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In-situ diagnostic tools have become established to as a means to understanding the aging 

processes that occur during charge/discharge cycles in Li-ion batteries (LIBs). One 

electrochemical thermodynamic technique that can be applied to this problem is known as 

entropy profiling. Entropy profiles are obtained by monitoring the variation in the open circuit 

potential as a function of temperature. The peaks in these profiles are related to phase 

transitions, such as order/disorder transitions, in the lattice. In battery aging studies of cathode 

materials, the peaks become suppressed but the mechanism by which this occurs is currently 

poorly understood. One suggested mechanism is the formation of point defects. Intentional 

modifications of LIB electrodes may also lead to the introduction of point defects. To gain 

quantitative understanding of the entropy profile changes that could be caused by point defects, 

we have performed Monte Carlo simulations on lattices of variable defect content. As a model 

cathode, we have chosen manganese spinel, which has a well-described order-disorder 

transition when it is half filled with Li. We assume, in the case of trivalent defect substitution 

(M=Cr,Co) that each defect M permanently pins one Li atom. This assumption is supported by 

Density Functional Theory (DFT) calculations. Assuming that the distribution of the pinned Li 

sites is completely random, we observe the same trend in the change in partial molar entropy 

with defect content as observed in experiment: the peak amplitudes become increasing 

suppressed as the defect fraction is increased. We also examine changes in the configurational 

entropy itself, rather than the entropy change, as a function of the defect fraction and analyse 

these results with respect to the ones expected for an ideal solid solution. We discuss the 

implications of the quantitative differences between some of the results obtained from the 

model and the experimentally observed ones. 

Keywords: Monte Carlo; ; ; ; ; , manganese spinel, entropy profiling, order/disorder 

transitions, point defects, solid solution 

1. Introduction 

The growing demand of rechargeable batteries for electric vehicles and stationary storage not 

only pushes for higher energy and power density but also improved durability and safety [1–
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4]. Structural changes at the cathode during cell operation are one possible source of 

performance fade or failure. There has thus been an interest in developing in-situ methods to 

diagnose changes in the structure of the electrodes while the battery is in operation [5–9]. 

These methods can be contrasted with destructive post-mortem analysis techniques that 

yield very limited information concerning the cause of failure, under just one set of conditions 

[9–11]. To develop better understanding of cell aging a more quantitative understanding of 

existing in-situ characterisation tools is needed.   

There has been an interest in techniques based on thermodynamic measurements. One  

method that has been developed is generally known as entropy profiling [8,9,12–28]. This 

technique is based on the principle that the partial molar entropy change is proportional to 

the temperature response of the open circuit potential (OCP) of a cell, by 

(
𝜕𝐸𝑂𝐶𝑃(𝑥)

𝜕𝑇
)

𝑝,𝑥
= −

1

𝑛𝐹
(

𝜕𝑆(𝑥)

𝜕𝑥
)

𝑝,𝑇

,                            (1) 

where EOCP is the open circuit potential, T is the absolute temperature, p is the pressure, x is 

the amount of Li intercalated in the electrode (0 < x < 1), n is the number of electrons 

transferred per atom, F is the Faraday constant and the S is the entropy [29]. Such profiles 

have been shown to reveal structural and thermodynamic information related to phase 

transitions to which other electrochemical techniques, such as slow rate cyclic voltammetry 

(SRCV) [6] and the incremental capacity method (ICM, also known as dQ/dV) [30] are not so 

sensitive.  

The first entropy profile study was performed on LixTiS2 electrodes by Thompson [12].  Selman 

et al. performed electrochemical-calorimetric measurements on LixMn2O4 [31] and 

commercial Li-ion cells [27]. Reynier et al. investigated the entropy change upon intercalation 
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into graphite and disordered carbons [17,22]. The entropy change during Li intercalation in 

graphite was also investigated theoretically by Leiva et al. [32][33].  Later work also 

investigated the entropy change in cathode materials, including LixCoO2 [8,9,15,20], undoped 

LixMn2O4 spinel [13], Lix+δMn2-δO4 [14], where δ represents an excess amount of Li substituted 

in the octahedral sites [34,35], LixMyMn2-yO4 [13,19,21,25], where M denotes a metal defect, 

and nickel manganese cobalt (NMC) based layered materials [24,36]. The cited studies have 

found that the features in these profiles arise from changes in the configurational entropy at 

the cathode upon (de-)intercalation, and hence the peaks and troughs observed correspond 

to structural, order/disorder, and other types of phase  transitions [8,18,19,37,38]. In the case 

of LixCoO2, a vibrational component to the entropy changes has also been quantified [8]; 

however, this contribution is not strongly dependent of x and has the effect of vertically 

shifting the profiles without affecting the peak amplitudes themselves. Furthermore, Maher 

et al. [9,23], Osswald et al. [24] and Hudak et al. [20] have examined the effect of prolonged 

charge/discharge cycles on the measured entropy profiles. They observed changes in the 

magnitudes of the peaks in profiles that were attributed to separate structural changes at the 

anode and cathode. 

To better understand such profiles and enable more definitive structural assessments from 

them, a more quantitative understanding of the relationship between the peak amplitudes 

and the structure is needed. In the case of LixMn2O4 spinel, which is the focus of the present 

work, previous in-situ nuclear magnetic resonance (NMR) and X-ray diffraction (XRD) have 

revealed some contradictory results regarding phase transitions in the Li structure [14,39–

41]; electrochemical thermodynamic measurements have revealed additional information 

about the phase diagram at room temperature and have added more insight into the two 

phase coexistence region [14,18,21]. The two peaks observed in the entropy profiles of this 
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electrode are generally considered to arise from the formation of an ordered phase, 

Li0.5Mn2O4 at intermediate state of charge, and a transition to a disordered phase at high and 

low intercalation in the range 0 < x < 1 [18,42–44]. A representative example of an entropy 

profile for this electrode overlaid with a result for LixCr0.3Mn1.7O4 is shown in Figure 1. 

