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Abstract

The objective of this thesis is to present a viable extension of general

relativity free from cosmological singularities. A viable cosmology, in

this sense, is one that is free from ghosts, tachyons or exotic matter,

while staying true to the theoretical foundations of General Relativity

such as general covariance, as well as observed phenomenon such as

the accelerated expansion of the universe and inflationary behaviour

at later times. To this end, an infinite derivative extension of relativ-

ity is introduced, with the gravitational action derived and the non-

linear field equations calculated, before being linearised around both

Minkowski space and de Sitter space. The theory is then constrained

so as to avoid ghosts and tachyons by appealing to the modified prop-

agator, which is also derived. Finally, the Raychaudhuri Equation is

employed in order to describe the ghost-free, defocusing behaviour

around both Minkowski and de Sitter spacetimes, in the linearised

regime.
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Chapter 1

Introduction

Just over a century has passed since Einstein first presented his work on General

Relativity (GR) to the Prussian academy, ushering in a new paradigm for modern

physics. In the intervening years, Einstein’s remarkable theory has withstood the

enormous advancements in experimental physics and observational data - with

each new discovery adding further weight to this colossus of scientific endeavour.

General Relativity is not only considered one of mankind’s greatest scientific

discoveries but one of the most significant intellectual achievements in human

history. Outside of the scientific sphere, the influence of relativity can be found

in the arts – whether it be in the work of existential playwright Luigi Pirandello,

who played with traditional notions of the observer, or Pablo Picasso, whose

distorted perspective was reportedly inspired by the idea of displaying a fourth

dimension on canvas [1]. That is not to say, however, that Einstein’s gravity does

not have its shortcomings, specifically in constructing a quantum field theory

of gravity; as well as describing a viable theory of gravity, which is devoid of

singularities.

String theory (ST) remains a popular candidate in formulating a consistent

quantum theory of gravity [2], as does Loop Quantum Gravity (LQG) [3],[4], to

name just two. Whereas string theory approaches the problem rather grandly,

with the intention of unifying gravity with the fundamental forces of nature,

LQG makes no such claim, with the stated aim of quantizing the gravitational

field. Such an approach centres around the notion of renormalisation, in that
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unwanted divergences in the loop Feynman diagrams may be curtailed [5],[6]. A

third course of action can be found in the causal set programme, which considers

the continuous Lorentzian manifold of GR to be an approximation of a discrete

spacetime structure [7]. A common thread running through these fundamentally

different approaches is the presence of non-locality, where interactions occur not

at a specific spatial point but over a (finite) region of space [8],[9][10],[11]. Indeed,

non-locality arising from infinite derivative extensions of GR has been shown to

play a pivotal role in the more classical context of resolving the cosmological

singularity problem, [12],[13],[14],[15],[16][17],[18],[19],[20][21],[22], which is our

focus here.

The concept of singularities is a particularly confounding, yet intriguing, topic.

Often casually referred to as a ‘place’ where curvature ‘blows up’, or a ‘hole’ in the

fabric of spacetime – the concept of a singular spacetime raises thorny questions

for a physicist. If a singularity is a ‘hole’ in the fabric of spacetime, can it be

said to exist within the framework of spacetime? Could we not simply omit the

singularity from our spacetime manifold? On the other hand, if the singularity

does indeed exist within the spacetime, what does it mean to have a ‘place’ within

this framework where the normal physical laws that govern the universe no longer

apply? The difficulty lies in a unique characteristic of general relativity in that it

is formulated without stipulating the manifold and metric structure in advance.

This is in contrast to other physical theories, such as special relativity, where these

are clearly defined. As such, without a prescribed manifold, it is not possible to

discuss the concept of ‘outside’ the manifold. Neither can one consider the notion

of a ‘place’ where curvature may ‘blow up’ as this ‘place’ is undefined a priori

[23],[24]. Such intuitive inconsistencies lead many to believe that singularities are

not physically present in our Universe and that GR’s admittance of singularities

is evidence of the need to extend this powerful gravitational theory. In this way,

we see the Einstein-Hilbert action of GR as a first approximation of a broader

theory.

Proposals for modifying general relativity have been put forward since al-

most its inception. Early examples include Eddington’s reformulation of GR in

terms of the affine connection instead of the metric tensor or Kaluza and Klein’s
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5-dimensional reimagining [25]. The latter of these proposals found that the Ein-

stein equation in 5 dimensions yielded the 4-dimensional Einstein field equations

along with Maxwell’s equations, giving hopes for a unified theory of gravitation

and electromagnetism. While mathematically elegant, the Kaluza-Klein model

predicted an additional massless scalar field which is in conflict with experimental

data. Despite this, the technique of introducing higher dimensions is considered

to be a great influence on the development of string theory [26]. Much later, in

1977, Stelle proposed a fourth order extension of GR [27],[28], given by

L ∼ R + f1R
2 + f2RµνR

µν + f3RµνσλR
µνσλ. (1.1)

Fourth order or four-derivative gravity – so-called as each term in the resulting

field equations contains four derivatives of the metric tensor – is a somewhat

natural extension of gravity, if seen as a generalisation of the Gauss-Bonnet term,

which appears in Lovelock gravity [29],[30], and is trivial in four dimensions. We

return to this point briefly in Section 1.2. What is remarkable, however, is that

Stelle found that such theories are perturbatively renormalizable, leading to a

boon in the field of quantum gravity [31],[32],[27],[33]. A particular instance of

fourth order gravity, known as the Starobinsky model [34], with

L ∼ R + f0R
2, (1.2)

created further interest due to its description of successful primordial inflation.

Starobinsky’s initial idea was to formulate a gravitational theory that mimics the

behaviour of the cosmological constant. For sufficiently large R this model does

precisely that through the R2 term, leading to the formation of the large scale

structures we see in the Universe today. The quadratic curvature term becomes

less dominant as the theory moves away from the Planck scale, signalling the end

of inflation.

However, finite higher derivative theories, such as fourth-order gravty, can

open the door to ghosts – physical excitations with negative residue in the gravi-

ton propagator. This negative residue presents itself as negative kinetic energy,

leading to instabilities even at a classical level [35], and a breakdown in unitarity
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when one considers the renormalization of the theory [27],[36],[37], see Chapter 3

for further details.

Infinite derivative theories, in contrast, have the potential to describe a the-

ory that is free of ghosts by modifying the graviton propagator via an exponent

of an entire function [15],[16]. This exponential suppression of the propagator

results in an exponential enhancement of the vertex factors of the relevant Feyn-

man diagrams [38]. Furthermore, the nature of this modification is such that

one can always construct a modified propagator that contains no additional de-

grees of freedom, other than the massless graviton, so that negative residues will

not propagate [15],[16],[17],[18],[19],[20],[21],[22]. Infinite derivative extensions of

relativity have been shown to display improved behaviour in the UV, in terms

of alleviating the 1/r behaviour of the Newtonian potential [16], and curtailing

quantum loop divergences [39],[40]. Recent progess has also been made in terms

of the resolution of the black-hole singularity problem [41] and a study of the

dynamical degrees of freedom via Hamiltonian analysis [42]. Infinite derivatve

extensions of relativity also allow for the formulation of non-singular cosmologies

[18],[19], which we cover extensively in Chapter 4, and forms the basis of the

present work. In simple terms, the objective of this thesis is

To present a viable extension of general relativity, which is free from

cosmological singularities.

A viable cosmology, in this sense, is one that is free from ghosts, tachyons or exotic

matter, while staying true to the theoretical foundations of General Relativity

such as the principle of general covariance, as well as observed phenomenon such

as the accelerated expansion of the universe and inflationary behaviour at later

times [43].

Several competing theories have been proposed as an alternative to the Big

Bang model of GR. One such example is the Steady State universe. This approach

is based on an extension of the cosmological principle, which imposes that the

universe is homogenous and isotropic at large scales, to the Perfect Cosmological

Principle, which extends this uniformity to include time as well as space. In

this sense, it conjectures that the universe has and always will exist in a state

statistically similar to its current one [44],[45]. The steady state model, however,
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1.1 General Relativity

has suffered setbacks following the discovery of the cosmic microwave background

in 1965 [46], though some proponents of “quasi-steady” models remain [47].

Another popular resolution to the cosmological singularity problem is the

bouncing universe model, where the Big Bang singularity is replaced by a Big

Bounce [48],[49]. Such a cosmology issues from a scale factor that is necessarily

an even function [13],[50]. Although the term “Big Bounce” was not popularised

until the 1980s [51], such cosmologies have a long history of interest, stretching

back to the time of Willem de Sitter [52].

Unlike bouncing models of the universe, we make no such stipulations on

the nature of the cosmological scale factor a priori, preferring to confront the

cosmological singularity problem by employing the Raychaudhuri equation (RE)

[53],[54], first devised in 1955 [55]. The RE is a powerful identity, which relates the

geometry of spacetime to gravity, so that the behaviour of ingoing and outgoing

causal geodesic congruences can be understood in a gravitational context. If

these geodesics converge to a point in a finite time, they are called geodesically

incomplete, resulting in a singularity in a geometrically-flat or open cosmology

[56],[57],[58],[24],[59],[43],[60]. Similarly, one can deduce the physical conditions,

whereby these causal ‘rays’ diverge, or defocus, as a means of describing a viable

non-singular cosmology.

We will return to these points shortly, but it is perhaps instructive to first

review some of the central tenets that GR relies upon - detailing what it is about

GR that makes it such a special theory, before expanding on the need to modify

or extend GR.

1.1 General Relativity

The Weak Equivalence Principle

A key stepping stone in the formulation of GR was Einstein’s Equivalence Prin-

ciple, which states that, locally, inertial and gravitational mass are equivalent.

Roughly speaking, this is tantamount to saying that the physics of a freely falling

observer is indistinguishable from the physics of an observer in the absence of a
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1.1 General Relativity

gravitational field, which is why this principle is sometimes referred to as the uni-

versality of free fall. In terms of Newtonian gravity, inertial mass mi is the form of

mass that makes up Newton’s second law of motion, i.e. F = mia, whereas grav-

itational mass mg appears in Newton’s Law of Gravitation, F =
Gmg1mg2

r2
. The

equivalence of these two forms of mass can be seen as a direct result of Galileo’s

leaning tower of Pisa experiment, where balls of two different masses reach the

ground at the same time, in that the acceleration due to gravity is independent

of the inertial or gravitational mass of the body in question. This simple insight

led Einstein to formulate a theory where gravity is not described as a force but

by geometry - by the curvature of spacetime [61],[24],[62].

“All uncharged, freely falling test particles follow the same trajectories

once the initial position and velocity have been prescribed” [25]

- The Weak Equivalence Principle (WEP)

A fine-tuning of the Einstein Equivalence Principle led to the Weak Equivalence

Principle, stated above, which has been tested rigorously over the years, beginning

with the experiments of Loránd Eötvös in 1908. Current experiments place the

constraint on the WEP and therefore any viable relativistic theory to be

η = 2
|a1 − a2|
|a1 + a2|

= (0.3± 1.8)× 10−13. (1.3)

Here, beryllium and titanium were used to measure the relative difference in

acceleration of the two bodies, a1 and a2, towards the galactic centre. This is

considered to be a null result, wholly consistent with General Relativity [25].

Principle of General Covariance

Another central tenet of General Relativity, which was instrumental in the formu-

lation of GR and is perhaps more relevant to the present work, is the principle of

general covariance. General covariance insists that each term making up a gravi-

tational action will transform in a coordinate-independent way. The principle was

first struck upon by Einstein when formulating the theory of special relativity,

where it was proclaimed that physical laws will remain consistent in all inertial
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1.1 General Relativity

frames. Furthermore, the universal nature of the tensor transformation law of-

fered a simple means of rendering physical equations generally covariant. That is

to say that any gravitational action expressed in terms of tensors (and covariant

operators) would be a generally covariant action. Reformulating gravity in terms

of tensors - with the graviton represented by a type (2, 0) metric tensor - allowed

for a gravitational theory to be described by curvature alone. This proved to be

the cornerstone of General Relativity and any valid modification or extension of

GR should conform to this principle.

Gravitational Action

We have now established that the central idea behind GR, as opposed to the

Newtonian theory of gravitation, is that what we perceive as the force of gravity

arises from the curvature of spacetime. Mathematically, this can expressed by

the gravitational action which defines the theory

S =
1

2

∫
d4x
√
−g
(
M2

PR− 2Λ
)
, (1.4)

known as the Einstein-Hilbert action, where MP = κ−1/2 =
√

~c
8πG

is the Planck

mass, with ~ = c = 1 (natural units); R is the curvature scalar, defined in

Appendix A.1, the determinant of the metric tensor is given by g = det(gµν); and

the cosmological constant is Λ, which we take to be of mass dimension 4 in our

formalism. Variation of the action with respect to the metric tensor gives rise to

the famous Einstein equation

M2
PGµν + gµνΛ = Tµν , (1.5)

where Gµν ≡ Rµν− 1
2
gµνR and Tµν are the Einstein and energy-momentum tensors

respectively.
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1.2 Modifying General Relativity

1.2 Modifying General Relativity

Despite the phenomenal success of the theory of relativity, outstanding issues

remain, which suggests that the theory is incomplete. As mentioned in the intro-

duction, one of these issues concerns the construction of a theory which marries

quantum field theory (QFT) with GR. This has been an open question in mod-

ern physics since almost the inception of QFT in the 1920s, but gained particular

traction with the rise of string theory in the 1960s and 70s. A more classical

shortcoming of GR arises from its admittance of singularities, where the normal

laws of physics can be said to ‘break down’. We now discuss how GR cannot de-

scribe a viable, non-singular cosmology, in order to motivate the need to extend

the theory.

