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Abstract 

We contribute to the growing debate on the relation between macroeconomic risk and stock 

price momentum. Not only is momentum seasonal, so is its net factor exposure. We show that 

winners and losers only differ in macroeconomic factor loadings in January, the one month when 

losers overwhelmingly outperform winners. In the remainder of the year, when momentum does 

exist, winner and loser factor loadings offset nearly completely. Furthermore, the magnitude of 

macroeconomic risk premia appears to seasonally vary contra momentum. In contrast, the 

relatively new profitability factor does a much better job of capturing the described seasonality. 

 

JEL Classification: G12; E44 
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1. Introduction 

A momentum strategy, buying recent winners and selling recent losers, generates 

considerable profits (Jegadeesh and Titman, 1993). This finding has prevailed in further studies 

both geographically and temporally. Among others, Rouwenhorst (1998), Griffin, Ji, and Martin 

(2003), and Asness, Moskowitz, and Pedersen (2013) document the continuing prevalence of 

momentum in the United States and the United Kingdom, as well as many European and Asian 

equity markets. 

                                                           
1 Tel.: +1 7082357642. 
2 Tel: +44 1524 510731. 
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Neither the capital asset pricing model nor the Fama–French three-factor model can account 

for momentum profits (Jegadeesh and Titman, 1993; Fama and French, 1996; Grundy and 

Martin, 2001). Recently, some researchers have examined the link between macroeconomic risk 

and the cross section of returns (Cooper and Priestley, 2011; Savor and Wilson, 2013; Bali, 

Brown, and Caglayan, 2014; Moller and Rangvid, 2015), and thereby the momentum effect. 

Chordia and Shivakumar (2002) argue that a conditional macroeconomic risk-factor model can 

capture the momentum phenomenon. In contrast, Griffin, Ji, and Martin (2003) suggest that 

neither the unconditional nor the conditional application of the five-factor model of Chen, Roll, 

and Ross (1986) can explain momentum profits. Similarly, Liew and Vassalou (2000) show that, 

although the size and value effects can be linked to macroeconomic growth, little evidence is 

found to support such an explanation for the momentum effect. Liu and Zhang (2008) respond 

with a finding that the growth rate of industrial production is particularly useful in explaining 

momentum profits. More recently Hou, Xue, and Zhang (2015, 2016) claim that the q-theory, 

which is based on a multi-factor asset pricing model consisting of a market factor, a size factor, 

an investment factor, and a profitability factor, can account for the momentum effects. 

To get further traction on these issues, we go back to some basic empirical patterns that 

began the whole debate. A much neglected characteristic of price momentum is its strong 

seasonality: momentum strategies produce only substantial losses in January, more than triple the 

monthly magnitude of the overall momentum profits (Jegadeesh and Titman, 1993; Grundy and 

Martin, 2001; Asness, Moskowitz, and Pedersen, 2013). Grundy and Martin (2001) argue that 

the losses are attributable to betting against the January size effect by selling losers that tend to 

be extremely small firms. Grinblatt and Moskowitz (2004) add that tax minimization contributes 

to these patterns.  



3 
 

Recent studies further highlight the importance of seasonality in understanding market 

anomalies (Bogousslavsky, 2015, 2016; Keloharju, Linnainmaa, and Nyberg, 2016). Since so 

much of the mean and variance in momentum returns is seasonal, we argue that it is important to 

exercise greater caution in employing the usual metrics for empirical success. In this paper, we 

construct a sample from 1947 to 2014 for the United States and demonstrate that, although the 

five-factor macroeconomic model of Liu and Zhang (2008) does capture about half of 

momentum returns unconditionally, the explanatory power is concentrated in January, the month 

when there are no momentum profits to explain, only massive losses. 

Factor loadings too are significant mainly in January. Outside of January, for instance, the 

production factor loadings for the winner and loser portfolios are almost identical. Those 

findings are consistent with prior studies (e.g., Kramer, 1994) that show significant seasonality in 

the macroeconomic risk of small stocks. Both winners and losers are small firms (Jegadeesh and 

Titman, 1993; Grundy and Martin, 2001). Thus, winner-minus-loser portfolios have essentially a 

net zero loading outside of January.  

We also examine the role of January seasonality in understanding the ability of the ROE 

factor in explaining momentum effects. In a marked contrast with the MP factor, winners have 

higher loadings on ROE than losers do in both January and non-January months. The loading 

difference persists, and this difference is not consistent with the well-documented momentum 

reversal (Jegadeesh and Titman, 1993), which casts some doubt on its sole responsibility for 

driving momentum.   

The remainder of the article proceeds as follows. In Section 2, we describe data and analyze 

the seasonal patterns of momentum trading strategies. In Section 3, we examine the exposures of 

momentum portfolios to macroeconomic risk, and investigate the role of macroeconomic 
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variables in explaining momentum profits. In Section 4, we address the development of 

investment and profitability factor models. Concluding remarks are given in Section 5. 

 

2. Data and definitions 

 

2.1. Macroeconomic variables 

 

For macroeconomic variables, the Chen, Roll, and Ross (1986) five factors (hereafter 

CRR5)—unexpected inflation (UI), change in expected inflation (DEI), term spread (UTS), 

default spread (UPR), and changes in industrial production (MP)—are constructed monthly in 

the sample period. Unexpected inflation is defined as [ 1]
t t t

UI I E I t    and change of expected 

inflation as    1
1

t t t
DEI E I t E I t


   following Fama and Gibbons (1984). Term spread (UTS) 

is defined as the yield difference between 20- and 1-year Treasury bonds, and default spread 

(UPR) is the yield difference between BAA- and AAA-rated corporate bonds in the FRED 

database at the Federal Reserve Bank of St. Louis. The growth rate of industrial production for 

month t is defined as 1log log ,t t tMP IP IP  where tIP  is the industry production index 

(INDPRO series) in month t from the FRED database. Note that MP is led by one month since 

INDPRO is recorded at the beginning of a month, whereas stock returns are recorded as of the 

end of a month. In addition to the CRR5 specification, sometimes it is necessary to omit the 

default factor UPR and we label it CRR4. 

   Table 1 contains summary statistics. Panel A shows that, from March 1947 to December 

2014, the mean of monthly industrial production is 0.25%; both unexpected inflation and change 

in expected inflation average zero. Term spread and default spread are much larger, 1.22% and 

0.95%, respectively. Term spread also dominates in standard deviation, 1.36%. Panel B has the 
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correlations among the five variables. They mostly range from -0.22 to 0.13, with the high 

outlier of 0.71 coming from unexpected inflation and change in expected inflation. 

[Insert Table 1 here] 

 

2.2. Other variables 

Fama-French (1996) factors from the French data library are: (1) the market factor (MKT), 

the monthly return to the market portfolio in excess of the risk-free rate (i.e., one-month Treasury 

bills); (2) the size factor (SMB), the difference in returns between a portfolio of small firms and a 

portfolio of large firms; (3) the value factor (HML), the difference in returns between a portfolio 

of high-book-to-market firms and a portfolio of low-book-to-market firms.
3
  

Hou, Xue, and Zhang’s (2015) q-factors are: (1) the market factor (MKT), the monthly excess 

return to the market portfolio; (2) the size factor (ME), the difference in returns between small 

and large firms; (3) the investment factor (I/A), the difference in returns between a portfolio of 

low investment firms and a portfolio of high investment firms; (4) the profitability factor (ROE), 

the difference in returns between a portfolio of high-ROE firms and a portfolio of low-ROE firms. 

Restricted by the availability of accounting variables, we construct the four factors for the 

January 1967 to December 2014.  

10 size and 10 value portfolios are one-way sorted decile portfolios based on size (market 

capitalization) and value (book-to-market equity), respectively. Industry portfolios are formed 

according to various industry definitions.
4
 All these portfolios contain data from the French data 

library.  

 

                                                           
3 Please refer to http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library/f-f_factors.html. 
4 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#Research. 
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2.3. Portfolio definitions 

 

To construct our sample, we obtain data from the monthly files of the Center for Research in 

Security Prices (CRSP) for all stocks traded on the NYSE, AMEX, and NASDAQ. Closed-end 

funds, real estate investment trusts, American depository receipts, and foreign stocks are 

excluded. The sample period runs from March 1947 to December 2014 to match the data 

availability of macroeconomic variables. 

