetic acid to levels similar to, if not lower than, those following the use 

of 1:1 c.AA and 10M HNO3 (the acid system in the Method 1 protocol), but only 

assuming that the minimum volume of concentrated acetic acid required to dissolve 

the brucite pellet is used. These results highlight the importance of using the minimum 

acid volume possible for complete brucite dissolution, in order to minimise the risk of 

acid hydrolysis of any co-precipitated Porg. This is further highlighted when 

considering the extent of Porg hydrolysis within both acid systems (minimum volumes 

of c.AA and 8-fold excess of c.AA) across all five Porg compounds used in these 

experiments (Figure 3.5).  
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Figure 3.6: a) Results of the kinetic study focussed on ATP and phytic acid salt hydrolysis 

using the acid system used in Method 1 - 1 mL c.AA and 1 mL 10M HNO3. The 

two data points at t = 15 mins represent the two movement conditions (i.e. the 

mean points of the data displayed in 3.6b). Mean values given, error bars show ± 

1σ (n = 3). b) The full data set from 15 mins to illustrate the difference between 15 

mins of minimal movement (still) and 15 mins of constant movement (shaken). 

 

As shown in Figure 3.6, there was no significant difference in the degree of Porg 

hydrolysis over time (5-60 mins) for either ATP or the phytic acid salt. As the datasets 

were normally distributed, single factor ANOVA tests were performed on the dataset 

for each Porg compound resulting in ATP: F(3, 8) = 0.891, p = 0.486, and phytic acid: 

F(3, 8) = 2.65, p = 0.120. However, in the case of ATP there was a significant increase 

in hydrolysis between a sample that was constantly shaken between the addition of 

acid to re-dissolve the brucite pellet and the addition of reagents for SRP 

determination and a sample that remained still: two sample t-test, t(4) = 2.57, p = 

0.0308. This was not observed in the case of phytic acid: two sample t-test, t(4) = 

1.09, p = 0.168. Therefore, although the time delay between the addition of acid to re-

dissolve brucite and the subsequent pH raising step (for example the addition of 

potassium acetate (3a in Figure 3.1)), should be minimised for efficiency, there 

appears to be no significant impact on the extent of contaminant Porg hydrolysis 

depending on how long the sample stands in an acid matrix before neutralisation (up 

to a 60 minute limit based on the data reported here). However, during any standing 

time before neutralisation, movement of the samples should be minimised to reduce 

the extent of Porg hydrolysis. 

 

The findings reported in this section have potentially significant implications for 

analysis of δ18Op, because any fresh Pi produced from acid hydrolysis will potentially 
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be subjected to inheritance effects and kinetic isotope fractionations, altering the bulk 

δ18Op measured within a sample. Therefore, if the original δ18Op of Pi is to be retained, 

Pi must be effectively isolated from a matrix containing potential sources of 

contaminant oxygen (whether organic C, competing oxyanions, or Porg compounds). 

In addition, this isolation from Porg should ideally be achieved prior to introduction of 

conditions that could hydrolyse Porg compounds that persist within a solution being 

carried forward to Ag3PO4 precipitation. In addition, consideration should be given to 

how hydrolysis of Porg, and therefore generation of new Pi, can be minimised prior to 

precipitation of Ag3PO4.  

 

 

3.4   Revisions to the Method 1 protocol to minimise DOM-

contamination of Ag3PO4 

 

Dissolved organic matter (DOM), particularly in the form of Porg compounds, has been 

shown above to potentially contaminate a brucite pellet and to undergo acid hydrolysis 

within the original Method 1 protocol for precipitation of Ag3PO4 and analysis of 

δ18Op. Consequently, within DOM-rich freshwater matrices, the original McLaughlin 

et al. (2004) methodology does not appear to be sufficiently robust to ensure the 

purity of an Ag3PO4 precipitate and the accuracy of δ18Op determined from this 

precipitate. In order to evaluate the utility of δ18Op within freshwaters, a revised 

methodology appears to be required. Therefore, significant efforts have been made to 

develop and evaluate initial steps in an Ag3PO4 precipitation protocol that are able to 

minimise the risk that contaminant O from DOM is incorporated into Ag3PO4 

precipitated from freshwater matrices. This work is described in further detail below. 

 

Previous work within the research group at Lancaster University has introduced a 

resin removal step prior to step 1a in Method 1 (Figure 3.1) – see Method 2 (Figure 

3.7) and Gooddy et al. (2016). The resin was SupeliteTM DAX-8, a solid-phase 

organic exchange/absorbent resin, which captures strongly hydrophobic organic 

matter attributed to humic and fulvic acids within DOM (Carroll et al., 2000). The 

eluate from this resin is subsequently loaded onto a Cl--form anion exchange column, 

which sorbs Pi from solution whilst allowing hydrophilic compounds to pass through 
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the column to waste, providing further isolation of Pi from DOM in a sample. Finally, 

Pi that is sorbed to the Cl--form anion exchange column is further isolated from 

competing oxyanions and any DOM that have also been sorbed to the column through 

chromatographic separation. Sorbed oxyanions other than Pi and sorbed DOM will 

either be eluted with the KCl eluent, although predominantly in eluent fractions other 

than those containing Pi, or remain bound to the anion exchange resin. Hydrogen 

peroxide treatment of the final Ag3PO4 precipitate was included in this revised 

protocol to ensure that any organic matter remaining within the Ag3PO4 precipitate, 

despite these sample preparation stages, was removed via oxidation, a step which has 

also been included in protocols for δ18Op analysis in soils where contamination of 

Ag3PO4 with additional sources of O is of particular concern (Tamburini et al., 2010; 

Zohar et al., 2010). Further to the work reported in Gooddy et al. (2016), this thesis 

has more thoroughly tested and evaluated the use of the DAX-8 resin to remove DOM 

in freshwater samples and the Cl--form anion exchange resin to isolate Pi. 

 

 

Figure 3.7: Method 2 – Modifications to the Method 1 (McLaughlin et al. (2004)) protocol 

reported in Gooddy et al. (2016); including DOM removal steps (1b and 12b) and 

steps to further isolate Pi from potential sources of contamination (2b-3b). 
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However, the Method 2 protocol (Figure 3.7) potentially suffers from a variable 

sample volume and matrix composition being loaded onto the DAX-8 and anion 

exchange resins in steps 1-3b. This is a particular challenge in freshwaters where the 

Pi concentration can vary significantly across samples, meaning that the sample 

volume to be loaded onto the resins in order to generate sufficient Ag3PO4 also varies 

significantly, as does the composition of the sample matrix. In an attempt to address 

these potential challenges, the research reported within this thesis developed and 

evaluated further modifications to the original Method 1 protocol for the precipitation 

of Ag3PO4 – see Method 3 (Figures 3.8 and 3.12). In this protocol, a standardised 

matrix to be loaded onto subsequent DOM-removal and anion exchange resins is 

provided by the introduction of an initial MagIC precipitation. The resulting brucite 

precipitate is re-dissolved in a standard acidic matrix which contains Pi, Mg2+ ions, 

and any other compounds that have co-precipitated within the MagIC step. This 

standardised matrix is subsequently loaded onto an H+-form cation exchange resin, to 

remove magnesium ions (to prevent interference with the later CePO4 precipitation 

stages in the protocol), and subsequent DOM-removal and anion exchange resins. 

Further, the protocol introduces a second organic exchange resin, in addition to   

DAX-8, namely ISOLUTE® ENV+. This resin was chosen to target polar analytes 

(Alonso et al., 1999; Biotage, 2004), thus in combination with the SupeliteTM DAX-8 

resin, both hydrophilic and hydrophobic organic compounds were hypothesised to be 

captured and removed from a sample matrix. 
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Figure 3.8: Method 3 - New sample preparation stages for Ag3PO4 precipitation 

protocol for freshwater samples developed and evaluated in this thesis. 

 

3.4.1   Standardisation of matrix for loading onto an anion exchange resin 

 

Anion exchange resins are designed to capture and exchange sample anions with one 

anionic species present on the solid-phase resin (Amer et al., 1955); in the case of the 

research reported in this thesis, Cl- ions were released to solution based on the use of 

Dowex 1x8 chloride-form resin. However, significant variations in the concentration 

of competing anions present within a sample matrix (e.g. chloride, nitrate, sulfate and 

phosphate anions) could alter the efficiency of an anion exchange resin with respect to 

Pi retention. Standardisation of the matrix loaded onto an anion exchange resin 

column should ensure that the retention efficiency and the subsequent elution profiles 

for Pi do not vary significantly between individual samples. Thus, two aspects that 
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could potentially interfere with the efficient Pi loading of the anion exchange resin 

were tested. Firstly, the extent of co-precipitation of nitrate and sulfate ions associated 

with the MagIC step. This work was undertaken to determine the probability that 

competing anions would co-precipitate alongside Pi during brucite precipitation, 

which may affect the retention efficiency of the anion exchange resin with respect to 

Pi. For example, if a substantial proportion of the nitrate present within a sample was 

shown to co-precipitate with brucite in the MagIC step, then it may be the case that 

the retention efficiency of the anion exchange resin for Pi would be diminished in a 

sample with high nitrate concentrations. The second set of tests considered how the 

conditions associated with brucite dissolution may affect the subsequent loading of an 

anion exchange resin. In particular, the acidic conditions required for brucite 

dissolution could impair the ability of a resin to sorb Pi, due to the potential 

overwhelming competition between Pi and the acid’s counteranions which could 

create a self-elution effect and prevent Pi from binding to the resin. 

 

3.4.1.1   Co-precipitation of competing anions with the MagIC step   

In Section 3.2, the assumption that Porg compounds did not co-precipitate with brucite 

as part of the MagIC step was tested and found to be false. A similar test was 

conducted to determine the extent to which the competing anions nitrate (NO3
-) and 

sulfate (SO4
2-) may also co-precipitate with brucite. These anions were chosen as they 

are two common anions in freshwater matrices and are likely to be the most important 

anions to be evaluated with respect to co-precipitation with brucite. Concentrations for 

these anions vary significantly in freshwaters. Therefore, tests were conducted with 20 

mg S-SO4.L
-1 and 9 mg N-NO3.L

-1 to represent typical concentrations found in UK 

river waters (Sutcliffe, 1998; Environment Agency, 2009). Brucite was precipitated by 

the addition of 1M NaOH to 0.1M MgCl2 solutions, 3 x 100 mL of 20 mg S-SO4.L
-1 

and 3 x 100 mL of 9 mg N-NO3.L
-1. The solutions were mixed occasionally to 

precipitate brucite over 10 mins and the resulting mixture was centrifuged at 3500 

RCF for 10 mins. The supernatant was decanted and stored at ≤4 ˚C until analysis. 

Concentrations of N-NO3
- were determined using a hydrazine/sulfanilamide method 

on a Seal Analytical AQ2 discrete autoanalyser (LOD = 0.40 mg N.L-1; matrix-

matched calibration of 0-20 mg N.L-1; analytical quality control: SPEX CertiPrep 

WR1 (4 mg N.L-1) and WR2 (2 mg N.L-1)) and by ion chromatography on a Dionex 

ICS2500 (LOD = 0.02 mg N.L-1; calibrated 0-10 mg N.L-1; analytical quality controls: 



 

 – 58 – 

SPEX CertiPrep WR1 (4 mg N.L-1) and WR2 (2 mg N.L-1)). Concentrations of 

S-SO4
2- were determined through ion chromatography on a Dionex ICS2500 (LOD = 

0.07 mg S.L-1; calibrated 0-25 mg S.L-1; analytical quality control: SPEX CertiPrep 

WR1 (10 mg S.L-1) and WR2 (5 mg S.L-1)). 

 

It was found that 5.4% N-NO3 and 46.0% S-SO4 of the original mass in solution co-

precipitated with the brucite pellet. The maximum loading capacity of the anion 

exchange resin used in this thesis was 1.2 meq.mL-1. Therefore, the addition of an 

initial MagIC precipitation is able to significantly reduce, although not completely 

exclude, the mass and concentration of SO4
2- and NO3

- that reaches the anion 

exchange resin. Thus, the introduction of this initial brucite precipitation step will 

significantly reduce the competition between Pi and additional anions, increasing the 

retention efficiency of the anion exchange resin with respect to Pi.  

 

3.4.1.2   Dissolution of initial brucite pellet 

As discussed in Section 3.3.1 and Figure 3.4, a number of different acid systems 

could be used to re-dissolve a brucite pellet formed during the MagIC precipitation. 

Despite there not being an acid system that prevented all acid hydrolysis of Porg, the 

HCl- and HNO3-based systems, such as that included in Method 1 involving 

concentrated acetic acid (CH3CO2H) and 10M HNO3 combination, are unsuitable for 

use before loading the resulting solution onto an anion exchange resin. This is due to 

the concentration of competing anions that would be introduced in such acid systems 

(i.e. NO3
-
 in the case of 10M HNO3), which would potentially exceed the exchange 

capacity of the anion exchange resin. Therefore, concentrated CH3CO2H was selected 

in order to re-dissolve the brucite pellet created in the initial MagIC step for Method 

3. However, using an excess CH3CO2H has been shown to increase the hydrolysis of 

Porg compounds that are co-precipitated with brucite and the formation of new Pi 

molecules (see Section 3.3). Therefore, the minimum volume of acetic acid required 

to fully dissolve the brucite pellet was always used at this stage of the Method 3 

protocol.  
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3.4.2   Dissolved organic matter removal 

 

Dissolved organic matter (DOM) removal is an essential stage in the adaptation of 

protocols for δ18Op analysis to freshwater samples, due to the organic-rich nature of 

many of these sample matrices. A combination of SupeliteTM DAX-8 (DAX-8) and 

ISOLUTE® ENV+ (ENV+) were trialled separately as part of the development of the 

revised sample preparation methodology for Ag3PO4 precipitation. These trials 

focussed initially on the effectiveness of each resin with respect to the removal of 

DOM (measured as DOC) from representative freshwater matrices.  

 

Test A: Two freshwater samples were collected from two stream sites within an 

upland peatland catchment in the Forest of Bowland, UK and filtered using 0.45 µm 

cellulose nitrate membranes. Subsequently, 0.9521 g MgCl2.6H2O was added to 3 x 

100 mL of each sample. 2.5 mL 1M NaOH was added to each beaker and the 

solutions were mixed occasionally to precipitate brucite over 10 mins and the resulting 

mixture was centrifuged at 3500 RCF for 10 mins. The supernatant was decanted and 

stored at ≤4 ˚C until DOC analysis was performed to determine the extent to which 

DOC was co-precipitated with brucite in the MagIC precipitation. DOC 

concentrations for all three tests were measured on a Thermalox TOC/TN analyser 

(LOD: 1.3 mg C.L-1; calibration 0-50 mg C.L-1
; analytical quality control: EAG 

REF162 (0.5, 5 and 15 mg C.L-1)) following the acidification and sparging of samples 

with 2M HCl. 

 

Test A was used to quantify how much DOC would co-precipitate with brucite when 

formed within a natural freshwater sample. The original DOC concentrations within 

the two stream samples were 2.47 and 2.06 mg C.L-1 respectively. The mean 

concentrations found within the supernatant following the MagIC precipitation were 

1.27 (σ = 0.08) and 1.48 (σ = 0.24) mg C.L-1, corresponding to an uptake by the 

brucite precipitate of 54.6% (σ = 2.7) and 32.0% (σ = 10.9) of the original DOC 

concentration across the two sample matrices. These data emphasise that substantial 

co-precipitation of DOC with brucite occurs. Therefore, a potentially significant mass 

of contaminant-O associated with DOC compounds is taken forward to subsequent 

stages of an Ag3PO4 precipitation protocol, alongside the potential for a significant 

mass of Porg compounds which could subsequently undergo acid hydrolysis (see 
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Section 3.3). These data indicate that simple brucite precipitation, as used within 

Method 1 (McLaughlin et al., 2004), is unlikely to effectively minimise contaminant 

sources of O within a sample derived from a freshwater matrix prior to δ18Op analysis. 

 

Test B: 0.4 mg P and 5%vv CH3CO2H solutions were made with KH2PO4 using the 

0.45 µm-filtered sample matrix from one of the stream sites in Test A described 

above. The amended aqueous solutions were loaded through a combination of DAX-8 

and/or ENV+ resins at 11 mL.min-1 to determine how the two organic exchange resins 

performed, given the concentration and mass of acetic acid used to re-dissolve the 

brucite precipitate formed during step 1c in Method 3 (Figure 3.12). Preparation is 

required prior to use for the DAX-8 and ENV+ resins to ensure maximum resin 

functionality, using methanol and MilliQ rinses. The preparation protocols for both 

resins were determined using DOC analysis of the waste washings and deemed to be 

successful when the DOC fell below the LOD. Throughout this thesis, the preparation 

protocol used involved 1 x 1 hr CH3OH batch shake followed by 3 x 1 hr MilliQ water 

shakes for DAX-8, whilst for ENV+ 1 x 1 hr CH3OH contact, 1 x 30 mins MilliQ 

water contact followed by 2 MilliQ water rinses was used. DOC was measured as 

described above and SRP as described in Section 3.2.2. 

  

Table 3.5 shows that a variable, but generally small, proportion of the CH3CO2H was 

retained on the organic resins and that, unexpectedly, in some cases a substantial 

proportion of Pi was retained during a stage which aims to selectively remove DOM 

from a sample matrix. It should be noted that the majority of DOC measured in these 

experiments was associated with the added Pi-free CH3CO2H used to re-dissolve the 

brucite precipitate. It may still be possible that a significant proportion of natural 

DOM compounds (containing the bulk Porg pool) is retained on the DAX-8 or ENV+ 

resins due to the two different targets (hydrophilic/hydrophobic) for each resin (see 

test C below). The test B experiment described here was conducted with 5%vv 

CH3CO2H. Further work reported in Section 3.4.4 established that it was not possible 

to run this concentration of CH3CO2H when loading a sample onto the anion exchange 

resin, and therefore this concentration was reduced to 0.6%vv for samples that were 

run using Method 3 in Chapters 4 and 5. However, the data reported in Table 3.5 do 

highlight the potential for retention of Pi on organic exchange resins. This retention 

has the potential to impart an isotope effect on the bulk Pi, if one isotope is 
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preferentially retained on the resins. No evidence has been found to support such an 

isotope effect, however further work is required to fully explore this issue. In addition, 

Pi retention on resins could be an issue if Pi concentrations are very low in a sample, 

meaning that an insufficient mass of Pi is ultimately eluted from the anion exchange 

resin and carried forward to precipitate Ag3PO4.   

 

Table 3.5: DOC and SRP analysis of eluates through ENV+ and DAX-8 resins following Test B 

DAX-8 /mL 
ENV+ 

/cartridge 

Sample 

volume /mL 

Mass of 

DOC 

loaded /mg 

DOC% 

retained 

Pi % 

captured 

10 - 100 18700 24 16 

20 - 100 17300 16 29 

40 - 100 18800 42 45 

- 1 50 9060 32 27 

- 1 100 18100 16 18 

- 1 250 50600 16 14 

20 1 100 18500 37 35 

20 1 250 45900 18 13 

 

Test C: A river water sample was collected from the same location described in test A 

above and filtered at 0.45 µm. The filtered water was pumped at 11 mL.min-1 through 

a combination of the DAX-8 and ENV+ resins, in order to establish the optimum resin 

volume required to efficiently remove DOM compounds from the freshwater matrix. 

The original DOC concentration within the river water from this second sample 

collection was 36.2 mg C.L-1 (Table 3.6). It can be seen that whilst increasing the 

number of ENV+ cartridges in series does not have a substantial effect on DOC 

removal, the larger the ratio of sample volume to DAX-8 resin, the greater the 

concentration of DOC that remained in the eluate. Although the 1:5 ratio of DAX-8 to 

sample was the most efficient DOC removal ratio in Table 3.6, it can be seen in 

Table 3.5 that 29% of Pi was retained on the DAX-8 resin at this ratio, which could 

cause a significant alteration in the δ18Op of the Pi pool remaining in solution. 

Therefore, a volume of 10 mL of DAX-8 was chosen for the one litre tests described 

in Section 3.5 below.  
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Table 3.6: DOC analysis of eluates from a natural river matrix with initial concentration of 

36.2 mg C.L-1 

Resin Amount 

Volume of 

river water 

/mL 

Average 

[eluate DOC] 

/mg C.L-1 

DOC % 

retained 

DAX-8:River 

water 

ENV+ 1 cartridge 1000 21.0 42 - 

ENV+ 2 cartridges 1000 28.1 22 - 

ENV+ 3 cartridges 1000 22.4 38 - 

DAX-8 20 mL 100 13.7 62 1:5 

DAX-8 20 mL 200 17.7 51 1:10 

DAX-8 10 mL 250 21.0 42 1:25 

DAX-8 30 mL 100 10.7 70 1:33.3 

DAX-8 10 mL 500 24.6 32 1:50 

 

3.4.3   Anion exchange resin elution profiles 

 

Step 6c of Method 3 (Figure 3.12) involves loading a sample matrix onto a Cl--form 

anion exchange resin. Following loading, it is important to ensure the elution profile 

separates competing anions (e.g. Pi, NO3
-
 and SO4

2-) effectively and consistently, in 

order to isolate Pi without major loss of Pi or the need to determine Pi mass in each 

sample run individually. The elution profile in Method 2 is based on a 50 mL volume 

of anion exchange resin per sample, with 0.3M KCl as the eluent. However, for 

Method 3 a removal of significant quantities of competing anions prior to loading of 

the anion exchange resin will occur through the initial MagIC precipitation described 

in Section 3.4.1. Therefore, based on the 1.2 meq.mL-1 binding exchange capacity of 

the Cl--form anion exchange resin, 12.5 mL of resin was deemed sufficient to capture 

0.4 mg P-Pi, with a sufficiently large excess of anion exchange capacity associated 

with this volume of resin to prevent competition with other competing anions, which 

could reduce Pi retention efficiency during loading. Due to such a major change in 

resin volume compared to that used in Method 2, new elution profiles for Pi removal 

from anion exchange resins were developed in the research reported in this thesis. 

 

Six x 100 mL MilliQ solutions containing 0.4 mg P, 25.8 mg NH4NO3, 13.7 mg 

(NH4)2SO4 and 5 mL CH3CO2H were loaded onto 12.5 mL of Cl--form anion 

exchange resin at 5 mL.min-1. Three columns were eluted with 0.25M KCl at 

1 mL.min-1 and the remaining three columns with 0.3M KCl. Eluent fractions were 

collected every minute for 110 mins and analysed for SRP, NO3
- and SO4

2-. SRP 
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concentrations were measured using the techniques described in Section 3.2.2, and 

N-NO3
- and S-SO4

2- concentrations were determined as described in Section 3.4.1.1.  

 

As reported in Figures 3.9 and 3.10, subtle differences between elution profiles were 

observed when using 0.3 and 0.25M KCl. Both eluents resulted in very similar forms 

for both the Pi and SO4
2- profiles. However, there was a greater degree of separation 

between the downward tail of Pi and the upward tail of SO4
2- when using the 0.25M 

KCl eluent compared to the 0.3M eluent. For both profiles, the NO3
- concentration 

was below detection for the entire period during which Pi and SO4
2- were eluting from 

the anion exchange resin. From these profiles it was determined that, in order to 

ensure a sufficient gap between the Pi and SO4
2- tails, 12.5 mL anion exchange resin 

should be eluted with 0.25M KCl at 1 mL.min-1. Under these conditions, the first 29 x 

1 mL fractions were collected for further treatment within Method 3, on the basis that 

these fractions were assumed to contain the bulk of the Pi that could be eluted from 

the anion exchange resins. Analysis of the area underneath the Pi peaks in Figure 3.9 

determined that initial 0.4 mg Pi was almost fully recovered (>95%) in the 29 mL 

fraction using 0.25 M KCl as the eluent. In addition, a reduced elution rate of 

0.5 mL.min-1 was also evaluated (Figure 3.11). However, 1 mL.min-1 was deemed to 

be optimum due to the increased length of time taken to collect Pi at a lower elution 

rate, but without an appreciably greater separation between Pi and SO4
2-. 
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Figure 3.9: Elution profiles for Cl
-
-form anion exchange resins using 0.25M KCl with an 

elution rate of 1 mL.min-1 in two duplicate columns - C3 and C5. 

 

 

Figure 3.10: Elution profiles for Cl
-
-form anion exchange resins using 0.3M KCl with an 

elution rate of 1 mL.min-1 in two duplicate columns - C6 and C14. 
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Figure 3.11: Elution profile for Cl
-
-form anion exchange resin using 0.3M KCl with an elution 

rate of 0.5 mL.min-1. The Pi profile is not as “peaked” as in Figures 3.9 and 3.10  

as fractions that exceeded the Pi concentration range of the autoanalyser were not 

diluted, and yielded results of the maximum value for the instrument. However, 

the point at which the Pi and SO4
2- tails overlap is still clearly visible. 

 

 

3.4.4   Method 3 protocol 

 

The full Method 3 protocol that was used in Section 3.5 is reported in Figure 3.12. 

The new sample preparation stages prior to Method 1 are steps 1c-7c and 16c; the 

addition of steps 4c, 6c and 16c are consistent with the Method 2 preparation stages. 

The major differences compared to Method 2 are the introduction of a primary 

MagIC step to standardise the matrix before the samples are loaded onto resins (steps 

1c-2c in Figure 3.12), and a new resin methodology (steps 3c-6c) to ensure effective 

DOM removal.  
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Figure 3.12:  Method 3 protocol before testing. 
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3.5   Comparison of Ag3PO4 extraction methods 

 

This section reports a comparison of the new Method 3 protocol described in Section 

3.4 against Method 1. Four different matrices were employed: MilliQ water; an 

effluent from Lancaster wastewater treatment plant (WWTP); and two DOM-rich 

river waters from the upland peat catchment sampled in Section 3.4.2 (test A). These 

natural matrices were chosen to represent high DOM samples from different sources, 

incorporating the potential for different combinations of DOM and Porg compounds to 

influence a protocol for δ18Op determination, and are choices that will likely cover a 

large range of Porg compounds found in UK freshwaters. 

 

3.5.1   Experimental approach 

 

In order to test whether the δ18Op determined from an individual protocol is accurate, 

it is important that the source δ18Op used within an experiment is known. Therefore, 

10 litres of the WWTP effluent and of the two river waters were stripped of Pi prior to 

analysis, to prevent Pi that may have been originally present within a matrix from 

influencing the final δ18Op measurement. Stripping of Pi was achieved through a batch 

mode shake using a zirconium oxide (ZrO)/acrylamide binding gel that has been used 

to remove P from aqueous solutions within a diffusive gradient in thin films (DGT) 

technique (Zhang et al., 1998; Ding et al., 2010). The matrix was shaken for 24 hrs 

following the addition of each sheet of ZrO binding gel, until the Pi concentration in 

the matrix was below 0.009 mg P.L-1 (equating to <2% of the Pi in the sample after the 

addition of the KH2PO4 spike). This method was chosen to minimise any potential 

alterations of the initial matrix; for example, chemical stripping of P using the MagIC 

precipitation would have stripped the matrix of Pi, however this process would have 

also introduced both Mg2+ and Cl- ions into the matrix. The presence of these 

additional ions during the spiking experiment could have significant, and differing, 

effects on the performance of the two methods.  

 

A KH2PO4 spike was subsequently added to 3 x 1 L of the four matrices to attain 

triplicate 0.4 mg P.L-1 solutions for each method. KH2PO4 was chosen to create the Pi 

spike as it is readily combustible, which allows direct analysis of δ18O within the 
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TCEA-IRMS without the need for additional chemical reactions which could alter the 

source δ18O value. The spectator cations – K+ and H+ – should also have minimal 

interference on the protocols for Ag3PO4 precipitation. 

 

Aliquots of the spiked matrices were taken throughout the initial stages of Method 3 

(steps 3c-6c in Figure 3.12) to determine Pi losses and pH. The concentrations of SRP 

and TP were measured using the techniques described in Section 3.2.2, and DOC 

concentrations as in Section 3.4.2. The following approaches were then used: 

 

Method 1: 0.1 mol MgOH2.6H2O was added to 3 x 1 L of each Pi-spiked MilliQ 

water matrix and sample matrix, followed by 25 mL 1M NaOH solution, and mixed 

occasionally to precipitate brucite over 10 mins. The precipitate was collected through 

centrifugation at 3500 RCF for 10 minutes and dissolved in a 1:1 mixture of 10M 

HNO3 and c.CH3COOH. The addition of a CH3CO2K buffer and CeNO3 formed a 

CePO4 precipitate, which was dissolved in 2 mL 1M HNO3. The solution was diluted 

to 0.2M HNO3 with MilliQ water before the removal of Ce+ ions using an overnight 

shake with Dowex 50x8 cation exchange resin in batch mode. After separation of the 

liquid from the resin, Ag3PO4 was precipitated using the fast precipitation method by 

addition of 0.5 g AgNO3, c.NH4OH, 3M HNO3 and 3M NH4NO3. The resulting 

Ag3PO4 was captured on a 0.2 µm polycarbonate membrane filter and transferred to a 

glass vial and dried at 40 ˚C overnight.  

