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Abstract: 22 



[1] In early 2014, continuous monitoring with the Hisaki satellite discovered transient 23 

auroral emission at Jupiter during a period when the solar wind was relatively quiet for a few 24 

days. Simultaneous imaging made by the Hubble Space Telescope (HST) suggested that the 25 

transient aurora is associated with a global magnetospheric disturbance that spans from the 26 

inner to outer magnetosphere. However, the temporal and spatial evolutions of the 27 

magnetospheric disturbance were not resolved because of the lack of continuous monitoring 28 

of the transient aurora simultaneously with the imaging. Here we report the coordinated 29 

observation of the aurora and plasma torus made by Hisaki and HST during the approach 30 

phase of the Juno spacecraft in mid-2016. On day 142, Hisaki detected a transient aurora with 31 

a maximum total H2 emission power of ~8.5 TW. The simultaneous HST imaging was 32 

indicative of a large ‘dawn storm’, which is associated with tail reconnection, at the onset of 33 

the transient aurora. The outer emission, which is associated with hot plasma injection in the 34 

inner magnetosphere, followed the dawn storm within less than two Jupiter rotations. The 35 

monitoring of the torus with Hisaki indicated that the hot plasma population increased in the 36 

torus during the transient aurora. These results imply that the magnetospheric disturbance is 37 

initiated via the tail reconnection and rapidly expands toward the inner magnetosphere, 38 

followed by the hot plasma injection reaching the plasma torus. This corresponds to the 39 

radially inward transport of the plasma and/or energy from the outer to the inner 40 

magnetosphere.  41 

 42 

Main Text:  43 

1. Introduction 44 

[2] Structures of Jupiter’s aurora are roughly categorized into four components: the main 45 

oval emission, poleward emission, outer emission, and satellite-induced emissions [see 46 

Clarke et al., 2004 and Grodent, 2014 and the references therein]. The main oval is thought 47 



to be driven via field-aligned particle acceleration associated with a magnetosphere-48 

ionosphere (M-I) coupling current system corresponding to the middle magnetosphere (10-40 49 

Jovian radii, Rj, Khurana et al., 2004) [e.g., Hill, 1979, 2001; Cowley and Bunce, 2003a, b]. 50 

The poleward emission within the main oval is associated with the outer magnetosphere (>40 51 

Rj) and also with the external solar wind [e.g., Pallier and Prangé, 2001, 2004; Waite et al., 52 

2001; Grodent et al., 2004; Bonfond et al., 2016]. The outer emission that surrounds the main 53 

oval with both diffuse and discrete morphologies [e.g., Mauk et al., 2002; Radioti et al., 54 

2009] is associated with the energetic particle dynamics (e.g., injections and pitch angle 55 

scattering of the energetic particles) in the inner magnetosphere (<10 Rj)  [Tomás et al., 56 

2004; Dumont et al., 2014]. The satellite-induced emissions are excited by current systems 57 

that electromagnetically couple the satellites with Jupiter.  58 

[3] Continuous monitoring by the Hisaki satellite recently demonstrated recurrence of the 59 

transient aurora with a typical duration of 3-11 hours during a period when the solar wind 60 

was relatively quiet [Kimura et al., 2015], a phenomenon which has appeared in previous 61 

observations by the International Ultraviolet Explorer (IUE) and Cassini [Prangé et al., 2001; 62 

Pryor et al., 2005; Tsuchiya et al., 2010]. The occurrence of the transient aurora during quiet 63 

solar wind periods suggest ‘internal’ processes, e.g., Io’s volcanic activity [e.g., Bonfond et 64 

al., 2012], are likely the dominant driver. In this study, we refer to the aurora that brightens 65 

and decays within a few Jupiter rotations as the ‘transient aurora’. Kimura et al. [2015] 66 

concluded that the transient aurora is part of the global magnetospheric disturbance referred 67 

to as the ‘energetic event’ [e.g., Louarn et al, 2014], which is characterized by a 2-3 day 68 

recurrence of auroral radio bursts, energetic particle injection in the inner magnetosphere, and 69 

a magnetic field perturbation. The work by Louarn et al. suggested that the energetic event is 70 

initiated by Vasyliūnas tail reconnection [e.g., Vasyliūnas, 1983; Kronberg et al., 2007, 71 