Each month, all NYSE, AMEX, and NASDAQ stocks in the sample are ranked on the basis 

of cumulative returns in month t − 7 to month t − 2, and are assigned into ten deciles.
5
 Stocks 

with the highest returns in the preceding two-to-seven months are defined as winners (P10), 

whereas stocks with the lowest returns during the same period are defined as losers (P1). In the 

momentum strategy, prior winners (P10) are purchased and prior losers (P1) are sold. Zero-

investment winner–loser portfolios (P10–P1) are rebalanced each month, and held for six months 

from month t + 1 to month t + 6. There is a one-month gap between portfolio formation and 

portfolio investing in order to circumvent the mechanical bid–ask bias.
6  

 

2.4. Momentum profits 

 
In Table 2, we report average monthly returns on winner–loser portfolios formed on the basis 

of the past two-to-seven months’ returns. Between March 1947 and December 2014, the average 

                                                           
5
 Jegadeesh and Titman (1993) examine momentum trading strategies by analyzing a sample portfolio of NYSE and 

AMEX stocks; they exclude NASDAQ stocks in order to avoid the results being driven by small and illiquid stocks 

or the mechanical bid–ask bias. Nevertheless, both Jegadeesh and Titman (2001) and Liu and Zhang (2008) add 

NASDAQ stocks to the sample to construct momentum portfolios. They argue that the addition of NASDAQ stocks 

has very little impact on the profitability of momentum strategies, but it may increase the January losses noticeably. 

To demonstrate the robustness of our findings, we analyze the NYSE and AMEX stock sample in addition to the 

sample NYSE, AMEX, and NASDAQ stocks. The results show that our findings still hold. 
6
 Strong winners are much more likely to have close prices at the ask than at the bid, and strong losers are more 

likely to have close prices at the bid than at the ask. 
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monthly return to the momentum strategy is 0.64% (t-statistic = 3.49). The average return is 

decreased by large losses in Januaries (see Jegadeesh and Titman, 1993; Grundy and Martin, 

2001; Asness, Moskowitz, and Pedersen, 2013). Prior winners underperform prior losers by 5.67% 

(t-statistic = −4.91) in Januaries.   

[Insert Table 2 here] 

Further, neither the capital asset pricing model (CAPM) nor the Fama–French (1993) three-

factor model can capture the momentum portfolio returns obtained from long–short positions in 

the extreme deciles.  

 

3. Macroeconomic risk and momentum profits 

 

Many studies have documented that momentum strategies are profitable outside of January, 

whereas they suffer substantial losses in January (e.g., Jegadeesh and Titman, 1993; Grundy and 

Martin, 2001; Yao, 2012). If the momentum phenomenon is driven by winners having different 

macroeconomic risk factor loadings than losers, as argued in Liu and Zhang (2008), then it is 

important to know whether those loadings also exhibit seasonality. It is particularly relevant to 

investigate in light of the strongly seasonal expected stock returns documented by Heston and 

Sadka (2008), Bogousslavsky (2015, 2016), and Keloharju, Linnainmaa, and Nyberg (2016). 

 

3.1. Momentum exposure to macroeconomic risk  

 
To examine the relation between prior performance and factor loading, we focus on the MP 

(industrial production growth) factor, the factor having the most explanatory power in the 

findings of Liu and Zhang (2008). As in their Table 1, Panel A of Figure 1 here shows increasing 

single-factor MP loadings as prior returns increase across the first six deciles, then a rapid 
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increase indicating that the winner portfolio is related to macro risk. Controlling for the Fama–

French or CRR4 or CRR5 factors does not change the single-factor patterns.  

[Insert Figure1 here] 

We distinguish January and non-January months in Panels B and C of Figure 1. Panel B 

displays the MP loadings for the ten decile momentum portfolios from time-series regressions 

using January observations only. Notice that the first three deciles have a sharp increase in MP 

loadings, which is followed up by a gradual increase up to the winner decile. The momentum 

strategy has a significant large exposure to the MP loadings in January when it loses 

substantially.  

 

3.1.1.  Are the economics of risk exposure so seasonal? 

Prior studies show that momentum stocks are usually small caps (Jegadeesh and Titman, 

1993; Grundy and Martin, 2001). Kramer (1994) shows that, similar to macroeconomic variables, 

small firms exhibit strong seasonality in January, which tends to be more sensitive to 

macroeconomic variables (Fama and French, 1993; Balvers and Huang, 2007).
7
 There is a 

paucity of literature regarding the macro risk factors that impact such seasonal effects 

(Bogousslavsky, 2015, 2016; Keloharju, Linnainmaa, and Nyberg, 2016).   

It is not difficult, however, to imagine our econometric measurements as a coincidence where 

momentum stocks, the smaller/volatile firms, happen to have their long-known January 

outperformance behavior manifest in a measured seasonality of covariance with the industrial 

production growth factor. MP could then appear to be influential despite no real economic link. 

                                                           
7 Previous studies suggest that tax-loss selling (Sias and Starks, 1997; Poterba and Weisbenner, 2001; Ivkovic, Poterba, and 

Weisbenner, 2005) and window dressing (Sias and Starks, 1997; He, Ng, and Wang, 2004; Ng and Wang, 2004) can contribute to 

the January seasonality. To mitigate the potential impacts, we also use various proxies to control for tax-loss selling and window 

dressing when estimating the MP loadings, and find that the patterns of the MP loadings remain similar. For brevity, we do not 

report the results, which are available upon request. 
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In light of the contrary results we find with the ROE factor, this is perhaps the best explanation to 

date. 

 

3.1.2.  Explanations of other aspects of the momentum phenomenon 

Panel C of Figure 1 displays the MP loadings from time-series regressions using non-January 

observations. In sharp contrast to Panels A and B, the loser portfolios load strongly on the MP 

factor. Across the model specifications, Panel C shows that winners and losers have almost 

identical MP loadings outside of January. The results suggest that there is essentially a net-zero 

factor loading in the 11 months of the year when momentum is present in the data. The 

implication is that differences measured in previous work arise due to January seasonality, 

particularly in the loser decile. Detailed numerical results for Figure 1 are in Table 3. 

Is the measured risk exposure temporary, as momentum profits are? To the extent that 

momentum effects fade to nil over the year following the ranking, measured risk loadings ought 

to disappear as well (particularly the winner-minus-loser differences). Figure 2 displays the MP 

loadings of winners and losers estimated from pooled time-series factor regressions for each of 

the 12 event months after portfolio formation. In line with Liu and Zhang (2008), the one-factor 

MP model (top left panel) generates an enormous apparent dispersion in MP loadings between 

the winner and loser portfolios: 0.83 in month t, 0.56 in month t + 1, and 0.54 in month t + 2. 

The spread between winners and losers converges in the eighth month. Controlling for more 

factors produces similar patterns, as shown in the panels for the models of FF+MP, CRR4, and 

CRR5. 
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Once again, however, that effect and story are upset by a stubborn January effect. Using 

February-to-December observations instead of all observations (the right-most panels of Figure 

2), only in the first three months following portfolio formation do winners have a slightly higher 

MP loading than losers, with one exception (i.e., CRR5). Subsequently, winners have lower MP 

loadings than losers. For the CRR5 model, winners and losers have similar MP loadings even in 

the first three months after portfolio formation.  