Singularities

The Cosmological Singularity Problem is the focal point of the present text, with

Chapter 4 devoted to the description of a stable, extended theory of relativity de-

void of an initial singularity. The requirement of extending GR in order to avoid a

Big Bang singularity can be seen by referring to the Raychaudhuri equation (RE),

see Section (4.3) for full details. The RE is a powerful identity which relates the

geometry of spacetime to gravity, so that the behaviour of ingoing and outgoing

causal geodesic congruences can be understood in a gravitational context. From

this, one can deduce the necessary conditions whereby ingoing causal geodesics

will converge to the same event in a finite time. This convergence is known as

geodesic incompleteness and a freely falling particle travelling along this geodesic

will, at some finite point in time, cease to exist. We call such a spacetime singular

and the associated condition is known as the convergence condition [23].

Here, we merely outline the convergence conditions in GR, which are discussed

in greater detail in Chapter 4, as a means of motivating the need to modify or

extend the theory. From the RE, one can deduce that a spacetime will be null-

geodesically incomplete if either of the following conditions are met [58],[59],[63],

dθ

dλ
+

1

2
θ2 5 0, Rµνk

µkν ≥ 0. (1.6)
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1.2 Modifying General Relativity

Leaving aside the left hand inequality for the moment, which describes the con-

vergence condition in terms of geometric expansion, let us focus on the right hand

inequality within the framework of GR. From the Einstein-Hilbert action (1.4),

we derive the Einstein equation (1.5), while also noting that null geodesic congru-

ences vanish when contracted with the metric tensor, according to gµνk
µkν = 0.

Thus,

Rµνk
µkν = κTµνk

µkν , (1.7)

must be positive in order to retain the null energy condition (NEC), see Appendix

(B), and to avoid the propagation of potentially exotic matter [64],[65]. Thus,

in GR we are left with the choice of either accepting singularities or accepting

potentially non-physical matter. As neither option is desirable, we conclude that

GR must be extended in order to describe a viable non-singular cosmology.

Lovelock’s Theorem

An important theorem in both the formulation of GR and concerning any valid

extension of the theory is Lovelock’s Theorem[25],[30]

Theorem 1.2.1 (Lovelock’s Theorem). The only possible second-order Euler-

Lagrange expression obtainable in a four-dimensional space from a scalar density

with a Lagrangian dependent on the metric tensor (i.e. L = L(gµν)) is

Eµν =
√
−g (αGµν + gµνλ) , (1.8)

where both α and λ are constants

This is a remarkable result when one considers that by taking λ = Λ, this

is precisely the Einstein equation in the presence of the cosmological constant,

modified only by the constant α. What this theorem says is that any gravitational

theory in a four-dimensional Riemannian space, whose subsequent field equations

are of second order or less will be defined solely by the Einstein equation. As

we have seen, the Einstein Hilbert action (1.4) produces the the Einstein field

equations (1.5) precisely, but a more general action does exist (in four dimensions)
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1.2 Modifying General Relativity

that also reproduces the same result, and this is given by

L =
√
−g (αR− 2Λ)+β

√
−g
(
R2 − 4RµνRµν +RµνλσRµνλσ

)
+γεµνλσRαβ

µνRαβλσ.

(1.9)

In four dimensions the final two terms do not contribute to the field equations.

Whereas this is true for the final term in any number of dimensions, the second

term is what as known as the Gauss Bonnet term and is non-trivial in theories

of dimensions higher than four.

What Lovelock’s theorem means for modified theories of gravity is that, if we

assume that we want to describe a generally covariant, four-dimensional, metric-

tensor-based theory of gravity, whilst retaining the variational principle, we have

two options:

1. Extend our approach into field equations that contain higher than second

order derivatives and/or

2. Allow a degree of non-locality to enter the system.[25]

Examples of Modified Theories

Fourth Order Gravity

We have already noted that the action (1.9) is the most general action that

reproduces the Einstein-field equation. A generalisation of the Gauss-Bonnet

term

GGB = R2 − 4RµνRµν +RµνλσRµνλσ, (1.10)

forms the basis for what is called Fourth Order Gravity,

L = R + f1R
2 + f2RµνR

µν + f3RµνσλR
µνσλ. (1.11)

As stated in the introduction, Stelle observed that fourth order theories were

perturbatively renormalisable, leading to a great generation of interest in quan-

tum gravity [27]. However, such theories are beset by the presence of ghosts, see

Section 3.2 for further details.
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1.2 Modifying General Relativity

f(R)-gravity

Perhaps the simplest generalisation of the Einstein-Hilbert action (1.4) comes in

the form of f(R)-gravity, where the curvature scalar R is replaced by an arbitrary

function f acting on the curvature R,

S =
M2

P

2

∫
d4x
√
−gf(R). (1.12)

By varying with respect to the metric tensor, we can then read off the f(R) field

equations

κTµν = f ′(R)Rµν −
1

2
gµνf(R) + gµν�f

′(R)−∇µ∇νf
′(R), (1.13)

where f ′ = ∂f(R)/∂R, � = gµν∇µ∇ν and using δf(R) = f ′(R)δR.

Starobinsky Model

The Starobinsky model is a particular instance of f(R)-gravity with

f(R) = R + c0R
2, (1.14)

for some real constant c0. Recall that Starobinsky’s initial idea was to formulate

a gravitational theory that mimics the behaviour of the cosmological constant,

leading to successful primordial inflation. This model will be of particular interest

when discussing the defocusing conditions of infinite derivative theory, where it is

found that the Starobinsky model struggles to pair successful inflation with the

avoidance of singularities. See Section 4.4.

11



1.3 Infinite Derivative Theory of Gravity

1.3 Infinite Derivative Theory of Gravity

The most general infinite derivative action of gravity that is quadratic in curvature

was first derived in [15], and was found to take the form

S =

∫
d4x

√
−g
2

[
M2

PR + λRF1(�)R + λRµνF2(�)Rµν + λCµνλσF3(�)Cµνλσ
]
,

(1.15)

where the form factors Fi(�) are given by

Fi(�) =
∞∑
n=0

fin (�/M)n (1.16)

and M is the scale of non-locality. In this form, we can see this as a natural

generalisation of fourth order gravity to include all potential covariant operators

in accordance with the principle of general covariance. The above action has been

studied extensively in terms of the modified propagator [36]; Newtonian potential

[66],[16]; gravitational entropy [67],[68]; loop quantum gravity [39],[40],[38]; and

indeed, singularity avoidance [18],[19],[41]. We will summarise some relevant re-

sults shortly. Firstly, however, let us briefly expand on the notion of non-locality,

alluded to in the introductory paragraphs.

Non-locality

We stated earlier that a consequence of Lovelock’s theorem is that a valid modi-

fied theory of gravity must include derivatives that are of second order or higher

and/or allow a degree of non-locality. In this sense, the action (1.15) conforms

to both of Lovelock’s stipulations in that it is both of higher order than 2 and

non-local, so that (1.15) can be understood as an effective action [15],[69]. A

theory featuring an infinite series of higher-derivative terms, such as the infi-

nite derivative gravity (IDG) theory introduced above, and derived in Chapter 2,

yields non-local interactions and a relaxation of the principle of locality, which,

in simple terms, states that a particle may only be directly influenced by its

immediate surroundings.

The quantum interactions of these infinite derivative terms have been studied

12



1.3 Infinite Derivative Theory of Gravity

and found to potentially alleviate divergences in the UV, by allowing for the super-

renormalizability of the theory [70],[71],[39]. Non-local objects, such as strings

and branes, are a fundamental component of string theory, while the formulation

of Loop Quantum Gravity is based on non-local objects, such as Wilson Loops

[40]. The IDG theory, defined by the action (1.15) was inspired by the non-locality

that arises from exponential kinetic corrections, common in string theory, see

[15],[26]. In terms of the Feynman diagrams, non-local interactions result in an

exponential enhancement of the vertex operator, meaning that interaction does

not take place at this point, as in a local theory [27, 39, 72]. Note also, that while

a series of infinite derivatives is a common feature of non-local theories, it is not

true to say that this is a defining characteristic. For example, massive gravity

theories which modify GR in the infrared, e.g. ∼ 1
�2R, are indeed non-local but

have finite orders of the inverse D’Alembertian [73],[74],[75],[76],[77].

Summary of Results

In this section, we summarise some of relevant results, achieved within an infinite

derivative gravitational framework, that are not explicitly covered in the subse-

quent chapters.

Newtonian Potential

In [16], the Newtonian potential was studied around the weak field limit of the

action (1.15). In this case, the modified propagator was modulated by an overall

factor of a(�) = e−�/M
2
, where M is the scale of modification. The exponen-

tial nature of this function was invoked in order to render the theory ghost and

tachyon free, which is covered in detail in Chapter 3. For a theory with modified

propagator Π, given by

Π =
1

a(−k2)
ΠGR, (1.17)

where ΠGR is the physical graviton propagator and �→ −k2 in Fourier space on

a flat background, the Newtonian potential Φ(r) was found to be

Φ(r) ∼ mπ

2M2
P r

Erf(
rM

2
). (1.18)

13



1.3 Infinite Derivative Theory of Gravity

Here, we observe that the potential contains the familiar 1/r divergence of GR,

modulated by an error function Erf(r). At the limit r → ∞ 1, erf(r)/r → 0

returning flat space. Furthermore. at the limit r → 0, the potential converges

to a constant, thus ameliorating the 1/r drop-off of GR and displaying improved

behaviour in the UV. The explicit calculation can be found in Appendix C. The

behaviour of the Newtonian potential in an IDG theory was further expanded

upon in [66], where a more general ghost-free form factor

a(�) = e−γ(�/M2) (1.19)

was studied, where γ is some entire function. In this case, identical limits were

observed at r →∞. Furthermore, using laboratory data on the gravitational po-

tential between two masses at very small distances, the lower limit M > 0.004eV

was placed on the the scale of modification.

GR

n=1

n=2

n=16

2.×10-5 5.×10-5 1.×10-4 2.×10-4 5.×10-4

1×104

2×104

5×104

r (metres)

f(
r)
/r
(m
et
re
s-
1
)

[66]

Figure 1.1: A plot of the Newtonian potential Φ(r) ∼ f(r)/r vs. r where n = 1
corresponds to (1.18) with a(�) = e−�/M

2
. Higher orders of n are given by the

exponential modification a(�) = e−(�/M2)n , where M has been taken to be the
value of the lower bound, M = 0.004eV for illustrative purposes

1Alternatively, if we take M → ∞, which is the limit to return IDG to a local theory, we
recapture the familiar 1/r divergence of GR, as expected.
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1.3 Infinite Derivative Theory of Gravity

Entropy

The gravitational Wald entropy for IDG theories was investigated across two

papers in [67] and [68]. It was found in [67] that the gravitational entropy ac-

counting for the UV-modified sector vanishes around an axisymmetric black-hole

metric when one requires that no additional degrees of freedom are introduced in

the linear regime – a condition which results in a ghost-free theory. The resulting

entropy was given simply by the famous area law,

SWald =
Area

4G
. (1.20)

In [68], the analysis was extended to consider the gravitational entropy around

an (A)dS metric, where a lower bound on the leading order modification term

was calculated which precludes non-physical spacetimes characterised by nega-

tive entropy. This bound was found to have cosmological significance in terms

of avoiding singularities around a linearised de Sitter background. See Section D

for an outline of this result.

Quantum Loop Gravity

Quantum aspects have been studied for IDG theories, specifically from the point

of view of a toy model, see [39]. Here, explicit 1-loop and 2-loop computations

were performed where it was found that, at 1-loop, a divergence arises. However,

counter terms can be introduced to remove this divergence, in a similar fashion

to loop computations in GR. Furthermore, at 2-loops the theory becomes finite.

The article [39] then suggests a method for rendering arbitrary n-loops finite.

Modifications in the Infrared

The present work focuses solely on modifications to GR in the UV. Recently,

however, interest has been generated in the field of non-local modifications in

the infrared (IR). Such theories are characterised by the presence of inverse

D’Alembertian (1/�) corrections in the gravitational action. Most notably, re-

cent work has centred on the idea of constructing a theory of gravity which confers

a non-zero mass upon the graviton, known as massive gravity. Massive gravity

theories are formulated via a
m2
gr

�2 R -type extension to the Einstein-Hilbert action,
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1.3 Infinite Derivative Theory of Gravity
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Figure 1.2: Plot showing the suppression of the gravitational potential in the
exponential model. The thick black line is the potential of the exponential model.
Few initial oscillations are visible as the potential is suppressed with respect to the
Newtonian 1/r behaviour depicted by the thin blue dotted line. For comparison,
we also show the pure Yukawa suppression of massive gravity as the dashed red
line.

where mgr is the mass of the massive graviton. Such theories have been explored

in a number of papers as a means to explain the proliferation of dark energy in

the Universe [73],[74],[77],[76],[78][79].