Manganese spinel with substitutional defects is one of the structurally simplest systems that 

is still of some commercial relevance. 

In the present work, we examined the entropy profiles in manganese spinel cathodes which 

contain substitutional defects, M (where M = Cr, Co), i.e. LixMyMn2-yO4, by Monte Carlo (MC) 

methods to gain a more quantitative understanding of the effect of point defect substitution 

on the entropy profile peak amplitudes. It is in line with previous works by us that used lattice 

gas MC to quantitatively relate experimental observation to theoretically predicted 

interaction energies [45–50]. The present work here uses the pairwise interaction model 

published elsewhere by Kim and Pyun [18] for LixMn2O4. We replicated some of the results 

from this work to check the energy expression and methodology. We extended the model to 

examine the effect of trivalent defect substitution, such as from Cr3+ and Co3+, on entropy 

profiles. Intentional substitution is commonly performed to improve the stability with respect 

to unmodified LixMn2O4. However, although there is an improvement in stability with metal 

substitution there is also a concomitant reduction in volumetric capacity [51,52]. Moreover, 

the changes observed in the entropy profiles during battery aging studies, namely a 

suppression of the peak amplitudes after successive charge/discharge cycles, could arise from 

the unintentional formation of point defects. We show changes in the entropy profiles related 

to the structure and quantitatively illustrate how these changes are related to the placement 

of irreversibly pinned Li sites. For the first time we also show the how the system 

configurational entropy itself varies along with the entropy changes that have previously been 
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reported. We then discuss the implications of these observations for experimental 

measurements. 

2. Calculations: Monte Carlo methods 

Figure 2 illustrates the well-known spinel lattice structure of LixMn2O4 (space group Fd3m) 

[3,53].  The Li sites, represented in gold, adopt a diamond lattice structure. In the region 0 < 

x < 1, the Li sits in tetrahedral 8a sites, whereas Mn, which resides in the 16d positions, is 

coordinated to oxygen in the form of octahedra, as shown in Figure 2c. The oxidation state of 

the Mn ions can switch between +3 and +4 through a charge hopping mechanism [41,54]. 

Oxygen, which sits in the 32e sites, adopts a cubic close packed structure [3,53], The Li lattice 

can be thought of as two interpenetrating fcc sublattices, each of which is separated by a 

distance of (0.25,0.25,0.25). This formalism, which is represented in Figure 3a, is similar to 

that adopted elsewhere [18,42]. It is known that the structure can undergo irreversible 

distortions below room temperature and in the voltage region for which the amount of 

intercalated Li, x, is greater than 1. Here, we have only performed simulations at room 

temperature and within a voltage range 3.88 V < E < 4.30 V, where E is the applied voltage 

with respect to a Li anode. Under these conditions, the distortions are not applicable and x is 

constrained within the region 0 < x < 1. 

Within the model, nearest and second nearest neighbour pairwise interactions between Li 

atoms are considered. The nearest and second nearest neighbours are shown in Figure 3b.  

Similarly to Kim and Pyun [18] we take as the Hamiltonian 

𝐻 = 𝐽1 ∑ (∑ 𝑐𝑖𝑐𝑗

𝑁𝑛

𝑗

)

𝑁

𝑖

+ 𝐽2 ∑ (∑ 𝑐𝑖𝑐𝑘

𝑁𝑠

𝑘

)

𝑁

𝑖

− (𝜀 + 𝜇) ∑ 𝑐𝑖

𝑁

𝑖

,                                 (2) 
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where the interaction energy parameters relate to: J1: nearest neighbour interaction J2: 

second nearest neighbour interaction, ε: interaction between each Li atom and the LixMn2O4 

spinel lattice. The other variables are: µ: chemical potential; ci: occupation number of site i; cj 

and ck; occupation numbers of first and second nearest neighbours, respectively. Nn = 4 and 

Ns = 12: total number of possible nearest and second nearest neighbours (cf. Figure 3b), N: 

total number of lattice sites. The terms ci, cj and ck take the value 1 if the site is occupied by 

Li; otherwise they are 0. The values of J1 = 37.5 meV, J2 = -4.0 meV and ε = 4.12 eV were 

determined by Kim and Pyun experimentally using gravimetric titration [18]; these values 

were used in all subsequent simulations including the structures with defect substitution. The 

main effect of substituting defects would be to modify the interaction parameter, ε, for Li 

atoms in the local vicinity of the substituted M sites. However, in the MC computations we 

treated these Li atoms as permanently pinned to the lattice, i.e. the same interaction 

parameter ε was used for these atoms but any moves involving these atoms were not counted 

in the Monte Carlo algorithm. Further justification, based on DFT calculations, is provided in 

the Supporting Information, section 1. This calculation is based on the fact that the shift in 

the deintercalation potential of Li in the near neighbourhood of Co or Cr as determined by 

DFT (2.60 V and 1.52 V, respectively) is so large that the Boltzmann probability for 

deintercalation is negligible in both cases. In any case, we were interested in determining 

fluctuations in the internal energy, not the total energy value, of the lattice. J1 and J2 are Li-Li 

interaction terms and would not be affected significantly by the presence of M sites. 

Therefore, the pinned Li atoms contribute to the nearest and next nearest neighbour terms 

of the unpinned Li atoms in equation 2 with the same J1 and J2 values as previously stated. 