 

3.2. Momentum profits and macroeconomic risk   

 

3.2.1. Estimating risk premia 

We estimate the macroeconomic risk premia with two-stage Fama–MacBeth (1973) cross-

sectional regressions. The first-stage time-series regression involves regressing the returns of the 

test assets on the Fama–French three factors and/or CRR five factors in order to estimate factor 

loadings. We use full sample (unconditional), extended-window (existing life to date, but at least 

24 months), and rolling window (60 months) methods to compute first-stage time-series betas.
8
   

, , , , , , .
 .                       (1)

P t P UI P t DEI P t UTS P t UPS P t MP P t P t
r UI DEI UTS UPR MP            

  

The second-stage cross-sectional regression fits the returns of the test assets in excess of the 

risk-free rate to the factor loadings obtained from the first-stage regressions:  

, , 0, , , , , , , , , , ,
ˆ ˆ ˆ ˆ ˆ .    (2)P t f t t UI t UI P DEI t DEI P UTS t UTS P UPR t UPR P MP t MP P tr r                     

                                                           
8
 Liu and Zhang (2008, Tables 5 and 6) show that the results, from both full-sample and extended-window 

regressions, suggest that the MP premium is economically and statistically significant, and also that the growth rate 

of industrial production can account for momentum profits. Their results from rolling-window regressions, however, 

provide the opposite findings. The focus of our discussions is on the result from the full-sample and extended-

window regressions, unless mentioned otherwise.  
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Table 4 presents risk-premium estimates using momentum, size, and value decile portfolios 

as the test assets. The Overall panel shows the general patterns of findings in prior work. Of the 

CRR5 factors, UTS (the term premium), UPR (the default premium), and MP (industrial 

production growth) are the ones having significant priced risk premium estimates. The UTS 

factor exhibits a negative risk premium, however. The positive estimate on MP is robust to other 

specifications including one-factor regression and also inclusion with the Fama-French factors. 

The estimates range from 0.83% to 1.04% per month.   

 

Choice of test assets.  

Is the pricing of macro risk sensitive to the choice of test assets? Interestingly, the answer is 

no other than for the MP factor. Despite marked changes to MP risk-premium estimates, adding 

industry portfolios to the existing test assets does not change other risk-premium estimates 

substantially.   

Table 5 shows that adding 10 industry-sorted portfolios into the roster of test assets does 

quantitatively weaken the MP risk-premium estimates, although a majority of cases still produce 

statistically significant MP risk-premium estimates. Panel A presents the risk-premium estimates 

of the 40 test assets (10 momentum-, 10 size-, 10 value-, and 10 industry portfolios). For the one-

factor MP model, the MP risk-premium estimate to be 0.46% per month (t-statistic=2.02) in the 

sample of March 1943 to December 2014. This figure is less than half of the corresponding 

estimate from the 30 test assets in Table 4, 1.00% per month (t-statistic=3.34).  
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Seasonality effects and implications.  

Is the pricing evidence of macro risk sensitive to the January seasonality? The results in 

Panels C of Table 4 and 5 indicate a strong yes. While the significantly negative UTS and UPR 

premium estimates remain, the result for MP disappears in five of the six specifications.   

While these estimates can show ex post conditional realized premia, they do not satisfyingly 

estimate ex ante conditional risk premia, a complex task as shown in Mayfield (2004). Note that 

the difference is important because the time when a risk is realized and the time when the risk 

premium is realized generally will not coincide.  

The realized MP risk premium appears to concentrate in January. In Panel B of Table 4, the 

MP risk premiums in Januaries are significant, being −1.76% per month (t-statistic=−5.98) for 

the single-factor MP model and −2.78% per month (t-statistic =−2.10) for the CRR5 model 

specification. Interestingly, using the Fama−French three-factor model makes the MP risk 

premium insignificant. However, the size factor is priced. In Panel C of Table 4, outside of 

January, the MP risk premium ranges from −0.34% per month (t-statistic=−1.04) to 0.11% per 

month (t-statistic=0.33) depending on model specifications.  

 

3.2.2. Model-based expected momentum profits  

If macroeconomic factor models can capture momentum returns, then expected momentum 

returns implied from the models should not differ much from the observed momentum returns, 

and vice versa. Similarly, we conjecture that, if a particular factor can account for momentum 

returns, then its incremental contribution to expected return should also not differ significantly 

from what is observed in momentum returns.  



13 
 

Specifically, we estimate factor loadings of a momentum strategy on the Chen, Roll, and 

Ross (1986) five factors CRR5: 

   .                               (3)
t UI t DEI t UTS t UPS t MP t t

WML UI DEI UTS UPR MP            

 

The beta estimates are combined with risk premium estimates from Tables 4 and 5 to 

generate model-expected momentum returns, [ ]E WML . Comparing these to actual WML returns 

provides evidence on whether the factors drive momentum. These comparisons not only allow us 

to disentangle any contamination effect associated with the month of January from the rest of the 

year, but also enable us to directly address the issue of whether macroeconomic risk can 

rationalize momentum profits, profits that exist only outside of January.  

Observed vs expected momentum profits.  

Panel A of Table 6 reports the expected momentum returns implied by macroeconomic risk 

as well as the t-statistics for the difference tests between the observed WML returns and expected 

WML returns. In estimating risk premia for computing expected WML returns, we use 30 test 

assets—10 momentum portfolios, 10 size portfolios, and 10 value portfolios. The full sample 

yields some conflicting findings for different model specifications. 

 

The single-factor MP model estimates [ ]
MP MP

E    to be 0.30% per month (or 50% of the 

observed returns), with the other 50% being insignificant. Controlling for the three Fama–French 

factors does not have a material impact on the ability of the MP risk factor to capture momentum 

returns. The FF+MP model determines the MP incremental distribution to be 0.41% (or 68% of 

the observed returns), with the remaining 32% being insignificant. The findings suggest that 

industrial production risk can provide explanatory power for roughly half of momentum profits.  
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Conversely, the Chen, Roll, and Ross (1986) five-factor (CRR5) model produces an MP 

incremental contribution of 0.17% per month, or 28% of the observed returns. The remaining 72% 

is significant (t-statistic=2.41). It indicates that industrial production risk can hardly subsume the 

momentum effect.  

As to the issue of whether macroeconomic risk factors taken together can capture the 

momentum effect, the full sample provides little supportive evidence. For example, we find that 

for the FF+MP model, the expected WML return, [ ]E WML  , is 0.34% per month (or 57% of the 

observed WML return), which is significant from the observed average return.  

Explanations are not stable to change in estimation window.  

In contrast with the evidence from using a full-sample estimation, the no-look-ahead 

(extended window) estimation results show that neither the MP risk factor nor the multi-factor 

models can account for momentum returns.
9
 For instance, the single-factor MP model predicts 

the expected return,  ,MP MP
E    to be 0.15% (or 25% of the observed WML return), with the 

remaining 75% being significant (t-statistic=2.23).  

The CRR5 model determines the incremental contribution of MP,  MP MP
E   , to be 0.03% or 

5% of the observed WML return, and the difference between them is significant (t-statistic=3.15). 

What follows is our analysis of the role of macroeconomic risk factors combined together in 

rationalizing momentum profits. The CRR5 model generates the expected WML return to be 

0.42% per month, or 70% of the observed return, with the remaining 30% being significant (t-

statistic=3.19). Since the MP risk factor captures only 5% out of 70% being explained by the 

                                                           
9
 We replicate Table 6 Panel B of Liu and Zhang (2008) using the extended-window regressions in the same sample 

period of 1960–2004. We find that the growth rate of industrial production can provide explanatory power for the 

momentum returns in the 1960–2004 sample period. However, the results fall apart out of the sample. 



15 
 

combined CRR5 model, this finding reflects that the MP risk factor is the least important source 

among the CRR five factors.
10

  

Our analysis of the momentum effect all year round appears to suggest that MP has some 

relation to rationalized momentum profits; however, we need to exercise caution in offering any 

conclusive statements, due to the complexity associated with the month of January. We next 

address the concerns associated with the month of January: (a) massive momentum losses in 

January and (b) the exclusive presence in January of the relation between momentum returns and 

the MP factor. Excluding January is the most direct way to tackle the above-mentioned concerns. 

Pivotal role of January in measuring macroeconomic risk effects.  

The findings in January are striking. In Panel B of Table 6, both the MP risk factor itself and 

the complete standard asset-pricing models can capture the observed loss in January (with one 

exception, the FF+MP model).  For the full sample, the one-factor MP model generates expected 

WML return, [ ]
MP MP

E   , as −8.28% per month (or 147% of the observed WML return). 

Controlling for the three Fama and French factors significantly weakens the results. For example, 

with the full sample, the FF+MP model yields the incremental contribution of MP to be −1.23% 

per month or 22% of the observed WML losses.  