In [75], the full non-linear field equations for a generalised action made up

of an infinite series of inverse D’Alembertian operators was derived for the first

time. The gravitational action can be formulated by replacing the form factors

Fi(�) in (1.15) with

F̄i(�) =
∞∑
n=1

f−n(M2/�)n. (1.21)

Similar methods to [16] were employed in order to derive the modified Newtonian

potentials, with the added complexity that models with an additional degree of

freedom in the scalar propagating mode were not excluded, i.e. a 6= c in Appendix

C, resulting in two Newtonian potentials. An upper bound was placed on the

ratio of these potentials, known as the Eddington parameter, via the Cassini

tracking experiment and various models were analysed as a means of explaining

dark energy, including Rf(R/�)-models [8] and massive gravity. In the context
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1.3 Infinite Derivative Theory of Gravity

of massive gravity, the massive graviton was tested and found to fall within the

appropriate limits to be considered a possible dark energy candidate. Finally, a

novel approach to infrared modifications was introduced, making use of all infinite

inverse derivatives, which displayed a reduction in the gravitational field at large

distances – a common feature of IR extensions to GR.
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1.4 Organisation of Thesis

1.4 Organisation of Thesis

The content of the thesis is organised as follows:

Chapter 2: This chapter begins with a derivation of the most general, generally covari-

ant, infinite derivative action of gravity that is quadratic in curvature, before

moving on to the main focus of the chapter: the highly non-trivial task of

attaining the full non-linear field equations. The general methodology is

outlined before moving on to the explicit calculation. Finally the linearised

field equations are derived around both Minkowski and de Sitter spacetimes

for later use in the context of ghost and singularity free cosmologies.

Chapter 3: The general ghost and tachyon criteria that a viable theory must conform to

are established, with specific examples of pathological behaviour given. The

correction to the graviton propagator from the infinite derivative extension

is attained, as are the ghost-free conditions around Minkowski space.

Chapter 4: This final chapter is the crux of the thesis, combining the field equations

(Chapter 2) and the ghost-free conditions (Chapter 3) to formulate a viable

singularity-free theory of gravity. The chapter begins with a discussion on

the intriguing topic of defining a singularity, before moving on to an outline

of the famous Hawking-Penrose Singularity Theorem. The Raychaudhuri

equation (RE) is introduced and derived, with particular attention paid to

the RE in a cosmological setting. A novel calculation then follows where

the RE is applied to infinite derivative gravity theory and viable defocusing

conditions are derived around Minkowski and de Sitter spacetimes.

18



Chapter 2

Infinite Derivative Gravity

2.1 Derivation of Action

Having introduced the concept of infinite derivative gravity theories and some

of the progress made in the area, our goal here is to derive the most general,

generally covariant infinite derivative action of gravity, with a view to formulating

the associated equations of motion. Following this, in Chapter 3, we will use the

field equations to understand the nature of the modified propagator.

We begin by inspecting the fluctuations around a given background up to

quadratic order in h, according to

gµν = ηµν + hµν . (2.1)

For presentation purposes, we have restricted the background metric to that

of the Minkowski spacetime as in [16], while the derivation has been repeated

in the more general framework of maximally symmetric spacetimes of constant

curvature, i.e. Minkowski or (Anti) de Sitter space, in [80],[81]. In principle, it

should be possible to relax this restriction on the background metric further to

any background metric with a well-defined Minkowski limit, with this latter point

required to eliminate potentially singular non-local terms.

As noted in [36],[16], the most general, four dimensional, generally covariant
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2.1 Derivation of Action

metric-tensor-based gravitational action, with a well-defined Minkowski limit,

may be expressed in the following generic form

S =

∫
d4x
√
−g

[
P0 +

∑
i

Pi
∏
I

(OiIQiI)

]
, (2.2)

where P and Q are functions of Riemannian curvature and the metric tensor,

while the operator O is made up, solely, of covariant operators, in accordance

with general covariance.

Our goal is to inspect fluctuations around Minkowski space up to quadratic

order. To this end, following closely to [80],[81],[16],[15], we may recast (2.2) into

the following invariant form

S = SEH + SUV , with SUV =

∫
d4x
√
−g
(
Rµ1ν1λ1σ1O

µ1ν1λ1σ1
µ2ν2λ2σ2

Rµ2ν2λ2σ2
)
,

(2.3)

where SEH is the Einstein-Hilbert action and SUV constitutes the modification of

GR in the ultraviolet (UV). The operator O
µ2ν2λ2σ2
µ1ν1λ1σ1

represents a general covari-

ant operator, such as the D’Alembertian operator � = gµν∇µ∇ν ; and the tensor

Rµ1ν1λ1σ1 represents all possible forms of Riemannian curvature, such as the cur-

vature scalar, Ricci Tensor, Riemann and Weyl tensors. It is worth noting that

while the generic form (2.3) includes all order of curvature via the commutation

relation (A.13), we restrict ourselves to a theory that is quadratic in curvature.

Noting that the differential operator O contains only the Minkowski metric

coupled with covariant derivatives, we may expand the compact form (2.3) to the
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2.1 Derivation of Action

following

S =

∫
d4x

√
−g
2

[
M2

PR +RF1(�)R +RF2(�)∇ν∇µR
µν +RµνF3(�)Rµν

+ Rν
µF4(�)∇ν∇λR

µλ +RλσF5(�)∇µ∇σ∇ν∇λR
µν +RF6(�)∇µ∇ν∇λ∇σR

µνλσ

+ RµλF7(�)∇ν∇σR
µνλσ +Rρ

λF8(�)∇µ∇σ∇ν∇ρR
µνλσ

+ Rµ1ν1F9(�)∇µ1∇ν1∇µ∇ν∇λ∇σR
µνλσ +RµνλσF10(�)Rµνλσ

+ Rρ
µνλF11(�)∇ρ∇σR

µνλσ +Rµρ1νσ1F12(�)∇ρ1∇σ1∇ρ∇σR
µρνσ

+ R ν1ρ1σ1
µ F13(�)∇ρ1∇σ1∇ν1∇ν∇ρ∇σR

µνλσ

+ Rµ1ν1ρ1σ1F14(�)∇ρ1∇σ1∇ν1∇µ1∇µ∇ν∇ρ∇σR
µνλσ

]
, (2.4)

where we have liberally used integration by parts and the functions Fi are defined

by

Fi(�) =
∞∑
n=0

f̃in(�/M2)n. (2.5)

These functions contain all orders of the D’Alembertian operator � = gµν∇µ∇ν
1,

with each operator modulated by the scale of non-locality M to ensure that these

functions are dimensionless. The coefficients f̃in , as yet unconstrained, ensure

that these are arbitrary infinite derivative functions.

The action (2.4) can be reduced upon noting the antisymmetric properties of

the Riemann tensor,

R(µν)ρσ = Rµν(ρσ) = 0, (2.6)

along with the (second) Bianchi identity

∇αR
µ
νβγ +∇βR

µ
νγα +∇γR

µ
ναβ = 0. (2.7)

1Up to quadratic order around Minkowski space, the D’Alembertian will appear in the
action only as � = ηµν∇µ∇ν
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2.1 Derivation of Action

Example:

Consider the terms

RF1(�)R +RF2(�)∇ν∇µR
µν +Rν

µF4(�)∇ν∇λR
µλ. (2.8)

These can be expressed as the following

RF1(�)R +
1

2
RF2(�)�R +

1

2
Rν
µF4(�)∇ν∇µR, (2.9)

by noting the identity ∇µR
µν = 1

2
∇νR and subsequently ∇ν∇µR

µν = 1
2
�R,

which results from a contraction of the Bianchi identity (2.7). We then perform

integration by parts on the final term, to find that (2.9) develops as follows

= RF1(�)R +
1

2
RF2(�)�R +

1

2
∇µ∇νR

ν
µF4(�)R (2.10)

= RF1(�)R +
1

2
RF2(�)�R +

1

4
RF4(�)�R (2.11)

≡ RF1(�)R. (2.12)

In the last step, we have redefined the arbitrary function F1(�) to incorporate

F2(�) and F4(�).

Proceeding in a similar manner, we find that the action reduces to

S =

∫
d4x

√
−g
2

[
M2

PR +RF1(�)R +RµνF3(�)Rµν +RF6(�)∇µ∇ν∇λ∇σR
µνλσ

+ RµνλσF10(�)Rµνλσ +Rν1ρ1σ1
µ F13(�)∇ρ1∇σ1∇ν1∇ν∇ρ∇σR

µνλσ

+ Rµ1ν1ρ1σ1F14(�)∇ρ1∇σ1∇ν1∇µ1∇µ∇ν∇ρ∇σR
µνλσ

]
. (2.13)

A final important reduction comes when one notes that, as we are considering

fluctuations around Minkowski space, the covariant derivatives commute freely.
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2.1 Derivation of Action

Example:

Take, for example, the F6(�) term in the above expression. We can decompose

this in to two parts, like so

RF6(�)∇µ∇ν∇λ∇σR
µνλσ =

1

2
RF6(�)∇µ∇ν∇λ∇σR

µνλσ+
1

2
RF6(�)∇µ∇ν∇λ∇σR

µνλσ.

(2.14)

We then commute one pair of derivatives in the first term to find

RF6(�)∇µ∇ν∇λ∇σR
µνλσ =

1

2
RF6(�)∇ν∇µ∇λ∇σR

µνλσ+
1

2
RF6(�)∇µ∇ν∇λ∇σR

µνλσ.

(2.15)

Relabelling the indices gives

RF6(�)∇µ∇ν∇λ∇σR
µνλσ = RF6(�)∇µ∇ν∇λ∇σR

(µν)λσ = 0, (2.16)

which vanishes due to the antisymmetric properties of the Riemann tensor, (2.6).

Taking this into account, we can now express the general form of the modified

action as follows

S =

∫
d4x

√
−g
2

[
M2

PR +RF1(�)R +RµνF3(�)Rµν +RµνλσF10(�)Rµνλσ
]
.

(2.17)

We complete the derivation of the most general, generally covariant action of

gravity that is quadratic in curvature with a little bookkeeping. First of all, it

is preferable to replace the Riemann tensor in the gravitational action with the

Weyl tensor, which is defined by

Cµ
ανβ ≡ Rµ

ανβ −
1

2
(δµνRαβ − δµβRαν +Rµ

νgαβ −R
µ
βgαν) +

R

6
(δµν gαβ − δ

µ
βgαν). (2.18)

This is because the Weyl tensor vanishes precisely in a conformally-flat back-

ground, making calculations less cumbersome in, for example, a cosmological
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2.2 Equations of Motion

Friedmann-Robertson-Walker (FRW) setting. This substitution does not repre-

sent any fundamental change to the theory as any change arising from reformu-

lating the above action in terms of the Weyl tensor is absorbed by the arbitrary

coefficient f̃in contained within the infinite derivative functions (2.5). In acknowl-

edgement of this minor change, we now rename the infinite derivative functions,

like so

Fi(�) =
∞∑
n=0

fin(�/M2)n, (2.19)

while also renaming the indices for presentation purposes. Finally, we introduce

a dimensionless ‘counting tool’ λ which offers a straightforward limit λ → 0 to

return the theory to that of GR. Taking this into account, we now arrive at the

final form of the modified action

S =

∫
d4x

√
−g
2

[
M2

PR + λRF1(�)R + λRµνF2(�)Rµν + λCµνλσF3(�)Cµνλσ
]
.

(2.20)

2.2 Equations of Motion

Having attained the most general, generally covariant, infinite derivative action

of gravity that is quadratic in curvature, the next step is to compute the field

equations – a highly non-trivial task. We begin with an overview of the methods

involved, largely based upon [82], before delving into the full technical derivations.

2.2.1 General Methodology

Single �

In order to illustrate the methods involved in deriving the field equations for the

action (2.20), we begin with a simple example, by way of the action,

Ss =

∫
d4x
√
−gR�R, (2.21)
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2.2 Equations of Motion

where R denotes the curvature scalar. Varying this, gives

δSs =

∫
d4x
√
−g
(
h

2
R�R + δR�R +Rδ(�R)

)
, (2.22)

where we are considering the variation

gµν → gµν + δgµν (2.23)

and have defined

δgµν ≡ hµν , such that δgµν = −hµν .1

One can then compute the variation of the determinant of the metric, which gives

δ
√
−g =

1

2

√
−gh, (2.27)

where h ≡ hµµ [5]. We then note that the D’Alembertian operator � contains

within it a metric and must therefore be subjected to variation. Upon integration

by parts, we may express (2.22) in the following form

δSs =

∫
d4x
√
−g
(
h

2
R�R + 2δR�R +Rδ(�)R

)
. (2.28)

We will deal with the tricky final term in due course. Firstly, however, we apply

the variational principle in order to compute the variation of any relevant curva-

tures. Upon inspection of the definition of the Christoffel symbol, (A.2), we find

1Note: This second identity (δgµν = −hµν) follows from the first (δgµν ≡ hµν), along with
the invariance of the Kronecker delta.

δµν = gµσgσν → (gµσ + δgµσ)(gσν + δgσν) = δµν + gµσδgσν + δgµσgσν + O(h2),

which implies that
gµσhσν = −δgµσgσν . (2.25)

Act gντ to both sides to find
hµτ = −δgµτ . (2.26)
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the variation to be of the form

δΓλµν =
1

2

(
∇µh

λ
ν +∇νh

λ
µ −∇λhµν

)
. (2.29)

Similarly, variation of the curvature terms, found in A.1, give

δRλ
µσν = ∇σδΓ

λ
µν −∇νδΓ

λ
µσ

δRµν = ∇λδΓ
λ
µν −∇νδΓ

λ
µλ

δR = −hµνRµν + gµνδRµν . (2.30)

Substitution of the above varied Christoffel symbol (2.28) allows us to represent

the varied curvature in terms of the perturbed metric tensor hµν :

δRλ
µσν =

1

2

(
∇σ∇µh

λ
ν −∇σ∇λhµν −∇ν∇µh

λ
σ +∇ν∇λhµσ

)
δRµν =

1

2

(
∇λ∇µh

λ
ν +∇λ∇νh

λ
µ −�hµν −∇ν∇µh

)
δR = −Rµνhµν +∇λ∇σhλσ −�h (2.31)

Identities of this type are well known. What is less clear, however, is the compu-

tation of δ(�)R, which we shall detail below.