The chemical potential, µ, can be related to the equilibrium potential E(x) with respect to a 

Li/Li+ couple by E(x) = - (µcathode(x) - µanode)/e, where e is the electronic charge and µ is 
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expressed in eV. Taking the anode potential, µanode, to be the standard chemical potential of 

metallic lithium, all potentials can be referenced with respect to the anode. Then E(x) = EOCP(x) 

= -µcathode(x)/e, where EOCP(x) represents the experimentally observable open circuit potential 

of a Li-ion cell. This is consistent with the approach adopted by Ceder et al. [37] and Karlberg 

et al. [56]. However, in our simulations, µ = µcathode is an input parameter that determines x at 

any given electrode potential. Therefore 

𝐸 = −
𝜇

𝑒
,                      (3) 

and from now on, we refer only to the potential E (vs. Li/Li+) and chemical potential µ. 

To assess the effect of defect substitution on the lattice in LixMyMn2-yO4, we started from the 

following assumptions: 

1. The placement of the defects, M3+, into the lattice occurs entirely at random on the 

16d sites. This is supported by X-ray diffraction (XRD) measurements of samples with 

Cr3+ and Co3+ substitutional defects, which did not detect the presence of any 

additional phases [25].  

2. The entire structure must remain charge neutral over the entire voltage range, 3.88 V 

< E < 4.30 V. 

3. The valency of Mn can switch between 4+ and 3+ to maintain charge neutrality, as is 

generally accepted [4]. 

4. If all other species in the structure are in their standard oxidation states, this implies 

that in order to maintain charge neutrality, exactly one Li atom per defect, M, must 

remain permanently pinned to the lattice, as suggested by Gao et al. [42]. This 

population can be called xpinned, such that xpinned = y, and the overall Li population, x, 
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can then be written as x = xpinned + xmobile, where xmobile is the Li population that can still 

(de-)intercalate.  

5. In the model, the pinned Li atoms are treated equivalently to the mobile atoms as far 

as the nearest and next nearest neighbour summations in equation 2 are concerned, 

apart from the fact that they themselves never leave the lattice nor move. 

6. Since the nearest neighbour Li atoms to each defect, M, reside with equal probability 

in each of the two sublattices, as shown in Figure 5, we assume that the population of 

Li that is pinned, xpinned = y, is distributed randomly throughout the lattice. 

The assumptions are similar to the ones presented in the work of Gao et al. [42], who 

examined Li intercalation in Li/Li1+xMn2-xO4. In that system, the only difference is that, based 

on charge conservation considerations, 3x Li atoms would be pinned, rather than x as would 

be the case for trivalent defects. Another difference is that their model was based on a Bragg-

Williams approach within a mean-field approximation, rather than also considering Li-Li 

interactions at each individual site as presented here.  

Monte Carlo calculations were performed in two stages, using a home-built package written 

in Python 2.7.12. The first stage was a standard Metropolis Monte Carlo (MMC) algorithm 

[57] within a grand canonical ensemble (GCE), with spin flipping dynamics based on an Ising 

model [58]. The volume, V, of the cell and the temperature, T = 298 K, were kept fixed 

throughout the simulations. Periodic boundary conditions were applied to minimise edge 

effects. The lattice was a grid of 10 x 10 x 10 diamond unit cells, with 8 Li atoms per unit cell. 

We define the variable s, which relates to the effective number of lattice points on each side 

of the simulation cell, so that the full lattice was of size s3=8000 points. The results obtained 

for variable system sizes are presented in the Supporting Information, section 2.3. The 
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chemical potential was initialised at a value where the Li content is negligible. A trial change 

in configuration was selected; if the change in energy, ΔH, was greater than or equal to zero, 

the change was accepted automatically, otherwise, it was accepted with probability P = exp(-

ΔH / kBT), where kB is the Boltzmann constant. By monitoring the occupancies in the two 

sublattices (as defined in Figure 3a), it was determined that a minimum of 3 x 107 Monte Carlo 

steps (MCS) per lattice were required for the lattice to achieve equilibrium. Once the lattice 

had reached this state, the chemical potential was increased, using the solution from the 

previous µ as the input lattice for the next one to reduce the equilibration period. The lattice 

state was saved once the solution had been reached for a particular value of µ. This was 

performed for about 80 µ values in the interval -4.30 < µ < -3.88. 

Statistical fluctuations in the occupancy, N, and internal energy, U, of the lattice were 

monitored separately. Using the saved lattice states as input files, parallel simulations were 

run. In each run, the MMC algorithm was performed as before. However, N and U were 

monitored by performing a summation over the entire lattice with a set sampling frequency. 

It was determined that sampling every 200 MCS gave the maximum number of samples over 

a given period of time on our cluster. For each parallel run, 2.4 x 106 MCS were performed, 

providing 12000 samples per run. By combining statistics from multiple runs, mean values 

and standard deviations in the parameters of interest could be monitored. For our main 

parameter of interest, the partial molar entropy, defined as 

  

(
𝜕𝑆

𝜕𝑥
)

𝑉,𝑇

=
1

𝑇
[
Cov(𝑈, 𝑁)

Var(𝑁)
− 𝜇]   = Δ𝑆                      (4) 

where 

                  Cov(𝑈, 𝑁) = 〈𝑈𝑁〉 − 〈𝑈〉〈𝑁〉                     (5)   
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and 

                 Var(𝑁) = 〈𝑁2〉 − 〈𝑁〉2,                         (6) 

as shown elsewhere [59], many more parallel runs were required to reduce the size of the 

error bars than those of <U> and <N> themselves. Typically, at least 80 runs, or 960000 

samples were required to reduce the size of the errors bars so that they were no longer 

visible. The long initial equilibration period was motivated by the much shorter time scale of 

the fluctuations than of macroscopic changes in the mean values of U and N themselves. 

