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Abstract 

Online video streaming is becoming a key consumer of future networks, generating high-

throughput and highly dynamic traffic from large numbers of heterogeneous user devices. This 

places significant pressure on the underlying networks and can lead to a deterioration in 

performance, efficiency and fairness. To address this issue, future networks must incorporate 

contextual network designs that recognise application and user-level requirements. However, 

designs of new network traffic management components such as resource provisioning models 

are often tested within simulation environments which lack subtleties in how network equipment 

behaves in practice. This paper contributes the design and operational guidelines for a Software-

Defined Networking (SDN) experimentation framework (REF), which enables rapid evaluation of 

contextual networking designs using real network infrastructures. Two use case studies of a 

Quality of Experience (QoE)-aware resource allocation model, and a network-aware dynamic ACL 

demonstrate the effectiveness of REF in facilitating the design and validation of SDN-assisted 

networking. 

Introduction  

With the growing popularity of video services and the increasing online presence of traditional 

broadcasters, online video is believed to be the leading consumer of future networks, generating 

high-throughput and highly dynamic network traffic [1]. Adaptive media such as HTTP adaptive 

streaming (HAS) using protocols like TCP or Quick UDP Internet Connections (QUIC) is becoming 

the de-facto standard for online media streaming. The non-cooperative and unsupervised 

resource competition between adaptive media applications leads to significant detrimental quality 

fluctuations and an unbalanced share of network resources [2]. Therefore, it is essential for 

content networks to better understand the application and user-level requirements of different 

data flows and to manage the traffic intelligently. Traditional network traffic management 

approaches based on the configuration of proprietary devices are cumbersome and inefficient in 

the dynamic management of network resources [3]. Software defined networking (SDN) is a 

network paradigm that decouples network control from the underlying packet forwarding. It 

continues to gain traction as a vehicle for delivering efficient and flexible context-aware network 

programming. OpenFlow, first introduced by McKeown et al. [4], is commonly used to realise the 

concepts of SDN, with many networking devices now supporting the protocol. For every rule 

match specified, OpenFlow automatically maintains and updates packet counters, which may be 

interrogated on demand by an OpenFlow application. Furthermore, with the introduction of Fog 
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Computing and Network Function Virtualization (NFV), the cloud is being brought closer to the 

user in the form of micro data centres or cloudlets [5]. This opens compute locations that are close 

to the edge, such as Customer Premises Equipment (CPE), to enable contextual network traffic 

management services that process and can enforce at the network edge [6]. Context-aware 

networks are different from traditional networks as they are aware of the flows that have passed 

through the network, and can make decisions to alter the network based on this information. 

Distinctions with network emulators and SDN facilities 

Recently there has been pioneering work on exploiting SDN for traffic engineering and network 

management. Nam et al. [7] propose an SDN application to monitor streaming flows in real time, 

dynamically changing the routing paths for better user experiences. Akella et al. [8] harness SDN 

to provide QoS bandwidth guarantees for priority users through a mathematical model. Mehdi et 

al. [9] argue for using SDN as a security mechanism for the home through anomaly detection and 

remediation. Wong et al. [10] proposes to solve peak-hour broadband network congestion 

problems by pushing congestion management to the network edge using a two-level resource 

allocation design. However, SDN-assisted novel network programming models are often 

designed and tested in a simulation or emulation environment such as Mininet [11]. Whilst these 

test environments do offer a means of experimentation, they do not consider the effects that 

network protocols, client programs, hardware limitations, physical switches and other real-world 

factors may have on the outcomes. Major design flaws may be masked during simulation or 

emulation and are only discovered in prototyping or early production phases. Emulations can also 

be limited by the capabilities of software switches such as Open vSwitch. 

Many researchers and projects have recognised the following benefits of an experimental testbed 

that provides an environment close to that of production networks: 1) proving that SDN 

applications will operate with real-world hardware, or testing the behaviour of specific hardware 

in each experimental context; 2) experimenting with specific operating system stacks, and their 

network implementations; or 3) supporting experiments where hardware constraints (CPU, 

memory, etc.) are part of the variables under evaluation. Facilities such as Fed4FIRE [12] and 

their tools provide a means for many researchers to run SDN experiments over geographically 

distributed hardware which would otherwise not be possible. However, when slicing the 

networking resources between multiple users, the outcomes can change on each experimental 

run due to the load generated by simultaneous experiments, ultimately skewing results. Further 

impacting this, each experimenter is unaware of the other ongoing experiments, meaning that it 

is difficult to determine if the results you received were as expected or due to another user on the 

facility conducting a load intensive experiment.  