 

Method 3: 0.1 mol MgOH2.6H2O was added to 3 x 1L of each Pi-stripped sample 

matrix, followed by 25 mL 1M NaOH solution and mixed occasionally to precipitate 

brucite over 10 mins. The precipitate was collected through centrifugation at 3500 

RCF for 10 minutes and dissolved in the minimum volume of c.CH3COOH necessary 

to fully dissolve the brucite pellet. The acidic solutions were loaded at 5 mL.min-1 

through 1 x 7 mL cation exchange resin, 1 x 10 mL DAX-8 column, 1 x ENV+ resin 

and onto a 12.5 mL anion exchange resin. Pi was eluted using 0.25M KCl at 

1 mL.min-1. 0.01 mol MgOH2.6H2O was added and diluted to form a 100 mL solution. 

2.5 mL 1M NaOH solution was added to a beaker containing the 100 mL solution and 

mixed occasionally to precipitate brucite over 10 mins. Following the brucite 

precipitation, the method proceeded as for Method 1, as described above, from 

brucite centrifugation to Ag3PO4 collection. After the Ag3PO4 had dried, 0.5 mL 15% 
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H2O2 was added to each vial and left to decompose any remaining organic compounds 

(minimum 3 hrs) and then removed by evaporation at 40 ˚C overnight, and finally 

washed with 3 x ~1.5 mL MilliQ water, centrifuged at 3500 RCF for 20 minutes and 

dried at 40 ˚C overnight.  

 

Ag3PO4 samples were analysed for δ18Op on an IsoPrime100 mass spectrometer 

coupled to a varioPYRO cube elemental analyser. For each sample, 700 μg Ag3PO4 

was weighed into a silver capsule with 800 μg carbon black, dried at 40°C overnight 

and converted to CO by pyrolysis in an ash crucible at 1450 C. The resulting gases 

are passed through Sicapent (phosphorus pentoxide) to remove water. The CO is 

separated from other impurities, namely N2, using a purge-and-trap system and helium 

carrier gas. 18O/16O is derived from the integrated mass 28 (12C16O) and 30 (12C18O; 

14C16O; 13C17O) signals from the sample CO pulse, compared to those in an 

independently introduced pulse of pure CO reference gas. These ratios are then 

calibrated to the Vienna-Standard Mean Ocean Water (VSMOW) scale in per mille 

notation (‰) using standards – NBS127 (+9.3‰), EM Ag3PO4 (+21.7‰) and Acros 

Ag3PO4 (+14.2‰). The precision obtained from repeat analysis of standard materials 

is generally better than ±0.5‰VSMOW. 

 

3.5.2   Results 

 

The isotopic composition of Ag3PO4 collected from each method applied to each 

matrix is reported in Table 3.7 and Figure 3.14. Although triplicate spiked aliquots of 

each matrix were used for each method and matrix combination, isotopic analysis was 

not always possible for every sample due to a lack of Ag3PO4 yield. This was 

particularly the case for Method 1 when applied to these matrices, confirming that 

there are severe limitations associated with this protocol when applied to freshwater 

matrices. For example, following the MagIC precipitation for Method 1 in the River 2 

matrix, the acidic mixture would not fully dissolve a black precipitate that had formed 

instead of the usual creamy white brucite pellet (Figure 3.13). This precipitate 

appeared to contain the Pi because no Ag3PO4 was precipitated in the final step of the 

Method 1 protocol. The reason for very low Ag3PO4 yields within the Method 1 

protocol was not always as visibly apparent for other the matrices; however, the yields 

were so low that only a full set of triplicate measurements was achieved for the 
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Lancaster WWTP effluent, which was also associated with substantial variation in 

isotope composition. Therefore, it is suggested that, even if the Pi loss was not visible, 

freshwater matrices can prevent the full transformation of Pi into Ag3PO4.   

 

 

Figure 3.13: Comparison of black “brucite” precipitate formed when applying Method 1 to the 

River 2 matrix, which did not fully dissolve in very low pH conditions, and typical 

creamy white brucite pellets formed in other matrices. 

 

For Method 3, loss of Pi was found to occur consistently during the loading of the 

anion exchange resin. For example, using the WWTP matrix, 43.2% of the starting Pi 

mass was lost throughout all the resin stages (steps 3c-7c in Figure 3.12), of which 

the majority was found in the waste stream when loading the anion exchange resin 

(39.9% of starting mass of Pi). A similar loss was also observed in the case of the 

River 2 samples, with 58.1% of the original Pi mass being lost in total and 46.3% of 

the starting Pi mass being recovered in the waste stream from loading of the anion 

exchange resin. After several small-scale experiments in which the mass of acetic acid 

and pH were varied to determine which had the greatest effect, it was established that 

the increased total mass of acetic acid loaded onto the anion resin, relative to earlier 

trials described in Section 3.4, had prevented Pi from effectively sorbing to the solid 

phase anion exchange resin. Given the large proportion of Pi that did not bind to the 

anion exchange resin, an isotope effect associated with the loss of Pi during the 

loading of the resin cannot be ruled out, and that this potential isotope effect may have 

influenced the resulting δ18Op from these trials. Subsequently, within the analyses of 

samples collected in Chapters 4 and 5 (and reported in Chapter 6), the anion 

exchange resin conditions at this stage of the protocol were altered, increasing the 

anion exchange resin volume to 50 mL and the KCl molarity to 0.3M in order to 

optimise the Pi elution profile. In addition for Chapter 4 and 5 samples, to ensure the 
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acetic acid concentration did not affect the loading of Pi onto the anion exchange 

resin, re-dissolved brucite samples were diluted with MilliQ water to form a 0.6%v/v 

solution for loading, because this concentration had been typically used without Pi 

losses in the previous small-scale trials described in Section 3.4. To ensure that these 

new conditions allowed full Pi adsorption to the resin and that Pi was effectively 

separated during the anion exchange resin elution, triplicate spiked MilliQ matrices – 

consisting of 0.6%vv acetic acid, 0.7 mg P-PO4.L
-1, 11.2 mg N-NO3.L

-1 and 3.3 mg S-

SO4.L
-1 – were loaded and eluted using the new conditions. The waste streams from 

the loading of the resins were collected and analysed for Pi, and were all below 

detection limits. The subsequent elution profiles exhibited a clear separation of Pi 

from SO4
2- and almost complete Pi mass recovery was achieved (Appendix A.1).  

 

Table 3.7: Comparison of spiked KH2PO4 samples in 4 matrices – MilliQ water, Lancaster 

WWTP effluent and two river samples taken from an upland peat catchment. The 

mean δ18Op of the KH2PO4 spike following direct pyrolysis was 15.00‰ (1σ = 0.78‰, 

n = 9). Oxygen yield refers to the EA measurement of oxygen within the Ag3PO4. A 

pure Ag3PO4 sample would have an oxygen yield of 15.3%. Isotope values are given 

to 2 decimal places and oxygen yields to 1 decimal place. 

 Method 1 - McLaughlin et al. (2004) Method 3 – Revised protocol 

Matrix 
Mean 

δ18Op /‰ 

1σ 

/‰ 

Oxygen 

yield /% 

1σ 

/% 
n 

Mean 

δ18Op /‰ 

1σ 

/‰ 

Oxygen 

yield /% 

1σ 

/% 
n 

MilliQ 14.59 - 8.4 - 1* 13.88 0.47 15.3 0.7 3 

WWTP 

effluent 
14.83 6.89 19.1 3.2 3 13.04 0.31 14.1 0.7 3 

River 1 14.06 - 10.6 - 1* 16.12 - 16.0 - 1 

River 2 n.d. - n.d. - 0 14.23 - 12.3 - 1 

Total 14.65 4.89 15.2 5.8 5 13.89 1.06 14.5 1.3 8 

n.d. = not determined; * = 3 samples amalgamated to form one TCEA-IRMS analysis  
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Figure 3.14: Individual δ18Op results from KH2PO4 spikes of four matrices across two methods 

– Method 1 - McLaughlin et al. (2004) protocol and Method 3 – the revised 

protocol (Figure 3.12). Black diamonds represent the δ18Op from a direct pyrolysis 

of KH2PO4 and the dashed lines for the mean ratio ± 1σ (n = 9). 

 

Whilst neither Method 1 nor Method 3 consistently achieved suitable Ag3PO4 yields 

to perform isotope analyses on all triplicate subsamples, the mean δ18Op of Method 1 

(x̅ = 14.65, σ2 = 23.87, n = 5) was closer to that of the directly pyrolysed KH2PO4 

spike (x̅ = 15.00, σ2 = 0.62, n = 9), compared to Method 3 (x̅ = 13.89, σ2 = 1.13, n = 

8). However, Method 3 resulted in a much smaller variance in terms of δ18Op than 

Method 1 (Figure 3.14). For example, for WWTP effluent – the only matrix that 

generated sufficient Ag3PO4 in each triplicate subsample for TCEA-IRMS analysis 

using both protocols – the maximum-minimum ranges were 13.20 and 0.61‰ for 

Methods 1 and 3 respectively. In addition, whilst Method 3 did not generate a 

complete triplicate dataset, Method 1 did not precipitate sufficient Ag3PO4 for any 

subsample in any matrix, except within WWTP effluent (Table 3.7). It should also be 

noted that the loss of Pi on the anion exchange resin experienced in Method 3 (up to 

58% of the starting mass of Pi), may also have created an isotope effect that could 

explain the substantial difference in terms of δ18Op between the KH2PO4 spike and the 

Ag3PO4 generated using Method 3. This difference may be reduced by the proposed 
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change in acetic acid concentrations and anion exchange resin conditions described in 

this section. 

 

To determine the purity of the Ag3PO4 produced from an extraction protocol, the 

oxygen yield from TCEA-IRMS analysis can be compared to that of a pure Ag3PO4 

precipitate. A pure Ag3PO4 precipitate contains a theoretical oxygen yield of 15.3%. If 

Ag3PO4 precipitates yield larger oxygen yields then this suggests that a source of 

contaminant O is present in the precipitate. If oxygen yields are smaller than 15.3%, 

the presence of an O-free contaminant might be inferred, for example AgCl, which 

may have prevented a full precipitation of Pi during the extraction protocol which 

could impart a kinetic fractionation. However, the presence of such compounds would 

not alter δ18Op for the Ag3PO4 that had been precipitated. However, the incorporation 

of Pi generated within a protocol as part of an Ag3PO4 precipitate, i.e. following 

hydrolysis of Porg, cannot be distinguished using oxygen yields.  

 

When the oxygen yields of the Ag3PO4 precipitates within the TCEA-IRMS analysis 

were compared, it was found that the mean oxygen yield for Method 1 was closer to 

that of a pure compound (x̅ = 15.2%, 1σ = 5.8%, n = 5), compared to Method 3 (x̅ = 

14.5, 1σ = 1.3, n = 8) which shows a lower oxygen yield than expected (Table 3.7). 

Despite the mean content being close to that of a pure Ag3PO4 molecule, no individual 

matrix from Method 1 produced an oxygen yield within ±25% of the expected figure 

of 15.3% for a pure Ag3PO4 compound, with yields suggesting purities of 55% for the 

MilliQ, 125% for the WWTP effluent and 69% for the River 1 matrices. In contrast, 

the only matrix from Method 3 that is outside ±10% of the theoretical yield is that of 

the River 2 matrix (20% lower than the theoretical yield). Figure 3.15 demonstrates a 

substantially smaller variance for oxygen yields for the WWTP effluent matrix for 

Method 3 compared to Method 1. Furthermore, Figure 3.16 clearly demonstrates that 

there is a tighter clustering of O yields and δ18Op ratios for individual data points when 

using Method 3, suggesting that Method 1 was not reliable in terms of O yield, 

particularly in combination with the fact that many of the replicates did not yield 

sufficient quantities of Ag3PO4 for isotope analysis.   
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Figure 3.15: Individual oxygen yields of Ag3PO4 that were run in the TCEA-IRMS for Method 

1 - McLaughlin et al. (2004) protocol and Method 3 - Revised protocol (Figure 

3.12). The theoretical yield for Ag3PO4 – 15.3% (±10%) - is provided for reference 

as dashed lines. 

 

 
 

 
Figure 3.16: δ18Op and O yields for individual Ag3PO4 precipitates formed using Methods 1 

and 3 across all four matrices. The mean δ18Op of the KH2PO4 spike and 

theoretical O yield for a pure Ag3PO4 have been provided for reference at 15.00‰ 

and 15.3% respectively. 
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Previous work within the research group at Lancaster University has also compared 

Method 1 against Method 2 across four matrices (Figure 3.17). Similarly to Method 

3, Method 2 resulted in a much smaller variance in δ18Op than Method 1 for across 

these sample matrices, although little difference between Methods 1 and 2 was 

observed for the MilliQ matrix. To determine if there was a significant difference 

between mean δ18Op determined from the two protocols and directly pyrolysed 

KH2PO4 regardless of sample matrix, a Shapiro-Wilk test for normality was 

performed on all three categories (Methods 1 and 2 and KH2PO4), resulting in p 

values greater than 0.18 showing that the data were normally distributed within each 

category. A test for equality of variance, the Levene’s test for means, was then 

performed yielding a p value <0.001, determining that variances were significantly 

different from each other. Based on these analyses, two one-way analyses of variance 

(ANOVA) were undertaken, and it was determined that there was no significant 

difference between Method 2 and KH2PO4 at a matrix level. Conversely, there was a 

significant difference with Method 1 and KH2PO4 at a matrix level: F(4, 12) = 45, p  

< 0.001. When considering the pairwise comparison for each Method 1 matrix against 

KH2PO4, the only matrix that was not significantly different from KH2PO4 in terms of 

δ18Op generated using Method 1 was that of the MilliQ matrix.  
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Figure 3.17: Previous comparison of Methods 1 and 2 (data from B. Surridge, personal 

communication). Individual δ18Op results from KH2PO4 spikes of four matrices 

across two methods – Method 1 - McLaughlin et al. (2004) protocol and Method 

2 – Gooddy et al. (2016). Black diamonds represent the δ18Op from a direct 

pyrolysis of KH2PO4 and the dashed lines for the mean ratio ± 1σ (n = 5). 

 

3.5.3   Summary: selecting an appropriate Ag3PO4 protocol for freshwater matrices  

 

This chapter has shown that there are a number of significant issues to address when 

applying the original McLaughlin et al. (2004) (Method 1) protocol to freshwater 

matrices. This is evidenced through the extent of co-precipitation with brucite of the 

potential contaminants Porg (Section 3.2), DOM, NO3
- and SO4

2- (Section 3.4.1). 

Therefore, the use of MagIC to isolate Pi from a sample matrix is not sufficient for 

freshwater matrices in which these sources of contaminant O are likely to be common. 

In addition, this thesis has encountered difficulties in generating sufficient masses of 

Ag3PO4 from freshwater matrices using Method 1, including the formation of an 

insoluble precipitate in the MagIC step that appears to bind or adsorb Pi and does not 

dissolve in the strongly acidic conditions proposed by McLaughlin et al. (2004). 

Finally, the O yield data from Method 1 appear to be problematic, with none of the 

samples reported in Figure 3.15 achieving yields with ±25% of the theoretical yield. 

Furthermore, for the WWTP effluent, a very wide range for δ18Op (13.20‰) was 
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observed across replicate samples. In conclusion, the research reported in this chapter 

emphasises that Method 1 cannot be applied directly to freshwater matrices without 

any modification.   

 

Method 3 appears to be a significant improvement over Method 1, particularly in 

terms of its potential to reduce sources of contaminant O through the combined use of 

organic exchange resins (Section 3.4.2). In addition, the O yield data are far closer to 

the theoretical value for a pure Ag3PO4 compound (Table 3.7), and the variances in 

δ18Op for replicate samples are much smaller than observed for Method 1. However, it 

should be noted that the loss of Pi on the anion exchange resin reported in Section 

3.5.2 prevented some of the replicate samples from generating sufficient Ag3PO4 for 

analysis. This loss, up to 58% of the starting Pi mass in this step, may also have 

created an isotope effect that could explain the substantial difference between the 

δ18Op from the KH2PO4 spike and the δ18Op in the Ag3PO4 generated using Method 3. 

In conclusion, Method 3 is a significant improvement on Method 1 and generates 

what appears to be pure Ag3PO4. However, there is also evidence of an isotope effect 

that influences δ18Op, which has likely been caused by the incomplete recovery of Pi 

through the loading of the anion exchange resin in step 6c. However, this remains a 

method that merits further application in Chapters 4 and 5, specifically following the 

proposed change in acetic acid concentrations and anion exchange resin conditions 

described above that are designed to minimise Pi loss.  

 

Method 2 is also a significant improvement over the Method 1 protocol, particularly 

in terms of the isolation of Pi from a freshwater matrix, but also importantly the 

consistency of generating sufficient Ag3PO4 for pyrolysis. Figure 3.17 demonstrates 

the precision and accuracy of δ18Op measurements across a number of sample matrices 

using Method 2, in contrast to Method 1. Therefore, Method 2 was selected to be 

applied throughout the research reported in Chapters 4 and 5 of this thesis. 

Furthermore, where possible, Method 3 was run in parallel with Method 2 to 

generate data for a subsequent method comparison that will be reported in Chapter 6. 
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Chapter 4: 

Evaluating the utility of δ18Op as a tracer of point source 

inputs and in-stream cycling of P in a freshwater river 

system 

 

 
 

 

4.1   Introduction 

 

Phosphate oxygen isotope analysis represents a potentially valuable tool to aid in the 

determination of sources and biogeochemical cycling of inorganic phosphorus (Pi) 

within riverine environments. Inorganic P plays a vital role in river ecosystems 

through its control on primary production because, typically, freshwaters are 

perceived to be P-limited whereas marine environments are viewed as N-limited 

(Schindler, 1974; Doering et al., 1995). However there are exceptions to this 

traditional view of nutrient limitation, with some freshwater ecosystems shown to be 

N-limited or co-limited by both N and P, whilst some marine environments have been 

shown to be P-limited (Krom et al., 1991; Howarth and Marino, 2006; Conley et al., 

2009; Xu et al., 2010).  

 

Phosphorus limitation occurs when the bioavailable pool of P is insufficient to support 

the demands of primary producers, including phytobenthos, phytoplankton and 

macrophytes in river ecosystems, compared to the availability of other nutrients. 

Under these circumstances, an increase in the availability of Pi would result in an 

increase in the rate of primary production (Hecky and Kilham, 1988). Removal of P 

limitation is often linked to the alteration of natural P cycles within aquatic 

ecosystems through inputs of bioavailable P from anthropogenic sources, resulting in 

undesirable ecosystem changes linked to eutrophication that include increases in 

primary production, shifts in community composition, increased frequency of algal 

blooms and hypoxia, and reduced biodiversity (Sondergaard and Jeppesen, 2007; 

Smith and Schindler, 2009). Although bioavailable P enters aquatic ecosystems from a 
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range of sources, modelling suggests that anthropogenic sources are responsible for 

92% of the 0.27 Tg Pi-P.yr-1 that is exported by rivers to coastal regions in Europe 

(Harrison et al., 2010). To be able to reduce the impact of anthropogenic Pi inputs to 

aquatic ecosystems and restore natural P biogeochemical cycles, it is vital that sources 

of Pi are accurately identified and that understanding of how P is cycled within aquatic 

ecosystems is improved.  

 

Traditional tools to address such questions surrounding Pi, including radioisotope 

labelling and modelling or monitoring of concentration changes within ecosystems, 

have significant limitations. These include constraints on the timescales over which 

processes can be investigated due to short half-lives associated with radioisotopes, 

disturbances to the natural systems associated with radiolabelling, or the omission of 

irregular natural events, such as seasonal algal blooms, during incubation experiments, 

see Section 2.1 for further discussion (Thingstad et al., 1993; Benitez-Nelson, 2000). 

However, the stable isotope composition of Pi (δ
18Op) has the potential to act as an 

inherent tracer for the sources and metabolism of P in natural ecosystems without a 

number of these limitations (McLaughlin et al., 2004; Elsbury et al., 2009; Young et 

al., 2009; Goldhammer et al., 2011a; Li et al., 2011). For example, the δ18Op ratio of a 

wastewater treatment plant (WWTP) effluent, assuming that it is isotopically distinct 

from upstream sources of Pi in a river, could be used to determine how a riverine 

ecosystem responds to inputs of bioavailable Pi from effluent. It may be hypothesised 

that if the Pi concentration within a river upstream of a WWTP is low, the river may 

be in a state of P limitation. Under these conditions, the input of bioavailable P from a 

WWTP effluent could stimulate in-stream biological activity. Consequently, in-stream 

biota could then readily metabolise Pi derived from the effluent, resulting in rapid 

fractionation of δ18Op and the approach of riverine δ18Op towards a temperature-

dependent isotopic equilibrium with water δ18O (Scenario A in Figure 4.1). However, 

if a river had a high Pi concentration upstream of a WWTP, it may be hypothesised 

that metabolic activity within the river was limited by factors other than the 

availability of Pi. Under these conditions, in-stream biota may not respond 

metabolically to an input of P from WWTP effluent at all, or at least at a much slower 

rate than within a strongly P-limited system. Under this alternative scenario, the 

influence of δ18Op from a WWTP effluent on in-river δ18Op might be expected to 

persist over a significantly longer downstream reach (Scenario B). If further inputs of 
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Pi occurred downstream of WWTP, δ18Op could also be used to identify the major 

source of P to the river within that environment, assuming that δ18Op source signatures 

were maintained. Therefore, the use of δ18Op may allow the relative importance of in-

stream metabolism of Pi derived from WWTP effluent to be clearly elucidated. 

  

 
Figure 4.1: Conceptual diagram describing possible changes in in-river δ18Op following a 

WWTP effluent input (with a distinct δ18Op signature, lower than the theoretical 

equilibrium (δ18Oeq)) for two different states of Pi-limitation within the river. 

Scenario A depicts a strongly Pi-limited system in which δ18Op rapidly approaches 

δ18Oeq downstream of the WWTP, whereas in Scenario B the δ18Op signature of the 

WWTP effluent is maintained downstream, for a system that is not limited by Pi. 

 

Despite the significant potential for δ18Op to inform research into P biogeochemistry 

within freshwater ecosystems, only a very limited number of initial studies have 

explored the use of δ18Op to assess sources and metabolism of Pi in these ecosystems 

(Blake et al., 2001; Gruau et al., 2005; McLaughlin et al., 2006a; McLaughlin et al., 

2006c; Young et al., 2009; Li et al., 2011; Gooddy et al., 2016). A major reason for 

the relative lack of research in this area has been uncertainty surrounding the use of 

current Pi extraction protocols in freshwater environments (see Chapter 3). Some 

research has applied the McLaughlin et al. (2004) protocol without modification to 

freshwater matrices, whilst other research has adapted one of the major Ag3PO4 

precipitation protocols to include clean-up stages for samples containing high 

concentrations of particulate and dissolved organic matter (DOM). The majority of 

studies have analysed δ18Op within rivers in the U.S.A. that represent potential sources 

of Pi to larger water bodies, such as Lake Erie (Elsbury et al., 2009), a tidal estuary, 

Elkhorn Slough (McLaughlin et al., 2006a), and Lake Tahoe, Lake Erie and San 

δ18Oeq

b)  Not Pi-limited

a)  Strongly Pi-limited

δ18Op

Distance downstream from WWTP



 

 – 81 – 

Joaquin River (Young et al., 2009). However, research has also shown that δ18Op may 

be used to determine anthropogenic fertiliser inputs into a wetland system (Li et al., 

2011) and to trace effluent Pi immediately downstream of a WWTP point source in a 

freshwater river (Gooddy et al., 2016). For example, Li et al. (2011) used δ18Op to 

estimate that 15-100% of the total dissolved Pi content within a wetland system 

impacted by agricultural runoff was derived from fertiliser input and retained evidence 

of a fertiliser δ18Op signature. In contrast, in an area not impacted by agricultural 

runoff, Pi concentrations were substantially lower, fertiliser inputs were estimated to 

contribute 0-1% of the total dissolved Pi and δ18Op indicated a significantly greater 

extent of biological cycling of Pi, with δ18Op values close or equal to δ18Oeq.  

 

This current chapter reports an initial application of the δ18Op technique to a 

headwater stream in the upper catchment of the River Beult (Kent, UK). Typically, 

between 60 and 85% of the total global river network length is in the form of 

headwater streams (Peterson et al., 2001; Benda et al., 2005). Therefore, 

understanding the sources and biogeochemical cycling of P within these systems is 

important for understanding nutrient cycling within river networks in general, and also 

for the downstream transport of nutrients from headwater reaches into lowland 

reaches of the network (Alexander et al., 2007; Wipfli et al., 2007). The River Beult 

was chosen as an exemplar of a rural, headwater catchment that contains a WWTP set 

within a predominantly agricultural system. In addition, previous work within the 

research group has also been conducted within the Beult catchment (Lapworth et al., 

2009; Gooddy et al., 2016), and therefore direct comparisons can be made with 

historical data from the sites. Gooddy et al. (2016) combined δ18Op analysis with 

stable isotope analyses of both nitrate and ammonium to trace biogeochemical 

processes following the input of a WWTP effluent to this headwater stream. The 

research was conducted over a 200m reach, with Sutton Valence WWTP located 35m 

upstream of the final in-river sample site. Under low flow conditions, Pi 

concentrations decreased prior to the WWTP input but δ18Op remained relatively 

constant, suggesting that abiotic processes such as dilution or sorption of Pi, rather 

than biological cycling, were responsible for changes in Pi concentration. Conversely, 

under high flow conditions Pi concentrations and δ18Op increased prior to the WWTP, 

suggesting an additional Pi input or Pi regeneration from Porg compounds. However, 

under both flow conditions, δ18Op provided little evidence for in-river metabolism of P 
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derived from WWTP effluent within the 35m reach downstream of the WWTP. 

However, the relatively short reach downstream of the point source, and therefore the 

short residence time of water within the river, may have constrained any chance to 

detect evidence for in-river metabolism of WWTP-derived Pi. Longer in-river 

transects downstream of WWTPs are required in order to more fully assess the impact 

of in-river cycling on Pi derived from sources such as WWTPs. 

 

Therefore, the aim of this chapter was to evaluate the potential for δ18Op to be used as 

a tracer of Pi inputs to the headwater reaches of a freshwater river network and, 

through δ18Op analysis, to identify the biogeochemical processes influencing the 

downstream transport of Pi within a river network. In comparison to the research 

reported by Gooddy et al. (2016), the in-river transect was extended to 4 km and 

included a 2.75 km reach downstream of the WWTP effluent input. Two specific 

hypotheses were tested within this chapter:  

 

i) The input of Pi to a river from a point source (WWTP effluent) can be 

identified on the basis of an isotopically distinct δ18Op signature 

compared to upstream sources of Pi; 

ii) Metabolic processes will influence the downstream transport of Pi 

following input from a point source, leading to isotope effects or isotope 

fractionations that will enable the specific processes to be identified 

through δ18Op analysis. 

 

Hypothesis 4.ii assumes that the river is in a state of P limitation upstream of the 

WWTP. To indicate which nutrient is most likely to be limiting within an ecosystem, 

the Redfield ratio has often been used. This ratio is based on the stoichiometry of the 

mean chemical composition of marine plankton (both zoo- and phytoplankton) 

(Redfield et al., 1963). According to the classic Redfield ratio, C:N:P is found as a 

106:16:1 molar ratio. However, further work has questioned the consistency of the 

ratio spatially and temporally, and has suggested alternative ratios to represent 

different environments (Hecky et al., 1993; Elser and Hassett, 1994; Sterner et al., 

2008). This thesis will use the ratio of Sterner et al. (2008); a 166:20:1 molar ratio 

which was assimilated from more than 2000 data points, including from both large 
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and small  freshwater lakes, whereas the classic Redfield et al. (1963) ratio was based 

on marine organisms only. 

 

A secondary aim of the chapter was to generate an in-field dataset comparison 

between Methods 2 and 3 reported in Chapter 3. However, this comparison will be 

discussed in Chapter 6, with all data presented in the current chapter based on 

Method 2, thereby allowing direct comparison with previous research from the site 

reported by Lapworth et al. (2009) and Gooddy et al. (2016). 