Computing δ(�)R

By expanding out the components of the D’Alembertian, we have

δ(�)R = δ(gµν∇µ∇ν)R = −hµν∇µ∇νR+gµνδ(∇µ)∇νR+gµν∇µδ(∇ν)R. (2.32)

We find here some terms that involve the variation of the covariant operator,

which are not so trivial. However, by varying the tensor ∇µ∇νR, we may equate
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2.2 Equations of Motion

these non-trivial terms with the variation of ordinary tensors, like so

δ(∇µ)∂νR +∇µδ(∇ν)R = δ(∇µ∇νR)−∇µ∇νδR. (2.33)

Next, we compute the terms on the right hand side by expanding out the covariant

derivative so that, after some cancellation, we get an identity in terms of the

Christoffel symbol

δ(∇µ)∂νR +∇µδ(∇ν)R = −δΓκµν∂κR. (2.34)

We briefly note that the simplicity of this identity is due to the scalar nature of the

curvature involved. Tensors of higher order, such as the Ricci or Riemann tensor,

will result in additional terms. Upon substitution into (2.32) in conjunction with

the variation of the Christoffel stated previously in (2.31), we arrive at a vital

result in computing the field equations for a non-local action of the type (2.20).

δ(�)R = −hµν∇µ∇νR−∇σhκσ∂κR +
1

2
∂κh∂κR. (2.35)

Multiple �’s

Crucially, however, in order to derive the field equations for an infinite derivative

action such as (2.20), the above mechanism must be generalised to encapsulate an

arbitrary number of D’Alembertian operators acting on the curvature. To shed

light on this, we consider the action

Sm =

∫
d4x
√
−gR�nR. (2.36)

Varying with respect to the metric tensor gives

δSm =

∫
d4x
√
−g
(
h

2
R�nR + δR�nR +Rδ(�n)R +R�nδR

)
, (2.37)

27



2.2 Equations of Motion

analogous to (2.22). We now turn our attention to the Rδ(�n)R term. Repeated

application of the product rule reveals the following

Rδ(�n)R = R�δ(�n−1)R +Rδ(�)�n−1R

...

=
n−1∑
m=0

R�mδ(�)�n−m−1R. (2.38)

It is then straightforward to substitute (2.35) into this identity, along with the

previously derived varied curvature terms (2.31) to reveal the field equations for

an action of the type (2.36).

Arbitrary functions of �

We may generalise further by considering actions of the type

SF ∼
∫
d4x
√
−gRF(�)R, (2.39)

where F(�) is an arbitrary function of D’Alembertian operators of the form

F(�) ≡
∞∑
n=0

f1n

�n

M2n
. (2.40)

Here, f1n are arbitrary constants and each non-local operator is modulated by

the scale of non-locality, M . For such an action, the analogue of (2.38) is given

by

RδF1(�)R =
∞∑
n=1

f1n

M2n

n−1∑
m=0

R�mδ(�)�n−m−1R. (2.41)

Furthermore, the prescription∫
d4x
√
−g
∑
l

∑
m

�mA�lB =

∫
d4x
√
−g
∑
l

∑
m

�lA�mB, (2.42)
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where A and B are arbitrary tensors, allows us to recast the identity into the

following manageable form

RδF1(�)R =
∞∑
n=1

f1n

n−1∑
m=0

�mRδ(�)�n−m−1R. (2.43)

A final important point is that as R is a scalar, so too is �n−m−1R, and as such the

derived identity for δ(�)R remains valid for our intentions, where one simply has

to substitute R → �n−m−1R in (2.35). We shall see in the subsequent sections,

the central role these observations play in deriving the full field equations for

(2.20).

Full Action

We are now ready to compute the variation of our action (2.20). For simplicity

of presentation, we proceed by decomposing the action into its constituent parts

which we denote S0,...,3. We define the the gravitational energy momentum tensor

as

T µν = − 2√
−g

δS

δgµν
, (2.44)

where g ≡ | det gµν | is the determinant of the metric tensor, and compute the

contribution to T µν for the individual sectors of the action separately.

2.2.2 S0

S0 is nothing more than the Einstein-Hilbert action

S0 =
1

2

∫
d4x
√
−g
(
M2

PR− 2Λ
)
, (2.45)

where, in our formalism, we have taken the cosmological constant Λ to be of

mass dimension 4. Varying the action and substituting the identity for the varied

curvature scalar (2.31), along with (2.27), leads to the Einstein equation

T µν = M2
PG

µν + gµνΛ (2.46)
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2.2.3 S1

The next step is to compute the variation of

S1 =
1

2

∫
d4x
√
−gRF1(�)R . (2.47)

Varying this and substituting values for δR and δ
√
−g, given in (2.31) and (2.27),

respectively, we find

δS1 =
1

2

∫
d4x
√
−g
[(

1

2
gµνRF1(�)R + 2∇µ∇νF1(�)R

− 2gµν�F1(�)R− 2RµνF1(�)R

)
hµν +RδF1(�)R

]
(2.48)

where we have integrated by parts where appropriate. To calculate the final

term, we employ the identity in (2.41) and substitute the value for δ(�)R given

in (2.35). We then integrate by parts in order to factor out the perturbed metric

hµν . Further terms will simplify by noting the double summation relation given

by (2.42), until we arrive at the energy-momentum tensor contribution, which is

given by

T µν1 = 2GµνF1(�)R +
1

2
gµνRF1(�)R− 2 (∇µ∇ν − gµν�)F1(�)R

− Ωµν
1 +

1

2
gµν(Ω σ

1σ + Ω̄1) , (2.49)

where we have defined the symmetric tensors

Ωαβ
1 =

∞∑
n=1

f1n

n−1∑
l=0

∇αR(l)∇βR(n−l−1), Ω̄1 =
∞∑
n=1

f1n

n−1∑
l=0

R(l)R(n−l), (2.50)

and have introduced the notation �nR ≡ R(n).
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2.2.4 S2

We now focus on

S2 =
1

2

∫
d4x
√
−g (RµνF2(�)Rµν) . (2.51)

Varying the action, we find

δS2 =
1

2

∫
d4x

[
δ
√
−g (RµνF2(�)Rµν) +

√
−gδRµνF2(�)Rµν

+
√
−gRµνF2(�)δRµν +

√
−gRµνδF2(�)Rµν

]
. (2.52)

Careful substitution of the identities found in A.3, accounts for all but the final

term:

δS2 =
1

2

∫
d4x
√
−g
[(

1

2
gµνRστF2(�)Rστ − 2Rν

σF2(�)Rσµ + 2∇σ∇µF2(�)Rσν

−�F2(�)Rµν − gµν∇σ∇τF2(�)Rστ

)
hµν +

∫
d4x
√
−gRµνδF2(�)Rµν

]
.

(2.53)

To compute the final term, we employ the same method outlined in the general

methodology section, albeit with an added degree of difficulty. Here, we reiterate

the main steps. In terms of the Ricci tensor, the analogous identity of (2.38) is

arrived at by identical means,

RµνδF2(�)Rµν =
n−1∑
m=0

∞∑
n=1

f2nR
µν(m)δ(�)R(n−m−1)

µν . (2.54)

Of vital importance, however, is the form of δ(�)Rµν . We expand out the com-

ponents of the D’Alembertian operator, in the same manner as in the scalar case,

before taking the variation

δ(�)Rµν = δ(gστ∇σ∇τ )Rµν = hστ∇σ∇τRµν +gστδ(∇σ)∇τRµν +gστ∇σδ(∇τ )Rµν .

(2.55)

31



2.2 Equations of Motion

As in the scalar case, (2.35), we compare δ(∇τRµν) with ∇τδRµν to find

δ(∇τ )Rµν = −δΓκτµRκν − δΓκτνRµκ

δ(∇σ)∇τRµν = −δΓκτµ∇τRκν − δΓκτν∇τRµκ − δΓκτν∇κRµν . (2.56)

At this point, in order to keep track of the indices, it is convenient to rewrite the

perturbed Christoffel symbol (2.29), like so

δΓλµν =
1

2

(
δβν g

αλ∇µ + δβµg
αλ∇ν − δαµδβν∇λ

)
hαβ. (2.57)

We then substitute this into (2.56) and in turn (2.55) to find the relevant identity:

δ(�)Rµν =

[
−∇α∇βRµν −∇αRµν∇β +

1

2
gαβ∇σRµν∇σ

− 1

2
δβ(µR

α
ν)�+

1

2
δβ(µRτν)∇α∇τ − 1

2
Rα

(ν∇β∇µ)

−∇βRα
(ν∇µ) − δβ(µ∇

λRα
ν)∇λ + δβ(µ∇

αRτν)∇τ

]
hαβ. (2.58)

Having established the form of δ(�)Rµν , we are now in a position to tame the

troublesome term (2.54) into something manageable, like so

∫
d4x
√
−gRµνδF2(�)Rµν =

∫
d4x
√
−g
(

Ωµν
2 −

1

2
gµν(Ω σ

2σ + Ω̄2) + 2∆µν
2

)
hµν .

(2.59)

where we have defined the following symmetric tensors,

Ωµν
2 =

∞∑
n=1

f2n

n−1∑
l=0

∇µRσ(l)
τ ∇νRτ(n−l−1)

σ , Ω̄2 =
∞∑
n=1

f2n

n−1∑
l=0

Rσ(l)
τ Rτ(n−l)

σ ,

∆µν
2 =

∞∑
n=1

f2n

n−1∑
l=0

∇τ

(
Rτ(l)

σ ∇µRνσ(n−l−1) −∇µRτ(l)
σ Rνσ(n−l−1)

)
, (2.60)

This, combined with (2.53), gives us the contribution of the Ricci tensor terms
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to the energy-momentum tensor

T µν2 = −1

2
gµνRστF2(�)Rστ + 2Rν

σF2(�)Rσµ − 2∇σ∇µF2(�)Rσν

+�F2(�)Rµν + gµν∇σ∇τF2(�)Rστ − Ωµν
2 +

1

2
gµν(Ω σ

2σ + Ω̄2)− 2∆µν
2 ,

(2.61)

2.2.5 S3

Finally we focus on the terms involving the Weyl tensors. We proceed in much

the same manner as the previous case, with a further layer of complexity due to

the number of indices involved. The action we wish to vary is given by

S3 =
1

2

∫
d4x
√
−gCµνλσF3(�)Cµνλσ, (2.62)

where the Weyl tensor is defined by

Cµ
ανβ ≡ Rµ

ανβ−
1

2
(δµνRαβ−δµβRαν +Rµ

νgαβ−R
µ
βgαν)+

R

6
(δµν gαβ−δ

µ
βgαν). (2.63)

Varying the action we find

δS3 =
1

2

√
−g
∫
d4x

[
1

2
gαβhαβC

µνλσF3(�)Cµνλσ + δ
(
CµνλσF3(�)Cµνλσ

)]
. (2.64)

Once again, we intend to arrange the expression in terms of the metric tensor

hαβ. The second term develops as follows

δ
(
CµνλσF3(�)Cµνλσ

)
= δCµνλσF3(�)Cµνλσ + Cµνλσδ(F3(�)Cµνλσ)

= δ(gνρgφλgσψCµ
ρφψ)F3(�)Cµνλσ + Cµνλσδ(F3(�)gµρC

ρ
νλσ)

= −4hνρCµ
ρφψF3(�)Cµν

φψ + δCµ
ρφψF3(�)Cµ

ρφψ + Cρ
νλσδ(F3(�)Cρ

νλσ)

= −4hαβCβµνλF3(�)Cα
µνλ + 2δCµ

νλσF3(�)Cµ
νλσ + Cµ

νλσδF3(�)Cµ
νλσ

(2.65)
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Next, using the definition of the Weyl tensor ((2.63)), we note that

δCµ
νλσF3(�)Cµ

νλσ =

(
δRµ

νλσ −
1

2
(Rµ

λhνσ −R
µ
σhνλ)

)
F3(�)Cµ

νλσ. (2.66)

Here, we have used the essential property

Cµ
νµλ = 0, (2.67)

which is due to the fact that the Weyl tensor is the traceless component of the

Riemann tensor. We then reformulate the variation of the Riemann tensor (2.31)

like so

δRλ
µσν =

1

2

(
gαλδβν∇σ∇µ − δαµδβν∇σ∇λ − gαλδβσ∇ν∇µ + δαµδ

β
σ∇ν∇λ

)
hαβ, (2.68)

and substitute to find

2δCµ
νλσF3(�)Cµ

νλσ = −2 (Rµ
ν + 2∇ν∇µ)F3(�)Cµ

ανβhαβ, (2.69)

where we have integrated by parts where appropriate. The variation of the action,

thus far, is then given by

δS3 =
1

2

∫
d4x
√
−g
[(

1

2
gαβCµνλσF3(�)Cµνλσ − 4Cβ

µνλF3(�)Cαµνλ

− 2 (Rµν + 2∇ν∇µ)F3(�)Cµανβ

)
hαβ +

1

2
Cµ

νλσδF3(�)Cµ
νλσ

]
. (2.70)
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To compute the final term, we proceed as in the previous cases to derive δ(�)

acting upon the Weyl tensor:

δ(�)Cµνλσ =

[
−∇α∇βCµνλσ −∇αCµνλσ∇β +

1

2
gαβ∇τCµνλσ∇τ

− 1

2
Cα

νλσ∇β∇µ +
1

2
Cα

µλσ∇β∇ν +
1

2
Cα

µνσ∇β∇λ +
1

2
Cα

λµν∇β∇σ

−∇βCα
νλσ∇µ +∇βCα

µλσ∇ν −∇βCα
σµν∇λ +∇βCα

λµν∇σ

]
hαβ.