2008]. In the Vasyliūnas reconnection process, a closed magnetic field line filled with iogenic 72 

plasma is stretched down the tail by the centrifugal force of corotation and pinched off, 73 



forming a plasmoid. This is referred to as ‘internally-driven’ reconnection [Kronberg et al., 74 

2007] in contrast with Dungey type reconnection that is ‘externally-driven’ by the solar wind. 75 

[4] The simultaneous imaging by the Hubble Space Telescope (HST) with Hisaki 76 

indicated the three structures introduced above, the main oval, poleward emissions, and outer 77 

emission, were enhanced simultaneously around the transient aurora [Kimura et al., 2015; 78 

Badman et al., 2016; Gray et al., 2016]. However, the temporal and spatial evolutions of the 79 

transient aurora and energetic events were not resolved by these previous observations 80 

because of the lack of continuous monitoring that spans the typical duration of the transient 81 

aurora. 82 

[5] From early- to mid-2016, the Juno spacecraft measured the solar wind with in-situ 83 

plasma instruments during the approach phase to Jupiter. The simultaneous HST observing 84 

campaign spanning from May to July 2016 was analyzed by Nichols et al. [2017]. Here we 85 

report the continuous monitoring of the aurora and plasma torus made by Hisaki during the 86 

HST observing campaign. The temporal evolution of the auroral regions during the transient 87 

event is discussed based on the comparison of the Hisaki monitoring with the HST imaging.  88 

2. Dataset 89 

[6] Before and after the Jupiter Orbit Insertion (JOI) of Juno, Hisaki continuously 90 

monitored Jupiter’s aurora and plasma torus from January 21 to August 30, 2016 (Day of 91 

Year, DOY, 21-243). This study defines the analysis period from DOY136-160 which 92 

overlaps the HST observations investigated by Nichols et al. [2017].  93 

[7] The continuous monitoring was made with the extreme ultraviolet (EUV) 94 

spectrometer, EXCEED, onboard Hisaki [Yoshioka et al., 2013; Yamazaki et al., 2014]. The 95 

EUV photons emitted from the aurora and torus measured with EXCEED are reduced to 96 

spectral imaging data. In the observation period of the present study, the dumbbell-shaped slit 97 

was used for imaging spectroscopy (see Figure 1 of Kimura et al. [2015]). The slit length 98 



along the spatial axis is 360 arcsec, while its width along the wavelength axis is 140 arcsec, 99 

narrowed to 20 arcsec at +/-45 arcsec from the middle point of the spatial axis. The spectral 100 

range spans from 550 to 1450 Å with a resolution of 3 Å full width at half maximum 101 

(FWHM). The FWHM of the point spread function (PSF) is ~17 arcsec [Yamazaki et al., 102 

2014; Yoshioka et al., 2013]. Hisaki continuously acquired the imaging spectra during 40-60 103 

minutes of every 100-minute Hisaki orbit. This data acquisition continued through DOY21-104 

243.  105 

[8] Following Kimura et al. [2015, 2016], the power emitted from the aurora is derived 106 

by 10-minute integration of the imaging spectral data. The spectral region used for the 107 

integration spans from 900 to 1480 Å, and the spatial region of 20 arcsec from Jupiter’s north 108 

pole is extracted. The contamination by disk emission was estimated to be ~150 GW when 109 

the northern aurora faces anti-earthward [Kimura et al., 2015].  110 

[9] The total emitted power of the torus is estimated in the same manner as the auroral 111 

analysis. The spectral range for the integration spans from 650 to 770 Å, where there is no 112 

significant geocoronal line emission [Kuwabara et al., 2017]. This range corresponds to the 113 

line emissions of sulfur ions, S+, S2+, and S3+ (SIV 675 Å, SIII 680 Å, SIII 702 Å, SIII 729 Å, 114 

SIV 748 Å, and SII 765 Å). The photon production rate is positively correlated with the 115 

abundance of hot electrons at 10s-100s eV in the torus [e.g., Delamere and Bagenal, 2003; 116 

Yoshioka et al., 2011, 2014; Tsuchiya et al., 2015]. Two regions of interest are defined for the 117 

torus integration: the dawn and dusk ansae. The torus emission from the region at 20-200 118 

arcsec (i.e., ~1-10 Rj around Jupiter’s opposition) from the center of Jupiter is integrated over 119 

