
Detecting Abrupt

Changes in Big Data

Kaylea Haynes, B.Sc.(Hons.), M.Res

Submitted for the degree of Doctor of

Philosophy at Lancaster University.

March 2017

Detecting Abrupt Changes in Big Data

Kaylea Haynes, B.Sc.(Hons.), M.Res

Submitted for the degree of Doctor of Philosophy at Lancaster University.

September 2016

Abstract

This thesis looks at developing methods for changepoint detection that can be used

in the realm of Big Data. In particular we look at developing methods that can be

scaled to the volume of data, now readily collected and stored, and are also versatile

to the different varieties of data.

A well established approach to detect changes uses penalised optimisation where

the choice of the penalty has a huge impact on the performance of the method. In

the first part of this thesis we propose an algorithm, CROPS (Changepoints over a

Range of PenaltieS), which finds the optimal solutions for a range of penalties instead

of only specifying one penalty.

The second part of this thesis looks at the choice of cost function used in the

optimisation. In particular we develop a computationally efficient method, which uses

a nonparametric cost function, allowing for changes to be detected in a larger variety

of data-sets. This nonparametric approach uses the empirical cumulative distribution

of the data and thus does not require any assumptions to be made on distributional

parameters.

The third part of this thesis looks at ways to parallelise detection methods in

order to use multi-core computers and thus allowing for changes to be detected in

much larger data-sets than they could be previously. We look at different ways to

split the data across multiple cores and then merge the results to try to conserve as

much of the accuracy that we had when we only used one core.

I

Acknowledgements

There are many people I need to thank whom this PhD would not have been possible

without. First and foremost, I would like to thank my supervisors Professors Paul

Fearnhead and Idris Eckley for all their help, support and patience throughout this

PhD. I have learnt many lessons during this PhD from both Paul and Idris and for

that I am very grateful. Thanks also to Dr Rebecca Killick for involving me in the

changepoint R package and for all the insightful discussions over the past few years.

I am very grateful for the financial support provided by the EPSRC and DSTL.

I would like to thank my industrial supervisor Ralph Mansson for his helpful conver-

sations and for organising my trip to DSTL which gave me insight into working in

industry. I also need to thank Vincent Brault for providing access to the Hi-C data

used in Chapter 3.

I would like to thank all the staff at the STOR-i Centre for Doctoral Training

for providing a stimulating and enjoyable research environment, as well providing

many training opportunities. A special thanks to Professor Jonathan Tawn for his

continuous words of support and guidance.

I would also like to thank all of the support staff at STOR-i and Lancaster Uni-

versity. Especially to Cyrus Gaviri and Dave Sole who have provided me with lots of

IT help and have helped sort out even my more awkward of computer problems.

My PhD experience would not have been what it is today without all the friends

I have made along the way. A special thanks to the surviving students in my cohort:

Christian, Ivar, Lawrence, Lisa and Monika, who have been on this journey with

II

III

me from the start. Their kindness, laughter and friendship has really helped make

this experience enjoyable and helped me through the less fun parts. Thanks also to

the changepoint reading group and the machine learning reading group for all of the

interesting discussions but most importantly for all the coffee and cake!

On a more personal note I am very grateful to my parents and family for supporting

me over the years though I’m sure they’ve been counting down the days to when I’m

no longer living the student life.

Lastly a huge thanks to Rob for all our changepoint chat but also for his love and

support during the write up phase of this thesis.

Declaration

I declare that the work in this thesis has been done by myself and has not been sub-

mitted elsewhere for the award of any other degree.

Chapter 3 has been accepted for publication as Haynes, K., Eckley, I.A., and

Fearnhead, P. (2016). Computationally efficient changepoint detection for a range of

penalties. Journal of Computational and Graphical Statistics.

Chapter 4 has been accepted for publication as Haynes, K., Fearnhead, P., and

Eckley, I.A. (2016). A computationally efficient nonparametric approach for change-

point detection. Statistics and Computing.

Kaylea Haynes

IV

Contents

Acknowledgements II

List of Figures XII

List of Tables XIII

1 Introduction 1

2 Review of the Changepoint Literature 4

2.1 Applications . 4

2.2 Model . 8

2.3 Single Changepoint Detection . 8

2.4 Binary Segmentation and Variants 10

2.4.1 Wild Binary Segmentation . 10

2.4.2 Circular Binary Segmentation 11

2.5 Optimisation Problem . 12

2.5.1 Cost Functions . 13

2.5.2 Dynamic Programming . 15

2.5.3 Penalties . 19

2.5.4 Simultaneous Multiscale Changepoint Estimator 21

2.6 Nonparametric Approaches . 21

2.7 Other Approaches . 24

2.7.1 Bayesian Methods . 24

V

CONTENTS VI

2.7.2 Hidden Markov Models . 25

2.7.3 Multivariate Methods . 26

2.7.4 Online/Sequential Changepoint detection 28

2.8 High Performance Computing and Parallel Algorithms 30

2.8.1 Architecture . 31

2.8.2 R Packages . 34

2.8.3 Parallel Algorithms . 34

3 Computationally Efficient Changepoint Detection for a Range of

Penalties 37

3.1 Introduction . 37

3.2 Background . 41

3.2.1 Segment Costs . 41

3.2.2 Finding Optimal Segmentations 42

3.2.3 Pruning Methods . 43

3.3 Algorithm for a Range of Penalty Values 44

3.3.1 Link Between Optimisation Problems 44

3.3.2 Theoretical Results . 46

3.3.3 The Changepoints for a Range of PenaltieS (CROPS) Algorithm 46

3.3.4 The Number of Changepoints that are Optimal for Some β . . 48

3.3.5 Computational Cost . 49

3.4 Simulation Study . 51

3.4.1 Change in Mean . 52

3.4.2 Change in Mean and Variance 53

3.4.3 Evaluating the Choice of Penalty 53

3.5 Application to Hi-C Data . 56

3.6 Discussion . 59

CONTENTS VII

4 A Computationally Efficient Nonparametric Approach for Change-

point Detection 60

4.1 Introduction . 60

4.2 Nonparametric Changepoint Detection 63

4.2.1 Model . 63

4.2.2 Nonparametric Maximum Likelihood 64

4.2.3 Nonparametric Multiple Changepoint Detection 64

4.2.4 NMCD Algorithm . 65

4.3 ED-PELT . 66

4.3.1 Discrete Approximation . 67

4.3.2 Use of PELT . 67

4.4 Results . 69

4.4.1 Performance of NMCD . 69

4.4.2 Size of Screening Window . 75

4.4.3 Choice of K in ED-PELT . 75

4.4.4 Comparison of NMCD and ED-PELT 78

4.5 Activity Tracking . 79

4.5.1 Changepoints in Heart-Rate Data 79

4.5.2 Range of Penalties . 80

4.5.3 Piece-wise Linear Model . 84

4.6 Conclusion . 85

5 Parallel Changepoint Detection 88

5.1 Introduction . 88

5.1.1 Parallel Implementation . 90

5.2 Embarrassingly Parallel . 91

5.2.1 Binary Segmentation . 92

5.3 Dynamic Programming Algorithms 95

5.3.1 Parallelisation . 95

CONTENTS VIII

5.3.2 Approach 1 . 96

5.3.3 Approach 2 . 97

5.3.4 Boundaries . 98

5.4 Simulations . 98

5.4.1 Signals . 98

5.4.2 Evaluation . 100

5.4.3 Detection Rate . 102

5.4.4 Speed . 108

5.5 Conclusion . 111

6 Conclusions and Future Directions 113

6.1 Future Directions . 115

6.1.1 Probabilistic Pruning . 115

6.1.2 Nonparametric Cost Functions 117

6.1.3 Parallelising Multivariate Methods 117

A Supplementary Material for Chapter 3 122

A.1 Pseudo-code for PELT . 122

A.2 Proof of Therem 3.1 . 123

A.3 Proof of Theorem 3.2 . 124

A.4 Further Simulations: Change in Mean 125

A.5 Further Simulations: Change in mean and variance for normal model 125

A.6 Further Simulations: Change in Mean and Variance for the Mis-specified

Model . 128

A.7 Further regions where we have discrepancies in the Hi-C example . . 129

B The CROPS Algorithm in the changepoint R Package 130

B.1 Usage . 130

B.2 Example . 132

CONTENTS IX

C Supplementary Material for Chapter 4 133

C.1 Further Results - ED-PELT . 134

C.2 Further Results - Piece-wise linear . 137

D changepoint.np: An R Package for Nonparametric Changepoint De-

tection 141

D.1 Package Structure . 142

D.1.1 Inputs . 142

D.1.2 Outputs . 143

D.2 Examples . 143

D.2.1 Simulated Data . 143

D.2.2 Heart-Rate Data . 144

E Further Simulation Results for Chapter 5 148

F R Code for the SM1 and SM2 methods proposed in Chapter 5 151

F.1 Package Structure . 151

F.1.1 Output . 152

F.1.2 Example . 152

Bibliography 154

List of Figures

1.1 Examples of changepoints . 2

2.1 Memory architectures . 31

2.2 Amdahl’s law . 33

3.1 Relationship between the constrained and penalised costs 45

3.2 Cost for the segmentations against the number of changepoints 49

3.3 Simulations: CPU cost for the changes in mean 52

3.4 Simulations: results for the true model 55

3.5 Simulations: results for the mis-specified model 55

3.6 Segmentations of chromosome 16 . 58

4.1 Exploration of the window size NI in NMCD+ 76

4.2 Exploration of the number of quantiles K in ED-PELT 77

4.3 Cost vs number of changepoints for ED-PELT and change in slope . . 82

4.4 Segmentation of heart-rate using ED-PELT with 10 changes 83

4.5 Segmentation of heart-rate using change in slope with 9 changes . . . 86

5.1 Computational time taken to run Binary Segmentation in parallel over

multiple cores. 93

5.2 Example test signals . 101

5.3 The true and false discovery rates for SM1 and SM2 on the teeth signal

over a different number of cores. 103

X

LIST OF FIGURES XI

5.4 The true and false discovery rates for SM1 and SM2 on the stairs signal

over a different number of cores. 104

5.5 The true and false discovery rates for SM1 and SM2 on the blocks and

teeth signal over a different number of cores. 105

5.6 The results of using SM1 on the teeth signal with different number of

points around the boundary. 106

5.7 The results of using SM1 on the stairs signal with different number of

points around the boundary. 107

5.8 The CPU time for SM1 and SM2 on the blocks signal of different lengths.109

5.9 The CPU time for SM1 and SM2 on the mix signal of different lengths, 110

5.10 The CPU time for SM1 and SM2 on the random signal of different

lengths . 111

6.1 Changepoint vectors considered around the boundary in parallel mul-

tivariate changepoint detection . 120

6.2 An illustration of the challenges of using a fixed boundary length. . . 121

A.1 Changes in mean CPU cost using pDPA and CROPS with FPOP . . 125

A.2 Changes in mean and variance using SN, CROPS with PELT and

CROPS with PELT with the speed improvements 126

A.3 Changes in mean and variance results when using the true model. . . 127

A.4 Results for the mis-specified model 128

A.5 Further HIC segmentations . 129

C.1 Segmentations using ED-PELT with 13 changepoints 134

C.2 Segmentations using ED-PELT with 12 changepoints. 135

C.3 Segmentations using ED-PELT with 9 changepoints. 136

C.4 Segmentations using change in slope with 12 changepoints 137

C.5 Segmentations using change in slope with 10 changepoints 138

C.6 Segmentations using change in slope with 8 changepoints 139

LIST OF FIGURES XII

C.7 Segmentations using change in slope with 7 changepoints 140

D.1 Plot of the changepoints using the plot method of the cpt class 145

D.2 Diagnostic plot for the heart-rate data-set when the CROPS penalty

is used. 146

D.3 Segmentation of the heart-rate data with 15 changepoints. 147

E.1 Further simulations for the true and false discovery rates for SM1 and

SM2 on the teeth signal over a different number of cores. 149

E.2 Further simulations for the true and false discovery rates for SM1 and

SM2 on the stairs signal over a different number of cores. 150

List of Tables

4.1 True and false discovery rates and time comparisons for NCMD, NMCD+

and ED-PELT. 72

4.2 Over-segmentation and under-segmentation errors, and the number of

changepoints detected for NCMD, NMCD+ and ED-PELT. 74

XIII

Chapter 1

Introduction

High resolution data sensors are common-place in the devices which we use in our

day to day lives. For example, mobile phones contain many sensors for measuring

motion, orientation and environmental conditions (Android, 2016). Consequently we

are now able to record and store more data than ever before. This has resulted in a

resurgence of interest in a number of different inference areas, not least of which is

changepoint analysis.

A changepoint (sometimes referred to as a breakpoint) is a point in a data-series,

for example a time-point or a position along a chromosome, where there has been a

change in one or more of the statistical properties. Figure 1.1 shows example data-

sets with (a) changes in mean, (b) changes in mean and variance and (c) changes in

trend and variance. Knowledge of these changepoints is often invaluable for effective

modelling and forecasting.

In this thesis we look at developing methods for changepoint detection that can

be applied in the Big Data revolution. We will start by reviewing some of the vast

literature of changepoint detection in Chapter 2. In particular we will focus our

attention on methods for detecting multiple changes in a univariate, offline setting

since this is the scenario of main interest throughout this thesis.

A popular approach for changepoint detection is to use penalised optimisation

1

CHAPTER 1. INTRODUCTION 2

0.0

2.5

5.0

7.5

0 250 500 750 1000
Index

D
at

a

(a)

−10

0

10

0 250 500 750 1000
Index

D
at

a

(b)

−30

−20

−10

0

10

20

0 250 500 750 1000
Index

D
at

a

(c)

Figure 1.1: Examples of data-series with changes in one or more statistical property:
(a) changes in mean, (b) changes in mean and variance and (c) changes in trend and
variance.

which requires a choice of a penalty. Mis-specifying this penalty can have a detrimental

effect in the performance of the changepoint detection method. In Chapter 3 we

propose a new algorithm, CROPS (Changepoints over a Range Of PenaltieS), which

finds the optimal solution over a range of penalties in a continuous range. We apply

CROPS to detect genomic regions that interact through the folding and 3-D structure

of a chromosome and show how we can choose the best segmentation once we have

recovered the segmentations for all penalties in our given range. This chapter is

published as the journal article Computationally Efficient Changepoint Detection for

a Range of Penalties in Journal of Computational and Graphical Statistics (Haynes

et al., 2017).

The penalised optimisation approach requires a specified cost for the segments.

The optimal number and location of the changepoints are then found by minimising

the total segmentation cost over a different number and location of changepoints. In

Chapter 4 we shift our focus to this cost function. In particular many cost functions

in the literature require assumptions of the underlying distribution of the data. We

propose a new algorithm, ED-PELT (PELT with an Empirical Distribution cost func-

tion), which uses a cost function based on the empirical distribution of the data. This

approach is nonparametric and hence can be applied to a large variety of data-sets,

CHAPTER 1. INTRODUCTION 3

since we do not require any prior knowledge of the parameters. We apply this method

to heart-rate data recorded during a period of physical activity and show that ED-

PELT works better than using a cost function which assumes the data is normally

distributed. This chapter is published as the journal article A computationally effi-

cient nonparametric approach for changepoint detection in Statistics and Computing

(Haynes et al., 2016).

There are two main approaches for solving the optimisation problem in change-

point detection. The first is an approximate approach which involves recursively

detecting single changepoints. The second uses dynamic programming which is an

exact approach but can be computationally expensive and therefore do not scale well

to large amounts of data. In Chapter 5 we show how we can utilise High Performance

computing by parallelising the changepoint detection algorithms. We look at various

ways to split the data across multiple cores and then merge the results without losing

much accuracy.

We conclude this thesis with a discussion of the main contributions and discuss

potential areas for further research in Chapter 6.

Chapter 2

Review of the Changepoint

Literature

In this Chapter we will review some of the changepoint literature, in particular we will

look at methods for offline, multiple changepoint detection in univariate data. There

are many researchers across a vast range of disciplines using and developing state of

the art algorithms for changepoint detection. Changepoint detection was first used for

quality control (Page, 1954) but ever since changepoints have been of interest across

many different fields. Below are some examples of where the detection of changes can

play an important, and sometimes even life changing, role. This is by no means an

exhaustive list but it does highlight the variety of applications in which changepoint

detection can be, and has been, used.

2.1 Applications

Genomics

In genomics changepoint detection has been used for DNA sequencing to identify

pattens in the gene (Braun and Müeller, 1998; Braun et al., 2000). The DNA copy

number of a region is the number of copies of genomic DNA. In humans, this copy

4

CHAPTER 2. LITERATURE REVIEW 5

number is two for all of the autosomes. To find the copy numbers on the genome, tech-

niques such as comparative genomic hybridization (CGH) or array-based comparative

genomic hybridization (array-CGH), for higher resolutions, are used. Changepoint de-

tection is then used to find the regions where there is loss or amplification in tumour

cells (Picard et al., 2004; Zhang and Siegmund, 2007). Variations in the copy number

are common in cancer and other diseases (Olshen et al., 2004). Hocking et al. (2013b)

review different methods for detecting changes in the chromosomal copy number.

More recently Cleynen et al. (2013) apply changepoint detection to RNA-seq data

which they claim will have improved accuracy over the use of CGH arrays. Cleynen

et al. (2014) provide a recent comparison of segmentation methods on RNA-Seq data.

Environmental

In an environmental setting, changepoint detection can prove to be useful for logis-

tical reasons, such as maintenance scheduling or managing resources. Wang et al.

(2014) use changepoint detection to see if there has been changes in the monthly

precipitation at various watersheds, across Southeast United States, due to climate

change. In oceanography, Killick et al. (2013) and Nam et al. (2015) detect changes,

and determine the uncertainty, in the autocovariance of wave heights, in the North

Sea, to determine storm season changes. Reeves et al. (2007) provide a comparison

of techniques used to detect changes in climate data, specifically they show examples

of detecting changepoints in annual average temperature recorded in Alabama and

Montana.

Finance and Economics

Financial data-sets, such as emerging stock markets and asset returns, can be ex-

tremely volatile. Although models such as the GARCH (Generalized Autoregressive

Conditional Heteroskedasticity) model account for conditional changes in the variance,

Lamoureux and Lastrapes (1990) show that the persistence of variance may be over-

CHAPTER 2. LITERATURE REVIEW 6

stated by not accounting for the breakpoints in the volatility. Finding the changes in

volatility is required for risk management, forecasting and hedging (Fernandez, 2004).

For example Aggarwal et al. (1999) use the changepoint detection method of Inclán

and Tiao (1994) to detect shifts in volatility in emerging markets, before examining

the local and global events which happened at the time of the changes. Andreou and

Ghysels (2009) discuss the implications of ignoring changepoints in financial data as

well as review a number of different changepoint detection tests used to detect different

changes in financial asset returns and volatility. Other authors consider multivariate

series of daily stock indices (such as Lavielle and Teyssière, 2006) or look at ways

to detect changes as they happen in financial streams (Pepelyshev and Polunchenko,

2015).

Network Security

Cyber-attacks cost the UK economy billions of pounds every year. Computer net-

works can be represented as a data stream (an unending sequence of data-points)

in which deviations from the normal network behaviour could be a sign of an at-

tack. Sequential changepoint detection methods, in particular anomaly detection,

can be used as intrusion detection systems. Various methods have been proposed

that include detection in univariate streams (see for example Kim et al., 2004; Tar-

takovsky et al., 2013), Bayesian methods (Heard et al., 2010), nonparametric methods

(Lévy-Leduc and Roueff, 2009) and detection in multivariate streams (Bodenham and

Adams, 2013). Changepoint models have also been used to detect the attack of instant

messaging worms (Yan et al., 2008).

Other

The above examples crop up frequently in changepoint detection however there are

a huge range of other applications. In neuroscience characterising relative blood flow

changes from fMRI scans of the brain are of interest (Aston and Kirch, 2012) as is

CHAPTER 2. LITERATURE REVIEW 7

the detection of changes in brain signals such as electroencephalograms (EEG) which

can be used to understand the cognitive processes in response to external stimuli

(Kirch et al., 2015). When drilling for oil it is useful to detect changes in rock type

to prevent blow-outs. This can be achieved by measuring and detecting changes in

nuclear magnetic response (Fearnhead and Clifford, 2003). Our final example is in

linguistics, where changepoint detection can be used to track shifts in meaning and

usage of words through time (Kulkarni et al., 2015).

Now that we have shown the breadth of applications where changepoint detection

can be useful, we will review the literature on some of the methods to detect changes.

Again we will only cover a subset of the literature, given how vast it is, but we refer

you to the following review papers, books and book chapters for further methods:

Chen and Gupta (2000), Eckley et al. (2011), Jandhyala et al. (2013).

The structure of the rest of this chapter is as follows. In the first instance we

introduce the changepoint model, in particular we will show how the multiple change-

point problem can be extended from single changepoint. This includes an introduction

to Binary Segmentation-type methods, in Section 2.4, which recursively detect sin-

gle changes on subsets of the data. In Section 2.5 we will look at how changepoint

detection can be viewed as an optimisation problem that can be solved by either

constraining the number, or the maximum number, of changes to be detected or by

adding a penalty for every detected change. This thesis has a strong emphasis in

dynamic programming methods and in Section 2.5.2 we will give a brief introduction

to these methods.

Many methods require assumptions based on the underlying signal distribution

which in reality may be unknown. In order to extend the dynamic programming

methods to a wider range of applications we need to develop cost functions that do not

rely on the distributional parameters. In Section 2.6 we will review the nonparametric

changepoint literature.

This thesis is concentrated around a narrow area of changepoint detection but the

CHAPTER 2. LITERATURE REVIEW 8

literature is extremely vast. In Section 2.7 we will discuss alternative methods to give

a bit of an insight of what else is out there. This section includes a review of Bayesian,

multivariate and online changepoint detection.

One main goal of this PhD is to develop methods that can be used in Big Data and

thus the computational complexity of dynamic programming needs to be addressed.

With computational power increasing and high performance computer power being

easier to access we are interested in developing ways to run algorithms in parallel. In

Section 2.8 we will review the literature on high performance computing and parallel

algorithms.

2.2 Model

This thesis focusses on multiple changepoint detection. The general model we will

use, unless otherwise stated, is: assume we have some data-series y1, ..., yn ordered

based on some covariate information such as time or position along a chromosome.

This data-series will have m changepoints at locations τ1:m where τ = {0 = τ0 < τ1 <

... < τm < τm+1 = n}. Thus the changepoints will split the data in m + 1 segments

where the ith segment contains the data-points y(τi−1+1):τi . That is we assume the data

is left-continuous. Although not completely analogous, we will show how the multiple

changepoint detection model stems from the single changepoint detection case.

2.3 Single Changepoint Detection

In single changepoint detection we want to choose the best model either with no

changepoint, (m = 0) or one changepoint at location τ (m = 1), where m denotes

the number of changepoints and τ splits the data into two distinct segments, y1:τ and

y(τ+1):n. This is essentially a model selection problem.

A natural approach to the model selection problem is to perform a hypothesis

test where H0 is no changepoint (m = 0) and H1 is there is a single changepoint

CHAPTER 2. LITERATURE REVIEW 9

(m = 1). To test for a changepoint we can use the likelihood-ratio approach which

was first proposed for use in this scenario by Hinkley (1970) who applied this method

to detect changes in the mean in normally distributed data. This approach has also

been applied to detect changes in data generated from different distributions such as

exponential (Haccou et al., 1987) and binomial (Hinkley and Hinkley, 1970) as well

as used to detect changes in variance in normally distributed data (Chen and Gupta,

1997).

The likelihood-ratio approach requires the calculation of maximum log-likelihoods

under both the null and alternative hypotheses. Under the null hypothesis the maxi-

mum log-likelihood is just l(y1:n|θ̂), where l(·) is the log-likelihood of the probability

density function and θ̂ is the maximum likelihood estimator for the parameters. The

maximum log-likelihood under the alternative hypothesis is given by

max
1≤τ<n

{
l(y1:τ |θ̂1) + l(y(τ+1):n|θ̂2)

}
, (2.1)

where θ̂1 and θ̂2 are the maximum likelihood estimators for the data before and after

the changepoint respectively. The log-likelihood test statistic is then

λ = 2

[
max
1≤τ<n

{
l(y1:τ |θ̂1) + l(y(τ+1):n|θ̂2)

}
− l(y1:n|θ̂)

]
, (2.2)

where the null hypothesis is rejected if λ > c for some threshold value c. If a change-

point is found then the position of the changepoint, τ is estimated by

τ̂ = arg max
1≤τ<n

{
l(y1:τ |θ̂1) + l(y(τ+1):n|θ̂2)

}
. (2.3)

In standard hypothesis testing the threshold, c, is chosen such that it bounds the Type

I error rate, however in the changepoint setting the likelihood function is discontinu-

ous and thus is not twice continuously differentiable. This violates the assumptions

required to be able to use a chi-squared distribution for the asymptotic distribution

CHAPTER 2. LITERATURE REVIEW 10

of λ. Approximate thresholds can be calculated using the asymptotic distibutions of

the likelihood functions (Chen and Gupta, 2000).

2.4 Binary Segmentation and Variants

The log-likelihood ratio approach only detects a single changepoint and the multiple

changepoint detection problem cannot be formulated in this way. However, there is

a subset of multiple changepoint algorithms which recursively perform single change-

point detection. The best known algorithm in this category is Binary Segmentation

(BS) which was introduced by Scott and Knott (1974) and first applied in a stochastic

setting by Vostrikova (1981). In BS the whole data-set is searched over to detect the

location of a single changepoint. If we rewrite (2.2), then this is the point, τ , that

satisfies the condition in (2.4) and also maximises the left hand side of (2.4).

l(y1:τ |θ̂1) + l(yτ+1:n|θ̂2)− c > l(y1:n|θ̂). (2.4)

The data is split at τ and the process is repeated on the segments y1:τ and yτ+1:n.

This process continues until no further changes are found. BS is a computationally

efficient algorithm with computational cost O(n log n) however it struggles to detect

short segments especially if the data then returns to the pre-change distribution after

the segment. For example, Fryzlewicz (2014) look at the asymptotic properties of BS

with the cumulative sums (CUSUM) test statistic (Page, 1954) and show that as the

number of data-points, n→∞, then BS is only asymptotically guaranteed to identify

the true changepoints if the minimum segment length is O(n3/4).

2.4.1 Wild Binary Segmentation

Fryzlewicz (2014) attempt to overcome the weakness in the consistency of BS by

introducing the Wild Binary Segmentation (WBS) algorithm. At each stage of BS,

instead of calculating the global cost C(y1:n), WBS randomly draws a number of sub-

CHAPTER 2. LITERATURE REVIEW 11

samples, ys:e, where 1 ≤ s < e ≤ n, and detects a candidate changepoint within each

sub-sample. The changepoint within each sub-sample that has the largest likelihood-

ratio value is found to be the new changepoint, τ . The data is split at τ and the

process is repeated, similar to BS. By localising the costs, WBS overcomes the issue

of changes being undetected in BS when they are too close to other changes.

If the number of sub-samples is suitably large then Fryzlewicz (2014) claims that,

with high enough probability, there will be a sub-sample that only contains one

changepoint at a suitable distance away from the end points. This localised feature

will make it easier for detecting changes that may well be missed when looking over

the whole data-set. Given a suitably chosen number of sub-samples and the CUSUM

test statistic, Fryzlewicz (2014) show that WBS produces consistent results even when

the minimum segment length is O(log(n)). The additional computational complexity

of WBS over BS will depend on the number of sub-samples chosen to be calculated

at each stage. Karolos and Fryzlewicz (2016) extend this method, by combining the

CUSUM test statistics obtained at different scales of the wavelet periodogram, to

detect changes in the second order structure of a piecewise stationary time-series.

2.4.2 Circular Binary Segmentation

Another approach used to overcome the limitation of BS when there are two points

close to each other is Circular Binary Segmentation (CBS) proposed by Olshen et al.

(2004). CBS uses an alternative test statistic (Levin and Kline, 1985) which searches

for two changepoints, unlike a single changepoint in the standard BS. This test statistic

assumes the means before the first changepoint and after the last changepoint are the

same, and thus can be considered in a circle. The test statistic then tests whether

the mean of the arc between the changepoints is different to the compliment. This is

a recursive process that continues until no further changes are found.

One issue with CBS is that if either of the best two changes are found to be

too close to the edge of the segment then there may only be one changepoint in the

CHAPTER 2. LITERATURE REVIEW 12

segment. In this case each of the changepoints’ viability is checked.

To generalise CBS to non-normal data Olshen et al. (2004) uses a permutation

approach to calculate the p-values from reference distributions. This approach is

computationally expensive as the number of permutations required is O(n2). For large

data-sets they suggest a window approach which divides the data into overlapping

windows of equal size and searches for changes in each window.

Venkatraman and Olshen (2007) propose two ways to speed up the computation

of CBS. The first is a hybrid approach, that uses a tail probability approximation

for the maxima of a Gaussian Random field, to calculate the p-values. The second

is a way of reducing the number of permutations when there is strong evidence of a

change.

2.5 Optimisation Problem

The log-likelihood approach to changepoint detection can be adapted to the multiple

changepoint case via a penalised cost approach. If we reformulate slightly and define

the cost of a segment to be twice the negative maximum log-likelihood, i.e. C(ys:t) =

−2 maxθ l(ys:t|θ) for any t > s then the likelihood-ratio test (2.4) can be expressed as

C(y1:τ) + C(yτ+1:n) + β < C(y1:n), (2.5)

where we have redefined the threshold c as a penalty β. That is, for the single

changepoint case we want to solve

min
1≤τ<n

{C(y1:n), C(y1:τ) + C(yτ+1:n) + β} . (2.6)

In the multiple changepoint setting this can be extended to solve for the number and

location of changepoints. For example to solve for a maximum of 2 changepoints we

CHAPTER 2. LITERATURE REVIEW 13

have

min
1≤τ1<τ2≤n

{C(y1:n), C(y1:τ1) + C(yτ1+1:n) + β, C(y1:τ1) + C(yτ1+1:τ2) + C(yτ2+1:n) + 2β} .

(2.7)

If we also wish to infer the number, m of changepoints, then this suggests solving

Q(y1:n, β) = min
m,τ1:m

{
m+1∑
i=1

[C(y(τi−1+1):τi) + β]

}
. (2.8)

The number and location of the changepoints are jointly estimated by finding the

minimum segmentation cost. This is referred to as a penalised minimisation problem,

since for every changepoint detected a penalty is added to avoid over-fitting.

Alternatively if the number of changepoints to be detected is pre-determined we

can directly solve a constrained minimisation problem. This is

Qm(y1:n) = min
τ1:m

{
m+1∑
i=1

[C(y(τi−1+1):τi)]

}
. (2.9)

It is unlikely in practice that the number of changepoints will be known however we

might have an idea of the maximum number of changes which as will define as M . In

this case we can solve (2.9) for 1:M and then solve

min
m∈{1:M}

{Qm(y1:n) + γ(m)} , (2.10)

where γ(m) is a suitably chosen penalty term that increases with m. If γ(m) is a

linear function, that is γ(m) = (m+ 1)β for some β > 0, then this is analogous to the

penalised minimisation problem.

2.5.1 Cost Functions

In the above formulation we take the segmentation costs to be the maximum log-

likelihoods. That is, if we have data in a segment y(s+1):t drawn from a Gaussian

CHAPTER 2. LITERATURE REVIEW 14

distribution with a common variance, σ2, and segment specific mean, µ, then the

segment cost taken from twice the negative log-likelihood will be

C(y(s+1):t) = −2× −1

2σ2

t∑
j=s+1

(yj − µ̂)2 ≈
t∑

j=s+1

(yj)
2 −

(∑t
i=s+1 yi

)2
(t− s)

, (2.11)

where µ̂ is the maximum likelihood estimator for the segment mean. Here we ignore

the multiplicative constants since, if we re-define the penalty accordingly, these will

not affect the optimisation problem.

Similarly if we have a fixed mean µ and segment specific variance, σ2 then the

segment cost will be

C(y(s+1):t) ≈ (t− s)

[
log

{
1

t− s

t∑
j=s+1

(yj − µ)2

}
+ 1

]
. (2.12)

For completeness, if we have data with a segment specific mean, µ, and segment

specific variance, σ2, then the segment cost is

C(y(s+1):t) ≈ (t− s)

[
log

{
1

t− s

t∑
j=s+1

(yj)
2 −

(
∑t

i=s+1 yi)
2

t− s

}
+ 1

]
. (2.13)

Here we have used twice the negative log-likelihood for the segment costs however

the same method applies for other cost functions. Other common examples of this cost

are cumulative sums (Page, 1954), quadratic loss (Rigaill, 2015; Inclán and Tiao, 1994)

and minimum description length (Davis et al., 2006). Generally this cost requires

modelling assumptions about the distribution of the data and the type of change we

are attempting to detect. We will look at nonparametric approaches that do not

require these assumptions in Section 2.6.

CHAPTER 2. LITERATURE REVIEW 15

2.5.2 Dynamic Programming

The cost for the segments in the optimisation problems, in (2.9) and (2.8), are segment

additive and thus the Bellman optimality principle holds (Bellman, 1957). This allows

the use of dynamic programming methods to solve these optimisation problems.

Segment Neighbourhood Search

To solve the constrained problem in (2.9) Auger and Lawrence (1989) introduced the

Segment Neighbourhood (SN) search method. This method involves specifying the

maximum number of changes M and then finding the optimal segmentations with 1

to M changes. SN uses a recursion which links Qm(y1:t) to Qm−1(y1:s) for s < t. That

is:

Qm(y1:t) = min
τ

[
m∑
i=0

C(y(τi+1):τi+1
)

]
,

= min
τm

[
min

τ1:(m−1)

m−1∑
i=0

C(y(τi+1):τi+1
) + C(y(τm+1):τm+1)

]
,

= min
τm−1

[
Qm(y1:s) + C(y(τm+1):τm+1)

]
. (2.14)

The optimal segmentations for each number of changepoints is then found by a

backwards recursion through the data. For each t ∈ 1, ..., n the minimisation in (2.14)

is calculated for all s = 1, ..., t−1. This has computation time O(n2). This is repeated

for all m ∈ 1 : M and therefore SN had an overall computational cost of O(Mn2).