(2.71)

From this, we deduce

∫
d4x
√
−gCµνλσδF3(�)Cµνλσ =

∫
d4x
√
−g
(

Ωαβ
3 −

1

2
gαβ(Ω γ

3γ + Ω̄3) + 4∆αβ
3

)
hαβ ,

(2.72)

by defining

Ωαβ
3 =

∞∑
n=1

f3n

n−1∑
l=0

∇αC
µ(l)
νλσ∇

βC νλσ(n−l−1)
µ , Ω̄3 =

∞∑
n=1

f3n

n−1∑
l=0

C
µ(l)
νλσC

νλσ(n−l)
µ ,

∆αβ
3 =

∞∑
n=1

f3n

n−1∑
l=0

∇ν

(
Cλν(l)

σµ∇αC
βσµ(n−l−1)
λ −∇αCλν (l)

σµ C
βσµ(n−l−1)
λ

)
. (2.73)

As such, the contribution to the energy-momentum tensor is then

T µν3 = −1

2
gµνCστλρF3(�)Cστλρ + 4Cν

στλF3(�)Cµστλ + 2 (Rστ + 2∇τ∇σ)F3(�)Cσµτν

− Ωµν
3 +

1

2
gµν(Ω γ

3γ + Ω̄3)− 4∆µν
3 , (2.74)

where we have reintroduced the original µ,ν notation by relabelling the indices.
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2.2.6 The Complete Field Equations

We are now in a position to state the full equations of motion for the action S in

(2.20) as a combination of S0, S1, S2 and S3 derived in the previous sections.

T µν = M2
PG

µ
ν + δµνΛ + 2λGµ

νF1(�)R +
λ

2
δµνRF1(�)R− 2λ (∇µ∂ν − δµν�)F1(�)R

+ 2λRµ
σF2(�)Rσ

ν −
λ

2
δµνR

σ
τF2(�)Rτ

σ − 2λ∇σ∇νF2(�)Rµσ + λ�F2(�)Rµ
ν

+ λδµν∇σ∇τF2(�)Rστ − λ

2
δµνC

στλρF3(�)Cστλρ + 4λCµ
στλF3(�)C στλ

ν

− 2λ (Rστ + 2∇σ∇τ )F3(�)C στµ
ν − λΩµ

1ν +
λ

2
δµν (Ω σ

1σ + Ω̄1)

− λΩµ
2ν +

λ

2
δµν (Ωσ

2σ + Ω̄2)− 2λ∆µ
2ν − λΩµ

3ν +
λ

2
δµν (Ωγ

3γ + Ω̄3)− 4λ∆µ
3ν , (2.75)

where T µν is the stress energy tensor for the matter components of the Universe

1 and we restate the symmetric tensors, we defined earlier:

Ωµ
1ν =

∞∑
n=1

f1n

n−1∑
l=0

∂µR(l)∂νR
(n−l−1), Ω̄1 =

∞∑
n=1

f1n

n−1∑
l=0

R(l)R(n−l),

Ωµ
2ν =

∞∑
n=1

f2n

n−1∑
l=0

∇µRσ(l)
τ ∇νR

τ(n−l−1)
σ , Ω̄2 =

∞∑
n=1

f2n

n−1∑
l=0

Rσ(l)
τ Rτ(n−l)

σ ,

∆µ
2ν =

∞∑
n=1

f2n

n−1∑
l=0

∇τ

(
Rτ(l)

σ ∇µRνσ(n−l−1) −∇µRτ(l)
σ Rνσ(n−l−1)

)
,

Ωµ
3ν =

∞∑
n=1

f3n

n−1∑
l=0

∇µC
σ(l)
τλρ∇νC

τλρ(n−l−1)
σ , Ω̄3 =

∞∑
n=1

f3n

n−1∑
l=0

C
σ(l)
τλρC

τλρ(n−l)
σ ,

∆µ
3ν =

∞∑
n=1

f3n

n−1∑
l=0

∇τ

(
C
τ(l)
λρσ∇

µC λρσ(n−l−1)
ν −∇µC

τ(l)
λρσC

λρσ(n−l−1)
ν

)
. (2.76)

1We have lowered an index for convenience when analysing perturbations later in the text.
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The trace equation is often particularly useful and we provide it below for the

general action (2.20):

T = −M2
PR + 6λ�F1(�)R + λ�F2(�)R− 2λ∇σ∇τF2(�)Rστ + 2λCµνλσF3(�)Cµνλσ

+ λΩ σ
1σ + 2λΩ̄1 + λΩ σ

2σ + 2λΩ̄2 + λΩ σ
3σ + 2λΩ̄3 − 2λ∆ σ

2σ − 4λ∆ σ
3σ (2.77)

2.3 Linearised Field Equations around Minkowski

Space

In order to make a step towards understanding the physical implications of

the non-local gravitational theory described by the action (2.20), we consider

the linear approximation of the theory, by analysing small fluctuations around

Minkowski space, according to the algorithm

gµν = ηµν + hµν , gµν = ηµν − hµν . (2.78)

Here, ηµν is the Minkowski metric and hµν ≡ δgµν is the variation with respect

to the metric tensor. From (2.31), we can read off the relevant curvatures up to

linear order

Rρ
µσν =

1

2
(∂σ∂µh

ρ
ν + ∂ν∂

ρhµσ − ∂ν∂µhρσ − ∂σ∂ρhµν) ,

Rµν =
1

2

(
∂σ∂µh

σ
ν + ∂ν∂σh

σ
µ − ∂ν∂µh−�hµν

)
,

R = ∂µ∂νh
µν −�h , (2.79)
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where � = gµν∇µ∇ν = ηµν∂µ∂ν . Substitution of the above curvatures into (2.75)

reveals the linearised equations of motion around a Minkowski background

κT µν = −1

2

[
1 + λM−2

P F2(�)�+ 2M−2
P λF3(�)�

]
�hµν

+
1

2

[
1 + λM−2

P F2(�)�+ 2M−2
P λF3(�)�

]
∂σ(∂µhσν + ∂νh

µσ)

− 1

2

[
1− 4M−2

P λF1(�)�− λM−2
P F2(�)�+

2

3
M−2

P λF3(�)�

]
(∂ν∂

µh+ δµν ∂σ∂τh
στ )

+
1

2

[
1− 4M−2

P λF1(�)�− λM−2
P F2(�)�+

2

3
M−2

P λF3(�)�

]
δµν�h

−
[
2λM−2

P F1(�) + λM−2
P F2(�) +

2

3
M−2

P λF3(�)

]
∂µ∂ν∂σ∂τh

στ . (2.80)

We may represent the linearised field equations as

−κTµν =
1

2

[
a(�)�hµν + b(�)∂σ(∂µh

σ
ν + ∂νh

σ
µ) + c(�) (∂ν∂µh+ gµν∂σ∂τh

στ )

+ d(�)gµν�h+ f(�)∂µ∂ν∂σ∂τh
στ

]
, (2.81)

by defining the following infinite derivative functions

a(�) ≡ 1 +M−2
P F2(�)�+ 2M−2

P F3(�)� = −b(�)

c(�) ≡ 1− 4M−2
P F1(�)�−M−2

P F2(�)�+ 2
3
M−2

P F3(�)� = −d(�)

f(�) ≡ 4M−2
P F1(�) + 2M−2

P F2(�) + 4
3
M−2

P F3(�). (2.82)

One can then confirm the following relations

a(�) + b(�) = 0

c(�) + d(�) = 0

b(�) + c(�) + f(�)� = 0. (2.83)

These identities were found by explicit evaluation of the respective terms, but can

be understood, more intuitively, as a consequence of the Bianchi identities. The
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stress energy tensor of any minimally coupled diffeomorphism-invariant gravita-

tional action must be conserved, i.e.

∇µT
µ
ν = 0. (2.84)

This applies equally to the linearised equations of motion (2.81) as it does to the

full non-linear field equations (2.75). Recall that, in this case, � = gµν∇µ∇ν =

ηµν∂µ∂ν ≡ ∂2, so that it suffices to take the partial derivative of (2.81) in order

to test the Bianchi identity. As such,

− ∂µT µν = (a+ b)∂µ∂
2hµν + (b+ c+ f�)∂σ∂µ∂νh

µσ + (c+ d)∂ν∂
2h, (2.85)

where we have suppressed the argument in the infinite derivative functions, i.e

f(�)� = f�, for presentation purposes. This divergence should vanish identi-

cally, and when the coefficients of each independent term is compared with (2.83),

it is clear that this is the case. Furthermore, by appealing to the form of the cur-

vature around Minkowski space (2.79) and the constraints (2.82), we may recast

the field equations (2.81) into the following concise form

κTµν = a(�)Rµν −
1

2
ηµνc(�)R− f(�)

2
∂µ∂νR. (2.86)

In this form, it should be immediately apparent that both the tensorial and scalar

sectors of the propagator have undergone corrections by the non-local operators

a(�), c(�) and f(�), where f(�) is related to a(�) and c(�) by f(�)� =

(a(�)− c(�)). The trace equation is given by

κT =
1

2
(a(�)− 3c(�))R (2.87)

and will play an important role in the derivation of the ghost-free condition of

the IDG theory due to its correspondence to the scalar sector of the propagator.
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2.4 Linearised Field Equations around de Sitter Space

2.4 Linearised Field Equations around de Sitter

Space

Reformulation of Equations of Motion

In order to make an infinite series of D’Alembertian operators acting on the

Ricci tensor more tractable in spacetimes other than Minkowski, we introduce

the traceless Einstein tensor [81]

Sµν ≡ Rµ
ν −

1

4
δµνR, (2.88)

and define

F̃1(�) ≡ F1(�) +
1

4
F2(�), (2.89)

so that we may write the action (2.20) in terms of the traceless Einstein tensor

S =

∫
d4x

√
−g
2

[
M2

PR + λRF̃1(�)R + λSµνF2(�)Sνµ + CµνστF3(�)Cµνστ − 2Λ
]
,

(2.90)

with the resulting equations of motion given by

M2
PG

µ
ν = T µν − δµνΛ− 2λSµν F̃1(�)R + 2λ (∇µ∂ν − δµν�) F̃1(�)R

− λ

2
RF2(�)Sµν − 2λSµσF2(�)Sσν +

λ

2
δµνS

σ
τ F2(�)Sτσ

+ 2λ∇σ∇νF2(�)Sµσ − λ�F2(�)Sµν − λδµν∇σ∇τF2(�)Sστ

+ λΘ µ
1ν −

λ

2
δµν
(
Θ σ

1σ + Θ̄1

)
+ λΘ µ

2ν −
λ

2
δµν
(
Θ σ

2σ + Θ̄2

)
+ 2λE µ

2ν + λCµν .

(2.91)

Here, we have defined the symmetric tensors

Θ µ
1ν =

∞∑
n=1

f̃1n

n−1∑
l=0

(
∂µR(l)∂νR

(n−l−1)
)
, Θ̄1 =

∞∑
n=1

f̃1n

n−1∑
l=0

R(l)R(n−l)

Θ µ
2ν =

∞∑
n=1

f2n

n−1∑
l=0

(
∇µSσ(l)

τ ∇νS
τ(n−l−1)
σ

)
, Θ̄2 =

∞∑
n=1

f2n

n−1∑
l=0

Sσ(l)
τ Sτ(n−l)

σ
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2.4 Linearised Field Equations around de Sitter Space

E
µ

2ν =
∞∑
n=1

f2n

n−1∑
l=0

∇τ

(
S
τ(l)
λ ∇

µSλ(n−l−1)
ν −∇µS

τ(l)
λ Sλ(n−l−1)

ν

)
, (2.92)

while Cµν represents the contribution from the Weyl tensor which vanishes on the

background. The trace equation is obtained by contracting with δνµ

−M2
PR = T − 4Λ− 6λ�F̃1(�)R− 2λ∇σ∇τF2(�)Sστ

− λ
(
Θ σ

1σ + 2Θ̄1

)
− λ

(
Θ σ

2σ + 2Θ̄2

)
+ 2λE σ

2σ.
(2.93)

Linear Perturbations and Equations of Motion around de

Sitter

In order to understand the cosmological significance of a theory, it is often re-

vealing to study perturbations around de Sitter (dS) space. To analyse these

fluctuations, we define the algorithm

gµν → ḡµν + hµν , gµν → ḡµν − hµν (2.94)

where ḡµν and any subsequent ‘barred’ tensors represent the value of the tensor

on the background of de Sitter space, and as such obeys

R̄µνλσ = H2(ḡµλḡνσ − ḡµσḡνλ), (2.95)

where H is the Hubble parameter (constant) for dS. We then find

R̄µ
ν = 3H2δµν , R̄ = 12H2, S̄µν = 0. (2.96)

We can express the value for Λ by substituting the above values into the ‘barred’

trace equation. By ‘barred’ trace equation, we mean, replacing each curvature

term in (2.93) with a ‘barred’ background curvature term. Taking these back-

ground values for the curvature allows us to express the cosmological constant as

follows

Λ =
T

4
+ 3M2

PH
2 (2.97)
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2.4 Linearised Field Equations around de Sitter Space

and as dS is a vacuum solution, we may write

Λ = 3M2
PH

2. (2.98)

As a further check, this may be substituted into the full ‘barred’ equations of

motion to find that indeed Tµν = 0. Next, in order to linearise around the

background described by these ‘barred’ quantities, we return to the variation

principle, from which we know that

δΓλµν =
1

2
ḡλτ (∇µhντ +∇νhµτ −∇τhµν) ≡ γλµν

δRλκ
σν = −hµκR̄λ

µσν + ḡµκ
(
∇σγ

λ
µν −∇νγ

λ
µσ

)
≡ rλκσν

δRµ
ν ≡ −hκµR̄κν + ḡκµ

(
∇λγ

λ
κν −∇νγ

λ
κλ

)
≡ rµν

δR ≡ −hµνR̄µν +∇τ∇σhτσ −�h ≡ r. (2.99)

It is preferable in this instance to vary tensors with an even number of up and

down indices. This makes use of the Kronecker delta δµν ≡ gµρgρν , which is invari-

ant under variation. Formulating the variational identities in this way has the ad-

vantage that we may contract tensors in a straightforward manner. For example,

δµν δR
ν
µ = δ(δµνR

ν
µ) = δR, whereas in general gµνδRµν = δ(gµνRµν)−δgµνRµν 6= δR.