10 minutes for the dawn and dusk, respectively.  120 

[10] The HST observing campaign spans from DOY137 to 200. During the campaign, 121 

HST took 44 images of the far ultraviolet (FUV) auroral emissions with the Space Telescope 122 



Imaging Spectrograph (STIS). The STIS imaging was made with a 0.08 arcsec FWHM of 123 

PSF at 1300-1825 Å with the F25SRF2 filter. See Nichols et al. [2017] for further details.  124 

3. Result 125 

3.1. Transient aurora on DOY142 126 

[11] Figure 1 shows a close-up of a transient aurora reaching to a peak power of 1.9 TW at 127 

900 to 1480 Å on DOY 142 (see Supporting Information for observation in the entire analysis 128 

period on DOY136-160). This is one of the largest peak powers that have been measured 129 

throughout the entire Hisaki observing period from November 2013 to the present.  130 

[12] Figure 1a indicates the dependence of the auroral power during DOY140-144 on 131 

Central Meridian Longitude (CML), shown with rainbow-colored error bars, and that of the 132 

average power during DOY1-240, shown with black solid line. The average emission power 133 

excluding the transient event peaks around CML~170°-230° (see also Clarke et al., 1980, 134 

Tao et al., 2016a, b). The transient auroral peak on DOY142, which was observed around 135 

CML~260°, shown with a green error bar, is significantly above average by 10 standard 136 

deviations (10σ, where σ~150GW at CML~260°). At this time, the northern magnetic pole of 137 

Jupiter faced the post-noon local time sector. Figure 1b shows the total auroral power 138 

(rainbow-colored error bars) with rotational modulation modeled with a sinusoidal function 139 

fitted to the observed power (red solid line). The period on DOY142.0-143.0 when the 140 

transient aurora occurred is excluded from the fit. The sinusoidal fit function represents the 141 

9.925 h rotational modulation, which corresponds to the System III period, during the quiet 142 

period when no transient aurora was observed. Here we define the ‘onset’ as the time at 143 

which the power exceeded 3σ above the average power vs CML (Figure 1a), which occurred 144 

on DOY142.1. HST took an image of the aurora just after the onset. After the onset, the 145 

auroral power reaches a peak of 1.9 TW, which is 10σ above the average CML dependence, 146 



on DOY142.2 and is followed by a ‘declining phase’ where the power declined almost to the 147 

quiet emission power level within two rotations.  148 

[13] The auroral emission power from 1385 to 1448 Å where the emission is less absorbed 149 

by Jupiter’s atmosphere is converted to the H2 emission power that spans most of the UV 150 

wavelengths (700-1800 Å) eliminating Jupiter’s atmospheric absorption and rotational 151 

modulation. The unabsorbed power estimation for the Hisaki data is established by Tao et al. 152 

[2016a, b]. See these references for the details for the estimation. The unabsorbed emission 153 

power is ~8.5 TW, which corresponds to the total input power of ~85 TW. The unabsorbed 154 

emission power is approximately 4.5 times larger than that observed at 900-1480 Å, for the 155 

auroral peak on DOY142.  156 

3.2. Dawn-dusk asymmetry in torus  157 

[14] Based on the Hisaki monitoring of the dusk and dawn torus, Tsuchiya et al. [2015] 158 

detected periodicities at ~42.4 and ~9.9 hours, which are close to Jupiter’s rotation and Io’s 159 

orbital period. They concluded that the detected periodicities are attributed to the hot electron 160 

populations associated with Io phase and Io’s location with respect to the plasma torus. We 161 

model these periodicities with a linear sum of two offset sinusoidal functions at periods of 162 

42.4 and 9.9 hours. The modeled linear sums are shown with the red solid lines in Figure 1c 163 

and d. The offset, which is representative of the long-term averaged emission power, is 164 

estimated to be ~423 and 339 GW for the dusk- and dawn-sides, respectively. It is notable 165 

that the rotational modulations in the dawn and dusk are in anti-phase. The anti-phase 166 

periodicity is also evident in the modulations around Io’s orbital period.  167 

[15] It has been reported that the torus brightness sometimes indicates periodicities a few 168 

percent longer than Jupiter’s rotation period [e.g., Steffl et al., 2006]. To investigate the 169 

longer periodicities, the above fitting was also performed with a linear sum of two offset 170 

sinusoidal functions with a period of 42.4 hours and that longer than 9.9 hours (up to 10.3 171 



hours). There is no significant difference between fittings with the 9.9-hour and longer 172 

periods. We conclude periodicities in the torus brightness can be represented by periods of 173 