However, a minimum of 2.4 x 106 MCS was necessary to obtain accurate values for the 

entropy; running fewer MCS than this value resulted in systematically reduced partial molar 

entropy values which could not be detected by monitoring the error bar sizes. For the same 

reason, the error bars in <U> and <N> obtained by this method were not by themselves 

adequate descriptors of whether lattice equilibrium had been reached; this was only possible 

by carefully examining changes in the occupancies of the two sublattices. We further checked 

that the lattices had reached an equilibrium state by calculating voltammograms, as explained 

in Supporting Information section 2.1. We performed further analysis on the interactions in 

the system dependent on the defect content, using the peak widths of the calculated 

voltammograms. This analysis is presented in the Supporting Information, section 2.2.The 

partial molar entropy is actually equivalent to the quantity ΔS often referred to in the 

literature, even though strictly speaking it is a derivative with respect to the amount of Li 

intercalated, x, as defined in equation 1. To avoid confusion we will refer to the quantity from 

now on as ∂S/∂x. 

For comparison and to check the consistency of our results, we generated results for an ideal 

solid solution within our model. These results were obtained by setting the parameters J1 and 
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J2 to 0, otherwise leaving the method unchanged from the one described above. The results 

obtained for the configurational entropy, S, were found to be equivalent to the analytical 

equation for the entropy of mixing of an ideal solid solution [60], 

𝑆 =  −𝑅(𝑥 ln(𝑥) + (1 − 𝑥) ln(1 − 𝑥)),                   (7) 

where R is the molar gas constant and in this case S has been normalised to the number of 

moles of Li.   

3. Monte Carlo calculations: Results and Discussion 

3.1 Li intercalation in LixMn2O4 

Using Monte Carlo methods we first compare the results obtained for LixMn2O4 with those 

expected for an ideal solid solution. Figure 5 shows the results for the variation in electrode 

potential, the variation in the occupancies of the two sublattices, the change in partial molar 

entropy, ∂S/∂x, as well as the configurational entropy, S, itself. S was obtained by integration 

of the result for ∂S/∂x, shown in Figure 5b, with respect to x.  Compared to the result for a 

solid solution, which comprises a single peak, the configurational entropy result for LixMn2O4 

arises due to the formation of an ordered phase which begins to deviate from the solid 

solution curve in the region 0.25 < x < 0.75, as shown in Figure 5d. The sublattice occupancies 

in this region, Figure 5f-h, also show this deviation. Either side of that region, the structure 

fills completely randomly, i.e. it follows the solid solution curve. The pictures in Figure 5e and 

Figure 5i, obtained at high and low Li occupation respectively, support this observation.  

The entropy results are best interpreted within the well-known Boltzmann definition of 

entropy [59], 

𝑆 = 𝑘𝐵 ln(𝛺)                    (8), 
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where Ω is the number of real microstates (in this case, Li/vacancy arrangements) available 

in the system for a given macrostate. The difference between the curves for the solid solution 

and for the case of Li intercalation in LixMn2O4 arises because of the configurations that 

become unavailable due to the presence of the ordered phase rather than random filling or 

emptying. In the absence of any thermal fluctuations, the entropy would be zero at x = 0.5 as 

only a single configuration would be available corresponding to a perfectly ordered phase. 

However, at finite temperature, the resulting two peaks are not completely decoupled, but 

overlap at x = 0.5. Due to the symmetry, approximately the same number of configurations is 

available to the system during the filling of each sublattice, hence both peaks have nearly 

equal amplitudes. 

The significance of the entropy value at x = 0.5 can be seen by looking at the dashed lines in 

Figure 5d. The fact that this value is not zero is due to the thermal fluctuation of Li from the 

ordered phase into the second sublattice, leaving behind a vacancy in the first. The same 

entropy value is obtained at the values x ≈ 0.05 and x ≈ 0.95, where the curves for Li 

intercalation in LixMn2O4 and the one for the solid solution overlay. Thus, a binary mixture of 

about 2.5 % vacancies and 2.5 % Li sites located out of the ordered structure is obtained at 

this value of x, in good agreement with the populations of the sublattices shown in Figure 5c 

and Figure 5g. Although to our knowledge the configurational entropy itself, rather than 

∂S/∂x, has never been directly examined from experimental entropy profiling measurements 

of Li-ion cathodes, the value of the local minimum of the integrated entropy S could in 

principle be used as a metric to characterise the ordered phase in electrodes such as LixMn2O4. 

Recently, Leiva et al. analysed the entropy upon intercalation of Li into graphite using 

statistical mechanical approaches [33]. They obtained a similar result, displaying two entropy 

maxima, to the one presented here for LixMn2O4, as shown in Figure 2 of ref. [33].  
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The results in Figure 5a-c are in general agreement with the ones presented in Figure 1 of ref. 

[18]. These results replicate the ones of Kim and Pyun [18]; the simulations were performed 

to validate our model and test the correctness of our approach. The change in sublattice 

occupancy can be attributed to an order/disorder transition, as has been previously described 

for LixMn2O4 [18,53]. At the two extremes of potential, corresponding to Figure 5e and Figure 

5i, both sublattices fill randomly and with equal probability. Consequently, the gradient of the 

voltage curve, which is related to ∂S/∂x, follows that of a solid solution. However, due to the 

repulsive nearest neighbour interaction, in the intermediate voltage regime one of the 

sublattices is preferentially occupied over the other, as shown in Figure 5f-h, i.e. the 

Li/vacancy structure is ordered. This transition to an ordered phase is associated with a 

change in the derivative in the voltage curve, as remarked elsewhere [5,42,61]. For x > 0.75, 

although the gradient of the voltage curve is the same for Li intercalation in LixMn2O4 as for 

the ideal solid solution, the neglect of lateral Li-Li interactions in the latter case, corresponding 

to zero enthalpy of mixing [60], means that the two curves are vertically displaced from one 

another. This effect can be neglected for small x, thus the two curves coincide as x tends to 0. 