 

 

4.2   Methodology 

 

4.2.1   Study site description 

 

This research was undertaken within the upper Beult catchment located near Sutton 

Valence, Kent, South England (Figure 4.2). The geological setting of the study sites is 

the Weald Clay formation, which represents a clay and silty-clay formation within 

which are found outcrops of limestone and sand (Lapworth et al., 2009). The section 

of the River Beult chosen for sampling covered approximately 4 km. At the upstream 

end of the reach was a working fruit farm and orchard, before the stream flowed 

through arable land and grassland (mainly dairy pasture) (Table 4.1). Located 1.38 

km downstream from site A was the final effluent discharge point for Sutton Valence 

WWTP. Sample W was collected from the final effluent itself before entry into the 

river, whilst sample E was collected 40 m downstream on the assumption that the 

effluent would have mixed fully with the main stream by this point.  
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Figure 4.2: Location of sample sites along a tributary of the River Beult, Kent, UK 

(direction of river flow is from site A to site I). All samples were 

located along the main stem of the river, with the exception of samples 

T and W (yellow markers), which represent a tributary inflow and the 

final effluent from Sutton Valence WWTP respectively. Tap water 

sample was collected from a location 1.6km ESE from sample I. Inset 

shows the geographical location of the study site in southern England 

(given as a black marker).  
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As shown in Figure 4.2, there is an apparent break in the stream between sampling 

sites A and B. Based on conversations with farm workers, it was determined that the 

stream had been diverted underground around the side of the irrigation pond, and a 

pipe is visible directly south of the irrigation pond where the stream re-emerges. 

Typically, the stream is allowed to flow and the entrance to the irrigation pond is 

blocked (this was the case in the March sampling event described below). However, 

when water levels in the irrigation pond are low, the stream is blocked and diverted to 

the irrigation pond (Figure 4.3), as was the case during the September sampling event 

described below. The suspected length of the underground culvert around the edge of 

the irrigation pond has been included in the reported distances from site A in Table 

4.1. 

 

 

Figure 4.3: View downstream from site A towards site B (see Figure 4.2) on 

08/09/2015. The stream is directed either to the left branch – 

feeding the isolated irrigation pond – or the right branch – 

underground culvert that emerges immediately south of the 

irrigation pond, upstream of site B.  
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4.2.2   Field sampling  

 

Two sampling campaigns were conducted, the first over two days in March 2015 

(02/03/2015 – sites C, D, F-I and T; 03/03/15 – sites A, B, E and W) and the second 

on 8th September 2015. March was chosen to represent late winter/early spring, high-

flow conditions, whilst September was selected to be representative of late summer, 

low-flow conditions. These sampling events were selected to enable the impact of 

well-recognised seasonal differences, for example in river discharge, water 

temperature, nutrient concentrations and metabolic activity, on δ18Op to be evaluated. 

No confounding effects are expected due to the March sampling event being 

conducted over two days compared to the single day in the September, because 

weather and, therefore, flow conditions were stable over the 30 hour period during 

which sampling occurring, as reflected in the measured surface water temperatures. 

 

4.2.3   Sample collection and field measurements 

 

Water samples of 5-10 L for δ18Op analysis were collected directly from the stream 

using a beaker or bucket (depending on the width of the stream); with the exceptions 

of site W and “Tap Water” which were collected as intercepts from a pipe leaving the 

Sutton Valence WWTP and a local golf course’s outdoor tap respectively. Typically, 

the stream was sufficiently narrow to allow sampling across the full channel, where 

streams were larger than the width of the bucket, the most actively flowing section of 

the channel was sampled. The samples were filtered in the field through 0.45 µm filter 

Table 4.1: Site descriptions for surface water samples in the Beult catchment and 

predominant land use surrounding each site.  

Site 

Number 
Sample site 

Distance downstream 

from A /km 
Predominant land use 

A Main stream 0.00 Fruit farm and orchard 

B Main stream 0.49 Garden 

C Mill pond 0.93 Farm mill pond 

D Main stream 1.14 Pastoral farmland 

W WWTP effluent 1.38* n.a. 

E Main stream 1.42 Sewage works/Arable land 

F Main stream 2.11 Arable land 

T Stream tributary 2.15* Grassland 

G Main stream 2.18 Arable land 

H Main stream 3.63 Pastoral farmland 

I Main stream 4.13 Pastoral farmland 

Tap Water n.a. n.a. n.a. 
*Point at which inflow enters the main stream. 
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cartridges, using a peristaltic pump, into acid-washed high-density polyethylene 

containers and stored at 4˚C in a cold store before analysis. The required volumes of 

sample to collect were estimated prior to sampling using previous concentrations of Pi 

determined from the same or nearby sites as a guide to the volume of sample that 

would yield approximately 0.4-0.7 mg P, thereby producing sufficient Ag3PO4 to run 

triplicate measurements on the thermal combustion/elemental analyser isotope ratio 

mass spectrometer (TCEA-IRMS). Water temperature was measured directly in the 

river using a Hanna Instruments handheld probe. An unfiltered sample was collected 

and analysed for conductivity, pH and dissolved oxygen (DO) in the field using 

calibrated Mettler Toledo probes. Alkalinity was determined in the field by a 

bromocresol green colorimetric titration against 1.6N H2SO4. Separate unfiltered 

(collected in amber vials) and filtered (0.45 µm syringe filtered, collected in 50 mL 

centrifuge tubes) sample aliquots were collected from each site and retained for δ18Ow 

and nutrient analysis respectively, and stored at <4 ˚C prior to analysis in the 

laboratory. 

 

4.2.4   Analysis of nutrient concentrations 

 

On 0.45 μm filtered sample aliquots, soluble reactive P (SRP) concentrations were 

determined using a phosphomolybdenum blue method on a Seal Analytical AQ2 

discrete autoanalyser (LOD = 0.005 mg P.L-1; analytical quality controls: matrix-

matched SPEX CertiPrep WR1 (0.6 mg P.L-1) and WR2 (0.3 mg P.L-1)). Total 

dissolved P (TDP) concentrations were analysed similarly to SRP, following the 

digestion of samples in a 0.11M sulfuric acid (H2SO4) and 0.03M potassium 

perfsulfate (K2S2O8) matrix. However, due to a time delay of several weeks in 

analysis for this component, the TDP concentrations indicated that sample 

deterioration had occurred prior to analysis, with lower TDP concentrations relative to 

the SRP concentrations which were processed immediately on returning to the 

laboratory. TDP loss is a known issue with delayed analysis (Kotlash and Chessman, 

1998; Neal et al., 2000); therefore, the TDP concentrations have not been included in 

this thesis. Analyses of dissolved organic carbon concentrations were carried out on 

acidified and sparged filtered samples using an Analytical Sciences Thermalox (LOD 

= 1.3 mg C.L-1; analytical quality control: EAG REF162 (0.5, 5 and 15 mg C.L-1)). 

Nitrate-N (N-NO3
-) and sulfate-S (S-SO4

2-) concentrations in filtered samples were 
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determined using ion chromatography on a Dionex ICS2500 (LOD = 0.02 mg N.L-1 

and 0.07 mg S.L-1 respectively; calibrated 0-10 mg N.L-1; analytical quality controls: 

SPEX CertiPrep WR1 (4 mg N.L-1 and 10 mg S.L-1) and WR2 (2 mg N.L-1 and 

5 mg S.L-1)). 

 

4.2.5   δ18Op and δ18Ow measurements 

 

After Pi concentrations had been determined, the appropriate volume of sample to 

generate 0.7 mg P as Ag3PO4 was processed using Method 2. If sufficient sample 

volume remained, the sample was also run for Ag3PO4 using the revised Method 3 

(see Chapter 3). For Method 2, samples were loaded at 5 mL.min-1 through 2 x 

50 mL DAX-8 columns and onto a 50 mL anion exchange resin column. Pi was eluted 

using 0.3M KCl at 1 mL.min-1; 0.01 mol MgOH2.6H2O was added and diluted to form 

a 100 mL solution. 2.5 mL 1M NaOH solution was added to a beaker containing the 

100 mL solution and mixed occasionally to precipitate brucite over 10 mins. The 

precipitate was collected through centrifugation at 3500 RCF for 10 minutes and 

dissolved in the minimum volume of a 1:1 mixture of 10M HNO3 and c.CH3COOH 

required for complete dissolution. The addition of a CH3CO2K buffer and CeNO3 

formed a CePO4 precipitate, which was isolated and cleaned through repetitive 

centrifugation at 3500 RCF in 15 minute intervals with 0.5M CH3CO2K. CePO4 was 

dissolved in 2 mL 1M HNO3. The solution was diluted to 0.2M HNO3 with MilliQ 

water before the removal of Ce3+ ions using an overnight shake with Dowex 50x8 

cation exchange resin in batch mode. After separation of the liquid from the resin, 

Ag3PO4 was precipitated using the fast precipitation method by addition of 0.5 g 

AgNO3, c.NH4OH, 3M HNO3 and 3M NH4NO3. The resulting Ag3PO4 was captured 

on a 0.2 µm polycarbonate membrane filter and transferred to a glass vial and dried at 

40 ˚C. 0.5 mL 15% H2O2 was added to each vial and left to decompose any remaining 

organic compounds and then removed by evaporation at 40 ˚C overnight, and finally 

washed with 3 x ~1.5 mL MilliQ water, centrifuged at 3500 RCF for 20 minutes and 

dried.  

 

Ag3PO4 samples were analysed for δ18Op on an IsoPrime100 mass spectrometer 

coupled to a varioPYRO cube elemental analyser. For each sample, 400-700 μg 

Ag3PO4 was weighed out into a silver capsule with 800 μg carbon black, dried at 40°C 
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overnight and converted to CO by pyrolysis in an ash crucible at 1450 C. The 

resulting gases passed through Sicapent (phosphorus pentoxide) to remove water 

vapour. Subsequently, the CO is separated from other impurities, namely N2, using a 

purge-and-trap system and helium carrier gas. 18O/16O is derived from the integrated 

mass 28 (12C16O) and 30 (12C18O; 14C16O; 13C17O) signals from the sample CO pulse, 

compared to those in an independently introduced pulse of pure CO reference gas. 

These ratios are then calibrated to the Vienna-Standard Mean Ocean Water 

(VSMOW) scale in per mille notation (‰) using standards – NBS127 (+9.3‰), EM 

Ag3PO4 (+21.7‰) and Acros Ag3PO4 (+14.2‰). Analytical precision based on two 

standard errors for repeat analysis of the quality control (Acros Ag3PO4) is better than 

±0.3‰VSMOW.  

 

Unfiltered field samples were analysed for δ18Ow using an equilibration method on an 

IsoPrime100 mass spectrometer coupled to an IsoPrime Multiflow inlet. 200 µL of 

heated (40˚C) sample was left for ~15 hours to equilibrate with the equilibration CO2 

gas. The resulting headspace gas was then sampled and passed to the Isoprime for 

isotopic analysis. 18O/16O ratios are then calibrated to the Vienna-Standard Mean 

Ocean Water (VSMOW) scale in per mille notation (‰) using standards – LEC 

LIGHT (-15.0‰) and LEC HEAVY (-1.5‰). The analytical precision obtained for 

repeat analysis of the quality control (LEC TAP) is better than ±0.15‰VSMOW.  

 

The δ18Op value predicted for a system at thermodynamic equilibrium with δ18Ow was 

calculated using Equation 4 and is denoted as δ18Oeq (Chang and Blake, 2015). 

 

1000 ln 𝛼𝑒𝑞−𝑤 = (14.43(±0.39) ×
1000

𝑇⁄ ) − 26.54(±1.33) (4) 
 

where T is in degrees Kelvin, and: 

 

 𝛼𝑒𝑞−𝑤 =
(𝛿 𝑂18 𝑒𝑞 + 1000)

(𝛿 𝑂18 𝑤 + 1000)
⁄  (4a) 
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4.3   Results 

 

Data for selected field and laboratory parameters are reported in Table 4.2. Across 

both seasons, dissolved organic carbon (DOC) concentrations tended to increase with 

distance downstream, particularly across sites A-D; however, substantial reductions in 

river DOC concentrations were associated with inputs from both the WWTP effluent 

and the tributary to the main river stem. In samples collected during March 2015, 

nitrate (NO3
-) concentrations indicated the opposite spatial pattern compared to DOC 

concentrations, tending to decrease downstream including following the input of the 

tributary to the main stem, although with a substantial increase in nitrate concentration 

immediately downstream of the WWTP effluent input. However, the NO3
- 

concentration profile in samples A-D from September 2015 was more variable than in 

March 2015 although, similarly to March 2015, NO3
- concentrations increased 

substantially following the input of WWTP effluent to the river and decreased 

following the input of the tributary. No particularly strong or consistent trends in the 

dissolved oxygen (DO), pH, electrical conductivity (EC) or alkalinity profiles were 

observed in either season. However, DO concentrations decreased substantially 

between sites C and D in September 2015, a pattern that was not observed in samples 

collected in March 2015. 
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Table 4.2: Dissolved (0.45µm filtration) nutrient concentrations and temperatures of surface water 

samples in the Beult catchment. Soluble reactive P (SRP) concentration values are given 

to 3 decimal places; temperature, pH, dissolved oxygen (DO)  to 1 decimal place; 

electrical conductivity (EC) and alkalinity to 3 significant figures; and the remaining 

parameters to 2 decimal places. 

 Distance 

downstream 

from site A 

[SRP] [DOC] 

 

[NO3
-] T DO pH EC Alkalinity 

 

/km 

/mg 

P.L-1 

/mg 

C.L-1 

/mg 

N.L-1 ˚C 

mg.

L-1  

µS. 

cm-1 

mg 

HCO3.L-1 

M
a

rc
h

 2
0

1
5
 

A 0.00 0.187 4.47 7.29 7.7 10.5 8.4 718 341 

B 0.49 0.334 7.97 5.66 6.7 9.3 8.2 742 332 

C 0.93 0.293 10.47 3.38 6.2 9.4 8.3 655 297 

D 1.14 0.293 10.06 3.71 6.1 9.2 8.2 1280 293 

W* 1.38 1.190 5.67 18.22 8.8 7.4 8.0 839 247 

E 1.42 0.839 7.73 12.39 7.4 9.4 8.1 776 261 

F 2.11 0.691 10.13 9.44 7.4 10.5 8.4 726 271 

T* 2.15 0.152 4.36 5.84 7.3 11.1 8.4 659 297 

G 2.18 0.307 5.86 6.77 7.3 10.9 8.4 681 315 

H 3.63 0.290 6.67 6.51 7.2 11.2 8.5 782 274 

I 4.13 0.293 6.82 6.48 7.3 11.1 8.5 781 268 

S
ep

te
m

b
er

 2
0

1
5

 

A 0.00 0.472 4.39 8.16 18.1 9.7 7.8 829 330 

B 0.49 0.063 8.83 2.20 14.3 9.2 7.6 1050 255 

C 0.93 0.254 15.07 14.34 13.5 13.2 8.2 812 461 

D 1.14 1.092 13.20 2.74 13.3 4.1 7.7 902 327 

W* 1.38 1.799 6.30 18.74 15.2 8.1 7.4 1020 296 

E 1.42 1.782 5.87 18.55 15.2 8.9 7.4 1030 289 

F 2.11 1.767 5.84 18.26 14.1 10.1 8.0 1010 284 

T* 2.15 0.162 2.67 8.60 13.2 10.4 8.2 796 306 

G 2.18 0.670 3.23 11.78 13.6 10.4 8.2 863 310 

H 3.63 0.620 3.65 11.29 13.3 9.7 8.2 868 307 

 I 4.13 0.582 3.88 11.09 13.3 10.1 8.2 866 313 

Tap 

water 
n/a 0.146 b.d. 3.91 15.4 - - - - 

*Sites T and W represent the inputs from a tributary and the WWTP effluent respectively. 

b.d.: below limit of detection 

 

 

There was a significant seasonal difference between surface water temperatures across 

March and September 2015 (Figure 4.4). However, the spatial pattern of water 

temperature along the reach was similar for both sampling events, with increases in 

river water temperature driven by the input of WWTP effluent in both seasons. In 

samples collected during the September event, river water temperature immediately 

downstream of the effluent input effectively equalled the water temperature within the 

effluent itself, whilst this was not observed to the same extent in samples collected in 

March 2015. Across sites G, H and I, water temperatures were relatively constant in 
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both March and September 2015, in contrast to sites A-D across which decreases in 

water temperatures were observed in both sampling events. 

 

 

Figure 4.4: Surface water temperature in samples from the River Beult catchment collected 

during March and September 2015. Main stem sites are connected with lines, 

inputs to the river are plotted at the point at which they would enter the main 

stem, i.e. W = 1.38 km, and T = 2.15 km. Site labels have been added to all 

figures within this chapter. 

 

Table 4.2 and Figure 4.5 report SRP concentration data, for the purposes of this 

thesis taken to be analogous to the concentration of Pi. In general, a similar spatial 

pattern in SRP concentration emerged in both March and September sampling events, 

with a significant increase in concentration associated with the input of WWTP 

effluent to the main river stem. In samples from the March sampling event, SRP 

concentration within the river increased from 0.293 (site D) to 0.839 mg P.L-1 (site E) 

following the effluent input, which itself had a SRP concentration of 1.190 mg P.L-1. 

Despite this increase, the concentration of SRP at site E remained only approximately 

70% of that in the final effluent. In contrast, in samples from September there was a 

significant increase in SRP concentration between sites C and D (with site D located 

240 m upstream of the effluent input), followed by a further increase in SRP 

concentration between sites D and E, such that SRP concentration in the river at site E 

reached a similar value to that in the effluent. Downstream of the effluent input the 

SRP concentration remained elevated until the input of a tributary at 2.15 km 

downstream of site A with a low SRP concentration (site T, 0.152 and 0.162 mg P.L-1 

for March and September respectively), resulting in a decrease in SRP concentration 
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within the main river stem. During both the March and September sampling events, 

the concentration of SRP remained relatively stable between sites G and I. 

 

 
Figure 4.5: SRP concentrations in samples from the River Beult catchment in March (A) and 

September (B) 2015. Main stem sites are connected with lines, inputs to the river are 

plotted at the point at which they would enter the main stem, i.e. W = 1.38 km, and 

T = 2.15 km.  

 

Figure 4.6 reports the molar ratio of dissolved inorganic N to dissolved inorganic P 

(with N as NO3
- and P as SRP). All river sites, alongside the WWTP effluent and the 

tributary, indicated a molar ratio greater than 20, apart from site D in September 2015 

where the ratio decreased to 5.54. However, typically N to P ratios also include 

ammonium concentrations, but these were not determined in this research meaning 

that site D in September may not have been considered N-limited if NO3
- and NH4

+ 

had been determined (Sander and Moore, 1979). However, regardless of the absolute 

value of N:P at site D in September 2015, it is clear that a substantial decrease in  this 

molar ratio occurred compared to site C. Contrasting trends in N to P ratios were 
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observed along the upper 1.4 km of the River Beult (sites A-D) between the two 

sampling events. During March, N:P decreased across sites A-C before a small 

increase between sites C and D. During September, N:P exhibited a steep increase 

across sites A-C before a substantial decrease between sites C and D. Samples 

collected during both seasons revealed a stepped increase in N:P at the confluence 

between the main river stem and the tributary (2.15 km), with higher N:P in the 

tributary resulting in an increase in this molar ratio with the River Beult between sites 

F and G. Downstream of site G, molar N:P was relatively stable in both March and 

September 2015.  

 

 

 
Figure 4.6: Molar N:P from samples collected in the Beult catchment during March and September 

2015. Main stem sites are connected with lines, inputs to the river are plotted at the point at 

which they would enter the main stem, i.e. W = 1.38 km, and T = 2.15 km. 

 

 

Table 4.3 reports the oxygen isotope composition of Pi and H2O, as well as the 

theoretical equilibrium δ18Op value (δ18Oeq) calculated using Equation 4, for both 

March and September sampling events. The final data column in Table 4.3 reports the 

difference between the measured δ18Op and the calculated theoretical δ18Oeq. 
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Table 4.3: Oxygen isotope composition of phosphate (δ18Op), water (δ18Ow) and the theoretical 

equilibrium (δ18Oeq) for samples in the Beult catchment.  The oxygen yields of Ag3PO4 

precipitates are given to 1 decimal place, a pure Ag3PO4 molecule would contain 15.3% 

oxygen. Isotope compositions and distances given to 2 decimal places. 

 Distance 

downstream 

from site A 

Mean 

δ18Op 

n Range 

/1σ† 

Mean 

O yield 

Mean 

δ18Ow 

n Range 

/1σ † 

δ18Oeq δ18Op - 

δ18Oeq 

 /km /‰  /‰ /% /‰  /‰ /‰ /‰ 

M
a

rc
h

 2
0

1
5

 

A 0.00 16.60 1 - 14.9 -7.06 2 0.20 17.92 -1.31 

B 0.49 17.81 1 - 14.9 -6.83 2 0.55 18.34 -0.53 

C 0.93 16.73 1 - 14.9 -6.67 2 0.81 18.60 -1.86 

D 1.14 16.63 1 - 15.0 -6.68 2 0.15 18.60 -1.97 

W* 1.38 16.15 2 0.57 15.6 -7.32 2 0.09 17.44 -1.29 

E 1.42 15.10 2 0.51 15.3 -7.06 2 0.45 17.97 -2.86 

F 2.11 15.96 2 0.83 15.0 -6.93 2 0.00 18.10 -2.14 

T* 2.15 15.86 1 - 14.5 -7.11 2 0.03 17.94 -2.08 

G 2.18 16.27 2 0.50 14.6 -7.09 2 0.11 17.95 -1.69 

H 3.63 16.49 1 - 15.5 -7.08 2 0.11 17.99 -1.49 

I 4.13 15.90 1 - 15.2 -7.12 2 0.03 17.93 -2.03 

S
ep

te
m

b
er

 2
0

1
5

 

A 0.00 17.03 3 0.08 15.6 -6.67 1 - 16.44 0.58 

B 0.49 15.62 1 - 15.2 -5.47 1 - 18.34 -2.72 

C 0.93 16.03 3 0.11 15.1 -5.36 1 - 18.59 -2.57 

D 1.14 15.90 3 0.04 15.5 -5.41 3 0.02 18.59 -2.69 

W* 1.38 16.13 3 0.12 15.5 -6.87 3 0.09 16.75 -0.62 

E 1.42 16.25 3 0.25 15.2 -6.84 1 - 16.78 -0.53 

F 2.11 16.21 3 0.16 15.4 -6.83 1 - 16.98 -0.77 

T* 2.15 16.01 3 0.08 15.2 -6.72 1 - 17.26 -1.25 

G 2.18 15.81 3 0.37 15.2 -6.70 1 - 17.21 -1.39 

H 3.63 15.70 3 0.07 15.4 -6.78 1 - 17.18 -1.48 

 I 4.13 15.96 3 0.27 15.1 -6.67 1 - 17.29 -1.34 

Tap 

water 
n.a. 15.51 3 0.22 14.9 -7.46 3 0.03 16.11 -0.60 

†n is the number of repeats for TCEA-IRMS analysis from one Ag3PO4 precipitate. If n = 2, instrument 

range is quoted, if n = 3 the uncertainty is 1 standard deviation.   
*Sites T and W characterise the inputs to the main river stem from a tributary and the WWTP effluent 

respectively. 

 

Measured δ18Op shows substantial variability along the river transect during both 

sampling events (Figure 4.7). Contrasting changes in δ18Op were observed between 

sites A-D when comparing samples collected in March and September 2015. The 

transect based on samples collected in March 2015 showed an increase of 1.21‰ 

between sites A and B, whereas a decrease of 1.41‰ was observed between the same 

sites in September 2015. In March, a consistent decrease in δ18Op was observed across 

sites B-D, whereas in September a gradual increase in δ18Op was observed across 

these sites. Very little difference was observed in δ18Op within the WWTP effluent, 

with values only changing by 0.02‰ across the two sampling events. Whilst the input 

of effluent to the River Beult in September 2015 generated a δ18Op value at site E that 
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was very similar to δ18Op within the effluent itself, δ18Op at site E was approximately 

1‰ lower than the value within the effluent for samples collected in March 2015. 

Downstream of site E, the variation in δ18Op followed almost completely opposite 

patterns in March and September 2015, although both profiles converged towards very 

similar absolute δ18Op values (15.90 and 15.96‰) at the most downstream site, I, in 

both seasons. 

 

  
Figure 4.7: Mean δ18Op for sites in the River Beult catchment in March (A) and September (B) 

2015. Main stem sites are connected with lines, inputs to the river are plotted at the 

point at which they would enter the main stem. Analytical uncertainty based on 2 

standard errors of the Acros Ag3PO4 standard measurements is ±0.3‰. 
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A distinct pattern in δ18Ow was observed within the River Beult (Figure 4.8), although 

this pattern was largely consistent across both seasons with the main difference being 

the magnitude of variations between individual sampling sites. Changes in δ18Ow 

between sites D and E largely reflected the input of WWTP effluent in both seasons, 

whilst δ18Ow of the tributary input to the River Beult is reflected in changes in δ18Ow 

between sites F and G in both seasons. Downstream of site G, δ18Ow remained 

relatively constant in both March and September 2015.  

 
Figure 4.8: Mean δ18Ow for samples collected from the River Beult catchment in March and September 

2015. Analytical uncertainty based on 2 standard errors of the LEC TAP standard 

measurements is ±0.15‰. Main stem sites are connected with lines, inputs to the river are 

plotted at the point at which they would enter the main stem, i.e. W = 1.38 km, and T = 

2.15 km.  

 

Although there were significant variations in the difference between measured δ18Op 

and the temperature dependent equilibrium value (δ18Oeq) along both the March and 

September 2015 transects, measured δ18Op was always ≥0.5‰ from δ18Oeq in all 

samples collected during both sampling events. Only the sample from site A in 

September 2015 revealed δ18Op > δ18Oeq (Figure 4.9). Changes in δ18Op - δ18Oeq 

between individual sampling sites revealed almost completely opposite patterns in 

March compared to September 2015. These patterns indicated that, whilst WWTP 

effluent and tributary inputs to the main river stem played very significant roles in 

controlling the difference between δ18Op and δ18Oeq in samples from September, these 

effects were less pronounced in samples collected during March. 
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Figure 4.9: Difference between calculated equilibrium (δ18Oeq) based Equation 4 and the 

mean measured δ18Op for sites in the River Beult catchment in March and 

September 2015. At δ18Op – δ18Oeq = 0, δ18Op is assumed to be at temperature 

dependent equilibrium with δ18Ow. Main stem sites are connected with lines, 

inputs to the river are plotted at the point at which they would enter the main 

stem. 

 

 

4.4   Discussion 

 

The aim of this chapter was to evaluate the potential for δ18Op to be used as a tracer of 

Pi inputs to the headwater reaches of a river network and to identify the 

biogeochemical processes influencing the downstream transport of Pi within the river 

network. This aim led to two hypotheses: 
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i) The input of Pi to a river from a point source (WWTP effluent) can be 

identified on the basis of an isotopically distinct δ18Op signature 

compared to upstream sources of Pi. 

ii) Metabolic processes will influence the downstream transport of Pi 

following input from a point source, leading to isotope effects or isotope 

fractionations that will enable the specific processes to be identified. 

 

In order to test these hypotheses, river profiles of SRP (analogous to Pi) 

concentrations, in conjunction with δ18Op and δ18Oeq, were analysed on the River 

Beult. In all of the profiles there were differences between the March and September 

sampling campaigns. Below, the insights into in-river P biogeochemistry provided by 

these data are explored, in terms of both spatial changes along the in-river transects 

and the difference between seasons. 

 

4.4.1   In-river phosphorus biogeochemistry revealed by bulk hydrochemical data 

 

The SRP concentration profiles within the River Beult (Figure 4.5) from March and 

September 2015 demonstrated clear similarities. During both sampling events, SRP 

concentrations within the main river stem were noticeably influenced by the input of 

final effluent from Sutton Valence WWTP and by water from a tributary joining the 

main river stem. Specifically, SRP concentrations within the WWTP effluent were 

considerably higher than all upstream sites (A-D) in both sampling events, which 

resulted in elevated SRP concentrations in the river immediately downstream of the 

effluent input. This was especially evident under low flow conditions (September), 

when the in-river SRP concentration remained within 0.032 mg P.L-1 of the final 

effluent SRP concentration up to 730 m downstream of the effluent input. In contrast, 

in samples collected during March 2015 SRP concentration at sample site E (40 m 

downstream) remained 0.351 mg P.L-1 below that within the effluent. Therefore, 

under low flow conditions (September 2015), it appears that the final effluent from the 

WWTP was the primary determinant of in-river SRP concentration for a significant 

distance downstream of the effluent entry point into the river. Under higher flow 

conditions (March 2015), SRP concentrations downstream of Sutton Valence WWTP 

were governed by the combined effects of upstream sources and the input of final 



 

 – 100 – 

effluent. The SRP data reported above are consistent with the findings reported by 

Gooddy et al. (2016) from an in-stream transect of more limited length, based on 

samples collected in September 2013 and January 2014. The dominant influence of 

WWTP effluent on in-river SRP concentration at site E under low flow conditions, 

alongside evidence of combined controls on downstream river conditions exerted by 

both upstream river water and effluent under high flow conditions, was also observed 

in the DOC, NO3
- and electrical conductivity profiles reported in this chapter (Table 

4.2). This pattern is characteristic of WWTP effluent-impacted streams within which, 

under low flow conditions in particular, in-river hydrochemical conditions can be 

largely, or indeed solely, determined by the properties of the effluent. Under higher 

flow conditions, effluent inputs are diluted to a greater extent by the larger volume of 

water delivered to main river stem from upstream areas of the catchment (Withers and 

Jarvie, 2008; Bowes et al., 2015). 

