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Abstract The expanding/contracting polar cap (ECPC) model, or the time-dependent Dungey cycle,
provides a theoretical framework for understanding solar wind-magnetosphere-ionosphere coupling.
The ECPC describes the relationship between magnetopause reconnection and substorm growth phase,
magnetotail reconnection and substorm expansion phase, associated changes in auroral morphology, and
ionospheric convective motions. Despite the many successes of the model, there has yet to be a rigorous
test of the predictions or nowcasts made regarding ionospheric convection, which remains a final hurdle
for the validation of the ECPC. In this study we undertake a comparison of ionospheric convection, as
measured in situ by ion drift meters on board DMSP (Defense Meteorological Satellite Program) satellites
and from the ground by SuperDARN (Super Dual Auroral Radar Network), with motions nowcasted by a
theoretical model. The model is coupled to measurements of changes in the size of the polar cap made
using global auroral imagery from the IMAGE FUV (Imager for Magnetopause to Aurora Global Exploration
Far Ultraviolet) instrument, as well as the dayside reconnection rate, estimated using the OMNI data set.
The results show that we can largely nowcast the magnitudes of ionospheric convection flows using the
context of our understanding of magnetic reconnection at the magnetopause and in the magnetotail.

Plain Language Summary We test a physics-based model which describes flows in the
ionosphere near the magnetic poles due to solar wind driving of the activity within the Earth’s magnetic
environment using spacecraft and radar measurements of the flows. The results of this comparison show
that our knowledge of the interactions of the solar wind, the Earth’s magnetic environment, and ionosphere
encompasses the general pattern of flows well, as well as the flow strengths. Further work is required to
expand our understanding of asymmetric flows and to be able to model them better.

1. Introduction

Providing a framework for our current understanding, Siscoe and Huang [1985], Freeman and Southwood
[1988], Cowley and Lockwood [1992], and Lockwood and Cowley [1992] established the expanding and con-
tracting polar cap model (ECPC). The basis of this framework is as follows: the Earth’s magnetic field within the
polar cap is open and the polar cap size or open magnetic flux content is governed by dayside and nightside
reconnection rates. At the nose of the magnetosphere, dayside reconnection opens flux during southward
IMF by reconnecting the Earth’s magnetic field with the interplanetary magnetic field (IMF), whereas night-
side reconnection closes flux by reconnecting open flux from the Northern and Southern Hemispheres in the
neutral sheet of the magnetotail. Dungey [1963] laid out the basis for this framework: opened field lines are
stretched antisunward, across the polar cap, adding flux into the tail, where it can reconnect. This reconnected
flux then convects back to the dayside via lower latitudes. The open magnetospheric flux, FPC, thus varies with
the dayside and nightside reconnection rates, ΦD and ΦN, through the following statement of Faraday’s law:

dFPC(t)
dt

= ΦD(t) − ΦN(t) (1)

(see Milan [2013], for more details).

As a result of the solar wind-driven magnetic flux convection, the flow pattern of plasma observed in the
ionosphere is a twin-cell convection pattern, with the foci at the open-closed boundary near dusk and dawn
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Figure 1. Schematics showing the polar cap convection, adapted from Cowley and Lockwood [1992] and Lockwood and Cowley [1992]. The schematics show
the effects of (left) dayside and (right) nightside reconnection, respectively. The black arrows indicate the resulting ionospheric flows, and the flow lines are
equivalent to the locations of the equipotentials. The dashed arrows indicate the expansion and contraction of the polar cap, resulting from reconnection.
The dashed part of the open-closed field line boundary (OCB) indicates the location of the merging gaps. The lines in red indicate the expected velocities
measured by the cross-track ion drift meter on board the DMSP satellites for a hypothetical satellite path, indicated by the thick black line. The outer circle
indicates where the return flow boundary (RFB) is.

(as discussed by Stern [1975], Heppner [1977], Volland [1978], Heppner and Maynard [1987], Foster [1983],
Cowley and Lockwood [1992, 1996], Ruohoniemi and Greenwald [1998], and others). The aim of this paper is
to test the current understanding of the ECPC on a case study basis, using quantitative measurements of
ionospheric flow velocities.

Figure 1 presents a schematic of the ionospheric flows when dayside (left) or nightside (right) reconnection
dominates. In the former case the polar cap expands, and flow crosses the dayside merging gap. In the lat-
ter case flows cross the nightside merging gap and the polar cap contracts. The flow in the ionosphere is
incompressible leading to interchange motions or return flows at lower latitudes. The plasma flows in the
ionosphere are shown by black arrows, whereas the large dashed arrows indicate the expansion/contraction
of the open-closed field line boundary (OCB). The red arrows indicate the measurements that a cross-track
ion drift meter on a DMSP spacecraft would take.

Substorms and steady magnetospheric convection events are features which can be described by the expand-
ing and contracting polar cap model, as, for example, discussed in Walach and Milan [2015]. Lockwood
et al. [2009] also studied the ionospheric convection strengths using the Defense Meteorological Satellite
Programme (DMSP) ion drift meter data. They considered a data set spanning all of 2001 and classified each
pass by activity level (substorm phase or steady convection) using the AE indices. The findings of Lockwood
et al. [2009] showed that the dayside and nightside reconnection rates can always be found to contribute to
the cross polar cap potential (CPCP), but the probability of detecting the contribution of the driving varies
between >99% during growth phases, 97% during quiet intervals, and 27% during steady convection events
for ΦD. For ΦN the probability of detecting a contribution to the potential is highest during steady magneto-
spheric convection (>99%), whereas it is lower during the expansion (89%) or the recovery (96%) phases of
a substorm.

Grocott et al. [2002, 2003] used SuperDARN data to observe flows in the polar ionosphere during substorms
and steady convection. They observed large scale flows and expansions and contractions of the polar cap,
fitting our understanding of the ECPC. Using mathematical formulae, based on equation (1), they estimated
lower and upper limits on ΦD and ΦN, as well as the proportion of the open-closed field line boundary occu-
pied by the merging gap from reconnection-driven ionospheric flows. Their finding was that during one
interval of bursty nightside reconnection, ΦN exceeded ΦD by ∼50%, whereas the nonburst-related ΦN is of
similar size as ΦD. As the bursty flows they observed were not concurrent with any substorm phenomena,
they concluded that the reconnection may be different from the classic Dungey cycle-related flows and be
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occurring farther downtail. In this study the precise location of the reconnection site does not influence our
results, as we are only concerned with the amount of reconnection occurring. Furthermore, we treat ΦD and
ΦN as independent in the sense that they are linked via FPC but occur independently of each other.

The results of studies by Lockwood et al. [2009] and Grocott et al. [2002, 2003], like many others, used the ECPC
as a context to explain aspects of the magnetosphere-ionosphere coupling and dynamics. Although the ECPC
is well understood and the framework has been shown to fit many observations, the relationship between
ΦD, ΦN, and ionospheric convection has not been tested. Our aim is thus to test this understanding on a case
study basis, which we do using quantitative measurements, and to discuss knowledge gaps.