The quadratic cost means that this method is infeasible for large data-sets with a

large number of possible changepoints.

Optimal Partitioning

Jackson et al. (2005) proposed a similar recursive method to SN to solve the pe-

nalised method in (2.8). For t = 1, 2, ..., n their method, Optimal Partitioning (OP)

CHAPTER 2. LITERATURE REVIEW 16

recursively solves

F (t) = min
τ∈τt

{
m+1∑
i=1

[C(y(τi−1)+1:τi) + β]

}
= min

s∈{0,...,t−1}
{F (s) + C(y(s+1):t) + β}, (2.15)

where τt is the set of all possible number and position of changepoints for segmenting

the data up to time t. These recursions are solved with computational cost O(n2).

Extracting the set of changepoints in the optimal segmentation is achieved by a simple

recursion backwards through the data. OP is much faster than SN however only 1

segmentation is found whereas SN can find a range of segmentations with 1 : M

changes.

Pruning Techniques

To overcome the computational overhead of running dynamic programming algo-

rithms there have been some recent algorithms that use pruning methods to reduce

the computations. The two different types of pruning are inequality based pruning

and functional pruning. The aim of both types of pruning is to remove the points

that can never be changepoints from the space over which the recursions in (2.14) and

(2.15) are performed.

Inequality based pruning To reduce the cost of OP, Killick et al. (2012) proposed

the pruning method Pruned Exact Linear Time (PELT). This involves checking a

single inequality condition to decide whether a candidate location for the most recent

changepoint can be pruned. This has been defined as inequality based pruning in

Maidstone et al. (2017).

Killick et al. (2012) show that if there exists a constant K such that for all s <

t < T ,

C(y(s+1):t) + C(y(t+1):T) +K ≤ C(y(s+1):T), (2.16)

CHAPTER 2. LITERATURE REVIEW 17

and for t > s, if

F (s) + C(y(s+1):t) +K ≥ F (t), (2.17)

then at a future time T > t, s can never be the optimal last changepoint prior to

T . The inequality in (2.16) is checked at time t for all current potential changepoints

s. For all s for which (2.16) holds we prune s from our set of potential most recent

changepoints going forward. PELT is implemented in the changepoint R package

(Killick and Eckley, 2014; Killick et al., 2014).

Maidstone et al. (2017) propose a similar method where they apply inequality

based pruning to SN (Segment Neighbourhood search with Inequality Pruning, SNIP),

however this method is not competitive when compared to other pruned SN methods,

introduced below.

Functional pruning The idea of functional pruning is to define the segmentation

costs as a function over the segment parameter θ. To be able to do this we need

to be able to split the segmentation costs into component parts, γ(yi, θ). For the

constrained case in (2.9) we define the new cost function Costτm(y1:t, θ) as the minimal

cost of segmenting the data y1:t into m segments with the most recent changepoint at

τ and the segment parameter after τ is θ. That is

Costτm(y1:t, θ) = Qm−1(y1:τ) +
t∑

i=τ+1

γ(yi, θ), (2.18)

This is the basis of the pruned dynamic programming algorithm (pDPA) proposed

by Rigaill (2015) who develops a dynamic programming algorithm to update these

recursively at each new time step.

Similarly Maidstone et al. (2017) apply functional pruning to the penalised op-

timisation problem (2.8) in their algorithm: Function Pruning Optimal Partitioning

(FPOP). That is

Costτ (y1:t, θ) = Q(y1:τ , β) +
t∑

i=τ+1

γ(yi, θ), (2.19)

CHAPTER 2. LITERATURE REVIEW 18

where Q(y1:τ , β) is the optimal segmentation prior to τ , i.e.

Q(y1:τ , β) = min
τ1

Costτ1(y1:τ , θ). (2.20)

For both algorithms these functions only need to be stored for the candidate change-

points and are recursively updated at each time point,

Costτ (y1:t, θ) = Costτ (y1:(t−1), θ) + γ(yt, θ). (2.21)

The minimum cost of segmenting data y1:t, conditional on the last segment having

parameter θ is

Cost∗(y1:t, θ) = min
θ
Costτ (y1:t, θ). (2.22)

The functions are point additive and thus it is theoretically possible to prune sets

of segmentations. If a potential last changepoint, τ1, does not form part of the

piecewise function Cost∗(y1:t, θ) for a time t, i.e. there does not exist a θ such that

Cost∗(y1:t, θ) = Costτ1(y1:t, θ), then at future time points this will still be the case

and thus τ1 can never be the most recent change. The function Costτ1(y1:t, θ) can be

pruned as it will never be optimal, hence the term functional pruning.

For the quadratic loss function with normally distributed data, Rigaill (2015) show

that this functional pruning is efficient and they empirically show that this method

has sub-quadratic time in O(n log n). Further implementation of pDPA applied to

RNA-Seq data with a negative Binomial model has been looked at by Cleynen et al.

(2013). Although not implicitly shown, Cleynen et al. (2013) also say their results

hold for the Poisson model.

PDPA needs to store the Costτm(y1:t, µ) functions as well as the candidate change-

point set for all m = 1, ...,M and therefore the computational complexity is similar

to SN. Since FPOP uses OP it is computationally faster. PDPA is implemented

in the cghseg package (Picard et al., 2016) for the quadratic loss function and in

CHAPTER 2. LITERATURE REVIEW 19

Segmentor3IsBack (Cleynen et al., 2013) which includes the negative Binomial and

the Poisson model.

At the time this research project commenced PELT was arguably the best method

for changepoint detection using dynamic programming due to its speed advantages

over SN and pDPA. Many of the methods in this thesis have been developed around

PELT so I will look further into this method later in this thesis. FPOP was developed

by colleagues at Lancaster during this PhD and has been shown to outperform PELT

in the case of a change in mean. Maidstone et al. (2017) show that functional pruning

always prunes more than inequality based pruning and this is especially the case

where there are few changes. FPOP does not work when the segment parameter θ

has dimension greater than one and thus PELT is still the superior method to use in

cases where we have changes in more than one parameter such as mean and variance.

2.5.3 Penalties

In the algorithms which use the optimisation problem the choice of the penalty pa-

rameter, β, has a significant impact on the accuracy of the detected changes. If we let

p denote the number of additional parameters introduced by adding a changepoint,

then popular examples used frequently in the literature include β = 2p (Akaike’s Infor-

mation Criterion (AIC); Akaike, 1974), β = p log n (Schwarz’s Information Criterion

(SIC/BIC); Schwarz, 1978) and β = 2p log log n (Hannan-Quinn; Hannan and Quinn,

1979). The AIC is the simplest penalty choice but it usually leads to over-fitting the

data. The Hannan-Quinn penalty also normally leads to over-fitting, this is due to

these penalties being small, even for large n. Yao (1988) establish weak consistencies

for estimating the number and position of changepoints, in normally distributed data,

using the SIC penalty.

More sophisticated penalty terms have been proposed. Zhang and Siegmund

(2007) propose a method which accounts for the length of the segments (Modified

Bayesian Information Criterion, mBIC). The mBIC is shown to work well for simu-

CHAPTER 2. LITERATURE REVIEW 20

lated data where the model assumptions of the mBIC hold however it does not work

as well for real data-sets (Hocking et al., 2013b). Lavielle (2005) propose an adaptive

penalty choice. This involves solving the constrained optimisation problem for differ-

ent number of changepoints. They then plot the unpenalised cost against the number

of changepoints detected and suggest the point that lies on the “elbow” of this plot

to be the one with the best segmentations. Intuitively this is the point where the cost

stops decreasing as much with an addition of a false changepoint. In a similar fashion

Hocking et al. (2013a) calculate the optimal segmentations with different numbers of

changepoints and then use annotated training data to learn the best choice of penalty.

It is common that the penalty is linear in the number of changepoints however

there are important exceptions, for example the Minimum Description Length. Davis

et al. (2006) and Li and Lund (2012) use the Minimum Description Length (MDL)

penalty, proposed by Rissanen (1989) to detect changepoints. This penalty arises from

information theory and essentially finds the model which gives the best compression

of the data. That is to store the data, the data is split up and the best model is the

one that requires the least amount of space (i.e. smallest code length) to store the

data. For a model with parameters θ1:m the MDL is

MDL(m, τ1:m, θ1:m) = logm+ (m+ 1) log n+

m+1∑
j=1

[
log θj +

θj + 2

2
log(τj − τj−1) +

(τj − τj−1)
2

log(2πσ̂2
j)

]
,

(2.23)

where σ̂2 is the Yule-Walker estimate of σ2. This is essentially the code length for

the model plus the code length for the residuals, used to assess the fit of the model.

Rissanen (1989) shows that the code length for the residuals is equal to the negative

log-likelihood of that model. A more complex model implies a larger encoding cost

and therefore a larger penalty. As such the penalty term for the MDL is equal to the

cost of encoding the model.

CHAPTER 2. LITERATURE REVIEW 21

Killick et al. (2012) show that solving the linear penalty case with the correct

penalty will give the optimal solution for many non-linear penalties.

2.5.4 Simultaneous Multiscale Changepoint Estimator

Frick et al. (2014) use dynamic programming to minimise a multiscale statistic for a

range of step functions in their method SMUCE (Simultaneous Multiscale Change-

point Estimator). SMUCE is used to detect changepoints in exponential regression

and works by minimising the number of changepoints over the acceptance region of

a multiscale test at a level α. As well as the number and location of changepoints,

SMUCE is able to estimate confidence bands for the step function representing the

underlying signal as well as confidence bands for the estimated changepoint locations.

The main disadvantage of SMUCE is that it only allows for detection in a single

parameter. There has been various adaptions of SMUCE: Pein et al. (2015) extend

SMUCE to work on heterogeneous data, where at a changepoint the variance also

changes (H-SMUCE), Futschik et al. (2014) apply SMUCE to DNA segmentation

which follows a Bernoulli distribution (B-SMUCE) and Hotz et al. (2013) extends

SMUCE for dependent Gaussian data.

2.6 Nonparametric Approaches

For many cost functions, C(·), knowledge of the underlying distribution of the data

is required. For example, in the likelihood methods we need to know the distribution

of the data in order to formulate the likelihood and to find maximum likelihood

estimators. In practice, however, we might not know the underlying distribution or

the data might not even follow a standard distribution. Mis-specifying models can

have detrimental effects on the performance of the changepoint detection methods

and thus there is interest in developing methods that do not have any assumptions

on the distribution of the data.

CHAPTER 2. LITERATURE REVIEW 22

There has been a vast amount of work on single changepoint detection in the non-

parametric setting. The first ever changepoint test, CUSUM (cumulative sums), pro-

posed by Page (1954) is a nonparametric approach. Further work in single changepoint

detection includes Bhattacharyya and Johnson (1968); Carlstein (1988) and Dümbgen

(1991). Discussion on nonparametric methods and some general asymptotic results

can be found in Brodsky and Darkhovsky (1993) and Csörgö and Horváth (1997).

Many of the nonparametric test statistics use ranks of the observations where the

rank of the ith observation at time t can be defined as

r(xi) =
t∑
i 6=j

1(xi ≥ xj), (2.24)

where 1 is an indicator function. For example Pettitt (1979) and Hawkins and Deng

(2010) use a Mann-Whitney test statistic to detect changes in location. The test

statistic is calculated as

λτ = 2
τ∑
i

r(xi)− τ(n+ 1), (2.25)

and is computed for all values 1 < τ < n. A changepoint is detected if the maximum

exceeds some threshold where the maximum is thus the detected changepoint.

Similarly for a change in scale the Mood test statistic can be used (Mood, 1954).

The test statistic in this case is

λτ =
τ∑
i

(r(xi)− (n+ 1)/2)2, (2.26)

and again is computed for all values 1 < τ < n.

For a more general test for changes in location and scale, Ross and Adams (2012)

discuss the use of the Kolmogorov-Smirnov and the Cramer-von Mises statistics. Both

of these compare the empirical distribution of the data before and after a change. If

we define S1 as the sample before the change and S2 as the sample after, the empirical

CHAPTER 2. LITERATURE REVIEW 23

distributions are calculated as

F̂S1(x) =
1

τ

τ∑
i=1

1(Xi ≤ x) (2.27)

F̂S2(x) =
1

n− τ

n∑
i=τ+1

1(Xi ≤ x). (2.28)

For the Kolmogorov-Smirnov test, the test statistic is defined as

λ = sup
x
|F̂S1(x)− F̂S2(x)|, (2.29)

and for the Cramer-von-Mises test statistic this can be calculated by

λ =
n∑
i=1

|F̂S1(x)− F̂S2(x)|2. (2.30)

The use of the empirical distribution has also been used in other methods. Guan

(2004) use an empirical likelihood ratio test to propose a semi-parametric approach

to detect a change from a distribution to a weighted one. Without assuming any

relationship between the two populations, Zou et al. (2007) use the empirical like-

lihood to develop a fully nonparametric approach. They show that the asymptotic

properties are similar to those of the parametric likelihood methods. Other methods

include using Kernel density estimations (Baron, 2000), however these methods are

computationally intensive.

Extending these methods to detect multiple changepoints is not straightforward.

Within sequential changepoint detection this can be treated as a single changepoint

problem that resets every time a changepoint is detected (Ross and Adams, 2012). Lee

(1996) proposed a weighted empirical measure which essentially uses single change-

point detection over a window of observations and then runs the window through the

entire data. This method is simple to use but it lacks in performance in terms of the

number and location of changepoints detected. Zou et al. (2014) then developed a

CHAPTER 2. LITERATURE REVIEW 24

method using the empirical distribution as a cost function with Segment Neighbour-

hood search and show, under mild conditions, that the consistency of the detected

changepoints is Op(1). The issue with this approach is the high computational cost

which is O(mn2 + n3), where m is the number of changepoints. We will explore this

method further in Chapter 4.

2.7 Other Approaches

In this thesis we focus on detecting changes in univariate time-series. We have adopted

frequentist approaches to detect changes in the offline setting, that is we already

have access to the full data-set. There are many important areas in the changepoint

literature which are worth noting. In particular these include Bayesian methods,

multivariate changepoint detection and online/sequential detection. Below we will

briefly introduce these methods and highlight notable works in each area.

2.7.1 Bayesian Methods

Bayesian techniques for changepoint detection require priors for the number and lo-

cation of changepoints, as well as for the segment parameters. Bayesian techniques

based on Markov chain Monte Carlo, MCMC, have been used for inference of change-

point models (Stephens, 1994; Chib, 1996, 1998). When the number of changes is

unknown a common approach is reversible jump MCMC proposed in Green (1995)

which explores the joint space of the model and parameters for a set of models with

different number of changepoints. Lavielle and Lebarbier (2001) propose a hybrid

method using the Metropolis-Hastings algorithm with a Gibbs-sampler and show that

this converges much faster than the reversible jump algorithm in Green (1995). The

difficulty with the MCMC methods is finding moves that allow the algorithm to mix

well as well as being able to determine if the algorithm has converged.

Alternatively, there are methods which directly simulate from the posterior based

CHAPTER 2. LITERATURE REVIEW 25

on an exact method for calculating the posterior means (Barry and Hartigan, 1992).

This method was used by Liu and Lawrence (1999) for DNA sequencing and has since

been used more generally in Fearnhead (2005) and Fearnhead (2006). Fearnhead

and Liu (2007) apply this method for online changepoint detection and shows this to

have a cost linear in the number of observations. However these methods require the

parameters within a segment to be independent of each other and that the marginal

likelihood for the data within each segment can be calculated. Fearnhead and Liu

(2011) extend the direct simulation approach to models where there is dependence

across segments. They develop an online Bayesian approach which can be used under

the assumption that the dependence of the parameters is Markov (the parameters of

the current segment depend only on the previous segments).

An alternative Bayesian approach for online changepoint detection was proposed

by Adams and MacKay (2007) who use the posterior distribution for the number of

data observed since the last changepoint, i.e., the current “run length”, to predict the

distribution of the next data-point conditional on the run length. They apply this

method to detect changes in rock strata, Dow Jones returns and coal mine explosions.

2.7.2 Hidden Markov Models

Analogous to the Bayesian methods, Hidden Markov Models, HMMs, (see Cappé

et al., 2005, for an overview) can also be used for changepoint detection. For change-

point detection the data are the observations and the hidden underlying states are

the segmentations. Luong et al. (2012) provide an introduction to using HMMs for

changepoint detection. HMMs have been used within classical forward-backward re-

cursions (Durbin et al., 1998) to calculate the posterior marginal state distribution

as well as in the expectation-maximisation algorithm (Dempster et al., 1977) for es-

timation in mixture and changepoint problems. HMMs have also been used within

MCMC algorithms such as in reversible jump MCMC (Green, 1995).

There are many methods which have been proposed for changepoint detection

CHAPTER 2. LITERATURE REVIEW 26

within the HMM framework. For example Nam et al. (2012) use sequential MCMC to

detect changes in fMRI data and Nason et al. (2000) detect changes in autocovariance

using Locally Stationary Wavelets.

There has also been work on estimating the number of hidden states in the HMM.

Zhang and Siegmund (2007) use their modified Bayes Information Criterion to adjust

for the number of states in the previous HMM and Picard et al. (2004) use an adaptive

method to estimate the number and location of changepoints.

2.7.3 Multivariate Methods

In some applications there may be multivariate time-series where changes occur either

simultaneously in all of the variables, fully mutivariate, or in a subset of the variables,

subset multivariate. For example in financial markets it has been shown that several

time-series have the same changes in volatility (Teyssière, 2003) whereas in DNA

copy number variation often the DNA variations only occur in the proportion of the

samples (see for example Bardwell and Fearnhead, 2017).

Each of the series could be analysed using univariate methods, however ignoring

the other series will result in a loss of power. Thus multivariate methods which take

into account all of the variables simultaneously are of interest.

Fully Multivariate

Traditionally, methods for changepoint detection in multivariate data are fully multi-

variate since this case is often simpler than detecting changes in subsets of variables.

One of the earliest approaches for multivariate changepoint detection was by Srivas-

tava and Worsley (1986) who detected a change in the mean vector of a multivariate

normally distributed time-series. Single changepoint detection methods in the multi-

variate setting have also been proposed by Horváth and Hušková (2012) and Batsidis

et al. (2013) who use parametric methods, and Aue et al. (2009) who propose a

nonparametric approach.

CHAPTER 2. LITERATURE REVIEW 27

Binary Segmentation can be adapted to use multiple dimensions (Srivastava and

Worsley, 1986; Aue et al., 2009). Rather than extending the univariate counterpart,

Matteson and James (2014) use Binary Segmentation at the core of their method:

E-divisive. E-divisive is a nonparametric method based on hierarchical clustering and

combines Binary Segmentation with a cost function based on the Euclidean distance

between the observations over the multiple variables.

Alternatively, dynamic programming methods have been proposed. As in the

univariate setting these methods require a cost for the multivariate time-series plus

some penalty to avoid over-fitting. Lavielle and Teyssière (2006) and Maboudou

and Hawkins (2009) propose multivariate methods based on Segment Neighbourhood

Search using a penalised cost function. The calculations are similar to those in the

univariate case but have additional O(p) calculations where p is the number of vari-

ables, hence it has an overall computational cost of O(Mpn2). James and Matteson

(2015) use the approach of Lavielle and Teyssière (2006) but with an approximation of

the nonparametric test statistic used in the E-divisive method (Matteson and James,

2014). This approximation is used as a way to speed up the calculations. Another

nonparametric approach was proposed by Lung-Yut-Fong et al. (2012) who use a

nonparametric rank statistic as the cost in Segment Neighbourhood Search.

Other methods for fully multivariate changepoint detection have been proposed

by Ombao et al. (2001) who use the SLEX (Smooth Localised Complex Exponentials)

collection of bases to detect changes in the auto and cross correlation and Vert and

Bleakley (2010) who use a LASSO based approach which fits a model to the total

variation.

Subset Multivariate

The above methods make the assumption that all of the detected changes occur across

all of the variables. However this is often not the case in practice. Cho and Fryzlewicz

(2015) and Xie and Siegmund (2013) propose methods to detect a single change which

CHAPTER 2. LITERATURE REVIEW 28

only affects a subset of the variables. Extending this to multiple changepoints, Zhang

et al. (2010) and Siegmund et al. (2011) propose methods to detect changes in a large

number, and a small number of variables, respectively. Jeng et al. (2013) develop a

similar method to deal with both a large and small number of variables.

Using dynamic programming Maboudou-Tchao and Hawkins (2013) obtain a fully

multivariate solution and perform a hypothesis test on each estimated changepoints

to determine which variables it affects. Pickering (2015) proposes a method which

minimises a cost function using an equivalent method to Optimal Partitioning. This

method detects the changes and also finds the subsets affect at the same time which

saves having the second step as in Maboudou-Tchao and Hawkins (2013). In the

Bayesian framework Bardwell and Fearnhead (2017) propose a method using hidden

states to detect changes in subsets of variables in copy number variation.

2.7.4 Online/Sequential Changepoint detection

The methods discussed so far have detected changepoints in scenarios where we have

already recorded the entire data-set, this is known as offline detection. Modern tech-

nologies for recording data provide the opportunity to analyse data streams; data

characterised by a potentially, unending sequence of high-frequency observations and

thus there is vast literature on methods to detect changepoints sequentially (“online”).

Online changepoint detection emerged from quality control where manufacturing pro-

cesses were continuously monitored to detect an increase in the number of defective

items (Page, 1954). Since then, sequential changepoint detection has been used in

diverse applications such as fraud detection (Hand and Weston, 2008), finance (Wu

et al., 2004) and computer networks (Bodenham and Adams, 2013).

Statistical Process Control

Traditionally online changepoint detection was referred to as statistical process control

and it concerned data streams with only a single changepoint. The task in statistical

CHAPTER 2. LITERATURE REVIEW 29

process control is to detect the change as soon as possible after they have occurred.

The performance is usually measured using two criteria of the Average Run Length

(ARL): the expected time between false positive detections (ARL0) and the mean

delay until a change is detected (ARL1) (Page, 1954). When the pre-change dis-

tribution is known control charts such as the CUSUM algorithm (Page, 1954) and

Exponentially Weighted Moving Average charts (Roberts, 2000) can be used. For an

overview of these techniques see Basseville and Nikiforov (1993). Typically there is

no prior knowledge of the distribution of the data stream hence nonparametric con-

trol charts have been developed. Several distribution charts have been proposed to

monitor the location parameter, such as charts that use the Mann-Whitney/Wilcoxon

Rank statistics (Chakraborti and van de Wiel, 2008; Hawkins and Deng, 2010).

Instead of comparing the observations to a known target value Hawkins et al.

(2003) propose a changepoint control chart in which they treat the reference samples

as part of the ongoing data stream. Hawkins et al. (2003) use this changepoint

model framework to detect changes in mean in Gaussian data which has since been

extended to changes in variance in Gaussian data (Hawkins and Zamba, 2005) and

changes in mean of Bernoulli data (Ross et al., 2013). This has also been extended

in the nonparametric framework to detect changes in location (Hawkins and Deng,

2010) and to detect changes in location and/or scale (Ross et al., 2011). Lai (2001)

list a variety of changepoint models used for sequential detection in scenarios where

some of the in-control parameters are known.

Continuous Monitoring

Since the changepoint control chart framework does not assume anything about the

distribution before the data stream begins it can easily be extended to multiple change-

point detection by restarting the process once a change has been detected, and thus

reducing the problem to successive detection of single changepoints. Intuitively this

makes sense in scenarios where human intervention is required due to the change, such

CHAPTER 2. LITERATURE REVIEW 30

as in process control the fault in the production line will need to be resolved and then

the process can restart as if the change never occurred. In many real life applications

the process normally continues even when a changepoint has occurred. For instance,

in financial data streams detecting a change may trigger a trading action but the

data stream will continue. The detection of multiple changepoints in this scenario is

referred to as continuous monitoring.

One method for continuous monitoring is to assume that at the start of a regime the

process is in control for a certain number of observations and to use these observations

to estimate the parameters for the current regime (see for example Jones, 2002). This

parameter estimation stage is referred to as the burn-in period. Adaptions of CUSUM

and EWMA have also been considered for continuous monitoring (Apley and Chang-

Ho, 2007; Jiang et al., 2008; Tsung and Wang, 2010; Capizzi and Masarotto, 2012),

however these require numerous parameters to be calculated for practical application.

Bodenham and Adams (2016) propose a method using adaptive forgetting factors to

detect changes in location of data streams which only requires a single parameter to

be selected.

2.8 High Performance Computing and Parallel Al-

gorithms

We are living in an era where the amount of data we are collecting and storing

is extremely large due to the revolution in technology. Data-sets with millions, or

even billions, of observations are now common place but even those with tens of

thousands present computational challenges. The increased length of data alongside

the increased computational requirements, resulting from more complex algorithms

and analysis, means there is a strong need for high performance computing. For the

context of this thesis we are interested in the problem of dealing with longer data-sets,

in particular those recorded using high frequency data sensors. Parallel computing

CHAPTER 2. LITERATURE REVIEW 31

can help reduce the computational burden by using multiple processors or computers

to share the work load.

2.8.1 Architecture

Modern computers have a parallel architecture with multiple processors/cores. To

make the best use of the potential computer power we need to have a brief un-

derstanding of the hardware and the different communication tools required for the

different architectures. Here we will give a high-level outline of some of the differ-

ent hardware and software set-ups, for a more indepth introduction to the area see

Tsuchiyama et al. (2010) and Barney (2016a).

Hardware

Parallelisation occurs at different levels of the hardware set-up. Multi-core and multi-

processor computers have multiple processors on a single chip or machine. These

architectures have a shared memory (Figure 2.1a) which allows all processors to com-

municate by reading/writing to a single memory. This is a very simple architecture

from a software point of view, however it lacks scalability since if you add more pro-

cessors this puts strain on the resources due to more processors trying to read/write

to the same memory.

(a)
(b)

Figure 2.1: High-level examples of (a) shared and (b) distributed memory architec-
tures.

CHAPTER 2. LITERATURE REVIEW 32

Multi-computer systems such as computer clusters and grid/cloud computing are

environments where multiple computers are connected together via a network. Each

computer has its own memory and communicates through the network. This type of

memory is known as distributed memory (Figure 2.1b) and is more favourable over

shared memory as there are no bottlenecks associated with reading/writing to mem-

ory. The main difference in these systems is how they are connected in a network.

In computer clusters the computer systems are connected locally using hardware,

whereas computers in a grid or cloud network are connected via the internet. Gener-

ally clusters are made up of computers with similar hardware and operating systems

whereas computers in a grid/cloud may have very different set-ups which need to be

accounted for when developing software.

Using the maximum number of processors available will not necessarily be the

best. Amdahl’s law (Amdahl, 1967) states that the potential program speed up is

speedup =
1

1− p
,

where p is the fraction of the code that can be parallelised. If we have L processors

then this can be modelled by

speedup =
1

p
L

+ s
,

where p is the fraction of the code that can be run in parallel and s is the serial

fraction of the code. Figure 2.2 shows an illustration of Amdahl’s law. There is also

the additional communication cost to account for since the communication between

processors is actually slower than computation.

Software

Various programming languages and libraries have been developed for the different

parallel architectures. For shared memory computers OpenMP (Dagum and Menon,

CHAPTER 2. LITERATURE REVIEW 33

25%
50%

75%

95%

5

10

15

20

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of Cores

S
pe

ed
 u

p

Amdahl's Law

Figure 2.2: An illustration of Amdahl’s law for different proportions of parallel code

1998) and POSIX threads (Butenhof, 1997, Pthreads) are the most common. Both

of these methods use multi-threading where a master thread divides the tasks to

a specified number of worker threads. In OpenMP the programmer highlights the

section of code that is to be run in parallel and then the threads are formed before

the section is executed. Alternatively, Pthreads allows the user to create, manipulate

and manage threads and thus allows for more low-level control over the threads.

OpenMP can be used with C/C++ and Fortran whereas Pthreads uses only C.

In distributed memory computers, message passing APIs (Application Program-

ming Interfaces) are widely used. Two examples of which are MPI (Barney, 2016b,

Message-Passing Interface) and PVM (Geist et al., 1994, Parallel Virtual Machine).

In these systems one machine or processor becomes the “master” and controls the

other devices “slaves”. Jobs are distributed from the master process to the slaves, the

slaves do their work and then send the results back to the master who combines the

results from all of the slaves. MPI is the standard method however PVM allows for

networks where the set-up across the machines is different.

CHAPTER 2. LITERATURE REVIEW 34

2.8.2 R Packages

The computational aspects of this thesis will mainly be coded in R with some of the

code having a C back-end. In Chapter 5 we develop methods for parallel changepoint

detection which we will use R for the parallelisation. There are many packages that

have been developed to provide communication to the various parallel infrastructures

in R. For a review of some of these packages see Schmidberger et al. (2009) and for

an up to date list of all the parallel packages in R see Eddelbuettel (2016). In this

thesis we will use the doParallel package (Calaway et al., 2014) which provides a

parallel back-end for the foreach package (Calaway et al., 2015) using the parallel

package which is inside R-core. The foreach package allows general iterations over

elements without using a loop counter and thus allows the loop to run in parallel. The

parallel package started as a merger of the multicore and snow packages however

most of the functionality of multicore has been integrated into parallel. The snow

(Simple Network of Workstations) package in R (Tierney et al., 2015) supports sev-

eral different low-level communications mechanisms including MPI, alongside PVM,

NetWorkSpaces and raw sockets. This allows for the same code to run on clusters

or on a single multi-core computer. The code we develop will be able to run on any

parallel architecture, it will just require the user to modify the communication parts

of the code to be specific to their parallel set up.

2.8.3 Parallel Algorithms

A common approach in high performance computing is to split the data into “chunks”,

run the analysis on each chunk in parallel and then somehow combine the chunks. The

Binary Segmentation-type methods for changepoint detection discussed in Section 2.4

can easily be parallelised. That is at each step of algorithm the subsets of data can be

analysed on a separate processor. This is what is known as “embarrassingly parallel”;

that is it is embarrassing how easy it is to parallelise these methods. It is not as simple

to parallelise the dynamic programming methods discussed in Section 2.5.2 since each

CHAPTER 2. LITERATURE REVIEW 35

step of the algorithms are dependent of the previous steps. These are the methods,

however, that would really benefit from being parallelised since the costs are at least

O(n2), if we ignore the situations where we can use pruning for the moment, and thus

are computationally infeasible with large n.

Apart from the embarrassingly parallel Binary Segmentation type approaches to

changepoint detection there is, to our knowledge, only one paper that address paral-

lel changepoint detection in the univariate case. (There is research on multivariate

changepoint detection that explores parallelisation but this deals with parallelisation

over dimensions not observations). Nikol’skii and Furmanov (2016) propose a method

which splits the data into equal sized segments and then simultaneously checks for a

single changepoint on each subset of data. If no changepoints are found in adjacent

segments then they take points around the segments to check for a changepoint. This

is an approximate method which doesn’t allow for multiple changepoints in the same

subset of data. In fact this huge flaw makes this method statistically unsound as there

is no guarantee of detecting all of the changepoints.

Across other areas of statistics there has been research in developing statistically

sound methods for splitting and combining data across multiple processors. Matloff

(2016) develop a broadly applicable “chunking and averaging” method for converting

many non-embarrassingly parallel algorithms into embarrassingly parallel methods.

This methods involves splitting the data into chunks, applying some sort of algorithm

to each chunk, such as quantile regression, and then merging the chunks by averaging.

Under the assumption that the data are IID, they show that asymptotically this

method gives the same errors as the full estimator. This chunking approach was

proposed by Hegland et al. (1999) for nonparametric regression modelling and has

also been used by Fan et al. (2007) to overcome memory issues in linear regression

for massive data-sets. In the case of Fan et al. (2007) they merge the data using a

weighted average.

The above methods combine the data by averaging however this is not always

CHAPTER 2. LITERATURE REVIEW 36

possible. Song and Liang (2015) use a “split and merge” approach for Bayesian

variable selection for ultra high dimensional linear regression. In this case they split

the data and perform Bayesian variable selection for each subset and then aggregate

the variables that are selected from each subset. They then perform Bayesian variable

selection on the aggregated subset. Similar split and merge approaches, occasionally

referred to as “divide and conquer” have been used for other methods such as matrix

factorization (Mackey et al., 2013), estimating equation estimation (Lin and Xi, 2011)

and logistic regression (Xi et al., 2009).

Chapter 3

Computationally Efficient

Changepoint Detection for a Range

of Penalties

3.1 Introduction

Changepoints are considered to be those points in a data-sequence where we observe a

change in the statistical properties. Assume we have data, y1, . . . , yn, that have been

ordered based on some covariate information, for example by time or by position along

a chromosome. For clarity we will assume we have time-series data in the following.

Our time-series will have m changepoints with locations τ1:m = (τ1, ..., τm) where each

τi is an integer between 1 and n − 1 inclusive. We assume that τi is the time of the

ith changepoint, so that τ1 < τ2 < ... < τm. We set τ0 = 0 and τm+1 = n so that the

changepoints split the data into m+ 1 segments with the ith segment containing the

data-points y(τi−1+1):τi = (yτi−1+1, . . . , yτi).

There are many different approaches to changepoint detection; see Frick et al.

(2014), Jandhyala et al. (2013), Fryzlewicz (2014) and references therein. One com-

mon approach is to define a cost for a given segmentation of the data such as the

37

CHAPTER 3. CROPS 38

negative log-likelihood (Chen and Gupta, 2000), quadratic loss (Rigaill, 2015) or the

minimum descriptive length (Davis et al., 2006). Typically this cost is based on first

defining a segment-specific cost function, which we denote as C(y(s+1):t) for a segment

which contains data-points y(s+1):t. We then sum this segment-specific cost function

over the m + 1 segments. A natural way to then estimate the number and position

of the changepoints would be to minimise the resulting cost over all segmentations.

Note that, whilst formulated differently, Binary Segmentation procedures (Scott and

Knott, 1974; Olshen et al., 2004) can be viewed as approximately minimising such a

cost (see Killick et al., 2012, for more discussion). From herein we use optimal in the

sense that the segmentations are solutions of the constrained minimisation problem,

i.e., if we have m changepoints then the location of these changepoints are such that

they minimise the cost of segmenting the data with m changepoints.

Directly minimising such a cost function will generally result in over-fitting, as for

many choices of cost function adding a changepoint always reduces the overall cost.