 

The impact of the tributary that entered the main stem of the River Beult between 

sample sites F and G is also revealed through changes in SRP concentration, in which 

sharp decreases in SRP concentration were observed between these sample sites in 

both sampling events. Changes in SRP concentration between sites F and G suggest 

that tributary water diluted water within the River Beult that was dominated by 

WWTP effluent at site F. Dilution effects, whether through the addition of storm 

water or more permanent features such as tributaries, are frequently observed in 

studies of nutrient cycling in freshwaters (e.g. Hooda et al., 1997; Young et al., 1999). 

Dilution is also supported by trends in DOC, NO3
- and electrical conductivity profiles, 

each of which suggests that dilution occurs between sample sites F and G as a result of 

the input of tributary T to the main River Beult (Table 4.2). However, dilution effects 

as a result of tributary input cannot be the sole cause of changes in the concentration 

of SRP along the transect of the River Beult sampled for the purposes of this chapter. 

For example, a substantial decrease in SRP concentration occurred between sample 

sites A and B in September 2015, and between sample sites E and F in March 2015. 

Between these sites, no significant surface water tributary enters the River Beult. 

Furthermore, increases in SRP concentration were observed at other locations along 

the sampled transect, including between sample sites A and B in March 2015 and 

between sites C and D in September 2015, where no obvious tributary or effluent 

input occurred. Such changes in SRP concentration are associated with additional 
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sources of SRP or with biogeochemical processes that control the in-stream fate of 

SRP. These biogeochemical processes could include biological uptake of SRP, 

adsorption or chemical precipitation of SRP, or the regeneration of SRP from organic 

P compounds. However, without the use of an inherent tracer of Pi, it is impossible to 

differentiate between the multiple potential processes and sources that could be 

responsible for SRP concentration changes within a river. In this context, δ18Op may 

provide additional insights into the controls on SRP within river networks, alongside 

the importance of SRP from specific sources for metabolic processes operating within 

rivers. Therefore, subsequent sections of this chapter examine the additional insights 

into the controls on P within the River Beult that are provided through isotopic 

analysis. 

 

4.4.2   Insights into the sources and biogeochemical cycling of P through stable 

isotope analysis 

 

To illustrate the role that δ18Op can play in elucidating processes that alter the bulk Pi 

pool but cannot be determined by changes in SRP concentration alone, the sampled 

reach of the River Beult was considered as three separate sections: 

 

- Section 1 (sites A-D): The first 1.14 km of the reach, ending with the last site 

(site D) upstream of the final effluent from Sutton Valence WWTP. 

- Section 2 (sites D-F, W): Between distances 1.14 and 2.11 km, this reach 

includes site D – 240 m upstream of the WWTP effluent input (W), and sites E 

and F which are downstream of the input site by 40 and 730 m respectively.  

- Section 3 (sites F-I, T): Between distances 2.11 and 4.13 km and including the 

input of tributary (T).  

 

4.4.2.1   Section 1 (sites A-D) 

This section flows through a predominantly rural setting where the main sources of P 

are associated with agriculture. Similar absolute δ18Op ranges for these sites were 

observed under both high and low flow conditions – 16.60-17.81‰ and 15.62-

17.03‰ respectively. These data sit within the global range of anthropogenic 

fertilisers (15.5-25.3‰) reported in Table 2.2 which would be expected for an 
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agriculturally dominated area, but were consistently lighter than samples collected 

from equivalent sites that are reported in Gooddy et al. (2016) (Table 4.4).  

 

Table 4.4: Comparison of the key variables across the four directly comparable sample sites to 

Gooddy et al. (2016), in which low flow sampling was conducted in September 2013 and 

high flow sampling in January 2014. 

 This study Gooddy et al., 2016 

 Site 

Name 
[SRP] δ18Op 

δ18Op - 

δ18Oeq 

Site 

Name 
[SRP] δ18Op 

δ18Op - 

δ18Oeq 

  mg P.L-1 /‰ /‰  mg P.L-1 /‰ /‰ 

L
o

w
 f

lo
w

 B 0.063 15.62 -0.53 SV1 2.090 16.7 0.1 

D 1.092 15.90 -1.97 SV2 1.296 16.6 -1.5 

W 1.799 16.13 -1.29 SV4 0.948 15.4 -0.8 

E 1.782 16.25 -2.86 SV7 0.948 15.1 -1.2 

H
ig

h
 f

lo
w

 B 0.334 17.81 -2.72 SV1 0.181 18.6 0.1 

D 0.293 16.63 -2.69 SV2 0.301 19.0 0.5 

W 1.190 16.15 -0.62 SV4 1.036 16.8 -0.4 

E 0.839 15.10 -0.53 SV7 0.524 17.6 -0.7 

 

Between sites A and B, the River Beult flowed through an underground culvert, 

although the majority of flow was diverted into an irrigation pond prior to entering the 

culvert during the September 2015 sampling. The large differences observed in the 

majority of measured variables (Tables 4.2 and 4.3) between these sites in both 

seasons suggest that further inputs to the stream occur within this underground 

section. This is evidenced, particularly in September, by the marked increase in δ18Ow 

between sites A and B (Figure 4.8), suggesting that the changes are likely due to the 

introduction of a new water source, rather than biogeochemical processes. In terms of 

SRP and δ18Op, this addition appears to be of a lower SRP concentration and δ18Op 

compared to site A under low flow conditions, whilst being slightly higher in SRP 

concentration and δ18Op under high flow conditions.  

 

Under high flow conditions (March 2015), despite a relatively constant SRP 

concentration between sites B-D, there was a large decrease in δ18Op coupled with an 

increase in the difference between measured δ18Op and the theoretical equilibrium, 

δ18Oeq (Figure 4.9a). Because the stable isotope composition of Pi changed between 

these sites, metabolism must have influenced the downstream transport of P, a fact 

that is not discernible from SRP concentration data alone. The increasing divergence 

between δ18Op and δ18Oeq suggests that intracellular metabolism of Pi was not 
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responsible for the observed changes in δ18Op between sites B and D in March 2015. 

If intracellular metabolism had been dominant, river δ18Op would be expected to 

converge on the theoretical δ18Oeq (Blake et al., 1997; Pucéat et al., 2010; Chang and 

Blake, 2015). However, extracellular hydrolysis of Porg compounds has the potential to 

result in a decrease in δ18Op through two processes: inheritance effects and kinetic 

fractionation. Firstly, inheritance effects occur when a Porg compound is enzymatically 

hydrolysed to Pi and other by-products, with the resulting Pi molecule retaining a 

proportion of the O atoms from the original Porg molecule. The remaining O atoms in 

the resulting Pi atom that are not inherited from Porg are instead donated from the 

surrounding river water, with a kinetic fractionation operating in this process in favour 

of incorporation of 16O in the Pi. Secondly, a kinetic fractionation occurs through 

reactions in which Porg molecules with different δ18O composition have different rates 

of reaction, due to their isotopic composition (Blake et al., 2005). Specifically, P-18O 

bonds are more thermodynamically stable relative to P-16O bonds, as they have lower 

ground state zero potential energies and therefore will have a higher activation energy 

relative to their 16O equivalents (Hoefs, 2008). This results in isotopically lighter Porg 

molecules undergoing hydrolysis at a faster rate, due to a lower threshold energy 

level, and releasing Pi that is isotopically depleted, before any inheritance effect is 

considered, due to a lighter starting material. The magnitude of both of these effects is 

dependent on the δ18O ratio of the initial Porg molecule. The resultant Pi molecule has a 

δ18Op between that of the source Porg molecule and δ18Ow (Blake et al., 1997; Colman 

et al., 2005; Liang and Blake, 2006b). Due to the low mean δ18Ow ratios in 

comparison to the δ18Op values observed in the River Beult, any change in δ18Op as a 

result of kinetic fractionation during regeneration of Pi from Porg would be expected to 

result in more negative δ18Op within bulk river samples, particularly if Porg molecules 

were isotopically similar or depleted compared to Pi, potentially resulting in the 

observed decrease in δ18Op between sites B and D in March 2015.  

 

However, extracellular hydrolysis of Porg would be expected to increase in-stream SRP 

concentrations due to the Pi released in the hydrolysis process. An increase in SRP 

concentration was not observed between sites B and D in March 2015 (Figure 4.5a). 

Porg hydrolysis typically occurs in Pi-limited ecosystems to generate Pi to be utilised 

rapidly by biomass within the water column (Ammerman, 1991; Liang and Blake, 

2006b), resulting in no observable change within extracellular SRP concentration. 
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Biological uptake of extracellular Pi is expected to impart a kinetic isotope effect, 

particularly over short timescales and where the reaction responsible for the isotope 

effect does not proceed to equilibrium (Habicht and Canfield, 1997; Blake et al., 

2005). However, the isotope effect associated with biological uptake of SRP would 

involve the preferential uptake of isotopically lighter Pi, i.e. 31P16O4
3-, compared to 

isotopically heavier ions, i.e. 31P18O4
3-. This would result in bulk river δ18Op becoming 

increasingly heavier and is therefore not consistent with the observed changes in river 

δ18Op between sites B and D in March 2015. However, the combined inheritance and 

kinetic fractionation associated with extracellular Porg hydrolysis may have masked 

any increase in δ18Op associated with biological uptake of Pi. Thus, a combination of 

extracellular hydrolysis of Porg and subsequent biological uptake of Pi could explain 

the trends in both SRP and δ18Op data observed between sites B and D on the River 

Beult in March 2015. This interpretation is further supported by N to P molar ratios 

which were all substantially greater than the threshold of 20:1 suggested to be 

indicative of P limitation (Sterner et al. (2008). 

 

To evaluate the full role that extracellular hydrolysis of Porg played in this 

environment, the δ18O of Porg compounds within the reach would need to be 

determined. To date, little research has been undertaken to directly determine δ18O in 

Porg compounds, with one laboratory study focusing on the effects on δ18O during 

different analytical approaches to Porg extraction (Liang and Blake, 2006a). Few 

studies have fully speciated Porg compounds in freshwater ecosystems and therefore 

knowledge of the relative concentration or lability of specific groups of Porg 

compounds in natural freshwater environments remains limited (Espinosa et al., 1999; 

Turner et al., 2002; Toor et al., 2003; Cade-Menun et al., 2006; Koopmans et al., 

2007). Further research is required to fully speciate and to separate Porg compounds 

within freshwaters, to enable δ18O analyses to be performed on individual Porg 

compounds or classes. Thus, future research should focus on analysis of δ18O within 

the phosphate moieties of Porg, to both better understand the cycling of Porg within 

aquatic ecosystems and to provide additional information to help interpret δ18Op 

within these ecosystems. 

 

However, a further possibility is that Pi between sites B and D in March 2015 was not 

controlled predominantly by biological processes. Abiotically, bioavailable P can be 
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sorbed and desorbed to stream sediments, particularly if they are rich in iron oxides, 

and ion exchange occurs between the solid and liquid phases (Jarvie et al., 2005; 

Jarvie et al., 2006). Work by Jaisi et al. (2011) under aerobic conditions has shown 

that two abiotic isotope effects can be seen in two phase systems: a transient kinetic 

effect and abiotic ion exchange. Transient kinetic effects occur in the early stages of 

sorption and desorption, in which 31P16O4
3- ions will be involved in these processes at 

a slightly faster rate than 31P18O4
3- ions, leading to residual δ18Op in solution becoming 

progressively enriched isotopically during sorption and progressively depleted 

isotopically during desorption. The decrease in δ18Op supports the potential occurrence 

of desorption between sites B and D during March 2015, although this is not 

consistent with a relatively constant SRP concentration across the sites unless 

subsequent processes, such as biological uptake, acted to prevent increases in SRP 

concentration.  

 

September 2015 represented low flow conditions within the River Beult and 

differences compared to high flow conditions were observed across sites B-D. In 

particular, SRP concentrations increased substantially between sites B and D with the 

most substantial increase between sites C and D, whereas SRP concentrations 

remained relatively constant between these sites in March 2015. There was also an 

increase in δ18Op between sites B and D, with relatively stable δ18Ow and other 

hydrochemical parameters in September 2015. Whilst a relatively small shift in δ18Op 

towards δ18Oeq was observed, this was likely driven by the change in water 

temperature and consequent change in the theoretical equilibrium value. If 

intracellular metabolism was dominant in this section, a stronger movement of δ18Op 

towards equilibrium and no net change in SRP concentration would have been 

expected. Although extracellular hydrolysis of Porg would generate an increase in SRP 

concentration, given the magnitude of the observed increase in SRP concentration it 

would be expected that δ18Op would be driven to isotopically lighter values as a result 

of this process, similar to patterns observed in March 2015. However, clearly if δ18O 

of the source Porg molecule involved in hydrolysis was isotopically heavier than δ18Op 

within the river, an inheritance effect may have contributed to the observed increases 

in δ18Op between sites B and D in September 2015. Similarly, SRP regeneration 

within river bed sediments during microbial respiration of organic matter may have 

released Pi into the overlying water, increasing in-river SRP concentrations (Jaisi and 
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Blake, 2010; Goldhammer et al., 2011a). SRP regeneration has also been shown to 

cause inheritance effects in regenerated Pi found in marine pore waters (Goldhammer 

et al., 2011a), resulting in Pi that is in a state of disequilibrium. Consequently, SRP 

regeneration within the river bed sediments and release of disequilibriated Pi to the 

water column could result in the increase in both the SRP concentration and δ18Op.  

 

Finally, it might be the case that an additional source of P entered the river between 

sites C and D, leading to the substantial increase in SRP concentration alongside a 

clear decrease in DO and nitrate concentrations (Table 4.2), under low flow 

conditions. Any source of P entering the river at this point would also need to be 

associated with no substantial change in δ18Op or δ18Ow compared to site C. Further, 

this potential input was not clearly indicated in the data collected in March 2015 under 

higher flow conditions. Taken together, these observations are consistent with 

groundwater discharge to the river. The addition of a nitrate-depleted water source 

between sites B and D that is only apparent under low flow conditions is also 

consistent with the findings of Gooddy et al. (2016). However, in the research 

reported by these authors, there was a 0.86‰ increase in δ18Ow under low flow 

conditions between sites B (SV1) and D (SV2), resulting in δ18Ow of -5.22‰ which is 

outside the -6 to -7‰ range that is typical for groundwater in this area (Darling et al., 

2003). The values of δ18Ow reported in the current chapter for sites B to D in 

September 2015 range from -5.36 to -5.47‰, in agreement with those reported by 

Gooddy et al. (2016). Therefore, although much of the data is characteristic of an 

additional groundwater input, the δ18Ow data is not consistent with a groundwater 

discharge to the river.  

 

4.4.2.2   Section 2 (sites D-F, W) 

Within this reach, the final effluent of Sutton Valence WWTP enters the River Beult. 

There appears to be little difference in the δ18Op signature of the effluent between 

samples collected in March compared to September 2015 (Δ = 0.02‰), suggesting 

little evidence of seasonal or temperature-related effects that alter the absolute δ18Op 

value for the WWTP effluent. However, previous research at the same site reported 

greater variation in final effluent δ18Op, with values of 15.4 and 16.8‰ under low flow 

(September) and high flow (January) conditions respectively (Gooddy et al., 2016). 

However, the absolute δ18Op values reported in this chapter do fall within the range 
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reported by Gooddy et al. (2016) for the effluent from Sutton Valence WWTP, 

suggesting that δ18Op for this individual WWTP may be relatively constant. The 

global dataset for δ18Op from WWTP effluents is reported in Table 2.1 and ranges 

from 8.4 to 18.4‰, with a mean δ18Op of 13.5‰ (Gruau et al., 2005; Young et al., 

2009). Therefore, the effluent δ18Op values reported in this chapter are consistent with 

those found in other regions of the world. In order to be able to perform effective 

source tracing research using δ18Op, it is essential that the isotopic composition of a 

source is constant or varies within a well-constrained range. Temporal and spatial 

variation might arise due to factors such as different sources of P to individual 

WWTPs (e.g. isotopic variation in Pi entering a WWTP from an urban area compared 

to a rural area, or a diurnal variation in Pi sources, or contrasting mixtures of 

hydrolysable Porg compounds that could impart differing inheritance effects on the 

effluent); different processes occurring within a WWTP (e.g. the presence/absence of 

P-stripping technology or differing biological treatment approaches which alter bulk 

Pi or hydrolyse Porg); and natural variations in both temperature and δ18Ow which 

would alter the absolute δ18Op during intracellular metabolism. Whilst initial research 

from Sutton Valence WWTP, alongside other final effluent samples from around the 

world, suggests that WWTP effluents could be constrained in terms of variation in 

δ18Op, further work is required to determine the extent of temporal or spatial effects on 

the δ18Op signature of WWTP effluents.  

 

In order to be able to probe the in-river fate of Pi derived from a WWTP using stable 

isotope techniques, δ18Op within a final effluent sample must differ from δ18Op with a 

river immediately upstream of the final effluent discharge point. Little research to date 

has undertaken this type of coupled effluent-river water assessment. Therefore, the 

potential to use δ18Op to better understand the in-river fate of WWTP-derived Pi 

remains largely unknown. In the March 2015 sampling event, the difference in δ18Op 

was 0.48‰ between sites D (240 m upstream of the effluent input) and W (the WWTP 

final effluent), and in September 2015 the difference was 0.23‰. The analytical 

precision based on two standard errors of repeated Ag3PO4 standards was 0.3‰. This 

indicates that δ18Op in the WWTP effluent can be considered significantly different to 

upstream river water under high flow conditions, but under low flow conditions δ18Op 

within the effluent was similar to that within river water upstream of the WWTP and 

therefore cannot be used effectively to trace the in-river fate of WWTP-derived Pi. In 
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contrast, Gooddy et al. (2016) reported differences of 2.2 and 1.2‰ between effluent 

and upstream river water under high and low flow conditions respectively. Both 

WWTP effluent samples reported in this chapter were in disequilibrium with respect 

to δ18Oeq, with δ18Op being 1.29‰ lighter than δ18Oeq under high flow conditions and 

0.62‰ lighter than δ18Oeq under low flow conditions. This is indicative either of an 

excess of Pi within the WWTP system, resulting in the incomplete intracellular 

cycling of influent Pi to the WWTP and retention of source δ18Op signatures, or that 

disequilibrium processes dominate within the WWTP, such as the regeneration of Pi 

from Porg. In previous research which focussed solely on final effluents from three 

French WWTPs, isotopic equilibrium was observed with respect to δ18Op. However, 

the values of δ18Op within final effluent samples overlapped with the δ18Op of a 

phosphate builder within detergent; detergent-derived Pi was estimated to form 50-

70% of the final WWTP effluent and it can be suggested that phosphate builders may 

make up a significant proportion of detergent-derived Pi, and thus, in the case of 

Gruau et al. (2005), the δ18Op in the effluent may have reflected the source signature 

for a major component of effluent. 

 

Both the March and September 2015 sampling events demonstrated significant 

changes in the majority of in-river nutrient and isotope profiles between sites D, 240 

m upstream of the WWTP effluent input, and E, 40 m downstream of the input. In 

September 2015, these profiles all reached, or tended towards, the corresponding 

value associated with the final effluent sample. This indicates that, under low flow 

conditions, WWTP effluent dominated in-river conditions and over-printed the effects 

of upstream agricultural sources. Subsequently, between sites E and F there was no 

obvious change in SRP concentration, δ18Op or N:P ratio. Although there were slight 

variations in the difference between δ18Op and δ18Oeq in this section, samples always 

remained at least 0.5‰ offset from the theoretical equilibrium. This suggests little 

evidence of intracellular metabolism of Pi within this section of the River Beult during 

September 2015. Despite δ18Op within the WWTP effluent being within analytical 

precision of river water upstream of the effluent entry point, additional consideration 

of the difference between δ18Op and δ18Oeq indicates that WWTP-derived P was not 

strongly coupled with intracellular metabolic processes within the river, at least over 

the 730 m reach of the River Beult between the effluent entry point and sample site F.   
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In rivers within the UK that are heavily influenced by the input of effluent from 

WWTPs, SRP concentrations peak in the period August to October and are lowest in 

March to May, as driven by variable dilution of the effluent across the hydrological 

year (Bowes et al., 2011). This is consistent with the two sampling campaigns 

reported in this chapter, with SRP concentrations in September typically exceeding 

those in March. However, in March 2015, δ18Op at site E was substantially lower than 

both the WWTP effluent and the upstream river water at sample site D. Consequently, 

this cannot be the result of a simple mixing process between the upstream river water 

and WWTP effluent, because under conditions of simple mixing the δ18Op at site E 

would fall within the range defined by δ18Op at sites D and W. Thus, the change in 

δ18Op between sites D and E must be the product of one or more processes operating 

to influence δ18Op that are not revealed on the basis of hydrochemical data alone 

(Table 4.2), which are all consistent with a mixing effect controlling conditions at site 

E in March 2015. Processes that may be responsible for the observed decrease in river 

δ18Op and increased divergence between δ18Op and δ18Oeq at site E compared to site D 

include extracellular hydrolysis of Porg, desorption of Pi from bed sediments and 

abiotic ion exchange with river bed sediments. Due to the magnitude and the rate of 

the δ18Op shift between sites D and E in March 2015, alongside the likely input of 

readily hydrolysable Porg compounds within the WWTP effluent, extracellular 

hydrolysis of Porg and the generation of isotopically depleted Pi through inheritance 

effects and/or a kinetic fractionation is likely to explain the changes in isotopic 

composition of Pi between sites D and E. These observations are in contrast to the 

September 2015 sampling event, which suggests that there were seasonal differences 

in the extent to which WWTP-derived P was linked to extracellular hydrolysis 

processes in the River Beult.  

 

Subsequently, between sites E and F under high flow conditions (March 2015), SRP 

concentrations decreased steadily and δ18Op increased significantly whilst also moving 

towards δ18Oeq. Between these sample sites, there was only a slight increase in δ18Ow 

and no observable change in temperature, suggesting that the movement of δ18Op 

towards equilibrium was caused by isotope fractionation influencing the Pi pool. 

Isotopically, this is consistent with intracellular metabolism occurring within this 

reach of the River Beult (Blake et al., 1997; Pucéat et al., 2010; Chang and Blake, 

2015). This is likely the result of the addition of readily available Pi from the WWTP 
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into a P-limited system, which was subsequently metabolised by primary producers in 

the river, resulting in isotopic fractionation and a shift in the isotopic composition of 

Pi toward that expected at theoretical equilibrium. There was also an increase in DOC 

and decrease in NO3
- concentrations between sample sites E and F, which is consistent 

with increasing biomass concentrations and corresponding requirement for 

bioavailable P, because N:P remains greater than 20 despite the addition of Pi from the 

WWTP. In the case of intracellular metabolism alone, the in-stream SRP 

concentrations would not change. However, it is possible that biological uptake and 

intracellular storage of Pi also occurred within this reach of the River Beult, alongside 

intracellular metabolism, which would also contribute to increasing values of δ18Op 

and decreasing SRP concentration within river water. 

 

Alternatively, a transient kinetic fractionation due to sorption could also explain an 

increasing aqueous δ18Op and a decrease in SRP concentrations (Jaisi et al., 2011). A 

chemical analysis of in-river sediments would be a useful addition to this study to 

determine whether the sediment is iron oxide rich (i.e. has the potential to sorb Pi) and 

potentially Pi could also be extracted to determine the δ18Op of any sorbed Pi phases 

and see whether it is consistent with a sorption theory. 

 

However, March is during the period of spring blooms (March to May) of 

phytobenthic organisms in the UK, where SRP concentrations and silica levels both 

decrease due to algal-related removal of both elements (Bowes and House, 2001; 

Bowes et al., 2011). During this time, the demand for bioavailable P to support algal 

production is very high, providing further support to intracellular metabolism and 

biological uptake as the most likely processes responsible for changes in δ18Op in this 

section of the River Beult. Whether driven by intracellular metabolism or biological 

uptake, changes in δ18Op downstream of Sutton Valence WWTP in March 2015 are 

consistent with metabolic processes within the river being supported by Pi delivered 

from final effluent. The effects are observed for at least 700 m downstream of the 

WWTP, and cannot be robustly identified on the basis of SRP concentration changes 

alone. These data provide a strong example of the additional potential to probe the fate 

of Pi within rivers provided by analysis of δ18Op. 
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4.4.2.3   Section 3 (sites F-I, T) 

Across both March and September sampling events, hydrochemical data generally 

suggest that mixing between the tributary (T) and upstream river water from site F 

controlled conditions at site G. However, under high flow conditions (March), the 

δ18Op profile cannot be explained by mixing alone, because δ18Op at sample site G was 

heavier than that either at site F or within the tributary. Therefore, an additional 

process or water source must have influenced Pi between sites F and G under high 

flow conditions that was not revealed through analysis of hydrochemical data alone. 

Given the substantial decrease in SRP concentration between sites F and G in March 

2015, an additional water source with high SRP concentration entering the River Beult 

between these sites is believed to be unlikely. The increase in δ18Op and narrowing of 

the difference between δ18Op and δ18Oeq may reflect intracellular metabolism of Pi in 

this reach of the river, or the uptake and storage of Pi within biomass that results in a 

kinetic isotope effect in which the remaining extracellular Pi becomes isotopically 

enriched. Between sites G and H in March 2015, the continued increase in δ18Op and 

further approach of δ18Op towards δ18Oeq, coupled with no obvious change in SRP 

concentration, is consistent with continued intracellular metabolism of Pi. However, 

between sites H and I in March 2015, δ18Op decreased and moved further away from 

δ18Oeq. Because there was no significant change in either SRP concentration or δ18Ow, 

the isotopic changes in Pi between sites H and I are unlikely to be due to an additional 

source of SRP to the River Beult in this reach. This divergence from δ18Oeq could be 

the result of abiotic ion exchange, a process in which systems are driven away from 

δ18Oeq when aqueous Pi that may have been equilibrated metabolically is abiotically 

exchanged with Pi ions in the sorbed phase that is still at disequilibrium (Jaisi et al., 

2011). However, for a natural setting this process is very slow and therefore is likely 

to be masked if biological processes are occurring. The processes responsible for the 

isotopic changes between sites H and I in March 2015 currently remain unclear. Under 

low flow conditions (September 2015), there was a slight decrease in δ18Op and 

increase in the difference between δ18Op and δ18Oeq between sites H and I, although 

these changes were very close to the analytical precision of the δ18Op method.   
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4.5   Conclusions 

 

This chapter has shown that Pi derived from Sutton Valence WWTP was isotopically 

distinct from the upstream Pi under high flow conditions. However, under low flow 

conditions the difference in δ18Op was within the analytical precision of the TCEA-

IRMS method. Therefore, the use of δ18Op as a tracer of WWTP effluent may be 

dependent on seasonal variations in river P cycling upstream of the effluent input. In 

addition, it has been shown that δ18Op can be used to detect differences in the in-river 

biological response to a WWTP effluent over two seasons in a calendar year. The use 

of δ18Op has revealed likely major biological pathways that influence P transport 

within the Beult that were masked in the hydrochemical data. For example, under high 

flow conditions in March 2015, extracellular hydrolysis of Porg to generate Pi can be 

determined which would have been interpreted as the physical mixing of two water 

bodies on the basis of the hydrochemical data alone. Similarly, isotopic evidence for 

intracellular metabolism, in combination with the biological uptake of Pi, downstream 

of the WWTP effluent input was also provided, processes which could not be robustly 

identified using changes in SRP concentration alone. In contrast, in September 2015 

under low flow conditions, little isotopic evidence was present to support metabolic 

processes influencing in-river transport of P. Although it may not always be possible 

to determine the exact process that governs P transport within a specific river reach, 

the use of δ18Op in combination with hydrochemical data offers evidence for the 

presence or absence of certain processes that would not be possible to provide on the 

basis of hydrochemical data alone. In particular, it is possible to observe evidence of 

metabolic processes that influence the Pi pool that do not alter the bulk SRP 

concentration within a river, but still have a significant role in biogeochemical cycling 

of P within aquatic ecosystems. 
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Chapter 5: 

Application of δ18Op to understand phosphorus sources 

and cycling within groundwater and a groundwater-fed 

stream 
 

 

 

 
 

5.1   Introduction 

 

Phosphate oxygen isotopes have the potential to act as an inherent tracer of the 

sources and biogeochemical cycling of Pi within, but also between, many ecosystems. 