Substituting the background quantities and expanding the perturbed Christoffels,

we find that the perturbed Ricci tensor and curvature scalar are given by

rµν ≡ −3H2hµν +
1

2

(
∇λ∇µhλν +∇λ∇νh

µλ −�hµν −∇ν∂
µh
)

r ≡ −3H2h+∇τ∇σhτσ −�h. (2.100)

Subsequently, the perturbed traceless Einstein tensor becomes

δSµν = −3H2hµν + 1
2

(
∇λ∇µhλν +∇λ∇νh

µλ −�hµν −∇ν∂
µh
)

−1
4
δµν (−3H2h+∇τ∇σhτσ −�h) ≡ sµν . (2.101)
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2.4 Linearised Field Equations around de Sitter Space

The general formalism for linearisation we are following is described below

R→ R̄+r, rµν → R̄µ
ν +rµν , Sµν = S̄µν +sµν , with δνµr

µ
ν = r, (2.102)

whereas, upon substitution of the background values, we find

R→ 12H2 + r, rµν → 3H2δµν + rµν , Sµν → sµν . (2.103)

Taking all this into account, we simply substitute the above values along with the

background quantities (2.96) into the field equation (2.91), neglecting terms of

order h2, to return the linearised equations of motion around de Sitter space. The

calculation proceeds as follows: First, we perturb the field equations according

to (2.102),

M2
P

(
(R̄µ

ν + rµν )− 1

2
δµν (R̄ + r)

)
= T µν − δµνΛ− 2λsµν F̃1(�)(R̄ + r)

+ 2λ (∇µ∂ν − δµν�) F̃1(�)(R̄ + r)− λ

2
(R̄ + r)F2(�)sµν

− 2λsµσF2(�)sσν +
λ

2
δµν s

σ
τF2(�)sτσ + 2λ∇σ∇νF2(�)sµσ

− λ�F2(�)sµν − λδµν∇σ∇τF2(�)sστ

+ λΘ µ
1ν −

λ

2
δµν
(
Θ σ

1σ + Θ̄1

)
+ λΘ µ

2ν −
λ

2
δµν
(
Θ σ

2σ + Θ̄2

)
+ 2λE µ

2ν + λCµν .

(2.104)

Ignoring, for the moment, the symmetric tensors on the bottom line of this equa-

tion, we reduce all other terms to linear order in h,

M2
P

(
(R̄µ

ν + rµν )− 1

2
δµν (R̄ + r)

)
= T µν − δµνΛ− 2λsµν F̃1(�)R̄

+ 2λ (∇µ∂ν − δµν�) F̃1(�)(R̄ + r)− λ

2
R̄F2(�)sµν

+ 2λ∇σ∇νF2(�)sµσ − λ�F2(�)sµν − λδµν∇σ∇τF2(�)sστ

+ λΘ µ
1ν −

λ

2
δµν
(
Θ σ

1σ + Θ̄1

)
+ λΘ µ

2ν −
λ

2
δµν
(
Θ σ

2σ + Θ̄2

)
+ 2λE µ

2ν + λCµν ,

(2.105)

43



2.4 Linearised Field Equations around de Sitter Space

before noting that the background curvature, expressed as the ‘barred’ terms

given in (2.96), are constants. Thus, any derivatives on the background curvature

will vanish, so that the field equations reduce further,

M2
P

(
(R̄µ

ν + rµν )− 1

2
δµν (R̄ + r)

)
= T µν − δµνΛ− 2λf̃10s

µ
ν R̄ + 2λ (∇µ∂ν − δµν�) F̃1(�)r

− λ

2
R̄F2(�)sµν + 2λ∇σ∇νF2(�)sµσ − λ�F2(�)sµν − λδµν∇σ∇τF2(�)sστ

+ λΘ µ
1ν −

λ

2
δµν
(
Θ σ

1σ + Θ̄1

)
+ λΘ µ

2ν −
λ

2
δµν
(
Θ σ

2σ + Θ̄2

)
+ 2λE µ

2ν + λCµν .

(2.106)

Return now to the symmetric tensors on the bottom line. Following the initial

perturbation and taking into account the constant nature of the background

curvature, the symmetric tensors (2.92) are given by

Θ µ
1ν =

∞∑
n=1

f̃1n

M2n

n−1∑
l=0

(
∂µr(l)∂νr

(n−l−1)
)
,

Θ̄1 =
∞∑
n=1

f̃1n

M2n
(R̄ + r)(r)(n) +

∞∑
n=1

f̃1n

M2n

n−1∑
l=1

r(l)r(n−l)

Θ µ
2ν =

∞∑
n=1

f̃2n

M2n

n−1∑
l=0

(
∇µsσ(l)

τ ∇νs
τ(n−l−1)
σ

)
, Θ̄2 =

∞∑
n=1

f̃2n

M2n

n−1∑
l=0

sσ(l)
τ sτ(n−l)

σ

E
µ

2ν =
∞∑
n=1

f̃2n

M2n

n−1∑
l=0

∇τ

(
s
τ(l)
λ ∇

µsλ(n−l−1)
ν −∇µs

τ(l)
λ sλ(n−l−1)

ν

)
, (2.107)

whereas if we consider only up to linear order in h, we retain only the solitary

term,

Θ̄1 = R̄
∞∑
n=1

f̃1n

M2n
�nr = R̄F̃1(�)r − f̃10R̄r. (2.108)
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2.4 Linearised Field Equations around de Sitter Space

Simple substitution of the background curvature (2.96), (2.98), then reveals the

linearised field equations around de Sitter space

(
M2

P + 24H2λf̃10

)(
rµν −

1

2
δµν r

)
= T µν + 2λ (∇µ∂ν − δµν�) F̃1(�)r − 6λH2δµν F̃1(�)r

− 6H2λF2(�)sµν + 2λ∇σ∇νF2(�)sµσ − λ�F2(�)sµν − λδµν∇σ∇τF2(�)sστ + λCµν .
(2.109)

We will return to these field equations when discussing the defocusing conditions

around de Sitter space in Section 4.7.
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Chapter 3

Ghost-free Conditions

Historically speaking, higher derivative theories of gravity have been beset by the

presence of ghosts - free fields bearing negative kinetic energy. During the pro-

cess of renormalization, this negative contribution may be offset by the repeated

introduction of derivatives, via additional curvature terms in the gravitational

action. These higher derivative terms affect the short-range behaviour of the

theory rendering it renormalizable, but with a cost. If a finite number of higher

derivatives are introduced to the theory, so too is a massive spin-2 ‘ghost’ particle

into the propagator, resulting in a break down of unitarity 1 [54]. The aim of this

chapter is to provide the conditions whereby the IDG theory (2.20) may invoke

its infinite number of derivatives in order to render the gravitational theory ghost

and tachyon-free. We do this by appealing to the form of the modified graviton

propagator around Minkowski space, which we also derive. We begin with some

clarifications.

Ghosts

As opposed to the Faddeev Popov ghosts of field theory, which are added to

gauge field theories in order to absorb non-physical degrees of freedom, ghosts

in relativity are physical excitations which come with a negative residue in the

1With the exception of f(R)-theories, which we discuss shortly.
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graviton propagator [25], [83], which is defined via

Π−1στ
µν hστ = κTµν . (3.1)

Classically, the graviton propagator details how a gravitational field propagates

through space when sourced by a current J(x) [84]. Any modification to the

gravitational action will necessarily modify the propagator. If this modification

comes with the wrong sign, then implicitly the theory admits physical states of

negative energy, or “ghosts”, leading to an instability, even at the classical level.

This phenomenon, known as the Ostrogradksy instability, results in perturbations

carrying both positive and negative energy modes [85].

The Ostrogradsky Instability

A major consequence of Ostrogradsky’s Theorem of 1850 [86] is that powerful

constraints are placed on the formulation of stable, higher-derivative theories of

gravity 1. We outline the results below before offering a caveat.

Consider a Lagrangian of the type

L = L(q, q̇, q̈), (3.2)

which is non-degenerate on q̈, i.e. ∂2L
∂q̈2
6= 0, where dots denote derivatives with

respect to some parameter λ. The Euler Lagrange equation is given by

∂L

∂q
− d

dt

∂L

∂q̇
+
d2

dt2
∂L

∂q̈
= 0 (3.3)

Due to the non-degeneracy of the Lagrangian, solutions will depend on four pieces

1Higher -derivative theories refers to gravitational theories containing more than two deriva-
tives of the metric tensor.
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of initial data q0, q̇0, q̈0,
...
q 0. We then make the following four canonical choices

Q1 = q, P1 =
∂L

∂q̇
− d

dt

∂L

∂q̈
, (3.4)

Q2 = q̇, P2 =
∂L

∂q̈
. (3.5)

One can now express q̈ in terms of Q1, Q2 and P2, like so q̈ = f(Q1, Q2, P2), so

that the Hamiltonian of the theory can be written as

H = P1Q1 + P2f(Q1, Q2, P2)− L(Q1, Q2, f), (3.6)

as in [25],[87]. Now, as this Hamiltonian is linear only in the canonical momentum

P1, a system of this form cannot be stable. When interactions take place in such

a system the vacuum decays into both positive and negative kinetic energy states,

which we call the Ostrogradsky instability.

It is commonly stated that a consequence of Ostragradsky’s theorem is that

gravitational theories containing higher-than-two derivatives in the action will

suffer from this instability. This is generically true for theories of the type

S =
1

2

∫
d4x
√
−gf(R,Rµν , Rµνσλ), (3.7)

where f is some non-trivial function. An example of such a theory would be

Stelle’s fourth order gravity theory, discussed in the introduction. However, there

is a caveat in that f(R)-theories, given by

S =
1

2

∫
d4x
√
−gf(R), (3.8)

may avoid this instability and are indeed ghost-free. In terms of the Hamiltonian,

this is due to the fact that one cannot express q̈ as q̈ = f(Q1, Q2, P2) for each

component of the metric. In terms of the modified propagator, such theories are

characterised by a single additional scalar degree of freedom which contains all

higher-order derivatives. We will see in Section 3.3.1 that as long as there is at

48



most one additional pole in the scalar sector, the theory may be considered to be

ghost-free, while in Chapter 4, we reveal the vital role of this additional pole in

singularity avoidance.

Tachyons

We define tachyons as particles with imaginary mass, i.e. m2
tachyon < 0. In a

classical sense, such a particle will always travel faster than the speed of light,

according to the equation

E =
mc2√
1− |v|2

c2

. (3.9)

As the energy E is real and observable, if a particle has imaginary mass m, then

the denominator must also be imaginary, implying that the velocity of the particle

v is greater than the speed of light c. It is this behaviour which lends the particle

its name - ‘tachy’ (ταχύς) being the Greek for ‘rapid’.

Gerald Feinberg, who coined the term in the context of Quantum Field The-

ory [88], proposed that fields with imaginary mass would necessarily produce

physical particles that propagate at speeds faster than light, however, this was

later found to be untrue. Instead, fields defined in this way, technically suffer

from an instability known as tachyon condensation, where a field is tachyonic

and unstable around the local maximum of its potential, but as the field reaches

its local minimum, its associated quanta are not tachyonic but ordinary particles

with positive mass squared, such as the Higgs boson [89].

In the present work, however, we will refer to particles with imaginary mass as

‘tachyons’, as this notion has no classical interpretation and represents a pathol-

ogy in the theory.

Ghost and tachyon criteria

In order to avoid the spectre of ghosts or tachyons, we require that:

1. The propagator will contain only first order poles at k2 +m2 with real mass

m2 ≥ 0 so as to avoid tachyons.

2. Such a pole will not contain any negative residues or ghosts.
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3.1 Modified Propagator around Minkowski Space

3.1 Modified Propagator around Minkowski Space

Now that we have established the general ghost-free criteria that the modified

propagator must ascribe to, it is time to derive the precise form of the propagator

for the linearised equations of motion (2.81) around a Minkowski background.

The field equations are expressed in terms of the inverse propagator Π−1στ
µν , like

so,

Π−1ρσ
µν hρσ = κTµν , (3.10)

where κ = 8πG = M−2
P .

Derivation We begin by reminding the reader of the relevant identities concern-

ing the spin projector operators inD-dimensional Minkowski space, see [36],[83],[68].