There are two potential approaches to avoiding such over-fitting. The first of these

would be to constrain the optimisation by fixing the maximum number of changepoints

that can be found. The corresponding constrained minimisation problem is:

Qm(y1:n) = min
τ1:m

{
m+1∑
i=1

[C(y(τi−1+1):τi)]

}
, (3.1)

with the best segmentation with m changepoints being the one that attains the min-

imum. If the number of changepoints is unknown then the number of changes, m, is

often estimated by solving

min
m
{Qm(y1:n) + f(m)} , (3.2)

where f(m) is a suitably chosen penalty term that increases with m.

If f(m) is a linear function, that is f(m) = (m + 1)β with β > 0, then we can

jointly estimate the number and the position of the changepoints by solving a penalised

CHAPTER 3. CROPS 39

minimisation problem (see for example: Lavielle and Moulines, 2000; Lebarbier, 2005;

Jackson et al., 2005; Boysen et al., 2009):

Q(y1:n, β) = min
m,τ1:m

{
m+1∑
i=1

[C(y(τi−1+1):τi) + β]

}
, (3.3)

again with the estimated segmentation being the one that attains the minima. This

second approach, of directly minimising (3.3) is computationally faster than solving

the constrained penalisation problem for a range of the number of changepoints, and

then minimising (3.2); however it requires a choice of penalty constant, β. Note

that some choices of penalty include terms that depend on the segment lengths (e.g.

Zhang and Siegmund, 2007; Davis et al., 2006). The resulting penalised minimisation

problems can also be formulated in terms of minimising a function of the form (3.3)

or (3.2), by including the penalty that depends on the segment length within the

segment cost.

Many authors have looked at different choices of penalties. If we let p denote the

number of additional parameters introduced by adding a changepoint, then popular

examples used frequently in the literature include β = 2p (Akaike’s Information Crite-

rion; Akaike, 1974); β = p log n (Schwarz’s Information Criterion; Schwarz, 1978); and

β = 2p log log n (Hannan and Quinn, 1979). More sophisticated penalty approaches

include the modified Bayesian Information Criterion (mBIC; Zhang and Siegmund,

2007) which accounts for the length of the segments. Whilst these information criteria

all have good theoretical properties, they rely on assumptions about the underlying

data generating process which gives rise to the data. Unfortunately, in practice there

is potential for the modelling assumptions associated with a particular criterion to be

violated. Hocking et al. (2013a) show that while the mBIC works well for simulated

data-sets where the model assumptions of the mBIC hold, it does not work as well

for real data-sets.

An alternative approach is to calculate optimal segmentations with differing num-

CHAPTER 3. CROPS 40

bers of changepoints, and then use some alternative method to evaluate each seg-

mentation. This idea has been suggested by Hocking et al. (2013a) who then use

annotated training data to learn what choice of penalty is most appropriate for a

given application. For recursive methods, such as variants of Binary Segmentation

(Scott and Knott, 1974; Fryzlewicz, 2014) and the method of Fryzlewicz (2012), we

obtain segmentations corresponding to a range of different numbers of changepoints

with no, or little, additional cost. However, if the aim is to find segmentations that

are optimal, in terms of minimising a given cost function, these recursive methods

cannot be used. Calculating the range of optimal segmentations can be done using

the Segment Neighbourhood search algorithm (Auger and Lawrence, 1989), but this

comes at a much higher computational cost.

Our contribution is a new algorithm, CROPS, that can compute all optimal seg-

mentations of the penalised minimisation problem as we vary the penalty over some

interval. This is similar in spirit to algorithms for variants of penalised regression

where, rather than solving a problem for a single penalty value, one calculates the

set of solutions obtained as the penalty value varies (Tibshirani and Taylor, 2011;

Fryzlewicz, 2012; Zhou and Lange, 2013).

The CROPS algorithm uses a simple relationship between the solutions of the

penalised minimisation problem and those of the constrained minimisation problem

to find a set of distinct penalty values such that each solution corresponds to either

a different segmentation, or will rule out the possibility of an optimal segmentation

under the penalised cost with a certain number of changepoints. We show how the

computational cost of the method can be improved by storing and reusing certain

values that are calculated when solving the penalised cost problem for the earlier

choices of the penalty values. The output of CROPS is similar to that of Segment

Neighbourhood search, but it can be substantially, even orders of magnitude, faster.

This chapter is organised as follows. In Section 3.2 we introduce the changepoint

model and review various ways of detecting multiple changes using both a constrained

CHAPTER 3. CROPS 41

and a penalised approach. In Section 3.3 we propose our method for running the detec-

tion algorithms over a range of penalty values, and give a bound on its computational

cost. Our method will be demonstrated in simulation studies and real data examples

in Section 3.4 and Section 3.5.

3.2 Background

3.2.1 Segment Costs

To define the cost of a segmentation we need to specify a segment-specific cost. A

common approach, used for example in penalised likelihood (Braun and Müeller,

1998) and minimum description length (Davis et al., 2006) methods, is to introduce a

model for the data within a segment. This will define a log-likelihood for the data that

depends on a segment-specific parameter. The cost can then be chosen proportional to

minus the maximum of this log-likelihood, where we maximise out the segment-specific

parameter. The form of this cost will then depend on both modelling assumptions

about the distribution of the data-points, and also the type of change that we are

attempting to detect. To make this idea concrete, consider the following setting, that

we will revisit in the simulation and real-data examples. If we model the data within

a segment as being independent and identically distributed, drawn from a Gaussian

distribution with mean µ and variance σ2, then the log-likelihood of the data y(s+1):t,

up to a common additive constant, would be

`(y(s+1):t;µ, σ) = −(t− s)
2

log(σ2)− 1

2σ2

t∑
j=s+1

(yj − µ)2.

For detecting a change in the mean calculating the segment cost involves using

minus twice the log-likelihood after maximising over µ. This gives the segment cost:

C(y(s+1):t) =
t∑

j=s+1

(yj)
2 −

(
∑t

j=s+1 yj)
2

n
. (3.4)

CHAPTER 3. CROPS 42

Similarly for detecting a change in both mean and variance, calculating the seg-

ment cost would involve using minus twice the log-likelihood after maximising over

both µ and σ. This gives a segment cost,

C(y(s+1):t) = (t− s)

log

 1

t− s

t∑
j=s+1

(
yj −

1

t− s

t∑
i=s+1

yi

)2
+ 1

 . (3.5)

3.2.2 Finding Optimal Segmentations

We now briefly review existing approaches for finding optimal segmentations within

the literature.

Segment-Neighbourhood

Auger and Lawrence (1989) introduced the Segment Neighbourhood (SN) search

method which is used to solve the constrained problem in (3.1). This method involves

specifying the maximum number of changepoints to allow, M , and then calculating

the cost of all possible optimal segmentations with 0 to M changepoints. The opti-

mal number of changepoints can then be calculated by (3.2). The computational cost

for this method is O(Mn2) and thus this method scales poorly when analysing large

data-sets with a large number of possible changepoints.

Optimal Partitioning

In order to solve the penalised minimisation problem in (3.3), Jackson et al. (2005)

introduced a method also based on dynamic programming: Optimal Partitioning

(OP). OP is a recursive process which relates the minimum value of (3.3) to the cost

of the optimal segmentation of the data prior to the last changepoint plus the cost of

the segment from the last changepoint to the current time-point. For the data up to

time s, y1:s, we let τs be the set of all possible number and position of changepoints

for segmenting the data: τs = {τ : 0 = τ0 < τ1 < · · · < τm < τm+1 = s}. If we denote

the minimisation of (3.3) for data y1:t by F (t) = Q(y1:t; β), with F (0) = 0, then this

CHAPTER 3. CROPS 43

can be calculated recursively by:

F (t) = min
τ∈τt

{
m+1∑
i=1

[C(y(τi−1)+1:τi) + β]

}
= min

s∈{0,...,t−1}
{F (s) + C(y(s+1):t) + β}. (3.6)

This recursion can be interpreted as stating that the minimum cost of segmenting

y1:t, given the last changepoint is at time s, is the optimal cost for segmenting data

up to time s plus the cost of adding a changepoint and the cost for the segment

y(s+1):t. The value of s which attains the minimum of (3.6) is the position of the

last changepoint in the optimal segmentation of y1:t. These recursions are solved for

t = 1, 2, ..., n with computational cost O(n2). Extracting the set of changepoints in

the optimal segmentation is achieved by a simple recursion backwards through the

data.

3.2.3 Pruning Methods

There has been work on improving these methods through pruning techniques. Killick

et al. (2012) introduced a modification of OP; Pruned Exact Linear Time (PELT).

This method uses inequality based pruning to remove values of τ which can never

be minima from the minimisation performed at each iteration of the OP algorithm.

Killick et al. (2012) show that, under certain regularity conditions, the expected com-

putational cost of PELT is O(n).

Recently Maidstone et al. (2017) proposed an alternative functional based pruning

method for OP, FPOP which has an empirical cost of O(n). This is similar to the

pDPA method proposed by Rigaill (2015) who use this functional pruning in Segment

Neighbourhood search. pDPA has an empirical cost of O(n log n). The disadvantage

of both pDPA and FPOP is that they only work in situations where we only have

changes in one parameter.

CHAPTER 3. CROPS 44

3.3 Algorithm for a Range of Penalty Values

In this section we propose a method which solves the penalised optimisation problem

(3.3) for a range of penalty values, β. This method finds the optimal segmentations

for a different number of segments without incurring as large a computational cost

as solving the constrained optimisation problem for a range of m (the number of

changepoints). To achieve this we use a relationship between the penalised and con-

strained optimisation problems in order to sequentially choose values of β for which

the penalised optimisation needs to be solved.

This algorithm can be used within any approach for solving the penalised optimi-

sation problem, which we will define as CPD (as in Change Point Detection) for the

remainder of this paper.

3.3.1 Link Between Optimisation Problems

As before, we have Qm(y1:n) as the minimum cost for the constrained optimisation

problem (3.1) and Q(y1:n, β) as the minimum cost of the penalised optimisation prob-

lem (3.3). These costs can be linked by defining the minimum cost for the penalised

optimisation problem subject to the number of changepoints being m:

Pm(β) = Qm(y1:n) + (m+ 1)β. (3.7)

Then we have, for any β,

Q(y1:n, β) = min
m

Pm(β). (3.8)

Figure 3.1 shows example Pm(β) lines, and the corresponding Q(y1:n, β) curve for

a range of penalty values, β ∈ [5.54, 11], we discuss interval choice in Section 3.3.3.

There are a few important points of interest to note from this plot. Firstly we can

clearly see the relationship between the constrained and penalised problems. For

CHAPTER 3. CROPS 45

1111111111111111111111 5555555555555555555555444444444444444444444433333333333333333333334444444444444444444444 2222222222222222222222 4444444444444444444444 3333333333333333333333 1111111111111111111111

10
11
12
13
14
15
16
17

78
9

775

800

825

850

6 7 8 9 10 11

Beta

C
os

t

Figure 3.1: Graphical representation of the relationship between the constrained and
penalised approaches. The dashed lines are the costs associated with a different
number of changepoints plotted against different penalty terms β (3.7). The numbers
on the right hand side are the number of changes detected. The solid dark line shows
the optimal value of Q(y1:n, β) over the range of β. The solid line is split in to 6
subregions highlighted by different shades and the black squares. These indicate the
intervals where the optimal number of changepoints is the same for all values of the
penalty within the interval. The set of β values for which CPD was run to find all
optimal segmentations for β ∈ [5.54, 11] are shown by the vertical lines, interval choice
is discussed in Section 3.3.3. The numbers at the top represent the order in which
we use the penalty value, note the same numbers represent penalties run in the same
step.

example it is evident that using a penalty, β = 10 and minimising a penalised cost

function gives the same optimal segmentation as solving the constrained optimisation

problem with m = 7. Additionally we can see that as β increases the optimal number

of changepoints decreases. By looking at the dashed lines we can see that not all of the

possible number of changes are optimal for some β. For our example segmentations

with m = 9, 11, 12, 14 or 15 are never optimal choices for any β.

Additionally in Figure 3.1 we can see that the penalty values can be partitioned

into intervals which all have the same value of m. For instance for all β ∈ [8.38, 9.22]

the resulting m is 8. This suggests that if we can learn the boundaries of these

intervals, we can use that information to solve the penalised optimisation problem for

values of β which will correspond to different optimal segmentations. In particular we

CHAPTER 3. CROPS 46

only needed to run CPD for the penalty values indicated on the plot by the vertical

lines in order to find all optimal segmentations for β ∈ [5.54, 11]. The next Section

describes how we find these values of β.

3.3.2 Theoretical Results

We now consider the case where we have solved the penalised optimisation problem

for two values of penalty, β0 and β1.

For any β we let m(β) be the number of changepoints in the segmentation that is

optimal for solving the penalised optimisation problem with penalty β. If there is more

than one optimal segmentation, we let m(β) be the smallest number of changepoints

in those optimal segmentations. Note that, trivially, m(β) will be a non-increasing

function.

Theorem 3.3.1. Let β0 < β1.

(1) If m(β0) = m(β1) then m(β) = m(β0) for all β ∈ [β0, β1].

(2) If m(β0) = m(β1) + 1, define

βint =
Qm(β1)(y1:n)−Qm(β0)(y1:n)

m(β0)−m(β1)
. (3.9)

Then m(β) = m(β0) if β ∈ [β0, βint) and m(β) = m(β1) if β ∈ [βint, β1].

(3) If m(β0) > m(β1) + 1, and m(βint) = m(β1) where βint is defined by (3.9), then

m(β) = m(β0) if β ∈ [β0, βint) and m(β) = m(β1) if β ∈ [βint, β1].

Proof. See Appendix A.

3.3.3 The Changepoints for a Range of PenaltieS (CROPS)

Algorithm

We now seek to develop a method to find the number of changepoints using different

values of the penalty, β, in a range [βmin, βmax]. Here we introduce the CROPS

CHAPTER 3. CROPS 47

algorithm, which sequentially calculates the values of β.

CROPS begins by first running CPD for penalty values βmin and βmax. Theorem

3.3.1 then shows that if we have m(βmin) = m(βmax) or m(βmin) = m(βmax) + 1 we

have found all the optimal segmentations for β ∈ [βmin, βmax]. Otherwise we calculate

βint (3.9), the intersection of Pm(βmin)(β) and Pm(βmax)(β), then run CPD with this

penalty value. By part (3) of Theorem 3.3.1 we know that if m(βint) = m(βmax) then

we have found all the optimal segmentations for β ∈ [βmin, βmax]. Otherwise we can

now consider the intervals [βmin, βint] and [βint, βmax] separately, and we repeat this

procedure on each of those intervals. This continues until there are no new intervals

to consider. We are able to use the results above to work out the optimal number of

changepoints for all penalty values within the interval [βmin, βmax]. Pseudo code for

this method can be found in Algorithm 1.

Algorithm 1: CROPS algorithm

input : A data-set y1:n = (y1, y2, ..., yn);
Minimum and maximum values of the penalty, βmin and βmax;
CPD, an algorithm such as PELT, for solving the penalised

optimisation problem.
output: The details of optimal segmentations for each β ∈ [βmin, βmax].

1. Run CPD for penalty values βmin and βmax;
2. Set β∗ = {[βmin, βmax]};
while β∗ 6= ∅ do

3. Choose an element of β∗; denote this element as [β0, β1];
if m(β0) > m(β1) + 1 then

4. Calculate βint =
Qm(β1)

(y1:n)−Qm(β0)
(y1:n)

m(β0)−m(β1)
.;

5. Run CPD for penalty value βint;
6. if m(βint) 6= m(β1) then

Set β∗ = {β∗, [β0, βint), [βint, β1]}.;
end

end
7. Set β∗ = β∗ \ [β0, β1];

end

return Output from running CPD for the set of penalty values.

Implementing CROPS requires a somewhat arbitrary choice of interval [βmin, βmax].

However it is clearly easier to find an appropriate value of the penalty if we choose

CHAPTER 3. CROPS 48

an interval than if we choose just a single value. Furthermore we show in Section

3.3.5 that if our interval appears inappropriate, we can extend the interval at little

additional computational cost.

3.3.4 The Number of Changepoints that are Optimal for

Some β

For the example in Figure 3.1 we saw some of the optimal segmentations for specific

numbers of changepoints would never be optimal regardless of the penalty value used.

Thus using this method will not necessarily get the resulting segmentations for all

numbers of changepoints, something which you get when you use segment neighbour-

hood search.

Lavielle (2005) gives a condition under which a segmentation with m change-

points will be the optimal segmentation for some β. Assume that segmentations with

m1 < · · · < mk changes, for some k > 1, are optimal as we vary β ∈ [βmin, βmax]. Let

Qi = Qmi(y1:n), for i = 1, . . . , k, be the associated un-penalised cost of these segmen-

tations. We can construct a piece-wise line by joining (mi, Qi) with (mi+1, Qi+1) for

i = 1, . . . , k − 1. All values of changepoints, m, with m1 < m < mk and for which

there is no optimal segmentation will lie above this line. An example is shown in

Figure 3.2.

One way of expressing this condition is that we will not obtain segmentations for

which the average reduction in cost of adding some number of changepoints is more

than the average increase in cost of removing some number of changepoints. Consider

the example in Figure 3.2. By solving the penalised optimisation problem for a range

of β we do not find an optimal segmentation with 9 changepoints. This is because

the reduction in cost of going from 8 to 9 changepoints is less than for going from 9

to 10 changepoints. It is hard to construct a criteria under which the segmentations

not found by solving the penalised optimisation problem would be optimal. In fact

Killick et al. (2012) show that any segmentation that is optimal under (3.2) where

CHAPTER 3. CROPS 49

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

680

700

720

740

7 8 9 10 11 12 13 14 15 16 17

Beta

C
os

t

Figure 3.2: Cost for the segmentations against the number of changepoints. The black
circles are the points corresponding to optimal segmentations found by solving the
penalised optimisation problem over some range of β. The grey circles correspond to
the segmentations which are not optimal for any penalty.

the penalty function for adding changepoints, f(m), is concave will be the solution to

the penalised optimisation problem for some β.

3.3.5 Computational Cost

We now bound the computational cost of our proposed approach. We do this in terms

of the maximum number of times CPD would need to be run. The following theorem

shows that this is at most m(βmin)−m(βmax) + 2 times.

Theorem 3.3.2. (1) If m(β0) = m(β1) then the maximum number of times that

CPD is required to be run to find all the optimal segmentations for β ∈ [β0, β1]

is m(β0)−m(β1) + 2.

(2) If m(β0) > m(β1) then the number of times that CPD is required to be run to

find all the optimal segmentations for β ∈ [β0, β1] is bounded above by

m(β0)−m(β1) + 1.

Proof. See Appendix A.

CHAPTER 3. CROPS 50

Often we may choose our interval adaptively. That is we initially choose an in-

terval, [β
(1)
min, β

(1)
max] say. Then, given the set of segmentations we obtain, we may

want to increase the upper value of the interval, reduce the lower value, or both.

Assume we wish to increase the upper value of the interval (equivalent reasoning ap-

plies for reducing the lower value). Denote the new interval of interest by [β
(1)
min, β

(2)
max]

with β
(2)
max > β

(1)
max. Using the same argument as in the proof of Theorem 3.3.2,

the additional cost will be one run of CPD if m(β
(2)
max) = m(β

(1)
max), and be at most

m(β
(1)
max)−m(β

(2)
max) runs otherwise. In the latter case, the overall number of runs of

CPD is bounded by m(β
(1)
min) −m(β

(2)
max) + 2, which is the same bound as if we used

the larger interval initially.

Recycling Calculations

It is possible to speed up Algorithm 1 by recycling some of the calculations for ex-

ample if in the situation where we use PELT. As we describe in Appendix A, for the

PELT algorithm we calculate and store the minimum penalised cost, the number of

changepoints in this segmentation for t = 1, . . . , n and the position of the most recent

changepoint up to time t. If PELT was run with penalty value β we denote these

values as F (t, β), m(t, β) and cp(t, β) respectively. We can re-use these values from

previous runs of PELT to precalculate many of the values for a new run.

Assume we have run PELT with penalty values β0 and β1, and are now wanting

to run PELT for βint where β0 < βint < β1. Before running PELT for the new value

we iterate for t = 1, ..., n:

1. If m(t, β0) = m(t, β1) then set m(t, βint) = m(t, β0), cp(t, βint) = cp(t, β0) and

F (t, βint) = F (t, β0) +m(t, βint)(βint − β0).

2. If m(t, β0) = m(t, β1) + 1 then calculate a = F (t, β0) + m(t, β0)(βint − β0) and

b = F (t, β1)+m(t, β1)(βint−β1). If a < b then m(t, βint) = m(t, β0), cp(t, βint) =

cp(t, β0) and F (t, βint) = a; else m(t, βint) = m(t, β1), cp(t, βint) = cp(t, β1) and

F (t, β) = b.

CHAPTER 3. CROPS 51

We then just need to run PELT to calculate the values of F (t, βint), m(t, βint) and

cp(t, βint) for times t that we have not been able to precalculate them.

3.4 Simulation Study

This section shows the performance of CROPS in comparison to other methods which

find a range of segmentations. In particular we look at two models: the first being a

uniform variance model with a change in mean and the second being a model with both

changes in mean and variance. For the change in mean model the quickest method for

solving the penalised optimisation problem is FPOP (Maidstone et al., 2017, avail-

able from https://r-forge.r-project.org/projects/opfp/) and the quickest method for

solving the constrained optimisation problem is pDPA (Rigaill, 2015, available in the

Segmentor3IsBack R package, Cleynen et al. (2013)). Thus we compare the CROPS

using FPOP with pDPA. As described in Section 3.2.3 neither pDPA or FPOP can be

applied when there is more than one parameter for each segment. So for the change

in mean and variance we compare CROPS with PELT against Segment Neighbour-

hood. In this latter case we also compare the speed of CROPS with and without the

recycling of calculations introduced in Section 3.3.5.

Since all of these methods optimise exactly, a solution with m changepoints will

have the same m changepoints for all of the methods, we only compare the different

methods in terms of speed. We are also able to use CROPS to efficiently study and

compare some different proposals for the choice of the penalty. Whilst some of these

work well when we use the correct model for the data, we show that they can give

misleading results when the model is mis-specified, something that is likely to be a

feature of real-life applications of changepoint detection.

CHAPTER 3. CROPS 52

3.4.1 Change in Mean

We simulate data of varying lengths with changepoints distributed uniformly in time

but with the constraint that there are at least 20 observations between changepoints.

For a given value of n we simulate data-sets with a fixed number of changepoints,

m = 2 (See Appendix A for the cases where we have a linear, m = n/100, and

sublinear, m =
√
n/4, number of changepoints). We generate the segment means

from a normal distribution with mean 0 and standard deviation 2.5 and we let the

segment standard deviation be 1. For this model we use the cost function in (3.4).

In the CROPS algorithm we set βmin = 4 and βmax = 40 as indicative values

only. For pPDA we set the maximum value of changepoints to be the number of

changepoints detected using the smallest value of the penalty value in FPOP. The

results are shown in Figure 3.3.

(a)

● ● ● ●
●

● ●

●

●

●

CROPS

pDPA

0

50

100

150

200

0 10000 20000
Length of Data

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

(b)

● ● ●
●

●

● ● ● ●

●

● ●

●

●

●

PELT_speed
PELT

SN

0

1000

2000

3000

0 10000 20000
Length of Data

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

(c)

●
●

●

●

●

● ●

●

●

●PELT_speed

PELT

0

50

100

150

0 10000 20000
Length of Data

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Figure 3.3: (a) CPU cost for using either pDPA or CROPS with FPOP. (b) CPU cost
for using SN, CROPS with PELT and CROPS with PELT with the speed improve-
ments. (c) A close up of PELT and PELT with the speed improvements.

It is evident from Figure 3.3a that using CROPS with FPOP is substantially

quicker than using pPDPA. As the length of the data-set increases the gains in speed

increase.

CHAPTER 3. CROPS 53

3.4.2 Change in Mean and Variance

To look at models with a change in mean and variance we simulate data as above

but this time we generate the segment means from a normal distribution with mean 0

and standard deviation 2.5, and the segment standard deviations from a Log-normal

distribution with mean 0 and standard deviation log(10)
2

. In the case with a fixed

number of changepoints we use m = 10. For this model we use the cost function in

(3.5). In the CROPS algorithm we set βmin = 14 and βmax = 40. For SN we set the

maximum value of changepoints to be the number of changepoints detected using the

smallest value of the penalty value in FPOP.

The results can be seen in Figure 3.3b. Similar to the above results it is evident

that CROPS with PELT is much faster than SN. It can be seen in Figure 3.3c that

the addition of the recycling of the calculations (PELT speed) leads to modest gains

in speed.

3.4.3 Evaluating the Choice of Penalty

In this section, we use the change in mean and variance model as above and a mis-

specified model. For the mis-specified model, for a segment k we simulate segment

standard deviations, σ2
k, and an initial mean value, µk. If Yt is in segment k then we

simulate our data from Yt ∼ N(νt, σ
2
k), where νt = µk if t is the first point in a segment

and νt+1 = νt + εt, εt ∼ N(0, 0.1) otherwise. We generate the initial segment means

from a normal distribution with mean 0 and standard deviation 2.5 the segment stan-

dard deviations from a Log-normal distribution with mean 0 and standard deviation

log(10)
2

. The results for the real and mis-specified model are shown in Figures 3.4 and

3.5 respectively. To evaluate the penalty choice we initially find the range of β values

which estimate the correct number of changepoints. For a given simulation scenario

(n = 10, 000) we calculate the average of this range over 100 simulated data-sets, and

compare this average with the different penalty choices (Figures 3.4a and 3.5a). We

then look at the proportion of true positive changepoints, ξ(C||Ĉ), and false posi-

CHAPTER 3. CROPS 54

tive changepoints, ξ(Ĉ||C) (Figures 3.4b and 3.5b). To calculate these we define an

actual changepoint as detected if we infer a changepoint within 10 time-points of its

location. Let C be the vector of nC true changepoint positions, and Ĉ be the vector

of nĈ estimated changepoint positions. If 1(·) is an indicator function then

ξ(C||Ĉ) =

∑nC

i=1 1
(

minj{|Ci − Ĉj|} ≤ 10
)

nC

and ξ(Ĉ||C) = 1− nCξ(C||Ĉ)

nĈ

. (3.10)

For the real model case we can also look at the mean square error (MSE) to

evaluate the accuracy of estimates of the segment parameters. That is if θ̂i is an

estimated parameter of the observation at time i, and θi the true parameter then

MSE is
∑n

i=1(θ̂i − θi)
2/n. We look at MSE for the mean and standard deviation

separately (Figure 3.4c).

From the real model results it can be seen that, in this example, when we have 10

changepoints in the data the optimal value of the penalty lies in a wide interval which

increases with data size. In this case we can see that the AIC, SIC and Hannan-Quinn

penalty values will all over-fit the data. From further simulations (see Appendix A)

we found that when the number of changepoints increases with the amount of data,

the interval in which the optimal penalty value lies decreases as the length of the

data increases. In this case the SIC underestimates the number of changes whereas

the AIC and Hannan-Quinn penalty term both overestimate the number of changes.

When there is a sublinear number of changepoints the optimal penalty value lies in a

smaller interval than it did when there was a fixed number of changes. In this case the

SIC, AIC and Hannan-Quinn penalty all overestimate the number of changepoints.

In terms of accuracy it is clear to see that both the AIC and Hannan-Quinn

penalty detect a lot of false positive changepoints. The SIC penalty outperforms the

Hannan-Quinn penalty for estimating the segment parameters. In all cases the MSE

for the AIC penalty term was much larger than the other two penalties and thus not

shown.

CHAPTER 3. CROPS 55

(a) Penalty values

● ●

●
●

●

●

●

●

●

●

AIC
HQ
SIC

0

200

400

0 5000 10000 15000 20000
Length of Data

P
en

al
ty

 V
al

ue

(b) ROC curve

AIC
HQ

SIC

0.80

0.85

0.90

0.95

1.00

0.00 0.25 0.50 0.75 1.00
Proportion of False Positives

P
ro

po
rt

io
n

of
 T

ru
e

P
os

iti
ve

s

(c) MSE

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

SIC mean
SIC sd

HQ mean

HQ sd

0.00

0.25

0.50

0.75

1.00

5000 10000 15000 20000
Length of Data

M
S

E

Figure 3.4: Results for the true model. (a) Average minimum (black, dashed) and
maximum (grey, dot-dashed) optimal penalty values in comparison to popular penalty
terms in the literature. Solid lines from top to bottom are the SIC, Hannan-Quinn and
AIC penalty values. (b) Proportion of true positives against the proportion of false
positives for n = 10, 000. (c) MSE for the mean (solid) and the standard deviation
(dashed).

(a) Penalty values

●

●

●

●

●

●

●

●

●

●

AIC
HQ
SIC

0

500

1000

1500

0 5000 10000 15000 20000
Length of Data

P
en

al
ty

 V
al

ue

(b) ROC curve

●

●
●

AIC

HQ
SIC

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Proportion of False Positives

P
ro

po
rt

io
n

of
 T

ru
e

P
os

iti
ve

s

Figure 3.5: Results for the mis-specified model scenario. (a) Average minimum (black,
dashed) and maximum (grey, dot-dashed) optimal penalty values in comparison to
popular penalty terms in the literature. (b) Proportion of true positives against the
proportion of false positives for n = 10, 000.

We now look at the case where we have the mis-specified model. These results

can be seen in Figure 3.5. It is obvious from these results that the optimal penalty

value, in terms of correctly estimating the number of changepoints, is much greater

than that for the correctly specified model. It is also much larger than any of SIC,

AIC and Hannan-Quinn. From the accuracy plot we can see that none of the penalty

CHAPTER 3. CROPS 56

terms perform well, with them all detecting a large number of false positives.

3.5 Application to Hi-C Data

Lévy-Leduc et al. (2014) look at detecting genomic regions that interact through the

folding and 3-D structure of the chromosome. They achieve this through changepoint

detection from a deep sequencing approach called Hi-C. A chromosome is split into a

series of windows of consecutive base-pairs on a chromosome. The Hi-C data consists

of measurements, yij, of the amount of interaction between window i and window j.

We expect regions that interact to be contiguous along a chromosome, so the windows

are ordered based on position along the chromosome. Then Lévy-Leduc et al. (2014)

segment the data into m+ 1 contiguous regions, where E(Yij) = µs if gene i and j are

both in segment s for some s = 1, . . . ,m + 1; and E(Yij) = µ0 ≈ 0 if genes i and j

are in different segments. Example data from the first 200 windows on chromosome

16 is shown in Figure 3.6(a). Note that there is a single measurement for each pair

of windows, so we have set yij = yji. A segmentation produces square regions on

the diagonal of the data matrix, corresponding to the measurements between pairs of

genes that have been grouped together.

Lévy-Leduc et al. (2014) formulate the segmentation problem in the form of min-

imising the penalised cost
∑m+1

i=1 C(y(τi−1+1):τi)+βm. They consider a range of different

segment costs. We will focus on one, where C(ys:t) is defined in terms of data yij with

s ≤ i ≤ t and j < i, by

C(ys:t) = min
µ

[
t∑

i=s+1

i−1∑
j=s

(yij − µ)2

]
+ min

µ0

[
t∑
i=s

s−1∑
j=1

(yij − µ̂0)
2

]
.

This is a non-standard segmentation problem. Brault et al. (2015) show that, un-

der a form of in-fill asymptotics, you can consistently estimate the number of change-

points using β = 0, and this is the choice used in Lévy-Leduc et al. (2014). We will

CHAPTER 3. CROPS 57

consider using CROPS to study segmentations for a range of penalty values. Note

that for this application, the cost function does not satisfy the condition explained in

Killick et al. (2012) for PELT, since adding a change does not necessarily reduce the

cost and thus we use Optimal Partitioning.

Figure 3.6 shows the results for analysing data from chromosome 16 (in total over

2.4 million data-points corresponding to 2,221 windows). We ran CROPS with the

interval [0, 1000] which required us to solve the Optimal Partitioning recursions just

34 times, whereas Segment Neighbourhood would have required us to solve an almost

identical set of recursions 217 times; thus CROPS reduces the computational cost of

the dynamic programming recursions by an order of magnitude. In order to then pick

the best segmentation we use a method suggested by Lavielle (2005), which looks

at how the minimum value of the cost changes as we add more changepoints. To

do this we plot the un-penalised cost against the number of segments, m (Figure

3.6b). Initially as we increase m we are likely to be detecting true changes, these

will eventually become false positives, and we would expect that detecting a false

positive will not lower the cost as much. Thus Lavielle (2005) suggests choosing the

point where the decrease in cost due to detecting a further changepoint noticeably

changes. This can be thought of as looking for an “elbow” in the plot. In practice

such an approach may suggest a plausible range of values for m and these could then

be considered in turn as alternative segmentations.

Using this approach suggests a segmentation with 200 changepoints. By compari-

son using β = 0, as suggested by Lévy-Leduc et al. (2014) finds 217 changepoints, and

using the SIC penalty produces a segmentation with 214 changepoints. In Figures

3.6c and 3.6d we plot two regions where there was greatest disparity, between the

three segmentations. Plots of other regions with differences in segmentations are in

the online supplementary material. The segmentations with the SIC penalty or with

β = 0 seem to over-fit the data, introducing changepoints into regions, such as around

window 380 or window 560, where there is little signal.

CHAPTER 3. CROPS 58

(a) 1:200

50 100 150 200

50
10

0
15

0
20

0

(b) Elbow

●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

32

1

7185000

7187500

7190000

190 200 210
Number of Changepoints

C
os

t

(c) 330:430

340 360 380 400 420

34
0

36
0

38
0

40
0

42
0

(d) 520:580

520 530 540 550 560 570 580

52
0

53
0

54
0

55
0

56
0

57
0

58
0

Figure 3.6: (a) First 200 × 200 data-points of chromosome 16. (b) The costs vs
number of changepoints for chromosome 16 where 1 is the point we use as being on
the “elbow” and thus refer this to the optimal penalty value, 2 is when we use the SIC
penalty and 3 is when the penalty is equal to 0. (c) Close up of the segmentations
for windows 330 to 430. (d) close up of the segmentations for windows 520 to 580. In
both cases the black line is our segmentation and the grey line is the segmentation
using β = 0. For (c) using SIC gives the same segmentation as β = 0; whilst for (d)
using SIC gives the same segmentation as ours.