However, the global database for δ18Op remains extremely limited and there are a 

number of ecosystem types in which the utility of δ18Op has yet to be fully assessed. In 

particular, there have only been three previous studies that have reported δ18Op in 

groundwaters (Blake et al., 2001; McLaughlin et al., 2006a; Young et al., 2009), 

resulting in a very limited groundwater δ18Op dataset. In this context, the current 

chapter reports an application of the δ18Op method developed and reported in Chapter 

3 to groundwater samples derived from springs and boreholes, in order to extend the 

global library of groundwater-δ18Op through sampling of new aquifer units in the UK. 

Further, a freshwater river system fed by groundwater springs and, potentially, by 

groundwater discharge, is also examined to determine whether groundwater sources of 

Pi, alongside tracing of the subsequent in-river fate of groundwater-derived Pi, can be 

identified through the application of δ18Op analyses. 

 

Groundwater is often perceived to have only low concentrations of dissolved Pi, due 

the low solubility of Pi resulting from two major processes (Schwartz and Zhang, 

2003; Denver et al., 2010). The first process is the potential for Pi to form metal-

phosphate minerals with iron, calcium and aluminium ions, causing Pi to precipitate 

from solution (Aydin et al., 2009). The second process is the tendency for Pi to sorb to 

the surface of a number of common minerals, in particular clays and metal 
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hydr(oxides) such as kaolinite, ferrihydrite and goethite (Edzwald et al., 1976; 

Geelhoed et al., 1997; Rhoton and Bigham, 2005). However, within some catchments 

groundwater may be an important source of Pi to surface water ecosystems. For 

example, depending on bedrock geology, geogenic Pi may be released into 

groundwater as a result of weathering or dissolution reactions; a common example 

being the weathering of apatite minerals (Equation 11) (Filippelli, 2008): 

 

𝐶𝑎5(𝑃𝑂4)3𝑂𝐻 + 4𝐻2𝐶𝑂3 ↔ 5𝐶𝑎2+ + 3𝐻𝑃𝑂4
2− + 4𝐻𝐶𝑂3

− + 𝐻2𝑂  (11) 

 

Apatite minerals can be found in all types of rock as an accessory mineral. However, 

apatite is commonly found in the form of detrital fluorapatite and authigenic 

carbonate-fluorapatite in sedimentary deposits and fluorapatite in igneous and 

metamorphic rocks (Filippelli, 2008; Denver et al., 2010). Beyond apatite, other 

P-rich minerals include feldspar, phosphorite, vivianite and wavellite (Aydin et al., 

2009; Denver et al., 2010). In the most abundant P rock deposits, known as 

phosphorites, P2O5 contents can reach 28-38% and these ores are mined and processed 

to create a range of products, including inorganic P fertilisers, with 75% of mining 

ores being found in sedimentary marine deposits. Alternatively, increased Pi 

concentrations in groundwater may be due to the existence of relatively young soils 

which contain fewer secondary minerals, meaning that these soils are less able to sorb 

Pi derived from activities at the ground surface (Boyle et al., 2013; McGinley et al., 

2016). Finally, the presence of tile drains that increase the rate of movement of Pi 

within and through the soil system may also be responsible for increases in Pi 

concentration within groundwater (Sims et al., 1998).  

 

Despite the widespread assumption that Pi concentrations are not of concern within 

groundwater, there is emerging evidence to suggest that this represents an over-

simplification. For example, it has been shown that many groundwater bodies within 

south eastern England, UK, have elevated median Pi concentrations (>50 μg P.L-1) and 

groundwater within the Lower Greensand formation in southern England has Pi 

concentrations in the range <20 – 311 μg P.L-1, with a mean concentration of 70 

μg P.L-1 (Shand et al., 2003; Holman et al., 2010). Within the Lower Greensand 

aquifer, Pi is thought to be derived from the dissolution of phosphatic nodules present 

in the lower part of this group (Ruffell, 1992). In addition, phosphatic nodules have 

also been reported in the Upper Greensand group, another important aquifer in 
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southern England, as well as in the Gault Clay which lies between the two Greensand 

groups (Parrish, 1990; Gale, 2012). These nodules can contain 40-60% calcium 

phosphate (Pigott, 1964). In  addition, elevated Pi concentrations (>30 μg P.L-1) have 

been observed in other aquifers, including in the mid-west Republic of Ireland and the 

east of Scotland, with potentially significant anthropogenic inputs of Pi to these 

aquifers linked to land use in the area from which groundwater recharge is derived 

(Holman et al., 2010).   

 

In locations where groundwater containing elevated Pi concentrations discharge to 

rivers or lakes, Pi concentrations within these surface water ecosystems may rise 

(Holman et al., 2010; Hampton, 2012a, b). If Pi availability within these ecosystems 

limits primary production, then delivery of Pi from groundwater has the potential to 

adversely affect both the chemical and biological status of receiving waters (Holman 

et al., 2008). However, further research is required to understand whether Pi derived 

from groundwater is directly linked to metabolism within surface water ecosystems. 

Furthermore, the understanding of whether Pi in groundwater that discharges to 

surface water was originally derived from geogenic sources or from human activity at 

the ground surface is critical for designing suitable management responses to address 

elevated Pi within surface water systems that receive groundwater discharge (Holman 

et al., 2010; McDowell et al., 2015). 

 

In this context, an inherent tracer for P, such as δ18Op, offers the potential to enhance 

understanding both of the sources of P entering groundwater and the role of 

groundwater-derived Pi within surface water ecosystems. However, groundwater has 

been analysed for δ18Op in only a very limited number of previous studies, with 

reported data ranging between 15.1 and 22.4‰, with a mean value of 18.6‰ (n = 9,   

σ = 2.13‰) (Table 2.1). The largest study to date sampled only five groundwater sites 

in Cape Cod, Massachusetts, USA, from a shallow glacial outwash aquifer that had 

been contaminated by sewage (Blake et al., 2001). This research found evidence 

within the δ18Op data to suggest that biological processes within groundwater 

influenced Pi, but that the Pi pool had not reached thermodynamic equilibrium with 

δ18Ow through intracellular metabolism. The contamination with sewage resulted in 

elevated Pi concentrations (30-108μM) in the Cape Cod groundwater and the research 

suggested that complete metabolic turnover of Pi was limited by low dissolved organic 
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carbon (DOC) concentrations within groundwater. Therefore, it was speculated that in 

uncontaminated groundwater (<5μM Pi), low DOC concentrations would not be a 

limiting factor for metabolism and, consequently, that Pi within groundwater would be 

fully metabolised, resulting in δ18Op that was equal to the theoretical equilibrium 

value, δ18Oeq. Conversely, Young et al. (2009) found that δ18Op ratios of two 

groundwaters in the San Joaquin River system (California, USA) did not reflect 

significant biological processing, with +0.7 and -3.2‰ offsets between δ18Op and 

δ18Oeq across two different well depths (4.4 and 32.8 m deep respectively). 

McLaughlin et al. (2006a) used δ18Op analysis in groundwater to explore the 

possibility that groundwater discharge influences Pi concentrations within Elkhorn 

Slough, California, USA. These authors suggested that a shift towards lower δ18Op 

within samples from the slough itself was the result of groundwater discharge. 

However, given that only two groundwater samples were analysed in this research, the 

potential for application of δ18Op analysis to help assess the role of groundwater 

discharge for P cycling within surface water ecosystems remains unclear. 

Fundamentally, a larger global library of δ18Op for groundwater is required. This 

expanded dataset would provide insight into whether δ18Op is consistent between 

groundwater in different geological and wider environmental settings, or whether 

there are typical variations in δ18Op depending on the geological or environmental 

setting. 

 

In order for δ18Op to be an effective tracer of Pi source in groundwater, biological 

cycling of P within groundwater, and the impact of Pi following discharge of 

groundwater to surface water, groundwater δ18Op must be better constrained and must 

be distinct from Pi already present in surface water before discharge of Pi from 

groundwater. Therefore, this chapter is comprised of two components. Firstly, a 

survey of groundwater is reported to determine if groundwater δ18Op is consistent 

spatially and temporally, alongside whether δ18Op is distinct compared to the stable 

isotope composition of other sources of P. The hypothesis tested here is that 

groundwater δ18Op will vary significantly depending upon the sample type (boreholes 

versus springs) and the geological unit from which a sample is collected. Secondly, 

analysis is reported from an in-river transect within a catchment that includes a 

number of groundwater-fed springs and where the river flows over geological 

formations that are known to contain phosphatic nodules. The hypothesis for this 
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second component of the current chapter is that variation in δ18Op within an in-river 

transect provides evidence of the potential input, and subsequent in-stream fate, of 

groundwater-derived Pi that is not available without δ18Op analyses. 

 

A secondary aim was to contribute to an in-field method comparison between 

Methods 2 and 3 reported in Chapter 3. However, this comparison will be discussed 

in Chapter 6, with all data presented in the current chapter based solely on Method 2. 

 

 

5.2   Methodology 

 

The upper Wey catchment in Alton, Hampshire has been identified as a catchment that 

experiences elevated surface water Pi concentrations, despite the lack of obvious links 

to Pi sources associated with land use at the ground surface, such as intensive 

agriculture or wastewater treatment plants (WWTP) in the upper parts of the reach 

(Hampton, 2012a). This catchment lies in an area underlain by Upper Greensand and 

Chalk geological formations and is hypothesised to have a significant groundwater 

input to the surface water ecosystem, associated with groundwater discharge and 

groundwater-fed springs. Therefore, it was hypothesised that groundwater may be a 

significant contributor to the elevated concentrations of Pi within the river and that 

δ18Op could be used as a tracer to identify groundwater inputs of Pi to the river 

network.   

 

5.2.1   Geological setting 

 

The main geological units present in the study area (Figure 5.1), which cover both the 

upper Wey and Tillingbourne river catchments, all derive from the Cretaceous period, 

with the Lower Greensand Group representing the oldest sediments, and covered over 

time by the Gault formation, Upper Greensand formation and the Chalk group. These 

units are all sedimentary marine deposits and feature prominently across southern 

England, representing important regional aquifers (Edmunds and Kinniburgh, 1986; 

Shand et al., 2003). The Lower Greensand group is comprised of bands of sandstone 

and clays (Ellison et al., 2002). Two main units within this formation are the Hythe 
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Formation and the higher Folkestone Formation, separated by the Bargate and 

Sandgate Beds (bands of sandstone and silty and sandy clays). The Hythe Formation 

consists of fine to medium grained sands, and has chert nodules present within the top 

30 m. Importantly, within this layer phosphatic nodules can be found (Ruffell, 1992), 

which maybe a significant source of Pi to groundwater within the region. In addition, 

the reworked phosphatic pebbles derived from the Hythe Beds (with diameters of up 

to 10 mm) have been found in the Bargate Beds. The Folkestone Formation is mainly 

comprised of similarly fine to medium grained sands, however this layer has four 

distinct clay strata and a number of iron horizons. The Upper Greensand formation is 

also a sedimentary unit, consisting of calcareous sandstone and siltstones, and was 

overlain by the Lower Chalk formation – the lower two units within this formation are 

the West Melbury Marly and the Zig Zag Chalk formations. In addition to the Lower 

Greensand formation, phosphate nodules have been reported within both the Upper 

Greensand formation and in the Gault Clay layer (Parrish, 1990; Gale, 2012).   
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Figure 5.1: Geological map of the bedrock for the Alton and Godalming area, South England, UK. Groundwater samples (red arrows) are located within the upper Wey (G2, 

3, 11-15) and Tillingbourne (G1, 4-10) river catchments and the ground surface is underlain by four different formations – Chalk formation in the west to the 

older Lower Greensand Group in the east. Stream samples are displayed in Figure 5.2, which is contained within the red box above. Printed with permission: 

Geological Map Data ©NERC 2016. © Crown Copyright and Database Right 2016. Ordnance Survey (Digimap Licence).  
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5.2.2   Groundwater survey 

 

Table 5.1 and Figure 5.1 report the groundwater sites used for two sampling 

campaigns, alongside a description of the type of sample that was collected and the 

main bedrock unit that each sample represents. A sample of Upper Greensand bedrock 

was also collected from site G3 in order to extract Pi and determine δ18Op for the Pi 

released during bedrock dissolution. As this dissolution process is abiotic, it can be 

hypothesised that no isotopic fractionation would occur. Therefore, the aqueous δ18Op, 

following a liquid extraction using MilliQ water, would be expected to reflect that in 

the source bedrock material. Any difference found in δ18Op between the bedrock 

extracts and the groundwater samples would then be associated with an isotope 

fractionation within the groundwater system itself.  
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Table 5.1: Site descriptions for groundwater borehole and spring sample sites in the upper Wey 

and Tillingbourne catchments, alongside the bedrock unit from which each sample was 

derived. 

Code Name Location Sample type 
Depth 

/m 
Bedrock unit 

G1 

Water cress 

farm (PGWU 

0984) 

Kingfisher Farm 

Shop, Abinger 

Hammer 

Spring source 

(sampled as 

culvert) 

- 

Lower 

Greensand, 

boundary of 

Hythe/Bargate 

Beds  

G2 
Manor Farm 

(PGWU 1958) 

Nr Warner’s 

Wood, Manor 

Farm,  Selborne 

Road, Alton 

Spring - 

Upper 

Greensand, close 

to Gault Clay 

G3* 
Wyck Place 

(PGWU 1996) 

Wyck Place, 

Binsted 
Spring - 

Emerges from 

base of Upper 

Greensand just 

above the Gault 

Clay 

G4 

Arunshead 

Farm 

(PGWU 1555) 

Arunshead 

Farm, Shamley 

Green 

Collection of 6 

artesian 

boreholes 

(sampled as 

collection enters 

a brook) 

10-25  

Lower 

Greensand, close 

to Bargate Beds 

G5 
Netley 4 

(PGWU 0853) 

Netley Mill 

Pumping 

Station, 

Gomshall 

Borehole 40 

Folkestone Beds 

(Lower 

Greensand) 

G6 
Netley 1 

(PGWU 0850) 
Borehole 72 

Folkestone and 

Hythe Beds (in 

bottom 9 m only) 

(Lower 

Greensand) 

G7 Netley 2 Borehole 78-92 

Hythe Beds 

(Lower 

Greensand) 

G8 Netley 5 Borehole 78-92 

Hythe Beds 

(Lower 

Greensand) 

G9 Netley 6 Borehole 78-92 

Hythe Beds 

(Lower 

Greensand) 

G10 Netley 7 Borehole 78-92 

Hythe Beds 

(Lower 

Greensand) 

G11 
Hartley Park 

(PGWU 1975) 

Hartley Park 

Farm,  Selborne 

Road, Alton 

Borehole 
Not 

known 

Lower 

Greensand 

G12 
South Hays 

Cottage 

South Hay, Nr 

Binsted 
Borehole 11.85 Upper Greensand 

G13 
Colesons 

(SU7378) 

South Hay, Nr 

Binsted, 
Borehole 13 Upper Greensand 

G14 
Coors brewery 

(PGWU 1855) 

A339/A31, 

Alton 
Borehole 36.5 

Lower Chalk and 

Upper Greensand 

G15 

Windmill Hill 

Pumping 

Station 

(PGWU 0561) 

Windmill Hill, 

Alton 
Borehole 164.5 

Intersects Lower 

Chalk and Upper 

Greensand 

PGWU codes refer to the sample codes on the Environment Agency network 
*Location of bedrock sample used in rock extracts for δ18Op analysis 



 

– 122 – 

5.2.3   In-river sampling for analysis of δ18Op  

 

The Caker stream forms part of the upper Wey catchment and is located near Alton, 

Hampshire, England. The underlying geology of the in-stream sites is summarised in 

Table 5.2 and Figure 5.3. The reach of the Caker stream analysed for the research 

reported in this chapter covered approximately 9 km (Figure 5.5), starting on an 

arable farm, before flowing through arable and grassland fields, and ending in the 

industrial/urban area of Alton. Located 160 m upstream of the final in-stream site was 

the entry point for the final effluent from Alton WWTP. Sample W in Table 5.2 was 

collected from the outflow pipe at the WWTP, approximately 200 m prior to its entry 

into the river. Sample F was taken 160 m downstream of the final effluent entry point 

to the stream, on the assumption that the effluent would have mixed fully with stream 

water by this sample point. 
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Figure 5.2:   Location of sample sites along a tributary of the River Wey, Alton, UK. The direction of flow is 

from south to north and samples A-F are located along the main stem of the river, with four known 

additions to the main stream (yellow markers): S = a groundwater spring, T = the spring source 40 m 

downstream of S following input from a tile drain to the tributary, and W = a WWTP effluent that enters 

the river 160 m upstream of site F. Inset is for illustrative purposes only for the general location of the 

study site in Hampshire, England. 
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Table 5.2: Site descriptions for surface water sample sites in the upper Wey catchment and 

predominant land use directly surrounding each site.  

 Sample site 

Distance 

downstream 

from A /km 

Predominant land use 
Underlying bedrock 

formation 

A Main river 0.00 Agriculture Upper Greensand  

B Main river 2.69 Agriculture 

Boundary of Upper 

Greensand and West 

Melbury Marly Chalk 

S Groundwater spring 4.11* Agriculture West Melbury Marly Chalk 

T Spring and tile drain 4.11* Agriculture West Melbury Marly Chalk 

C Main river 4.81 Agriculture West Melbury Marly Chalk 

R Tributary 5.67* Agriculture West Melbury Marly Chalk 

D Main river 6.58 Agriculture West Melbury Marly Chalk 

E Main river 8.38 Urban Zig Zag Chalk 

W WWTP effluent 9.03* WWTP effluent - 

F Main river 9.19 Urban Zig Zag Chalk 
*Point at which inflow enters the main stream. S and T are situated on a tributary 2 km upstream of its 

confluence with the stream and W was sampled from a pipe on the WWTP site, approximately 200 m 

from the final effluent discharge point to the stream.  
 

 
Figure 5.3: Underlying bedrock for surface water samples in the upper catchment of 

the River Wey, Alton, UK. Direction of surface water flow is from south 

to north. 
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5.2.4   Field sampling campaigns 

 

Three sampling campaigns were conducted: June 2015 (02/06/2015 – groundwaters 

G1 and G4, as well as preliminary stream data from sites E, F and R (Appendix A.2); 

03/06/15 – groundwaters G3, G14 and G15); early November 2015 (03/11/2015 – 

groundwaters G1, G4-10; 04/11/15 – groundwaters G2, G3, G11-13); and late 

November 2015 (27/11/2015 – stream sites A – F, S, T and W). Sample codes are 

listed in Tables 5.1 and 5.2, and locations are displayed in Figures 5.1 and 5.2. 

 

5.2.5   Sample collection and field measurements 

 

The volumes of sample for collection were determined prior to sampling using 

previous concentrations from similar sites analysed by the Environment Agency 

(Hampton, 2012b, a) as a guide to the volume of sample required to contain 

approximately 0.4-0.7 mg P, thereby producing sufficient Ag3PO4 to run triplicate 

measurements on the thermal combustion/elemental analyser isotope ratio mass 

spectrometer (TCEA-IRMS). The two November campaigns also included an in-field 

SRP test for sample sites at which no prior concentration data were held.  

 

Water samples of 5-30 L for δ18Op analysis were collected from both stream and 

groundwater sites using a bucket and filtered in the field through 0.45 µm filter 

cartridges, using a peristaltic pump, into acid-washed high-density polyethylene 

containers. These samples were then stored at 4˚C in a cold store before analysis. For 

groundwater samples collected from boreholes, the borehole was pumped prior to 

collection until the electrical conductivity, pH and dissolved oxygen readings were 

stable. If the pump tubing was capable of being attached directly to the borehole, this 

was achieved in preference to collecting the sample in a bucket; however, no attempt 

was made to avoid contact of groundwater samples with the atmosphere during 

collection. For both spring and stream sampling, all the collection sites were chosen 

where the water was flowing freely and the bucket was used to sample from the most 

actively flowing section of each channel. The location of the spring sample G3 was 

the most densely vegetated, however every effort was made to minimise surface 

contamination from soil and vegetation during collection – for example, after clearing 
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the majority of large vegetation from the sampling location, the spring was allowed to 

flow freely to rinse away any loose contamination before collection. 

 

Water temperature was measured directly in the field using a Hanna Instruments 

handheld probe. An unfiltered sample was collected and analysed for electrical 

conductivity (EC), pH, reduction-oxidation potential (EH) and dissolved oxygen (DO) 

concentration in the field using calibrated Mettler Toledo probes. Alkalinity was 

determined by an in-field bromocresol green colorimetric titration against 1.6N 

H2SO4. Separate unfiltered (collected in amber vials) and filtered (0.45 µm syringe 

filtered, collected in 50 mL centrifuge tubes) sample aliquots were collected at each 

site and retained for δ18Ow and nutrient analysis respectively, and stored at <4 ˚C prior 

to analysis in the laboratory. 

 

5.2.6   Analysis of nutrient concentrations 

 

On 0.45 μm filtered sample aliquots, soluble reactive P (SRP) concentrations were 

determined using a phosphomolybdenum blue method on a Seal Analytical AQ2 

discrete autoanalyser (LOD = 0.005 mg P.L-1; analytical quality controls: matrix-

matched SPEX CertiPrep WR1 (0.6 mg P.L-1) and WR2 (0.3 mg P.L-1)). Total 

dissolved P (TDP) concentrations were analysed similarly to SRP, following the 

digestion of samples in a 0.11M sulfuric acid (H2SO4) and 0.03M potassium 

perfsulfate (K2S2O8) matrix. However, due to a time delay of several weeks in 

analysis for this component, the TDP concentrations indicated that sample 

deterioration had occurred prior to analysis, with lower TDP concentrations relative to 

the SRP concentrations which were processed immediately on returning to the 

laboratory. TDP loss is a known issue with delayed analysis (Kotlash and Chessman, 

1998; Neal et al., 2000); therefore, the TDP concentrations have not been included in 

this thesis. Dissolved organic carbon concentrations were analysed on acidified and 

sparged filtered samples using an Analytical Sciences Thermalox (LOD = 1.3 mg 

C.L-1; analytical quality control: EAG REF162 (0.5, 5 and 15 mg C.L-1)). Cl-, F-, 

N-NO3
-, and S-SO4

2- concentrations in filtered samples were determined using ion 

chromatography on a Dionex ICS2500 (LOD = 0.03 mg Cl.L-1, 0.0002 mg F.L-1, 

0.02 mg N.L-1 and 0.07 mg S.L-1 respectively; calibrated 0-10 mg N.L-1; analytical 



 

– 127 – 

quality controls: SPEX CertiPrep WR1 (60 mg Cl.L-1, 0.6 mg F.L-1, 4 mg N.L-1 and 

10 mg S.L-1) and WR2 (30 mg Cl.L-1, 0.3 mg F.L-1, 2 mg N.L-1 and 5 mg S.L-1)). 

 

5.2.7   Upper Greensand rock extracts 

 

A sample of Upper Greensand bedrock was collected from site G3, and ground to a 

homogeneous powder using a planetary ball mill. Extraction of Pi from the ground 

bedrock sample was performed in 18.2 MΩ MilliQ water for 72 hours using a roller 

shaker, using 3 x 20.00 g of bedrock powder and 400 mL MilliQ water for a set of 

triplicate samples. The mixtures were filtered (0.45 µm) and the filtrate collected and 

analysed for SRP (mean concentrations: 1.130, 1.166 and 1.116 mg P.L-1). The filtrate 

was subjected to Method 3 (protocol described in Section 3.5) in order to precipitate 

Ag3PO4 prior to determination of δ18Op. 

 

5.2.8   δ18Op and δ18Ow measurements 

 

After Pi concentrations had been determined, the appropriate volume of sample to 

generate 0.7 mg P as Ag3PO4 was processed using Method 2, as described in Section 

4.2.5. If sufficient sample volume remained, the sample was also run for Ag3PO4 

using the revised Method 3 (see Chapter 3).   

 

Ag3PO4 samples were analysed for δ18Op on an IsoPrime100 mass spectrometer 

coupled to a varioPYRO cube elemental analyser. 400 μg Ag3PO4 was weighed out in 

silver capsules alongside 800 μg carbon black, dried at 40°C overnight and converted 

to CO by pyrolysis in an ash crucible at 1450 C. The resulting gases passed through 

Sicapent (phosphorus pentoxide) to remove water vapour. Subsequently, the CO is 

separated from other impurities, namely N2, using a purge-and-trap system and helium 

carrier gas. 18O/16O is derived from the integrated mass 28 (12C16O) and 30 (12C18O; 

14C16O; 13C17O) signals from the sample CO pulse, compared to those in an 

independently introduced pulse of pure CO reference gas. These ratios are then 

calibrated to the Vienna-Standard Mean Ocean Water (VSMOW) scale in per mille 

notation (‰) using standards – NBS127 (+9.3‰), EM Ag3PO4 (+21.7‰) and Acros 

Ag3PO4 (+14.2‰). Analytical precision based on two standard errors for repeat 

analysis of the quality control (Acros Ag3PO4) is better than ±0.3‰VSMOW.  
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Unfiltered field samples were analysed for δ18Op using an equilibration method on an 

IsoPrime100 mass spectrometer coupled to an IsoPrime Multiflow inlet. 200 µL of 

heated (40˚C) sample was left for ~15 hours to equilibrate with the equilibration CO2 

gas. The resulting headspace gas was then sampled and passed to the Isoprime for 

isotopic analysis. 18O/16O ratios are then calibrated to the Vienna-Standard Mean 

Ocean Water (VSMOW) scale in per mille notation (‰) using standards – LEC 

LIGHT (-15.0‰) and LEC HEAVY (-1.5‰).  The precision obtained for repeat 

analysis of the quality control (LEC TAP) is better than ±0.15‰VSMOW.  

 

The δ18Op value predicted for a system at thermodynamic equilibrium with δ18Ow was 

calculated using Equation 4 and is denoted as δ18Oeq (Chang and Blake, 2015). 

 

1000 ln 𝛼𝑒𝑞−𝑤 = (14.43(±0.39) ×
1000

𝑇⁄ ) − 26.54(±1.33) (4) 
 

where T is in degrees Kelvin, and: 

 

 𝛼𝑒𝑞−𝑤 =
(𝛿 𝑂18 𝑒𝑞 + 1000)

(𝛿 𝑂18 𝑤 + 1000)
⁄  (4a) 

 

If the measured δ18Op is equal to δ18Oeq, δ18Op is assumed to be at thermodynamic 

equilibrium with δ18Ow.  

 

 

5.3   Results 

 

5.3.1   Analysis of groundwater samples and Upper Greensand bedrock extracts 

 

Tables 5.3 and 5.4 report the hydrochemical and isotope data collected across both 

June and November 2015 sampling events. Elevated SRP concentrations were found 

within all groundwater samples, ranging from 0.025 to 1.130 mg P.L-1, with a mean 

concentration of 0.494 mg P.L-1. When considered separately, the groundwater 

extracted from the Lower and Upper Greensand formations had mean SRP 

concentrations of 0.544 and 0.415 mg P.L-1 respectively. Concentrations were 

elevated in spring samples (x̅ = 0.765 mg P.L-1) compared to borehole samples          

(x̅ = 0.390 mg P.L-1). No correlation was found between SRP concentrations and Cl- 
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or SO4
2- using a Spearman’s correlation two-tail test, however a positive correlation 

was found between SRP and NO3
- concentrations: rs = 0.504, p = 0.033. Nitrate 

concentrations ranged from 0.17 to 10.73 mg N.L-1 (Figure 5.4). Repeat samples from 

sites G1 and 4 remained relatively consistent across all nutrient parameters in both 

June and November 2015, with the exception of DOC concentrations which were 

significantly reduced in November. Whilst there was a similar observed decrease in 

DOC concentration between June and November 2015 at site G3, there were also 

increases in SRP, NO3
- and SO4

2- concentrations from 1.051 to 1.130 mg P.L-1, 4.17 to 

7.19 mg N.L-1 and 9.17 to 10.74 mg S.L-1 respectively.  
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Table 5.3: Dissolved (0.45µm) nutrient concentrations and temperatures of groundwater in the Wey and Tillingbourne catchments. Soluble reactive P (SRP) 

concentrations are given to 3 decimal places;  chloride concentrations and temperatures to 1 decimal place; N:P as a molar ratio, electrical conductivity (EC), 

EH and alkalinity to 3 significant figures and the remaining parameters to 2 decimal places.  