The reason for the formation of (local) minima and maxima in the plot of ∂S/∂x for LixMn2O4, 

shown in Figure 5b, can be understood by examining the pictures in the region of the 

order/disorder transition, Figure 5f-h. The lattice picture Figure 5f, coinciding with point 2 on 

Figure 5b, i.e. the minimum in ∂S/∂x, shows that the first sublattice is the most occupied, yet 

there is still a significant population of vacancies in the lattice. As x increases from 0.4 to 0.5, 

the vacancy population in the first sublattice quickly drops and reduces the number of 

configurations available. The concomitant steep decline in configurational entropy is 

reflected in the value of the local minimum of ∂S/∂x. Close to the point 3 (Figure 5g), at ∂S/∂x 

= 0, the low fraction of Li that resides in the minority sublattice due to thermal fluctuations is 
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matched by the number of vacancies in the majority sublattice, i.e. x = 0.5 here. At the 

maximum in ∂S/∂x, Figure 5h, the rapid rise in entropy between x = 0.5 and x = 0.6 is primarily 

associated with rapid filling of the second sublattice as x increases.  

3.2 Influence of point defects: Li intercalation in LixMyMn2-yO4 

Figure 6 shows many of the same results from the previous section but for variable defect 

content.  Firstly, the variation in cell potential with respect to x is plotted in Figure 6a; the 

same relationship is shown but with respect only to the mobile Li, xmobile, in Figure 6b. As the 

number of defects, y, increases, the change in the derivative of the voltage curves in the 

vicinity of the order/disorder transition becomes suppressed, as explained previously 

elsewhere [14,38,42,61]. We have also shown the same curves with respect to the mobile Li 

because, in practice, it can be difficult to experimentally determine the amount of pinned Li 

with a sufficient accuracy, which in turn can lead to experimental uncertainties in the 

determination of capacities (i.e., the quantitative correlation between Li content of the 

cathode and the relative SOC) [62]. For completeness, the results are also plotted with respect 

to the cell potential as is often reported experimentally [20,23].  
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<InlineImage6> 

Figure 6. Effect of varying the defect content, and hence the amount of pinned Li, as a function of x, the total 

proportion of Li in the lattice (left column) and as a function of the total fraction of mobile Li, xmobile (middle 

column), and as a function of potential (right column). The variation in electrode potential (first row), sublattice 

occupancies (middle row) and partial molar entropy (bottom row) are all shown. Note, for clarity: in (e) and (f), 

the sublattice occupancies were normalised to the amount of mobile Li, in (d), they are normalised to the total 

amount of Li.  

<InlineShape5> 

The origin of the change in the voltage profiles can be seen most clearly in Figure 6d-f, which 

show the change in the occupancy of the sublattices with respect to x, xmobile and the electrode 

potential dependent on the defect concentration, y. Figure 6e, plotted as a function of the 
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mobile Li only, shows that only 5 % defect incorporation results in a slight change in the 

occupations of the two sublattices. This is also consistent with the entropy profiles, plotted in 

Figure 6g-i, which show a very slight reduction in peak amplitude but are otherwise very 

similar to the result for y = 0 %. Due to the presence of 5 % Li permanently pinned to the 

lattice there is also a slight shift in the peak positions.  The shift is dependent on the 

measurement of the Li content; the peaks are shifted with respect to the total Li content, x. 

However, there is no apparent shift in peak position with respect to the mobile Li content or 

the electrode potential. Thus the peak potentials are determined by the Li atoms that are 

available to (de-)intercalate and not the overall Li content. 

As the defect content is progressively increased from y = 15 % and then y = 30 % a more 

marked decrease in peak magnitude is observed. Furthermore, the result obtained for y = 15 

% suggests that the magnitudes of the two peaks are not suppressed equally by the presence 

of the defects as might be naively expected; rather the local minimum at xmobile ≈ 0.45 has a 

smaller amplitude than the local maximum at xmobile ≈ 0.55. This observation also holds for y 

= 5 %, although the effect is more subtle.  The result for y = 30 % indicates a voltage and partial 

molar entropy profile that closely resembles a solid solution; i.e. the peak and trough 

corresponding to the order/disorder transition are hardly visible at all. This is consistent with 

the images presented in Figure 6d-f, which show that the occupancies are split almost equally 

between the two sublattices over the entire intercalation range.  

Further insight into these effects can be gained by comparing the entropy changes, ∂S/∂x, 

with the entropy itself, S. These results are shown in Figure 7. In particular, by examining 

Figure 7b, the difference in the amplitudes of the two peaks for the same defect content y 

becomes more obvious than looking only at the changes with respect to ∂S/∂x. Asymmetries 
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in the peak magnitudes have been observed experimentally in LixMn2O4 [13], overlithiated 

Li1+xMn2-xO4 [14] and also LixMyMn2-yO4 [21,25] although not previously remarked upon. The 

origin of the peak magnitude difference can be observed in Figure 8, which shows how the 

sublattice occupancies vary as a function of potential as well as Li content. The situation is 

very similar for all y values at high potential E = 4.15 V, as shown by comparing Figure 8a-d, 

and also at E = 3.95 V, as shown in Figure 8i-l. This is consistent with the very similar results 

for ∂S/∂x and S obtained at the two extremes of potential regardless of the defect content, 

as shown in Figure 7, i.e. solid solution filling is observed at the potential extremes. At E = 4.05 

V, in the region where the ordered phase forms for y = 0 %, the presence of the pinned Li sites 

disrupts the formation of the ordered phase and forces a greater fraction of Li onto the 

minority sublattice, as shown in Figure 8e-h. The result is that the length scale of the ordered 

phase decreases as y increases, until at y = 30 % (Figure 8h), almost random filling is observed.  