CHAPTER 3. CROPS 59

3.6 Discussion

In this chapter we have developed a method, CROPS, to obtain the optimal segmen-

tations of data, based on minimising a penalised cost function, for a range of penalty

values. For many applications, we believe this is a more appropriate approach to

segmenting data than just using a single choice of penalty, such as SIC. In particular,

whilst default choices can work well if we have an accurate model for the data within

each segment, we have shown that they lack robustness, and can produce poor seg-

mentations, in the presence of model mis-specification. We have observed such issues

in both a simulation study, and when analysing the genome data.

Minimising the penalised cost function for a range of penalty values is one way of

producing a number of different ways of segmenting data, each with a different number

of segments. As such, this approach is an alternative to the Segment Neighbourhood

search method (and the corresponding pruned method, pDPA), which outputs the

optimal segmentation as the number of segments is varied across a suitably chosen

range. The advantage of the new approach is one of computational speed, which

benefits from the fact that minimising the penalised cost function is a simpler prob-

lem to solve than minimising the cost function under a constraint on the number of

changepoints, the problem that Segment Neighbourhood solves. In our simulations,

CROPS was up to two orders of magnitude quicker than Segment Neighbourhood.

One advantage of Segment Neighbourhood is that it produces an optimal segmenta-

tion for all numbers of segments in the chosen range, whereas some of these may not

be optimal under the penalised cost function for any penalty value, and hence not

found via our new method. However the segmentations we do not recover correspond

to, for example, ones where adding an extra changepoint leads to a larger change in

cost than removing a changepoint. It is hard to construct a sensible criteria under

which such segmentations would be optimal.

Code implementing CROPS is available in the R changepoint package, (Killick

et al., 2014).

Chapter 4

A Computationally Efficient

Nonparametric Approach for

Changepoint Detection

4.1 Introduction

Changepoint detection is an area of statistics broadly studied across many disciplines

such as acoustics (Guarnaccia et al., 2015; Lu and Zhang, 2002), genomics (Olshen

et al., 2004; Zhang and Siegmund, 2007) and oceanography (Nam et al., 2015). Whilst

the changepoint literature is vast, many existing methods are parametric. For example

a common approach is to introduce a model for the data within a segment, use minus

the maximum of the resulting log-likelihood to define a cost for a segment, and then

define a cost of a segmentation as the sum of the costs for each of its segments. See for

example Yao (1988); Lavielle (2005); Killick et al. (2012); Davis et al. (2006). Finally,

the segmentation of the data is obtained as the one that minimises a penalised version

of this cost (see also Frick et al., 2014, for an extension of these approaches).

A second class of methods are based on tests for a single changepoint, with the

tests often defined based on the type of change that is expected (such as change in

60

CHAPTER 4. ED-PELT 61

mean), and the distribution of the null-statistic for each test depending on further

modelling assumptions for the data (see e.g. Bai and Perron, 1998; Dette and Wied,

2016). Tests for detecting a single change can then be applied recursively to detect

multiple changes, for example using Binary Segmentation (Scott and Knott, 1974) or

its variants (e.g. Fryzlewicz, 2014). For a review of alternative approaches for change

detection see Jandhyala et al. (2013) and Aue and Horváth (2013).

Much of the existing literature on nonparametric methods look at single change-

point detection (Page, 1954; Bhattacharyya and Johnson, 1968; Carlstein, 1988; Dümbgen,

1991). Several approaches are based on using rank statistics such as the Mann-

Whitney test statistic (Pettitt, 1979). Ross and Adams (2012) introduce the idea

of using the Kolmogorov-Smirnov and the Cramer-von Mises test statistics; both of

which use the empirical distribution function. Other methods include using kernel

density estimations (Baron, 2000), however these can be computationally expensive

to calculate.

There is less literature on the nonparametric multiple changepoint setting. The

single changepoint detection methods which have been developed using nonparamet-

ric methods do not extend easily to multiple changepoints. Within the sequential

changepoint detection literature one can treat the problem as a single changepoint

problem which resets every time a changepoint is detected (Ross and Adams, 2012).

Lee (1996) proposed a weighted empirical measure which is simple to use but has

been shown to have unsatisfactory results. Under the multivariate setting Matte-

son and James (2014) and James and Matteson (2015) proposed methods, E-divisive

and e-cp3o, based on clustering and probabilistic pruning respectively. The E-divisive

method uses an exact test statistic with an approximate search algorithm whereas the

e-cp3o method uses an approximate test statistic with an exact search algorithm. As

a result e-cp3o is faster but lacks slightly in the quality for the changepoints detected.

In this chapter we focus on univariate changepoint detection and we are interested

in the work of Zou et al. (2014) who propose a nonparametric likelihood based on the

CHAPTER 4. ED-PELT 62

empirical distribution. They then use a dynamic programming approach, Segment

Neighbourhood Search (Auger and Lawrence, 1989), which is an exact search proce-

dure, to find multiple changepoints. Whilst this method is shown to perform well,

it has a computational cost of O(Mn2 + n3) where M is the maximum number of

changepoints and n is the length of the data. This makes this method infeasible when

we have large data-sets, particularly in situations where the number of changepoints

increases with n. To overcome this, Zou et al. (2014) propose an additional screening

step that prunes many possible changepoint locations. However, as we establish in

this chapter, this screening step can adversely affect the accuracy of the final inferred

segmentation.

In this chapter we seek to develop a computationally efficient approach to the

multiple changepoint search problem in the nonparametric setting. Our approach is

an extension to the method of Zou et al. (2014), which uses the cumulative empirical

distribution function to define segment costs. Our method firstly involves simplifying

the definition of the segment cost, so that calculating the cost for a given segment

involves computation that is O(log n) rather than O(n). Secondly we apply a different

dynamic programming approach, Pruned Exact Linear Time (PELT) (Killick et al.,

2012), that is substantially quicker than Segment Neighbourhood Search; for many

situations where the number of changepoints increases linearly with n, PELT has been

proven to have a computational cost that is linear in n.

We call the new algorithm ED-PELT, referring to the fact we have adapted PELT

with a cost function based on the empirical distribution. A disadvantage of ED-PELT

is that it requires the user to pre-specify a value by which the addition of a changepoint

is penalised. The quality of the final segmentation can be sensitive to this choice, and

whilst there are default choices these do not always work well. However we show that

the Changepoints for a Range of PenaltieS (CROPS) algorithm (Haynes et al., 2017)

can be used with ED-PELT to explore optimal segmentations for a range of penalties.

The rest of this chapter is organised as follows. In Section 4.2 we give details

CHAPTER 4. ED-PELT 63

of the NMCD approach proposed by Zou et al. (2014). In Section 4.3 we introduce

our new efficient nonparametric search approach, ED-PELT, and show how we can

substantially improve the computational cost of this method. In Section 4 we demon-

strate the performance of our method on simulated data-sets comparing our method

with NMCD. Finally in Section 5 we include some simulations which analyse the per-

formance of NMCD for different scenarios and then we show how a nonparametric

cost function can be beneficial in situations where we do not know the underlying

distribution of the data. In order to demonstrate our method we use heart-rate data

recorded whilst an individual is running.

4.2 Nonparametric Changepoint Detection

4.2.1 Model

The model that we refer to throughout this paper is as follows (note we have made

a slight change in notation to that introduced in Section 2.2 and used in Chapter 3

to highlight the fact that the data is nonparametric). Assume that we have data,

x1, ..., xn ∈ R , that have been ordered based on some covariate information such

as time or position along a chromosome. For v ≥ u we denote xu:v = {xu, ..., xv}.

Throughout we let m be the number of changepoints, and the positions be τ1, . . . , τm.

Furthermore we assume that τi is an integer and that 0 = τ0 < τ1 < τ2 < ... < τm <

τm+1 = n. Thus our m changepoints split the data into m+ 1 segments, with the ith

segment containing xτi−1+1:τi

As in Zou et al. (2014) we will let Fi(t) be the (unknown) cumulative distribution

function (CDF) for the ith segment, and F̂i(t) the empirical CDF. In other words

F̂i(t) =
1

τi − τi−1
×

 τi∑
j=τi−1+1

1{xj < t}+ 0.5× 1{xj = t}

 . (4.1)

CHAPTER 4. ED-PELT 64

Finally we let F̂ (t) be the empirical CDF for the full data-set. Here the 0.5×1{xj = t}

term shares xj = t equally in both 1{xj ≤ t} and 1{xj ≥ t}. Normally in changepoint

detection we minimise an optimisation problem however if we instead maximised the

optimisation problem the 0.5×1{xj = t} will ensures that we will get the same results

as had we minimised.

4.2.2 Nonparametric Maximum Likelihood

If we have n data-points that are independent and identically distributed with CDF

F (t), then, for a fixed value of t, the empirical CDF will satisfy nF̂ (t) ∼ Binomial(n, F (t)).

Hence the log-likelihood of F (t) is given by: n{F̂ (t) log(F (t)) + (1 − F̂ (t)) log(1 −

F (t))}. This log-likelihood is maximised by the value of the empirical CDF, F̂ (t).

We can thus use minus the maximum value of this log-likelihood as a segment cost

function. So for segment i we have a cost that is −Lnp(x(τi−1+1):τi |t) where

Lnp(x(τi−1+1):τi |t) = (τi − τi−1)× [F̂i(t) log F̂i(t) + (1− F̂i(t)) log(1− F̂i(t))]. (4.2)

We can then define a cost of a segmentation as the sum of the segment costs. Thus

to segment the data with m changepoints we minimise −
∑m+1

i=1 Lnp(x(τi−1+1):τi |t).

4.2.3 Nonparametric Multiple Changepoint Detection

One problem with the segment cost as defined by (4.2) is that it only uses information

about the CDF evaluated at one value of t and that the choice of t can have detrimental

effects on the resulting segmentations. To overcome this Zou et al. (2014) suggest

defining a segment cost which integrates (4.2) over different values of t. They suggest

a cost function for a segment with data xu:v that is

∫ ∞
−∞
−Lnp(xu:v|t)dw(t), (4.3)

CHAPTER 4. ED-PELT 65

with a weight, dw(t) = {F (t)(1−F (t))}−1dF (t), that depends on the CDF of the full

data. This weight is chosen to produce a powerful goodness of fit test (Zhang, 2002).

As this is unknown they approximate it by the empirical CDF of the full data, and

then further approximate the integral by a sum over the data-points. This gives the

following objective function

QNMCD(τ1:m|x1:n) = −n
m+1∑
i=1

n∑
t=1

(τi − τi−1)×
F̂i(t) log F̂i(t) + (1− F̂i(t)) log(1− F̂i(t))

(t− 0.5)(n− t+ 0.5)
.

(4.4)

For a fixed m this objective function is minimised to find the optimal segmentation

of the data.

In practice a suitable choice of m is unknown, and Zou et al. (2014) suggest

estimating m using the Bayesian Information criterion (Schwarz, 1978). That is, they

minimise

BIC = min
m|τ1,...,τm

{QNMCD(τ1:m|x1:n) +mξn} , (4.5)

where ξn is a sequence going to infinity.

4.2.4 NMCD Algorithm

To maximise the objective function (4.4), Zou et al. (2014) use the dynamic program-

ming algorithm Segment Neighbourhood Search (Auger and Lawrence, 1989). This

algorithm calculates the optimal segmentations, given a cost function, for each value

of m = 1, . . . ,M , where M is a specified maximum number of changepoints to search

for. If all the segment costs have been pre-computed then Segment Neighbourhood

search has a computational cost of O(Mn2). However for NMCD the segment cost

CHAPTER 4. ED-PELT 66

involves calculating

n∑
t=1

F̂i(t) log F̂i(t) + (1− F̂i(t)) log(1− F̂i(t))
(t− 0.5)(n− t+ 0.5)

,

and thus calculating the cost for a single segment is O(n). Hence the cost of pre-

computing all segment costs is O(n3), and the resulting algorithm has a cost that is

O(Mn2 + n3).

To reduce the computational burden when we have long data-series, Zou et al.

(2014) propose a screening step. They consider overlapping windows of length 2NI

for some NI ∈ R. For each window they calculate the Cramér-von Mises (CvM)

statistic for a changepoint at the centre of the window. They then compare these

CvM statistics, each corresponding to a different changepoint location, and remove

a location as a candidate changepoint if its CvM statistic is smaller than any of the

CvM statistics for locations within NI of it. The number of remaining candidate

changepoint positions is normally much smaller than n and thus the computational

complexity can be substantially reduced. The choice of NI is obviously important,

with larger values leading to the removal of more putative changepoint locations, but

at the risk or removing true changepoint locations. In particular, the rationale for

the method is based on NI being smaller than any segment that you wish to detect.

As a default, Zou et al. (2014) recommend choosing NI = d(log n)3/2/2e where dxe

denotes the smallest integer which is larger than x.

4.3 ED-PELT

Here we develop a new, computationally efficient, way to segment data using a cost

function based on (4.3). This involves firstly an alternative numerical approximation

to the integral (4.3), which is more efficient to calculate. In addition we use a more ef-

ficient dynamic programming algorithm, PELT (Killick et al., 2012), to then minimise

the cost function.

CHAPTER 4. ED-PELT 67

4.3.1 Discrete Approximation

To reduce the cost of calculating the segment cost, we approximate the integral by a

sum with K << n terms. The integral in (4.3) involves a weight, and we first make

a change of variables to remove this weight.

Lemma 4.3.1. Let c = − log(2n− 1). For z ∈ [−1, 1] define p(z) = (1 + exp{cz})−1.

Then

∫ 2n−1
2n

1
2n

Lnp(xu:v|t){F (t)(1− F (t))}−1dF (t) = −c
∫ 1

−1
Lnp(xu:v|F−1(p(z)))dz. (4.6)

Proof. This follows from making the change of variable F (t) = p(z).

Using Lemma 4.3.1, we suggest the following approximation, based on an ap-

proximation of (4.6) using K unevenly spaced x-values. We choose these x-values

specifically to give higher weight to values in the tail of the distribution of the data.

Our approximation achieves this through a sum where each term has equal weight, but

where the x-values we choose are preferentially chosen from the tail of the distribution.

That is we fix K, and let t1, . . . , tK be such that tk is the (1+(2n−1) exp{ c
K

(2k−1)})−1

empirical quantile of the data, where c is defined in Lemma 4.3.1. then we approxi-

mate (4.3) by

CK(xu:v) =
−2c

K

K∑
k=1

Lnp(xu:v|tk). (4.7)

The cost now for calculating the segment costs is O(K). We show empirically in

Section 4.4 that this choice of K can lead to segment costs of O(log n).

4.3.2 Use of PELT

We now turn to consider how the PELT approach of Killick et al. (2012) can be

incorporated within this framework. The PELT dynamic programming algorithm is

CHAPTER 4. ED-PELT 68

able to solve minimisation problems of the form

QPELT(x1:n|ξn) = min
m,τ1:m

{
m+1∑
i=1

[CK(x(τi−1+1):τi) + ξn]

}
.

It jointly minimises over both the number and position of the changepoints, but

requires the prior choice of ξn, the penalty value for adding a changepoint. The PELT

algorithm uses the fact that QPELT(x1:n) is the solution of the recursion, for v > 1

QPELT(x1:v|ξn) = min
u<v

(QPELT(x1:u) + CK(xu+1:v) + ξn) . (4.8)

The interpretation of this is that the term in the brackets on the right-hand side of

(4.8) is the cost for segmenting x1:v with the most recent changepoint at u. We then

optimise over the location of this most recent changepoint. Solving the resulting set

of recursions leads to an O(n2) algorithm (Jackson et al., 2005), as (4.8) needs to be

solved for v = 2, . . . , n; and solving (4.8) for a given value of v involves a minimisation

over v terms.

The idea of PELT is that we can substantially speed up solving (4.8) for a given v

by reducing the set of values of u we have to minimise over. This can be done through

a simple rule that enables us to detect time points u which can never be the optimal

location of the most recent changepoint at any subsequent time. For our application

this comes from the following result

Theorem 4.3.2. If at time v, we have u < v such that

QPELT(x1:u|ξn) + CK(xu+1:v) ≥ QPELT(x1:v|ξn), (4.9)

then for any future time T > v, u can never be the time of the optimal last changepoint

prior to T .

Proof. This follows from Theorem 3.1 of Killick et al. (2012), providing we can show

CHAPTER 4. ED-PELT 69

that for any u < v < T

CK(xu+1:T) ≥ CK(xu+1:v) + CK(xv+1:T). (4.10)

As CK(·) is a sum of k terms, each of the form −Lnp(·|tk) we need only show that for

any t

Lnp(x(u+1):T |t) ≤ Lnp(x(u+1):v|t) + Lnp(x(v+1):T |t).

Now if we introduce notation that F̂u,v(t) is the empirical CDF for data xu:v, we have

Lnp(x(u+1):T |t) = (T − u)[F̂u,T (t) log(F̂u,T (t)) + (1− F̂u,T (t)) log(1− F̂u,T (t))]

= {(v − u)[F̂u,v(t) log(F̂u,T (t)) + (1− F̂u,v(t)) log(1− F̂u,T (t))]

+ (T − v)[F̂v,T (t) log(F̂u,T (t)) + (1− F̂v,T (t)) log(1− F̂u,T (t))]}

≤ Lnp(x(u+1):v|t) + Lnp(x(v+1):T |t),

as required.

Thus at each time-point we can check whether (4.9) holds, and if so prune time-

point u. Under certain regularity conditions, Killick et al. (2012) show that for models

where the number of changepoints increases linearly with n, such substantial pruning

occurs that the PELT algorithm will have an expected computational cost that is

O(n). We call the resulting algorithm we obtain ED-PELT (PELT with a cost based

on the empirical distribution).

4.4 Results

4.4.1 Performance of NMCD

We firstly compare the NMCD algorithm with (NMCD+) and without screening

(NMCD) using the nmcdr R package (Zou and Zhange (2014)), with the default

CHAPTER 4. ED-PELT 70

choices ξn (Bayesian Information Criterion) and in the NMCD+ algorithm NI as

detailed in Section 4.2.4. We set up a similar simulation as in Zou et al. (2014).

That is, we simulate data of length n = 1000 from the following three models, where

J(x) = {1 + sgn(x)}/2.

Model 1: xi =
∑M

j=1 hjJ(nti − τj) + σξi, where

{τj/n} = {0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81},

{hj} = {2.01,−2.51, 1.51,−2.01, 2.51,−2.11, 1.05, 2.16,−1.56, 2.56,−2.11},

and there are n equally spaced ti in [0, 1].

Model 2: xi =
∑M

j=1 hiJ(nti − τj) + σξi
∏∑M

j=1 J(nti−τj)
j=1 vj, where

{τj/n} = {0.20, 0.40, 0.65, 0.85}, {hj} = {3, 0,−2, 0}, and {vj} = {1, 5, 1, 0.25}.

Model 3: xi ∼ Fj(x), where τj/n = {0.20, 0.50, 0.75}, j = 1, 2, 3, 4, and F1(x), ..., F4(x)

corresponds to the standard normal, the standardized χ2
(3) (with zero mean and unit

variance), the standardized χ2
(1) and the standard normal distribution respectively.

The first model has M = 11 changepoints, all of which are changes in location.

Model 2 has both changes in location and in scale and model 3 has changes in skewness

and in kurtosis. For the first two models we also consider three distributions for

the error, ξi: N(0, 1), Student’s t distribution with 3 degrees of freedom and the

standardised chi-square distribution with one degree of freedom, χ2
(1).

To compare both the NMCD and NMCD+ we first look at the true and false

discovery rates. That is a detected changepoint τ̂i is true if min1≤j≤m{|τ̂i − τj|} ≤ h,

where m is the true number of changepoints and h is some threshold. In this case

we will use h = 0. That is a detected changepoint is only counted as true if it is

in the correct location. The number of true detected changepoints is thus m̂TRUE =

CHAPTER 4. ED-PELT 71

∑m̂
i=1 1min1≤j≤m{|τ̂i−τj |}≤0, where m̂ is the number of detected changepoints. The true

discovery rate (TDR) and false discovery rate (FDR) are then calculated as:

TDR =
m̂TRUE

m
, FDR =

m̂FALSE

m̂
=

1− m̂TRUE

m̂
. (4.11)

It is clear from Table 4.1 that using the screening step (NMCD+) significantly

improves the computational cost of NMCD. However using this screening step comes

at a cost of not correctly detecting the true changepoints. It can be seen that in all

cases NMCD+ detects fewer true positives and more false positives than NMCD.

C
H
A
P
T
E
R

4.
E
D
-P
E
L
T

72

True Discovery Rate False Discovery Rate Time

(I) NMCD NMCD+ ED-PELT NMCD NMCD+ ED-PELT NMCD (min) NMCD+ (s) ED-PELT (s)
N(0, 1) 0.927 (0.002) 0.912 (0.003) 0.924 (0.002) 0.073 (0.002) 0.088 (0.003) 0.076 (0.002) 19.403 (0.051) 1.677 (0.007) 0.102 (0.003)
t(3) 0.803 (0.004) 0.763 (0.004) 0.796 (0.004) 0.233 (0.004) 0.240 (0.004) 0.210 (0.004) 21.037 (0.065) 1.685 (0.008) 0.129 (0.003)
χ2
(3) 0.908 (0.003) 0.834 (0.003) 0.911 (0.003) 0.097 (0.003) 0.166 (0.003) 0.091 (0.003) 19.623 (0.040) 1.651 (0.006) 0.159 (0.001)

(II)
N(0, 1) 0.580 (0.007) 0.398 (0.005) 0.583 (0.007) 0.454 (0.007) 0.609 (0.005) 0.424 (0.007) 19.963 (0.061) 1.577 (0.002) 0.288 (0.006)
t(3) 0.482 (0.006) 0.323 (0.005) 0.487 (0.006) 0.567 (0.006) 0.695 (0.005) 0.527 (0.006) 10.732 (0.088) 1.578 (0.001) 0.216 (0.002)
χ2
(3) 0.492 (0.006) 0.390 (0.005) 0.502 (0.006) 0.513 (0.007) 0.612 (0.005) 0.498 (0.006) 22.113 (0.050) 1.638 (0.002) 0.317 (0.002)

(III)
0.477 (0.008) 0.363 (0.008) 0.477 (0.002) 0.531 (0.008) 0.640 (0.008) 0.524 (0.002) 24.717 (0.014) 1.516 (0.015) 0.351 (0.002)

Table 4.1: True and false discovery rates and time comparisons for NCMD, NMCD+ and ED-PELT. Values in the table are
mean (standard errors in parentheses) for 100 replications.

CHAPTER 4. ED-PELT 73

These measures provide a good evaluation of the number as well as location of

changepoints. In order to explore the accuracy of the changepoint locations further

we can use the distance measures as in Zou et al. (2014). That is we can use the

worst case distance between the true changepoint set and the false changepoint set as

in Boysen et al. (2009). If we set τ as the set of true changepoints and τ̂ as the set

of detected changepoints then the over-segmentation and under-segmentation errors

are calculated, respectively, as:

d(τ̂ , τ) = max
1≤i≤m̂

min
1≤j≤m

|τ̂i − τj| and d(τ , τ̂) = max
1≤j≤m

min
1≤i≤m̂

|τj − τ̂i|. (4.12)

Table 4.2 gives the average of over-segmentation and under-segmentation errors

for NMCD and NMCD+ as well as the number of detected changepoints. The over

segmentation error is higher for NMCD+ than it is for NMCD in all models. In

model 1 with the normal errors both NMCD and NMCD+ found the same number of

changepoints for all models but on average NMCD was more accurate than NMCD+.

The under segmentation error is comparable for both NMCD and NMCD+ for all

models except model 1 with Student’s- t distribution error where the under segmen-

tation error is much higher for NMCD than NMCD+ and in model 2 with chi-squared

error where the under-segmentation error is much higher for NMCD+ than NMCD.

In all cases NMCD+ found the same or less number of changepoints than NMCD but

closer to the true number. However even though NMCD+ detected the true number

of changepoints more we see that the locations of these changepoints were most of

the time less accurate than NMCD.

C
H
A
P
T
E
R

4.
E
D
-P
E
L
T

74

Over Segmentation error Under Segmentation error Number of detected changepoints

(I) NMCD NMCD+ ED-PELT NMCD NMCD+ ED-PELT NMCD NMCD+ ED-PELT
N(0, 1) 1.080 (0.055) 1.170 (0.042) 1.280 (0.063) 1.080 (0.055) 1.170 (0.042) 1.280 (0.063) 11.000 (0.000) 11.000 (0.000) 11.000 (0.000)
t(3) 2.850 (0.096) 3.120 (0.097) 2.530 (0.077) 14.420 (0.822) 5.000 (0.382) 2.860 (0.093) 11.560 (0.091) 11.040 (0.020) 11.100 (0.036)
χ2
(3) 0.970 (0.029) 2.290 (0.059) 0.990 (0.032) 2.490 (0.343) 2.290 (0.059) 1.030 (0.033) 11.070 (0.033) 11.000 (0.000) 11.030 (0.017)

(II)
N(0, 1) 5.160 (0.194) 8.660 (0.217) 4.860 (0.175) 13.680 (0.768) 12.080 (0.494) 5.780 (0.269) 4.290 (0.057) 4.090 (0.032) 4.060 (0.028)
t(3) 9.940 (0.286) 12.760 (0.267) 10.980 (0.354) 23.830 (0.896) 23.450 (0.764) 16.280 (0.622) 4.590 (0.091) 4.300 (0.063) 4.160 (0.047)
χ2
(3) 6.800 (0.242) 9.630 (0.247) 7.090 (0.238) 7.730 (0.317) 10.310 (0.320) 7.090 (0.238) 4.070 (0.029) 4.010 (0.010) 4.000 (0.000)

(III)
2.730 (0.076) 5.730 (0.152) 3.030 (0.104) 4.730 (0.386) 6.000 (0.165) 3.240 (0.121) 3.060 (0.028) 3.020 (0.014) 3.010 (0.010)

Table 4.2: Over-segmentation and under-segmentation errors, and the number of changepoints detected for NCMD, NMCD+
and ED-PELT. Values in the table are mean (standard errors in parentheses) for 100 replications.

CHAPTER 4. ED-PELT 75

4.4.2 Size of Screening Window

We now turn to consider the choice for the size of the screening window NI further.

Using model 1 with normal errors we can compare the results for different values

of NI . The default value for this data is NI = 10, but we now repeat the analysis

using NI ∈ {1, . . . , 20}. Figure 4.1a shows a bar plot of the number of times (in

100 simulations) that the window size resulted in the same changepoints as using

NMCD without screening. Figure 4.1b shows the number of changepoints detected

with different window lengths and Figure 4.1c looks at the number of true and false

positives found using the different window lengths in the screening step. Figure 4.1d

shows the computational time taken for NMCD+ with varying window lengths NI .

We found similar results for the other models.

It is clear that whilst in the majority of the cases NMCD+ with the different NI

finds the correct number of changepoints the location of these are not always correct

and in fact are different than that found using NMCD. It is also worth noting that even

though many window sizes find 11 changepoints the location of these may be different

for different window lengths. In general the performance decreases as window length

increases however the results do fluctuate a bit. This shows that the performance of

NMCD+ is sensitive to the choice of the window size. Despite this we can see that

NMCD+ is significantly faster than NMCD especially as the window length increases.

The NMCD method also requires us to choose a penalty value in order to pick the

best segmentation. The default choice appears to work reasonably well, but resulted in

slight over-estimates of the number of changepoints for our three simulation scenarios.

These over-estimates suggest that the penalty value has been too small.

4.4.3 Choice of K in ED-PELT

We now turn our attention to ED-PELT. In order to use the improvement suggested

in Section 4.3.1 for ED-PELT we first of all need to decide on an appropriate value

for K. We use model 1 again to assess the performance of ED-PELT using only K

CHAPTER 4. ED-PELT 76

100
93

81

72
67

63656362
5757

6363636259
63

52

37

5
0

25

50

75

100

0 5 10 15 20
Window size NI

P
ro

po
rt

io
n

eq
ua

l t
o

N
M

C
D

(a)

●●●●●●●●●●●●●●●●●

●

●

●
9.9

10.2

10.5

10.8

5 10 15 20
Window size NI

N
um

be
r

of
 d

et
ec

te
d

ch
an

ge
po

in
ts

(b)

●●
●●

●●●●●●●●
●

●
●

●
●

●

●

●0.80

0.85

0.90

5 10 15 20
Window size NI

P
ro

po
rt

io
n

of
 T

ru
e

ch
an

ge
po

in
ts

(c)

●

●

●●●●●●●●●●●●●●●●●●0

200

400

600

5 10 15 20
Window size NI

T
im

e

(d)

Figure 4.1: (a) The number of replications out of 100 in which using NMCD+ with
varying NI results in the same results as NMCD without screening. (b) The number
of changepoints detected with with increasing window size NI . (c) The proportion
of true changepoints detected with varying window size NI . (d) The computational
time (secs) for NMCD+ with increasing window size NI .

CHAPTER 4. ED-PELT 77

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Quantiles

P
ro

po
rt

io
n

of
 T

ru
e

ch
an

ge
po

in
ts

(a)

0.0

0.2

0.4

0 10 20 30 40 50
Quantiles

R
el

at
iv

e
di

fe
re

nc
e

in
 ti

m
e

(b)

Figure 4.2: (a) The proportion of true positive changepoints for a range of quantiles,
K, in ED-PELT (solid) in comparison to ED-PELT (dashed). Black: n = 100,
red: n = 500, blue: n = 1000, grey: n = 2000 and dark green: n = 5000. (b)
Relative speed of using ED-PELT compared to using ED-PELT. with varying number
of quantiles, K. Black: n = 100, red: n = 500, blue: n = 1000 , grey: n = 3000, dark
green n = 5000 and purple: n = 10000.

quantiles of the data, for a range of values of K, in comparison to ED-PELT using

the full data-set. Here we only look at the model with normal errors and simulate

data-series with lengths n = (100, 500, 1000, 2000, 5000, 10000). Further simulations

using different error terms gave similar results. In order to assess performance we

look at the proportion of true positives detected using both methods and also the

computational cost. Again we use 100 replications. The results for the accuracy can

be seen in Figure 4.2a.

We can see from Figure 4.2a that as the number of quantiles increases the pro-

portion of true change points detected using the approximated ED-PELT converges

to the same result as the full version of ED-PELT . As the length of the data in-

creases this convergence appears to happen more slowly, this can be seen from the

purple line in Figure 4.2a, which represents data of length 10000. We suggest using

K = d4 log(n)e in order to conserve as much accuracy as possible. This choice corre-

sponds to K = 19, 25, 28, 31, 35 and 37 for n = 100, 500, 1000, 2000, 5000 and 10000

CHAPTER 4. ED-PELT 78

respectively.

In addition to the accuracy we also look at the relative speed up of ED-PELT with

various K values in comparison to ED-PELT, i.e.,

(speed of approximated ED-PELT)

speed of full ED-PELT
.

The results of this analysis can be seen in Figure 4.2b. Clearly as the number of

quantiles increases the relative speed up decreases. This is expected since the number

of quantiles is converging to the whole data-set which is used in ED-PELT. We can

also see that the relative speed up of ED-PELT increases with increasing data length.

4.4.4 Comparison of NMCD and ED-PELT

We next compare ED-PELT with K = 4 log(n) to NMCD as above. For this we

perform an equivalent analysis to that of Section 4.4.1 and again look at the accuracy

of the methods and the computational time. As before, to implement NMCD we used

the nmcdr R package (Zou and Zhange, 2014) which is written in FORTRAN with

an R user interface. We use the changepoint.np R package (Haynes, 2016) to run

ED-PELT which also has an R interface but with the main body of the code written

in C. We use the default parameters for nmcd and for ED-PELT we use the SIC/BIC

penalty term, 2p log(n), where p is the number of parameters, to match the penalty

term used in the NMCD algorithm.

The results for ED-PELT can be found in Tables 4.1 and 4.2. In terms of accuracy

we can see that ED-PELT is comparable to NMCD albeit lacking slightly in some of

the measures, however it is significantly faster to run. We can also see from table

4.2 that ED-PELT has lower under-segmentation error than NMCD in most of the

models, however it has a higher segmentation error. In comparison to NMCD+, ED-

PELT is faster and also more accurate so would be the better approximate method

to choose.

CHAPTER 4. ED-PELT 79

4.5 Activity Tracking

In this section we apply ED-PELT to try to detect changes in heart-rate during a

run. Wearable activity trackers are becoming increasingly popular devices used to

record step count, distances (based on the step count), sleep patterns and in some

of the newer devices, such as the Fitbit change HR (Fitbit Inc., San Francisco, CA),

heart-rate. The idea behind these devices is that the ability to monitor your activity

should help you lead a fit and active lifestyle. Changepoint detection can be used in

daily activity tracking data to segment the day into periods of activity, rest and sleep.

Similarly, many keen athletes, both professional and amateur, also use GPS sports

watches which have the additional features of recording distance and speed which can

be very beneficial in training, especially in sports such as running and cycling. Heart-

rate monitoring during training can help make sure you are training hard enough

without over training and burning out. Heart-rate is the number of heart beats per

unit time, normally we express this as beats per minute (bpm).

4.5.1 Changepoints in Heart-Rate Data

In the changepoint and signal processing literature many authors have looked at heart-

rate monitoring in different scenarios (see for example Khalfa et al. (2012); Galway

et al. (2011); Billat et al. (2009); Staudacher et al. (2005)). Aubert et al. (2003) give

a detailed review of the influence of heart-rate variability in athletes. They highlight

the difficulty of analysing heart-rate measurements during exercise since no steady

state is obtained due to the heart-rate variability increasing according to the intensity

of the exercise. They note that one possible solution is to pre-process the data to

remove the trend.

In this section we apply ED-PELT to see whether changes can be detected in

the raw heart-rate time-series without having to initially pre-process the data. We

use a nonparametric approach since heart-rate is a stochastic time dependent series

CHAPTER 4. ED-PELT 80

and thus does not satisfy the conditions for an IID normal model. However we will

compare the performance had we assumed that the data was normal in Section 4.5.3.

The aim is to develop a method which can be used on data recorded from commercially

available devices without the need to pre-process the data.