The contribution in this article differs from existing facilities and software in various ways, one 

area where REF excels is in its flexible and portable deployment method; a network tested on the 

experiment facility can also be tested within Mininet, or even executed in production with little 

changes. As well as this, contrasting to existing facilities that typically provide very detailed low-

level control to just the network infrastructure, REF provides higher level abstractions of both the 

network and virtualisation infrastructures through orchestration, automating the creation, 

connection, running, and cleaning of nodes in an experiment. Furthermore, it also provides 

abstraction over the network for making the creation of context aware traffic management 

applications as streamline as possible. Additionally, with the unique configuration using slicing 

and port multiplexing, REF can create much larger physical networks with limited hardware than 

https://paperpile.com/c/kAmM8U/vgOG
https://paperpile.com/c/kAmM8U/iSxY
https://paperpile.com/c/kAmM8U/xKr2
https://paperpile.com/c/kAmM8U/Fxsi
https://paperpile.com/c/kAmM8U/AsJX
https://paperpile.com/c/kAmM8U/VjPg
https://paperpile.com/c/kAmM8U/14GE
https://paperpile.com/c/kAmM8U/y8UB


its competitors. Finally, the entire REF framework can be used and modified by anyone without 

any kind of registration or subscription to a federation. 

In this article, REF is introduced, an experimentation framework and a guide to building a testbed 

that together provides a blueprint for an SDN-based contextual network design facility. Firstly, it 

describes the framework, covering the requirements of the framework then the purpose of each 

component within the system as well as the abstractions that it provides to the user. Next the 

experiment testbed is detailed, providing a guide on how to construct your own virtualisation and 

network infrastructure for experimentation. After this, both use cases are described and used to 

show REF in operation, this includes a Quality of Experience (QoE)-aware resource allocation 

model, and a network-aware dynamic ACL. Finally, the article goes into a discussion on 

interesting findings that arose during the creation and use of the system. 

REF Experimentation framework 

Setting up a functional SDN testbed is a challenging process requiring extensive knowledge and 

experience. We aim at creating a framework that assists the researcher in creating their own SDN 

applications and experiments, whilst providing isolation to avoid conflict between experiments. 

Furthermore, the framework should make the most of the hardware available, so that researchers 

can create topologies to a similar scale that are available in simulation environments. Additionally, 

the framework should allow replicating large-scale localised experiments, and this is useful when 

modelling a datacenter, home, or business topology where there is a dense collection of nodes 

with low latency between each other. This feature is generally not available using a shared testbed 

due to the equipment being geographically distributed. 

To provide a harness capable of supporting rapid deployment and orchestration of experiments, 

an experimentation platform will need to fulfil the following requirements: 

●   Experiments close to practice and at scale. The system should be able to realise and 

manage a large number of clients and networks. Meanwhile, to provide both realism and 

scale, the environment will encompass both physical and virtual elements. 

●  Dynamic manipulation of the network. Rate limiting, queuing, flow redirection, and other 

features of SDN implementation are required to enforce decisions made by intelligent 

network traffic management modules. 

● Configurable clients. The client's configuration (image and resources) should be quickly 

changeable (automated based on test manifests) after an experiment to set up for a new 

experiment as well as at run time. 

●  Rapid repeatability of experiments in a clean environment. Ensure that no residual effects 

are left over from previous experiments by removing VMs and networks before a new 

experiment. 

Functional components 

The REF framework (Figure 1) orchestrates the virtual and physical network infrastructure to 

assist the execution and statistical data gathering of network based experiments. It consists of a 

three-layer architecture: the top layer contains components provided by the researcher including 

the test manifest and application/user-level functions such as our case studies: QoE and security 

applications. The middle layer contains the REF orchestrator which interfaces with, and includes, 



the infrastructure managers. The bottom layer contains the network and virtualisation 

infrastructure where the experiments are deployed. 

 

Figure 1. Rapid experimentation framework 

The test manifest describes the experiment in a JSON format. It includes each of the client’s IP 

address, the networks each is attached to, the virtual machine image to be used, and network 

emulation requirements. The example manifest below shows two networks lan1 and lan2 who 

share the same aggregation network (group1) and the currently available bandwidth on the 

aggregation network is configured to be less than the sum of bandwidth on lan1 and lan2. 