Excluding the month of January leads to considerable changes compared with the counterpart 

overall findings. Both the MP risk factor itself and the complete standard asset-pricing models 

can barely capture the observed profits outside of January.
11

 Standing in sharp contrast with the 

findings of averaging across the year, with the extended window, the one-factor MP model 

                                                           
10

 Like the extended-window findings, the rolling-window results suggest that macroeconomic risk cannot 

rationalize momentum returns, regardless of which model specification is used.  
11

 We replicate Liu and Zhang (2008, Table 6, Panel B) using the same sample period of 1960–2004. Consistent 

with Liu and Zhang, we find that the growth rate of industrial production can explain momentum returns across the 

entire year. When concentrating purely on momentum profits outside of January, that result fades in strength. 

Results are available on request.  
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generates expected WML return, [ ]
MP MP

E   , as 0.03% per month (or 2% of the observed WML 

return), with the remaining 98% being significant (t-statistic=7.32). Controlling for the three 

Fama–French factors or the five Chen, Roll, and Ross (1986) factors does not qualitatively affect 

the findings. For example, with the extended window, the FF+MP model results indicate that the 

incremental contribution of MP is 0.09% per month or 7% of the observed WML profit. And the 

remaining 93% is significant (t-statistic=7.23).  

Further, we find that the macroeconomic factors together cannot provide a rationalization for 

momentum profits outside of January. In Panel C of Table 6, with the extended window, the 

CRR5 model produces the expected WML return of 0.76% per month (or 65% of the observed 

WML profit) outside of January. Although the Chen, Roll, and Ross (1986) five-factor model 

can capture more than half of momentum profits, a difference test rejects the null of no 

difference between the observed and expected WML returns (t-statistic=6.07). 

Excluding the month of January alters the results by providing further supportive evidence 

that macroeconomic risk is not the main driving force of momentum profits. For instance, in 

Panel C of Table 6, for the FF+MP model, the MP risk factor can capture 7% of the observed 

WML profits outside of January, which are smaller than the corresponding one (51%) from 

averaging across the year in Panel A of Table 6. By contrast, excluding January has no material 

impact on the role of macroeconomic risk in capturing momentum profits outside of January for 

the CRR4 and CRR5 models.  

Addition of industry portfolio test assets.  

In Table 7, we repeat the expected profits analyses in the presence of industry portfolios as 

test assets. With the full sample including all months, the one-factor MP model results in Table 7 

show the expected WML return, [ ]
MP MP

E   , as 0.14% per month (or 23% of the observed WML 
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return). And the remaining 77% is significant (t-statistic=2.20). The MP incremental contribution 

of 0.14% per month is smaller than the corresponding value of 0.30% per month in Table 6. 

More importantly, it leads to the opposite inference—the growth rate of industrial production 

plays a negligible role in rationalizing momentum profits.  

 

When we control for the three Fama–French (1996) factors or the five Chen, Roll, and Ross 

(1986) factors in the regression, the MP incremental contributions range from 0.09% per month 

to 0.17% per month (or 15% to 29% of the observed WML returns). And the remaining 

differences are all significant. To sum up, our analysis of momentum returns all year round 

appears to suggest that MP (and thus the tested macro models as a whole) cannot account for 

momentum profits.  

Should we conclude that 29 percent of observed WML in Panel A of Table 7 is a still a pretty 

good result for explaining momentum? The results in Panel C of Table 7 indicate no. Outside of 

January, that 29% estimate falls to 0%. The MP-related momentum expectation ranges between 

−2% and 2% of the total [ ]E WML , which is very discouraging because those are the months in 

which momentum is present (not massive size-related negative returns, as in January). At no 

point do we find the “unexplained” portion of WML insignificant. 

Summary.  

This subsection shows that the momentum effect is not a manifestation of recent winners 

having temporarily higher loadings than recent losers on the growth rate of industrial production. 

Our conclusions rest on three pieces of evidence. First, outside of January, there are no 

significant differences, between either the observed and expected momentum returns, or between 

the observed momentum return and the incremental contribution of MP. It is obvious that 
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excluding January observations in a variety of our tests is the most direct way to allow for a 

focus on the 11 months of a year when momentum is indeed present. Second, including industry 

portfolios in addition to size-, value-, and momentum portfolios in the test assets also undermines 

Liu and Zhang’s (2008) arguments. Adding industry portfolios has a diluting effect on the 

possible January influence on our tests, due to the fact that all of the other test assets (instead of 

industry portfolios) are associated with the classic January size effect. Third, the untabulated 

results show that the MP risk factor plays a negligible role in providing explanatory power for 

the value-weighted momentum profits relative to equal-weighted momentum profits. Using 

value-weighted momentum returns instead of equal-weighted returns alleviates the 

contamination of momentum losses in January, because winners underperform losers to a lesser 

degree for value-weighted than for equal-weighted momentum strategies in January. All the 

evidence points to the fact that momentum profits are not the reward for exposure to 

macroeconomic risk. 

 

3.3. Robustness checks 

 

For robustness, we perform several additional tests. In addition to the equal-weighted results, 

we also use the value-weighted approach and find qualitatively similar patterns. To examine 

whether the length of portfolio formation period influences our findings, we extend the six-

month formation period to 11 months. The main results still emerge and are available upon 

request. 

As there are various kinds of industry partitioning,
12

 we replicate the tests by including 

different sets of industry-sorted portfolios and uncover the similar findings. Further, another 

                                                           
12

 The French website also provides data for 17 industry portfolios, 30 industry portfolios, and so forth, which are 

formed by different industry specifications. 
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potential concern has to do with the extent to which our results may be due to many tiny and 

illiquid stocks traded on NASDAQ. To address this concern, we exclude NASDAQ stocks and 

use NYSE and AMEX stocks only to construct ten decile momentum portfolios. The basic 

inferences remain the same as in the previous subsection.  For the sake of brevity, we do not 

report the results, which are available upon request. 

 

4. ROE and momentum profits 

 

 Recently, Hou, Xue, and Zhang (2015, 2016) suggest that their q-factor model, consisting of 

the market factor (MKT), a size factor (ME), an investment (I/A) factor, and a profitability (ROE) 

factor, can provide explanatory power for the momentum effects. In particular, their ROE factor 

is the main driver in capturing momentum effects. In this section, we extend our analysis to the 

ROE factor and examine whether its explanatory power is also prone to seasonality in 

momentum profits.  

 

4.1. The performance of the ROE factor  

 

Table 8 reports the raw average monthly returns on the winner–loser portfolio, as well as the 

alpha estimated from Hou, Xue, and Zhang’s (2015) q-factor model and the one-factor ROE 

model. Between January 1967 and December 2014, the average monthly return to momentum 

strategy is 0.51% (t-statistic=2.08). The January losses are large, −6.47% (t-statistic=−4.13), 

while from February to December, the average monthly return is 1.14% (t-statistic=5.60). 

 

Table 8 shows that the HXZ q-factor model seems to capture momentum profits across the 

year, as evident by the alpha of −0.33, which is statistically insignificant with an associated t-
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statistic of −0.85. With control for the January impact, the alpha of 0.50% is less than half of the 

raw return of 1.14% over the same February-December period; the associated t-statistic is 

insignificant at the 5% level. 

Table 8 also shows that the alpha estimated from the single-factor ROE model is small and 

insignificant, being −0.10% (t-statistic=−0.35). Compared to the alpha estimated from the q-

factor model, the ROE factor is the main driving force accounting for momentum profits. The 

ROE factor captures half of momentum losses in Januaries as the alpha of −3.03% (t-

statistic=−2.30) is far less than half of the raw losses, −6.47% (t-statistic=−4.13) and is also 

small in absolute terms relative to the HXZ alpha, −4.77% (t-statistic=−4.68). From February to 

December, the ROE factor alone accounts for about half of the momentum profits. To summarize, 

the ROE factor seems to perform well in subsuming the momentum effect.  

 

4.2. Momentum loadings on ROE and their seasonality  

 

As ROE is shown to be the prominent driver of momentum, we now examine momentum 

loadings on ROE and their seasonality. To that end, we plot in Figure 3 loadings of momentum 

portfolios on two models: one is univariate with ROE and the other is the full model of Hou, Xue, 

and Zhang (2015). Panels A-C are for overall, January alone, and February to December, 

respectively. All three panels of Figure 3 indicate that winners consistently have higher loadings 

than losers in both model specifications and loadings are lower in the univariate model.  