We use upstream solar wind conditions (OMNI 1 min) to estimate ΦD using the solar wind driving equation
from Milan et al. [2012]. We obtain a time series of magnetospheric open flux content from auroral observa-
tions taken by the Imager for Magnetopause to Aurora Global Exploration (IMAGE) satellite. We combine these
in a quantitative model relating ΦD and FPC to ionospheric flows, as shown in Figure 1. We then compare the
model output with observations from DMSP ion drift meters, as indicated in red in Figure 1, and SuperDARN.

We present data from three separate days (2 October 2000, 4 November 2001, and 20 March 2005), where
IMAGE and DMSP data were available. For the second day SuperDARN data were also available.

In section 2 we will discuss the data we use for our model comparison, specifics about the model [Milan, 2013]
that we employ (section 2.1), and the results we find (section 2.4).

2. Data and Model Comparison

We employ the model of Milan [2013] to quantify ionospheric velocities based on the dayside and nightside
reconnection. To run the model, we use OMNI- and IMAGE-derived data products and we then compare the
model output velocities to ion drift meter data from the SSIES instrument [Greenspan et al., 1986] on board
the DMSP satellites and the SuperDARN data. In this section we first discuss the model and its data input and
then the DMSP and SuperDARN data.

2.1. The Expanding and Contracting Polar Cap Model
The model we employ is equivalent to the one defined by Milan [2013], where a mathematical model of the
expanding and contracting polar cap is used to quantify the strength of the flows in the ionosphere based
on estimated dayside and nightside reconnection rates. In this section we describe the model, but a detailed
mathematical description can be found in Milan [2013].

The model is very simple and as such, some assumptions and approximations are made. We assume an incom-
pressible system, such that if ΦD >ΦN the polar cap has to expand and if ΦN >ΦD, the polar cap has to
decrease in size. Second, we assume a dipolar magnetic field, with the surface magnetic field strength at the
equator being 31,000 nT. The model assumes that the polar cap, containing the open flux, FPC, is circular, as
is the equatorward boundary of the convection pattern. The OCB has a colatitude of 𝜆OCB, dictated by the
amount of open flux. The colatitude of the equatorward boundary of the convection, the return flow bound-
ary (RFB), is given by 𝜆RFB. As the polar cap expands and contracts under the action of ΦD and ΦN, the flows
are determined based on the following assumptions: (a) the convective flows are incompressible, (b) nonre-
connecting portions of the polar cap boundary are “adiaroic”; that is, the north-south component of the flow
at the boundary is equal to the motion of the boundary itself [Siscoe and Huang, 1985], so that the electric
field in the frame of reference moving with the boundary is zero.

Before we discuss our model-data comparison further (see section 2.4), we explain the origins of the data that
we feed into the model.

2.2. Model Inputs
To run the model at any given time, six quantities are required: ΦD, ΦN, 𝜆OCB, 𝜆RFB, and the center coordinates
(𝜆, 𝜃) of the convection pattern, where 𝜆 is the geomagnetic colatitude and 𝜃 is the azimuth. The parameter
𝜃 is calculated with respect to local time with 0∘ being at 00 MLT.

The IMAGE satellite passed the auroral oval with a polar orbit (apogee at 44,000 km and perigee at 1000 km)
and took complete images of the auroral oval at a cadence of ∼2 min when the aurora was in view
[Mende et al., 2000a; Burch, 2000]. The Far Ultraviolet (FUV) instrument suite included two spectrographic
imagers, SI12 and SI13 [Burch, 2000; Mende et al., 2000b]. Here we use the SI12 data, which observed Lyman-𝛼
auroral emission (at 121.5667 nm this is primarily proton aurora) [Mende et al., 2000b]. It was shown by
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Sergeev et al. [1983] that the velocity distribution of the protons contributing to aurora must mean that they
are on closed field lines. Further analysis by Hubert et al. [2006] and Boakes et al. [2008] show that the proton
aurora can be used as an adequate locator of the OCB with the spatial uncertainty being small (∼1∘).

Concentric circles were fitted by eye to the poleward and equatorward edges of the auroral oval in IMAGE SI12
data as the locations of the OCB and RFB. From the OCB circles, FPC was quantified assuming a dipolar magnetic
field (a similar method to that employed by Milan et al. [2009]). Fitting circles or ovals to the inner boundary of
the aurora gives very similar values for FPC, but the locations of the flow boundaries will be slightly different.
This is dealt with and explained in more detail further on (in section 3). The main reason why concentric circles
were fitted to the data is the constraints of the model geometry, which requires circles as inputs.

Using auroral observations of the expanding/contracting auroral oval, Milan et al. [2012] found that the
dayside reconnection rate, ΦD, can be estimated as

ΦD = ΛV4∕3
X BYZ sin9∕2 1

2
𝜃, (2)

where Λ is a constant of proportionality (= 3.3 × 105 m2∕3 s1∕3); VX is the solar wind speed; BYZ is the strength
of the IMF, transverse to the flow direction; and 𝜃 is the clock angle of the IMF. We use data from the OMNI
(1 min resolution) data set [King and Papitashvili, 2005] to calculate ΦD. Using equation (1) with the time series
for FPC and ΦD, we then also find ΦN.

Milan et al. [2012] noted that, to bring the solar wind-estimated ΦD to the same magnitudes as
SuperDARN-derivedΦPC values, 25 kV have to be added toΦD. Milan [2004, and references therein] calculated
that residual flows may be of ∼25 kV of the CPCP, setting the viscous interaction to orders of 10 kV. DMSP data
analyzed by Lockwood et al. [2009] also suggested it may only be of the order of 10 kV. In this study, we thus add
a constant 25 kV to ΦD and ΦN, to accommodate for any viscous-driven flows and possible underestimation
of the reconnection rates.

The potentials calculated from the model are centered about the geomagnetic pole. We know from observa-
tions of the auroral oval, however, which we use as a locator of the polar cap, that its center is usually offset
from the pole. Most notably, the center of the polar cap is shifted toward midnight by a few degrees (see, e.g.,
Figures 12 and 13 in Shukhtina and Milan [2014] or statistical study by De La Beaujardière et al. [1991]). We thus
rotate the equations from Milan [2013], such that the center of the model output corresponds to the center
of the fitted circles, rather than the pole.

The other necessary model inputs, 𝜃D and 𝜃N, the half sizes of the dayside and nightside merging gaps, are
held at a constant 30∘ each, with respect to the center of the pattern (as was done by Milan [2013]). Figure 7 of
Milan [2013] explores the possibility of a variable convection throat size. It shows that changing the merging
gaps from being very narrow to very wide (𝜃D and 𝜃N = 10∘ to 60∘) has much less of an effect on the model
output than changing the other variables, for example, the reconnection rates.

2.3. Comparative Data
We use ion drift meter data from the DMSP F12, F13, and F15 spacecraft [see Heelis and Hanson, 1998;
Hairston and Heelis, 1996; Rich and Hairston, 1994, and references therein]. We only use the cross-track ion drift
velocities, VY , as the along-track component is less reliable.