42.4 and 9.9 hours in this analysis period.  174 

[16] The torus emission power at the entire UV wavelength (0-1000 Å) is also estimated. 175 

The estimated power is approximated by multiplying the observed emission power by a 176 

factor ~2, which is the ratio of the entire wavelength power to the observed power evaluated 177 

based on the canonical EUV spectra as modeled by using the CHIANTI atomic database 178 

[e.g., Steffl et al., 2004; Yoshioka et al., 2011, 2014]. The emitted total power of the torus 179 

during the transient aurora is estimated to be ~1.5 TW.  180 

[17] The residual power of the aurora is obtained by subtracting the fitted sinusoidal 181 

function from the observed power (Figure 2a). The residuals for the torus are also obtained in 182 

the same manner (Figure 2c and d). The transient aurora spans from DOY142.1 to 142.8. 183 

This corresponds to the duration of ~17 hours. Before the onset of the transient aurora, there 184 

are some modulations in the dusk- and dawn-side tori. The dusk-side residual (Figure 2c) 185 

positively deviates by <70 GW from the fitted function on DOY141.8-142.1 simultaneously 186 

with the negative deviation by <70 GW in the dawn-side residual (Figure 2d). This variation 187 

more clearly appears in the ratio of the dusk total power to the dawn as the positive deviation 188 

from the average (Figure 2b). The positive deviation means that the dusk is brighter than its 189 

average. In contrast, the dawn is darker than the average. The dusk-to-dawn ratio shows local 190 

maxima on DOY142.0. This variation in the dusk-to-dawn ratio continues around the 191 

transient aurora: the maxima on DOY142.5 and 142.8 and minima on DOY142.25 and 192 

142.65. From the temporal intervals between the local maxima and minima, the average 193 

periodicity is estimated to be ~9.6 hours. It should be noted that the first pair of the maxima 194 

and minima on DOY142.0 and 142.25 are coincident with the anti-phase residual power, 195 



while the second pair on DOY142.5 and 142.65 are only with the dusk residual enhancement: 196 

i.e., the dawn torus shows the average power. 197 

3.3. Auroral structure 198 

[18] Figure 3 shows the auroral images observed by HST on DOY140-142. The image 199 

taken on DOY140 is shown as a representative for the quiet period (Figure 3b). Between 200 

02:17:42-03:02:12 (DOY142.10-142.13) on DOY142 (Figure 3c-e), a dawn storm, which is 201 

suggestive of dawn side tail reconnection and planetward return flow [Cowley et al., 2003; 202 

Clarke et al., 2004], was evident at System III longitude of 180°-260°< in the main oval 203 

(Figure 3c-e) as observed during the 2014 HST campaign [Kimura et al., 2015; Badman et 204 

al., 2016; Gray et al., 2016]. This exposure time corresponds to the onset timing of the 205 

transient aurora in the Hisaki data. The adjacent images in Figure 3c-e indicate that the dawn 206 

storm rapidly expands in latitude and longitude and brightens from 2.2 to 5.5 TW within 44.2 207 

minutes.  It should be noted that this increase is attributed to both the temporal evolution of 208 

the total emission power and an increase in the apparent area of the corotating auroral 209 

structure. See Nichols et al. [2017] for details of the HST observations during this period. 210 

[19] The last HST image shown in Figure 3f was taken at 22:07:37 (DOY142.92) on 211 

DOY142 after the declining phase of the transient aurora when the auroral power in the 212 