4.5.2 Range of Penalties

One disadvantage of ED-PELT over NMCD is that ED-PELT produces a single seg-

mentation, which is optimal for the pre-chosen penalty value ξn. By comparison,

NCMD finds a range of segmentations, one for each of m = 1, . . . ,M changepoints

(though, in practice, the nmcdr package only outputs a single segmentation). Whilst

there are default choices for ξn, these do not always work well especially in real-life

applications where the assumptions they are based on do not hold. There are also

advantages to being able to compare segmentations with different number of change-

points.

Haynes et al. (2017) propose a method, Changepoints over a Range Of PenaltieS

(CROPS), which efficiently finds all the optimal segmentations for penalty values

across a continuous range. This involves an iterative procedure which chooses values

of ξn to run PELT on, based on the segmentations obtained from previous runs of

PELT for different penalty values. Assume we have a given range [ξmin, ξmax] for

the penalty value, and the optimal segmentations at ξmin and ξmax have mmin and

mmax changepoints respectively. Then CROPS requires at most mmin − mmax + 2

runs of PELT to be guaranteed to find all optimal segmentations for ξn ∈ [ξmin, ξmax].

Furthermore, it is possible to recycle many of the calculations from early runs of PELT

to speed up the later runs.

Nonparametric Changepoint Detection

An example data-set is given in Figure 4.4, where we show heart-rate, speed and

elevation recorded during a 10 mile run. We will aim to segment this data using the

CHAPTER 4. ED-PELT 81

heart-rate data only, but include the other two series in order that we may assess how

well the segmentation of the heart-rate data relates to the obvious different phases of

the run. As is common in nonparametric methods, ED-PELT assumes that data is IID

which in the case of heart-rate data the assumptions do not hold since there is some

time-series dependence between segments. However for the moment we will assume all

the assumptions hold and that we can use this method. In training many people use

heart-rate as an indicator of how hard they are working. There are different heart-rate

zones that you can train in each of which enhances different aspects of your fitness

(BrainMacSportsCoach, 2015). The training zones are defined in terms of percentages

of a maximum heart-rate: peak (90-100%), anaerobic (80-90%), aerobic (70-80%) and

recovery (< 70%).

This example looks at detecting changes in heart-rate over a long undulating run.

We use CROPS with ED-PELT with ξmin = 25, ξmax = 200 and K = 4 log(n) (the

results are similar for different K). In order to choose the best segmentation we use

the approach suggested by Lavielle (2005). This involves plotting the segmentation

cost against the number of changepoints and then looking for an “elbow” in the plot.

The points on the “elbow” are then suggested to be the most feasible segmentations.

The intuition for this method is that as more true changepoints are detected the cost

will decrease however as we detect more changepoints we are likely to be detecting

false positives and as such the cost will not decrease as much. The plot of the “elbow”

for this example can be seen in Figure 4.3a. The elbow is not always obvious therefore

the choice can be subjective, in high throughput situations you can often learn a good

choice of penalty through comparing segmentations for a range of training data-sets

(see Hocking et al. (2013a)). However in this example the elbow approach gives us

a method for roughly choosing the best segmentations which we can then explore

further. We have highlighted the points on the “elbow” as the points which are

between the two red lines.

We decided from this plot that the segmentations with 9, 10, 12 and 13 change-

CHAPTER 4. ED-PELT 82

(a) Elbow plot for ED-PELT

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

1500

2000

2500

3000

10 20
Number of Changepoints

C
os

t

(b) Elbow plot for a change in slope

●
●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●

10000

20000

30000

5 10 15 20 25
Number of Changepoints

C
os

t

Figure 4.3: The cost vs number of changepoints plotted for (a) ED-PELT and (b)
Change in slope. the red lines indicate the elbow and the blue circle highlights the
point that we use as being the centre of the elbow.

points are the best. We illustrate the segmentation with 10 changepoints, the number

of changepoints at the centre of the elbow in Figure 4.3a indicated by the blue circle,

in Figure 4.4. The segments have been colour coded based on the average heart-rate

in each segment. That is red: peak, orange: anaerobic, yellow: aerobic and green:

recovery. Alternative segmentations from the number of changepoints on the elbow

can be found in Appendix C.

We superimpose the changepoints detected in the heart-rate onto the plots for

speed and elevation to see if we can explain any of the changepoints. The first seg-

ment captures the “warm-up” where the heart-rate is on average in the recovery zone

but is rising to the anaerobic zone. The heart-rate in the second segment is in the

anaerobic zone but changes to the peak zone in segment three. This change initially

corresponds to an increase in speed and then it is because of the steep incline. The

third changepoint matches up to the top of the elevation which is the start of the

fourth segment where the heart-rate drops into the anaerobic zone whilst running

downhill. The fifth segment is red which might be as a result of both the speed being

slightly higher than the previous segment and consistent, and a slight incline in ele-

CHAPTER 4. ED-PELT 83

100

125

150

175

4

6

8

10

12

20

40

60

0 25 50 75

0 25 50 75

0 25 50 75

Time (mins)

Time (mins)

Time (mins)

H
ea

rt
 R

at
e

(b
pm

)
S

pe
ed

 (
km

/h
)

E
le

va
tio

n
(m

)

Figure 4.4: Segmentations using ED-PELT with 10 changepoints. We have colour
coded the line based on the average heart-rate of each segment where red: peak,
orange: anaerobic, yellow: aerobic and green: recovery.

CHAPTER 4. ED-PELT 84

vation. This is followed by a brief time in the aerobic zone which could be due to a

drop in speed. The heart-rate in the next three segments stays in the anaerobic zone.

The changepoints that split this section into three segments relate to the dip in speed

around 75 minutes. In the final segment the heart-rate is in the peak zone which

corresponds to an increase in elevation and an increase in speed (a sprint finish). We

believe ED-PELT has found sensible segmentations that can be related to different

phases of the run and regimes in heart-rate activity despite the data not satisfying

the independence assumption.

4.5.3 Piece-wise Linear Model

For comparison we look at estimating the changepoints based on a penalised likelihood

approach that assumes the data is normally distributed with a mean that is piecewise

linear within each segment. To find the best segmentation we use PELT with a

segment cost proportional to minus the log-likelihood of our model:

C(ys:t) = min
θ1,θ2

t∑
u=s

(yu − θ1 − uθ2)2, (4.13)

where θ1 and θ2 and the estimates of the segment intercept and slope, respectively. We

use CROPS to find the best segmentation under this criteria for a range of penalties.

The resulting elbow plot can be seen in Figure 4.3b. We can see that the number of

changepoints for the feasible segmentations is similar to the number of changepoints

using ED-PELT. Figure 4.5 shows the segmentation with 9 changepoints which we

have deduced to being the number of changepoints in the centre of the elbow in Figure

4.3b. Alternative segmentations from the number of changepoints on the elbow can

be found in Appendix C.

It is obvious from the first look at Figure 4.5 that the change in slope method has

not detected segments where the average heart-rate is different to the surrounding

segments. The majority of the plot is coloured orange with only changes in the

CHAPTER 4. ED-PELT 85

first and last segments. The change in slope method splits the “warm-up” period

into two segments whereas having this as one segment appears more appropriate.

Unlike ED-PELT the change in slope does not detect changes which correspond to

the change in elevation and thus ED-PELT appears to split the heart-rate data into

more appropriate segments which relate to different phases of the run.

4.6 Conclusion

We have developed a new algorithm, ED-PELT, to detect changes in data-series where

we do not know the underlying distribution. Our method is an adaption of the NMCD

method proposed by Zou et al. (2014) which defines the segment costs of a data-series

based on the cumulative empirical distribution function and then uses an exact search

algorithm to detect changes. The main advantage of ED-PELT over NMCD is that

it is orders of magnitude faster. We initially reduced the time to calculate the cost of

a segment from O(n) to O(log n) by simplifying the definition of the segment cost by

discrete approximation. To improve the computational cost Zou et al. (2014) use a

screening step but as we show in Section 4.4 this is still slower than ED-PELT and less

accurate. The main reason for this is we use an exact search algorithm, PELT (Killick

et al., 2012), that uses inequality based pruning to reduce the number of calculations.

This search algorithm is much quicker than the one used in Zou et al. (2014).

The main problem with PELT is it requires a penalty value to avoid under/over-

fitting and the performance is detrimental to this choice. We overcome this problem

by using CROPS (Haynes et al., 2017), which detects the changepoints for multiple

penalty values over a continuous range. Future research could look at an alternative

pruning method, cp3o, proposed by James and Matteson (2015) which used proba-

bilistic pruning. This method does not require a penalty value however there are some

mild conditions required for this search method which would need to be checked with

the empirical distribution cost function.

CHAPTER 4. ED-PELT 86

●●●
●

●

●●

●

●

●

●●

●

●●●●●

●●
●●

●

●●

●●●

●●●
●
●●

●●
●
●●●

●
●

●●

●

●
●●
●
●●●●
●●●
●●

●

●
●●●
●
●●

●●
●

●
●
●●●●●●
●●

●●
●●●●●●
●
●●●●●●●●●●

●●●●●●

●●●
●●●●●●●●

●
●●●
●
●
●
●●●●●

●●●
●●●

●●●●●
●●
●●
●●
●
●●●●●●●●
●●●●
●●●●●
●●●●
●●●

●●
●●●●●●

●●
●●●
●●●●●●●●

●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●

●●●●

●●
●●●●●●

●
●●
●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●
●
●●●●●
●●●●●●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●●●●●●●●

●●
●●●
●
●●
●●
●●●●●
●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●
●●
●●●●●●●●

●●
●●
●
●
●
●
●
●
●●●●●●●●●●●●●

●●●
●●●●
●●
●●●●●●●●

●

●●●●●●●●●●
●
●●●●●●●●●●

●●●
●●●●●●●●

●●●●
●●●●
●●
●
●●
●●
●●●●●

●●●
●●
●●
●
●●●●●
●
●
●●
●●●
●●●●
●●●
●●●
●●
●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●

●
●●●●●●●●●

●●
●●●●●●●

●●●
●●●
●●●●●●●●●●●●●

●●
●●●●
●●●
●●●
●●●●●●●

●●
●●
●●
●
●●●
●

●
●
●
●●●●
●●●
●●●
●●
●●●●●●●●●●

●●
●
●●●
●
●●
●●
●●●●
●●●●
●
●
●●
●●●●
●
●●●●●
●●
●●●●●●●●●●●●

●●●●●●
●
●●●●●●●

●●●
●●
●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●
●●●
●●●
●●
●●●●
●
●●●●●●●●

●●●●
●●
●●●●●
●●●●●
●
●●●●●●●●●

●
●
●●●●
●●●●●●

●●●●●●●●
●●●●●●
●●●

●●●
●●●
●●●●●●●●●●

●●●●●●
●●
●●●●●●

●●●●
●●●●
●●●

●

●●●●●

●
●●●●●

●
●
●●●

●●

●●

●●
●●

●●
●●
●●
●●●●●
●

●

●●●●
●

●
●
●●●●
●●●●●●●●●●●

●●●
●●

●●●
●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●

●●
●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●
●●●
●●●●●●●●●●●●

●
●●
●
●●●●●●●●●●●●●●

●●●●
●
●●●●
●
●●●
●●●●●●●●●
●●
●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●

●●●
●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●

●
●●

●●●●
●●●
●●●●

●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●
●
●
●
●●
●
●
●

●
●

●
●
●
●●
●
●●●●●●●●●

●
●●
●
●
●
●
●
●
●●●
●●●●●

●
●
●
●●●●●

●●
●
●●●

●●●
●●

●
●
●●
●

●

●●●
●●●

●
●
●●●

●●
●●●●●●●●●●●●●●

●●●
●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●

●●●●●●●●●●●●●
●●
●
●●●
●●
●●

●●
●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●
●
●
●
●
●
●●
●●
●●

●●●
●
●

●●

●

●●●●●
●
●
●●●

●●
●●●

●●

●●●
●●
●
●
●●
●
●
●●●

●●●●●●●●●
●
●●
●
●
●●
●●
●●

●
●
●●●

●
●●
●●
●●
●●●●

●●●
●●●

●●●
●●
●●
●
●
●●
●●●
●
●
●●
●
●●●

●●
●
●

●●
●●●

●

●
●
●

●●
●●
●
●
●

●

●

●●●●●●●●●●●●●
●●●●●●●●

●●
●●

●●
●
●●
●●
●●●

●
●

●

●
●
●
●●●●●●●●●●●●●●●

●●
●●

●●
●●●

●●●
●●

●●
●●●●●●●

●
●
●
●
●
●●

●●
●
●●●

●●●
●●

●●
●●●●●

●●
●●●●●●●●●●●●●●●●●●

●●
●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●
●
●
●●

●
●
●●●●●●●●●●●

●●
●●
●
●●●

●●●●●
●●●

●●
●
●
●
●
●
●
●●

●●
●●●●

●●●●●●
●●●

●●●
●●●●

●●● ●●●●●●●●●●●
●

●

●
●
●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●
●●
●●

●●●●●●●●●●●●●
●●●●●

●

●

●

●

●

●
●

●
●●●●●●●●●●

●●
●●

●●●●●●●●●
●●

●●
●●●●●●●●

●●
●
●
●
●
●●
●●●
●●
●
●
●●●
●●●
●●
●●●●●

●
●
●●
●
●
●

●

●
●●

●●
●●●●●●●

●
●●●●●●●●●

●●●●●●●●●●●
●●●●

●●●
●●

●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●
●
●●
●
●
●●
●
●●
●●

●●●
●●●●●●

●
●
●●●

●
●
●●
●●●●●●●

●●
●

●
●

●
●
●●
●●●●●●●

●
●

●
●
●
●

●●
●
●●●

●●●●●
●
●●●●●●●●●●●●

●●●●●
●●●●

●
●
●●
●●

●●●
●●●●●

●●●
●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●
●●●●●

●
●
●●●

●●●
●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●

●
●●●●●●

●
●
●
●●
●
●●

●●●●●●●●●
●●●●

●●●●●
●
●●●●●●●●

●●●●●
●●●

●●
●●
●●

●●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●
●●●●●

●
●
●●●●●●●●●●●●●●●

●●●
●●
●
●●●●

●●

100

125

150

175

4

6

8

10

12

20

40

60

0 25 50 75

0 25 50 75

0 25 50 75

Time (mins)

Time (mins)

Time (mins)

H
ea

rt
 R

at
e

(b
pm

)
S

pe
ed

 (
km

/h
)

E
le

va
tio

n
(m

)

Figure 4.5: Segmentations using change in slope with 9 changepoints. We have colour
coded the line based on the average heart-rate of each segment where red: peak,
orange: anaerobic, yellow: aerobic and green: recovery. The solid black line in the
top plot is the best fit for the mean within each segment.

CHAPTER 4. ED-PELT 87

We have also shown that nonparametric changepoint detection, using ED-PELT,

holds promise for segmenting data from activity trackers. We applied our method

to heart-rate data recorded during a run. As is common for current nonparametric

approaches to changepoint detection, our method is based on the assumption that

the data is independent and identically distributed within a segment. Despite this

we were able to segment the data into meaningful segments, using an appropriately

chosen penalty value, that correspond to different phases of the run and can be related

to different regimes in heart-rate activity.

Code implementing ED-PELT is contained within the R library changepoint.np

which is available on CRAN (Haynes, 2016).

Chapter 5

Parallel Changepoint Detection

5.1 Introduction

Over the past 20 or so years there have been phenomenal advances in technology and

one result of this is the volume of data collected and stored has rapidly increased. High

frequency data sensors are now common place, not just in specialised applications,

but in the technology we use in our day to day lives, such as mobile phones.

There is a requirement to develop statistical methods that can cope with the

sheer size of the data-sets available for analysis. In this chapter we think about

applying changepoint detection in the realm of Big Data. There are many applications

where detecting changepoints can be useful such as climatology (Reeves et al., 2007),

neuroscience (Aston and Kirch, 2012) and linguistics (Kulkarni et al., 2015), to name

a few. In terms of “Big Data”, data-series of this volume arise in applications such as

genomics, where the signal length of DNA copy number is typically of order 105−106

(Rigaill, 2015), and in finance where information on different markets and locations

are stored in a much finer scale, such as individual bids (Fan and Wang, 2007).

With advances in technology it is easier to get access to multi-processor systems

whereby parallel computing can be used to share the analysis over multiple processors

which will reduce the computational burden. There is very little work on parallel

88

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 89

changepoint detection and most of what there is is concerned with parallelising over

dimensions in multivariate changepoint detection. This is a completely different set-

up to the one we are interested in, in this chapter. The Binary Segmentation type

approaches, introduced in Section 2.4 are “embarrassingly parallel” since it is obvious

how they can be run in parallel. At each stage of the iteration a single changepoint

is searched for over subsets of data independent of one another. This process can be

done simultaneously over the multiple processors.

Nikol’skii and Furmanov (2016) propose an approximate algorithm to detect changes

in parallel. This method first of all splits the data into equal sized segments and uses a

t-test statistic to test the hypothesis of equal means across all the random variables in

each segment. If the hypothesis is rejected then the method checks for a changepoint

using the Schwartz Information Criteria (Schwarz, 1978). That is, a time-point, τ , is

a changepoint if

C(y1:τ) + C(yτ+1:n) + log(n) < C(y1:n), (5.1)

where C is some cost such as twice the negative log-likelihood. If no changepoints

are found in adjacent segments then the algorithm uses points around the boundaries

of the segments to check for the existence of changepoints. The huge flaw in this

method is the assumption that only one changepoint exists on the data sent to each

core and thus makes this approach an infeasible changepoint detection method as

there is absolutely no guarantee of detecting all of the changes.

It is not as simple to parallelise the dynamic programming methods, discussed

in Section 2.5.2 since each stage of the algorithm requires calculations from previous

iterations. This is the problem we are interested in. Our main contribution in this

chapter is the proposal of two methods for parallel changepoint detection which use

a “split and merge” approach. Split and merge approaches basically split the data

evenly across the multiple processors, run some analysis and then somehow merge the

data to give a full solution. This approach has been used across different areas of

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 90

statistics with the main challenge being merging the data in the final step. Matloff

(2016); Hegland et al. (1999) and Fan et al. (2007) use an average, or weighted average,

approach to merge estimators of IID random variables. Under the assumption the

data is IID, Matloff (2016) show that this method is asymptotically consistent for

statistical methods such as quantile regression and hazard function estimation.

The averaging approach considered by Matloff (2016) will not work in all exam-

ples and in particular it will not make sense in changepoint detection to average the

detected changepoints from the different subsets. Song and Liang (2015) propose an

approach for Bayesian variable selection in which instead of averaging they perform

Bayesian variable selection again on the aggregated variables from all of the subsets.

Throughout this chapter we will use the notation described in Section 2.2. The

rest of this chapter is organised as follows. In Section 5.1.1 we will introduce the

parallel set-up. In Section 5.2 we will discuss the Binary Segmentation type methods

and show how they are embarrassingly parallel. This section will include a small

simulation study to show the marginal time improvements, in one scenario, when

the methods are parallelised. In Section 5.3 we introduce the dynamic programming

algorithms and propose our two split and merge approaches. This section includes

brief discussion on the consistencies of the estimators as well as highlighting a potential

problem depending how the data is split across the cores. In Section 5.4 we do a

comprehensive investigation into the performance of the two methods across many

different scenarios.

5.1.1 Parallel Implementation

The simulations in this chapter were run on Intel processors with 70 cores. We have

used the R programming language and the doParallel package (Calaway et al., 2014).

For a review of some of the packages developed in R to provide communication to the

various parallel infrastructures see Schmidberger et al. (2009) and for an up to date list

of all the parallel packages in R see Eddelbuettel (2016). The doParallel package

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 91

provides a parallel back-end for the foreach package (Calaway et al., 2015) using

the parallel package, which is inside R-core. The foreach package allows general

iterations over elements without using a loop counter and thus allows for the loop to be

easily implemented in parallel. The foreach package needs to be run in conjunction

with a package such as doParallel in order to execute the code in parallel. The

parallel package started as a merger of the multicore and snow (Tierney et al.,

2015) packages, however much of the functionality of multicore has been integrated

into parallel. The multicore package runs tasks on a single computer but it cannot

be used on Windows as it requires an operating system that supports the fork system

call. The snow package allows code to be run on a cluster.

The algorithms we propose in this chapter will be able to run on any parallel

architecture, however it will require the user to modify the communication parts of

the code to be specific to their parallel set-up. To register the doParallel package

and start a cluster the following code (or equivalent) is required.

> cl <- makecluster(count=4)

> registerDoParallel(cl)

The part of the code to be run in parallel can be run using foreach using the %dopar%

command

> (foreach(i = 1:(ncores)) %dopar% function(i),

where i can be used to give different information to the core such as a different part

of the data-series to be analysed. We stop the cluster by using

> stopCluster(cl).

5.2 Embarrassingly Parallel

Binary Segmentation (Scott and Knott, 1974; Vostrikova, 1981) and its variants: Cir-

cular Binary Segmentation, CBS, (Olshen et al., 2004) and Wild Binary Segmentation,

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 92

WBS, (Fryzlewicz, 2014) fall into the category of embarrassingly parallel methods.

That is it is obvious how to split the algorithm into smaller independent subtasks.

5.2.1 Binary Segmentation

In BS we initially search the whole dataset for one changepoint, i.e., the point, τ , that

satisfies the condition in (5.2) and also minimises the left hand side of (5.2),

C(y1:τ) + C(yτ+1:n) + β < C(y1:n), (5.2)

where C(ys:t) is the cost from the data ys, ..., yt. The data is then split at τ and we

search for a changepoint in the two new segments independently. This continues until

no more changepoints are detected. Traditionally the calculations for the changepoints

are computed in a loop over all of the segments on one processor. The computational

cost may be improved by sending these calculations to multiple cores.

In theory this should speed up the calculations however BS is O(n log n) so the

overhead of scheduling the tasks and returning the results may mean it is not worth

implementing in parallel. Additionally, the speed up will be more noticeable in sit-

uations where there are a large number of changepoints since at later stages of the

algorithm more segments will be searched over for a change, so having multiple pro-

cessors may be beneficial.

We explore the performance of parallelising BS in a couple of examples: one in

which the number of changes is constant with increasing data length and one where

the number of changes increases with increasing data length. In the first example we

simulate the data from a blocks-signal (Donoho and Johnstone, 1994), with m = 11

changepoints for all data lengths. The signal has some Gaussian noise with variance

equal to 1. We replicate this 100 times and the average time to run BS with different

number of cores is shown in Figure 5.1a. The main thing to note from this is the time

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 93

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

75
50

250

500

750

1000

2

3

4

5

1 2 3 4
Number of Cores

T
im

e
(s

)

Binary Segmentation Time on Blocks Data

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5075

250

500

750

4

8

12

1 2 3 4
Number of Cores

T
im

e
(s

)

Binary Segmentation Time on Random Data

(b)

Figure 5.1: Computational time taken to run Binary Segmentation in parallel over
multiple cores. (a) Is the blocks-signal with 11 changepoints for all data lengths. (b)
Is the random data with increasing changepoints as the data length increases.

slowly increases with increasing number of cores. In this example there is not any

benefit of parallelising.

In the second example we simulate data-sets with the number of changes increasing

with increasing data length; for data-sets of length n there will be m = n/100 changes.

We simulate the changepoints uniformly over time with the constraint that there must

be atleast 20 time-points apart. To simulate the data we generate the segment means

from a Gaussian distribution with mean 0 and standard deviation 5. We replicate

this 100 times and the average time to run BS with different number of cores is shown

in Figure 5.1b. This time there are marginal gains in speed if using 2 cores for larger

data-sets. However these speed improvements are really small so it is probably not

worth parallelising.

Variants of Binary Segmentation

Binary Segmentation lacks consistency due to its greedy nature. Fryzlewicz (2014)

look at the asymptotic properties of BS with the cumulative sums (CUSUM) test

statistic (Page, 1954) and show that as the number of data-points, n→∞, then BS

is only asymptotically guaranteed to identify the true changepoints if the minimum

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 94

segment length is O(n3/4). Specifically changepoints are likely to be missed if they

are close to another changepoint. Fryzlewicz (2014) propose a method, Wild Binary

Segmentation (WBS) that aims to overcome the lack of consistency of BS. At each

stage of BS, instead of calculating the global cost C(y1:n), WBS randomly draws a

number of sub-samples, ys:e, where 1 ≤ s < e ≤ n, and detects a candidate change-

point within each sub-sample. The changepoint within each sub-sample that has the

overall minimum cost is found to be the new changepoint and the data is now split

here and the process is repeated, similar to BS.

The number of sub-samples chosen at each stage will affect the overall cost of this

method. To improve the cost of WBS even further the computation of the single

changepoints from the different sub-samples at each stage can be done over multiple

cores. Thus WBS is trivially parallel and will be more amenable to parallelisation

that BS since there are multiple calculations at every step of WBS that can be run

simultaneously.

Another approach, Circular Binary Segmentation (CBS), was proposed by Olshen

et al. (2004). This method uses an epidemic test statistic (Levin and Kline, 1985) to

test for two changepoints in a segment instead of one as in the standard BS. The test

statistic assumes that the mean before the first change and after the last change are

the same. This is essentially the same as joining the endpoints of the segments, to

make a circle, and then testing the mean of the arc between the changepoints against

the mean of the compliment. To calculate the p-values in a non-normal setting they

use a permutation approach to calculate reference distributions, however this is a

computationally expensive approach which quadratically grows the with the number

of changes.

Venkatraman and Olshen (2007) propose a couple of ways to speed up the compu-

tation of CBS however for additional speed up the permutation calculations at each

stage of the algorithm can easily be parallelised.

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 95

5.3 Dynamic Programming Algorithms

Another class of changepoint detection algorithms involve using dynamic program-

ming approaches (Bellman, 1957), as described in Section 2.5.2. These approaches

have the advantage over the above Binary Segmentation type methods that they solve

the minimisation problem exactly.

As a reminder, one of the dynamic programming approaches, Optimal Partitioning

(Jackson et al., 2005), involves solving the following recursion:

F (t) = min
m,τ1:m

{
m+1∑
i=1

C(y(τi−1+1):τi) + β

}
= min

s∈{0,...,t−1}
{F (s) + C(y(s+1):t) + β}, (5.3)

where s < t. That is, the minimum cost for the data y1:t is the minimum cost for

segmenting the data up to the last changepoint s plus the cost of the segment y(s+1):t.

The value of s that attains the minimum of (5.3) is the position of the last changepoint

before t. These recursions are solved for t = 1, 2, ..., n with a computational cost

O(n2). The segmentations can be recovered by

τt = arg min
s∈{0,...,t−1}

{F (s) + C(y(s+1):t) + β}, (5.4)

which gives the optimal location of the last changepoint in y1:t. Extracting the full set

of changepoints in the optimal segmentation is then achieved by a simple recursion

backwards through the data.

5.3.1 Parallelisation

Due to the recursive nature of the calculations, to solve the optimisation problem, we

are unable to split the calculations up, as in Section 5.2, since at each point, yt, we

require the calculations from y1:(t−1). Instead, we propose two methods which split

the data into smaller subsets, calculate the changepoints for these subsets, and then

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 96

merge the results to find a complete set of changepoints for the whole data-set.

For both methods, we first of all are required to calculate some summaries, S, of

the whole data-set. For the case of a change in mean this is just the cumulative sums

of the data:

S(0) = 0, (5.5)

S(i) = S(i− 1) + yi,

for 1 ≤ i ≤ n.

5.3.2 Approach 1

The most obvious way to split the data is as follows:

Step 1 Given L CPUs split the data such that the kth CPU has the points

y n
L
×(k−1)+1: n

L
×k and detect the changepoints in this subset of data. This can be

done using the recursion in (5.3) where we use the summaries calculated over

the whole data-set, S, to calculate the segmentation costs C. That is, in the

case of a change in mean

C(ys:t) =
{S(t)− S(s)}2

(t− s+ 1)
. (5.6)

We define {τ̂ ks }
m̂k
s=1 = {n

L
× (k − 1) = τ̂ k0 < τ̂ k1 < τ̂ k2 < ... < τ̂ km̂k+1 = n

L
× k} as

the set of m̂k changepoints detected on the kth CPU.

Step 2 From each of the L batches we have a set of possible changepoints. We

can now fit a model but only allow changes at the location of changepoints

detected in step 1, i.e., y{τ̂1s }
m̂1
s=1
, y{τ̂2s }

m̂2
s=1
, ..., y{τ̂Ls }

m̂L
s=1

. Again we use the summaries

calculated across the whole data-set to calculate the segment costs.

Solving the recursion in (5.3) for the data on each core will have a cost of O(n
2

L2).

Step 2 will depend on how many changes are found in step 1. If m changes are found

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 97

then the cost for step 2 is O{(m+ L)2}. The more cores we use then the lower the

cost in step 1 however the higher the cost in step 2. The best number of cores to use

will be the one that minimises the total cost. In terms of how we would want L to

increase as n increases, the optimal rate will balance the CPU cost from the split and

merge steps. This would have L = O(n1/2) and the resulting algorithm would then

be O(n). This suggests that there will not be much gain in speed in situations where

the algorithms are O(n). For example the PELT algorithm is O(n) when the number

of changes is linear in n.

From herein we will refer to this method as SM1 (Split and Merge 1). These

methods proposed are analogous to split and merge approaches used in other areas

of statistics such as the one proposed by Song and Liang (2015) for Bayesian variable

selection.

This approach may suffer from the same drawback of Nikol’skii and Furmanov

(2016), that was discussed in the introduction. Namely it will struggle to detect

changepoints that are near to the boundary of one of the subsets of data. We suggest

an approach to overcome this drawback later in Section 5.3.4.

5.3.3 Approach 2

There is another way that we can split the data that avoids the boundary issue of

SM1. That is:

Step 1 Given L CPUs, the kth CPU fits a model with changes allowed at points:

yk+L, yk+2L, ..., etc, This can be done using the summaries calculated across the

entire data-set, S.

Step 2 From each of the L batches we have a set of the possible changepoints. We

can now fit a model but only allow changes at this new subset of points. This

is the same as in Step 2 of Approach 1.

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 98

Given m actual changepoints and n data-points the cost per CPU for solving the

recursion in (5.3) is O(n
2

L2) and the cost for the final step is O{(mL)2}. From herein

we will refer to this method as SM2 (Split and Merge 2).

5.3.4 Boundaries

The power of changepoint detection is proportional to some multiple of the size of

the change and the segment length (Frick et al., 2014). There may be problems if

the changes occur close to the splits in SM1. To increase the power in SM1 we can

consider the points around the boundary of where 2 subsets of data meet in step 2.

That is in step 2 we now allow the points

y{τ̂1s−B:τ̂1s :τ̂
1
s+B}

m̂1
s=1

: y{τ̂2s−B:τ̂2s :τ̂
2
s+B}

m̂2
s=1
, ..., y{τ̂Ls −B:τ̂Ls :τ̂Ls +B}m̂Ls=1

to be candidate change-

point locations where B is the number of points to include. Obviously the greater the

size of boundary the more chance we have of detecting the changepoints but having

too many data-points will contradict the improved cost of parallelisation. We explore

different choices for this boundary in Section 5.4.3.

5.4 Simulations

In this section we empirically investigate the performance of SM1 and SM2 under

different scenarios.

5.4.1 Signals

The test signals which we will use are:

teeth : Data-sets which have a “teeth” pattern; equidistant changepoints and equal

jump sizes, jumps alternate between decreasing and increasing.

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 99

stairs : Data-sets which have a “stairs” pattern; equidistant changepoints and equal

jump sizes which are always increasing to a point and then they decrease.

blocks : We use the popular test signal as in Donoho and Johnstone (1994) For differ-

ent segment lengths n we have changepoints at ({0.1, 0.13, 0.15, 0.23, 0.25, 0.40,

0.44, 0.65, 0.76, 0.78, 0.81})×n and segment means {0, 4, −1, 2,−2, 3,−1.2, 0.9,

5.2, 2.1, 4.2, 0}.

mix : This signal has more prominent changepoints between smaller segment lengths

and less prominent changepoints between larger segments, thus all changepoints

can be detected consistently. We use this test signal to explore the time of the

methods. For segment length n it has changepoints at ({11, 21, 41, 61, 91, 121, 161,

201, 251, 301, 361, 421, 491, 561, 631, 701, 761, 821, 871, 921, 961, 1001, 1031, 1061,

1081, 1101, 1111, 1121}/1121)×n and segment means {7,−7, 6,−6, 5,−5, 4,−4, 3,

− 3, 2,−2, 1,−1, 1,−2, 2,−3, 3,−4, 4,−5, 5,−6, 6,−7, 7}.

Random : We generate data-sets where the changepoints and parameters are ran-

domly generated. We simulate these data-sets such that the detection difficulty

of each jump is the same (Pein et al., 2015) and the changepoints are not too

close (Killick et al., 2012). To do this we:

1. Fix the length of the data, n, the number of changepoints, K, and a con-

stant, C. We also need to decide on the minimum length a segment can

be, minseglen.

2. Draw the locations of the changepoints such that they are uniformly dis-

tributed with the restriction min0,...,K |τk+1 − τk| ≥ minseglen.

3. We then let the standard deviation on the segment, σi, be 2Ui where Ui is

uniformly distributed on [-2,2].

4. We can then determine the values of the mean on the segments, µi. To do

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 100

this we let µ0 = 0 and then:

|µi − µi−1| =

√
C

n
min

(
τi+1 − τi

σ2
i

,
τi − τi−1
σ2
i−1

)−1
, (5.7)

where C is a constant which controls the difficulty of the change. We choose

randomly with probability 1/2 whether the mean increases or decreases at

the change.

Examples of these signals can be seen in Figure 5.2.

5.4.2 Evaluation

To evaluate the detected changes we use the True and False Discovery Rate (TFDR)

which looks at the number and location of the changepoints. We define a detected

changepoint, τ̂i, as true if for some threshold value, h,

min
i≤j≤m

{|τ̂i − τj|} ≤ h. (5.8)

In this case we set the threshold value to 0. For the results we want to compare

the detected changepoints using the split and merge approaches to the changes de-

tected using changepoint detection on one core. Thus in this case the set of “true”

changepoints, {τj}mj=1, are the changes detected on one core. Since we are dealing

with exact algorithms the changepoints can be detected using any of the algorithms

such as Optimal Partitioning, PELT or FPOP as they will all find the same set of

changes.