Spec = { 

        ‘name’ : “test experiment” 

        ‘keypair’ : “openstack_rsa” 

        ‘controller’ : “10.30.65.210” 

        ‘credentials’ : {‘user’ : “Test”, ‘password’ : “Test”, ‘project’ : “Test”}, 

        ‘networks’ : [{‘name’ : “lan1”, “subnet” : ”192.168.1.0/24”, “rate” : 5000, “group” : 1},                   

       {‘name’ : “lan2”, “subnet” : ”192.168.2.0/24”, “rate” : 5000, “group” : 1}] 

        ‘groups’ :    [{‘id’: 1, rate: “8000”}] 

        ‘hosts’ : [{‘name’ : “h1”, ‘image’ : “Scoot”, ‘flavour’: “small”, ’net’ : [{lan1}]}, 

  {‘name’ : “h2”, ‘image’ : “Scoot”, ‘flavour’: “small”, ‘net’ : [{lan2}]}] 

} 

The SDN application contains a utility model which captures application-level requirements such 

as QoE and security measures. As part of the framework, the SDN application is an 

interchangeable component which communicates with the REF orchestrator through a Remote 

Procedure Call (RPC) interface providing information about resource allocation on flows. 

Additionally, information is sent back in regards to the current throughput at different points in the 

network using SDN-specific control messages such as OpenFlow's meter statistics and flow 

statistics messages. 



The REF Orchestrator handles communication between all the components. It includes two 

subcomponents, the Virtual Infrastructure Manager (VIM) and Network Infrastructure Manager 

(NIM). VIM controls the virtualization infrastructure through a RESTful API, it launches and 

configures experiment nodes with information from the test manifest. At the end of the experiment 

it resets the test environment by triggering VIM and NIM clean methods, removing networks and 

virtual machines it instantiated, so that the environment is ready for the next experiment. 

NIM controls the network infrastructure and consists of a Ryu OpenFlow controller containing a 

metering and monitoring application. It installs meter flow mods on request from the SDN 

application and provides information from the network including current throughput of flows and 

switches. These abstractions over the network infrastructure are interfaced directly with the 

orchestration component which in turn provides a simple RPC API to the researcher’s SDN 

application. This allows the orchestrator to define and configure network setup on-the-fly through 

a simple JSON formatted request.  A typical request would be to report the current network traffic 

level for a port or previously defined flow. An example command would be to define a flow (e.g. 

source/destination IP pair), and request that the flow is limited to a certain level (defined in Mbps). 

The response to this command includes a unique identifier which can be used in subsequent 

requests for traffic data. VIM is positioned above the virtualisation infrastructure (managed by 

OpenStack), and provides an interface to the orchestrator to provide an instantiation of 

experiment nodes that are connected to the experiment network. The network infrastructure 

creates connections between nodes and switches and provides a platform for configuring link 

bandwidth. 

REF Abstractions 

The design for the REF architecture was an iterative process based on initial requirements for 

context-aware SDN network applications. These desired requirements included: port and flow 

monitoring, total bandwidth capacity estimation, and controlling bandwidth on a per flow and port 

basis. We then added functionality to support other state-of-the-art applications created by other 

researchers using the framework; this included a collection of metering statistics, enabling the 

ability to define the flow granularity instead of using the same as the forwarding application, and 

the ability to provide and choose from a catalogue of existing forwarding applications. The design 

of REF stemmed from our experience working with other testbeds and frameworks including 

Fed4FIRE. 

The following lists the main abstractions provided by REF that SDN applications can use. These 

features are available through a JSON-RPC interface between the researchers SDN application 

and REF’s orchestrator. 

Virtualisation and node management abstractions: 

• Creating and destroying VMs after each experiment and during when required. 

• Executing scripts on each client for the experiment. 

• Recording and aggregating experiment logs from nodes. 

• Configuring link bandwidth between virtual nodes. 

Network traffic management abstractions: 

• The monitoring of flows at multiple levels while simultaneously logging these for post-

experiment analysis. 



• The monitoring and logging of throughput observed on switch ports. 

• Providing network forwarding by default, thus reducing the time and difficulty to researchers 

when creating their utility application. 

• Enforcing throughput constraints on flows, groups of flows, ports, and groups of ports. 

• Monitoring and logging of OpenFlow meter counters. 

• Configuring link bandwidth between physical nodes. 

The feature list of REF is continuously evolving as SDN matures, for an extensive and current list 

of the capabilities of this framework, consult the public project webpage for REF 

(http://lyndon160.github.io/REF/). 