In our study we solely use data that were flagged as good by the data providers (see http://cindispace.
utdallas.edu/DMSP/). We discard all DMSP orbits which have less than 100 good quality data points at geo-
magnetic latitudes above 50∘. We then further discard any orbits that do not cross the areas encompassed
by the return flow boundaries. It is well known that flows and aurora in the Northern and Southern Hemi-
spheres are not always symmetrical [e.g., Grocott et al., 2010; Reistad et al., 2013]. All DMSP data obtained from
the other hemisphere to the IMAGE data were thus discarded. For 2 October 2000 we have a total of 9 good
DMSP polar crossings with overlapping IMAGE data, for 4 November 2001 we have 17 polar crossings, and for
20 March 2005 we have 13, giving us a total of 39 polar crossings for this study period.

We also use data from the Super Dual Auroral Radar Network (SuperDARN) [see Milan et al., 2013; Chisham
et al., 2007, and references therein]. Ionospheric plasma inhomogeneities can scatter HF radar pulses back
to the radars. The Doppler-shifted signals are then used to determine the line-of-sight ionospheric flow
velocities. Coverage of a large proportion of the polar ionosphere in the Northern Hemisphere then allows
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Figure 2. Data for the interval of interest (4 November 2001). The panels show (a) AL and AU; (b) ΦD + 25 kV (black) and
ΦN + 25 kV (red); (c) VSW; (d) IMF BX (purple), BY (green), and BZ (red); (e) FPC (data in red and estimator used to calculate
ΦN in black); (f ) total auroral brightness (from SI12 instrument) in arbitrary units; (g) dusk-dawn keogram of the proton
aurora (from SI12 instrument), reaching down to 40∘ of colatitude. The green/orange arrows (top and bottom) and
green/orange lines indicate substorm onsets, from Frey’s and the SuperMAG event lists, respectively.

fitting the data to models (parameterized by the solar wind) of global convection using spherical harmonic
fitting (see Ruohoniemi and Baker [1998] for method). From the global convection pattern it is then possible to
extract flow velocities even in places where there are no direct measurements. This provides us with another
data set to compare the model to.

To compare the DMSP convection measurements with the model, we resolve the model output into the
cross-track direction. We do the same with the SuperDARN flows so we can compare with DMSP and
the model.

2.4. Results
Figure 2 gives an overview of 4 November 2001. Figures 2c and 2d show the solar wind conditions for this day
with the IMF conditions and the solar wind speed. The solar wind speed was almost constant, at 320 km/s,
throughout the day. Before 06 UT and after 18 UT the IMF BZ was directed northward. In the intervening period,
the IMF BZ was southward with BZ ∼ −5 nT.
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Figure 2a shows a summary of the magnetospheric response to these solar wind conditions, with the auroral
upper and lower electrojet indices, AL and AU, for this day. AU and AL were very quiet for the periods of north-
ward IMF. AL bays suggest substorm onsets near 07 UT, 10 UT, and 12:45 UT. The red line in this panel shows
a steady magnetospheric convection event (SMC), identified by Walach and Milan [2015]. This SMC followed
a substorm; see Walach and Milan [2015] and references therein, for detailed information of the convection
dynamics about this event type.

Figure 2g shows a dusk-dawn slice, or auroral keogram, of the SI12 data, evolving with time. Each slice’s center
shows the geomagnetic pole, stretching toward 40∘ of geomagnetic colatitude toward dusk (bottom) and
dawn (top). The keogram shows the auroral brightness with light and dark red indicating the least bright and
brightest pixels, and white showing data gaps. From Figures 2g and 2e we see how the auroral oval expands
equatorward (the top and bottom of the panel) before substorm onsets and with a subsequent contraction
as the substorms progress.

Figure 2f shows the total auroral brightness calculated from SI12 (see Shukhtina and Milan [2014], for measur-
ing technique) (in arbitrary units). Peaks in brightness are seen at the time of substorm onset.

The red circles in Figure 2e show FPC measurements based on the circles fitted to the inner auroral boundary.
These were smoothed over three data points to reduce quantization noise.

ΦN was obtained by fitting calculated values of FPC to the slope of FPC, using dFPC

dt
= ΦD −ΦN. Initially, ΦN was

kept at 0 kV and then incrementally changed, such that the curve of calculated FPC matched the measured
FPC as closely as possible (a similar technique was used by Milan et al. [2007]). The black line shows the final
curve of FPC, which was used to calculate ΦN, and the red shows the FPC measurements. Figure 2b shows ΦD

and ΦN with the extra 25 kV added on.

Substorm onsets, as identified by Frey et al. [2004] from the IMAGE data set, are indicated by the green triangles
below Figure 2g and the vertical green lines, whereas the orange triangles and vertical lines show substorms
identified by the SuperMAG data set [Newell and Gjerloev, 2011]. All the Frey substorm onsets, except for the
second one, appear to be well identified, as they match auroral brightenings and expansions. Leading up to
a substorm we would expect the aurora to expand equatorward and thus FPC increases (Figure 2e). At onset
the nightside aurora brightens explosively (Figure 2f ) and contracts again (as shown in Figures 2e and 2g)
(these features are further discussed in Walach and Milan [2015]). There are some discrepancies between the
substorm timings and the onset timings of SuperMAG substorms. For the first two SuperMAG substorms there
are not enough auroral data to discuss them in detail, but the third and last one occur within minutes of a Frey
substorm, giving us confidence in the timing of the onset.

The IMF conditions for this day are not excessively active, but there is dayside driving of the magnetosphere, as
ΦD is elevated. The BY component of the IMF is∼4–7 nT from 9:30 UT until 12:30 UT, but is otherwise between
−2 and 2 nT.

Figures 3 and 4 all show individual polar passes of DMSP F12, F13, and F15, which were used in this study. Each
orbit shows the IMAGE SI12 FUV data in a white to red map in the top left panel (the same color scheme as the
keogram in Figure 2). The dark red circles indicate the concentric boundaries used for the model. Each DMSP
pass shows the cross-track velocity measurements in black lines (grey for quality flags other than “good”)
(bottom left panel). The black potential patterns in the top right panels are derived from the model with
the cross-track velocity component shown in blue along the DMSP trajectory. Green contours (bottom left
panel where applicable) show the SuperDARN convection equipotentials. The dotted grey circles indicate
concentric circles spaced at 10∘ around the geomagnetic pole. Each panel has the hemisphere of the DMSP
pass indicated to the left, followed by which satellite the measurements were obtained from and the time at
which the satellite was closest to the pole (i.e., time at the center of the polar pass). The number to the right
side of the polar pass panels with SuperDARN data indicates the number of SuperDARN measurements where
the green potential pattern was based on, with 100 being the minimum requirement.