In the simulations we use PELT since FPOP has been shown to have an empirical

cost which is comparable with Binary Segmentation and thus the speed gains, if any,

will be marginal like what we saw in Section 5.2. PELT, however, can be applied

to a greater range of problems, specifically those which have a change in more than

one variable and hence we are interested in speeding up this algorithm. PELT has a

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 101

−2.5

0.0

2.5

0.00 0.25 0.50 0.75 1.00

Teeth

−5

0

5

10

0.00 0.25 0.50 0.75 1.00

Stairs

0

5

0.00 0.25 0.50 0.75 1.00

Blocks

−5

0

5

0.00 0.25 0.50 0.75 1.00

Mix

−5

0

5

0.00 0.25 0.50 0.75 1.00

Random

−5

0

5

0.00 0.25 0.50 0.75 1.00

Random

Figure 5.2: Example data-sets from the different test signals,

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 102

computational cost which is O(n) only when the number of changepoints is linear in

the size of the data but in many situations the cost of PELT is O(n2). We believe

PELT will significantly benefit from parallelisation.

5.4.3 Detection Rate

We first of all want to look a the detection rate for different segment lengths, size of

jumps and number of cores. For this initial analysis we will use the teeth and stairs

signals because we can control the size of the jumps and the length of the segments.

The two signals differ in the sense that the jumps in the teeth signal increase and

decrease alternatively whereas in the jumps in the stairs signal all increase to a point

and then decrease. Whilst the motivation for parallelisation comes from analysing

large data, we study the statistical accuracy of the different methods on simulated data

where n is relatively small. This is because it is easier to identify the characteristics

of each methods, and what aspects of the data effect performance with these smaller

data-sets.

We simulate 100 replications of the test signals with length 1000 and distances

between the changes, si, 5, 10, 15, 20, 50 and 100. We also look at varying sizes of

changes ∆µ = 2, 3, 5, 10 and use an even number of cores from 2 to 16. Finally we

add some Gaussian noise to the signals, N(0, 1).

Results

Figures 5.3 and 5.4 show the true and false positive detection rates for both the

teeth and stairs signals using both SM1 and SM2. The results in this plot are for

si = 5, 20, 100, further results for si = 10, 15, 50 can be found in Appendix E.

When the segment lengths are large SM2 outperforms SM1. This is also true for

when the size of the jumps are large. However when the segment lengths and the

jumps are small SM1 outperforms SM2 but it is clear that the performance decays as

the number of cores increases. Due to the nature of the data, SM2 works better in

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 103

True Positives False Positives

● ● ● ●

● ●
●

●
● ●

●
● ●

●
●

●

● ● ● ● ● ●
●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●

● ● ● ● ● ●
●

●

● ● ● ● ● ● ●

●

0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 5

True Positives False Positives

●
●

●
●

●

●

●

●

● ● ● ● ●
●

●
●

● ● ● ● ● ●

● ●

● ● ● ● ● ●

● ●

● ●
●

● ●

●

●
●

● ● ● ● ●
●

●
●

● ● ● ● ● ●

● ●

● ● ● ● ● ●

● ●

0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 20

True Positives False Positives

● ●

● ●

●

● ● ●

● ● ● ●

●

● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ●

● ●

●

● ● ●

● ● ● ●

●

● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 100

True Positives False Positives

●

●

●

● ● ● ● ●

●

●

●
● ● ● ● ●

●

●

●

●
● ●

● ●

● ● ●
●

●

●

●

●

● ●
●

● ● ● ● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 5

True Positives False Positives

●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 20

True Positives False Positives
● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 100

Figure 5.3: The TFDR for SM1 (top) and SM2 (bottom) on the teeth signal over a
different number of cores compared to detecting the changes on one core. The plots
left to right are different lengths of the segments: left - 5, centre - 20 and right - 100.
The different coloured lines on each plot are different jump sizes.

the stairs signal than in the teeth signal when the segment lengths are small. This

is due to the way the data is split over the cores in SM2. If there are more cores

than data-points in a segment then some features of the data will be missed. This is

more of an issue in the teeth data-set, where the data jumps up and then down, as it

will end up missing one of these jumps and thus it will falsely look like 2 points on a

core have come from the same segment whereas in reality there is a different segment

between them.

In SM1 there is a spike at 100. This is a quirk in the method that is a result when

the data is split on a true changepoint. Thus it falsely appears that this method

is performing better than it actually is since the true changepoint is part of the set

searched over in step 2 but this might only be because it was where the data was split.

When si = 100 this spike looks like the method is not performing well when the mean

is small but actually the method of detecting the changes over 1 core is sometimes

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 104

True Positives False Positives

● ●
● ●

●
●

●
●

● ●
● ● ●

●
●

●

● ● ● ● ● ●
●

●

● ● ● ● ● ● ●

●

● ●
● ●

●
●

●
●

● ● ● ● ●
● ●

●

● ● ● ● ● ●
●

●

● ● ● ● ● ● ●

●

0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 5

True Positives False Positives

●
●

●
●

●

●
●

●

● ● ● ● ●

●
●

●

● ● ● ● ● ●

● ●

● ● ● ● ● ●

● ●

● ●
●

●
●

●

●
●

● ● ● ● ●

●
●

●

● ● ● ● ● ●

● ●

● ● ● ● ● ●

● ●

0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 20

True Positives False Positives

● ●
● ●

●

● ●
●

● ● ● ●

●

● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ●
● ●

●

● ●
●

● ● ● ●

●

● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 100

True Positives False Positives

●
●

●

● ● ● ● ●

● ●

● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●
●

●

● ● ● ● ●

●
●

● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 5

True Positives False Positives

● ● ● ●
●

●
●

●
● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ● ● ● ● ●
●

●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 20

True Positives False Positives
● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 100

Figure 5.4: The TFDR for SM1 (top) and SM2 (bottom) on the stairs signal over a
different number of cores compared to detecting the changes on one core. The plots
left to right are different lengths of the segments: left - 5, centre - 20 and right - 100.
The different coloured lines on each plot are different jump sizes.

detecting the changes 1 or 2 time-points from the truth and thus SM1 is artificially

performing better.

Another quirk in the methods can be seen in the stairs signal with si = 5. The

performance of SM2 appears to improve as the number of cores increases. This is

because the jumps are very small and on a small number of cores the method misses

some of the jumps. Whereas when there are more cores the size of the jump appears

to be larger on each core so more true changepoints are detected.

Due to the nature of the equidistant segment lengths in the teeth and stairs signals

we see some quirks in the data where the data is split over cores on a change. Figure

5.5 shows the performance of these methods on the blocks and mix signals where

we have made the segment jumps to be of equal size. Here we can clearly see SM2

performs better than SM1 especially when the size of the jumps is large. The reason

it does not appear to perform as well in the mix signal with small jumps than it does

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 105

in the blocks data is because the mix data signal has some smaller segments than the

blocks signal.

True Positives False Positives

●

● ●

● ● ●
●

●

●
● ●

● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

●

● ●

● ● ●
●

●

●
● ●

● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

Blocks SM1

True Positives False Positives

● ●
●

●
●

●

●

●

● ● ●

●

●

●
●

●

● ● ● ● ●

●

● ●
● ● ● ● ●

●

● ●

● ●
●

●
●

●

●

●

● ● ●

●
●

●
●

●

● ● ● ● ●

●

● ●
● ● ● ● ●

●

● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

Mix SM1

True Positives False Positives
● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

Blocks SM2

True Positives False Positives

●

●
● ●

●

● ● ●

● ● ● ● ●
●

● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

Mix SM2

Figure 5.5: The TFDR for SM1 (top) and SM2 (bottom) for the blocks (left) and mix
(right) signals with the same size jumps. The different coloured lines on each plot are
different jump sizes.

Boundaries

In Section 5.3.4 we discussed the problem of missing changepoints when we split the

data in SM1 especially if the change occurs near the boundaries. There are a couple

of ways in which we can address this problem:

Fixed number of points The most obvious way to do this would be to choose a

fixed number of points before and after the boundary however the number which

this should be is not obvious in itself.

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 106

Use the detected changepoints before and after the boundary Another option

would be to use the points in between the last detected changepoint in the seg-

ment before and the first detected changepoint in the segment after.

To investigate the boundary choice we use the above data with segment length 20

since the exact changepoint detection methods on one core perform consistently in

this case for all sizes of jump but the proportion of true detected changes decreases

at a different rate for each of the means as the number of cores increases. We look at

boundaries with 0, 2, 5, 10, 15, 20, 25 and 30 points either side.

True Positives False Positives

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0 10 20 30 0 10 20 30
Size of Boundary

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, cores = 2

True Positives False Positives

●
●

●
● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ●

●
● ● ● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0 10 20 30 0 10 20 30
Size of Boundary

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, cores = 8

True Positives False Positives

●

●

●

●
● ●

●
●

●

●
● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

●

●

●
● ● ●

●

●

●
● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0 10 20 30 0 10 20 30
Size of Boundary

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, cores = 16

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.002

0.004

0.006

0.008

0.010

0 10 20 30
Size of Boundary

T
im

e
(s

)

Size
●

●

●

●

2
3
5
10

Time, cores = 2

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.01

0.02

0 10 20 30
Size of Boundary

T
im

e
(s

)

Size
●

●

●

●

2
3
5
10

Time, cores = 8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.01

0.02

0.03

0.04

0 10 20 30
Size of Boundary

T
im

e
(s

)
Size

●

●

●

●

2
3
5
10

Time, cores = 16

Figure 5.6: The results of using SM1 on the teeth signal with different number of
points around the boundary. Top - true and false discovery rates and bottom - the
computational time for step 2 of SM1. The crosses are the results from using an
adaptive boundary.

Results

Figures 5.6 and 5.7 show the results for SM1 with different boundary lengths. Here

we show the results when using 2, 8 and 16 cores. We tested this on number of

cores from 2 to 16 and found similar results using the other numbers not shown

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 107

True Positives False Positives

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0 10 20 30 0 10 20 30
Size of Boundary

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, cores = 2

True Positives False Positives

● ●

●
● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ●

●
● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0 10 20 30 0 10 20 30
Size of Boundary

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, cores = 8

True Positives False Positives

●

●

●

●
● ● ●

●

●

●
● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

●

●

●
● ● ●

●

●

●
● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0 10 20 30 0 10 20 30
Size of Boundary

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, cores = 16

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.003

0.005

0.007

0.009

0 10 20 30
Size of Boundary

T
im

e
(s

)

Size
●

●

●

●

2
3
5
10

Time, cores = 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.005

0.010

0.015

0.020

0.025

0 10 20 30
Size of Boundary

T
im

e
(s

)

Size
●

●

●

●

2
3
5
10

Time, cores = 8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.01

0.02

0.03

0.04

0 10 20 30
Size of Boundary

T
im

e
(s

)

Size
●

●

●

●

2
3
5
10

Time, cores = 16

Figure 5.7: The results of using SM1 on the stairs signal with different number of
points around the boundary. Top - true and false discovery rates and bottom - the
computational time for step 2 of SM1. The crosses are the results from using an
adaptive boundary.

here. The top plots show the TDR and FDR and we can see that as the boundary

length increases the method does perform more accurately. This obviously comes at

an increased computational cost. We can see from the bottom plots that the time

for step 2 increases linearly with the more points we add around the boundary. The

random fluctuations in the plot are just down to random fluctuations in the time

using the computer cluster. Using the adaptive boundary lengths is computationally

more efficient but it lacks the accuracy of using a fixed boundary length. When the

data was split near but not on a changepoint then a false changepoint is sometimes

detected 1 or 2 time-points away from the true change. Thus the true changepoint

was then only 1 or 2 time-points away from the edge of the adaptive boundary and

not detected in step 2. In this scenario the adaptive boundary performs poorly.

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 108

5.4.4 Speed

Up until now we have focussed on the performance of the methods in terms of the

accuracy of the changepoints detected. We now turn our attention to the compu-

tational costs. We investigate the speed of the methods for increasing data lengths

using a different number of cores. Additionally we investigate the times when the

number of changepoints stays fixed as the data length increases and when the number

of changepoints also increases.

Fixed number of changepoints

We first of all explore the times using the blocks and mix signals since the changes al-

ways appear at the same proportion of the data. That is, as the data length increases

the number of time-points between the changes also increases. We simulate 100 repli-

cations of the test signals with length, n = (1000, 5000, 10000, 15000, 20000, 50000,

75000, 250000) and we add some Gaussian noise, N(0, 1) to the signals. We are in-

terested in the time taken to run SM1 and SM2 over a different number of cores.

For SM1 we use a boundary length of 20. The computational times are shown in

Figure 5.8 and 5.9. We have plotted the smaller data lengths on the left and larger

data lengths on the right on different scales. For both of the signals we can see the

speed improvements of using multiple cores when the data length is large however

using the maximum available is not always better. This is what we expect though

from Amdahl’s law (Amdahl, 1967). In all of the simulations the methods performed

almost perfectly with TDR = 1, this was only slightly less when the number of cores

was large.

Increasing number of changepoints

We now explore the times using the random signal. For this signal we specify the

number of changepoints to be n/1000 and thus the number of changes increases with

increasing data length. Again we explore the times of SM1 with boundary length 20

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 109

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

0 10 20 30 40
Number of Cores

T
im

e
(s

)

Length
●

●

●

●

1000
5000
10000
15000

Time SM1

● ● ● ● ● ●

●
● ●

● ● ●

●
●

●

●
● ●

●

●

●

●

● ●

0

100

200

300

400

0 10 20 30 40
Number of Cores

T
im

e
(s

)

Length
●

●

●

●

20000
50000
75000
250000

Time SM1

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

0 10 20 30 40
Number of Cores

T
im

e
(s

)

Length
●

●

●

●

1000
5000
10000
15000

Time SM2

● ● ● ● ● ●

●

● ● ● ● ●

●

●

● ● ● ●

●

●

●

●

● ●0

100

200

300

400

0 10 20 30 40
Number of Cores

T
im

e
(s

)

Length
●

●

●

●

20000
50000
75000
250000

Time SM2

Figure 5.8: The CPU time for SM1 and SM2 on the blocks signal of different lengths,
on the left are small data lengths and on the right are larger data lengths

and SM2. The results can be seen in Figure 5.10.

As in the simulations with a fixed number of changepoints, we see speed improve-

ments using multiple cores in this scenario, especially when we have large data-sets.

Using parallelisation is not as advantageous when the number of changepoints is linear

since PELT performs more efficiently and has been shown to have a computational

cost of O(n) (Killick et al., 2012). In this scenario the proportion of true changepoints

detected using SM1 decreases when the number of cores increases for all data lengths

(except n = 1000), this is due to the randomness of the data and the method failing

to detect some of the smaller segments. Data length n = 1000 appears to perform

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 110

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40
Number of Cores

T
im

e
(s

)

Length
●

●

●

●

1000
5000
10000
15000

Time SM1

● ● ● ● ● ●

●
● ●

● ● ●

●
●

●

●
● ●

●

●

●

●

● ●

0

100

200

300

400

0 10 20 30 40
Number of Cores

T
im

e
(s

)

Length
●

●

●

●

20000
50000
75000
250000

Time SM1

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

0 10 20 30 40
Number of Cores

T
im

e
(s

)

Length
●

●

●

●

1000
5000
10000
15000

Time SM2

● ● ● ● ● ●

●

●
● ● ● ●

●

●
● ● ● ●

●

●

●

●
●

●0

50

100

150

200

250

0 10 20 30 40
Number of Cores

T
im

e
(s

)

Length
●

●

●

●

20000
50000
75000
250000

Time SM2

Figure 5.9: Computational time for SM1 and SM2 on the mix signal of different
lengths, on the left are small data lengths and on the right are larger data lengths

better with increasing number of cores, however this is due to a large proportion of

the data being considered in step 2 of the algorithm, since the data length is small

so the data between the boundaries are small, thus SM1 performs more similarly to

PELT. In comparison SM2 performs well across all number of cores and data lengths

and in all cases is more accurate than SM1.

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 111

●
● ●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40
Number of Cores

T
im

e
(s

)

Length
●

●

●

●

1000
5000
10000
15000

Time SM1

● ●

●
● ● ●

●
●

●

● ● ●

●

●

●

●
●

●

●

●

●

●
●

●

0

20

40

60

0 10 20 30 40
Number of Cores

T
im

e
(s

)

Length
●

●

●

●

20000
50000
75000
250000

Time SM1

True Positives False Positives

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

● ● ● ●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ● ●
●

●

● ● ● ●
●

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 0 10 20 30 40
Number of Cores

P
ro

po
rt

io
n

Length
●

●

●

●

●

●

●

●

1000
5000
10000
15000
20000
25000
50000
75000

TPFP

●
● ● ● ● ●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40
Number of Cores

T
im

e
(s

)

Length
●

●

●

●

1000
5000
10000
15000

Time SM2

●

●
● ● ● ●

●

●

● ● ● ●

●

●

● ●
● ●

●

●

●

●

● ●

0

20

40

60

0 10 20 30 40
Number of Cores

T
im

e
(s

)

Length
●

●

●

●

20000
50000
75000
250000

Time SM2

True Positives False Positives
●

● ● ● ●

●

● ● ● ●
●

● ● ● ●
●

● ● ● ●
●

● ● ● ●
● ● ● ● ●
● ● ● ● ●
● ● ● ● ●

●
● ● ● ●

● ● ● ● ●● ● ● ● ●
● ● ● ● ●
● ● ● ● ●● ● ● ● ●● ● ● ● ●● ● ● ● ●0.00

0.25

0.50

0.75

1.00

10 20 30 40 10 20 30 40
Number of Cores

P
ro

po
rt

io
n

Length
●

●

●

●

●

●

●

●

1000
5000
10000
15000
20000
25000
50000
75000

TPFP

Figure 5.10: Computational time and TPFP for SM1 (top) and SM2 (bottom) on the
random signals of different lengths with increasing number of changepoints. On the
left are the times for small data lengths and in the middle are the times for the larger
data lengths

5.5 Conclusion

In this chapter we have explored parallelisation for changepoint detection. We initially

looked at Binary Segmentation type methods which are embarrassingly parallel. There

was only a marginal improvement in the speed of Binary Segmentation when the data

was large with lots of changes. Due to how quick the Binary Segmentation type

algorithms are we found that the additional cost of communicating between cores did

not make parallelisation feasible.

We then looked at changepoint approaches which use dynamic programming. Since

each iteration of the algorithm requires calculations from the previous iterations, these

methods cannot be easily parallelised. We proposed two split and merge approaches,

similar to the method proposed by Song and Liang (2015) for Bayesian variable se-

lection, to parallelise these methods. Both methods require the initial calculation of

some summaries over the entire data-set. The first approach, SM1, splits the data

CHAPTER 5. PARALLEL CHANGEPOINT DETECTION 112

into equal size chunks in order and changepoints are detected on each subset of data

simultaneously over multiple cores. The resulting changepoints are then collected

together and a changepoint detection method is then run again but only allowing

changes at the location of the changepoints detected in the first step. This approach

will struggle to detect changepoints that occur near the boundary of one of the subsets

of data. To overcome this issue we looked at various choices of boundary including a

fixed number of points and an adaptive boundary length which takes the points from

the last changepoint in the segment before the boundary to the first changepoint in

the segment after. In the simulations we found that although the adaptive boundary

length was more computationally efficient it did not perform as well as using a fixed

boundary length with 20 or more points around the boundary.

Alternatively, we proposed another method which avoided the boundary issue of

SM1. This new method, SM2, splits the data such that the first point goes to the

first core, the second to the second core, and so on until all cores have one data-point

and then the next data-point in the sequence goes to the first core. This is repeated

until all of the data-points and shared over the cores.

We performed thorough analysis for many different data signals using SM1 and

SM2. In the simulations we saw that SM1 performs better than SM2 when there are

small segments. Due to the nature of how the data is split in SM2 it works best when

there are a large number of points between changes. The benefit of SM2 is that it

does not have the boundary issue that we need to deal with in SM1. Both methods

provide a similar speed improvements with SM2 being slightly faster than SM1.

Chapter 6

Conclusions and Future Directions

In this thesis we have presented three different developments to current changepoint

detection algorithms with the aim to extend their usage to a larger volume and variety

of data-sets. The main framework used throughout this thesis was offline, univariate,

multiple changepoint detection. In particular, we mainly focussed on methods which

solved a penalised optimisation problem to find the optimal number and location of

the changepoints simultaneously, using dynamic programming.

In the penalised optimisation approach the choice of penalty affects the perfor-

mance of the changepoint detection method. If the penalty value is too large then

we may miss some true changepoints, however if this value is too small we may end

up falsely detecting changes. In Chapter 3 we developed a new algorithm, CROPS

(Changepoints over a Range of PenaltieS), which finds the optimal solution over a

range of penalties in a continuous range. We applied CROPS to detect genomic re-

gions that interact through the folding and 3-D structure of a chromosome. We then

used an “elbow” approach suggested by Lavielle (2005) to find the best segmentation.

The CROPS algorithm is an alternative to the Segment Neighbourhood Search (SN,

Auger and Lawrence, 1989) which outputs the optimal segmentations for a range of

number of changepoints. In simulations we showed that CROPS is computationally

faster than SN. CROPS does not output all of the optimal segmentations that are

113

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 114

found using SN. The segmentations which CROPS does not recover corresponds to

ones where adding an extra changepoint leads to a larger change in cost than removing

a changepoint.

In Chapter 4 we turned our attention to the cost function used in the optimisation

problem. Traditionally the cost functions used, such as the log-likelihood, require

knowledge of the distribution of the data and the type of change. We proposed a new

algorithm ED-PELT (PELT with an Empirical Distribution cost function) which uses

a cost function based on the empirical distribution of the data. This new cost function

was suggested by Zou et al. (2014) but to speed up the calculation of the segment

costs we use an approximation of the integral in Zou et al. (2014). This approach

is nonparametric and thus can be applied to a large variety of data-sets since we do

not need to know what the distribution of the data is or what the type of changes

present are. We applied ED-PELT to heart-rate data recorded during a period of

physical activity and show that ED-PELT gave a better segmentation than using a

cost function which assumed the data was normally distributed.

In Chapter 5 we looked at using high-performance computers and parallel algo-

rithms to speed up the computation of using dynamic programming methods. Popu-

lar dynamic programming methods such as Optimal Partitioning and Segment Neigh-

bourhood Search have a computational cost that is quadratic in the length of the data.

There are pruning methods which reduce this computational cost however these costs

are still large for huge data-sets. In Chapter 5 we looked at ways to split the data

over multiple cores and then combine the results whilst still conserving most of the

accuracy that we had when we only used one core. Our split and merge approaches

are similar to the approach in Song and Liang (2015) for Bayesian variable selection

in the sense that we split the data over multiple cores and detected the changes on

each core, we then ran changepoint detection using these changes as the candidate

changepoint locations to get an overall solution. In this Chapter we comprehensively

looked a the performance of our split and merge approaches across many different

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 115

scenarios.

The CROPS algorithm proposed in Chapter 3 has been implemented in the

changepoint R package (Killick et al., 2014). Similarly the ED-PELT algorithm has

been implements in the changepoint.np algorithm (Haynes, 2016). Code to run the

parallel methods in Chapter 5 is available at

https://github.com/KayleaHaynes/changepoint.parallel. Details on all of these are

provided in the Appendices.

6.1 Future Directions

Below are some suggestions on how the work presented in this thesis can be extended

in the future. These are:

1. Apply a probabilistic pruning approach to the nonparametric cost function in

Chapter 4.

2. Explore alternative nonparametric cost functions to use with PELT.

3. Expand the parallelisation methods in Chapter 5 to parallelise multivariate

changepoint detection methods.

6.1.1 Probabilistic Pruning

In Chapter 4 we used the inequality based pruning method, PELT, with a nonpara-

metric cost function based on the empirical cumulative distribution of the data. It

was suggested by one of the reviewers when submitting this paper to Statistics and

Computing that an alternative method would be to use the probabilistic pruning ap-

proach, cp3o (Changepoints via Probabilistic Pruned Objects; James and Matteson,

2015). Probabilistic pruning can be applied to a large number of goodness of fit

methods and can generate all of the optimal segmentations with differing number of

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 116

changepoints. The pruning procedure is similar in the set up to the pruning in PELT.

Using the notation from Chapter 4, if we define

Qcp3o = min
m,τ1:m

{
m+1∑
i=1

CK(x(τi−1+1):τi) + ξn

}
, (6.1)

then with probability of at least 1 − ε, u can never be the most recent changepoint

prior to T where u < v < T . That is

P(Qcp3o(x1:u, ξn) + CK(x(u+1):v) > Qcp3o(x1:v, ξn)) ≥ 1− ε. (6.2)

For the consistency of cp3o to hold using the cost function suggested in (4.7) some

assumptions about the goodness of fit test are required. Firstly, assumption 5 in James

and Matteson (2015) requires that under the single changepoint detection scenario

the optimal value of the goodness of fit is attained when the estimated changepoint τ̂

coincides with the true changepoint τ . Given a suitably chosen K in our cost function

this should hold.

Secondly, assumption 7 in James and Matteson (2015) requires for all u < v < T

CK(xu+1:T) ≥ CK(xu+1:v) + CK(xv+1:T). (6.3)

This assumption is shown to hold in the proof of Theorem 4.3.2 in Chapter 4. In terms

of performance James and Matteson (2015) compare cp3o with an Energy statistic

to PELT with a change in mean for a couple of different scenarios. PELT performed

worse in terms of accuracy due to the misspecification of the model but it was the

faster algorithm. Given the same cost function it would be interesting to compare the

two methods in terms of accuracy and to see if PELT is still computationally quicker

as this may have been down to the calculation of the cost functions.

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 117

6.1.2 Nonparametric Cost Functions

The cp3o method discussed above was originally used with a divergence measure

based on Euclidean distances (Matteson and James, 2014). Matteson and James

(2014) used a hierarchical clustering method to detect the changes and also showed

how to approximate the speed up of the calculations. The cost function used is

C(Yn, Zm;α) =
2

mn

n∑
i=1

m∑
j=1

|Yi − Zj|α

−
(
n

2

)−1 ∑
1≤i<j≤n

|Yi − Yj|α −
(
m

2

)−1 ∑
1≤i<j≤m

|Zi − Zj|α, (6.4)

where Yn = {xa, xa+1, ..., xa+n−1} and Zm = {xa + 1, xa+n+1, ..., xa+n+m−1}. In order

to use PELT the following property must hold

C(xu+1:T) ≥ C(xu+1:v) + C(xv+1:T) (6.5)

for all u < v < T . Equation (6.5) has been shown to hold with the cost function in

(6.4) (James and Matteson, 2015, proposition 7) and thus can be used in the PELT

algorithm.

Zou et al. (2014) show that this test statistic performs better than their method

NMCD for changes in the scale when errors have either a t-distribution or chi-squared.

However this cost function can only be used when there are changes in the first two

moments. Such as in Section 6.1.1 if would be interesting to compare PELT and cp3o

using this cost function as well as comparing to PELT with the empirical distribution

cost.

6.1.3 Parallelising Multivariate Methods

Parallelisation would lend itself nicely to improve the computational costs of mul-

tivariate changepoints detection, particularly when considering subset multivariate

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 118

changepoints; a changepoint occurs only in a subset of the variables. Pickering (2015)

proposes a method, SMOP, which first considers costs for a multivariate time-series

using the notion of changepoint vectors. If we let cjt be the location of the most recent

changepoint in variable j up to and including time-point t then the changepoint vector

at time t is the vector of all the most recent changepoints across all of the variables.

The multivariate cost can then be defined as follows. If we let Dj(·) be a generic

additive cost function, such as the negative log-likelihood, for each variable j = 1, ..., p,

and let qτK =
∑p

j=1 1(τ jK = τK) denote the number of dimensions affected by a change,

then the multivariate penalised cost is

m+1∑
k=1

[
p∑
j=1

{
1(cjτk = τk)Dj(y(cjτk−1

+1):cjτk
)j + αg(qτk)

}]
+ βf(m). (6.6)

Here αg(qτk) is a penalty to avoid over-fitting the number of variables affected by the

kth changepoint, and βf(m) is the penalty term to avoid over-fitting the number of

changepoints.

To find the optimal location of the changepoints, Pickering (2015) then used a dy-

namic programming algorithm similar to the univariate Optimal Partitioning method

(Jackson et al., 2005). If p is the number of dimensions and n is the length of the

data this has a computational costO(pn2p). Unlike in the univariate setting, Pickering

(2015) shows that pruning methods such as PELT (Killick et al., 2012) are not prac-

tically viable in the multivariate case due to the additional storage and calculations

required.

SMOP is computationally expensive even for relatively small values of n. In or-

der to improve the speed Pickering (2015) suggests a couple of approximations in

their alternative algorithm, A-SMOP, to reduce the number of potential changepoint

locations and variables affect which SMOP considers. The first approximation runs

univariate PELT on each variable to get a candidate set of locations from each variable

to use in SMOP. The second approximation uses two window arguments to reduce

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 119

the number of affected variables for each changepoint.

It should be possible to parallelise this changepoint detection method. Summaries

of each variable can be calculated beforehand and then used to calculate the cor-

responding D(·) costs similar to the univariate case as shown in Section 5.3.1. In

Chapter 5 we proposed two split and merge approaches for parallelising changepoint

algorithms. SM1 is where the data is split in chunks over the cores with the first l

points going to the first core, the next l going to the second core etc. SM2 is there the

data is split such that the first data-point goes to the first core, the second data-point

goes to the second core etc. I believe it should be possible to use SM2 in this scenario

without too much divergence from the univariate set-up. SM1 will be more difficult,

but not impossible, to implement due to the boundary values. If we take 50 points

either side of the boundary, Figure 6.1a shows the changepoint vectors that would be

considered had we looked at a fully multivariate scenario in an example with 3 dimen-

sions and 2 cores. This example is simple since we are allowing changepoints to occur

in all variables. The subset multivariate scenario is much more challenging. It may

be easier to use an adaptive boundary in this scenario. Figure 6.1b shows an example

of the changepoint vectors we would consider using the changepoints detected in each

variable before and after the boundary.

Figure 6.2 shows the challenges of using a fixed boundary. Since we are allowing

changes to not occur simultaneously over all variables then it is not as easy as just

looking at the points either side of the boundary in all variables. The pink shaded

region shows the changepoints in one dimension that would be considered when we

have a boundary length of 50 either side of the boundary. The grey shaded regions

show the changepoint vectors we would have to consider in each case. Here we are

assuming all changepoints in the other dimensions (grey region) can only appear

before or at the same location of changepoints of the dimension we are interested in

(pink region). The main challenge of this approach will be keeping track of all of the

possible changepoint vectors at each time step.

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 120

0

3

6

9

0

3

6

9

0

3

6

9

1
2

3

0 250 500 750 1000
Index

D
at

a

(a)

0

3

6

9

0

3

6

9

0

3

6

9

1
2

3

0 250 500 750 1000
Index

D
at

a

(b)

Figure 6.1: The shaded regions show the changepoint vectors that will be consid-
ered around the boundary. (a) Is the fully multivariate case and (b) is the subset
multivariate case using an adaptive boundary.

It would be very interesting in the future to look into whether using multi-cores

allows SMOP to become a viable method for subset multivariate method without the

need to approximate it.

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 121

0

3

6

9

0

3

6

9

0

3

6

9

1
2

3

0 250 500 750 1000
Index

D
at

a

0

3

6

9

0

3

6

9

0

3

6

9

1
2

3

0 250 500 750 1000
Index

D
at

a

0

3

6

9

0

3

6

9

0

3

6

9

1
2

3

0 250 500 750 1000
Index

D
at

a

Figure 6.2: An illustration of the challenges of using a fixed boundary length.

Appendix A

Supplementary Material for

Chapter 3

A.1 Pseudo-code for PELT

Algorithm 2: PELT

input : A data-set of the form y1:n = (y1, y2, ..., yn);
A cost function C(·) dependent on the data;
A penalty constant β, and a constant K that satisfies the condition

for PELT for all s < t < T .
output: Details of the optimal segmentation of y1:t for t = 1, . . . , n.

Let cp(0) = 0, rescp(0) = 0, F (0) = 0, m(0) = 0 and R1 = {0};
for t ∈ {1, ..., n} do

1. Calculate F (t) = mins∈Rt [F (s) + C(y(s+1):t) + β];
2. Let cp(t) = arg mins∈Rt{[F (s) + C(y(s+1):t) + β]};
3. Let m(t) = m(cp(t)) + 1;
4. Set rescp(t) = [rescp(cp(t)), cp(t)].;
5. Set Rt+1 = {s ∈ Rt : F (s) + C(y(s+1):t) < F (t)}.

end

return : rescp(n): the changepoints in the optimal segmentation of y1:n;
and for t = 1, . . . , n;
cp(t): the most recent changepoint in the optimal segmentation of y1:t;
m(t): the number of changepoints in the optimal segmentation of y1:t;
F (t): the optimal cost value of the optimal segmentation of y1:t.

122

APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 123

A.2 Proof of Therem 3.1

Proof. To simplify notation, write m0 = m(β0) and m1 = m(β1). Part (1) follows

immediately from the fact that m(β) is a decreasing function.

For part (2), note that as m(β) is decreasing, then m(β) will be equal to either

m0 or m1 for all β ∈ [β0, β1]. Using (3.1), to find the interval of values for which

m(β) = m0 we need to find the values of β for which Pm0(β) < Pm1(β). The value

βint is just the solution to Pm0(β) = Pm1(β). This gives the required result.

For part (3), first note that as m(β) is decreasing, then as m(βint) = m1 we must

have m(β) = m1 for all β ∈ [βint, β1]. Thus we only need to show that for any m with

m1 < m < m0 and for all β ∈ [β0, βint],

Qm(y1:n) +mβ ≥ Qm0(y1:n) +m0β.

We show this by contradiction. Firstly assume there exists an m with m1 < m <

m0 and a β ∈ [β0, βint] such that

Qm(y1:n) +mβ < Qm1(y1:n) +m0β.

As m < m0 and β ≤ βint, this implies

Qm(y1:n) +mβint < Qm0(y1:n) +m0βint,

and by definition of βint we then have

Qm(y1:n) +mβint < Qm1(y1:n) +m1βint.