Building an experimentation testbed 

To demonstrate the effectiveness of REF, we provide an implementation guideline (Figure 2) and 

two experimental case studies based around the delivery of video to multiple home environments 

and another based around a smart grid network. For both cases, these connections share a 

restricted link to the Internet. In addition, the CPEs and the local DSLAM are also under SDN 

control to provide programmable link configuration for dynamic management of traffic. This 

reflects our vision of an SDN-assisted pervasive computing and networking environment, allowing 

granular network control at the very edge of the network. 

Virtualization Infrastructure 

At the core of the virtualisation infrastructure is an OpenStack installation. This provides the 

means of building and connecting virtual machines (VM) to instantiate a significant amount of 

dynamically configurable live client applications. The OpenStack installation is standard, with one 

main modification: VLAN trunks are used to break-out network interfaces from virtual machines. 

These are then mapped one-to-one to exclusive physical interfaces on a switch. We refer to this 

process as port-multiplexing, as it allows an Ethernet switch to implement remote physical 

interfaces for virtualized machines. This is an essential feature for our experimentation as it allows 

each client to be directly assigned to a physical port on an SDN controlled switch. The mechanism 

for this is based on the use of VLANs to carry VM traffic onto the switch. The configuration is such 

that each VM is allocated an exclusive OpenStack (Neutron) network. 
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Figure 2. Virtualization and network infrastructure 

The setup and management of this infrastructure are controlled by VIM. As such, we use an in-

house orchestration tool titled MiniStack (https://github.com/hdb3/ministack). Its purpose is to 

bring the network and client creation automation capabilities shown in Mininet. MiniStack provides 

the ability to rapidly build, reconfigure, and delete (all within seconds) experimental topologies 

using a simple and extensible configuration format which include networks, connections and 

clients. Furthermore, as this is a modular component, it can be used by other projects to automate 

creation and deletion of network topologies. 

Network Infrastructure 

The network infrastructure used in this example consists of two OpenFlow v1.3 capable switches 

(Switch 2 and 3 shown in Figure 2) with metering support. In our facility, we use Hewlett Packard 

Enterprise Aruba’s 3800 series (HPE3800) switches, as they fulfil both requirements. However, 

other compliant switches could be used instead, including OpenFlow switches from Pica and 

Corsa. The HPE3800 also hosts other important capabilities, such as the ability to flexibly partition 

a single physical switch into several virtual OpenFlow switches. Each of these is a complete and 

distinct OpenFlow instance.  This is outside of the scope of OpenFlow, but is a feature present on 

many devices available on the market. This partitioning feature is vital in achieving the scale 

required in experimentation without incurring the associated cost. However, it is important to note 

that the switches memory is shared between instances, reducing the maximum number of flow 

entries per application. For flow table efficiency, the roles of switch 2 and 3 can be merged by 

using a switch with multi-table support. 

Use case study 1: QoE-aware resource allocation 

We use the evaluation of UFair [13], a QoE model, as a use case study of how REF supports 

rapid research and experimentation. UFair seeks to reduce the frequency of adaptations over a 

group of HAS clients, and moderate individual clients’ choice of stream bandwidth, to the benefit 

of all applications on the same network. The core of UFair is a mathematical specification for the 

optimal bandwidth to be consumed for each member of a group of clients, based on the prevailing 

network resources and user device capabilities.  It is stateful, to retain data about past forced 

bandwidth changes and thus reduce the impact of resolution changes across the entire client 

group. UFair operates by using REF’s monitoring and enforcing capabilities to get information 

about the network status and “capping’’ resources on individual media streams, with the 

assumption that media clients can adapt their bandwidth utilisation in response to network 

constraints. Therefore, resource allocation or other traffic control can be achieved transparently 

in the network without cooperation from user applications. The effectiveness of such network-

based control is dependent on how application and user-level context is incorporated in network 

traffic management design and executed by SDN. 

Experiment topology and operation 

Figure 3 depicts a tiered topology representing a multi-household network. Each of the 

households contains 4-6 hosts, all of which are connected to a gateway. This gateway is then 

connected, along with other gateways in the topology, to an aggregation switch (switch B). Over 
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another hop (towards switch A), a foreground and a background server act as endpoints as 

sources or sinks of respective traffic types. 