 

Contrasting with Figure 3 and Figure 1 shows that MP loadings and ROE loadings exhibit 

different patterns for extreme momentum portfolios in the months when momentum does 

exist(i.e., February-December). That is, MP loadings are nearly identical, yet ROE loadings are 
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much larger for winners. Detailed results in Table 9 show that the loading differences on ROE 

are not only large in magnitude, 0.79 for univariate and 0.86 for the full model, but also 

statistically significant with t-statistics being 10.14 and 10.72, respectively. Thus, the results cast 

doubt on the explanatory power of MP in Liu and Zhang (2008). 

 

Figure 4 displays the evolution of ROE loadings over the 12 event months after portfolio 

formation. As before, we run pooled time-series regressions for winners and losers. Except for 

the slight crossover in January for the univariate model, winners consistently demonstrate higher 

loadings in all the other scenarios. This does not seem to capture momentum reversal, which is 

well documented (e.g., Griffin, Ji, and Martin, 2003; Cooper, Gutierrez, and Hameed, 2004). 

 

5.   Conclusion  

Using the sample of 1947 to 2014 in the United States, we study the role of macroeconomic 

risk in explaining momentum profits. The CRR5 model does a poor job. What appears to be a 

persistent loading of momentum on the growth rate of industrial production is concentrated in 

January, with zero measured exposure in other months. As there is no momentum effect in 

January, the explanatory power of industrial production is questionable. 

The seasonality of loadings on a macroeconomic factor does not seem compatible with an 

economic story. It could, however, be a simple coincidence where momentum stocks, which is 

typically smaller/volatile firms, have their long-known January outperformance manifest in 

measured seasonal covariance with the industrial production growth factor. 

In contrast to the CRR5 factors, the q-factor specification does a much better job with the 

data. In particular, the ROE profitability factor covaries with momentum returns throughout the 

year and does a reasonable job of explaining the observed patterns. 
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In all, we conclude that macroeconomic risk is not the main driving force of momentum 

profits. Our empirical analysis has implications for the literature on investigating the source of 

momentum profits. Most of the existing studies do not concentrate on the 11 months of a year 

when the momentum effect is actually present. As this may lead to illusory conclusions about 

what drives momentum, it is best to be wary of the substantial January contamination when we 

investigate the cause of momentum profits. 
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Figure 1. MP factor loadings of momentum portfolio returns. This figure presents the results from 
calendar-based time-series regressions on the growth rate of industrial production (MP) using returns of 
ten momentum decile portfolios, L, 2, …, 9, W, where L stands for losers and W denotes winners. The 
figure reports the MP factor loadings based on two different factor models: the one-factor MP model 
(MP), and the Chen, Roll, and Ross (1986) model (CRR5). The five Chen, Roll, and Ross (1986) factors 
include MP (the growth rate of industry production), UI (unexpected inflation), DEI (change in expected 
inflation), UTS (term premium), and UPR (default premium). The sample period is from March 1947 to 
December 2014. 
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Figure 2. Event-time MP factor loadings on winners and losers. This figure presents the results from 
pooled time-series factor regressions on MP using returns of winners (W) and losers (L). The event 
month t + m (where m=0, 1, …, 12) starts the month right after portfolio formation to the twelfth month. 
For each event month, we pool together across calendar month the observations of returns to winners 
and losers, the five CRR factors (the growth rate of industrial production, MP; unexpected inflation, UI; 
change in expected inflation, DEI; term premium, UTS; default premium, UPR) for each of event month t 
+ m. We perform pooled time-series factor regressions to estimate MP factor loadings for winners (solid 
line) and losers (broken line). The sample period is from March 1947 to December 2014.  
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Figure 3. ROE factor loadings of momentum portfolio returns. This figure presents the results from 

calendar-based time-series regressions on the return on equity (ROE) using returns of ten momentum 

decile portfolios, L, 2, …, 9, W, where L stands for losers and W denotes winners. EW denotes the equal-

weighted momentum ten decile portfolios while VW denotes the value-weighted momentum ten decile 

portfolios. The figure reports the ROE factor loadings based on two different factor models: the one-factor 

ROE model (ROE), and the q-factor mode of Hou, Xue, and Zhang (2015) model (HXZ). The HXZ q-

factor model includes MKT (the market excess return), ME(the difference between the return on a 

diversified portfolio of small size stocks and the return on a diversified portfolio of large size stocks), 

I/A(the difference between the return on a diversified portfolio of low investment stocks and the return on 

a diversified portfolio of high investment stocks), ROE (the difference between the return on a diversified 

portfolio of high return on equity and the return on a diversified portfolio of low return on equity). The 

sample period is from January 1967 to December 2014.  
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Figure 4. Event-time ROE factor loadings on winners and losers. This figure presents the results from 

pooled time-series factor regressions on ROE using returns of winners (W) and losers (L). The event 

month t + m (where m=0, 1, …, 12) starts the month right after portfolio formation to the twelfth month. 

For each event month, we pool together across calendar month the observations of returns to winners and 

losers, the four Hou, Xue, and Zhang (2015) factors (the market excess return, MKT; the size factor, ME; 

the investment factor, I/A; and the return-to-equity factor, ROE), for each of event month t + m. We 

perform pooled time-series factor regressions to estimate ROE factor loadings for winners (solid line) and 

losers (broken line). The sample period is from January 1967 through December 2014.  
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Table 1. Descriptive summary statistics of the five Chen, Roll, and Ross (1986) factors 

The table reports the summary statistics and correlation coefficients of the key variables, the five 

Chen, Roll, and Ross (1986) factors, used in the analysis. Those five factors refer to changes in 

industrial production (MP), unexpected inflation (UI), change in expected inflation (DEI), term 

spread (UTS), and default spread (UPR), which are constructed monthly. The growth rate of 

industrial production for month t is defined as
1

log log
t t t

MP IP IP


  , where IPt is the industry 

production index (INDPRO series) in month t from the FRED database. Note that MP is led by one 

month since INDPRO is recorded at the beginning of a month, whereas stock returns are recorded as 

of the end of a month. Unexpected inflation is defined as [ 1]
t t t

UI I E I t    and change of expected 

inflation as    
1

1
t t t

DEI E I t E I t


   following Fama and Gibbons (1984). Term spread (UTS) is 

defined as the yield difference between 20- and 1-year Treasury bonds, and default spread (UPR) is 

the yield difference between BAA- and AAA-rated corporate bonds in the FRED database at the 

Federal Reserve Bank of St. Louis. All of the numbers in Panel A are in percentage. The sample 

period is from March 1947 to December 2014.  

 

Panel A: Variables Mean Median Standard Deviation 

MP 0.25 0.30 0.97 

UI 0.00 0.01 0.28 

DEI 0.00 0.00 0.10 

UTS 1.22 1.10 1.36 

UPR 0.95 0.80 0.44 

Panel B: Correlation  MP UI DEI UTS 

UI 0.10    

DEI 0.13 0.71   

UTS 0.04 0.05 −0.03  

UPR −0.22 −0.03 −0.09 0.18 

 

 
Table 2. Momentum strategy payoffs: 03/47-12/14  

All NYSE, AMEX, and NASDAQ stocks on the monthly file of CRSP are ranked on the basis of 

cumulative returns in month t − 7 to month t − 2, and accordingly are assigned to ten deciles. Stocks 

with the highest returns in the preceding two to seven months are defined as winners (P10), whereas 

stocks with the lowest returns during the same period are defined as losers (P1). The momentum 

strategy buys prior winners (P10) and sells prior losers (P1). Zero-investment winner–loser portfolios 

(WML) are reconstructed at the start of each month, and held for six months from month t + 1 to 

month t + 6. There is a one-month gap between portfolio formation and portfolio investing in order to 

avoid the mechanical bid-ask bias. The table reports average monthly returns of the WML portfolios; 

the associated t-statistics are in parentheses. “CAPM alpha” refers to the WML alpha from the CAPM 

regression, whereas “Fama–French alpha” refers to the WML alpha from the Fama–French (1993) 

three-factor model. The sample period is from March 1947 to December 2014. 
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 Overall January Feb−Dec 

Panel A: 3/47–12/14 

Mean profits 0.64 −5.67 1.20 

 (3.49) (−4.91) (7.82) 

CAPM alpha 0.69 −5.36 1.22 

 (3.73) (−4.57) (7.90) 