This then contradicts the condition of part (3) of the theorem, namely that a segmen-

tation with m1 changepoints is optimal for the penalty βint.

APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 124

A.3 Proof of Theorem 3.2

Proof. The proof for part (1) is trivial since we need to run CPD twice, using both

β0 and β1.

For the proof of part (2) define N(m0,m1) as the maximum (over data-sets) of the

number of further runs of CPD needed to find all the optimal segmentations in an

interval of β, given we have run CPD at the lower and upper endpoints of the interval

and these have produced segmentations with m0 and m1 changepoints respectively.

As we have run CPD twice, to prove the theorem we need to show that

N(m0,m1) ≤ m0 −m1 − 1. (A.1)

Firstly, if m0 −m1 = 1 then N(m0,m1) = 0, which satisfies (A.1).

Now we proceed by induction. For an integer l > 1 assume that if m0 −m1 < l

then (A.1) holds. We need to show that this implies that (A.1) holds for m0−m1 = l.

In this case our first step is to run PELT at the intersection, βint. In the worst

case scenario we find that m(βint) 6= m1 (and hence m(βint) 6= m0 as segmentations

with m0 and m1 changepoints have the same penalised cost for penalty value βint).

We then need to consider the sub-intervals below and above βint separately. Since

m(β) decreases as β increases m0 −m(βint) < l and m(βint)−m1 < l. Therefore

N(m0,m1) = 1 +N(m0,m(βint)) +N(m(βint),m1)

≤ 1 + [m0 −m(βint)− 1] + [m(βint)−m1 − 1]

= 1 +m0 −m1 − 2

= m0 −m1 − 1.

which satisfies (A.1) as required.

APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 125

A.4 Further Simulations: Change in Mean

In the main manuscript we looked at a change in mean model with a fixed number

of changepoints and compared pDPA to CROPS with FPOP. Here we look at the

results when the number of changepoints increases sublinearly and linearly with the

number of data-points.

(a) Sublinear

● ● ● ● ●
● ●

●

●

●

CROPS

pDPA

0

50

100

150

200

0 10000 20000
Length of Data

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

(b) Linear

● ● ● ● ●
● ●

●

●

●

CROPS

pDPA

0

50

100

150

200

0 10000 20000
Length of Data

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Figure A.1: Changes in mean CPU cost using pDPA and CROPS with FPOP. (a)
Sublinear changepoints (m =

√
n/4) and (b) linear changepoints (m = n/100).

A.5 Further Simulations: Change in mean and vari-

ance for normal model

Similarly we revisit the model with a change in mean and variance to compare Segment

Neighbourhood with CROPS with PELT and PELT with the recycled calculations

for data-sets with a sublinear and linear number of changepoints in respect to data

length. Figure A.2 shows the CPU cost for the 3 methods. We can then use this data

and CROPS with PELT to explore penalty choice when we have a different number

of changes. These results can be seen in Figure A.3.

APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 126

(a)

● ● ● ●

●

● ● ● ●

●

● ●

●

●

●

PELT_speed
PELT

SN

0

1000

2000

3000

0 10000 20000
Length of Data

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

(b)

● ●

●

●

●

● ●

●

●

●PELT_speed

PELT

0

50

100

150

0 10000 20000
Length of Data

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

● ● ●
●

●

● ● ● ●

●

● ●

●

●

●

PELT_speed
PELT

SN

0

1000

2000

3000

0 10000 20000
Length of Data

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

●
●

●

●

●

● ●

●

●

●PELT_speed

PELT

0

50

100

150

200

0 10000 20000
Length of Data

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Figure A.2: (a) CPU cost using SN, CROPS with PELT and CROPS with PELT
with the speed improvements. (b) A close up of PELT and PELT with the speed
improvements. The top row is sublinear changepoints (m =

√
n/4) and the bottom

row is linear changepoints (m = n/100).

APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 127

●

●

●

●

●

●

●

●

●

●

AIC
HQ

SIC

0

40

80

120

160

0 5000 10000 15000 20000
Length of Data

P
en

al
ty

 V
al

ue

●
●

● ● ●

●
●

● ● ●

●
●

● ● ●

●
●

● ● ●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

SIC mean

SIC sd

HQ mean

HQ sd

0.00

0.25

0.50

0.75

1.00

5000 10000 15000 20000
Length of Data

M
S

E

●●● AIC
HQ

SIC

0.80

0.85

0.90

0.95

1.00

0.00 0.25 0.50 0.75 1.00
Proportion of False Positives

P
ro

po
rt

io
n

of
 T

ru
e

P
os

iti
ve

s
●

●
●

● ●

●

●

●
●

●

AIC

HQ

SIC

10

20

30

40

50

0 5000 10000 15000 20000
Length of Data

P
en

al
ty

 V
al

ue

●

●

● ●
●

●

●

● ●
●

●

●

● ●
●

●

●

● ●
●

●
● ●

●
●

●
● ●

●
●

●
● ●

●
●

●
● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
● ●

●

●

●
● ●

●

●

●
● ●

SIC mean

SIC sd

HQ mean

HQ sd

0.00

0.25

0.50

0.75

1.00

5000 10000 15000 20000
Length of Data

M
S

E

●
●●

AIC
HQ

SIC

0.80

0.85

0.90

0.95

1.00

0.00 0.25 0.50 0.75 1.00
Proportion of False Positives

P
ro

po
rt

io
n

of
 T

ru
e

P
os

iti
ve

s

Figure A.3: Results for the true model. Left: Average minimum (black, dashed) and
maximum (grey, dot-dashed) optimal penalty values in comparison to popular penalty
terms in the literature. Solid lines from top to bottom are the SIC, Hannan-Quinn and
AIC penalty values. Middle: MSE for the mean (solid) and the standard deviation
(dashed) when different penalty terms are used. Right: Proportion of true positives
against the proportion of false positives for n = 10, 000. The top row is sublinear
changepoints (m =

√
n/4) and the bottom row is linear changepoints (m = n/100).

APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 128

A.6 Further Simulations: Change in Mean and

Variance for the Mis-specified Model

We can also look at the situation where we have a mis-specified model with a sublinear

and linear number of changes. The range of optimal penalty values and true and false

positives found using different common penalty terms are shown in Figure A.4

●

●

●

●

●

●

●

●

●

●

AIC
HQ
SIC

0

100

200

300

400

0 5000 10000 15000 20000
Length of Data

P
en

al
ty

 V
al

ue

●

●
●

AIC

HQ
SIC

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Proportion of False Positives

P
ro

po
rt

io
n

of
 T

ru
e

P
os

iti
ve

s

●

●

●

●

●

●

●

●
●

●

AIC

HQ

SIC

20

40

60

0 5000 10000 15000 20000
Length of Data

P
en

al
ty

 V
al

ue

●

●

●

AIC

HQSIC

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Proportion of False Positives

P
ro

po
rt

io
n

of
 T

ru
e

P
os

iti
ve

s

Figure A.4: Results for the mis-specified model scenario. Left: Average minimum
(black, dashed) and maximum (grey, dot-dashed) optimal penalty values in compar-
ison to popular penalty terms in the literature. Right: Proportion of true positives
against the proportion of false positives for n = 10, 000. The top row is sublinear
changepoints (m =

√
n/4) and the bottom row is linear changepoints (m = n/100).

APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 129

A.7 Further regions where we have discrepancies

in the Hi-C example

In the real data section of the main manuscript we showed regions of the chromosome

where was have detected different segmentations with the different penalty terms.

Below are a further 3 regions.

(a)

20 40 60 80 100

20
40

60
80

10
0

(b)

760 780 800 820 840

76
0

78
0

80
0

82
0

84
0

(c)

1600 1620 1640 1660 1680 1700

16
00

16
20

16
40

16
60

16
80

17
00

Figure A.5: Close up different regions, the black line is the segmentation using our
optimal β and the grey line is the segmentation using β = 0 and β = SIC.

Appendix B

The CROPS Algorithm in the

changepoint R Package

The CROPS algorithm proposed in Chapter 3 has been implemented within the

changepoint R package (Killick et al., 2014). The usage is similar for all of the

functions within this package but as an example we will show how it can be used to

detect changes in mean.

B.1 Usage

To detect changes in mean the function to use is

cpt.mean(data,penalty="MBIC",pen.value=0,method="AMOC",Q=5,test.stat=

"Normal",class=TRUE, param.estimates=TRUE,minseglen=1)

where

data A vector, ts object or matrix containing the data within which you wish to find

a changepoint. If the data is a matrix, each row is considered as a separate

data-set.

130

APPENDIX B. THE CROPS ALGORITHM 131

penalty Choice of “None”, “SIC”, “BIC”, “MBIC”, “AIC”, “Hannan-Quinn”, “Man-

ual” and “CROPS” penalties. If Manual is specified, the manual penalty is

contained in the pen.value parameter. If CROPS is specified, the penalty range

is contained in the pen.value parameter; note this is a vector of length 2 which

contains the minimum and maximum penalty value. Note CROPS can only be

used if the method is ”PELT”. The predefined penalties listed DO count the

changepoint as a parameter, postfix a 0 e.g.“SIC0” to NOT count the change-

point as a parameter.

pen.value The value of the penalty when using the Manual penalty option. A vector

of length 2 (min,max) if using the CROPS penalty.

method Choice of “AMOC”, “PELT”, “SegNeigh” or “BinSeg”.

Q The maximum number of changepoints to search for using the “BinSeg” method.

The maximum number of segments (number of changepoints + 1) to search for

using the “SegNeigh” method.

test.stat The assumed test statistic/distribution of the data. Currently only

“empirical distribution”.

class Logical. If TRUE then an object of class cpt is returned.

minseglen Positive integer giving the minimum segment length (number of observa-

tions between changes), default is the minimum allowed by theory. param.estimates

param.estimates Logical. If TRUE and class=TRUE then parameter estimates are

returned. If FALSE or class=FALSE no parameter estimates are returned.

nquantiles The number of quantiles to calculate when test.stat = “empirical distribution”.

To use CROPS we need to set method = “PELT”, penalty = “CROPS” and

pen.value is a vector of length 2.

APPENDIX B. THE CROPS ALGORITHM 132

B.2 Example

As an example we can simulate data from a Gaussian distribution with a change in

mean and use CROPS to detect changes for a range of penalties.

set.seed(1)

x=c(rnorm(50,0,1),rnorm(50,5,1),rnorm(50,10,1),rnorm(50,3,1))

out=cpt.mean(x, pen.value = c(4,1500),penalty = "CROPS",method = "PELT")

The output is give as an S4 class where we can access the segmentations for a

range of penalties by

out@cpts.full

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 50 96 100 133 150 159 180

[2,] 50 96 100 133 150 NA NA

[3,] 50 100 133 150 NA NA NA

[4,] 50 100 150 NA NA NA NA

[5,] 50 150 NA NA NA NA NA

[6,] 50 NA NA NA NA NA NA

[7,] NA NA NA NA NA NA NA

Appendix C

Supplementary Material for

Chapter 4

Below are further segmentations of the heart-rate data in Chapter 4 using the ED-

PELT algorithm and also PELT with a change in slope cost function.

133

APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 134

C.1 Further Results - ED-PELT

100

125

150

175

4

6

8

10

12

20

40

60

0 25 50 75

0 25 50 75

0 25 50 75

Time (mins)

Time (mins)

Time (mins)

H
ea

rt
 R

at
e

(b
pm

)
S

pe
ed

 (
km

/h
)

E
le

va
tio

n
(m

)

Figure C.1: Segmentations using ED-PELT with 13 changepoints. We have colour
coded the line based on the average heart-rate of each segment where red: peak,
orange: anaerobic, yellow: aerobic and green: recovery.

APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 135

100

125

150

175

4

6

8

10

12

20

40

60

0 25 50 75

0 25 50 75

0 25 50 75

Time (mins)

Time (mins)

Time (mins)

H
ea

rt
 R

at
e

(b
pm

)
S

pe
ed

 (
km

/h
)

E
le

va
tio

n
(m

)

Figure C.2: Segmentations using ED-PELT with 12 changepoints. We have colour
coded the line based on the average heart-rate of each segment where red: peak,
orange: anaerobic, yellow: aerobic and green: recovery.

APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 136

100

125

150

175

4

6

8

10

12

20

40

60

0 25 50 75

0 25 50 75

0 25 50 75

Time (mins)

Time (mins)

Time (mins)

H
ea

rt
 R

at
e

(b
pm

)
S

pe
ed

 (
km

/h
)

E
le

va
tio

n
(m

)

Figure C.3: Segmentations using ED-PELT with 9 changepoints. We have colour
coded the line based on the average heart-rate of each segment where red: peak,
orange: anaerobic, yellow: aerobic and green: recovery.

APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 137

C.2 Further Results - Piece-wise linear

●●●
●

●

●●

●

●

●

●●

●

●●●●●

●●
●●

●

●●

●●●

●●●
●
●●

●●
●
●●●

●
●

●●

●

●
●●
●
●●●●
●●●
●●

●

●
●●●
●
●●

●●
●

●
●
●●●●●●
●●

●●
●●●●●●
●
●●●●●●●●●●

●●●●●●

●●●
●●●●●●●●

●
●●●
●
●
●
●●●●●

●●●
●●●

●●●●●
●●
●●
●●
●
●●●●●●●●
●●●●
●●●●●
●●●●
●●●

●●
●●●●●●

●●
●●●
●●●●●●●●

●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●

●●●●

●●
●●●●●●

●
●●
●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●
●
●●●●●
●●●●●●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●●●●●●●●

●●
●●●
●
●●
●●
●●●●●
●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●
●●
●●●●●●●●

●●
●●
●
●
●
●
●
●
●●●●●●●●●●●●●

●●●
●●●●
●●
●●●●●●●●

●

●●●●●●●●●●
●
●●●●●●●●●●

●●●
●●●●●●●●

●●●●
●●●●
●●
●
●●
●●
●●●●●

●●●
●●
●●
●
●●●●●
●
●
●●
●●●
●●●●
●●●
●●●
●●
●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●

●
●●●●●●●●●

●●
●●●●●●●

●●●
●●●
●●●●●●●●●●●●●

●●
●●●●
●●●
●●●
●●●●●●●

●●
●●
●●
●
●●●
●

●
●
●
●●●●
●●●
●●●
●●
●●●●●●●●●●

●●
●
●●●
●
●●
●●
●●●●
●●●●
●
●
●●
●●●●
●
●●●●●
●●
●●●●●●●●●●●●

●●●●●●
●
●●●●●●●

●●●
●●
●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●
●●●
●●●
●●
●●●●
●
●●●●●●●●

●●●●
●●
●●●●●
●●●●●
●
●●●●●●●●●

●
●
●●●●
●●●●●●

●●●●●●●●
●●●●●●
●●●

●●●
●●●
●●●●●●●●●●

●●●●●●
●●
●●●●●●

●●●●
●●●●
●●●

●

●●●●●

●
●●●●●

●
●
●●●

●●

●●

●●
●●

●●
●●
●●
●●●●●
●

●

●●●●
●

●
●
●●●●
●●●●●●●●●●●

●●●
●●

●●●
●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●

●●
●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●
●●●
●●●●●●●●●●●●

●
●●
●
●●●●●●●●●●●●●●

●●●●
●
●●●●
●
●●●
●●●●●●●●●
●●
●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●

●●●
●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●

●
●●

100

125

150

175

4

6

8

10

12

20

40

60

0 25 50 75

0 25 50 75

0 25 50 75

Time (mins)

Time (mins)

Time (mins)

H
ea

rt
 R

at
e

(b
pm

)
S

pe
ed

 (
km

/h
)

E
le

va
tio

n
(m

)

Figure C.4: Segmentations using change in slope with 12 changepoints. We have
colour coded the line based on the average heart-rate of each segment where red:
peak, orange: anaerobic, yellow: aerobic and green: recovery. The solid black line in
the top plot is the best fit for the mean within each segment.

APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 138

●●●
●

●

●●

●

●

●

●●

●

●●●●●

●●
●●

●

●●

●●●

●●●
●
●●

●●
●
●●●

●
●

●●

●

●
●●
●
●●●●
●●●
●●

●

●
●●●
●
●●

●●
●

●
●
●●●●●●
●●

●●
●●●●●●
●
●●●●●●●●●●

●●●●●●

●●●
●●●●●●●●

●
●●●
●
●
●
●●●●●

●●●
●●●

●●●●●
●●
●●
●●
●
●●●●●●●●
●●●●
●●●●●
●●●●
●●●

●●
●●●●●●

●●
●●●
●●●●●●●●

●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●

●●●●

●●
●●●●●●

●
●●
●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●
●
●●●●●
●●●●●●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●●●●●●●●

●●
●●●
●
●●
●●
●●●●●
●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●
●●
●●●●●●●●

●●
●●
●
●
●
●
●
●
●●●●●●●●●●●●●

●●●
●●●●
●●
●●●●●●●●

●

●●●●●●●●●●
●
●●●●●●●●●●

●●●
●●●●●●●●

●●●●
●●●●
●●
●
●●
●●
●●●●●

●●●
●●
●●
●
●●●●●
●
●
●●
●●●
●●●●
●●●
●●●
●●
●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●

●
●●●●●●●●●

●●
●●●●●●●

●●●
●●●
●●●●●●●●●●●●●

●●
●●●●
●●●
●●●
●●●●●●●

●●
●●
●●
●
●●●
●

●
●
●
●●●●
●●●
●●●
●●
●●●●●●●●●●

●●
●
●●●
●
●●
●●
●●●●
●●●●
●
●
●●
●●●●
●
●●●●●
●●
●●●●●●●●●●●●

●●●●●●
●
●●●●●●●

●●●
●●
●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●
●●●
●●●
●●
●●●●
●
●●●●●●●●

●●●●
●●
●●●●●
●●●●●
●
●●●●●●●●●

●
●
●●●●
●●●●●●

●●●●●●●●
●●●●●●
●●●

●●●
●●●
●●●●●●●●●●

●●●●●●
●●
●●●●●●

●●●●
●●●●
●●●

●

●●●●●

●
●●●●●

●
●
●●●

●●

●●

●●
●●

●●
●●
●●
●●●●●
●

●

●●●●
●

●
●
●●●●
●●●●●●●●●●●

●●●
●●

●●●
●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●

●●
●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●
●●●
●●●●●●●●●●●●

●
●●
●
●●●●●●●●●●●●●●

●●●●
●
●●●●
●
●●●
●●●●●●●●●
●●
●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●

●●●
●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●

●
●●

100

125

150

175

4

6

8

10

12

20

40

60

0 25 50 75

0 25 50 75

0 25 50 75

Time (mins)

Time (mins)

Time (mins)

H
ea

rt
 R

at
e

(b
pm

)
S

pe
ed

 (
km

/h
)

E
le

va
tio

n
(m

)

Figure C.5: Segmentations using change in slope with 10 changepoints. We have
colour coded the line based on the average heart-rate of each segment where red:
peak, orange: anaerobic, yellow: aerobic and green: recovery. The solid black line in
the top plot is the best fit for the mean within each segment.

APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 139

●●●
●

●

●●

●

●

●

●●

●

●●●●●

●●
●●

●

●●

●●●

●●●
●
●●

●●
●
●●●

●
●

●●

●

●
●●
●
●●●●
●●●
●●

●

●
●●●
●
●●

●●
●

●
●
●●●●●●
●●

●●
●●●●●●
●
●●●●●●●●●●

●●●●●●

●●●
●●●●●●●●

●
●●●
●
●
●
●●●●●

●●●
●●●

●●●●●
●●
●●
●●
●
●●●●●●●●
●●●●
●●●●●
●●●●
●●●

●●
●●●●●●

●●
●●●
●●●●●●●●

●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●

●●●●

●●
●●●●●●

●
●●
●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●
●
●●●●●
●●●●●●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●●●●●●●●

●●
●●●
●
●●
●●
●●●●●
●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●
●●
●●●●●●●●

●●
●●
●
●
●
●
●
●
●●●●●●●●●●●●●

●●●
●●●●
●●
●●●●●●●●

●

●●●●●●●●●●
●
●●●●●●●●●●

●●●
●●●●●●●●

●●●●
●●●●
●●
●
●●
●●
●●●●●

●●●
●●
●●
●
●●●●●
●
●
●●
●●●
●●●●
●●●
●●●
●●
●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●

●
●●●●●●●●●

●●
●●●●●●●

●●●
●●●
●●●●●●●●●●●●●

●●
●●●●
●●●
●●●
●●●●●●●

●●
●●
●●
●
●●●
●

●
●
●
●●●●
●●●
●●●
●●
●●●●●●●●●●

●●
●
●●●
●
●●
●●
●●●●
●●●●
●
●
●●
●●●●
●
●●●●●
●●
●●●●●●●●●●●●

●●●●●●
●
●●●●●●●

●●●
●●
●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●
●●●
●●●
●●
●●●●
●
●●●●●●●●

●●●●
●●
●●●●●
●●●●●
●
●●●●●●●●●

●
●
●●●●
●●●●●●

●●●●●●●●
●●●●●●
●●●

●●●
●●●
●●●●●●●●●●

●●●●●●
●●
●●●●●●

●●●●
●●●●
●●●

●

●●●●●

●
●●●●●

●
●
●●●

●●

●●

●●
●●

●●
●●
●●
●●●●●
●

●

●●●●
●

●
●
●●●●
●●●●●●●●●●●

●●●
●●

●●●
●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●

●●
●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●
●●●
●●●●●●●●●●●●

●
●●
●
●●●●●●●●●●●●●●

●●●●
●
●●●●
●
●●●
●●●●●●●●●
●●
●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●

●●●
●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●

●
●●

100

125

150

175

4

6

8

10

12

20

40

60

0 25 50 75

0 25 50 75

0 25 50 75

Time (mins)

Time (mins)

Time (mins)

H
ea

rt
 R

at
e

(b
pm

)
S

pe
ed

 (
km

/h
)

E
le

va
tio

n
(m

)

Figure C.6: Segmentations using change in slope with 8 changepoints. We have
colour coded the line based on the average heart-rate of each segment where red:
peak, orange: anaerobic, yellow: aerobic and green: recovery. The solid black line in
the top plot is the best fit for the mean within each segment.

APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 140

●●●
●

●

●●

●

●

●

●●

●

●●●●●

●●
●●

●

●●

●●●

●●●
●
●●

●●
●
●●●

●
●

●●

●

●
●●
●
●●●●
●●●
●●

●

●
●●●
●
●●

●●
●

●
●
●●●●●●
●●

●●
●●●●●●
●
●●●●●●●●●●

●●●●●●

●●●
●●●●●●●●

●
●●●
●
●
●
●●●●●

●●●
●●●

●●●●●
●●
●●
●●
●
●●●●●●●●
●●●●
●●●●●
●●●●
●●●

●●
●●●●●●

●●
●●●
●●●●●●●●

●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●

●●●●

●●
●●●●●●

●
●●
●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●
●
●●●●●
●●●●●●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●●●●●●●●

●●
●●●
●
●●
●●
●●●●●
●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●
●●
●●●●●●●●

●●
●●
●
●
●
●
●
●
●●●●●●●●●●●●●

●●●
●●●●
●●
●●●●●●●●

●

●●●●●●●●●●
●
●●●●●●●●●●

●●●
●●●●●●●●

●●●●
●●●●
●●
●
●●
●●
●●●●●

●●●
●●
●●
●
●●●●●
●
●
●●
●●●
●●●●
●●●
●●●
●●
●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●

●
●●●●●●●●●

●●
●●●●●●●

●●●
●●●
●●●●●●●●●●●●●

●●
●●●●
●●●
●●●
●●●●●●●

●●
●●
●●
●
●●●
●

●
●
●
●●●●
●●●
●●●
●●
●●●●●●●●●●

●●
●
●●●
●
●●
●●
●●●●
●●●●
●
●
●●
●●●●
●
●●●●●
●●
●●●●●●●●●●●●

●●●●●●
●
●●●●●●●

●●●
●●
●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●
●●●
●●●
●●
●●●●
●
●●●●●●●●

●●●●
●●
●●●●●
●●●●●
●
●●●●●●●●●

●
●
●●●●
●●●●●●

●●●●●●●●
●●●●●●
●●●

●●●
●●●
●●●●●●●●●●

●●●●●●
●●
●●●●●●

●●●●
●●●●
●●●

●

●●●●●

●
●●●●●

●
●
●●●

●●

●●

●●
●●

●●
●●
●●
●●●●●
●

●

●●●●
●

●
●
●●●●
●●●●●●●●●●●

●●●
●●

●●●
●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●

●●
●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●
●●●
●●●●●●●●●●●●

●
●●
●
●●●●●●●●●●●●●●

●●●●
●
●●●●
●
●●●
●●●●●●●●●
●●
●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●

●●●
●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●

●
●●

100

125

150

175

4

6

8

10

12

20

40

60

0 25 50 75

0 25 50 75

0 25 50 75

Time (mins)

Time (mins)

Time (mins)

H
ea

rt
 R

at
e

(b
pm

)
S

pe
ed

 (
km

/h
)

E
le

va
tio

n
(m

)

Figure C.7: Segmentations using change in slope with 7 changepoints. We have
colour coded the line based on the average heart-rate of each segment where red:
peak, orange: anaerobic, yellow: aerobic and green: recovery. The solid black line in
the top plot is the best fit for the mean within each segment.

Appendix D

changepoint.np: An R Package for

Nonparametric Changepoint

Detection

The code for the ED-PELT function proposed in Chapter 4 of this thesis can be found

in the changepoint.np R package. This package is an extension to the changepoint

package and in fact shares many of the common functions and class objects with this

package. Currently ED-PELT is the only function in this package but there is scope to

add other methods including Binary Segmentation with a nonparametric cost function

such as the cumulative sums of squares. Currently this is part of the changepoint

package but there is a plan to make this package specifically for parametric change-

point detection and move any nonparametric functions into changepoint.np. This

package can be downloaded from

https://cran.r-project.org/web/packages/changepoint.np/index.html or from

https://github.com/KayleaHaynes/changepoint.np.

141

APPENDIX D. CHANGEPOINT.NP: R PACKAGE 142

D.1 Package Structure

The main function of this package is cpt.np which is structured as follows, analogous

to the cpt.mean, cpt.var and cpt.meanvar functions of the changepoint package.

D.1.1 Inputs

data A vector, ts object or matrix containing the data within which you wish to find

a changepoint. If the data is a matrix, each row is considered as a separate

data-set.

penalty Choice of “None”, “SIC”, “BIC”, “MBIC”, “AIC”, “Hannan-Quinn”, “Man-

ual” and “CROPS” penalties. If Manual is specified, the manual penalty is

contained in the pen.value parameter. If CROPS is specified, the penalty range

is contained in the pen.value parameter; note this is a vector of length 2 which

contains the minimum and maximum penalty value. Note CROPS can only be

used if the method is ”PELT”. The predefined penalties listed DO count the

changepoint as a parameter, postfix a 0 e.g.“SIC0” to NOT count the change-

point as a parameter.

pen.value The value of the penalty when using the Manual penalty option. A vector

of length 2 (min,max) if using the CROPS penalty.

method Currently the only method is “PELT”.

test.stat The assumed test statistic/distribution of the data. Currently only

“empirical distribution”.

class Logical. If TRUE then an object of class cpt is returned.

minseglen Positive integer giving the minimum segment length (number of observa-

tions between changes), default is the minimum allowed by theory.

nquantiles The number of quantiles to calculate when test.stat = “empirical distribution”.

APPENDIX D. CHANGEPOINT.NP: R PACKAGE 143

D.1.2 Outputs

If class = TRUE then an object of S4 class “cpt” is returned. The “cpt” class con-

tains the following slots: data.set, cpttype, method, test.stat, pen.type, pen.value,

minseglen, cpts, ncpts.max, param.est. These slots can be accessed using the @ sym-

bol.

If class = FALSE then the structure is as follows. If the method is PELT then a

vector is returned containing the changepoint locations for the penalty supplied. If

the penalty is CROPS then a list is returned with the elements:

cpt.out A data frame containing the value of the penalty value where the number of

segmentations chages, the number of segmentations and the value of the cost at

that penalty value.

changepoints The optimal changepoints for the different penalty values startings

with the lowest penalty value.

If the data input is a vector then the corresponding vector or list is returned. If

the data is a matrix then a list is returned where each element of the list is either a

vector or a list.

D.2 Examples

We now show a couple of examples on how the functions can be used.

D.2.1 Simulated Data

Firstly we simulate data from model 1 of Chapter 4. That is:

set.seed(12)

J <- function(x){

APPENDIX D. CHANGEPOINT.NP: R PACKAGE 144

(1+sign(x))/2

}

n <- 1000

tau <- c(0.1,0.13,0.15,0.23,0.25,0.4,0.44,0.65,0.76,0.78,0.81)*n

h <- c(2.01, -2.51, 1.51, -2.01, 2.51, -2.11, 1.05, 2.16, -1.56, 2.56, -2.11)

sigma <- 0.5

t <- seq(0,1,length.out = n)

data <- array()

for (i in 1:n){

data[i] <- sum(h*J(n*t[i] - tau)) + (sigma * rnorm(1))

}

we can use ED-PELT to find the changepoints using the SIC penalty value.

out <- cpt.np(data, penalty = "SIC",method="PELT",

test.stat="empirical_distribution",

class=TRUE,minseglen=2, nquantiles =4*log(length(data)))

The outputted changepoints can be detected using either cpts(out) or out@cpts.

This returns

cpts(out)

[1] 100 130 150 230 250 400 440 650 760 780 810.

In order to visualise the changepoints there is a plot method for the cpt class.

That is plot(out) will return the plot in Figure D.1.

D.2.2 Heart-Rate Data

The second example we look at is the Heart-Rate data recorded during a period of

activity as in Chapter 4. This data can be found and used in the changepoint.np

package. This time we will show an example of using the CROPS penalty term.

APPENDIX D. CHANGEPOINT.NP: R PACKAGE 145

Time

da
ta

.s
et

.ts
(x

)

0 200 400 600 800 1000

−
2

−
1

0
1

2
3

4
5

Figure D.1: Plot of the changepoints using the plot method of the cpt class

cptHeartRate <- cpt.np(HeartRate, penalty = "CROPS", pen.value = c(10,100),

method="PELT", test.stat="empirical_distribution",class=TRUE,minseglen=2,

nquantiles =4*log(length(HeartRate)))

Class ‘cpt’ : Changepoint Object

~~ : S4 class containing 14 slots with names

cpts.full pen.value.full data.set cpttype method test.stat

pen.type pen.value minseglen cpts ncpts.max param.est

date version

Created on : Tue Aug 2 17:15:27 2016

summary(.) :

Created Using changepoint version 2.2.1

Changepoint type : Change in nonparametric (empirical_distribution)

Method of analysis : PELT

Test Statistic : empirical_distribution

Type of penalty : CROPS with value, 10 100

Minimum Segment Length : 2

APPENDIX D. CHANGEPOINT.NP: R PACKAGE 146

10 15 20 25 30 35

20
30

40
50

60
70

Number of Changepoints

D
iff

er
en

ce
 in

 T
es

t S
ta

tis
tic

Figure D.2: Diagnostic plot for the heart-rate data-set when the CROPS penalty is
used.

Maximum no. of cpts :

Changepoint Locations :

Number of segmentations recorded: 29 with between 8 and 50

changepoints.

Penalty value ranges from: 10 to 75.56285

This time when we plot we have to decide how many changepoints to include. If unsure

a diagnostic plot can be used where an elbow is plotted and the “best” segmentations

are the ones around the elbow. A similar method is discussed in Chapters 3 and 4.

plot(cptHeartRate, diagnostic = TRUE)

plot(cptHeartRate, ncpts = 15)

For this example the diagnostic plot is shown in Figure D.2 and the segmentation

with 15 changepoints in Figure D.3.

APPENDIX D. CHANGEPOINT.NP: R PACKAGE 147

Time

da
ta

.s
et

.ts
(x

)

0 200 400 600 800 1000 1200

10
0

12
0

14
0

16
0

18
0

Figure D.3: Segmentation of the heart-rate data with 15 changepoints.

Appendix E

Further Simulation Results for

Chapter 5

In Section 5.4.3 we looked at the performance of SM1 and SM2 on the teeth and stairs

signals with different data lengths and size of segments. In the main body of text

we showed the results for segment lengths equal to 5, 20 and 100. In Figure E.1 and

Figure E.2 we show further results for segment lengths equal to 10, 15 and 50. In the

teeth signal SM2 performs better than SM1 when the length of the segments and size

of the changes are large. When the segment lengths are small SM1 performs better

but the accuracy decays as the number of cores increases. In the stairs signal SM2

performs better than SM1 in all cases. These results follow from the results shown in

the main body of text.

148

APPENDIX E. FURTHER SIMULATION RESULTS FOR CHAPTER 5 149

True Positives False Positives

●

●

●

●

●

●

●

●

● ●
● ● ●

●
●

●

● ●
●

● ● ●
●

●

● ●
●

● ● ●
●

●

● ●
● ●

● ●

● ●

● ●
●

● ●

●
● ●

● ●
●

● ● ●
●

●

● ●
●

● ● ●
●

●

0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 10

True Positives False Positives

●

●
●

●

●
●

●

●

● ● ●

● ●
●

●

●

● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

●

●
● ●

● ● ●

●
●

● ● ●

● ●
●

●

●

● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

●

0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 15

True Positives False Positives

●
● ●

●

●
●

●
●

● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●
● ●

●

●
●

●
●

● ● ● ●
● ● ●

●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 50

True Positives False Positives

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●
●

● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 10

True Positives False Positives

●

●

●

●

●

●

●

●

● ● ● ●

● ●

● ●
● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

●

●

● ●

●

●

●

●

● ● ● ●

●
●

● ●
● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 15

True Positives False Positives
● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 50

Figure E.1: The TFDR for SM1 (top) and SM2 (bottom) on the teeth signal over a
different number of cores compared to detecting the changes on one core. The plots
left to right are different lengths of the segments: left - 10, centre - 15 and right - 50.
The different coloured lines on each plot are different jump sizes.