Further, the packing density of the structures formed at intermediate potentials 4.05 V < E < 

4.20 V is less efficient than the ordered phase shown in Figure 8e, which results in a higher 

vacancy population at a given potential. This point is further supported by Figure 6b, which 

shows that the overall occupation of mobile Li in the same potential region decreases with 

respect to the defect content. Also, in Figure 8f-h, a progressively higher vacancy population 

is observed as the defect content increases. These vacancies appear to reside with high 

probability in the near neighbourhood of pinned Li sites in the minority sublattice, as most 

clearly demonstrated in Figure 8f and 8g. The configurations that are unavailable when filling 

the lattice between 0 < xmobile < 0.5 are regained in the interval 0.5 < xmobile < 1, resulting in 

the observed difference in the amplitudes of the two peaks for all the crystal structures with 

y > 0%. This is best shown by comparing the curve for y = 30 % with the solid solution result 

in Figure 8b. The extra vacancies that are filled between 0.5 < xmobile < 1 result in a greater 
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number of configurations available, which distorts the shape of the curve from that obtained 

for an ideal solid solution. The entropy magnitude is also reduced with respect to the solid 

solution because of the restricted number of removable Li sites.  

3.3 Analysis of entropy profile amplitudes 

As an appropriate parameter to compare the simulated and experimental results, we 

examined the combined amplitude of the peak and trough in the entropy profiles, a 

parameter demonstrated in Figure 1. The advantage of this approach over comparing the 

individual peak amplitudes is that any possible error resulting from a downwards shift in the 

entropy profiles due to vibrational entropy contributions, as has been identified in LixCoO2 

[8], is eliminated. Physically, this amplitude represents the combined effect of fluctuations 

due to vacancies during filling of the ordered phase between 0.4 < xmobile < 0.5, followed by 

filling of less energetically preferred nearest neighbour sites between 0.5 < xmobile < 0.6. In 

Figure 9, we show the relationship amplitude of the entropy maximum, the entropy minimum 

and the combined amplitude of both entropy peaks (defined in Figure 1). 

Figure 9 shows a non-linear decrease in the overall entropy amplitude as a function of the 

defect content. This can be understood by examining the amplitudes of the two individual 

peaks, whose sum gives the overall amplitude. Up to a defect percentage of about 14 %, the 

amplitudes of the entropy maximum do not vary significantly with defect content, except for 

some slight scatter due to random variations between simulations. However, a slow decrease 

in the amplitude of the minimum results in a gradual decrease in the overall amplitude. As 

the defect percentage increases to about 8-10%, the rate of decrease of the amplitude of the 

minimum becomes greater; between about 14-15 %, the maximum value also begins to 

decrease. We explain the faster rate of decrease in the amplitude of the minimum with 
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respect to that of the maximum due to the preferential formation of vacancies in the near 

neighbourhood of the pinned Li sites, as explained in section 3.1.2. The difference between 

the variation in the maximum and minimum amplitudes then explains the non-linear trend in 

the overall amplitude with the defect amount.  

We considered the possibility that the entropy amplitude is related in some way to the short 

range order in the Li-vacancy structures. We can define the Warren-Cowley short range order 

(SRO) parameter 

𝛾(𝑟) = 1 −
𝑃𝐴𝐵(𝑟)

𝑥
,            (9) 

where 𝛾(𝑟) is the SRO parameter within a coordination sphere of radius r, PAB is the 

probability that an AB pair resides at that radius, and x is the atomic fraction of B [63]. Here, 

A = vacancy and B = Li atom. A value of 𝛾 = 0 across the entire potential range indicates no 

preference for ordering in the Li distribution, i.e. an ideal solid solution. We considered SRO 

parameters for values of r corresponding to nearest neighbour and second nearest neighbour 

pairs, which we denote 𝛾1 and 𝛾2, respectively. The variation in these parameters is shown in 

Figure 10. 

(b) 

<InlineShape3> 

The plots in Figure 10 show that the Li/vacancy structure becomes progressively more 

ordered as xmobile tends towards 0.5. Either side, the structure becomes less ordered. 

Furthermore, the absolute magnitude of the peak decreases systematically as a function of 

the defect fraction, providing a quantitative indication of the suppression of the 

order/disorder transition. The reason that 𝛾1 and 𝛾2 are so close in magnitude but opposite 
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in sign, is that during the formation of the ordered phase, only one of the sublattices is 

occupied. Consequently, Li is preferentially located by first nearest neighbour vacancies, 

implying a negative value of 𝛾1. However, the second nearest neighbours reside in the same 

sublattice as the reference site. Thus, in the ordered phase, occupation of a site by Li implies 

with high probability that its second nearest neighbours are also occupied, and so 𝛾2 is 

positive.  

Figure 11a shows the defect fraction plotted as a function of the maximum value of the first 

SRO parameter, 𝛾1, as shown in Figure 10a. The partial molar entropy peak amplitudes are 

shown with respect to 𝛾1 in Figure 11b. The results reveal an approximately linear relationship 

between 𝛾1 and the defect content, for y ≤ 17 %. The relationship is no longer linear at y = 30 

%, which reveals that the nature of the disruption to the order/disorder transition becomes 

more complex at higher defect contents. We don’t have a complete explanation and will 

investigate this phenomenon further in future work. The non-linear relationship between the 

entropy peak amplitude and the defect content, as shown in Figure 9, is also reflected in the 

relationship between the same amplitude and 𝛾1 shown in Figure 11b. Thus the suppression 

of the peak amplitude with increasing defect content is related to short range order in the 

Li/vacancy structure, and possibly also the Li-M structure for higher defect amounts. 