Fama–French alpha 0.80 −4.48 1.30 

 (4.37) (−3.79) (8.42) 

 

Panel B: 3/47–12/69 

Mean profits 1.03 −3.85 1.45 

 (5.04) (−3.74) (7.97) 

Panel C: 1/70–12/92 

Mean profits 0.24 −7.02 0.90 

 (0.55) (−2.54) (2.47) 

Panel D: 1/93–12/14 

Mean profits 0.02 -8.03 0.77 

 (0.05) (-2.54) (1.95) 

 

 

Table 3. MP factor loadings of momentum portfolio returns 

The table presents the results from calendar-based time-series regressions on the growth rate of 

industrial production (MP) using returns of ten momentum decile portfolios, L, P2, …, P9, W, where 

L stands for losers, W denotes winners, and WML denotes the winner-minus-loser portfolio. The MP 

factor loadings are estimated from two different factor models, including the one-factor MP model 

(MP), and the Chen, Roll, and Ross (1986) model (CRR5). The associated t-statistics are in 

parentheses. The five Chen, Roll, and Ross (1986) factors include MP (the growth rate of industry 

production), UI (unexpected inflation), DEI (change in expected inflation), UTS (term premium), and 

UPR (default premium). The sample period is from March 1947 to December 2014. 

 

 L 2 3 4 5 6 7 8 9 W WML 

Panel A: Overall 

 MP 0.36 0.34 0.33 0.28 0.30 0.32 0.35 0.42 0.50 0.66 0.30 

 (1.07) (1.24) (1.39) (1.27) (1.49) (1.66) (1.83) (2.18) (2.45) (2.81) (1.58) 

FF+MP -0.09 -0.07 -0.05 -0.09 -0.05 -0.03 0.01 0.08 0.16 0.30 0.39 

 (-0.54) (-0.62) (-0.68) (-1.43) (-1.20) (-0.84) (0.24) (2.12) (2.83) (3.43) (2.08) 

CRR4 0.27 0.29 0.29 0.24 0.27 0.29 0.31 0.38 0.44 0.57 0.30 

 (0.82) (1.08) (1.25) (1.13) (1.36) (1.50) (1.65) (1.96) (2.19) (2.45) (1.62) 

CRR5 0.42 0.41 0.40 0.34 0.37 0.38 0.40 0.45 0.51 0.62 0.20 

 (1.38) (1.69) (1.88) (1.74) (1.99) (2.11) (2.21) (2.47) (2.62) (2.74) (1.04) 
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Panel B. January 

MP -5.71 -4.08 -3.37 -2.93 -2.39 -2.11 -1.87 -1.58 -1.33 -1.01 4.70 

 (-2.75) (-2.47) (-2.28) (-2.10) (-1.86) (-1.74) (-1.53) (-1.38) (-1.10) (-0.88) (3.69) 

FF+MP -1.70 -1.05 -0.82 -0.72 -0.39 -0.21 0.03 0.31 0.71 1.29 3.00 

 (-1.87) (-2.34) (-2.48) (-2.56) (-1.71) (-1.17) (0.14) (1.51) (2.35) (2.73) (2.54) 

CRR4 -5.37 -3.80 -3.18 -2.81 -2.31 -2.06 -1.87 -1.61 -1.41 -1.15 4.21 

 (-3.03) (-2.53) (-2.28) (-2.10) (-1.86) (-1.75) (-1.57) (-1.43) (-1.19) (-1.02) (3.42) 

CRR5 -5.16 -3.45 -2.85 -2.46 -1.99 -1.80 -1.65 -1.46 -1.33 -1.15 4.00 

 (-2.83) (-2.44) (-2.25) (-2.07) (-1.78) (-1.64) (-1.47) (-1.32) (-1.13) (-0.97) (3.00) 

            

C: Feb−Dec 

L 

P2 

P3 

P4 

P5 

P6 

P7 

P8 

P9 

W 

W−L 

MP 0.70 0.59 0.54 0.47 0.46 0.46 0.48 0.54 0.61 0.75 0.05 

 (2.49) (2.54) (2.66) (2.43) (2.57) (2.67) (2.77) (2.98) (3.13) (3.26) (0.30) 

FF+MP 0.09 0.05 0.04 -0.02 -0.01 0.00 0.02 0.06 0.12 0.22 0.12 

 (0.66) (0.59) (0.66) (-0.32) (-0.30) (-0.08) (0.56) (1.70) (2.07) (2.54) (0.79) 

CRR4 0.61 0.54 0.50 0.43 0.42 0.43 0.44 0.49 0.55 0.67 0.06 

 (2.18) (2.32) (2.46) (2.25) (2.39) (2.48) (2.56) (2.75) (2.87) (2.91) (0.36) 

CRR5 0.73 0.64 0.59 0.51 0.50 0.50 0.51 0.56 0.61 0.71 −0.03 

 (2.84) (2.99) (3.15) (2.90) (3.01) (3.07) (3.08) (3.22) (3.26) (3.17) (−0.17) 

 

 
Table 4. Risk-premium estimates of the Chen, Roll, and Ross (1986) model  

The table reports risk premia of the five Chen, Roll, and Ross (1986) factors and the three Fama and 

French (1993) factors, including the growth rate of industrial production (MP), unexpected inflation 

(UI), change in expected inflation (DEI), term premium (UTS), default premium (UPR), market 

premium (MKT), size premium (SMB), and value premium (HML) from two-stage Fama−MacBeth 

(1973) cross-sectional regressions. The Fama−MacBeth t-statistics are calculated from the Shanken 

(1992) method and reported in parentheses. The average cross-sectional R-squares are also reported. 

We use thirty test assets, including decile one-sorted portfolios formed on size (market capitalization), 

value (book-to-market equity) and momentum (past two-to-seven months’ returns). The sample 

period is from March 1947 to December 2014. In the first-stage time-series regressions, for each test 

portfolio, we estimate factor loadings using the full samples and the extended window. In the second-

stage cross-sectional regressions, we estimate risk premia by regressing test assets’ excess returns on 

factor loadings estimated from the first-stage time-series regressions. The sample period for the 

second-stage cross-sectional regressions starts from March 1949 in order to ensure that there are at 

least two years of monthly observations in the first-stage extended-window time-series regressions. 

For the extended-window case, the first-stage time-series regressions start from the first month to 

month t and the second-stage cross-sectional regressions regress test assets’ excess returns in month t 

+ 1 on factor loadings using information up to month t. For brief, the table reports the results based 

on the full samples in the first-stage time-series regressions, and the extended-window regressions 

generate quantitatively similar results.  
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0̂  ˆ

MP  ÛI  ˆ
DEI  ÛTS  ÛPR  ˆ

MKT  ˆ
SMB  ˆ

HML  2R  

Panel A. Overall 

MP 0.50 1.00        15% 

 (3.34) (3.34)         

FF 0.90      -0.20 0.16 0.17 44% 

 (3.65)      (-0.70) (1.39) (1.59)  

FF+MP 0.90 1.04     -0.15 0.07 0.21 49% 

 (3.65) (3.51)     (-0.54) (0.60) (2.05)  

CRR5 0.77 0.83 0.15 0.07 -1.41 0.29    47% 

 (4.43) (2.71) (0.76) (0.47) (-2.65) (2.42)     

           

Panel B. January 

MP -0.08 -1.76        36% 

 (-0.12) (-5.98)         

FF 0.84      0.10 3.33 0.22 59% 

 (0.96)      (0.10) (7.19) (0.45)  

FF+MP 1.01 -0.41     -0.07 3.31 0.26 64% 

 (1.29) (-1.44)     (-0.07) (7.36) (0.57)  

CRR5 -2.60 -2.78 -0.34 -0.03 2.93 0.40    57% 

 (-3.66) (-2.10) (-0.31) (-0.04) (2.04) (0.53)     

           

Panel C. Feb−Dec 

MP 0.77 -0.34        22% 

 (4.99) (-1.04)         

FF 1.44      -0.78 -0.11 0.05 43% 

 (6.08)      (-2.71) (-0.88) (0.40)  

FF+MP 1.46 0.11     -0.79 -0.12 0.05 46% 

 (6.27) (0.30)     (-2.77) (-1.03) (0.42)  