Ground-

waters 

Sample 

type 

Sample 

depth 
T DO pH EC EH Alkalinity [SRP] [NO3

-] [Cl-] [F-] [SO4
2-] [DOC] 

Molar 

N:P 

 
 

m °C mg.L-1  
µS.c

m-1 
mV 

mg 

HCO3.L-1 

mg P 

.L-1 

mg 

N.L-1 

mg Cl 

.L-1 

mg F 

.L-1 
mg S.L-1 

mg 

C.L-1 
 

J
u

n
e 

2
0

1
5
 G1 Spring n.a. 10.3 8.54 6.49 348 170 75.6 0.704 10.43 22.8 0.47 7.35 11.00 32.7 

G3 Spring n.a. 13.6 10.17 7.87 588 - 292 1.051 4.17 20.6 0.24 9.17 3.96 8.77 

G4 
Artesian 

borehole 
10-25 10.9 9.71 6.37 271 203 34.1 0.907 5.31 20.5 0.38 6.92 5.38 12.9 

G14 Borehole 36.5 11.6 2.20 7.06 661 171 339 0.049 1.00 16.0 0.36 13.72 b.d. 45.3 

G15 Borehole 164.5 11.8 8.11 7.06 726 133 332 0.025 9.08 29.7 0.22 9.48 9.23 802 

N
o

v
em

b
er

 2
0

1
5
 

G1 Spring n.a. 10.1 - - - 70.7 - 0.732 10.08 23.6 0.45 7.50 b.d. 30.5 

G2 Spring n.a. 10.3 - - - 249 - 0.210 4.46 19.8 0.35 13.36 2.11 47.0 

G3 Spring n.a. 11.3 - - - 266 - 1.130 7.19 25.1 0.22 10.74 2.25 14.1 

G4 
Artesian 

borehole 
10-25 10.5 - - - 58.5 - 0.954 5.32 21.6 0.37 7.03 b.d. 12.3 

G5 Borehole 40 11.3 - - - 143 - 0.622 5.38 17.0 0.47 9.67 b.d. 19.1 

G6 Borehole 72 10.9 - - - 62.2 - 0.300 3.15 16.9 0.42 7.24 b.d. 23.2 

G7 Borehole 78-92 11.0 - - - 28.8 - 0.217 3.39 17.5 0.33 7.88 b.d. 34.6 

G8 Borehole 78-92 11.2 - - - 64.6 - 0.711 3.78 14.9 0.52 7.21 b.d. 11.8 

G9 Borehole 78-92 10.9 - - - 118 - 0.408 5.10 19.0 0.39 8.35 b.d. 27.6 

G10 Borehole 78-92 10.9 - - - 68.3 - 0.350 3.60 17.5 0.45 7.83 b.d. 22.6 

G11 Borehole Not known 12.0 - - - 70.7 - 0.080 0.17 11.8 0.29 3.85 b.d. 4.75 

G12 Borehole 11.85 13.5 - - - 366 - 0.241 4.94 23.1 0.23 15.96 1.41 45.4 

G13 Borehole 13 11.3 - - - 329 - 0.201 2.24 20.2 0.41 23.46 3.04 24.6 

n.a. =      not applicable;  

b.d.  =      below limit of detection; 

 -  =      not determined. In the case of November 2015, DO, pH, EC and alkalinity data were not collected due to the absence of field equipment. 
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Table 5.4: Oxygen isotope composition of phosphate (δ18Op), water (δ18Ow) and the theoretical equilibrium (δ18Oeq) for borehole and spring samples in the Wey and 

Tillingbourne catchments and their respective geological settings. The oxygen yields from pyrolysis of Ag3PO4 precipitates are given to 1 decimal place, a 

pure Ag3PO4 molecule would contain 15.3% oxygen. Isotope compositions given to 2 decimal places. 

Ground-

waters 

Sample 

type 

Sample 

depth 
Bedrock unit 

Mean 

δ18Op 
1σ n 

Mean 

O yield 

Mean 

δ18Ow 
δ18Oeq 

δ18Op – 

δ18Oeq 

  m  ‰ ‰  % ‰ ‰ ‰ 

J
u

n
e 

2
0

1
5
 G1 Spring n.a. Lower Greensand, boundary of Hythe Bargate Beds 20.50 0.26 3 15.3 -6.88 17.62 2.88 

G3 Spring n.a. Base of Upper Greensand, above Gault Clay 17.02 0.11 3 14.3 -5.73 18.20 -1.18 

G4 
Artesian 

borehole 
10-25 Lower Greensand, close to Bargate Beds 19.21 0.06 3 15.5 -6.97 17.42 1.79 

G14 Borehole 36.5 Lower Chalk and Upper Greensand n.d. - - - -5.78 - - 

G15 Borehole 164.5 Lower Chalk and Upper Greensand n.d. - - - -6.13 - - 

N
o

v
em

b
er

 2
0

1
5

 

G1 Spring n.a. Lower Greensand, boundary of Hythe Bargate Beds 20.13 0.26 3 15.4 -7.25 17.28 2.85 

G2 Spring n.a. Upper Greensand, close to Gault Clay 18.57 0.41 3 15.4 -6.49 18.02 0.55 

G3 Spring n.a. Base of Upper Greensand, above Gault Clay 17.65 0.14 3 15.6 -6.78 17.54 0.11 

G4 
Artesian 

borehole 
10-25 Lower Greensand, close to Bargate Beds 20.15 0.17 3 15.6 -6.64 17.83 2.32 

G5 Borehole 40 Folkestone Beds (Lower Greensand) 19.84 0.38 3 15.4 -7.15 17.16 2.68 

G6 Borehole 72 
Folkestone and Hythe Beds (in bottom 9 m only) 

(Lower Greensand) 
20.58 0.28 3 15.4 -6.98 17.41 3.17 

G7 Borehole 78-92 Hythe Beds (Lower Greensand) 20.13 0.21 3 14.9 -7.30 17.06 3.07 

G8 Borehole 78-92 Hythe Beds (Lower Greensand) 20.32 0.27 3 15.2 -7.26 17.07 3.25 

G9 Borehole 78-92 Hythe Beds (Lower Greensand) 20.07 0.46 3 15.1 -7.35 17.03 3.03 

G10 Borehole 78-92 Hythe Beds (Lower Greensand) 20.15 0.20 3 15.2 -7.09 17.29 2.86 

G11 Borehole Not known Lower Greensand only? - - - - -6.70 - - 

G12 Borehole 11.85 Upper Greensand 18.88 0.41 3 15.2 -6.48 17.45 1.43 

G13 Borehole 13 Upper Greensand 18.50 0.26 3 15.7 -6.45 17.88 0.62 

Rock 

Extracts 
n.a. n.a. Upper Greensand 18.19† 0.43 9 15.1 -6.73 - - 

n.a. = not applicable;  

n.d.  =  not determined due to sample concentration being too low to yield sufficient Ag3PO4 for TCEA-IRMS analysis; 

n =  number of repeats for TCEA-IRMS analysis from one Ag3PO4 precipitate, with the exception of the rock extracts where n = 9 from 3 TCEA-IRMS analysis per 

triplicate Ag3PO4 precipitate; 

*  = MilliQ water in extracts; 
† =  Extracts underwent Method 3 protocol, all other analyses reported in this chapter utilised Method 2. 
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Figure 5.4: Groundwater SRP concentrations plotted against a) Cl-, b) SO4

2- and c) NO3
- 

concentrations. A significant correlation was found between SRP and NO3
- 

concentrations, whilst no correlation was found for SRP with Cl- or SO4
2-. 
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Figure 5.5: Comparison of groundwater δ18Op with a) δ18Ow and b) water temperature. Inverse 

regression and significant correlations were found for both sets of variables. 

relationships were found in both cases.  

 

Figure 5.6: Comparison of groundwater δ18Op - δ18Oeq with water temperature. No significant 

correlation was found between the two variables in a Spearman’s correlation test. 
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The mean value for δ18Op within groundwater samples was 19.44‰ (1σ = 1.09‰), 

with a range from 17.02 to 20.58‰. The majority of groundwater samples were in 

disequilibrium compared to δ18Oeq, ranging from -1.18 to +3.25‰ relative to δ18Oeq, 

with a mean difference of +1.96‰. An inverse relationship was observed between 

δ18Op and both δ18Ow and water temperature, although no relationship was found 

between δ18Op-δ
18Oeq and water temperature (Figures 5.5 and 5.6). This was 

supported by the results from a Spearman’s correlation two-tail test in which no 

significant correlation was found between δ18Op-δ
18Oeq and water temperature, 

whereas significant negative correlations were found between δ18Op and δ18Ow (rs = -

0.560, p = 0.030) and δ18Op and water temperature (rs = -0.550, p = 0.034). To 

determine if there was a significant difference between mean δ18Op of the different 

sample types (spring vs. borehole samples), a two-tail T-test was undertaken, with the 

results indicating any difference was not significant at a 95% confidence level. This 

was also true with respect to the difference between δ18Op and δ18Oeq across spring vs. 

borehole samples. For the sites that were sampled in both June and November 2015, 

G1 had a slightly lighter δ18Op ratio in November compared to June, but a very similar 

difference compared to δ18Oeq; G3 and G4 had δ18Op values that increased by 1.55‰ 

and decreased by 1.56‰ respectively between June and November, with samples 

from both these sites demonstrating reduced differences between δ18Op and δ18Oeq in 

November vs. June.  

 

Differences between δ18Op in samples from the Lower Greensand and Upper 

Greensand units were significant when compared using a two-tail T-test: t(13) = 6.83, 

p <0.001. This was also true for the difference between δ18Op and δ18Oeq between the 

two units: t(13) = 7.03, p <0.001. Therefore, average δ18Op in groundwater appeared 

to differ dependent on the bedrock geology, with mean δ18Op for the Lower and Upper 

Greensand units of 20.11‰ (σ = 0.38‰) and 18.12‰ (σ = 0.77‰) respectively. The 

mean difference between observed δ18Op and δ18Oeq was +0.31‰ (σ = 0.96‰) for 

samples taken from the Upper Greensand and +2.79‰ (σ = 0.44‰) for samples from 

the Lower Greensand. The mean δ18Op from groundwater samples collected from the 

Upper Greensand (18.12‰) did not significantly differ from the δ18Op of the water 

extracts from the bedrock, which was only 0.07‰ heavier (x̅ = 18.19‰, σ = 0.43‰), 

although it should be noted that the extracts used the Method 3 protocol (see Section 

6.1). Conversely, there was a significant difference between the Lower Greensand 
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groundwater samples and the Upper Greensand bedrock extracts using a two-tail       

T-test: t(11) = 7.44, p < 0.001. 

 

5.3.2   Hydrochemical and isotopic data from surface water samples 

 

Values for selected field and laboratory parameters are reported in Table 5.5; all 

distances in Table 5.5 and subsequent figures are quoted as downstream from site A, 

with the exception of sites S, T and W. The distances for these sites are quoted with 

respect to the point of input into the main stem of the Caker stream, i.e. site W = 9.03 

km, where the WWTP final effluent outflow pipe enters the stream. Sites S and T are 

reported to be at 4.11 km, where the tributary they are located on joins the main stem 

with both sites situated approximately 2 km upstream of the confluence, with site S 

being a sample fed by a groundwater spring, and site T located 40 m downstream 

following the entry of an agricultural tile drain.  

 



 

 

–1
3
6
 –

  

 

Table 5.5: Dissolved (0.45µm) nutrient concentrations and temperatures of surface water samples in the Wey catchment. Soluble reactive P (SRP) 

concentrations are given to 3 decimal places, temperature to 1 decimal place, alkalinity to 3 significant figures and the remaining parameters to 2 

decimal places. Molar ratios of N (in the form of NO3
-) to P (in the form of SRP), and C (in form of alkalinity and DOC) to P (in the form of 

SRP) are given to 3 significant figures. Typically, N to P ratios also include ammonium concentrations but these were not determined in the 

laboratory, and thus potentially these ratios would have been higher if dissolved inorganic N had been determined (Sander and Moore, 1979). 

 

Distance 

downstream 

from site A 

[Pi] [DOC] [NO3
-] T Alkalinity 

Molar ratio 

N:P 

Molar ratio 

C(Alk+DOC):P 

 /km /mg P.L-1 /mg C.L-1 /mg N.L-1 ˚C mg HCO3.L-1   

N
o

v
em

b
er

 2
0

1
5
 

A - 0.481 7.58 5.41 9.9 105 24.8 151 

B 2.69 0.310 4.96 5.03 10.3 190 35.9 353 

S* 4.11 0.018 1.64 7.43 11.1 312 898 8890 

T* 4.11 0.036 1.30 5.92 11.2 317 367 4600 

C 4.81 0.217 4.48 4.82 10.6 244 49.2 625 

D 6.58 0.166 4.09 3.98 10.8 207 52.9 695 

E 8.38 0.155 3.59 4.08 10.5 246 58.2 867 

W* 9.03 1.097 7.20 22.12 12.7 207 44.6 113 

F 9.19 0.789 5.62 16.13 12.2 207 45.2 152 

b.d. = below LOD; *Sites S and T characterise the inputs from a tributary and are located 2 km upstream of the confluence with the main stream. Site W 

characterises the WWTP effluent input.  
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Table 5.5 and Figure 5.7 report SRP concentrations, taken to be analogous to those of 

Pi for the purposes of this chapter. There was a monotonic decrease in Pi concentration 

with distance downstream along 8.4 km of the Caker stream between sample sites A 

and E. Between sample sites E and F, SRP concentration increased 5-fold, from 0.155 

to 0.789 mg P.L-1, following entry of final effluent from the WWTP into the main 

stem. A steady increase in water temperature was observed between sample sites A – 

D (Figure 5.8), before a small inflection between sites D and E. The input of WWTP 

effluent was associated with a sharp increase in water temperature between sites E and 

F. Both the NO3
- and DOC profiles exhibited a steady decrease in concentration 

between sites A and E and, similarly to the water temperature profile, increased 

sharply between sites E and F in response to the input of WWTP effluent (Table 5.5). 

In both SRP and water temperature profiles, the input of the tributary characterised by 

sample sites S and T generally appears to have no significant impact on the water 

quality conditions in the main stem of the stream. However, alkalinity in the main 

stem did rise between sites B and C in response to the input of a tributary with a 

greater alkalinity, as characterised by S and T.  

 

 
Figure 5.7: SRP concentrations downstream of site A on the Caker stream. Main stem sites are 

connected with lines; inputs to the stream are located at the point at which they would 

enter the main stem.  
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Figure 5.8: In situ surface water temperature downstream of site A on the Caker stream. Main 

stem sites are connected with lines; inputs to the stream are located at the point at 

which they would enter the main stem. 

 

 

Table 5.5 also reports the molar ratio of N-NO3 to P-SRP; all sites and inputs yielded 

a molar ratio greater than 20 with the lowest ratio being associated with the most 

upstream site, site A. The C:P molar ratios have also been calculated for carbon in the 

form of DOC and inorganic C (in the form of alkalinity). These ratios increased 

steadily downstream, such as the increase seen between sites C and D following the 

input of the tributary characterised by sites S and T. However, a substantial decrease 

was observed between sites E and F, following the addition of the low C:P WWTP 

effluent to the main river stem.  

 

The stable oxygen isotope composition of Pi and H2O also varied substantially along 

the in-stream transect. Table 5.6 reports the measured isotope data, as well as the 

theoretical equilibrium δ18Oeq calculated using Equation 4.  
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Table 5.6: Oxygen isotope composition of phosphate (δ18Op), water (δ18Ow) and the theoretical 

equilibrium (δ18Oeq) for surface water samples from the Caker stream system. The oxygen 

yields from pyrolysis of Ag3PO4 precipitates are given to 1 decimal place, a pure Ag3PO4 

molecule would contain 15.3% oxygen. Isotope compositions and distances downstream 

from site A given to 2 decimal places. 

 Distance 

downstream 

from A 

Mean 

δ18Op  

n 1σ Mean 

O yield 

Mean 

δ18Ow  

n Range 

/1σ † 

δ18Oeq δ18Op - 

δ18Oeq 

 /km /‰  /‰ /% /‰  /‰ /‰ /‰ 

N
o

v
em

b
er

 2
0

1
5
 

A - 18.73 3 0.16 15.2 -5.83 1 - 18.77 -0.04 

B 2.69 18.41 3 0.14 15.4 -6.01 1 - 18.51 -0.11 

S* 4.11 n.d. - - - -6.24 3 0.23 18.13 - 

T* 4.11 n.d. - - - -6.30 1 - 18.05 - 

C 4.81 18.17 3 0.26 15.4 -6.06 1 - 18.40 -0.24 

D 6.58 17.59 3 0.20 15.3 -6.13 1 - 18.30 -0.71 

E 8.38 18.70 3 0.21 15.2 -5.86 1 - 18.63 0.07 

W* 9.03 15.79 3 0.38 15.0 -6.53 1 - 17.54 -1.74 

F 9.19 16.07 3 0.07 15.4 -6.28 3 0.14 17.88 -1.81 

n.d. = not determined due to sample concentration being too low to yield sufficient Ag3PO4 for TCEA-

IRMS analysis; 
†n is the number of repeats for TCEA-IRMS analysis from one Ag3PO4 precipitate. If n = 2, range is 

quoted, if n = 3 the uncertainty is 1standard deviation; 
*Sites S and T characterise the inputs from two tributaries and W the WWTP final effluent. 

 

 

 
Figure 5.9: Mean δ18Op against distance downstream of site A on the Caker stream. Error bars 

display ±1σ when samples were run in triplicate through the TCEA-IRMS. Analytical 

uncertainty based on 2 standard errors of the Acros Ag3PO4 standard measurements is 

±0.3‰. 

  

The measured δ18Op for surface samples (Figure 5.9) showed a steady decrease of 

1.14‰ along 6.6 km of the in-stream transect between sample sites A and D. In 

contrast, over the 1.8 km between sample sites D and E, δ18Op increased by over 1‰ 

to reach 18.70‰. With the input of final effluent from the WWTP between sites E and 

F, there was a substantial decrease in δ18Op to 16.07‰ which is within one standard 

deviation of δ18Op determined for the final effluent from the WWTP. No isotope data 
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are available for sites S and T, due to extremely low concentrations of SRP in these 

samples and the insufficient mass of Ag3PO4 that could be recovered using the 

Method 2 extraction procedure. 

 

 

Figure 5.10: Mean δ18Ow against distance downstream of site A on the Caker stream. Analytical 

uncertainty based on 2 standard errors of the LEC TAP standard measurements is 

±0.15‰. 
 

 
Figure 5.11: Difference between calculated equilibrium δ18Oeq based on Equation 4 and the 

mean δ18Op ratios for samples from the Caker stream. At δ18Op – δ18Oeq = 0, δ18Op is 

assumed to be at temperature dependent equilibrium with δ18Ow.  

 

Distinct patterns were also observed in both δ18Ow (Figure 5.10) and δ18Oeq-δ
18Op 

(Figure 5.11) profiles. The difference between δ18Oeq and δ18Op increased steadily 

from -0.04 to -0.71‰ across sites A to D, before a substantial return towards 

equilibrium between sites D and E. The influence of WWTP effluent input between 

sites E and F was again evident in δ18Oeq-δ
18Op, which increased to approximately -

1.8‰ at site F. The variation in δ18Ow between sites followed almost exactly the 

pattern described above for δ18Oeq-δ
18Op. Despite a substantially lower δ18Ow at 

-6.6

-6.4

-6.2

-6.0

-5.8

-5.6

0 2 4 6 8 10

δ
1
8
O

w
/‰

Distance downstream /km

Main stem
WWTP outflow
S
T

-2.0

-1.5

-1.0

-0.5

0.0

0.5

0 2 4 6 8 10

δ
1
8
O

p
-δ

1
8
O

eq
/‰

Distance downstream /km

Main stem

WWTP outflow



 

– 141 – 

sample sites S and T, the input of this tributary to the main stream stem did not appear 

to significantly alter δ18Ow between sample sites B and C.  

 

 

5.4   Discussion 

 

5.4.1   Characterising δ18Op within groundwater and assessing microbially-mediated 

cycling of Pi in groundwater using δ18Op  

 

Groundwater SRP concentrations were elevated in the vast majority of the samples 

reported in this chapter. These concentrations are consistent with other studies that 

have found elevated SRP concentrations in some groundwater in England, particularly 

in groundwater derived from the Lower Greensand formation (Shand et al., 2003; 

Holman et al., 2010). However, the mean SRP concentration for the Lower Greensand 

groundwater reported in this chapter (x̅ = 0.544 mg P.L-1) far exceeds the <0.02-0.311 

mg P.L-1 range reported by Shand et al. (2003) for groundwater in the same geological 

unit. The two spring samples (G1) derived from this formation had a greater mean 

SRP concentration (0.718 mg P.L-1) relative to the borehole samples derived from this 

unit, alongside the highest NO3
-
 concentrations, suggesting an additional source of Pi 

at the ground surface. The Lower Greensand group consists of bands of sandstones 

and clays (Ellison et al., 2002); therefore differences in flow path dependent on the 

exact strata which the groundwater flows through, and consequently differences in 

residence times, could cause the resulting observed differences between the deeper 

borehole and surface spring samples.  

 

Similarly, the mean SRP concentration in the Upper Greensand (0.415 mg P.L-1) was 

elevated in relation to many UK groundwaters, including previously reported Pi 

concentrations in Lower Greensand groundwaters (Shand et al., 2003; Holman et al., 

2010). In addition, the G3 spring samples in the Upper Greensand formation were 

considerably more enriched in terms of SRP, NO3
- and DOC concentrations than the 

borehole samples derived from this geological unit, although the G2 spring sample 

was more consistent with the borehole samples, suggesting that G3 may be influenced 

by additional source of P at the ground surface, but that G2 is more reflective of the 
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subsurface groundwater. The contrast between G2 and G3 also support that a 

difference in flow path could result in differences in the groundwater chemistry; for 

example, the flow path that G2 is derived from could have been more isolated from 

the surface than that for sample G3, with either more numerous or thicker layer(s) of 

Gault Clay overlying the pathway, reducing groundwater recharge along its flow path.  

 

This suggests that one explanation for the elevated concentrations of Pi observed 

within groundwater derived from both the Lower and Upper Greensand formations is 

that Pi from sources at the ground surface are able to leach into groundwater. This is 

particularly supported by the elevated DOC concentrations observed in the June 

sampling from sites G4 and G15. Potential sources for this additional Pi include 

inorganic fertilisers, or leakage from sewage pipes or septic tanks. For all three 

possible sources, a strong positive linear correlation between NO3
- and SRP could be 

hypothesised, as these sources contain NO3
- alongside Pi. However, while a significant 

correlation was found between NO3
- and Pi, only a weak linear regression was 

exhibited in Figure 5.4c. Nitrate concentrations from Lower Greensand borehole 

samples ranged from 0.17 to 5.38 mg N.L-1, and mean SO4
2- and Cl- concentrations 

were 7.33 mg S.L-1 and 17.41 mg Cl.L-1 respectively; the concentrations of all three 

ions were consistent with the findings reported by Shand et al. (2003). Therefore, 

these nutrients, unlike the Pi concentrations, were not particularly elevated compared 

to Shand et al. (2003) and this is suggestive of the addition of a Pi-only source. 

Consequently, this does not suggest a surface-derived Pi source. One alternative 

source for elevated Pi concentration in groundwater from the Lower Greensand is the 

dissolution of phosphatic nodules contained with this formation, which can contain 

40-60% calcium phosphate (Pigott, 1964). 

 

Globally, only a total of nine data points for δ18Op in groundwater have been reported 

to date in the published literature. Therefore, the data included in this chapter 

represent a substantial addition to the worldwide library of stable isotope data related 

to Pi within groundwater. Although δ18Op across the groundwater samples reported in 

this chapter had a range of 3.56‰ (from 17.02 to 20.58‰), the data do lie within the 

range of 15.1 to 22.4‰ reported for groundwater in previous studies (Blake et al., 

2001; McLaughlin et al., 2006a; Young et al., 2009), suggesting some consistency 

across groundwater derived from different geographical locations and from different 
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geological units. When combined with previously published data for groundwater, the 

total number of groundwater samples for which δ18Op has been determined increases 

from 9 to 24, the mean δ18Op increases from 18.6 to 19.1‰ and the standard deviation 

decreases from 2.13 to 1.57‰. Figure 5.12 summarises the range of δ18Op values 

reported in the literature from various environments.  From these data, it is clear that 

there is overlap in the ranges of δ18Op across different samples types from the current 

data in published literature (see Table 2.1). For example, within the worldwide dataset 

the lower tail of groundwater overlaps with the heavier tail of both WWTP effluents 

and river waters. Therefore, from a worldwide perspective, groundwater may not 

present a distinct δ18Op compared to other freshwater ecosystems, which could 

adversely impact its utility as a tracer of Pi inputs from groundwater into surface 

water. However, whilst global-scale differentiation in δ18Op between individual 

sample types may not be realised, differences related to sources and/or cycling at more 

local scales may still exist, providing potential opportunities for application of δ18Op 

to address questions of P source and biogeochemical cycling (Gooddy et al., 2015). 

Indeed, this is confirmed in Figure 5.12 at the UK-scale based on the separation 

between δ18Op in groundwater samples and in final effluents from WWTPs that have 

been analysed in this thesis. 

 

Figure 5.12: Global δ18Op ratios in relation to δ18Op data reported in Chapters 4 and 5. Mean 

values are represented by diamonds, and tails shown the range of all data. Global 

data derived from references within Table 2.1 and Gooddy et al. (2016). 
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differences in residence time and/or transport pathway between borehole and spring 

samples. Furthermore, if a significant additional source of Pi was introduced at or 

close to the ground surface in the spring samples, leading to higher SRP concentration 

than in the borehole samples, this source must have been isotopically similar to that of 

the bulk groundwater Pi. However, δ18Op in groundwater did vary significantly 

dependent on the bedrock unit that a sample was collected from, with a mean 

difference between samples from the Upper Greensand (18.12‰, 1σ = 0.77‰) and 

Lower Greensand (20.11‰, 1σ = 0.38‰) of approximately 2‰. The δ18Op of samples 

from the Upper Greensand was also highly consistent with δ18Op from MilliQ water 

extracts of Upper Greensand rock material, that exhibited a mean δ18Op of 18.19‰ 

(1σ = 0.43‰). This suggests that groundwater Pi in this unit is likely to be derived 

abiotically from the bedrock material, for example through simple dissolution, with no 

significant fractionation or isotope effect within the groundwater itself. Whilst Pi may 

have been derived from the surface, the consistency between δ18Op in rock extracts 

and in groundwater samples, coupled the existence of confining clay layers within the 

region that could have prevented recharge from the surface reaching the groundwater, 

suggests that geogenic rather than anthropogenic sources of P to groundwater are 

more likely. However, further work is required to determine δ18Op for water-

extractable Pi from other bedrock units, in order to establish whether this consistency 

between δ18Op in groundwater and in bedrock extracts is present in other geological 

formations. In addition, other potential mechanisms for the release of Pi from geogenic 

sources, such as acid dissolution, should be evaluated in terms of their likely impact 

on δ18Op of Pi released from bedrock. In conclusion, the combination of 

hydrochemical and stable isotope data indicates that geogenic sources may contribute 

to elevated concentrations of Pi in some geological units. Consequently, this raises 

questions about the fate of geogenic Pi in groundwater, and about the potential 

environmental impact of geogenic Pi if delivered to surface water ecosystems. 

 

The groundwater δ18Op data reported within this chapter have a negative correlation 

and regression with δ18Ow (Figure 5.5a), suggesting that isotopically heavier δ18Op 

was associated with samples in which δ18Ow was isotopically lighter. This is 

inconsistent both with intracellular cycling of Pi and with extracellular hydrolysis of 

Porg as potential influences on δ18Op within groundwater because, under conditions in 

which these processes operated, a positive correlation between δ18Op and δ18Ow would 
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be expected (Blake et al., 2001). In addition, no significant correlation was observed 

between the difference δ18Op – δ18Oeq and water temperature (Figure 5.6). When 

compared to the theoretical equilibrium (δ18Oeq), Pi in groundwater appears to be in a 

state of isotopic disequilibrium, with a mean δ18Op – δ18Oeq value of +2.79 and 

+0.31‰ for the Lower and Upper Greensand samples respectively. Whilst it appears 

that the mean state of the Upper Greensand groundwater was much closer to δ18Oeq, 

the absolute difference across all samples from this unit ranged from -1.18 to +1.43‰, 

indicating that most individual samples were not close to equilibrium. There was no 

significant difference in δ18Op – δ18Oeq values across borehole and spring samples.  

 

In comparison with previous studies, the fact that δ18Op in the vast majority of samples 

reported in the current chapter were not at temperature-dependent equilibrium with 

δ18Ow is consistent with the findings of Young et al. (2009), who showed no evidence 

of intracellular metabolism of Pi within groundwater extracted from two different 

depths in the San Joaquin River system (California, USA). Conversely, Blake et al. 