However, since the individual peaks are not suppressed equally, further work is needed to 

provide a full explanation for the observed relationship. 

(b) 

<InlineShape1> 

Lastly, we compare the simulated and experimental entropy peak amplitudes. These results 

are shown in Table 1. The simulated results can be considered to be applicable to either Co 
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or Cr substitution, since in both cases, the binding energy shift is so large that the Li atoms 

neighbouring the defect would be permanently pinned. 

There are still only limited experimental studies that systematically examined the effect of 

defect concentration on entropy profiles. Most of the work compared the entropy changes at 

only one defect concentration with the ostensibly defect free LixMn2O4 [13,14,19,21], from 

which it is difficult to draw quantitative conclusions. The most complete study for trivalent 

defects (M = Cr, Co) was performed by Kashiwagi et al. [25].  Qualitatively, their voltage 

profiles show a suppressed slope in the vicinity of x = 0.5 as the defect content is increased, 

just as our model shows. Their experimental entropy profiles show a reduction in peak 

magnitude as a function of y, again in agreement with our simulations. The same trends were 

experimentally observed by Kobayashi et al. with M = Cr and y = 30 % [21], Gao et al. in 

Li1+xMn2-xO4 (0 < x < 1) [42] and Thomas et al. in LixMn1.8Al0.2O4-δF0.2 [13]. 

The results suggest good agreement between the simulations and the experimental results 

for defect content, y ≤ 15 %. There are, however, some important quantitative differences, 

notably between the results of Kobayashi et al. [21] and Kashiwagi et al. [25] at  y = 30 %. In 

our simulations, the results for the entropy profiles obtained at y = 30 % are very similar to 

the one for a solid solution, as shown in Figure 7a, except for the presence of a small shoulder. 

While the features attributable to the order/disorder transition are suppressed with respect 

to the results obtained for y = 0 %, those features are still clearly visible in the experimental 

results, as shown for example in Figure 1 of ref. [21]. One possibility is that the experimental 

samples for y = 30 % display partial or full phase segregation. This would mean that there 

would defect deficient regions where the transition could still occur. However, at least from 

the XRD results of Kashiwagi et al., no long ranged phase segregation was observed [25]. 
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Our simulations assume that the pinned Li distribution is entirely random. While this may be 

an adequate approximation for y < 30 %, in the case y = 30 %, repulsive interactions between 

the pinned Li would likely make clusters of them as mutual nearest neighbours, arising by 

chance simply due to the high population, highly energetically unfavourable. We did not 

include the effect of possible short range order in the substituted metal M distribution in the 

simulations; including these effects might then have implications for the short range order in 

the pinned Li distribution, and in turn, the partial molar entropy peak magnitude. Additionally, 

while our assumption that the pinned Li sites are constrained within the orbit of the defect 

M, as shown in Figure 4, can be justified [42], our present model does not allow the Li to move 

within those orbits. We intend to develop a future model that can account for motion of the 

Li in the vicinity of the defects.  

4. Conclusions 

We have examined the change in partial molar entropy as a function of the Li content in 

perfectly crystalline LixMn2O4. As has been previously found, we find that features observed 

in the profile are due to an order/disorder transition in the Li sublattice. This can be visualised 

by considering the Li sublattice itself as two separate fcc sublattices, only one of which is 

occupied in the ordered phase, except for a small fraction of the sites which move into the 

opposite sublattice due to thermal fluctuations. 

We extended the model to investigate Li intercalation in LixMyMn2-yO4 as a model system with 

point defects, where the defects can be Co or Cr (valency +3). With this method we also 

simulated the possible effect of unintentional point defect substitution arising from cell aging. 

From electrostatic arguments, and supported by DFT calculations, considered we assumed a 

random distribution of Li permanently pinned to the lattice, xpinned, equivalent to the defect 
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concentration, y. On the basis of the results of this model the following conclusions can be 

drawn: 

1. Consistently with the known experimental results, the presence of the defects 

suppresses the overall amplitude of the two entropy profile peaks. Through repulsive 

nearest neighbour interactions, the pinned Li sites reduce the energy gain that would 

result from ordering. 

2. The amount by which the peaks are suppressed increases with the defect content y. A 

higher y value forces the mobile Li to reside in smaller and smaller domains. In the 

most extreme case examined, defect percentage, y = 30 %, the entropy profile peaks 

are barely discernible and the result tends to one close to that of a solid solution over 

the entire voltage range. 

3. Consistently with previous experiments and models, a change in gradient in the 

voltage profile as a function of the mobile Li content is observed for LixMn2O4 at x = 

0.5. However, as the defect concentration increases, the change in gradient in the 

potential region of the order/disorder transition (between about 4.00 V and 4.15 V) 

becomes progressively less pronounced.  

4. There are some quantitative discrepancies between the experimentally observed 

entropy profiles and the simulated ones. The model suggests a more pronounced 

suppression of the peaks associated with the order/disorder transition at high defect 

content (y ≈ 30 %) than is observed experimentally. However, good quantitative 

agreement is obtained for y ≤ 15 %. To resolve some of the quantitative differences 

between the model and the simulated results observed for high defect content in the 

entropy peak amplitudes, in future work we plan to include the effect of motion of the 

Li atoms confined within the radius of the defect atoms. 
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5. We considered the possibility that the partial molar entropy peak profile is related to 

the short range order in the Li/vacancy structure. The short range order analysis 

revealed an approximately linear relationship between the Warren-Cowley parameter 

and the defect content, for y ≤ 17 %. Due to the complex dependence of the amplitude 

of the two individual peaks on the defect content, a non-linear trend of the overall 

amplitude on the defect content was determined. For the accurate quantification of 

entropy profile peaks at high defect content (y ≥ 30 %), a future model would need to 

account for short range ordering in the substituted metal M distribution, which could 

then affect the pinned Li/vacancy distribution and in turn, the entropy profile peak 

amplitudes. 