P2
µνρσ =

1

2
(θµρθνσ + θµσθνρ)−

1

D − 1
θµνθρσ,

P1
µνρσ =

1

2
(θµρωνσ + θµσωνρ + θνρωµσ + θνσωµρ),

(P0
s)µνρσ =

1

D − 1
θµνθρσ, (P0

w)µνρσ = ωµνωρσ,

(P0
sw)µνρσ =

1√
D − 1

θµνωρσ, (P0
ws)µνρσ =

1√
D − 1

ωµνθρσ, (3.11)

where

θµν = ηµν −
kµkν
k2

, and ωµν =
kµkν
k2

. (3.12)

Combining the final two identities gives the useful relation

ηµν = θµν + ωµν . (3.13)

We then compute each component making up the linearised field equations (2.81),

while transforming into momentum space with ∂µ → ikµ, such that � → −k2,
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3.1 Modified Propagator around Minkowski Space

like so

a(�)hµν → a(−k2)
[
P2 + P1 + P0

s + P0
w

]
µν

ρσhρσ,

b(�)∂σ∂(νh
σ
µ) → −b(−k2)k2

[
P1 + 2P0

w

]
µν

ρσhρσ,

c(�)(ηµν∂ρ∂σh
ρσ + ∂µ∂νh)→ −c(−k2)k2

[
2P0

w +
√
D − 1

(
P0
sw + P0

ws

)]
µν

ρσhρσ,

ηµνd(�)h→ d(−k2)
[
(D − 1)P0

s + P0
w +
√
D − 1

(
P0
sw + P0

ws

)]
µν

ρσhρσ,

f(�)∂σ∂ρ∂µ∂νhρσ → f(−k2)k4(P0
w)µν

ρσhρσ. (3.14)

On inspection of the spin projector operators (3.11),(3.12), we note that the

multiplets P2,P1,P0
s,P

0
w conform to the following:

(P2 + P1 + P0
s + P0

w)µνρσ =
1

2
(ηνρηµσ + ηνσηµρ). (3.15)

Using this property along with (3.11) and (3.12) allows us to express the inverse

propagator (3.10) in terms of the projection operators, like so

Π−1ρσ
µν hρσ =

6∑
i=1

CiP
i
µν
ρσhρσ

= κ(P2 + P1 + P0
s + P0

w)µν
ρσTρσ

=
1

2
κ(δρνδ

σ
µ + δσν δ

ρ
µ)Tρσ

= κTµν , (3.16)

where the coefficients Ci are dependent only on k2 in momentum space. We then

find that (3.14) reduces to

ak2P2
µν
ρσhρσ = κP2

µν
ρσTρσ

(a+ b)k2P1
µν
ρσhρσ = κP1

µν
ρσTρσ

[(a+ (D − 1)d)k2P0
s + (c+ d)k2

√
D − 1P0

sw]µν
ρσhρσ = κ(P0

s)µν
ρσTρσ,[

(c+ d)k2
√
D − 1P0

ws + (a+ 2b+ 2c+ d+ f)k2P0
w

]
µν
ρσhρσ = κ(P0

w)µν
ρσTρσ.

(3.17)
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3.1 Modified Propagator around Minkowski Space

In turn, from (2.83), each identity reduces like so

P2
µν
ρσhρσ = κ

(
P2

ak2

)
µν
ρσTρσ,

P1
µν
ρσTρσ = 0,

(P0
s)µν

ρσhρσ = κ
(Ps)

0
µν
ρσ

(a− (D − 1)c)k2
Tρσ,

κ(P0
w)µν

ρσTρσ = 0. (3.18)

Thus, we have succeed in inverting the field equations so that from (3.16), we

may read off the non-local, D-dimensional, propagator around Minkowski space:

Non-local, D-dimensional, propagator around Minkowski

Π(D)(−k2) =
P2

k2a(−k2)
+

P0
s

k2(a(−k2)− (D − 1)c(−k2))
, (3.19)

where, hereafter we shall suppress the indices in the propagator and projection

operators. The first thing to note here is that at a(0) and c(0), the theory returns

to that of General Relativity. It is straightforward to confirm, upon reference to

(2.83), that indeed the physical graviton propagator is recovered at this limit

P2

k2a(0)
+

P0
s

k2(a(0)− (D − 1)c(0))
=

P2

k2
− P0

s

(D − 2)k2
= Π

(D)
GR . (3.20)

The propagator (3.19) is the most general form of the D-dimensional propagator

around Minkowski space for an action of the type (2.20). In practice, however,

we will largely be dealing within a 4-dimensional framework, which is given by:

Non-local Propagator around Minkowski in D = 4-spacetime dimensions

Π(−k2) =
P2

k2a(−k2)
+

P0
s

k2 (a(−k2)− 3c(−k2))
. (3.21)
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3.2 Examples of Pathological Behaviour

Another interesting variant of the IDG modified propagator occurs when one re-

quires that no additional degrees of freedom, other than the massless graviton,

are allowed into the system. Upon inspection of (2.82), we note that by choosing

a = c, we do indeed avoid the introduction of additional scalar degrees of freedom.

Non-local propagator with no additional scalar degrees of freedom (D = 4)

Π(−k2) =
1

a(−k2)

(
P2

k2
− P0

s

2k2

)
. (3.22)

In this case, we note that the derived non-local propagator modifies the physical

graviton propagator by a factor of ∼ 1/a

Π(−k2) =
1

a(−k2)
Π

(4)
GR. (3.23)

3.2 Examples of Pathological Behaviour

The Benign Ghost of General Relativity

Let us clarify what is sometimes called the benign ghost of General Relativity.

This refers to the appearance of a negative residue in GR, which does not represent

any instability in the theory. The propagator of the physical graviton in four-

dimensional GR is given by:

ΠGR =
P2

k2
− P0

s

2k2
, . (3.24)

Naively, it appears here as if there is a negative residue at the point k2 = 0.

However, upon reference to (3.11), we find that the coefficients attached to the

spin projector operators cancel exactly so that no such negative residue survives.

f(R)-gravity

As previously discussed, a particular class of extended theory, known as the f(R)
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3.2 Examples of Pathological Behaviour

model of gravity, is defined by the action

S =
1

2

∫
d4x
√
−gf(R). (3.25)

This is a generalisation of Einstein’s theory where the curvature scalar is replaced

with an arbitrary function of R. The simplest example of such a theory is known

as the Starobinsky Model, defined by

S =
1

2

∫
d4x
√
−g
(
M2

PR + f0R
2
)
, (3.26)

where f0 is an arbitrary constant. A large amount of interest was generated in

theories of this type from Starobinsky’s initial idea that for a positive constant

f0 = 1
6M2 , the model would mimic the behaviour of the cosmological constant for

a sufficiently large R. The curvature squared term of the action leads to a period

of exponential expansion, sufficient for forming the large scale structures we see

in the Universe today. After this period of rapid expansion, the higher-order cur-

vature terms become less important as the model moves away from the Planck

scale, signalling the end of inflation [34]. We have already learned that such the-

ories avoid the Ostrogradsky instability. The Starobinsky model, however, has

proved less successful in pairing cosmic inflation with a non-singular cosmology.

As we shall see in Section 4.4, in order to avoid an initial singularity within this

model, we would require the constant f0 to be negative, resulting in tachyonic

behaviour, outlined below.

Example of Tachyons

Let us consider the action

S =
1

2

∫
d4x
√
−g
(
M2

PR−R2
)
. (3.27)
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By taking the appropriate limits of (2.82) and decomposing into partial fractions,

we can read off the propagator of the Starobinsky model from (3.21),

ΠR2 = ΠGR +
1

2

P0
s

k2 +m2
, (3.28)

where m2 = M2
P/6f0. As the coefficient of the R2 term is given by f0 = −1, the

value of m2 for the spin-0 particle now takes the form

m2 = −1

6
M2

P < 0, (3.29)

which is decidedly negative. Thus, the first order pole k2 +m2 = 0 in the scalar

mode of (3.28) contains an imaginary mass m, which is the very definition of a

tachyonic field.

Fourth Order Gravity

A natural generalisation of f(R)-gravity, (3.25), is to not only allow scalar mod-

ifications to GR but tensorial modifications too. The gravitational action will

then be made up of a an arbitrary function of the curvature scalar, Ricci tensor

and Weyl/Riemann tensor, like so

S =
1

2

∫
d4x
√
−gf(R,Rµν , Rµνσλ). (3.30)

An interesting subclass of this generalisation comes in the form of Fourth Order

Gravity, where

L = R + f1R
2 + f2RµνR

µν + f3RµνσλR
µνσλ. (3.31)

As you may recall from the introduction, choosing f1 = 1, f2 = −4, f3 = 1

is nothing more than the Gauss-Bonnet action of gravity, which reproduces the

Einstein Equation precisely in four dimensions. More generally, in 1977, Stelle

found that fourth-order gravity theories, (3.31), were perturbatively renormaliz-

able, raising hopes for a quantum field theory of gravity. As previously discussed,
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such theories suffer from the Ostrogradsky instability. An example of such a

pathology comes in the form of the Weyl Ghost.

The Weyl Ghost

Consider a Lagrangian of the type

LW ∼M2
PR + CµνλσCµνλσ, (3.32)

where Cµνλσ is the Weyl tensor, lending the name of Weyl squared gravity to

theories of this type. It is straightforward to compute that

C2 = RµνλσR
µνλσ − 2RµνR

µν +
1

3
R2, (3.33)

and to note that this is a particular example of a fourth-order theory, whereas,

in terms of the IDG action (2.20), we simply take F1 = F2 = 0 and F3 = 1. The

relevant functions, a and c, that make up the propagator can then be read off

from (2.82) so that the propagator for Weyl squared gravity is given by

ΠC2 =
P2

(1− (2k/MP )2k2
− P0

s

2k2
= ΠGR −

P2

k2 +m2
. (3.34)

We see here that there is an additional pole in the spin-2 portion of the propagator

and, moreover, this comes with a negative sign, or residue. This is known as the

Weyl Ghost and in order to avoid such a situation, we stipulate that the operator

a(�) which modifies the tensorial sector has no roots (to avoid additional poles)

and contributes positively to the propagator (ghost-free).[36]

3.3 Ghost-free Conditions

We have already established that f(R)-theories are the only finite, higher-order

extension of GR that are potentially stable [87] 1. What then of infinite deriva-

tive extensions of GR? Should such theories lead to a infinite number of ghosts or

1We are considering here only metric-tensor-based extensions of GR.
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3.3 Ghost-free Conditions

can their non-locality be invoked in some way to curtail these pathologies? One

way to shed light on this is to study the equivalent scalar-tensor action of such

a theory, first discussed in [15]. As it stands, the general form of the modified

propagator (3.21) may contain ghosts or tachyons due to the arbitrary nature

of the infinite derivative functions (2.82) contained within. The purpose of this

section is motivate the constraints that must be placed on these infinite derivative

functions in order to describe a theory that is free from such infirmities. We will

then derive the precise covariant ghost-free form around Minkowski space. Fol-

lowing an interesting discussion on the minimal IDG action that can be rendered

singularity-free in Section 4, we will return to the ghost-free conditions around

de Sitter space.

3.3.1 Motivation from Scalar-Tensor Theory

In order to motivate the methodology for rendering the theory ghost-free it is

instructive to discuss the scalar sector of the action (2.20) following closely to

[15]. The scalar sector is given by

Ssc =
1

2

∫
d4x
√
−g
(
M2

PR +RF(�)R

)
, (3.35)

which accounts for the spin-0 sector of the propagator, where F(�) =
∑∞

n=0
fn
M2n�n,

while the equivalent scalar-tensor action takes the form

Ssc =
1

2

√
−g
(
M2

P (ΦR− ψ(Φ− 1)) + ψF(�)ψ

)
. (3.36)

The equivalence of (3.35) and (3.36) can be seen by taking a look at the equation

of motion for Φ. Varying the action with respect to Φ gives

δSsc
δΦ

=
1

2

√
−g(R− ψ) (3.37)
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3.3 Ghost-free Conditions

so that the field equation

δSsc
δΦ

= 0 implies R = ψ. (3.38)

Substituting ψ = R into (3.36) then recovers the action (3.35). The next step is

to invoke the conformal transformation

eaµ = Φ−1/2e′aµ . (3.39)

Further note that the D’Alembertian transforms as �ψ = �′ψ + O(φ2, φψ, ψ2),

while the metric tensor transforms as

gµν = eaµgabe
b
ν

= Φ−1e′ aµ gabe
′ b
ν

= Φ−1g′µν . (3.40)

Subsequently, the square root of the determinant of the metric is given by

√
−g = Φ−2

√
−g′, (3.41)

so that the relevant form of the curvature scalar transforms as

√
−gΦR =

√
−g′
[
R′ +

3

2
φ�′φ

]
, (3.42)

where we have defined Φ = eφ, which up to linear order gives Φ = 1 + φ+O(φ2).