(2001) did report a positive correlation between δ18Op and δ18Ow as evidence to 

support biological activity influencing Pi within a shallow glacial outwash aquifer in 

Cape Cod, Massachusetts, USA. However, this study was conducted on a highly 

contaminated aquifer that had received sewage effluent and it was speculated that 

metabolic turnover of the Pi pool was stimulated by the delivery of dissolved organic 

carbon (DOC) associated with sewage. These authors speculated that in groundwater 

with low DOC concentrations, complete metabolic turnover of Pi would not occur. 

This appears to be consistent with the data reported in the current chapter, 

compounded by elevated Pi concentrations from geogenic sources, which results in 

little isotopic evidence for metabolic processes influencing δ18Op from groundwater 

samples in the Upper or Lower Greensand units. This suggests that source δ18Op 

signatures may persist within Pi in groundwater, rather than being rapidly over-printed 

by fractionations associated with metabolic processes. 
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5.4.2   Evidence for sources and biogeochemical cycling of P within the Caker stream 

 

5.4.2.1   Phosphorus dynamics as interpreted from hydrochemical data 

The SRP concentration profile of the river reach sampled within this chapter indicated 

a steady decrease along the main stem of the Caker stream, before a sharp increase 

coinciding with the input of WWTP effluent between sites E and F. This increase 

elevated the in-stream SRP concentration to 0.789 mg P.L-1, only 0.308 mg P.L-1 

below that of the WWTP effluent itself, and coincided with substantial increases in 

both NO3
- concentrations and surface water temperatures (Table 5.5). This is 

consistent with the findings reported in section 4.4.1, alongside many previous 

studies, that demonstrate that significant influence of WWTP effluent on in-stream 

hydrochemical conditions, in particular through increases in SRP concentration to 

levels that reflect those within an effluent discharging to the stream (Bowes et al., 

2005; Carey and Migliaccio, 2009; Gammons et al., 2010; Gooddy et al., 2016). 

 

The monotonic decrease in SRP concentration along the majority of the upper reach of 

the Caker stream (sites A to E) may suggest hydrological dilution, whereby a water 

source with lower SRP concentration than the main stream discharged to the stream, 

thereby reducing SRP concentration (Hooda et al., 1997; Young et al., 1999). In 

addition, the DOC concentration profile between sites A and E was similar to that 

described for SRP. Given that there was little precipitation during the sampling 

campaign, and thus overland flow was unlikely to be a significant input to the stream, 

two possible sources of water that may have been responsible for dilution remain, 

either surface water tributaries or groundwater. A number of tributaries form 

confluences with the Caker stream along the reach, with tributaries entering the main 

stem between every sample site with the exception of sites E and F between which the 

WWTP effluent is discharged. However, the concentration of SRP was only 

determined for one of the more major tributaries to the Caker stream (sites S and T), 

which was associated with a spring source and enters the main stem between sites B 

and C. Both sample sites S and T had very low SRP concentration (mean 0.027 mg 

P.L-1), approximately 0.283 mg P.L-1 below the concentration at site B upstream of the 

confluence with this tributary. Therefore, it is possible that the input of water from this 

tributary may have resulted in decreased SRP concentration within the main stream 

stem, resulting in the SRP concentration profiles in Figure 5.7. Given that most 
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tributaries within the catchment rise from groundwater springs and flow through 

similar land use covers, it could be argued that similar SRP concentrations may 

reasonably be expected within the other tributaries entering the main stem along this 

reach of the Caker stream. However, it would also be expected that a more stepped 

change in SRP concentration would be apparent along the reach, due to the individual 

inputs from tributaries that range in size, and potentially SRP concentration. In 

addition, the SRP concentrations found in the spring samples reported in Section 

5.3.1, are considerably greater than those of sample sites S and T, therefore SRP 

concentrations could be variable in the tributaries joining the main Caker stream in 

this reach. Furthermore, the NO3
- profile within the Caker stream was not consistent 

with dilution by surface water tributaries, with a decreasing concentration of NO3
- 

between sites A and E despite a relatively high concentration of NO3
- observed at 

sample sites S and T. This is not consistent with dilution by surface water tributaries, 

unless an alternative water source was entering the stream, or unless NO3
- was being 

removed by in-stream biogeochemical processes, such as denitrification (Seitzinger, 

1988; Mulholland et al., 2008), within the main stream stem.  

 

Alternatively, groundwater discharge along this reach of the Caker stream may have 

been responsible for the observed decreases in SRP concentration between sample 

sites A and E. The Caker stream rises on the Upper Greensand (sites A and B) and is 

underlain by chalk geology in the downstream section of the sampled reach (sites B-

F). Although the Upper Greensand springs and boreholes measured in Table 5.3 

suggested the potential for elevated SRP concentrations in groundwater derived from 

this formation, every groundwater sample, except one, exhibited an SRP concentration 

below that observed at site A on the Caker stream, with some samples being 

extremely low in terms of Pi concentration (for example, G14: 0.049 and G15: 0.035 

mg P.L-1). The concentration of SRP in groundwater supports the hypothesis that 

groundwater discharge may have been responsible for dilution of SRP concentration 

within the Caker stream. Furthermore, the steady decrease in SRP concentration, 

suggesting a constant diffuse input along the reach, in combination with a stream 

water temperature profile that increases steadily between sites A and E, was consistent 

with groundwater discharge to the Caker stream (Constantz, 1998; Becker et al., 

2004).     
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However, without the use of inherent tracer for SRP, the cause of changes in SRP 

concentration along the in-stream transect cannot be properly explored. Concentration 

data provide little information about the fate of in-stream Pi, for example it is also 

possible that metabolic processes may have altered Pi concentration and produced the 

profile observed along the sampled reach of the Caker stream. Using the 166C:20N:1P 

molar ratio to indicate which nutrient element may have limited production within the 

system, all samples from the Caker stream would be considered as Pi-limited (Sterner 

et al., 2008). In an ecosystem in a state of Pi-limitation, Pi addition to the system 

would be expected to stimulate biological activity, either through intracellular 

metabolism and/or biological uptake. These processes would lead to an isotopic 

fractionation or isotope effect influencing δ18Op alongside, in the case of intracellular 

metabolism, the approach of δ18Op towards δ18Oeq. Therefore, the use of δ18Op may 

provide additional insights into the importance of in-stream biogeochemical process 

for the fate of Pi along the sampled reach of the Caker stream. 

 

5.4.2.2   Insights into the sources and biogeochemical cycling of P within the Caker 

stream through stable isotope analysis 

Within the Caker stream, δ18Op decreased steadily from 18.73‰ at site A to 17.59‰ 

at site D. This downstream trend matched that observed in the concentration of SRP 

between the same sampling sites. Decreasing δ18Op along this reach either reflects the 

input of water to the stream with δ18Op that is isotopically lighter compared to that at 

site A, or the action of a process which leads to oxygen isotope fractionation or an 

isotope effect that produces isotopically lighter δ18Op.  

 

Groundwater from the Upper Greensand within the region had a mean δ18Op of 

18.12‰ (1σ = 0.77‰), although the range of δ18Op from groundwater in this aquifer 

was 17.02 to 18.88‰. Coupled with SRP concentrations in the Upper Greensand 

groundwater, these stable isotope data confirm that groundwater discharge to the 

Caker stream may have been responsible for the observed δ18Op profile between sites 

A and E. Further support for potential groundwater discharge to the Caker stream is 

provided by δ18Ow that also decreased steadily in the main stream stem between sites 

A and E, with δ18Ow in groundwater samples from the Upper Greensand averaging 

0.43‰ lower than at site A in the Caker stream. Despite substantially lower δ18Ow in 

the tributary represented by sample sites S and T compared to the Caker stream, no 
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step change in δ18Ow was observed between sites B and C as might be expected if the 

physical addition of this surface tributary were significantly influencing the 

hydrochemistry of the main stream stem. Because δ18Op within groundwater was 

relatively close to that at site A in the Caker stream, a substantial contribution from 

groundwater discharge to discharge within the Caker stream would have been required 

in order to produce the observed trend in δ18Op within the main stream stem. 

However, the δ18Op data reported in this chapter for groundwater derived from the 

Upper Greensand relate to only four samples collected from three different locations. 

Therefore, it remains possible that groundwater from other locations in the Upper 

Greensand is associated with more isotopically depleted δ18Op, compared to the data 

reported here. A more extensive sampling campaign would be required to further 

characterise δ18Op in groundwater from the Upper Greensand. However, it is noted 

that δ18Op in bedrock extracts from the Upper Greensand averaged 18.19‰. 

Therefore, substantially depleted δ18Op in Upper Greensand groundwater would have 

to be associated with different δ18Op in source bedrock material across the aquifer unit 

and/or fractionation or isotope effects acting during the initial release of Pi from 

bedrock into solution or during subsequent transport of Pi within the aquifer.  

 

The change in δ18Op within the Caker stream between sites D and E (a 1.11‰ 

increase) differs substantially compared to that observed between sites A and D. 

Therefore, coupled with the fact that SRP concentration decreased between sites D 

and E, it is extremely unlikely that δ18Op solely reflects groundwater discharge to the 

stream between these sites. An explanation based on continued groundwater discharge 

would require that groundwater with a substantially more enriched δ18Op than reported 

within this chapter discharged to the Caker stream. Alongside a substantial increase in 

δ18Op between D and E, a reversal in the patterns seen across upstream sample sites in 

terms of water temperature and δ18Ow was observed. Taken together, these data 

suggest that a water source with lower Pi concentration and water temperature, 

alongside elevated δ18Ow, may have entered the Caker stream between sites D and E. 

However, further work would be required to identify this water source beyond the 

sampling undertaken for the current chapter. 

 

Alternatively, the change in δ18Op between sample sites D and E on the Caker stream 

may also be consistent with intracellular cycling influencing the fate of Pi in this 
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reach. Between the same sample sites, the difference between δ18Op and the 

theoretical equilibrium, δ18Oeq, decreased to approximately -0.07‰. Whilst changes in   

δ18Ow and water temperature between these sample sites will lead to changes in the 

value of δ18Oeq (Equation 4), the change in absolute values of δ18Op also indicates that 

isotope fractionation or an isotope effect occurred, consistent with a metabolic process 

influencing the fate of Pi in this reach. The increase in δ18Op and movement toward 

δ18Oeq are consistent with intracellular metabolism of Pi between sites D and E on the 

Caker stream. However, between sites A and D, the divergence of δ18Op from δ18Oeq 

increased, alongside the decrease in absolute values of δ18Op described above. 

Intracellular metabolism cannot be the cause of this trend, due to the increasing 

movement of δ18Op away from δ18Oeq (Pucéat et al., 2010; Chang and Blake, 2015). 

Uptake of extracellular Pi and incorporation into biomass results in a kinetic isotope 

effect, due to preferential uptake of isotopically lighter Pi isotopologues by microbial 

and plant communities, resulting in an increase in δ18Op within residual Pi in the 

extracellular environment, which is inconsistent with the in-stream δ18Op profile, 

alongside a decrease in SRP concentration (Blake et al., 2005). Similarly, extracellular 

hydrolysis of Porg to yield Pi represents another metabolic process that could lead to 

change in δ18Op. This process has the potential to cause a decrease in δ18Op within the 

extracellular environment, due to kinetic and/or inheritance isotope effects, with the 

resulting δ18Op lying between that of the Porg molecule and δ18Ow (see 2.2.3 for further 

discussion) (Blake et al., 1997; Colman et al., 2005; Liang and Blake, 2006b). 

However, this process yields additional Pi, in contrast to the SRP profile observed 

between sites A and D on the Caker stream. Finally, abiotic ion exchange in which 

aqueous Pi is abiotically exchanged with Pi ions in the sorbed phase that may be at 

disequilibrium, can also result in disequilibrium isotope effects (Jaisi et al., 2011). 

However, within natural ecosystems abiotic ion exchange occurs at a very slow rate 

and therefore is likely to be masked or overprinted by any biological processes that are 

altering the Pi pool. Therefore, it is unlikely to be a main driver of change observed 

within the δ18Op river profile. In conclusion, the gradual decrease in δ18Op between 

sites A and D on the Caker stream is most likely to reflect groundwater discharge to 

the stream along this reach, and thereby for groundwater-derived P that is isotopically 

depleted in δ18Op compared to conditions at site A.  
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5.5   Conclusions 

 

Globally, only a total of nine data points for δ18Op in groundwater have been reported 

to date in the published literature. Therefore, the data included in this chapter 

represent a nearly threefold increase to the worldwide library of stable isotope data 

related to Pi within groundwater. In addition, the groundwater δ18Op signature has 

become more constrained – for example, within the Alton and Tillingbourne 

catchments in southern England, groundwater δ18Op exhibits consistency across 

sample locations and sample types within the same geology. However, δ18Op reflects 

the bedrock geology with lighter Upper Greensand (18.12‰, 1σ = 0.77‰) and 

heavier Lower Greensand (20.11‰, 1σ = 0.38‰), and notably the Upper Greensand 

groundwaters display little alteration to the bedrock material. This is essential 

knowledge for future studies where groundwater may be a significant Pi input.  The 

very small difference in δ18Op between solid phase-extracted Pi and groundwater Pi 

within the Upper Greensand formation and a system in disequilibrium with respect to 

δ18Oeq suggest that abiotic weathering dominates the Pi cycling within the 

groundwater.  However, further work is required to determine the effects of 

seasonality, temperature and biological processing across a larger range of natural and 

contaminated sites. 

 

In addition, this chapter has shown that by analysing δ18Op and δ18Ow, in conjunction 

with a classical hydrochemical approach, the groundwater discharge from an Upper 

Greensand aquifer may be shown to play an important role in Pi biogeochemical 

cycling within a small river catchment. However, for this study there was insufficient 

evidence to determine the cause of the deviation from δ18Oeq; although, similarly to 

Chapter 4, several common biogeochemical cycling processes have been ruled out 

which would not have been possible using a hydrochemical approach. Chapter 6 will 

compare how δ18Op helped to elucidate the occurrence of biogeochemical processes 

that were masked in in-stream SRP concentration profiles and will explore how δ18Op 

may be used in future biogeochemical studies of P within freshwater ecosystems. 
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Chapter 6: 

Discussion and consideration of future requirements for 

δ18Op research 

 

 
 

 

Analysis of δ18Op within Pi represents a novel, inherent and potentially powerful 

stable isotope tracer for biogeochemical research focussed on P. However, due to the 

challenges of robustly extracting Pi for δ18Op analyses from freshwater matrices, only 

a relatively limited number of studies have attempted to use δ18Op in order to assess 

the sources and metabolism of Pi in freshwater ecosystems (Blake et al., 2001; Gruau 

et al., 2005; McLaughlin et al., 2006a; McLaughlin et al., 2006c; Elsbury et al., 2009; 

Young et al., 2009; Li et al., 2011). This thesis has sought to couple the development 

of new protocols for determination of δ18Op with application of these protocols within 

exemplar freshwater ecosystems. This was achieved through addressing the four key 

objectives of the thesis as formulated in Chapter 1: 

 

1. To develop, optimise and test extraction protocols for analysis of δ18Op in 

surface water and groundwater matrices. 

2. To determine δ18Op in river water, wastewater treatment plant (WWTP) 

effluent and groundwater to constrain δ18Op in potential sources of Pi to 

freshwater stream ecosystems. 

3. To examine changes in δ18Op within river water as an indicator for the in-river 

fate of Pi derived from sources including WWTP final effluent and 

groundwater. 

4. To determine whether δ18Op within groundwater can act as a tracer for the 

sources and metabolism of Pi within groundwater and the discharge of 

groundwater-derived Pi to surface water ecosystems. 
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In this chapter, the contribution made by the thesis towards addressing each of these 

objectives is first summarised. Subsequently, the chapter moves on to place the 

outcomes of the thesis in the broader context of research using δ18Op to address 

questions surrounding P biogeochemistry, and to consider key priorities for future 

development and application of this novel stable isotope technique. 

 

 

6.1   Development of robust analytical protocols for δ18Op in 

freshwater matrices  

 

Chapter 3 sought to address the first objective of the thesis by advancing the 

protocols available for analysis of δ18Op within freshwater matrices. Figure 2.4 

summarises five key protocols for δ18Op analysis in natural samples – three based on 

natural aqueous samples (McLaughlin et al., 2004; Gruau et al., 2005; Goldhammer et 

al., 2011a) and two based on extracts of soil samples (Tamburini et al., 2010; Weiner 

et al., 2011). Chapter 3 focussed on evaluating the McLaughlin et al. (2004) protocol 

that had originally been developed for marine waters when applied to freshwater 

matrices (Figure 3.1), and subsequently developing new sample processing stages as 

part of this protocol in order to more robustly determine δ18Op within freshwater 

samples.  

 

To achieve this, Method 3 (Figure 3.12) was newly developed and evaluated within 

this thesis, whilst Method 2 (Figure 3.7, which had previously been developed within 

the research group (Gooddy et al., 2016)) was further evaluated within this thesis. 

Both methods target the isolation of Pi from a freshwater matrix, with the use of 

specific DOM removal resins to reduce the probability of Porg hydrolysis, alongside 

the use of anion exchange resins to chromatographically separate Pi from competing 

oxyanions. Both methods use DAX8 resins, which also feature in the Weiner et al. 

(2011) and Tamburini et al. (2010) methods, to remove strongly hydrophobic organic 

matter from a matrix that is often attributed to humic and fulvic acids DOM (Carroll et 

al., 2000). However, a key advance in both Methods 2 and 3 compared to previously 

published protocols is the use of an anion exchange resin to concentrate and 

chromatographically isolate Pi from large volumes of water that potentially contain 
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substantial quantities of competing oxyanions, alongside Pi. Method 3 also 

incorporates a second resin that targets DOM removal – ISOLUTE® ENV+ – 

specifically for polar analytes (Alonso et al., 1999; Biotage, 2004). Importantly, this 

thesis developed Method 3 to overcome a potentially important limitation of Method 

2, in which variable sample volumes and matrix compositions must be loaded onto 

DAX-8 and anion exchange resins. This is a particular challenge in freshwater 

samples where the Pi concentration can vary significantly, meaning that the sample 

volume to be loaded onto a resin in order to generate sufficient Ag3PO4 also varies 

significantly, as does the composition of the sample matrix. Therefore, through the 

introduction of an initial MagIC precipitation, Method 3 sought to ensure that a 

standardised matrix is subsequently loaded onto the DOM-removal and anion 

exchange resins. 

 

Method 3 proved to generate δ18Op data with greater precision in laboratory trials 

(Section 3.5) compared to Method 1 (the original McLaughlin et al. (2004) protocol). 

However, the mean δ18Op determined following precipitation of Ag3PO4 was 

isotopically lighter than that of the inorganic Pi spike added to test solutions. This 

inaccuracy was most likely due to the consistent loss of Pi during the loading of the 

anion exchange resin for all matrices used in the trials in Section 3.5. For example, 

using the WWTP matrix, 43.2% of the starting Pi mass was lost throughout all the 

resin stages (steps 3c-7c in Figure 3.12), of which the majority was found in the waste 

stream when loading the anion exchange resin (39.9% of starting mass of Pi). Minimal 

losses (~1%) were associated with the ENV+ and DAX8 resin stages. After further 

analysis, it was established that the increased total mass of acetic acid loaded onto the 

anion resin, relative to earlier trials described in Section 3.4, had prevented Pi from 

effectively sorbing to the solid phase anion exchange resin. Given the large proportion 

of Pi that did not bind to the anion exchange resin, an isotope effect associated with 

the loss of Pi during loading of the resin cannot be ruled out, and this potential isotope 

effect may have influenced the resulting δ18Op from the trials reported in Section 3.5. 

In addition, the low yields of Ag3PO4 that were periodically generated using Method 

3 resulted in an incomplete evaluation dataset within Chapter 3. In contrast, Method 

2 has been proven to combine accuracy and precision relative to Method 1, 

consistently generating sufficient Ag3PO4 yields for repeated isotope analyses. 

Therefore, Chapters 4 and 5 applied Method 2 universally to the samples. However, 
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where Pi concentration and sample volumes allowed, a repeat analysis was also 

performed using Method 3. In total, 28 samples were run in parallel through both 

Methods 2 and 3 (Table 6.1), allowing for a comparison of the resulting isotope data. 

For these parallel analyses using Methods 2 and 3, the anion exchange resin 

conditions used within Method 3 were altered to match those of Method 2. 

Specifically, the anion exchange resin volume was increased from 12.5 mL to 50 mL 

and the molarity of the KCl eluent was increased from 0.25M to 0.3M. In addition, the 

re-dissolved brucite samples generated in step 2c of Method 3 (Figure 3.12) were 

diluted to 0.6%v/v acetic acid to ensure the acetic acid concentration was similar to that 

used in previous trials described in Section 3.4. Following these adjustments, in most 

cases a sufficient mass of Ag3PO4 for triplicate TCEA-IRMS analysis was precipitated 

overcoming the limitations observed in terms of Ag3PO4 yield that were highlighted in 

Chapter 2. However, further method validation is required to determine if these 

changes in anion exchange resin conditions improved the accuracy and precision of 

Method 3 against spiked test matrices as described in Chapter 3. 

 

Table 6.1: Summary of sample codes which were run for δ18Op analysis with both Methods 2 

and 3 (see Tables 4.1 and 5.2 for site descriptions).  

Chapter 4 Chapter 5 

March 2015 September 2015 June 2015 
Early 

November 2015 

Late November 

2015 

A A G1 G1 A 

D C G3 G2 W 

W D G4 G3 F 

 W F G4  

 E  G5  

 F  G6  

 T  G8  

 G  G12  

 H    

 I    

 

Figures 6.1 and 6.2 report comparisons of data derived from parallel analysis of 

samples using Methods 2 and 3. To determine if the two methods produced 

significantly different δ18Op for samples that were run in parallel, the data were 

subjected to a Shapiro-Wilk test for normality which showed Method 3 data to be 

normally distributed, whilst Method 2 data was not normally distributed. The 

Levene’s test showed that the variances on the means (0.708) and medians (0.667) 

were not significantly different for data drawn from the two methods. Therefore, a 
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Wilcoxon Signed-Rank Test for paired samples was undertaken. This test showed that 

the median δ18Op generated using Method 2 (x̃ = 16.62, n = 28) was significantly 

higher compared to that generated using Method 3 (x̃ = 16.03): T(n=28) = 26, p < 

0.001. 

 

To determine if the two methods produced Ag3PO4 precipitates from field samples 

that differed significantly in terms of their purity, the oxygen yield of the samples that 

were run in parallel using both methods were subjected to a Shapiro-Wilk test for 

normality which showed that data from both Methods 2 and 3 were not normally 

distributed. The Levene’s test showed that the variances on the means (0.0525) and 

medians (0.0612) were not significantly different at a 95% confidence level. 

Therefore, a Wilcoxon Signed-Rank Test for paired samples was undertaken and 

showed that the median oxygen yields for Ag3PO4 precipitates generated using 

Method 3 (x̃ = 15.33%, x̅ = 15.27%, n = 28) and Method 2 (x̃ = 15.37%, x̅ = 15.30%) 

were not significantly different at a 95% confidence level. Both methods therefore 

appeared to generate pure Ag3PO4 with oxygen yields, except for one sample, within 

10% of that expected based on pure Ag3PO4 (Figure 6.1b). Whilst oxygen yields 

greater than 15.3% suggest the presence of contaminant oxygen in an Ag3PO4 

precipitate, potentially altering δ18Op, oxygen yields less than 15.3% indicate that 

impurities are present in the Ag3PO4 but that these additional compounds do not 

contain any oxygen atoms. As the source of contamination is not oxygen-bearing, for 

example silver chloride, there should be no effect on δ18Op. However, oxygen yields 

below the expected value may indicate a potential issue during the Pi extraction 

protocol, for example the incomplete precipitation of Ag3PO4 which could have 

imparted a fractionation Pi within the original sample. 
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Figure 6.1: a) Boxplot of δ18Op ratios from repeat analyses of sample in Chapter 4 and 5 using 

Methods 2 and 3. Method 3 has a significantly lower median δ18Op and wider 

range. b) Boxplot of oxygen yield of Ag3PO4 precipitates from repeat analyses of 

Chapter 4 and 5 samples using Methods 2 and 3. Both methods have very similar 

median yields very close to the expected theoretical yield of 15.3% (dashed red line, 

±10% boundary blue lines), however Method 3 has a wider range. 

 

 

Figure 6.2: Scatterplot of δ18Op derived from samples collected as part of Chapters 4 and 5 and 

subsequently run using Methods 2 and 3. A linear regression between the two data 

sets yields the equation “Method 3 = 0.981*Method 2 – 0.413” (R2 = 0.828). 
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The strong linear regression (R2 = 0.828) between δ18Op for samples extracted with 

both Methods 2 and 3 (Figure 6.2), suggests that there is a systematic difference 

between the two protocols. Therefore, the identification of P sources and of processes 

influencing the transport of P through the environment should be possible using either 

extraction method, because the relative changes in δ18Op will be maintained across a 

sample profile regardless of the method. Figure 6.3 presents a direct comparison of 

δ18Op for the river profile with the greatest number of repeated samples, based on the 

September sampling campaign reported in Section 4.3. Whilst the general profile of 

δ18Op along this in-river transect is largely maintained across data derived from both 

Methods 2 and 3, a number of differences exist in terms of the absolute δ18Op data 

derived from each protocol. In particular, Method 3 results in a larger range of δ18Op 

across the profile (2.86‰) compared to Method 2 (1.40‰), as well as resulting in 

lower δ18Op values for WWTP effluent and tributary samples (16.13 and 16.01‰ for 

Method 2, and 15.70 and 13.39‰ for Method 3). These two specific data points, in 

combination with the full dataset reported in Figure 6.1a, suggest that Method 3 

generates absolute values of δ18Op that are lower compared to data derived from 

Method 2. This is consistent with the results from the validation trials reported in 

Section 3.5, indicating that the altered anion exchange resin conditions described 

above may have reduced the Pi loss during the loading of the anion exchange resin to 

allow a greater mass of Ag3PO4 to precipitate, but without a correlating increase in 

δ18Op. This suggests that isotopic fractionation was not associated with the loss of Pi 

during the loading of the anion exchange resin. Therefore, isotopic fractionation may 

have occurred earlier in the process, for example during the loading of the ENV+ resin 

or during the acetic acid dissolution stage following the initial MagIC precipitation 

(steps 5c and 2c respectively in Figure 3.12), as these steps are not present in Method 

2. Consequently, further method evaluation work is required to identify the step 

causing the observed δ18Op differences between both the KH2PO4 spike in Section 3.5 

and the Method 2 protocol described within this chapter. 

 

In terms of the extent to which the different methods influence the interpretation of the 

in-stream fate of Pi, it can be seen that in the in-stream patterns in δ18Op are generally 

very similar for Pi extracted from both Methods 2 and 3, however samples extracted 

using Method 3 exhibit a greater range of δ18Op (Figure 6.3). This similarity in 

pattern is even clearer when comparing the difference between δ18Op and δ18Oeq 
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(Figure 6.4), suggesting that the two protocols may differ in absolute δ18Op values but 

that they are in agreement with respect to the general direction of change of δ18Op- 

δ18Oeq, thus there is a consistent interpretation of the influence of intracellular 

metabolism in the δ18Op profile. For example for Chapter 4 samples, through both 

protocols the addition of WWTP effluent to the main stream at 1.38 km appears to 

overprint the upstream δ18Op so that the in-stream δ18Op at site E reflects that of the 

WWTP final effluent. However, this is associated with an in-stream increase in δ18Op 

using Method 2 and a decrease in δ18Op with Method 3. However, there is a 

difference in pattern immediately after the tributary input (2.11-2.18 km), with in-

stream δ18Op deflecting towards the δ18Op of the tributary for Method 2, but diverging 

from the measured tributary δ18Op with Method 3. Interpretation of the stable isotope 

and hydrochemical data for Method 2 suggested this deflection was due to a physical 

mixing of the main river with the incoming tributary, and consequently a deflection 

towards the addition to the stream. Conversely, the divergence from the tributary input 

using Method 3 is consistent with the pattern surrounding the tributary that was 

observed in the March campaign using Method 2, which was attributed to a potential 

increase in intracellular metabolism immediately after the tributary confluence or a 

transient kinetic isotope effect due to sorption of Pi to the river sediments. Following 

the mixing of the tributary, there are consistent differences across the two methods in 

terms of downstream changes in δ18Op. Therefore, the interpretation of the in-river 

fate of Pi based on δ18Op analysis would remain consistent.  
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Figure 6.3: Mean δ18Op ratios against distance downstream from site A. Analytical 

uncertainty based on 2 standard errors of the Acros Ag3PO4 standard 

measurements is ±0.3‰. Main river stem samples are connected with lines; 

Method 2 samples are drawn in black and Method 3 in red. 