6. For the first time, we also examined the effect of the defect content on the absolute 

configurational entropy. These results provide additional insight into the origin of the 

difference in peak amplitude that has sometimes been observed in LixMn2O4 and 

spinel electrodes with intentional substitutional defects. Going from x = 0 to x = 1, the 

difference between the amplitude of the two peaks becomes more pronounced as the 

defect content increases. We attribute this effect to the presence of extra vacancies 

in the near neighbourhood of the pinned Li sites. 
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<InlineImage1> 

Figure 1. Example of an entropy profile, shown for two different electrode compositions as indicated in the 

legend. Replotted based on the data presented elsewhere in Figure 1 of ref. [21]. The significance of the 

combined entropy peak amplitudes, A0 and A30, referring to 0 and 30 % defect substitution respectively, is 

described in the main text. 
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<InlineImage2> 

Figure 2. (a) Spinel structure of LixMn2O4, (b) top down view of the unit cell, (c) (2 x 2 x 1) supercell, showing the 

tetragonal bonding of Li to oxygen and the octahedral bonding of O to Mn. The figure was produced using VESTA 

3 [55]. 

 

<InlineImage3> 

Figure 3. (a) Representation of (2x2x1) supercell of the diamond lattice in which Li resides. The two sublattices 

are indicated in blue and yellow respectively. Each sublattice has fcc symmetry. (b) (2x1x1) diamond supercell. 

The nearest and second nearest neighbours in the model are represented. These are the sites that are addressed 

within the pairwise interaction model. It has 4 nearest neighbours in the yellow sublattice, and 12 second nearest 

neighbours in the blue sublattice. The figure was produced using VESTA 3 [55]. 
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<InlineImage4> 

Figure 4. Representation of the Li diamond lattice. One of the sites from the spinel lattice, representing a 

substitutional defect, is shown in light blue. The nearest Li neighbour sites to this defect are highlighted in gold 

and dark blue, dependent upon the sublattice in which the Li atom is found. It can be seen that the nearest Li 

neighbour sites to the defect, which are the sites in which one pinned Li atom per defect M is presumed to 

reside, would be distributed equally amongst the two sublattices. The figure was produced using VESTA 3 [55]. 
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<InlineImage5> 

Figure 5. Variation of (a) electrode potential, (b) partial molar entropy change, (c) occupancy in each of the 

sublattices (here, the sublattice with the highest occupation is indicated in gold) and (d) configurational entropy, 

plotted as a function of the amount of intercalated Li, x, for LixMn2O4 (y = 0 %) and a solid solution (SS) with ε = 

4.12 eV and no lateral Li-Li interactions. In (c), “h” and “l” refer to the highest and lowest occupied sublattices, 

respectively. The significance of the blue dashed lines in (d) is described in the main text. (e-g) Snapshots of the 

lattice at selected electrode potential values (e) E = 4.150 V, (f) E = 4.115 V, (g) E = 4.050 V, (h) E = 4.025 V, (i) E 

= 3.950 V. The pictures were produced by projecting a layer of 1 unit cell thickness from the overall 10 x 10 x 10 

lattice onto a 2D plane for LixMn2O4 (y = 0 %).  The relevant points on each of the plots (a-d) relating to the 

pictures are labelled 1-5 for ease of comparison.    
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<InlineImage7>  

Figure 7. (a) The partial molar entropy, ∂S/∂x, and (b) the configurational entropy, S. The defect percentage is 

indicated in the legend. The results are overlaid with the ones expected for a solid solution, SS. 
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<InlineImage8>                           

Figure 8. Comparison of the equilibrium lattice state for y = 0% (left column, a,e,i), y = 5% (second column, b,f,g), 

y = 15% (third column, c,g,k) and y = 30 % (right column, d,h,k). The Li sites that are pinned are indicated with 

white circles. 

 

<InlineImage9> 
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Figure 9. Variation in the absolute amplitudes of the peaks as a function of the defect content. The overall 

amplitude in the partial molar entropy, defined in Figure 1, is shown along with the amplitudes of the two  

individual peaks. 

 

(a) 

<InlineShape4> 

<InlineImage10> 

Figure 10. Variation in the short range order parameter due to (a) nearest neighbours and (b) second nearest 

neighbours. The defect fraction is shown in the legend. 

 

(a) 

<InlineShape2> 
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<InlineImage11> 

Figure 11. Plot of (a) the defect fraction, y, and (b) the entropy peak amplitude as a function of the first 

Warren-Cowley parameter, 𝛾1. 

 

Table 1. Comparison of the results for the partial molar entropy peak amplitudes obtained from the simulations 

with experimental results. Because the experimental data were obtained from digitised graphs, they are 

reported to 2 significant figures. Within the Li pinning model, the simulated results are applicable to both 

defects. 

Defect 

concentration 

Experimental  ∂S/dx peak 

amplitude / J mol-1 K-1 

Simulated ∂S/dx peak 

amplitude / J mol-1 K-1 

Experimental 

Defect 

0 % 41 [13], 33 [14],34 [21] 39.0 ± 0.4 N/A 



41 
 

5 % 

 

33 [25] 

27 [25] 

36.9 ± 0.5 Cr 

Co 

15 % 

 

23  [25] 

23  [25] 

23.0 ± 0.9 Cr 

Co 

30 % 17 [25], 16 [21] 

16 [25] 

Not resolved Cr 

Co 

 