CRR5 1.29 0.11 0.32 0.08 -3.12 0.59    46% 

 (7.39) (0.33) (1.19) (0.27) (-6.93) (3.46)     

 

 
Table 5. Risk-premium estimates of the Chen, Roll, and Ross (1986): using alternative test assets 

The table reports risk premia of the five Chen, Roll, and Ross (1986) factors and the three Fama and 

French (1993) factors, including the growth rate of industrial production (MP), unexpected inflation 

(UI), change in expected inflation (DEI), term premium (UTS), default premium (UPR), market 

premium (MKT), size premium (SMB), and value premium (HML) estimated from two-stage Fama–

MacBeth (1973) cross-sectional regressions. The Fama–MacBeth t-statistics are calculated from the 

Shanken (1992) method and reported in parentheses. The average cross-sectional R-squares are also 

reported. We use forty test assets, including decile one-sorted portfolios formed on size, value, 

momentum and industry portfolios. The sample period is from March 1947 to December 2014. In the 

first-stage time-series regressions, for each test portfolio, we estimate factor loadings using the full 

samples and the extended window. In the second-stage cross-sectional regressions, we estimate risk 

premia by regressing test assets’ excess returns on factor loadings estimated from the first-stage time-

series regressions. The sample period for the second-stage cross-sectional regressions starts from 
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March 1949 in order to ensure that there are at least two years of monthly observations in the first-

stage extended-window time-series regressions. For the extended-window case, the first-stage time-

series regressions start from the first month to month t and the second-stage cross-sectional 

regressions regress test assets’ excess returns in month t + 1 on factor loadings using information 

from the first month  to month t. For brief, the table only reports the results based on the full samples 

in the first-stage time-series regressions, and the extended-window regressions generate 

quantitatively similar results. 

 
0̂  ˆ

MP  ÛI  ˆ
DEI  ÛTS  ÛPR  ˆ

MKT  ˆ
SMB  ˆ

HML  2R  

Panel A. Overall 

MP 0.67 0.46        13% 

 (4.83) (2.02)         

FF 0.72      0.00 0.17 0.08 39% 

 (3.87)      -0.01 1.47 0.74  

FF+MP 1.02 0.45     -0.27 0.13 0.09 42% 

 (5.11) (2.11)     -1.10 1.13 0.80  

CRR5 0.79 0.48 0.11 0.06 -0.91 0.18    38% 

 (5.97) (2.18) (0.57) (0.35) (-2.32) (1.83)     

           

Panel B. January 

MP 0.09 -1.58        26% 

 (0.15) (-6.19)         

FF 1.43      -0.39 3.13 0.08 51% 

 (2.11)      (-0.43) (7.17) (0.18)  

FF+MP 1.64 -0.08     -0.62 3.19 0.07 56% 

 (2.41) (-0.23)     (-0.67) (7.47) (0.15)  

CRR5 -0.62 -1.56 -0.13 -0.07 2.39 0.19    43% 

 (-1.04) (-4.31) (-0.55) (-0.31) (2.63) (0.49)     

           

Panel C. Feb−Dec 

MP 0.72 -0.23        16% 

 (5.23) (-1.04)         

FF 0.85      -0.17 -0.11 0 38% 

 (4.53)      (-0.71) (-0.94 (-0.04)  

FF+MP 0.83 -0.04     -0.16 -0.10) 0 41% 

 (4.71) (-0.18)     (-0.66) (-0.91) (-0.04)  

CRR5 0.92 0.67 0.03 0.01 -2.16 0.16    38% 

 (6.66) (2.90) (0.14) (0.05) (-6.40) (1.72)     

           

 

 

Table 6. Expected momentum profits versus observed momentum profits 

The table reports estimated momentum profits based on four different factor models, including the one-

factor MP model (MP), the Fama−French (1993) model augmented with MP (FF+MP), the Chen, Roll, 

and Ross (1986) models (CRR4, CRR5). We calculate expected momentum profits as the sum of the 

products of factor sensitivities and estimated risk premium: 
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ[ ] .

MP MP UI UI DEI DEI UTS UTS UPR UPR
E WML               Factor sensitivities are estimated from 
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.
t MP t UI t DEI t UTS t UPR t t

WML MP UI DEI UTS UPR             Risk premia are estimated from two-stage 

Fama−MacBeth (1973) cross-sectional regressions using 10 size-, 10 value- and 10 momentum portfolios 

as test assets. In the first-stage time-series regressions, for each of 30 test assets, we estimate factor 

sensitivities by regressing test assets’ returns on factors, using the full-sample, extended windows and 

rolling windows: 
, , , , , , .

.
P t MP P t UI P t DEI P t UTS P t UPR P t P tP

r MP UI DEI UTS UPR             In the second-stage cross-

sectional regressions, we regress 30 test assets’ excess returns on the estimated factor sensitivities from 

the first-stage time-series regressions for each month: 

, , 0, , , , , , , , , , ,

ˆ ˆ ˆ ˆ ˆ .
P t f t t MP t MP P UI t UI P DEI t DEI P UTS t UTS P UPR t UPR P t

r r                    This table also presents the t-

statistics, t(diff1), testing the null that the difference between the observed momentum return and the 

incremental contribution of MP, ( )
MP MP

E   , is zero and the t-statistics, t(diff2), testing the null that the 

difference between observed and expected momentum returns is zero. 

 Model Success MP Contribution Model Success MP Contribution 

 
[ ]E WML

 
[ ]E WML

WML

 

t(diff

1) 
[ ]

MP MP
E  

 

[ ]

WML

MP MP
E  

 

t(diff

2) 

[ ]E WML

 
[ ]E WML

WML

 

t(diff

1) 
[ ]

MP MP
E  

 

[ ]
MP MP

E

WML

 

 

t(diff1

) 

Full-sample in the first-stage regression                                           Extended-window in the first-

stage regression 

Panel A. Overall 

MP 

0.30 50% 1.40 0.30 50% 1.40 0.15 25% 

2.2

3 0.15 25% 

2.2

3 

FF+

MP 0.34 57% 2.75 0.41 68% 1.62 0.23 38% 

3.0

1 0.30 51% 

2.0

0 

CRR

4 0.47 78% 2.80 0.29 49% 1.69 0.37 62% 

3.2

9 0.08 13% 

2.9

6 

CRR

5 0.52 87% 1.77 0.17 28% 2.41 0.42 70% 

3.1

9 0.03 5% 

3.1

5 

Panel B. January 

MP 

-8.28 

147

% 5.40 -8.28 147% 5.40 -7.19 

122

% 

2.1

5 -7.19 122% 

2.1

5 

FF+

MP 
-5.28 94% -2.61 -1.23 22% -5.36 -5.30 90% 

-

2.2

2 -0.85 15% 

-

6.4

6 

CRR

4 
-6.59 

117

% 3.60 

-

11.07 196% 4.01 -6.17 

105

% 

0.8

1 -4.22 72% 

-

1.3

7 

CRR

5 

-6.74 

119

% 3.90 

-

11.15 197% 4.15 -5.84 99% 

-

0.1

2 -2.93 50% 

-

2.9

1 

Panel C. Feb−Dec 

MP 

-0.02 -1% 7.35 -0.02 -1% 7.35 0.03 2% 

7.3

2 0.03 2% 

7.3

2 

FF+

MP 0.07 6% 7.69 0.01 1% 7.37 0.18 15% 

7.0

7 0.09 7% 

7.2

3 

CRR

4 0.85 73% 4.19 0.01 1% 7.36 0.62 54% 

6.0

2 0.10 8% 

7.1

7 

CRR

5 0.97 83% 3.20 0 0% 7.39 0.76 65% 

6.0

7 0.09 8% 

7.1

6 
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Table 7. Expected momentum profits versus observed momentum profits: using alternative test 

assets 

The table reports estimated momentum profits based on four different factor models, including the 

one−factor MP model (MP), the Fama−French (1993) model augmented with MP (FF+MP), the Chen, 

Roll, and Ross (1986) model (CRR4, CRR5). We calculate expected momentum profits as the sum of the 

products of factor sensitivities and estimated risk premium: 

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ[ ]
MP MP UI UI DEI DEI UTS UTS UPR UPR

E WML               . Factor sensitivities are estimated from 

t MP t UI t DEI t UTS t UPR t t
WML MP UI DEI UTS UPR             .Risk premia are estimated from two-stage Fama-

MacBeth (1973) cross-sectional regressions using 10 size-, 10 value-, 10 momentum and 10 industry 

portfolios as test assets. In the first-stage time-series regressions, for each of 40 test assets, we estimate 

factor sensitivities by regressing test assets’ returns on factors, using the full-sample, extended windows 

and rolling windows: 
, , , , , , .P t MP P t UI P t DEI P t UTS P t UPR P t P tP

r MP UI DEI UTS UPR             . In the second-stage 

cross-sectional regressions, we regress 40 test assets’ excess returns on the estimated factor sensitivities 

from the first-stage time-series regressions for each month: 

, , 0, , , , , , , , , , ,

ˆ ˆ ˆ ˆ ˆ
P t f t t MP t MP P UI t UI P DEI t DEI P UTS t UTS P UPR t UPR P t

r r                   . This table also presents the t-

statistics, ( 1)t diff , testing the null that the difference between the observed momentum return and the 

incremental contribution of MP, ( )
MP MP

E   , is zero and the t-statistics, ( 2)t diff , testing the null that the 

difference between observed and expected momentum returns is zero. 