 

 

Figure 6.4: Difference between mean δ18Op ratios and theoretical equilibrium δ18Oeq 

values. At δ18Op-δ18Oeq = 0, there is no difference between the theoretical and 

measured values. Main river stem samples are connected with lines; Method 

2 samples are drawn in black and Method 3 in red. 

 

From the results reported above and within Chapter 3, it appears that a systematic 

difference in δ18Op is generated depending on whether Ag3PO4 is precipitated using 

Method 2 or 3.  However, both methods generate Ag3PO4 that appears to be free of 
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contaminant oxygen and there is a strong linear relationship between δ18Op data 

derived from each method. For freshwater matrices, both methods provide a more 

accurate determination of δ18Op than can be derived from the original extraction 

protocol (Method 1, (McLaughlin et al., 2004)), and would therefore be preferred to 

ensure the accuracy of δ18Op from freshwater matrices. However, further research is 

required to better constrain the reasons for the apparent differences in absolute δ18Op 

derived from Methods 2 and 3. In particular, additional method evaluation using 

KH2PO4 spiking as described in Chapter 3 should be undertaken, but using the 

altered anion exchange resin conditions that were utilised for the field sample 

comparison described above. This appears to have overcome the low Ag3PO4 yield 

reported from Method 3 in Section 3.5 which may have been responsible for an 

isotope fractionation or effect, thereby leading to differences between observed δ18Op 

and the δ18Op of directly pyrolysed KH2PO4 (Figure 3.14). It is also be recommended 

that a spiked KH2PO4 sample is run as a “blank” during laboratory analyses to ensure 

that, where possible, issues can be identified within the methods and to ensure 

accuracy and precision are maintained across multiple sample runs. In addition, other 

analytical methods, such as scanning electron microscopy, could reveal the exact 

nature of potential contaminants within Ag3PO4 precipitates derived from multiple 

methods. 

 

 

6.2   Constraining δ18Op within sources of Pi to freshwater ecosystems 

 

When the results from the application of δ18Op reported in this thesis are compared to 

the existing worldwide library of δ18Op (Table 2.1 and Figure 5.12), it is clear that the 

data within this thesis are consistent with the ranges of δ18Op previously reported in 

published literature. No δ18Op data point from Chapters 4 and 5 lies outside the range 

of previously published data at a worldwide scale, suggesting that there is general 

consistency between the data reported here and the worldwide δ18Op dataset.  

 

Furthermore, the second objective of this thesis was to constrain δ18Op in potential 

sources of Pi to freshwater stream ecosystems, in order to determine how the case 

study stream systems may be impacted by additions of Pi from these sources. A very 
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narrow range of δ18Op in WWTP effluents was observed within this thesis (0.4‰) in 

comparison to that reported in the worldwide dataset (10‰). The worldwide dataset in 

Table 2.1 is derived from only three published studies based on effluents from six 

WWTPs – 16.6–18.4‰, from three WWTPs in France (Gruau et al., 2005), 8.4–

13.6‰, from three WWTPs in the USA – in California, Idaho and Ohio (Young et al., 

2009) and 8.4 – 11.1‰, from the same Californian WWTP as Young et al. (2009), 

USA (McLaughlin et al., 2006c). Therefore, there appears to be a potential spatial 

difference in the stable isotope composition of Pi in WWTP effluents; this could be 

due to differences in technology, Pi sources to WWTPs or flow rates. For example, 

McLaughlin et al. (2006c) noted that a 2.7‰ difference was found for two samples 

that had been collected under two different effluent outflow rates – high flow (8.4‰) 

and low flow (11.1‰). Variation in effluent-δ18Op could also arise from differences in 

the technology and treatment processing of sewage within a WWTP that could impart 

different δ18Op signatures, such as the presence/absence of P-stripping technology or 

differing biological treatment approaches which alter bulk Pi or hydrolyse Porg. 

However, the variation may have also derived from differences in the influents to the 

individual WWTPs. For example, isotopic variation in Pi entering a WWTP from an 

urban area compared to a rural area, or a diurnal variation in Pi sources, or contrasting 

mixtures of hydrolysable Porg compounds that could impart differing inheritance 

effects on δ18Op within the effluent. In addition, natural geographical variations in 

both temperature and δ18Ow would equilibrate with Pi to yield differing δ18Op ratios 

during intracellular metabolism.  

 

In order to be able to perform effective source tracking using δ18Op, it is essential that 

the isotopic composition of a source is constant or varies within a well-constrained 

range over time. Therefore, further work needs to be conducted to constrain the range 

of δ18Op in WWTP effluents and to understand the factors responsible for variation in 

δ18Op across different WWTP effluents. As was noted in Chapter 4, despite the very 

narrow range in δ18Op reported between seasons in this thesis, a greater variation in 

δ18Op within the effluent from Sutton Valence WWTP (range of 1.4‰) was previously 

reported across two seasons by Gooddy et al. (2016). However, in the context of the 

existing worldwide dataset, a 1.4‰ range is relatively consistent, which suggests that 

δ18Op could be used consistently as a marker of the input of Pi from Sutton Valence 

WWTP. Therefore, for specific catchment studies that contain a discharging WWTP, 
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WWTP effluents should be fully characterised as part of the study. This should also 

provide the basis for greater understanding of the magnitude and causes of local-scale 

variations in δ18Op from WWTP effluents.  

 

Worldwide, there are few published groundwater δ18Op studies and the current work 

reported in Chapter 5 of this thesis has increased the worldwide groundwater dataset 

almost threefold, with the addition of 15 data points across 12 different locations 

within the Lower and Upper Greensand geological units of the UK. Prior to the 

groundwater survey reported in Chapter 5, the worldwide mean δ18Op of groundwater 

was 18.6‰ (σ = 2.13‰, n = 9), with a range of 15.1 to 22.4‰. The addition of 

Chapter 5 increases the mean δ18Op to 19.1‰ and decreases the standard deviation to 

1.57‰ (n = 24), however the range was not altered as every sample reported within 

this thesis fell within the worldwide range reported in Table 2.1. However, δ18Op in 

groundwater did vary significantly dependent on the bedrock unit that a sample was 

collected from, with a mean difference of approximately 2‰ between samples from 

the Upper Greensand (18.12‰, 1σ = 0.77‰) and Lower Greensand (20.11‰, 1σ = 

0.38‰). Therefore, further groundwater surveys should be conducted to constrain 

groundwater δ18Op across significant geological units, particularly those that may 

discharge to surface waters. In addition, the δ18Op of samples from the Upper 

Greensand was also highly consistent with δ18Op from MilliQ water extracts of Upper 

Greensand rock material, that exhibited a mean δ18Op of 18.19‰ (1σ = 0.43‰). Given 

the very small difference in δ18Op between solid phase-extracted Pi and groundwater Pi 

within the Upper Greensand formation, alongside the persistence of disequilibrium in 

δ18Op in the Upper Greensand groundwater with respect to δ18Oeq, it may be suggested 

that abiotic weathering dominates the Pi cycling within groundwater in this formation. 

However, further work is required to determine whether variations in groundwater 

δ18Op, and in the difference between δ18Op and δ18Oeq, are associated with seasonal, 

temperature and biological processing effects across a larger range of groundwater 

aquifers, including those that have received significant groundwater recharge 

containing high surface Pi concentrations, or significant Pi contamination (e.g. septic 

tank leakages).  

 

Although there are overlaps in terms of δ18Op across individual sources of P and 

individual water types, as indicated in Table 2.1 and Figure 5.12 and similar plots in 
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Young et al. (2009) and Gooddy et al. (2015), this does not necessarily limit the 

application of δ18Op in regional or more local studies, in which the range of δ18Op 

across individual sources of P and water types may be significantly narrower than 

within the worldwide dataset. For example, there was no overlap between δ18Op in 

groundwater (Chapter 5) and δ18Op within WWTP effluents (Chapter 4 and 5) 

within this thesis, despite the fact that on a worldwide scale there is significant overlap 

between these two potential sources of P within river ecosystems. Similar 

observations have also been made by Gruau et al. (2005) who determined that δ18Op 

within WWTP effluents (16.6–18.4‰) were significantly lower than that of artificial 

fertilisers used within the same area in Brittany, France (19.6-23.1‰). However, 

overlapping δ18Op at more local scales may still confound research. Young et al. 

(2009) report artificial fertilisers with ratios from 15.5 to 22.3‰, dependent on the 

geological source of the fertiliser, a range that overlapped with other potential Pi 

sources including aerosols, detergents, toothpaste, and soil and faeces leachates. 

Therefore, within research that seeks to adopt δ18Op as an approach to differentiate 

between sources of Pi, efforts must be made to fully characterise potentially major 

sources of Pi at local scales, rather than relying on a global δ18Op mean.  

 

 

6.3   Providing insights into biogeochemical processes controlling P 

cycling with δ18Op 

 

Objectives 3 and 4 of this thesis examined how δ18Op can be used to provide 

additional insights into biogeochemical processes that control the cycling of P within 

aquatic environments that cannot be derived from traditional, concentration-based 

studies alone. Research on Pi has grown significantly since its role in eutrophication 

became evident (Correll, 1999; Ruttenberg, 2003; Schindler et al., 2016) and since the 

imposition of regulations to reduce inputs of bioavailable P to aquatic ecosystems 

such as the European Union Water Framework Directive (WFD) and the United States 

Clean Water Act (U.S. Senate, 1972; European Parliament, 2000). This has led to 

significant changes, such as a 90% reduction in SRP being released from WWTPs in 

the Thames catchment (Bowes et al., 2014). However, despite these reductions in Pi 

from WWTPs, and subsequent decreases within in-river Pi concentrations, this has not 



 

– 165 – 

also always led to changes within the primary producer communities within 

freshwaters, or the recovery has occurred over a prolonged period of time (May and 

Spears, 2011; Spears et al., 2011). This demonstrates the uncertainty in understanding 

of how Pi from specific sources is, or is not, linked to metabolism within streams and 

rivers. Furthermore, there remain considerable legacy P pools in the environment, 

particularly in western Europe (Sattari et al., 2012; Rowe et al., 2015). Remobilisation 

of P from this legacy pool may continue to input significant quantities of P into 

aquatic ecosystems, for years to decades after the initial input of P to a terrestrial 

ecosystem, delaying the restoration of aquatic systems (Haygarth et al., 2014; Powers 

et al., 2016). Therefore, the ability to determine how P is cycled through aquatic 

environments is key to understanding how to best to mitigate against Pi inputs and to 

create sustainable P usage schemes. The use of δ18Op as an inherent tracer of 

biogeochemical processing might highlight which freshwater ecosystems are most 

vulnerable to additions of bioavailable Pi, e.g. by determining the presence or absence 

of biological cycling, and thus which ecosystems would have the greatest benefit from 

investments to reduce Pi inputs within the catchment. This would create a greater 

efficiency and efficacy for catchment restoration funding. 

 

This thesis reports a number of cases in which δ18Op analysis provides additional 

insights into the mechanisms governing in-river cycling of P that are masked when 

considering in-river P concentration profiles alone. For example, in Chapter 4 the 

seasonal contrast in intracellular metabolism of WWTP-derived Pi, inferred from 

Figures 4.5, 4.7 and 4.9, being observed under high flow conditions, whereas under 

low flow conditions, little isotopic evidence was present to support metabolic 

processes influencing in-river transport of P. Intracellular metabolism, a process that 

does not significantly alter the in-stream SRP concentration, would not have been 

determined through only the analysis of the hydrochemical data. Similarly, under high 

flow conditions, extracellular hydrolysis of Porg to generate Pi can be determined 

through isotopic analyses, which would have been interpreted as the physical mixing 

of two water bodies on the basis of the hydrochemical data. In addition, potential lines 

of evidence for abiotic processes have also been found within the isotopic profiles; for 

example within the upper reach of the Chapter 5 in-stream profile, δ18Op diverged 

from δ18Oeq (Figure 5.11) suggesting a possible disequilibrium effect through an 

abiotic ion exchange in which aqueous Pi is abiotically exchanged with Pi ions in the 
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sorbed phase that may be at disequilibrium (Jaisi et al., 2011). However, within 

natural ecosystems abiotic ion exchange typically occurs at a very slow rate and 

therefore, in general, is likely to be masked or overprinted by any biological processes 

that are altering the Pi pool. Furthermore, in the upper reaches of the Caker stream in 

Chapter 5, the gradual decreases in δ18Op, δ18Ow and SRP concentrations (Figures 

5.9, 5.10 and 5.7) all support the hypothesis that groundwater discharge into the river 

is an important Pi source, thus determining a more direct relationship between the two 

water bodies. Therefore, δ18Op can also provide potential evidence of naturally derived 

inputs to freshwater river systems, such as the dissolution of phosphatic nodules in the 

bedrock. This evidence could be used to support a decision to not remediate a Pi-rich 

river if it could be proved that any elevation in in-stream Pi concentration, relative to 

other catchments or regulatory controls, was the result of natural inputs to the 

ecosystem.  

 

Additionally, there appears to be little biological processing of groundwater Pi within 

the Upper Greensand geological formation, resulting in δ18Op values close to that of 

water extracts from the parent bedrock material (Figure 5.6 and Table 5.4).  This is 

consistent with the findings of Young et al. (2009), who showed no evidence of 

intracellular metabolism of Pi, but is inconsistent with those of Blake et al. (2001), 

who reported a positive correlation between δ18Op and δ18Ow as evidence to support 

biological activity influencing Pi within a shallow glacial outwash aquifer. However, 

with both the published data and the data reported in Chapter 5, insights into the 

cycling of P within groundwaters, particularly in relation to the presence of 

intracellular metabolism, would not have been possible solely from the analysis of 

hydrochemical concentration profiles. However, the use of δ18Op, in conjunction with 

δ18Ow, T and δ18Oeq has allowed a greater insight into the occurrence or absence of 

biological processing. Another study that showed that δ18Op could determine 

processes and sources that cannot be explained by concentration studies alone was that 

of Lake Erie in which no increased influx of Pi to the lake water body had been 

observed, but Pi concentrations were increasing within the water column (Elsbury et 

al., 2009). This Pi concentration increase could not be explained using traditional 

tools, such as mass balances of P sources, however δ18Op analyses provided evidence 

of a heavy end-member Pi source being introduced to the system which was 
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hypothesised as the remineralisation of 18O-enriched Porg within the bed sediments, 

followed by release of Pi from the lake sediment to the water column.   

 

In Chapter 4, contrasting seasonal evidence for intracellular metabolism occurring 

immediately downstream of a WWTP effluent discharge point was reported, based on 

δ18Op. The data were consistent with intracellular metabolism of P during a sampling 

campaign in spring (March), but the δ18Op data suggested that intracellular 

metabolism was reduced during the autumn sampling campaign (September). This has 

been suggested to reflect the difference between the period of UK spring blooms 

(March to May) of phytobenthic organisms (dominated by diatoms), where SRP 

concentrations and silica levels both decrease due to algal-related removal of both 

elements, compared to an autumn sampling campaign (Bowes and House, 2001; 

Bowes et al., 2011). During this time, the demand for bioavailable P to support algal 

production is very high, promoting biological cycling processes such as intracellular 

metabolism and biological uptake. Seasonal differences were also observed by Li et 

al. (2011) within a freshwater wetland in the Everglades National Park, USA. The 

authors found that δ18Op was enriched in the colder, winter months relative to samples 

collected in summer. These seasonal effects could have been imparted through 

differences either in the metabolic activity within the wetland system, or in timings of 

artificial Pi fertilisers which had been shown to be a major source of Pi to the wetland 

ecosystem. This suggests that there are seasonal variations in the extent to which 

anthropogenically-derived Pi is metabolised following Pi point sources, which has 

been evidenced through δ18Op analysis. However, further investigation is required to 

determine the prevalence of these seasonal effects and whether they are predictable 

both temporally and spatially. Furthermore, it is often assumed that there is a need to 

reduce the Pi inputs from point sources due to their potential role in controlling 

downstream water quality and in stimulating eutrophication (Smith and Schindler, 

2009). However, if it can be shown through δ18Op that in-river processing does not 

necessarily occur downstream of a point source, investment in P removal technologies 

would be more efficient and effective at alternative locations where δ18Op data suggest 

strong coupling between WWTP effluent and in-river metabolism (which would result 

in a profile similar to that of the Scenario A in Figure 4.1 – a conceptual model for 

WWTP inputs to a strongly Pi limited ecosystem). When used in combination with 

stable isotope studies of nitrogen and carbon species, δ18Op analyses may provide 
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insights into whether P is the limiting nutrient for primary producers within rivers and 

stream, or whether other nutrients such as N or silica limit or co-limit production, or 

are indeed affected by factors such as wind speed, temperature or light availability 

(Hecky and Kilham, 1988; Pilkaitytė and Razinkovas, 2006; Conley et al., 2009; Xu 

et al., 2010; Gooddy et al., 2016). However, this does not exclude the possibility that 

a point source could contribute significantly to Pi loads delivered to downstream 

ecosystems such as lakes, in which a reduction in the Pi load would be beneficial. 

 

Therefore, an efficient and effective use of δ18Op protocols could determine which 

rivers are most vulnerable to Pi inputs through the uptake of Pi or evidence of SRP 

regeneration, Porg hydrolysis and intracellular metabolism. This could result in a more 

direct targeting of nutrient management schemes on catchments that demonstrate a 

greater sensitivity to the addition of Pi, and those that are likely to respond most 

rapidly to changes in P delivery. In addition, if δ18Op could be used to trace an input 

through the system, e.g. an artificial fertiliser through a farm system, there is potential 

for a greater understanding of how that input interacts and is utilised through the 

system. In the case of a fertiliser, this may result in the realisation of the most 

economical and cost-effective quantity of fertiliser required to support agriculture, 

without resulting in an increase of legacy P within the soils or excess drainage into the 

river system. For example, inputs of P from artificial fertilisers in the Everglades 

Agricultural Area (EAA) have contributed to mean concentrations of P in runoff being 

20-fold greater than in non-agricultural areas of the national park (Li et al., 2011). If a 

more efficient use of artificial fertilisers could be achieved, then demand for mineral P 

will be reduced and consequently, the uncertainty over mineral P reserves will lessen. 

This is particularly important given securing access to P remains a globally-significant 

issue due to the lack of effective P recycling within urban and agricultural areas, the 

lack of a suitable alternative source and a limited number of geographical locations of 

mineral reserves (Beardsley, 2011).  

 

Furthermore, by increasing our understanding of P biogeochemical cycling within 

aquatic environments, we can begin to address the modelled 0.27 Tg Pi-P.yr-1 that is 

exported by rivers to coastal regions in Europe, 92% of which is derived from 

anthropogenic sources (Harrison et al., 2010). Addressing this perturbation of natural 

aquatic P biogeochemical cycles should help to reduce the severity and range of 
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undesirable ecosystem changes, including increases in primary production, shifts in 

community composition, increased frequency of algal blooms and hypoxia, and 

reduced biodiversity (Sondergaard and Jeppesen, 2007; Smith and Schindler, 2009). 

 

  

6.4   Future priorities to develop research using δ18Op 

 

The use of δ18Op in research examining P cycling in natural ecosystems is at an 

embryonic stage, particularly with respect to freshwater ecosystems. This stable 

isotope tracer has the potential to offer new insights into both the relative importance 

of different sources of P to ecosystems, and the extent to which P from individual 

sources is linked to metabolic activity within ecosystems. These insights would have 

important implications for understanding the reaction mechanisms controlling P 

biogeochemistry in nature, and for the design and targeting of future policies and 

practices to deliver more sustainable stewardship of P. This thesis concludes by 

highlighting future priorities for δ18Op research that would help realise the full 

potential of this novel approach.   

 

6.4.1   The utility of δ18Op to provide insight into biogeochemical processes 

controlling P cycling  

 

Due to our relatively limited understanding of the sources and reaction mechanisms 

controlling biogeochemical cycling of P within natural ecosystems (Blake et al., 2005; 

Slomp, 2011), further studies using δ18Op across all aquatic environments would help 

to elucidate the biogeochemical pathways that govern the fate of P within the 

environment. However, δ18Op will not act as a conservative tracer for the sources of P 

to an ecosystem where metabolic reactions significantly influence the P cycle. Whilst 

clearly a constraint on source apportionment studies, the isotope fractionations that 

occur alongside metabolic processes provide the opportunity to use δ18Op to explore 

the reaction mechanisms controlling P cycling. Specifically, the balance between 

equilibrium and disequilibrium fractionations can provide insight into the relative 

importance of intracellular metabolism of Pi versus the extracellular regeneration of Pi 

from Porg. This requires future research to determine and interpret variations in δ18Op, 
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both through time (for example, from inter-annual or seasonal cycles to event-driven 

variations within lake or river ecosystems) and through space (for example, tracking 

downstream changes in δ18Op associated with point or diffuse inputs of P to aquatic 

ecosystems). 

 

In particular, the use of 18O-labelled Pi could help elucidate reaction mechanisms that 

govern the fate of P in freshwater environments. 18O-labels have been shown to be an 

effective tool in understanding reaction mechanisms within a laboratory setting (Liang 

and Blake, 2006b). The benefit of using a stable isotope labelled molecule in the 

environment is that the label can be manufactured such that it is far removed in terms 

of δ18O from other sources within the catchment, and due to its stability will not 

degrade over time unlike its equivalent radio-label – 32P (t1/2 = 14.36 days) and 33P (t1/2 

= 25.34 days) (Smith et al., 2011). The use of labelled 18O-Pi would allow tracing 

studies to be performed which could help distinguish physical pathways and reaction 

mechanisms for P biogeochemical processes within terrestrial and freshwater 

environments. For example, the internal loading of legacy P has been highlighted as a 

major concern for continuing algal blooms in a number of lakes despite extensive 

remediation and reduction of Pi inputs (Nürnberg et al., 2013; Bormans et al., 2015; 

North et al., 2015). Internal loading describes the release of P compounds from bed 

sediments within a lake, and has been found to contribute over 80% of the total P load 

during summer months (Steinman et al., 2009). The use of a labelled Pi system could 

provide important insights into how P is recycled within a holomictic lake system; 

particularly with a focus on the release of P from bed sediments into the hypolimnion 

when the lake is thermally stratified and the subsequent delivery of P-rich 

hypolimnion water to the surface during spring or autumn turnovers. This could be 

achieved through the release of labelled Pi into lake bottom sediments, and the 

tracking of δ18Op within the water column throughout the year, but with a focus on 

turnover times within a lake to determine the rate and extent to which Pi is exported 

from the lake sediments and mixed with the lake water. A second possibility would be 

to track the export of 18O-labelled fertiliser Pi from its input onto agricultural land to a 

receiving water body, and its subsequent transport downstream to determine the fate 

and biogeochemical cycling of fertiliser-derived Pi.   
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6.4.2   Determination of δ18O in Porg molecules 

 

Compared to the volume of research that has focussed on Pi, very little is known about 

the concentration or the cycling of specific groups of Porg compounds in natural 

freshwater environments (Espinosa et al., 1999; Turner et al., 2002; Toor et al., 2003; 

Cade-Menun et al., 2006; Koopmans et al., 2007). Further, there remains insufficient 

research that has fully speciated the Porg compounds found in freshwaters; however 

some research has begun to explore the use of δ18O in Porg molecules in a laboratory 

setting (Liang and Blake, 2006a; Sandy et al., 2013). This analytical gap remains to be 

addressed by future research, particularly considering the potential role of Porg as a 

factor influencing δ18Op in Pi within freshwaters following hydrolysis of Porg. Once 

full speciation and separation of Porg within waters is achieved, δ18O analyses could be 

performed on individual Porg compounds or classes. This could be achieved through 

the separation of Porg compounds into fractions using high performance liquid 

chromatography, followed by ultraviolet radiation of each fraction to hydrolyse Porg to 

Pi without imparting an isotopic fractionation during the extraction process (Liang and 

Blake, 2006a), and finally the precipitation of the released Pi as Ag3PO4. However, 

further investigations would be required to model the isotope effects of the water 

oxygen atoms that may be incorporated within the released Pi molecule, as to date the 

magnitude of the fractionation factor associated with this process has only been 

quantified for two classes of Porg (Liang and Blake, 2006a). Thus, following the 

analytical development for the analysis of δ18O within the phosphate moieties of Porg, 

δ18Op could be used to understand the cycling of Porg within aquatic ecosystems. This 

would allow research to bridge the gap between Pi and Porg and more fully understand 

how these species interact with each other, for example how specific Porg compounds 

are accessed to support metabolisms by organisms across ecosystems that differ in the 

extent to which they are Pi-limited.  
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6.4.3   Couple δ18Op with parallel techniques to develop an integrated isotope 

framework across C, N and P cycles.  

 

Whilst analysis of δ18Op is beginning to emerge as a research tool in aquatic 

ecosystems, parallel stable isotope techniques have a longer history of application for 

N (15N/14N in ammonium and 15N/14N, 18O/16O in nitrate) and for C (13C/12C). 

Coupling analysis of δ18Op with that of stable isotopes in N and C compounds would 

potentially offer new insights into process interactions between C, N and P 

biogeochemistry. A coupled stable isotope framework could draw on natural 

abundance approaches or, ultimately, on isotopic labelling studies based on production 

of labelled δ18Op to complement isotopically labelled sources of N and C. Finally, by 

coupling stable isotope and radioisotope techniques, processes that govern the cycling 

of P across both the short and long term within aquatic ecosystems could be more 

readily constrained (for recent examples see McLaughlin et al., 2013 and Gooddy, 

2016). 
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Appendix 

 

 
 

 

A.1   Supplementary elution profiling for Chapter 3    

 

To ensure that the new conditions for the loading and elution of the anion exchange 

resin for Method 3, set out in Section 3.5.2, allowed full Pi adsorption to the resin and 

that Pi was effectively separated during the anion exchange resin elution, triplicate 

spiked MilliQ matrices – consisting of 0.6%vv acetic acid, 0.7 mg P-PO4.L
-1, 

11.2 mg N-NO3.L
-1 and 3.3 mg S-SO4.L

-1 – were loaded and eluted using the new 

conditions. The waste streams from the loading of the resins were collected and 

analysed for Pi, and were all below detection limits. The subsequent elution profiles 

exhibited a clear separation of Pi from SO4
2- and almost complete Pi mass recovery 

was achieved (Figure A.1).  

 

Figure A.1: Elution profiles for Cl
-
-form anion exchange resins using 0.3M KCl 

with an elution rate of 1 mL.min-1 in two duplicate columns - A and B.  
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A.2   Supplementary field data for Chapter 5 

 

For the in-stream field campaign presented in Chapter 5, an initial sampling trip was 

conducted in June 2015, alongside the first groundwater sampling campaign. This 

resulted in supplementary data surrounding two of sites described and measured in 

Chapter 5 (sites E and F), as well as a new site R, being tested. Sample descriptions 

for all three sites are provided in Table 5.2, and their respective locations and 

geologies in Figures 5.2 and 5.3. Table A.1 summarises the hydrochemical and stable 

isotope data collected during this initial sampling trip.  

Table A.1: Dissolved (0.45µm) nutrient concentrations and stable isotopic data of supplementary 

surface water samples in the Wey catchment. Soluble reactive P (SRP) concentrations are 

given to 3 decimal places, temperature to 1 decimal place, alkalinity to 3 significant 

figures and the distance downstream and nitrate concentration to 2 decimal places. Molar 

ratios of N (in the form of NO3
-) to P (in the form of SRP), and C (in form of alkalinity 

and DOC) to P (in the form of SRP) are given to 3 significant figures. Oxygen isotope 

composition of phosphate (δ18Op), water (δ18Ow) and the theoretical equilibrium (δ18Oeq) 

are given to 2 decimal places. The oxygen yields from pyrolysis of Ag3PO4 precipitates 

are given to 1 decimal place, a pure Ag3PO4 molecule would contain 15.3% oxygen.  

  R E F 

Distance downstream from A /km 5.67* 8.38 9.19 

[Pi] mg P.L- 0.072 0.034 0.958 

[DOC] /mg C.L-1 3.73 5.11 22.80 

[NO3
-] /mg N.L-1 3.63 4.92 20.14 

T ˚C 17.2 12.2 15.1 

Alkalinity mg HCO3.L-1 334.0 295.6 209.7 

Molar ratio N:P  112 320 46.5 

Molar ratio C(Alk+DOC):P  4800 172 2490 

Mean δ18Op /‰ 17.22 n.d. 15.58 

1σ (n) /‰ 0.35 (3) n.d. 0.09 (3) 

Mean δ18Ow /‰ -5.70 -5.75 -5.73 

Range (n) /‰ 0.01 (2) n.d. (1) 0.08 (2) 

δ18Oeq /‰ 17.59 18.43 17.93 

δ18Op - δ18Oeq /‰ -0.37 n.d. -2.35 

n.d. = not determined; *Site R characterises the input from a tributary that enters the main stem 

at 5.67 km downstream from site A. 

 

 

 

 

 
 

 

 

 

 