The potential patterns obtained by the model for 4 November 2001 (see Figure 3 are rotated by 1 h MLT
in a westerly direction. This was done to accommodate the persistent rotation in the convection throat
seen in the SuperDARN patterns throughout this day. If we were to use cross-track DMSP data alone, we
would not be able to pick up any such asymmetries in the convection patterns. Similarly, Ruohoniemi and
Greenwald [2005] find also that statistically, the convection pattern appears rotated in a westerly direction
during southward IMF BZ . The mechanisms and time scales on which these pattern shifts occur are however
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Figure 3. Two individual DMSP orbits for 4 November 2001, showing the IMAGE data with (top left) fitted circles
(colored map); (top right) the model equipotentials (black) and cross-track velocities (blue); (bottom right) DMSP
cross-track velocities and SuperDARN equipotentials and a scatterplot of the cross-track velocities. The potentials are
spaced at regular intervals of 6 kV. Each orbit is centered on the geomagnetic poles, and the concentric circles in dashed
grey are spaced at 10∘ of geomagnetic latitudes each. The green data in the scatterplots show the cross-track velocities
derived from SuperDARN. The red dashed line shows the line of unity, and the dotted lines show the lines of best fit
(green = SuperDARN and blue = DMSP).

not well enough understood yet [see, e.g., Grocott et al., 2008] to incorporate them into the model, so we have
made a first rudimentary effort to accommodate for it. In some locations, especially near the merging gaps in
the first pass shown in Figure 3, we see additional rotations in the pattern, associated with IMF BY , which are
not reproduced by the model. As a result of the rotation of the convection pattern, the “centers” of the mod-
eled equipotentials are generally more accurately aligned with the ones computed by SuperDARN than they
were before. As the SuperDARN coverage for the 2 October 2000 and the 20 March 2005 are not very good,
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Figure 4. Two individual DMSP orbits for 2 October 2000 and 20 March 2005, presented in the same way as the data
in Figure 3.

we have not included these data here and chosen not to make any guesses about dawn-dusk asymmetries in
the convection pattern.

Overall, a visual inspection of the maps in Figures 3 and 4 suggests that the locations, directions, and mag-
nitudes of the flow velocities are estimated well, but problems arise near the boundaries: DMSP measures
flows which gradually change from one extreme to the other across a boundary, whereas the model’s flow
regimes change more abruptly. We postulate that this is due to the distributed nature of the field-aligned cur-
rents, as the model presumes that these boundary regions are infinitely thin. The result is that the largest flow
velocities are underestimated, the medium scale flows are estimated well and the very slow speeds near the
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boundaries are overestimated by the model. This effect can clearly be seen in the first orbit in Figure 3 in the
return flow regions.

The bottom right panels for Figures 3 and 4 show the data of the polar passes in a different format. Here we
show scatterplots of the cross-track model velocities versus the cross-track DMSP velocities (black points) and
the model-derived cross-track velocities against the SuperDARN-derived cross-track velocities (green points).
To reduce some of the most obvious problems with the data, namely, changes in the convection pattern that
occur on smaller time scales than the time taken by DMSP to pass the flow regions (∼10–15 min) and the
regions near the boundaries being misrepresented by the model, the data were processed slightly from the
polar pass panels to the scatter panels. For this the DMSP data were first split into intervals where IMAGE data
were available (usually ∼2 min length). For each of these data bins the model input was adjusted to represent
the changes in the polar cap and reconnection rates. We then discard any data within ±1∘ of any boundary
and average over 10 data points. Binning the data and varying the model input achieves that the outcome
is less affected by quickly varying reconnection rates. Only considering data which are not in the vicinity of
the boundaries and taking averages over 10 data points accomplishes that the abrupt changes in the model
velocities, which are not always physical, have less weighting in the analysis. These processed data are used
for the scatterplots.

The dotted lines in the scatterplots indicate the line of best fit, calculated using linear regression, whereas the
red dashed line shows the line of unity. The general trend that we already saw in the pass plots, with the model
underestimating both the DMSP data and the SuperDARN-derived velocities is mirrored here. If the model
estimated all flows well, the correlation coefficient, R2, and the gradient, m, would both always be equal to 1.

The first pass projection in Figure 3 does not show a very good match between the model and the SuperDARN
velocities, but the DMSP velocities agree well with the model (R2 of 0.72).

The second orbit in Figure 3 is yet another example, where the SuperDARN data do not match the model very
well. This is perhaps partially due to fewer SuperDARN data points being available, so the data are less reliable.
The SuperDARN flows are underestimated, resulting in the distinct horizontal scatter of the points in the plot.

Both satellite passes in Figure 3 show examples where the model velocities match the DMSP measurements
better than the SuperDARN velocities. This is because both the model and DMSP show fairly large flows in the
morning sector of the flow regions, whereas SuperDARN sees no flows there and instead larger flows in the
dusk cell.

The first pass in Figure 4 shows the highest correlation (R2 = 0.90) for the model versus the DMSP measure-
ments, even though only two thirds of the DMSP data were usable. The gradient of the linear regression is
also quite close to 1 at 0.78.

An example where the boundary evaluations are poor is given by the second orbit in Figure 4. The correla-
tion in the scatterplot shows a good agreement between model and data (R2 = 0.85), but the velocities are
underestimated, which is likely due to an underestimation of the reconnection rates. This becomes apparent
when looking at the pass plot or the gradient in the scatterplot (m = 0.37).

Figure 5 shows a summary of all the polar passes of DMSP from the three time periods. The data shown here
were obtained in the same way as the data shown in the individual scatterplots, but all orbits for each day
were combined in one panel. The different colors correspond to each of the three days: green crosses show
data from 2 October 2000, black circles show data from 4 November 2001, and orange diamonds show data
from 20 March 2005. The corresponding R2 and m are shown in the same colors, along with the line of best fit.
The R2 and m values in purple show the linear regression for the entire data set (i.e., all three days combined).

Overall, the modeled flows are broadly consistent with the data, but they are often underestimated, as already
shown. Indeed m indicates that the model flows are approximately a third of the magnitude of the DMSP mea-
surements, but R2 and the overall data distribution indicate a correlation of the model and the data, showing
that the model nowcasts the trends in the flows well. The results from the three days considered were broadly
consistent with each other and the scatter of the points was very similar too.

3. Discussion

The expanding and contracting polar cap model has been used for decades to discuss and explain ionospheric
and magnetospheric convection flows, but it has never been tested qualitatively in terms of ionospheric flows.
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Figure 5. Scatterplot of cross-track velocities derived from the model against all the cross-track velocities measured by
DMSP for each polar pass of the three selected time periods. The green crosses show the data for 2 October 2000, the
black circles show data for 4 November 2001 and the orange diamonds show data for 20 March 2005. The colored
dashed lines R2 and m values show the lines of best fit for each day, with the colors corresponding to the symbol colors.
The red line shows the line of unity and the long dashed purple line shows the line of best fit for the entire data set.
The corresponding values (R2 and m) are also shown in purple.