 Model Success MP Contribution Model Success MP Contribution 

 
[ ]E WML

 

[ ]E WML

WML

 

t(diff

1) 
[ ]

MP MP
E  

 

[ ]

WML

MP MP
E  

 

t(diff

2) 

[ ]E WML

 

[ ]E WML

WML

 

t(diff

1) 
[ ]

MP MP
E  

 

[ ]
MP MP

E

WML

 

 

t(diff1

) 

                             Full-sample in the first-stage regression                                           Extended-window in 

the first-stage regression 

Panel A. Overall                                

MP 

0.14 23% 2.20 0.14 23% 2.20 0.08 13% 

2.6

2 0.08 13% 

2.6

2 

FF+

MP 0.14 23% 3.29 0.17 29% 2.67 -0.04 -6% 

3.7

9 0.04 7% 

3.0

1 

CRR

4 0.31 51% 3.06 0.09 15% 2.87 0.34 56% 

2.3

3 0.05 9% 

2.9

8 

CRR

5 0.38 64% 2.63 0.10 16% 2.83 0.38 64% 

2.3

7 0.05 9% 

3.0

9 

Panel B. January 

MP 

-7.40 1.31 3.08 -7.40 1.31 3.08 -5.81 99% 

-

0.0

8 -5.81 99% 

-

0.0

8 

FF+

MP 
-4.36 0.77 -4.75 -0.25 0.04 -5.92 -3.86 66% 

-

3.7

6 -0.04 1% 

-

6.1

0 

CRR

4 
-6.71 1.19 2.96 -6.31 1.12 0.56 -5.27 90% 

-

0.9

6 -3.54 60% 

-

2.2

9 
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CRR

5 

-6.93 1.23 3.94 -6.26 1.11 0.53 -4.89 83% 

-

1.7

9 -1.94 33% 

-

4.0

1 

Panel C. Feb−Dec 

MP 

-0.01 -1% 7.36 -0.01 -1% 7.36 0.03 2% 

7.2

9 0.03 2% 

7.2

9 

FF+

MP 0.01 1% 7.68 0 0% 7.40 0.10 8% 

7.0

2 0.04 3% 

7.2

5 

CRR

4 0.70 60% 3.95 0.03 2% 7.31 0.42 36% 

5.7

6 0.05 4% 

7.2

2 

CRR

5 0.78 67% 3.57 -0.02 -2% 7.44 0.50 43% 

5.7

7 0.04 3% 

7.2

2 

 
Table 8: Momentum strategy payoffs: 1/1967-12/2014   

All NYSE, AMEX, and NASDAQ stocks on the monthly file of CRSP are ranked on the basis of 

cumulative returns in month t − 7 to month t − 2, and accordingly are assigned to ten deciles. Stocks 

with the highest returns in the preceding two to seven months are defined as winners (P10), whereas 

stocks with the lowest returns during the same period are defined as losers (P1). The momentum 

strategy buys prior winners (P10) and sells prior losers (P1). Zero-investment winner–loser portfolios 

(WML) are reconstructed at the start of each month, and held for six months from month t + 1 to 

month t + 6. There is a one-month gap between portfolio formation and portfolio investing in order to 

avoid the mechanical bid-ask bias. The table reports average monthly returns of the winner–loser 

portfolios (WML); the associated t statistics are presented in the parentheses. “HXZ alpha” refers to 

the WML alpha from the Hou, Xue, and Zhang’s (2015) q-factor model. “ROE alpha” refers to the 

WML alpha from the single-factor ROE model. The sample period starts from January 1967 to 

December 2014. 

 Overall January Feb−Dec 

 1/67–12/14 

Mean profits 0.51 −6.47 1.14 

 (2.08) (−4.13) (5.60) 

    

HXZ alpha −0.33 −4.77 0.50 

 (−0.85) (−4.68) (1.91) 

    

ROE alpha −0.10 −3.03 0.55 

 (−0.35) (−2.30) (1.99) 

 

Table 9. ROE factor loadings of momentum portfolio returns 

The table presents the results from calendar-based time-series regressions on the ROE factor using returns 

of ten momentum decile portfolios, L, P2, …, P9, W, where L stands for losers and W denotes winners. 

The ROE factor loadings are estimated from two different factor models, including the single-factor ROE 

model (ROE), and the q-factor mode of Hou, Xue, and Zhang (2015) (HXZ). The associated t-statistics 
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are in parentheses. The Hou, Xue, and Zhang (2015) q-factor model consists of MKT (the market excess 

return), ME(the difference between the return on a diversified portfolio of small size stocks and the return 

on a diversified portfolio of large size stocks), I/A(the difference between the return on a diversified 

portfolio of low investment stocks and the return on a diversified portfolio of high investment stocks), 

ROE (the difference between the return on a diversified portfolio of high return on equity and the return 

on a diversified portfolio of low return on equity). The sample period is from January 1967 to December 

2014. 

 

 L 2 3 4 5 6 7 8 9 W WML 

Panel A: Overall 

 ROE -2.14 -1.46 -1.11 -0.91 -0.76 -0.69 -0.66 -0.68 -0.77 -1.05 1.09 

 (-9.12 (-8.84) (-8.22) (-7.48) (-6.95) (-6.83) (-6.65) (-6.82) (-6.66) (-7.29) (12.90) 

HXZ -1.41 -0.81 -0.51 -0.32 -0.19 -0.11 -0.07 -0.04 -0.07 -0.24 1.17 

 (-6.50) (-6.29) (-5.79) (-4.89) (-3.78) (-2.75) (-1.81) (-1.16) (-1.45) (-2.97) (13.06) 

            

Panel B: January 

ROE -3.06 -2.19 -1.75 -1.41 -1.17 -1.04 -0.96 -0.90 -0.87 -0.95 2.11 

 (-3.04) (-3.78) (-4.10) (-3.43) (-3.02) (-2.89) (-2.63) (-2.74) (-2.61) (-3.35) (4.68) 

HXZ -2.31 -1.43 -1.01 -0.71 -0.48 -0.37 -0.29 -0.23 -0.14 -0.22 2.09 

 (-3.39) (-3.78) (-4.90) (-5.31) (-4.68) (-4.11) (-2.87) (-2.12) (-1.09) (-1.00) (5.32) 

            

Panel C: Feb−Dec 

L 

P2 

P3 

P4 

P5 

P6 

P7 

P8 

P9 

W 

W−L 

ROE -1.77 -1.22 -0.93 -0.76 -0.64 -0.58 -0.57 -0.60 -0.70 -0.98 0.79 

 (-9.20) (-8.10) (-7.24) (-6.62) (-6.09) (-6.02) (-5.91) (-5.87) (-5.54) (-5.89) (10.14) 

HXZ -1.06 -0.60 -0.35 -0.21 -0.10 -0.04 0.00 0.01 -0.03 -0.20 0.86 

 (-7.60) (-6.71) (-5.27) (-3.85) (-2.28) (-1.06) (-0.02) (0.32) (-0.56) (-2.42) (10.72) 

 

 

 