Hisaki data had almost returned to the quiet level. The dawn storm in the main oval had 213 

dimmed. The outer emission appeared from System III longitude <100° to 150°. The dusk 214 

sector of the poleward emission at System III longitude of 150°-170° was also indicative of 215 

an enhancement.  216 

4. Discussion 217 

[20] An enhancement in Jupiter’s sodium nebula, which is associated with Io’s volcanic 218 

eruption, was observed on DOY140 [M. Yoneda, private communication, 2017], as part of a 219 

long-term observing program from 2015 [Yoneda et al., 2015].  We suggest that this may be 220 



associated with enhanced mass-loading and subsequent loss via tail reconnection. We 221 

therefore conclude that the transient aurora is partly internally driven associated with mass 222 

loading from Io, as reported by Kimura et al. [2015].  223 

[21] Based on the in-situ solar wind measurements with Juno during the HST campaign, 224 

however, Nichols et al. [2017] reported that the solar wind forward shock arrived at Juno on 225 

DOY141.45. Juno was just upstream of Jupiter. It should be noted that the transient aurora in 226 

the present study could be associated with the shock arrival in parallel with the internal 227 

process. This solar wind response has been reported as auroral radio brightenings following 228 

shock arrivals [Gurnett et al., 2002; Hess et al., 2012, 2014]. Enhancements in decametric 229 

radio emission (DAM) emitted from the dusk side of northern polar region were frequently 230 

observed during forward shock arrivals [Hess et al., 2012]. This could be associated with the 231 

enhancements in the outer and/or poleward emissions in the northern dusk sector observed in 232 

the present study (Figure 3f). 233 

[22] The long-term continuous monitoring of the aurora from 2013 to 2015 by Kimura et 234 

al. [2015, 2016] and Kita et al. [2016] indicated that the day-to-day variability in the aurora is 235 

well correlated with the solar wind shock arrival. These studies concluded that the transient 236 

aurora does not strongly depend on solar wind conditions. However, the present observation 237 

newly suggests that in this case the large transient aurora and energetic event would be 238 

excited by the combination of the internal and external processes: e.g., the mass and energy 239 

are stored via internal mass loading from Io, and the solar wind compression triggers the 240 

energy release via tail reconnection. 241 

[23] For the shock arrival on DOY141.45, we estimated the radial propagation time of the 242 

shock from Juno to the regions of interest, (a) the torus, (b) Jupiter, and (c) midnight tail 243 

region at 100 Rj from Jupiter. With a solar wind radial velocity of 475 km/s [Nichols et al., 244 

2017] and radial distance of 30Rj between Juno and Jupiter in heliocentric coordinates, the 245 



propagation times (a)-(c) are estimated to be ~1, 1.3, and 5.4 hours, respectively. These 246 

propagation times are significantly shorter than that between the shock arrival time at Juno 247 

and brightening of the transient aurora (DOY142.1), ~15.6 hours. The initiation of the aurora 248 

brightening was delayed for ~10 hours or more than the solar wind propagation time. 249 

Although cause of the time lag of >10 hours is still unknown, it might represent the amount 250 

of time it took to cause a large-scale reconnection of the tail, and for the hot plasma to 251 

propagate around to the dawn. 252 

[24] The dusk- and dawn-side torus powers show both rotational periodicities and a 253 

transient brightening after the shock arrival on DOY141.45 (Figure 2b-d). We observed the 254 

decrease in the dusk-to-dawn ratio on DOY141.5, and the dawn-dusk anti-phase variability in 255 

the torus on DOY141.8-142.5, which lasted before the auroral onset through the declining 256 

phase. They were also likely affected by the dawn-dusk electric field modulation by the solar 257 

wind [Murakami et al., 2016]. According to the above estimation of solar wind propagation, 258 

the dawn-dusk electric field was likely modulated by the solar wind variability associated 259 

with the forward shock on DOY141.45. 260 

[25] The transient brightening was observed in the dusk residual power on DOY142.50-261 

142.65 (Figure 2b-d). The dawn-dusk anti-phase variability was less clear than that on 262 

DOY141.8-142.5. This suggests that a hot electron population appeared in the dusk torus at 263 

<10Rj during the auroral declining phase and dissipated within ~1 rotation. With reference to 264 

previous works, this torus variability is likely associated with some combination of the 265 

following processes: energetic particle injection [e.g., Mauk et al., 2002], adiabatic heating 266 

by the dawn-to-dusk electric field [Barbosa and Kivelson, 1983; Murakami et al., 2016], 267 

and/or heating by electromagnetic waves originally proposed for Io’s downstream region 268 