3.1. The ECPC Model
Other models for the ECPC are discussed quantitatively, for example, by Lockwood [1991], who explored the
necessity of allowing the expanding and contracting polar cap model to hold a history of previous polar cap
flows. Although the model we employ has no memory per se, the history of the system is kept in the time
series of FPC. A very similar model based on the ECPC has also been developed by Lockwood and Morley [2004],
involving, however, a time-delayed magnetospheric reaction, which we do not have here. Their model is more
sophisticated and as such, requires further information for the model input, for example, the speed of the
flows across the merging gap. Another model based on the ECPC was formulated by Freeman [2003], but their
model does not include the nightside reconnection rate. In this study we use a simple model of the expanding
and contracting polar cap [Milan, 2013] to calculate ionospheric velocities using changes in ΦD, ΦN, and the
flow regions, assuming an incompressible ionosphere and circular symmetry. We compare the model flow
velocities to in situ measurements from the ion drift meter on board the DMSP satellites and ground-based
measurements from SuperDARN. This study outlines some distinct weaknesses of the model which we will
now discuss in more detail. While the simplicity allows the model to be driven by our understanding of the
physical processes, it also imposes some constraints on our study.

3.2. Model Inputs
Two input values (𝜃D and 𝜃N, the widths of the merging gaps), were picked to be fixed constants that the
authors thought to be appropriate from visual inspection of the data. Milan [2013] showed that varying these
values does not have a significant impact on the polar cap dynamics [see Milan, 2013, Figure 7]. It is however
possible that these values may vary with time. For example, they may be dependent on solar wind driving of
the magnetosphere or activity within the magnetosphere-ionosphere system. If this is the case, we think it
would lead to the largest discrepancies, during more active periods. For example, Milan et al. [2016] showed
that during flux transfer events when the solar wind was traveling at larger speeds, 𝜃D must have spanned
more hours of MLT than otherwise (results show that VSW = 380 km/s lead to 𝜃D = 30∘ and VSW = 650 km/s
lead to a merging line width of up to 105∘). As VSW is very constant and not excessively high during the period
of interest here, we assume the 30∘ is a fair estimate.
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Increasing ΦD and ΦN, has the clear result that the magnitudes of the modeled velocities and electrostatic
potential increase. Changing the sizes and locations of the open closed field line boundary and the return
flow boundary would change the patterns of the flows.

3.3. Irregular and Time-Dependent Flows
The first orbit in Figure 4 shows an example of an orbit where considerable convection occurs outside the
polar cap and auroral zones. An example of irregular sunward flows which can occur on latitudes much lower
than the auroral oval are subauroral polarization streams (SAPs) [see, e.g., Foster and Vo, 2002, and references
therein]. SAPs occur mainly on the duskside in the Northern Hemisphere and appear separated latitudinally
from the dual-cell convection pattern with possible peak velocities above 1 km/s, which the model does
not allow for. The flows we see outside the auroral oval, however, appear as part of the dual-cell convection
pattern, so they may not be SAPs.

A further problem presents itself in that the magnetosphere dynamics change on short time scales, for exam-
ple, during substorm onset and the early stages of substorm expansion [see, e.g., Akasofu, 1964], but the
DMSP spacecraft take much longer to traverse one polar cap (up to ∼27 min). As the polar cap dynamics and
flows can change on a time scale of minutes, any orbital plots close to substorm onset will show some flows
from just before and during the substorm but perhaps even from the recovery phase. [Lockwood and Freeman,
1989]. We tried to overcome this by varying the model input for the scatterplots, which appears to improve
the model-data fits.

As previously discussed by Morley and Lockwood [2006], the time scales on which magnetospheric flows
respond to reconnection and especially how the polar cap expands in shape may be variable. As such, the
assumption of the polar cap expanding and contracting at the first instance radially, as opposed to just at the
merging gaps with a time delay on the whole convection pattern, has been discussed and modeled in different
ways. A comparison of such models was also discussed in depth by Freeman [2003], leading to the conclusion
that the overall modeled velocities are very similar. Modeling the convection pattern with an instantaneous
response will most likely introduce the largest errors when there is a sudden change in the solar wind driv-
ing (for example, if the IMF is pointing northward for a prolonged period of time and then observes a sudden
southward turning). As such, it may be a source of error, especially when the reconnection rates change.

Furthermore, the assumption of the electric potential pattern being static, but instantly responsive, has also
been challenged in the past, as discussed by Morley and Lockwood [2006] and references therein. However,
we conclude that the assumption of a static pattern is fair due to the time resolution of our data (i.e. minutes).

3.4. SuperDARN Data Comparison
Figure 2 shows an enhanced and steady IMF BY component for many hours before the shown orbits (Figure 3),
which results in an imbalance in the size of the dawn and dusk ionospheric convection cells and a dawnward
rotation of the dayside merging line [Cowley et al., 1991; Ruohoniemi and Greenwald, 1996]. This trend per-
sists throughout most of the interval shown for this day. When we compare the convection patterns to the
SuperDARN patterns, we also see small scale features, such as crinkled flows across the polar cap or a further
rotation at the Harang discontinuity [Harang, 1946; Heppner, 1972] in the SuperDARN data that the model can
obviously not infer. To make future models more physically accurate, asymmetries arising in the Northern and
Southern Hemispheres and IMF BY -induced asymmetries will have to be addressed.

Despite the northern polar region being well covered by SuperDARN observations, there are still many
instances where even when many data points are available (n ≥ 200), they seldom fall in the same place as
DMSP observations. As such, the SuperDARN data we use for the direct one-to-one comparison in Figure 3
are deduced from the overall SuperDARN convection pattern, imposing a trade-off of quality versus quantity
of observations [Ruohoniemi and Baker, 1998]. Furthermore, as there are sometimes spatial data gaps in the
SuperDARN coverage across the dayside, there tends to be a shift of the convection pattern on the dayside
toward the pole due to a lack of data being filled in by the empirical models [Ruohoniemi and Greenwald, 1996].

3.5. Underestimation of Flows
We tried to overcome the possible underestimation of reconnection rates or viscous interaction (the implica-
tions on the CPCP would be the same) by adding 25 kV to both ΦD and ΦN. The size of the viscous interaction,
and how it may change with differing solar wind conditions, is however still poorly understood [Milan, 2004].

Even though we added 25 kV to ΦD and ΦN, the model underestimates the flows measured by DMSP
(see Figures 3–5). The scatterplots shown suggest that the DMSP data are underestimated by a factor
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of 2–3. A similar offset in flow magnitudes was found statistically between SuperDARN and DMSP data by
Xu et al. [2008] and Drayton et al. [2005], with SuperDARN velocities being∼30% smaller than DMSP velocities.
Furthermore, Xu et al. [2001], Gillies et al. [2011], and Davies et al. [1999] all used different methods to show that
SuperDARN tends to underestimate flows, indicating that the model must also be underestimating the flows,
despite the additional 25 kV added to the dayside and nightside reconnection rates. Studies by Gillies et al.
[2009, 2010, 2011, 2012] showed that the methods employed to obtain ionospheric convection velocities from
SuperDARN data tend to not consider the refractive index of the ionosphere. This is due to the refractive index
being obtained using a large volume of the ionosphere and nonlocalized electron densities, rather than more
refined measurements. The studies by Drayton et al. [2005] and Gillies et al. [2009, 2012] only used line-of-sight
SuperDARN data, which may add a geometrical error to comparing the SuperDARN and DMSP data sets.
As was shown by Imber [2008], when SuperDARN data from the same location in the cross-track direction are
compared to DMSP data statistically, the two data sets do match very well (this will also be explored in a future
study). The SuperDARN data which we show in our model-data comparison were obtained from SuperDARN
potential maps, as even though good coverage was available for one of the days studied, the SuperDARN
measurements did not coincide spatially with the location of the DMSP pass.