APPENDIX E. FURTHER SIMULATION RESULTS FOR CHAPTER 5 150

True Positives False Positives

●
●

● ● ●

●
●

●

● ●
●

● ●

●
●

●

● ●
●

● ● ●
●

●

● ●
●

● ● ●
●

●

●
●

● ● ●

●
●

●

● ●
●

● ●

●
●

●

● ●
●

● ● ●
●

●

● ●
●

● ● ●
●

●

0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 10

True Positives False Positives

●
● ●

● ● ●

●

●

● ● ●

● ●
●

●

●

● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

●

●
● ●

● ● ●

●

●

● ● ●

● ●
●

●

●

● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

●

0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 15

True Positives False Positives

●
● ●

●

●
●

● ●

● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

●
● ●

●

●
●

● ●

● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 50

True Positives False Positives

●
●

●
●

●

● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ●
● ●

●
● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 10

True Positives False Positives

● ●
●

●

●
●

● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ● ●
●

●
●

● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 15

True Positives False Positives
● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

4 8 12 16 4 8 12 16
Number of Cores

P
ro

po
rt

io
n

Size
●

●

●

●

2
3
5
10

TPFP, length = 50

Figure E.2: The TFDR for SM1 (top) and SM2 (bottom) on the stairs signal over a
different number of cores compared to detecting the changes on one core. The plots
left to right are different lengths of the segments: left - 10, centre - 15 and right - 50.
The different coloured lines on each plot are different jump sizes.

Appendix F

R Code for the SM1 and SM2

methods proposed in Chapter 5

The code for the parallel algorithms proposed in Chapter 5 of this thesis can be

found in the changepoint.parallel R package that can be downloaded from Github

https://github.com/KayleaHaynes/changepoint.parallel. This package currently only

runs SM1 and SM2 with PELT.

F.1 Package Structure

The two main functions in this package are Parallel PELTSM1 and Parallel PELTSM2.

Common Inputs

The below inputs are required for both SM1 and SM2.

data A vector of data-points within which you with to find changepoints.

penalty The value of the penalty.

pruning If true PELT is used, if false Optimal Partitioning is used.

sum.stat This can be “norm.sum” or “exp.sum”.

151

APPENDIX F. CHANGEPOINT.PARALLEL 152

cost This can be “norm.mean.cost”, “norm.var.cost”, “norm.meanvar.cost” or “exp.cost”.

ncores Number of cores to use.

minseglen Minimum length a segment can be.

Additional Inputs for SM1

Below are additional inputs used for SM1, these describe the boundary that should

be used.

boundary This can either be “fixed” or “adaptive”.

boundary value If boundary is fixed then this is the number of points to use around

the boundary.

F.1.1 Output

The output of both functions is a vector of the changepoint locations.

F.1.2 Example

Below is an example of SM1 and SM2 on the blocks data-set.

Set up parallel environment

library(doParallel)

library(foreach)

ncores <- c(10)

cl <- makeCluster(ncores)

registerDoParallel(cl)

Generate some data from the blocks data-set

cpts <- round(c(0,0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76,

APPENDIX F. CHANGEPOINT.PARALLEL 153

0.78, 0.81,1)*10000)

segment_param <- c(0, 4, -1, 2, -2, 3, -1.2, 0.9, 5.2, 2.1, 4.2, 0)

data <- NULL

for (i in 1:(length(cpts)-1)){

data_new <- rep(segment_param[i],cpts[i+1] - cpts[i])

data <- c(data, data_new)

}

data <- data + rnorm(10000,0,1)

Parallel_PELTSM1(data, 2*log(length(data)), TRUE, sum.stat = norm.sum,

cost = norm.mean.cost, ncores=10, boundary = "fixed",boundary_value = 20, 1)

[1] 0 1000 1300 1500 2300 2500 4000 4401 6500 7600 7799

8100 10000

Parallel_PELTSM2(data, 2*log(length(data)), TRUE, sum.stat = norm.sum,

cost = norm.mean.cost, minseglen =1, ncores=10)

[1] 0 1000 1300 1500 2300 2500 4000 4401 6500 7600 7799

8100 10000

Bibliography

Adams, R. P. and MacKay, D. J. C. (2007). Bayesian Online Changepoint

Detection. arXiv e-prints 0710.3742.

Aggarwal, R., Inclan, C., and Leal, R. (1999). Volatility in emerging stock markets.

The Journal of Financial and Quantitative Analysis, 34(1):33–55.

Akaike, H. (1974). A new look at the statistical model identification. IEEE

Transactions on Automatic Control, 19(6):716–723.

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint

Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA.

ACM.

Andreou, E. and Ghysels, E. (2009). Structural breaks in financial time series. In

Handbook of Financial Time Series, pages 839–870. Springer Berlin Heidelberg,

Berlin, Heidelberg.

Android (2016). Sensors overview. https:

//developer.android.com/guide/topics/sensors/sensors_overview.html.

Accessed: 2016-08-01.

Apley, D. W. and Chang-Ho, C. (2007). An optimal filter design approach to

statistical process control. Journal of Quality Technology, 39(2):93–117.

154

BIBLIOGRAPHY 155

Aston, J. A. D. and Kirch, C. (2012). Evaluating stationarity via change-point

detection alternatives with applications to fMRI data. The Annals of Applied

Statistics, 6(4):1906–1948.

Aubert, A. E., Seps, B., and Beckers, F. (2003). Heart rate variability in athletes.

Sports Medicine, 33(12):889–919.

Aue, A., Härmann, S., Horváth, L., and Reimherr, M. (2009). Break detection in

the covariance structure of multivariate time series models. The Annals of

Statistics, 37(6B):4046–4087.

Aue, A. and Horváth, L. (2013). Structural breaks in time series. Journal of Time

Series Analysis, 34(1):1–16.

Auger, I. E. and Lawrence, C. E. (1989). Algorithms for the optimal identification of

segment neighborhoods. Bulletin of Mathematical Biology, 51(1):39–54.

Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple

structural changes. Econometrica, 66(1):47–78.

Bardwell, L. and Fearnhead, P. (2017). Bayesian detection of abnormal segments in

multiple time series. Bayesian Analysis, 12(1):193–.

Barney, B. (2016a). Introduction to parallel computing.

https://computing.llnl.gov/tutorials/parallel_comp/. Accessed:

2016-08-13.

Barney, B. (2016b). Message passing interface (MPI).

https://computing.llnl.gov/tutorials/mpi/. Accessed: 2016-08-13.

Baron, M. (2000). Nonparametric adaptive change-point estimation and on-line

detection. Sequential Analysis, 19(1-2):1–23.

Barry, D. and Hartigan, J. A. (1992). Product partition models for change point

problems. The Annals of Statistics, 20(1):260–279.

BIBLIOGRAPHY 156

Basseville, M. and Nikiforov, I. V. (1993). Detection of Abrupt Changes: Theory and

Application. Prentice Hall, Englewood Cliffs.

Batsidis, A., Horváth, L., Mart́ın, N., Pardo, L., and Zografos, K. (2013).

Change-point detection in multinomial data using phi-divergence test statistics.

Journal of Multivariate Analysis, 118(1):53 – 66.

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton,

NJ, USA.

Bhattacharyya, G. and Johnson, R. (1968). Nonparametric tests for shift at an

unknown time point. The Annals of Mathematical Statistics, 39(5):1731–1743.

Billat, V. L., Mille-Hamard, L., Meyer, Y., and Wesfreid, E. (2009). Detection of

changes in the fractal scaling of heart rate and speed in a marathon race. Physica

A: Statistical Mechanics and its Applications, 388(18):3798 – 3808.

Bodenham, D. A. and Adams, N. M. (2013). Continuous monitoring of a computer

network using multivariate adaptive estimation. In 2013 IEEE 13th International

Conference on Data Mining Workshops, pages 311–318.

Bodenham, D. A. and Adams, N. M. (2016). Continuous monitoring for

changepoints in data streams using adaptive estimation. Statistics and Computing

(To Appear), pages 1–14.

Boysen, L., Kempe, A., Liebscher, V., Munk, A., and Wittich, O. (2009).

Consistencies and rates of convergence of jump-penalized least squares estimators.

The Annals of Statistics, 37(1):157–183.

BrainMacSportsCoach (2015). Heart Rate Training Zones.

https://http://www.brianmac.co.uk/hrm1.htm.

BIBLIOGRAPHY 157

Brault, V., Delattre, M., Lebarbier, E., Mary-Huard, T., and Lévy-Leduc, C. (2015).

Estimating the number of change-points in a two-dimensional segmentation model

without penalization. arXiv e-prints 1506.03198.

Braun, J., R.K., M., and Mueller, H.-G. (2000). Multiple changepoint fitting via

quasilikelihood, with application to DNA sequence segmentation. Biometrika,

87(2):301–314.

Braun, J. V. and Müeller, H.-G. (1998). Statistical methods for DNA sequence

segmentation. Statistical Science, 13(2):142–162.

Brodsky, B. E. and Darkhovsky, B. S. (1993). Nonparametric methods in

change-point problems, volume 243 of Mathematics and its Applications. Kluwer

Academic Publishers Group, Dordrecht.

Butenhof, D. R. (1997). Programming with POSIX Threads. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.

Calaway, R., RevolutionAnalytics, and Weston, S. (2015). foreach: Provides Foreach

Looping Construct for R. R package version 1.4.3.

Calaway, R., RevolutionAnalytics, Weston, S., and Tenenbaum, D. (2014).

doParallel: Foreach Parallel Adaptor for the ’parallel’ Package. R package version

1.0.10.

Capizzi, G. and Masarotto, G. (2012). Adaptive generalized likelihood ratio control

charts for detecting unknown patterned mean shifts. Journal of Quality

Technology, 44(4):281–303.

Cappé, O., Moulines, E., and Ryden, T. (2005). Inference in Hidden Markov Models

(Springer Series in Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,

USA.

BIBLIOGRAPHY 158

Carlstein, E. (1988). Nonparametric change-point estimation. The Annals of

Statistics, 16(1):188–197.

Chakraborti, S. and van de Wiel, M. A. (2008). A nonparametric control chart based

on the Mann-Whitney statistic, volume 1 of Collections, pages 156–172. Institute

of Mathematical Statistics, Beachwood, Ohio, USA.

Chen, J. and Gupta, A. K. (1997). Testing and locating variance changepoints with

application to stock prices. Journal of the American Statistical Association,

92(438):739–747.

Chen, J. and Gupta, A. K. (2000). Parametric statistical change point analysis.

Birkhäuser Boston Inc., Boston, MA.

Chib, S. (1996). Calculating posterior distributions and modal estimates in markov

mixture models. Journal of Econometrics, 75(1):79 – 97.

Chib, S. (1998). Estimation and comparison of multiple change-point models.

Journal of Econometrics, 86(2):221 – 241.

Cho, H. and Fryzlewicz, P. (2015). Multiple-change-point detection for high

dimensional time series via sparsified binary segmentation. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 77(2):475–507.

Cleynen, A., Dudoit, S., and Robin, S. (2014). Comparing segmentation methods for

genome annotation based on RNA-seq data. Journal of Agricultural, Biological,

and Environmental Statistics, 19(1):101–118.

Cleynen, A., Koskas, M., Lebarbier, E., Rigaill, G., and Robin, S. (2013).

Segmentor3IsBack: an R package for the fast and exact segmentation of Seq-data.

arXiv eprints 1204.5564.

Csörgö, M. and Horváth, L. (1997). Limit Theorems in Change-point Analysis. John

Wiley & Sons Ltd., Chichester.

BIBLIOGRAPHY 159

Dagum, L. and Menon, R. (1998). OpenMP: an industry standard API for

shared-memory programming. IEEE Computational Science and Engineering,

5(1):46–55.

Davis, R. A., Lee, T. C. M., and Rodriguez-Yam, G. A. (2006). Structural break

estimation for nonstationary time series models. Journal of the American

Statistical Association, 101(473):223–239.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the em algorithm. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 39(1):1–38.

Dette, H. and Wied, D. (2016). Detecting relevant changes in time series models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology),

78(2):371–394.

Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet

shrinkage. Biometrika, 81(3):425–455.

Dümbgen, L. (1991). The asymptotic behavior of some nonparametric change-point

estimators. The Annals of Statistics, 19(3):1471–1495.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological sequence

analysis: probabilistic models of proteins and nucleic acids. Cambridge University

Press.

Eckley, I. A., Fearnhead, P., and Killick, R. (2011). Analysis of changepoint models.

In Bayesian Time Series Models. Cambridge University Press.

Eddelbuettel, D. (2016). CRAN task view: High-performance and parallel

computing with r.

https://cran.r-project.org/web/views/HighPerformanceComputing.html.

Accessed: 2016-08-13.

BIBLIOGRAPHY 160

Fan, J. and Wang, Y. (2007). Multi-scale jump and volatility analysis for

high-frequency financial data. Journal of the American Statistical Association,

102(480):1349–1362.

Fan, T.-H., Lin, D. K., and Cheng, K.-F. (2007). Regression analysis for massive

datasets. Data & Knowledge Engineering, 61(3):554 – 562. Advances on Natural

Language Processing - NLDB 05.

Fearnhead, P. (2005). Exact bayesian curve fitting and signal segmentation. IEEE

Transactions on Signal Processing, 53(6):2160–2166.

Fearnhead, P. (2006). Exact and efficient Bayesian inference for multiple

changepoint problems. Statistics and Computing, 16(2):203–213.

Fearnhead, P. and Clifford, P. (2003). On-line inference for hidden markov models

via particle filters. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 65(4):887–899.

Fearnhead, P. and Liu, Z. (2007). On-line inference for multiple changepoint

problems. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 69(4):589–605.

Fearnhead, P. and Liu, Z. (2011). Efficient Bayesian analysis of multiple

changepoint models with dependence across segments. Statistics and Computing,

21(2):217–229.

Fernandez, V. (2004). Detection of breakpoints in volatility. Documentos de Trabajo

194, Centro de Economa Aplicada, Universidad de Chile.

Frick, K., Munk, A., and Sieling, H. (2014). Multiscale change-point inference.

Journal of the Royal Statistical Society: Series B (Statistical Methodology),

76(3):495–580.

BIBLIOGRAPHY 161

Fryzlewicz, P. (2012). Timethreshold maps: Using information from wavelet

reconstructions with all threshold values simultaneously. Journal of the Korean

Statistical Society, 41(2):145 – 159.

Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection.

The Annals of Statistics, 42(6):2243–2281.

Futschik, A., Hotz, T., Munk, A., and Sieling, H. (2014). Multiresolution DNA

partitioning: statistical evidence for segments. Bioinformatics, 30(16):2255–2262.

Galway, L., Zhang, S., Nugent, C., McClean, S., Finlay, D., and Scotney, B. (2011).

Utilizing wearable sensors to investigate the impact of everyday activities on heart

rate. In Abdulrazak, B., Giroux, S., Bouchard, B., Pigot, H., and Mokhtari, M.,

editors, Toward Useful Services for Elderly and People with Disabilities, volume

6719 of Lecture Notes in Computer Science, pages 184–191. Springer Berlin

Heidelberg.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, B., and Sunderam, V.

(1994). PVM: Parallel Virtual Machine A Users’ Guide and Tutorial for

Networked Parallel Computing. MIT Press, Cambrige.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrika, 82(4):711–732.

Guan, Z. (2004). A semiparametric changepoint model. Biometrika, 91(4):849–862.

Guarnaccia, C., Quartieri, J., Tepedino, C., and Rodrigues, E. R. (2015). An

analysis of airport noise data using a non-homogeneous Poisson model with a

change-point. Applied Acoustics, 91(1):33–39.

Haccou, P., Meelis, E., and van de Geer, S. (1987). The likelihood ratio test for the

change point problem for exponentially distributed random variables. Stochastic

Processes and their Applications, 27(1):121–139.

BIBLIOGRAPHY 162

Hand, D. J. and Weston, D. J. (2008). Statistical Techniques for Fraud Detection,

Prevention and Assessment, pages 257–270. IOS PRess.

Hannan, E. and Quinn, B. (1979). The determination of the order of an

autoregression. Journal of the Royal Statistical Society: Series B, 41(2):190–195.

Hawkins, D. M. and Deng, Q. (2010). A Nonparametric Change-Point Control

Chart. Journal of Quality Technology, 42(2):165–173.

Hawkins, D. M., Qui, P., and Kang, C. (2003). The changepoint model for

statistical process control. Journal of Quality Technology, 35(4):355–366.

Hawkins, D. M. and Zamba, K. D. (2005). A change-point model for a shift in

variance. Journal of Quality Technology, 37(1):21–31.

Haynes, K. (2016). changepoint.np: Methods for Nonparametric Changepoint

Detection. R package version 0.0.2.

Haynes, K., Eckley, I. A., and Fearnhead, P. (2017). Computationally efficient

changepoint detection for a range of penalties. Journal of Computational and

Graphical Statistics, 26(1):134–143.

Haynes, K., Fearnhead, P., and Eckley, I. A. (2016). A computationally efficient

nonparametric approach for changepoint detection. Statistics and Computing (To

appear).

Heard, N. A., Weston, D. J., Platanioti, K., and Hand, D. J. (2010). Bayesian

anomaly detection methods for social networks. The Annals of Applied Statistics,

4(2):645–662.

Hegland, M., McIntosh, I., and Turlach, B. A. (1999). A parallel solver for

generalised additive models. Computational Statistics and Data Analysis,

31(4):377–396.

BIBLIOGRAPHY 163

Hinkley, D. V. (1970). Inference about the change-point in a sequence of random

variables. Biometrika, 57(1):1–17.

Hinkley, D. V. and Hinkley, E. A. (1970). Inference about the change-point in a

sequence of binomial variables. Biometrika, 57(3):477–488.

Hocking, T., Rigaill, G., Vert, J.-P., and Bach, F. (2013a). Learning sparse penalties

for change-point detection using max margin interval regression. In ICML (3),

volume 28 of JMLR Proceedings, pages 172–180.

Hocking, T., Schleiermacher, G., Janoueix-Lerosey, I., Boeva, V., Cappo, J.,

Delattre, O., Bach, F., and Vert, J.-P. (2013b). Learning smoothing models of

copy number profiles using breakpoint annotations. BMC Bioinformatics,

14(1):1–15.

Horváth, L. and Hušková, M. (2012). Change-point detection in panel data. Journal

of Time Series Analysis, 33(4):631–648.

Hotz, T., Schütte, O. M., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C.,

and Munk, A. (2013). Idealizing ion channel recordings by jump segmentation

and statistical multiresolution analysis. IEEE Transactions of Nanobioscience,

12(4):376–386.

Inclán, C. and Tiao, G. C. (1994). Use of cumulative sums of squares for

retrospective detection of changes of variance. Journal of the American Statistical

Association, 89(427):913–923.

Jackson, B., Sargle, J., Barnes, D., Arabhi, S., Alt, A., Gioumousis, P., Gwin, E.,

Sangtrakulcharoen, P., Tan, L., and Tsai, T. (2005). An algorithm for optimal

partitioning of data on an interval. IEEE Signal Processing Letters, 12(2):105–108.

James, N. A. and Matteson, D. S. (2015). Change Points via Probabilistically

Pruned Objectives. arXiv eprints 1505.04302.

BIBLIOGRAPHY 164

Jandhyala, V., Fotopoulos, S., MacNeill, I., and Liu, P. (2013). Inference for single

and multiple change-points in time series. Journal of Time Series Analysis,

34(4):423–446.

Jeng, X. J., Cai, T. T., and Li, H. (2013). Simultaneous discovery of rare and

common segment variants. Biometrika, 100(1):157–172.

Jiang, W., Shu, L., and Apley, D. W. (2008). Adaptive CUSUM procedures with

EWMA-based shift estimators. IIE Transactions, 40(10):992–1003.

Jones, L. A. (2002). The statistical design of EWMA control charts with estimated

parameters. Journal of Quality Technology, 34(3):277–288.

Karolos, K. K. and Fryzlewicz, P. (2016). Multiple change-point detection for

non-stationary time series using wild binary segmentation. Statistica Sinica (To

Appear).

Khalfa, N., Bertandm, P. R., Boudet, G., Chamoux, A., and Billat, V. (2012). Heart

rate regulation processed through wavelet analysis and change detection: some

case studies. Acta Biotheoretica, 60(1):109 – 29.

Killick, R. and Eckley, I. A. (2014). changepoint: An R Package for Changepoint

Analysis. Journal of Statistical Software, 58(3):1–19.

Killick, R., Eckley, I. A., and Haynes, K. (2014). changepoint: An R package for

changepoint analysis. R package version 2.1.1.

Killick, R., Eckley, I. A., and Jonathan, P. (2013). A wavelet-based approach for

detecting changes in second order structure within nonstationary time series.

Electronic Journal of Statistics, 7(1):1167–1183.

Killick, R., Fearnhead, P., and Eckley, I. A. (2012). Optimal Detection of

Changepoints With a Linear Computational Cost. Journal of the American

Statisical Association, 107(500):1590–1598.

BIBLIOGRAPHY 165

Kim, H., Rozovskii, B. L., and Tartakovsky, A. G. (2004). A nonparametric

multichart CUSUM test for rapid detection of DOS attacks in computer networks.

International Journal of Computing & Information Sciences, 2(3):149–158.

Kirch, C., Muhsal, B., and Ombao, H. (2015). Detection of changes in multivariate

time series with application to EEG data. Journal of the American Statistical

Association, 110(511):1197–1216.

Kulkarni, V., Al-Rfou, R., Perozzi, B., and Skiena, S. (2015). Statistically significant

detection of linguistic change. In Proceedings of the 24th International Conference

on World Wide Web, pages 625–635. ACM.

Lai, T. L. (2001). Sequential analysis: Some classical problems and new challenges.

Statistica Sinica, 11(2):303–351.

Lamoureux, C. G. and Lastrapes, W. D. (1990). Persistence in variance, structural

change, and the GARCH model. Journal of Business & Economic Statistics,

8(2):225–34.

Lavielle, M. (2005). Using penalized contrasts for the change-point problem. Signal

Processing, 85(8):1501 – 1510.

Lavielle, M. and Lebarbier, E. (2001). An application of MCMC methods for the

multiple change-points problem. Signal Processing, 81(1):39 – 53. Special section

on Markov Chain Monte Carlo (MCMC) Methods for Signal Processing.

Lavielle, M. and Moulines, E. (2000). Least-squares estimation of an unknown

number of shifts in a time series. Journal of Time Series Analysis, 21(1):33–59.

Lavielle, M. and Teyssière, G. (2006). Detection of multiple change-points in

multivariate time series. Lithuanian Mathematical Journal, 46(3):287–306.

Lebarbier, E. (2005). Detecting multiple change-points in the mean of gaussian

process by model selection. Signal Processing, 85(4):717–736.

BIBLIOGRAPHY 166

Lee, C.-B. (1996). Nonparametric multiple change-point estimators. Statistics and

Probability Letters, 27(4):295 – 304.

Levin, B. and Kline, J. (1985). The cusum test of homogeneity with an application

in spontaneous abortion epidemiology. Statistics in Medicine, 4(4):469–488.

Lévy-Leduc, C., Delattre, M., Mary-Huard, T., and Robin, S. (2014).

Two-dimensional segmentation for analyzing Hi-C data. Bioinformatics,

30(17):386–392.

Lévy-Leduc, C. and Roueff, F. (2009). Detection and localization of change-points

in high-dimensional network traffic data. The Annals of Applied Statistics,

3(2):637–662.

Li, S. and Lund, R. (2012). Multiple changepoint detection via genetic algorithms.

Journal of Climate, 25(2):674–686.

Lin, N. and Xi, R. (2011). Aggregated estimating equation estimation. Statistics

and its Interface, 1(4):73–83.

Liu, J. S. and Lawrence, C. E. (1999). Bayesian inference on biopolymer models.

Bioinformatics, 15(1):38–52.

Lu, L. and Zhang, H.-J. (2002). Speaker Change Detection and Tracking in

Real-Time News Broadcasting Analysis. Proceedings of the tenth ACM

international conference on multimedia, pages 602–610.

Lung-Yut-Fong, A., Lévy-Leduc, C., and Cappé, O. (2012). Homogeneity and

change-point detection tests for multivariate data using rank statistics. arXiv

e-prints 1107.1971.

Luong, T. M., Rozenholc, Y., and Nuel, G. (2012). Fast estimation of posterior

probabilities in change-point models through a constrained hidden Markov model.

arXiv e-prints 1203.4394.

BIBLIOGRAPHY 167

Maboudou, E. M. and Hawkins, D. M. (2009). Fitting multiple change-point models

to a multivariate gaussian model. In Proceedings of the Second International

Workshop in Sequential Methodologies (IWSM 2009), pages 1–5.

Maboudou-Tchao, E. M. and Hawkins, D. M. (2013). Detection of multiple

change-points in multivariate data. Journal of Applied Statistics, 40(9):1979–1995.

Mackey, L., Talwalker, A., and Jordan, M. I. (2013). Divide-and-Conquer Matrix

Factorization. arXiv e-prints 1107.0789v7.

Maidstone, R., Hocking, T., Rigaill, G., and Fearnhead, P. (2017). On Optimal

Multiple Changepoint Algorithms for Large Data. Statistics and Computing (To

Appear), 27(2):519–533.

Matloff, N. (2016). Software alchemy: Turning complex statistical computations into

embarrassingly-parallel ones. Journal of Statistical Software, 71(1):1–15.

Matteson, D. S. and James, N. A. (2014). A nonparametric approach for multiple

change point analysis of multivariate data. Journal of the American Statistical

Association, 109(505):334–345.

Mood, A. M. (1954). On the asymptotic efficiency of certain nonparametric

two-sample tests. The Annals of Mathematical Statistics, 25(3):514–522.

Nam, C. F. H., Aston, J. A. D., Eckley, I. A., and Killick, R. (2015). The

Uncertainty of Storm Season Changes: Quantifying the Uncertainty of

Autocovariance Changepoints. Technometrics, 57(2):194–206.

Nam, C. F. H., Aston, J. A. D., and Johansen, A. M. (2012). Quantifying the

uncertainty in change points. Journal of Time Series Analysis, 33(5):807–823.

Nason, G., von Sachs, R., and Kroisandt, G. (2000). Wavelet processes and adaptive

estimation of the evolutionary wavelet spectrum. Journal of the Royal Statistical

Society. Series B (Statistical Methodology), 62(2):271–292.

BIBLIOGRAPHY 168

Nikol’skii, I. M. and Furmanov, K. K. (2016). Parallel algorithm to detect structural

changes in time series. Computational Mathematics and Modeling, 27(2):247–253.

Olshen, A. B., Venkatraman, E. S., Lucito, R., and Wigler, M. (2004). Circular

binary segmentation for the analysis of array-based dna copy number data.

Biostatistics, 5(4):557–572.

Ombao, H. C., Raz, J. A., von Sachs, R., and Malow, B. A. (2001). Automatic

statistical analysis of bivariate nonstationary time series. Journal of the American

Statistical Association, 96(454):543–560.

Page, E. (1954). Continuous inspection schemes. Biometrika, 41(1):100–115.

Pein, F., Sieling, H., and Munk, A. (2015). Heterogeneuous change point inference.

arXiv preprints 1505.04898.

Pepelyshev, A. and Polunchenko, A. S. (2015). Real-time financial surveillance via

quickest change-point detection methods. Statistics and its Inferface, 0(1):1–14.

Pettitt, A. (1979). A non-parametric approach to the change-point problem. Applied

statistics, 28(2):126–135.

Picard, F., Hoebacke, M., Lebarbier, E., Miele, V., Rigaill, G., and Robin, S. (2016).

cghseg: Segmentation Methods for Array CGH Analysis. R package version 1.0.2-1.

Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J.-J. (2004). A statistical

approach for array CGH data analysis. BMC Bioinformatics, 6(27):1–14.

Pickering, B. J. (2015). Changepoint Detection for Acoustic Sensing Signals. PhD

thesis, Lancaster University.

Reeves, J., Chen, J., Wang, X. L., Lund, R., and Lu, Q. Q. (2007). A review and

comparison of changepoint detection techniques for climate data. Journal of

Applied Meteorology and Climatology, 46(6):900–915.

BIBLIOGRAPHY 169

Rigaill, G. (2015). Pruned dynamic programming for optimal to recover the best

segmentations with 1 to kmax change-points. arXiv preprint 1004.0887.

Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry Theory. World

Scientific Publishing Co., Inc., River Edge, NJ, USA.

Roberts, S. W. (2000). Control chart tests based on geometric moving averages.

Technometrics, 42(1):97–101.

Ross, G. and Adams, N. M. (2012). Two nonparametric control charts for detecting

arbitrary distribution changes. Journal of Quality Technology, 44(2):102–116.

Ross, G. J., Tasoulis, D. K., and Adams, N. M. (2011). Nonparametric monitoring

of data streams for changes in location and scale. Technometrics, 53(4):379–389.

Ross, G. J., Tasoulis, D. K., and Adams, N. M. (2013). Sequential monitoring of a

bernoulli sequence when the pre-change parameter is unknown. Computational

Statistics, 28(2):463–479.

Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., and

Mansmann, U. (2009). State of the art in parallel computing with R. Journal of

Statistical Software, 31(1):1–27.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,

6(2):461–464.

Scott, A. J. and Knott, M. (1974). A cluster analysis method for grouping means in

the analysis of variance. Biometrics, 30(3):pp. 507–512.

Siegmund, D., Yakir, B., and Zhang, N. R. (2011). Detecting simultaneous variant

intervals in aligned sequences. The Annals of Applied Statistics, 5(2A):645–668.

Song, Q. and Liang, F. (2015). A split-and-merge Bayesian variable selection

approach for ultrahigh dimensional regression. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 77(5):947–972.

BIBLIOGRAPHY 170

Srivastava, M. S. and Worsley, K. J. (1986). Likelihood ratio tests for a change in

the multivariate normal mean. Journal of the American Statistical Association,

81(393):199–204.

Staudacher, M., Telser, S., Amann, A., Hinterhuber, H., and Ritsch-Marte, M.

(2005). A new method for change-point detection developed for on-line analysis of

the heart beat variability during sleep. Physica A: Statistical Mechanics and its

Applications, 349(3):582–96.

Stephens, D. A. (1994). Bayesian retrospective multiple-changepoint identification.

Journal of the Royal Statistical Society. Series C (Applied Statistics),

43(1):159–178.

Tartakovsky, A. G., Polunchenko, A. S., and Sokolov, G. (2013). Efficient computer

network anomaly detection by changepoint detection methods. IEEE Journal of

Selected Topics in Signal Processing, 7(1):4–11.

Teyssière, G. (2003). Interaction Models for Common Long-Range Dependence in

Asset Prices Volatility, pages 251–269. Springer Berlin Heidelberg, Berlin,

Heidelberg.

Tibshirani, R. J. and Taylor, J. (2011). The solution path of the generalized lasso.

The Annals of Statistics, 39(3):1335 – 1371.

Tierney, L., Rossini, A. J., Li, N., and Sevcikova, H. (2015). snow: Simple Network

of Workstations. R package version 0.4-1.

Tsuchiyama, R., Nakamura, T., Iizuka, T., Asahara, A., Miki, S., Tagawa, S., and

Tagawa, S. (2010). The OpenCL Programming Book. Fixstars Corporation, 1

edition.

Tsung, F. and Wang, K. (2010). Adaptive charting techniques: Literature review

BIBLIOGRAPHY 171

and extensions. In Frontiers in Statistical Quality Control 9, pages 19–35.

Physica-Verlag HD, Heidelberg.

Venkatraman, E. S. and Olshen, A. B. (2007). A faster circular binary segmentation

algorithm for the analysis of array CGH data. Bioinformatics, 23(6):657–663.

Vert, J.-P. and Bleakley, K. (2010). Fast detection of multiple change-points shared

by many signals using group lars. In Lafferty, J., Williams, C., Shawe-taylor, J.,

Zemel, R., and Culotta, A., editors, Advances in Neural Information Processing

Systems 23, pages 2343–2351.

Vostrikova, L. J. (1981). Discovery of “discord” in multidimensional random

processes. Dokl. Akad. Nauk SSSR, 259(2):270–274.

Wang, H., Killick, R., and Fu, X. (2014). Distributional change of monthly

precipitation due to climate change: comprehensive examination of dataset in

southeastern united states. Hydrological Processes, 28(20):5212–5219.

Wu, H., Salzberg, B., and Zhang, D. (2004). Online event-driven subsequence

matching over financial data streams. In Proceedings of the 2004 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’04, pages 23–34,

New York, NY, USA. ACM.

Xi, R., Lin, N., and Chen, Y. (2009). Compression and aggregation for logistic

regression analysis in data cubes. IEEE Transactions on Knowledge and Data

Engineering, 21(4):479–492.

Xie, Y. and Siegmund, D. (2013). Sequential multi-sensor change-point detection.

The Annals of Statistics, 41(2):670–692.

Yan, G., Xiao, Z., and Eidenbenz, S. (2008). Catching instant messaging worms

with change-point detection techniques. In Proceedings of the 1st Usenix

BIBLIOGRAPHY 172

Workshop on Large-Scale Exploits and Emergent Threats, LEET’08, pages

6:1–6:10, Berkeley, CA, USA. USENIX Association.

Yao, Y.-C. (1988). Estimating the number of change-points via Schwarz’ criterion.

Statistics & Probability Letters, 6(3):181–189.

Zhang, J. (2002). Powerful goodness-of-fit tests based on the likelihood ratio.

Journal of the Royal Statistical Society Series B, 64(2):281–294.

Zhang, N. R. and Siegmund, D. O. (2007). A modified Bayes information criterion

with applications to the analysis of comparative genomic hybridization data.

Biometrics, 63(1):22–32.

Zhang, N. R., Siegmund, D. O., Ji, H., and Li, J. Z. (2010). Detecting simultaneous

changepoints in multiple sequences. Biometrika, 97(3):631–645.

Zhou, H. and Lange, K. (2013). A path algorithm for constrained estimation.

Journal of Computational and Graphical Statistics, 22(2):261–283.

Zou, C., Liu, Y., Qin, P., and Wang, Z. (2007). Empirical likelihood ratio test for

the change-point problem. Statistics & Probability Letters, 77(4):374 – 382.

Zou, C., Yin, G., Feng, L., and Wang, Z. (2014). Nonparametric maximum

likelihood approach to multiple change-point problems. The Annals of Statistics,

42(3):970–1002.

Zou, C. and Zhange, L. (2014). nmcdr: Non-parametric Multiple Change-Points

Detection. R package version 0.3.0.