[Hess et al., 2010; Tsuchiya et al., 2015]. Although it is still unclear which process is the 269 

most feasible, the appearance of outer auroral emission at dusk after the declining phase of 270 



the transient aurora (Figure 3f) suggests that the energetic electron injection occurred after 271 

the transient aurora onset as reported from previous HST observations [Gray et al., 2016]. 272 

Therefore the transient dusk torus brightening on DOY142.50-142.65 is presumably 273 

associated with the injection.  274 

[26] The auroral images on DOY142.1 indicate the rapid evolution of the dawn storm in 275 

longitude and latitude at the onset of the transient aurora (Figure 3c-e). Unfortunately there is 276 

no imaging at the peak of the transient aurora in the present observation period. However, the 277 

auroral structure observed in the 2014 images at the time of peak power (Figure 3b in Kimura 278 

et al., 2015; Figure 1i in Badman et al., 2016; Figure 1a-e in Gray et al., 2016) indicates 279 

enhancements of both the dawn storm and intense blobby outer emissions. Gray et al. [2016] 280 

also reported that at the peak phase a significantly superrotating polar spot was observed 281 

merging into the dawn storm from the nightside. During the declining phase, the imaging 282 

(Figure 3a Kimura et al., 2015; Figure 1d in Badman et al., 2016) showed the disappearance 283 

of the dawn storm and the persistence of outer emission. The imaging of the post-declining 284 

phase in the present study is indicative of the remnant outer emission at dusk (Figure 3f; see 285 

also Figure 1f in Gray et al., 2016). In the current sequence of observations, Nichols et al. 286 

[2017] discovered pulsating dusk side poleward emission, which they suggested is a 287 

manifestation of large scale dusk/nightside reconnection as part of the Vasyliūnas or Dungey 288 

cycles. 289 

[27] Combining the present study with those of Kimura et al. [2015], Badman et al. 290 

[2016], Gray et al. [2016], and Nichols et al. [2017], the temporal evolution of the transient 291 

aurora is summarized as follows: 292 

1. Onset phase: dawn storm initiation followed by expansion in latitude and longitude, and 293 

rapid increase in the total power over a few hours  294 



2. Peak phase: continuing dawn storm, spot merging into the dawn storm, outer emission 295 

initiation, and total power peak  296 

3. Declining phase: dawn storm dissipation, continuing outer emission, and total power 297 

declining within 1-2 rotations 298 

4. Post-declining phase: remnant outer emission, pulsating dusk side poleward emission, 299 

and quiet level of the total power 300 

[28] It should be noted that the initiation of the dawn storm is temporally followed by the 301 

outer emission. This strongly suggests that the sequence of the energetic event starts from the 302 

middle or outer magnetosphere and expands toward the inner magnetosphere within <1-2 303 

rotations (sequences 1-3). Gray et al. [2016] interpreted the polar spot as the tail reconnection 304 

signature. The latitudinal shift as the spot merges into the dawn storm at the peak phase is 305 

suggestive of the radially inward transport of the hot plasma, which has been observed in 306 

Galileo in-situ data frequently in the dawn tail [Kronberg et al., 2008; Kasahara et al., 2013]. 307 

The expanding dawn storm in the present study (Figure 3c-e) is likely an evidence for region 308 

associated with the tail reconnection expanding in the radial and azimuthal directions at the 309 

onset phase. The transient dusk torus brightening during the declining phase (DOY142.5-310 

142.65) is consistent with the several injection events in the central plasma torus during the 311 

transient aurora as reported by Yoshikawa et al. [2016]. Thus we speculate that the energetic 312 

event is initiated by the tail reconnection and releases energy as the plasma inward flow at the 313 

onset phase of transient aurora, which is transported toward the inner magnetosphere up to 314 

the central plasma torus during the peak to declining phases.  315 

[29] With the radial distance of possible X-line of the dawn reconnection at ~60-100 Rj 316 

[Woch et al., 2002; Kasahara et al., 2013], the innermost radial distance of the injection at ~6 317 

Rj, and the transport timescale of ~2.5 hours (typical time difference between the onset and 318 

peak phase), average velocity of the transport is estimated to be 430-750 km/s. This velocity 319 



range is comparable with the velocity of the ion jet front associated with the dawn tail 320 

reconnection, 380-550 km/s, directly measured with the particle instrument onboard Galileo 321 