Above all, our analysis shows that flow velocities from DMSP can be nowcasted qualitatively when the
convection is driven by dayside and nightside reconnection (i.e., when a dual-cell convection pattern
is dominant).

4. Concluding Remarks

This study has investigated the convection velocities, calculated with the simple expanding-contracting polar
cap model. The quantitative analysis show that the magnitudes of the flows are, on average, underestimated
by a factor of 2–3 but can be estimated qualitatively. We conclude that the offsets may well be a combination
of both measurement errors and underestimation of reconnection rates, but the simplicity of the model adds
to the effect that flows are underestimated. Overall, the locations of the flows match the auroral boundaries
well and the relative flow magnitudes agree well.

The main weakness of the considered model itself is that the convection cells, and indeed the polar cap itself,
are not always symmetric. In order to improve the model’s prediction capabilities, as well as to bring our
understanding forward, more research into the angular width of the merging lines and the IMF BY -induced
asymmetries is required. Although the auroral boundaries represent the flow boundaries very well, the model
predicts sharp edges as the boundaries are assumed to be infinitely thin sheets, which is not representative
of the data.

We conclude that although we can predict the flow strengths, BY -related asymmetries must be built into the
model in order to predict flows more accurately, as a simple rotation of the convection pattern is not enough
to compensate for asymmetries.

References
Akasofu, S.-I. (1964), The development of the auroral substorm, Planet. Space Sci., 12, 273–282.
Boakes, P. D., S. E. Milan, G. A. Abel, M. P. Freeman, G. Chisham, B. Hubert, and T. Sotirelis (2008), On the use of IMAGE FUV for

estimating the latitude of the open/closed magnetic field line boundary in the ionosphere, Ann. Geophys., 26, 2759–2769,
doi:10.5194/angeo-26-2759-2008.

Burch, J. L. (2000), IMAGE mission overview, Space Sci. Rev., 91, 1–14.
Chisham, G., et al. (2007), A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and

future directions, Surv. Geophys., 28(1), 33–109, doi:10.1007/s10712-007-9017-8.
Cowley, S. W. H., and M. Lockwood (1992), Excitation and decay of solar wind-driven flows in the magnetosphere-ionophere system,

Ann. Geophys., 10, 103–115.
Cowley, S. W. H., and M. Lockwood (1996), Time-dependent flows in the coupled solar wind-magnetosphere-ionosphere system,

Adv. Space Res., 18(8), 141–150, doi:10.1016/0273-1177(95)00972-8.
Cowley, S. W. H., J. P. Morelli, and M. Lockwood (1991), Dependence of convective flows and particle precipitation in the high-latitude

dayside ionosphere on the X and Y components of the interplanetary magnetic field, J. Geophys. Res., 96(A4), 5557–5564.
Davies, J. A., M. Lester, S. E. Milan, and T. K. Yeoman (1999), A comparison of velocity measurements from the CUTLASS Finland radar and

the EISCAT UHF system, Ann. Geophys., 17(7), 892–902, doi:10.5194/angeo-17-892-1999.
De La Beaujardière, O., D. Alcayde, J. Fontanari, and C. Leger (1991), Seasonal dependence of high-latitude electric fields, J. Geophys. Res.,

96(A4), 5723–5735.
Drayton, R. A., A. V. Koustov, M. R. Hairston, and J.-P. Villain (2005), Comparison of DMSP cross-track ion drifts and SuperDARN line-of-sight

velocities, Ann. Geophys., 23, 2479–2486.
Dungey, J. W. (1963), Interactions of solar plasma with the geomagnetic field, Planet. Space Sci., 10, 223–237.
Foster, J. C. (1983), An empirical electric field model derived from Chatanika radar data, J. Geophys. Res., 88(A2), 981–987.

Acknowledgments
We thank the PI of IMAGE, J.L. Burch
and the PI of FUV, S.B. Mende for
the original IMAGE data set. The
OMNI data are provided by the
GSFC/SPDF OMNIWeb platform
(http://cdaweb.gsfc.nasa.gov/), and we
are grateful to the PIs of the data set
used: J.H. King and N. Papatashvilli.
We gratefully acknowledge the Center
for Space Sciences at the University
of Texas at Dallas and the U.S. Air
Force for providing the DMSP ion drift
meter data. We thank H. Frey for the
IMAGE-derived substorm event list and
the SuperMAG team for providing their
substorm event list on their website
(http://supermag.uib.no/substorms/).
M.-T.W. was supported by a
studentship from the Science and
Technology Facilities Council, UK.
S.E.M. and T.K.Y. were supported
on the STFC grant ST/K001000/1.
The SuperDARN data processing was
supported by the European Union
Framework 7 Programme, ECLAT
Project grant 263325 and the data are
available on the cluster science archive
(http://www.cosmos.esa.int/web/csa).
T.K.Y. was also supported on
the NERC grant NE/K011766/1.
The original IMAGE data are available
through the IMAGE FUV homepage
(http://sprg.ssl.berkeley.edu/image/)
and the DMSP data are available
via the DMSP SSIES website
(http://cssxp1000.utdallas.edu/DMSP/
dmsp_data_at_utdallas.html).
The code used to generate the plots in
this paper are stored in the University
of Leicester computers and are
available on request.

WALACH ET AL. TESTING THE ECPC USING CONVECTION 12

http://dx.doi.org/10.5194/angeo-26-2759-2008
http://dx.doi.org/10.1007/s10712-007-9017-8
http://dx.doi.org/10.1016/0273-1177(95)00972-8
http://dx.doi.org/10.5194/angeo-17-892-1999
http://cdaweb.gsfc.nasa.gov/
http://supermag.uib.no/substorms/
http://www.cosmos.esa.int/web/csa
http://sprg.ssl.berkeley.edu/image/
http://cssxp1000.utdallas.edu/DMSP/dmsp_data_at_utdallas.html
http://cssxp1000.utdallas.edu/DMSP/dmsp_data_at_utdallas.html


Space Weather 10.1002/2017SW001615

Foster, J. C., and H. B. Vo (2002), Average characteristics and activity dependence of the subauroral polarization stream, J. Geophys. Res.,
107(A12), 1475, doi:10.1029/2002JA009409.

Freeman, M. P. (2003), A unified model of the response of ionospheric convection to changes in the interplanetary magnetic field,
J. Geophys. Res., 108(A1), 1024, doi:10.1029/2002JA009385.