 

Figure 3. Experimentation topology 

To emulate a potential home network environment where a household has limited bandwidth, and 

the link shared between houses is also limited, network link characteristics are dynamically 

configured. Through REF, the links between switch B and the gateway switches are limited to 

20Mbps. Similarly, the link between B and A is restricted to 50Mbps. The sum of the connectivity 

available to household links is 100Mbps, and is greater than the link between B and A. This results 

in a situation whereby there is more demand than there is supply in the case of multiple 

households. In these circumstances, the adaptive streams in each house are affected by hosts 

within the same house, as well as the behaviour of hosts in other houses. Using REF, network 

configuration is directly programmable as an integral part of the framework to capture the complex 

and temporal dynamic characteristics of real-world complex networks. 

In this setup, the hosts in households are configured as online video players to request MPEG-

DASH adaptive video content from media servers, with one or two hosts in the same household 

generating background traffic. The experiment used REF to monitor the network statistics of each 

client, as well as each household. This data is then analysed by the UFair model to determine the 

most optimal resource allocation strategy. Recommendations given by the UFair model is then 

applied through REF's traffic enforcement functions, including restrictions per flow and household. 

We also define baseline experiment, where network statistics are still monitored but no additional 

traffic management is applied. 

Results 

     

Figure 4. Resource allocation without (left) and with (right) OpenFlow-assisted UFair model 



Figure 4 depicts the resultant video quality of each video stream when the OpenFlow-assisted 

UFair model is inactive and when it is active. Video quality is a rate-distortion function that is used 

to describe the non-linear relationship between quality and bit-rate [13].  The results clearly 

demonstrate the significant differences of the network provisioning strategy adopted by the user-

level model compared with the conventional TCP-based network-level baseline model. The 

baseline model allows video streams with more intensive requests at the transport layer to acquire 

more resources, leading to some video streams being heavily penalized. Using the bespoke UFair 

model the network management element in the testbed can schedule the resource according to 

the QoE requirements and link status of every HAS stream. Thus, network resources are 

dynamically provisioned in a way that similar video quality is maintained on all related media 

streams for the entire course of the experiment (Figure 4). Furthermore, the UFair model was able 

to avoid any severe video quality fluctuation due to its awareness of all competing media flows in 

the same network. In this case, we can validate the performance of a utility model by repeating 

the test 100 times without human intervention. The functions offered by REF, including 

streamlining the orchestration of utility model, virtualisation infrastructure, and physical OpenFlow 

equipment, allows researchers to focus on application-level design. 

Use case study 2: Context-aware access control (Smart-ACL) 

The Smart-ACL use case study considers how REF supports experimentation with security-based 

context aware SDN applications. Smart-ACL is designed to provide protection in the network on 

top of SDN switches, and reflects an increasing research interest in the adoption of SDN within 

critical infrastructures. This specific use case considers the use of SDN within a Smart Electricity 

Substation environment, where protection mechanisms are required against attacks such as 

Denial of Service (DoS).  This level of protection is necessary to prevent an unwanted event, such 

as a mass power outage [14]. Moreover, standards bodies such as the International 

Electrotechnical Commission (IEC) have strict security and resiliency requirements in place to 

prevent this. Before SDN can be safely adopted in these networks, the above issues need to be 

addressed, whilst adhering to IEC standards. 

Smart-ACL harnesses multiple OpenFlow features exposed by REF to prevent a multitude of 

attacks. It operates by using whitelists, rate-limiting on the packet in flow rule, and making 

remediation decisions based on network context from the REF. Remediation is applied through 

REF’s rate-limiting and blacklists. It takes information from the network about the whitelisted 

nodes traffic and classifies this as essential traffic. An average of this traffic is then taken into 

consideration when rate-limiting non-essential traffic. This value is recalculated periodically with 

various tolerances to ensure that slow attacks are detected. In this case study, we show how REF 

has been used to assist in the development of Smart-ACL. 

In operation, REF is started and manages the network’s connectivity. The Smart-ACL application 

calls the orchestrator’s northbound interface to get information about flows in the network, 

including flow headers and counters. Using this information, it protects whitelisted services by 

ensuring that there is enough bandwidth available on the network so that they remain 

uninterrupted. To do this, Smart-ACL takes information from REF about how much of the total 

available bandwidth is being used by non-essential traffic (flows not in the whitelist) and rate-limits 

using REF’s enforce feature if the traffic exceeds the total bandwidth minus the whitelists required 

bandwidth. Furthermore, using meter drop counts from REF, the application detects if a flow is 

not behaving to the network constraints, if the drop rate exceeds the threshold then the traffic is 

blocked for a short while to allow other non-essential traffic fair use of the available bandwidth. 
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Experiment topology and operation 

 

Figure 5. Experimentation topology 

Comparable to the previous case study, hosts, attackers, and link limits are applied automatically 

through a configuration. In this case study, REF was used to automate three essential nodes with 

a purpose to maintain a connection with the traffic sink generating HTTP traffic at a total target 

rate of 60Mbps. Alongside these, two non-essential nodes were connected to the traffic sink 

sending benign traffic. Additionally, there was a single attack node which was generating UDP 

traffic with no client-side throughput limits across the network towards the traffic sink. Also, a link 

limit of 150Mbps was set between two of the switches, emulating a constrained environment. 