[Kasahara et al., 2013].  322 
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Figures:  508 

Figure 1. Close-up of the transient aurora on DOY142. (a) The emitted power of the aurora 509 

at 900-1480 Å as a function of the Central Meridian Longitude (CML) of Hisaki. The error in 510 

the power is estimated based on the photon statistics. The error bars are shown in the rainbow 511 

color scales corresponding to the observation time in panel (b). The black solid line is the 512 

power averaged through 240 days from DOY1 to 240 in 2016 with total exposure time of 513 

40.8 days. The dotted lines are the standard deviations on DOY1-240. (b) The auroral power 514 

at 900-1480 Å as a function of time.  The red line is the rotational modulation modeled with a 515 

sinusoidal function Paul  Prot
aul sin(2 frott 

aul
rot )Pdc

aul  with frequency of a planetary rotation516 

frot 1/ 9.925(1/hours), time t , arbitrary initial phase rot
aul , amplitude Prot

aul , and offset Pdc
aul

. 517 

Prot
aul  and Pdc

aul  are estimated to be 153 and 315 GW, respectively. The blue ticks show the 518 

times when the northern aurora faces the observer (CML=200°) while the red ticks show the 519 

opposite direction (CML=20°). The green ticks show the HST imaging time. (c) The emitted 520 

power of the dusk-side torus at 650-770 Å. The modulations associated with Jupiter’s 521 

rotation and Io’s orbital period are modeled with a linear sum of two sinusoidal functions 522 

Ptor  Prot
tor sin(2 frott 

tor
rot )Pio

tor sin(2 fiot 
tor
io )Pdc

tor

 with similar parameters to the aurora. 523 

The amplitudes and offset are estimated by the fitting to be Ptor
rot  25  and Ptor

io  23 , and 524 

Ptor
dc  423GW, respectively. (d) The emitted power for the dawn-side torus at 650-770 Å in 525 

the same format as panel (c) with Ptor
rot  22 and Ptor

io  26, and Ptor
dc  339GW.  526 

 527 
Figure 2. Residual powers of the aurora and torus. (a) The residual power of the aurora 528 

obtained by subtracting the fitted sinusoidal function from the observed power in Figure 1. 529 

(b) The ratio of the total dusk-side power to the dawn-side. The horizontal solid line is the 530 

average of the ratio on DOY140.0-144.0. (c) The residual power of the dusk-side torus 531 



obtained by subtracting the fitted sinusoidal functions from the observed power in Figure 1. 532 

(d) The residual power of the dawn-side torus in the same format as panel (c).  533 

 534 
Figure 3. The polar projection of the FUV auroral image taken by HST/STIS on DOY140-535 

142. The blue-to-white color scale spans from 1 to 3 MR in logarithmic scale. (a) The same 536 

panel as in Figure 2a. (b) The auroral image taken at 20:50:59 (HST observation time) on 537 

DOY140 (DOY140.87). The white grids show the longitude and latitude in System III 538 

coordinates with 10° intervals. The longitude of 180° is directed toward the bottom. The 539 

yellow solid lines are reference locations for the boundaries between the poleward region, 540 

main oval, and outer emissions. The statistical oval in this observation period is shown with a 541 

solid red line, while the latitude corresponding to the equatorial distance of 30 Rj in VIP4 542 

magnetic field model [Connerney et al., 1998] is shown with a red dashed line [see Nichols et 543 

al., 2017]. (c-e) The images taken at 02:17:42, 02:38:22, and 03:02:12 (DOY142.10, 142.11, 544 

and 142.13). (f) The image taken at 22:07:37 (DOY142.92).  545 

 546 



Figure 1.  



(b) Aurora at 900-1480 Angstrom

(c) Dusk torus at 650-770 Angstrom

(d) Dawn torus at 650-770 Angstrom

(a) CML dependence of aurora



Figure 2.  



(a) Residual aurora at 900-1480 Angstrom

(b) Torus Dusk-to-Dawn ratio

(c) Residual dusk torus at 650-770 Angstrom

(d) Residual dawn torus at 650-770 Angstrom
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