Freeman, M. P., and D. J. Southwood (1988), The effect of magnetospheric erosion on mid- and high-latitude ionospheric flows, Planet. Space
Sci., 36(5), 509–522, doi:10.1016/0032-0633(88)90110-9.

Frey, H. U., S. B. Mende, V. Angelopoulos, and E. F. Donovan (2004), Substorm onset observations by IMAGE-FUV, J. Geophys. Res., 109,
A10304, doi:10.1029/2004JA010607.

Gillies, R. G., G. C. Hussey, G. J. Sofko, K. A. McWilliams, R. A. D. Fiori, P. Ponomarenko, and J. P. St.-Maurice (2009), Improvement of
SuperDARN velocity measurements by estimating the index of refraction in the scattering region using interferometry, J. Geophys. Res.,
114, A07305, doi:10.1029/2008JA013967.

Gillies, R. G., G. C. Hussey, G. J. Sofko, D. M. Wright, and J. A. Davies (2010), A comparison of EISCAT and SuperDARN F-region measurements
with consideration of the refractive index in the scattering volume, J. Geophys. Res., 115, A06319, doi:10.1029/2009JA014694.

Gillies, R. G., G. C. Hussey, G. J. Sofko, P. V. Ponomarenko, and K. A. McWilliams (2011), Improvement of HF coherent radar line-of-sight
velocities by estimating the refractive index in the scattering volume using radar frequency shifting, J. Geophys. Res., 116, A01302,
doi:10.1029/2010JA016043.

Gillies, R. G., G. C. Hussey, G. J. Sofko, and K. A. McWilliams (2012), A statistical analysis of SuperDARN scattering volume electron densities
and velocity corrections using a radar frequency shifting technique, J. Geophys. Res., 117, A08320, doi:10.1029/2012JA017866.

Greenspan, M. E., P. B. Anderson, and J. M. Pelagatti, (1986), Characteristics of the Thermal Plasma Monitor (SSIES) for the Defense
Meteorological Satellite Program (DMSP), Spacecraft S8 through S10, Tech. Rep., Regis College Research Center, Weston, Mass.

Grocott, A., S. Cowley, J. Sigwarth, J. Watermann, and T. K. Yeoman (2002), Excitation of twin-vortex flow in the nightside high-latitude
ionosphere during an isolated substorm, Ann. Geophys., 20, 1577–1601, doi:10.5194/angeo-20-1577-2002.

Grocott, A., S. W. H. Cowley, and J. B. Sigwarth (2003), Ionospheric flow during extended intervals of northward but By -dominated IMF,
Ann. Geophys., 21(2), 509–538, doi:10.5194/angeo-21-509-2003.

Grocott, A., S. E. Milan, and T. K. Yeoman (2008), Interplanetary magnetic field control of fast azimuthal flows in the nightside high-latitude
ionosphere, Geophys. Res. Lett., 35, L08102, doi:10.1029/2008GL033545.

Grocott, A., S. E. Milan, T. K. Yeoman, N. Sato, A. S. Yukimatu, and J. A. Wild (2010), Superposed epoch analysis of the ionospheric convection
evolution during substorms: IMF By dependence, J. Geophys. Res., 115, A00I06, doi:10.1029/2010JA015728.

Hairston, M. R., and R. A. Heelis, (1996), Analysis of ionospheric parameters based on DMSP SSIES data using the DBASE4 and NADIA
programs, Tech. Rep., Phillips Laboratory, Directorate of Geophysics, Hanscom Air Force Base, Massachusetts.

Harang, L. (1946), The mean field of disturbance of polar geomagnetic storms, Terr. Magn. Atmos. Electric., 51(3), 353–380,
doi:10.1029/TE051i003p00353.

Heelis, R. A., and W. B. Hanson (1998), Measurements of thermal ion drift velocity and temperature using planar sensors, in Measurement
Techniques in Space Plasmas: Particles, Geophys. Monogr. Ser., vol. 102, p. 61, AGU, Washington, D. C.

Heppner, J. P. (1972), The harang discontinuity in auroral belt ionospheric currents, in A Collection of Articles on Cosmic Geophysics Dedicated
to the Memory of Professor L. Harang on the Seventieth Anniversary of His Birth 19 April 1972, 29 edn., edited by J. Holtet and A. Egeland,
pp. 105–120, Geofysiske Publikasjoner; Universitetsforlage, Oslo.

Heppner, J. P. (1977), Empirical models of high-latitude electric fields, J. Geophys. Res., 82(7), 1115–1125.
Heppner, J. P., and N. C. Maynard (1987), Empirical high-latitude electric field models, J. Geophys. Res., 92(A5), 4467–4489,

doi:10.1029/JA092iA05p04467.
Hubert, B., S. E. Milan, A. Grocott, C. Blockx, S. W. H. Cowley, and J.-C. Gérard (2006), Dayside and nightside reconnection rates inferred from

IMAGE FUV and Super Dual Auroral Radar Network data, J. Geophys. Res., 111, A03217, doi:10.1029/2005JA011140.
Imber, S. M. (2008), Auroral and ionospheric flow measurements of magnetopause reconnection during intervals of northward

interplanetary magnetic field, PhD thesis, Univ. of Leicester, Leicester, U. K.
King, J. H., and N. E. Papitashvili (2005), Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic

field data, J. Geophys. Res., 110, A02104, doi:10.1029/2004JA010649.
Lockwood, M. (1991), On flow reversal boundaries and transpolar voltage in average models of high-latitude convection, Planet. Space Sci.,

39(3), 397–409, doi:10.1016/0032-0633(91)90002-r.
Lockwood, M., and S. W. H. Cowley (1992), Ionospheric convection and the substorm cycle, in International Conference on Substorms,

pp. 99–109, Eur. Space Agency Publ., Noordwijk, Netherlands.
Lockwood, M., and M. P. Freeman (1989), Recent ionospheric observations relating to solar-wind-magnetosphere coupling, Philos. Trans. R.

Soc., 328, 93–105.
Lockwood, M., and S. K. Morley (2004), A numerical model of the ionospheric signatures of time-varying magnetic reconnection:

I. Ionospheric convection, Ann. Geophys., 22, 73–91.
Lockwood, M., M. Hairston, I. Finch, and A. Rouillard (2009), Transpolar voltage and polar cap flux during the substorm cycle and steady

convection events, J. Geophys. Res., 114, A01210, doi:10.1029/2008JA013697.
Mende, S. B., et al. (2000a), Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging, Space Sci. Rev., 91, 271–285.
Mende, S. B., et al. (2000b), Far ultraviolet imaging from the IMAGE spacecraft. 3. Spectral imaging of Lyman-𝛼 and OI 135.6 nm,

in The IMAGE Mission, edited by J. L. Burch, chap. 3, pp. 287–318, Springer, Netherlands.
Milan, S. E. (2004), Dayside and nightside contributions to the cross polar cap potential: Placing an upper limit on a viscous-like interaction,