Using REF’s automation with a test-manifest, this experiment ran for 120 seconds and was 

repeated 100 times without any additional human intervention. 

REF assisted the researchers in developing this application by providing an underlying framework 

to manipulate the network which also already provided forwarding logic. The use of being able to 

quickly and automatically repeat the experiment whilst having an output of the traffic in the network 

assisted when determining thresholds and timeouts for bandwidth rate-limiting flows, allowing the 

researchers to improve on the application model with ease to ensure that essential traffic 

remained unaffected by the ongoing attack. 

Results 

 

Figure 6. Results with Smart-ACL enabled 

Figure 6 depicts a stacked graph of traffic logs produced by REF of the switch located at the top 

of the topology. The results show the effects that Smart-ACL has on the network when a simple 
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UDP Flood DoS attack is triggered. These tests were performed 100 times, then each traffic type 

was averaged.  We can see that the essential traffic remains stable, and that attack traffic along 

with the non-essential traffic was rate-limited from after 25 seconds. The attack traffic was then 

identified through excessive packet drops on the meter counter and eventually ceased. Without 

Smart-ACL, the attack would have continued, limiting the bandwidth available to essential traffic. 

Further information about this case study as well as the code and results are available on GitHub 

(https://github.com/lyndon160/Smart-ACL). 

Discussions 

When acquiring OpenFlow-enabled equipment for research and experimentation, it is essential 

to investigate the advanced features offered by different vendors and on different generations of 

equipment. The supported OpenFlow version (e.g., 1.0, 1.3, or 1.5) is often a first indication as to 

the OpenFlow features a device may offer. However, it is unlikely that all optional features of an 

OpenFlow specification will be fully implemented. Furthermore, implementation details of features 

such as metering are often left open to interpretation for the switch vendors, this can result in 

experiments behaving differently between two switches with the same advertised capability due 

to differences in implementations. It is worth investigating differences of device’s capabilities and 

implementation details, as they may have a significant impact on how they support design and 

evaluation. Thus, we recommend consulting the ONF’s OpenFlow conformance list [15] when 

acquiring a new network switch for an experiment. 

Conclusion and Future work 

The proliferation of online media is placing tremendous pressure on QoE and security 

requirements on existing network infrastructure. This has led to a growing body of research 

developing novel network traffic management models using software defined networking. Many 

researchers use simulation tools to evaluate their designs, which can overlook effects that are 

seen in link delay and link bandwidth emulation in networks and clients. This paper introduces 

REF, a framework that facilitates rapid experimentation of SDN-assisted network designs using 

a combination of physical equipment and virtualized functions. We carried out two case studies 

on SDN-assisted QoE and security traffic management applications to validate the REF designs. 

We also provide detailed guidance and an open-source toolset for the readers to instantiate a 

research and experimentation environment of their own. By sharing our experiences, we hope to 

stimulate cross-site interconnected testbeds to support a research and innovation internet 

environment, enabling new uses of the testbeds and thus research. 

Leading on from this research, we intend to continue advancing REF as OpenFlow and its 

features mature. For vendor-specific features such as packet dropping policies, we are currently 

in the process of creating drivers for different switches to provide researchers with the ability to 

easily unlock more of these potentially useful features. Furthermore, we plan to open the network 

and virtualisation infrastructures more widely as part of a new project, which starts in early 2017. 

We expect this facility to federate with other testbeds as part of the development activity within 

the project. Additionally, we are exploring the idea of using creating APIs for other controllers so 

that a REF application would be portable between controllers. Finally, we will be continually 

monitoring progress on the state of the art of software switches to one day integrate them with 

REF for a hybrid infrastructure of virtual and physical switches; this will provide a means to create 
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experiments at even greater scales without losing experiment rigor. Currently, the REF framework 

is shared between multiple UK universities in partnership through the UK EPSRC-funded 

TOCUAN project. 
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