Ann. Geophys., 22, 3771–3777, doi:10.5194/angeo-22-3771-2004.
Milan, S. E. (2013), Modeling Birkeland currents in the expanding/contracting polar cap paradigm, J. Geophys. Res. Space Physics, 118,

5532–5542, doi:10.1002/jgra.50393.
Milan, S. E., G. Provan, and B. Hubert (2007), Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection

rates, J. Geophys. Res., 112, A01209, doi:10.1029/2006JA011642.
Milan, S. E., J. Hutchinson, P. D. Boakes, and B. Hubert (2009), Influences on the radius of the auroral oval, Ann. Geophys., 27, 2913–2924.
Milan, S. E., J. S. Gosling, and B. Hubert (2012), Relationship between interplanetary parameters and the magnetopause reconnection rate

quantified from observations of the expanding polar cap, J. Geophys. Res., 117, A03226, doi:10.1029/2011JA017082.
Milan, S. E., S. Imber, and M. Lester, (2013), ECLAT SuperDARN user guide, Tech. Rep., Univ. of Leicester, Leicester, U. K.
Milan, S. E., S. M. Imber, J. A. Carter, M.-T. Walach, and B. Hubert (2016), What controls the local time extent of flux transfer events?,

J. Geophys. Res. Space Physics, 121, 1391–1401, doi:10.1002/2015JA022012.

WALACH ET AL. TESTING THE ECPC USING CONVECTION 13

http://dx.doi.org/10.1029/2002JA009409
http://dx.doi.org/10.1029/2002JA009385
http://dx.doi.org/10.1016/0032-0633(88)90110-9
http://dx.doi.org/10.1029/2004JA010607
http://dx.doi.org/10.1029/2008JA013967
http://dx.doi.org/10.1029/2009JA014694
http://dx.doi.org/10.1029/2010JA016043
http://dx.doi.org/10.1029/2012JA017866
http://dx.doi.org/10.5194/angeo-20-1577-2002
http://dx.doi.org/10.5194/angeo-21-509-2003
http://dx.doi.org/10.1029/2008GL033545
http://dx.doi.org/10.1029/2010JA015728
http://dx.doi.org/10.1029/TE051i003p00353
http://dx.doi.org/10.1029/JA092iA05p04467
http://dx.doi.org/10.1029/2005JA011140
http://dx.doi.org/10.1029/2004JA010649
http://dx.doi.org/10.1016/0032-0633(91)90002-r
http://dx.doi.org/10.1029/2008JA013697
http://dx.doi.org/10.5194/angeo-22-3771-2004
http://dx.doi.org/10.1002/jgra.50393
http://dx.doi.org/10.1029/2006JA011642
http://dx.doi.org/10.1029/2011JA017082
http://dx.doi.org/10.1002/2015JA022012


Space Weather 10.1002/2017SW001615

Morley, S. K., and M. Lockwood (2006), A numerical model of the ionospheric signatures of time-varying magnetic
reconnection: III. Quasi-instantaneous convection responses in the Cowley-Lockwood paradigm, Ann. Geophys., 24, 961–972,
doi:10.5194/angeo-24-961-2006.

Newell, P. T., and J. W. Gjerloev (2011), Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power,
J. Geophys. Res., 116, A1211, doi:10.1029/2011JA016779.

Reistad, J. P., N. Østgaard, K. M. Laundal, and K. Oksavik (2013), On the non-conjugacy of nightside aurora and their generator mechanisms,
J. Geophys. Res. Space Physics, 118, 3394–3406, doi:10.1002/jgra.50300.

Rich, F. J., and M. Hairston (1994), Large-scale convection patterns observed by DMSP, J. Geophys. Res., 99(A3), 3827–3844.
Ruohoniemi, J. M., and K. B. Baker (1998), Large-scale imaging of high-latitude convection with Super Dual Auroral Radar Network HF radar

observations, J. Geophys. Res., 103(A9), 20,797–20,811, doi:10.1029/98JA01288.
Ruohoniemi, J. M., and R. A. Greenwald (1996), Statistical patterns of high-latitude convection obtained from Goose Bay HF radar

observations, J. Geophys. Res., 101(A10), 21,743–21,764, doi:10.1029/96JA01584.
Ruohoniemi, J. M., and R. a. Greenwald (1998), The response of high-latitude convection to a sudden southward IMF turning,

Geophys. Res. Lett., 25(15), 2913–2916, doi:10.1029/98GL02212.
Ruohoniemi, J. M., and R. A. Greenwald (2005), Dependencies of high-latitude plasma convection: Consideration of interplanetary magnetic

field, seasonal, and universal time factors in statistical patterns, J. Geophys. Res., 110, A09204, doi:10.1029/2004JA010815.
Sergeev, V. A., E. M. Sazhina, N. A. Tsyganenko, J. A. Lundblad, and F. Soraas (1983), Pitch-angle scattering of energetic protons in the

magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere, Planet. Space Sci., 31(10),
1147–1155, doi:10.1016/0032-0633(83)90103-4.

Shukhtina, M. A., and S. E. Milan, (2014), ECLAT system level data product report (D430.1), Tech. Rep.
Siscoe, G. L., and T. S. Huang (1985), Polar cap inflation and deflation, J. Geophys. Res., 90(A1), 543–547.
Stern, D. P. (1975), The motion of a proton in the equatorial magnetosphere, J. Geophys. Res., 80(4), 595–599, doi:10.1029/JA080i004p00595.
Volland, H. (1978), A model of the magnetospheric electric convection field, J. Geophys. Res., 83(A6), 2695–2699,

doi:10.1029/JA083iA06p02695.
Walach, M.-T., and S. E. Milan (2015), Are steady magnetospheric convection events prolonged substorms?, J. Geophys. Res. Space Physics,

120, 2695–2699, doi:10.1002/2014JA020631.
Xu, L., A. V. Koustov, J. Thayer, and M. A. Mccready (2001), SuperDARN convection and Sondrestrom plasma drift, Ann. Geophys., 19(7),

749–759.
Xu, L., A. V. Koustov, J. Xu, R. Drayton, and L. Huo (2008), A 2-D comparison of ionospheric convection derived from SuperDARN and DMSP

measurements, Adv. Space Res., 42(7), 1259–1266, doi:10.1016/j.asr.2007.06.044.

WALACH ET AL. TESTING THE ECPC USING CONVECTION 14

http://dx.doi.org/10.5194/angeo-24-961-2006
http://dx.doi.org/10.1029/2011JA016779
http://dx.doi.org/10.1002/jgra.50300
http://dx.doi.org/10.1029/98JA01288
http://dx.doi.org/10.1029/96JA01584
http://dx.doi.org/10.1029/98GL02212
http://dx.doi.org/10.1029/2004JA010815
http://dx.doi.org/10.1016/0032-0633(83)90103-4
http://dx.doi.org/10.1029/JA080i004p00595
http://dx.doi.org/10.1029/JA083iA06p02695
http://dx.doi.org/10.1002/2014JA020631
http://dx.doi.org/10.1016/j.asr.2007.06.044

	Abstract
	Plain Language Summary
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