Substitution into the action (3.36) up to quadratic order then gives

Ssc =
M2

P

2

√
−g
(
R′ +

3

2
φ�′φ− ψφ+M−2

P ψF(�′)ψ

)
. (3.43)

By varying with respect to φ and ψ respectively, we can read off the field equations

ψ = 3�′φ, φ = 2M−2
P F(�′)ψ. (3.44)
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3.3 Ghost-free Conditions

Substitution then reveals(
−1 + 6M−2

P F(�′)�′
)
φ ≡ Γsc(�)φ = 0, (3.45)

where the scalar sector of the propagator is given by ∼ 1
Γsc(−p2)

in momentum

space with ∂µ = ipµ. Further note, upon reference to the trace equation (2.87) and

the infinite derivative functions (2.82), that the left hand side of (3.45) conforms

to the trace equation of the IDG action (2.77) with F2 = F3 = 0. This is as

expected, as we are considering the scalar sector of the theory, which the trace

equation describes. We may then rewrite (3.45) as follows

1

2

(
a(�′)− 3c(�′)

)
φ ≡ Γsc(�)φ = 0. (3.46)

We must now examine the restrictions that must be placed on the infinite deriva-

tive functions a and c in order to avoid ghosts and tachyons. To this end, we

express the scalar propagator Γsc as a finite power series

Γsc(−p2) = (p2 +m2
0)(p2 +m2

1) . . . (p2 +m2
n), (3.47)

where m2
i represents the mass of a spin-0 particle, which must be positive and

real in order to avoid the theory becoming tachyonic.

In this power series, each root represents an additional pole in the scalar

section of the propagator. If we were to consider two distinct poles, i.e. m0 6= m1,

then one of these poles will have a negative residue and therefore be ghost-like.

To show this, we assume that there are two adjacent poles with m2
0 < m2

1, so that

the propagator takes the form

Γsc(−p2) = (p2 +m2
0)(p2 +m2

1)ā(−p2), (3.48)

with the adjacent roots given by p2 = −m2
0 and p2 = −m2

1. As these poles

are adjacent, there can be no more zeroes contained within ā(−p2) in the range

−m2
1 < p2 < −m2

0, with the consequence that the sign of ā(−p2) has not changed
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3.3 Ghost-free Conditions

within these limits [15]. We can best illustrate this by decomposing the inverse

propagator into partial fractions like so

Γ−1
sc (−p2) =

1

ā(−p2)

(
1

m2
1 −m2

0

)(
1

p2 +m2
0

− 1

p2 +m2
1

)
. (3.49)

Here, we can see that two massive spin-0 particles m0 and m1 have been intro-

duced to the propagator, with poles of differing sign. When the propagator is

evaluated at p2 = −m2
1 and p2 = −m2

0, we observe a residue of differing signs so

that one of these poles must necessarily be ghost-like.

The upshot is that we must restrict the scalar propagator to at most one

additional pole in order for the theory to remain ghost-free. The scalar propagator

is then given by

Γsc(�) = (α�−m2
0)ā(�), (3.50)

where ā contains no roots and α is a constant. In order to ensure that the

propagator is analytic - differentiable across the whole of the complex plane -

and does not contain additional poles, ā must take the form of an exponent of an

entire function, i.e

Γsc(�) = (α�−m2
0)eγ(�), (3.51)

where γ(�) is an entire function. Finally, if we wish to restrict ourselves further

to a propagator that is proportional to the physical graviton propagator - with

no additional roots - we simply set α = 0:

Γsc(�) = eγ(�). (3.52)

3.3.2 Entire functions

In the preceding discussion, we made use of the properties of analytic functions

to express ā(�) in terms of an exponent of an entire function. At first glance,

this may seem to be a construction or at least a reduction in the possible forms

of ā(�). However, as we shall see, this is the only form that such a function may

take. Formally, an analytic function is defined as [90]:
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Definition 3.3.1. A function f(z), where z ∈ C, is said to be analytic at a

point z0 if it is differentiable in a neighbourhood of z0. Similarly, a function f(z)

is said to be analytic in a region if it is analytic in every point in that region.

Recall that, the neighbourhood of z0 is simply the region that contains all

the points within a radius ε, excluding the boundary, where ε is a small positive

number. From first principles, we know that we can express the derivative of a

function f(z) like so

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)

∆z
. (3.53)

For the function f(z) = u(x, y) + iv(x, y), the variation is given by

δf(z) =
∂f

∂z
δz = f ′(z)(δx+ iδy), (3.54)

while for any function of two variables, we may write

δf(x, y) =
∂f

∂x
δx+

∂f

∂y
δy. (3.55)

As such

f ′(z) =
∂f

∂x
, and if ′(z) =

∂f

∂y
. (3.56)

Thus, the real and imaginary derivatives are given by

f ′(z) = ux(x, y) + ivx(x, y) (3.57)

and

if ′(z) = uy(x, y) + ivy(x, y), (3.58)

respectively, where the subscript represents partial differentiation, i.e. ux =

∂u/∂x. Requiring that (3.57) and (3.58) are equal gives the Cauchy-Riemann

Conditions

ux = vy and vx = −uy. (3.59)
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These are the necessary and sufficient conditions that must hold if f(z) is to be

analytic. This leads us neatly to the the definition of an entire function, alluded

to in the previous section.

Definition 3.3.2. A function that is analytic at each point on the “entire” (finite)

complex plane is known as an entire function.

Entire functions encompass a broad range of functions. For instance, the

exponential function f(z) = ez is an entire function as can be seen by expressing

the exponent in terms of trigonometrical functions, like so

f(z) = ez = cos(y)(cos(x) + sinh(x)) + i sin(y)(cosh(x) + sinh(x)) (3.60)

and differentiating to find that the Cauchy-Riemann criteria are satisfied (for all

z), according to

ux = cos(y) (sinh(x) + cosh(x)) = vy, vx = sin(y) (sinh(x) + cosh(x)) = −uy.
(3.61)

Similarly, sin(z) and cos(z) are entire functions, as indeed are all polynomials of

z. Herein lies the problem. If in (3.50), we were to simply define ā as an entire

function, this would allow additional poles to be introduced into the propagator.

Consider the function

ā(z) = z2 − 1. (3.62)

This is a polynomial and is indeed an entire function, conforming to (3.59) with

ux = 2x = vy and vx = 2y = −uy. (3.63)

However, this function comes hand-in-hand with two additional poles at z = 1 and

z = −1, which must be ghost-like in terms of the propagator. The only solution

then is to consider entire functions that contain no roots. One such function is

the exponential function, f(z) = ez, which, as we have already established, is

an entire function. Generalising further, to incorporate all wholly analytic and

rootless functions, we must consider an exponent (contains no roots) of an entire
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function (analytic across the entire complex plane), i.e. f(z) = eγ(z). Thus, in

(3.50), ā(�) must take the form

ā(�) = eγ(�), (3.64)

where γ is an entire function.

3.3.3 Ghost-free condition around Minkowski Space

Having resolved the modified form of the propagator for the IDG action (2.20),

it is now pertinent to derive the necessary form that the non-local functions a(�)

and c(�) must take so as to render the propagator ghost-free. We begin by taking

the trace of the linearised field equations (2.86)

κT =
1

2
(a(�)− 3c(�))R. (3.65)

As alluded to in the prior discussion on scalar-tensor theory, the trace equation

accounts for the scalar sector of the propagator, which can be seen by comparing

the above trace equation with the modified propagator (3.21). Furthermore, we

have just learned that a(�) − 3c(�) can contain a maximum of one pole. We

therefore construct the equality

T =
M2

P

2
(a(�)− 3c(�))R = (α�− m̄2)ā(�)R, (3.66)

which is analogous to (3.50). Here, m̄2 is a Brans-Dicke scalar, α is a constant

and ā(�) is an exponent of an entire function with unit dimension, containing no

zeros. Substituting the operator � → 0 reveals that the Brans-Dicke scalar m̄2

is none other than the Planck Mass, i.e.

m̄2 = M2
P . (3.67)
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As such, we have

(a(�)− 3c(�))R = 2(α�M−2
P − 1)ā(�)R (3.68)

Furthermore, expanding to first order allows us to express the constant α as

follows

α = 6f10 + 2f20 −
M2

P

M2
. (3.69)

This should prove useful as it contains within it the root of the Starobinsky model

as M → ∞, with f20 = 0. It should also be noted that taking α = 0 imposes

that the function c(�) contains within it no roots and so there are no additional

poles introduced into the propagator. The case of a(�) = c(�), given by (3.22),

is one such example whereby α vanishes.

Ghost-free form

Taking into account the value of the Brans-Dicke scalar, and reordering, allows

us to express the necessary ghost-free form of the non-local function c(�) as

c(�) =
a(�)

3

[
1 + 2(1− αM−2

P �)ã(�)
]
, (3.70)

where we have defined a new entire function ã(�) = ā(�)/a(�), which contains

no roots.

Ghost-free modified propagator

To display the necessary form of the ghost-free modified propagator, we substitute

(3.68) into (3.21), before decomposing into partial fractions.

Π(−k2) =
1

a(−k2)

[
P2

k2
− 1

2ã(−k2)

(
P0

2

k2
− P0

s

k2 +m2

)]
, (3.71)

where we have defined the spin-0 particle m2 ≡M2
P/α.
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Tachyon criteria

The spin-0 particle m must have real mass to ensure that the correction is non-

tachyonic. Subsequently, m2 must be positive so that the condition whereby

tachyons are prohibited from the gravitational theory is given by

α ≥ 0. (3.72)

R2-Gravity

Taking the limit M → ∞ effectively removes all non-locality from the gravita-

tional theory, stripping it back to fourth order gravity. Taking this limit on the

functions (2.82), when F2 = F3 = 0, reduces the theory to the Starobinsky model,

with L ∼ R + f10R
2. These functions are then given by

a(�) = 1, c(�) = 1− 4M−2
P f10� (3.73)

Recall, that each D’Alembertian contained within the non-local functions Fi is

modulated by the scale of non-locality M . Thus

lim
M→∞

Fi(�) = lim
M→∞

fi0
�n

M2n
→ fi0 . (3.74)

Substituting the values (3.73) into the general form of the propagator (3.21) (with

� = −k2 in momentum space on a flat background), and performing the same

method of decomposing into partial fractions, allows us to write the propagator

for R2-gravity, as was previously stated in (3.28),

ΠR2 = ΠGR +
1

2

P0
s

k2 +m2
, (3.75)

where m2 = M2
P/α. Here, it is simply the scalar sector of the propagator that

is modified and, we note also, in comparison to (3.71), a = ã → 1 at this limit.

Further to this, we remind the reader that the constant α contains within it the

root of the Starobinsky model. By taking the same limits as described bove,
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we find from equation (3.69), that α is given by α = 6f10
1. Thus, in order for

the Starobinsky model to avoid becoming tachyonic, from the criteria described

in (3.72), we require the coefficient attached to the R2 term in the action to be

positive, i.e.

f10 ≥ 0, (3.76)

where f10 = 0 returns the theory to GR.

1Here, we have omitted the ‘counting tool’ λ which serves no physical purpose other than
offering a simple means of returning the theory to GR at λ = 0
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Chapter 4

Singularity-free Theories of

Gravity

4.1 What is a Singularity?

One of Einstein’s great insights was to devise a gravitational theory that is de-

scribed by curvature alone. As discussed in the introduction, this insight stemmed

from the universality of the tensor transformation law, which allowed Einstein to

formulate a gravitational action made up of tensors, which would necessarily

preserve covariance, universally. As such the physical laws of any gravitational

theory made up of tensors will remain invariant under arbitrarily differentiable

coordinate transformations. This is the principle of General Covariance. Un-

fortunately, however, entailed within this principle is a notorious difficulty in

formulating a precise definition of a singularity. We ask the question then: What

is a Singularity? [23]

An intuitive answer to this question would be that a singularity is a ‘place’

where the curvature ‘blows up’ [24]. This response comes with a number of diffi-

culties, most notably, the idea of a singularity as a ‘place’. What separates GR

from other physical theories is that it is formulated independently of the man-

ifold or a specified metric structure of the spacetime. Without a manifold or

given metric, the very idea of a ‘place’ remains undefined. This is very different
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to, for instance, electrodynamics, where the manifold is clearly defined and solu-

tions exist, such as the Coulomb solution, which render the electromagnetic field

infinite. In this case, the electromagnetic field is undefined and characterises an

electromagnetic singularity.

In GR, as opposed to other physical theories, the goal is to solve for the struc-

ture of spacetime itself. For example, if we consider the Schwarzschild solution

of GR, which is well known to contain an essential singularity at the point r = 0.

It is at this point that the metric gives way to pathologies. However, without

a prescribed manifold, it is not possible to discuss the concept of ‘outside’ the

manifold.

A possible solution to this intransigence lies in considering the associated

geodesic congruences of the theory. If we consider an ingoing geodesic which ex-

tends into past infinity, then one would infer that the spacetime is non-singular.

This is known as geodesic completeness. Conversely, a spacetime that is defined

by converging geodesics would be said to be beset by spacetime pathologies and

indeed ‘holes’ in the fabric of spacetime, through which the geodesics can not

pass. This intuitive framework is appealing in its simplicity and forms the ba-

sis of the Hawking Penrose Singularity Theorems but comes with a number of

caveats. As a vector field may be timelike, spacelike or null, one would assume

that if a spacetime contains a ‘hole’ in its fabric in one of these cases, it would

be true for all cases. However, this is not the case as the various forms are man-

ifestly not equivalent and one can imagine the different possible permutations of

completeness and incompleteness of the three forms, see [23] and [24] for specific

examples of these potential contradictions.

Despite geodesic completeness falling short of a satisfyingly precise mathe-

matical definition of a singularity, the fact remains that a spacetime which is

null or timelike incomplete will contain some serious physical malady. In such a

spacetime, a freely falling particle, will at some finite time, simply cease to exist

and as such can be justifiably considered to be singular. As a result, throughout

this discussion, we will consider a theory containing causal geodesic congruences,

which focus to a point in a finite time to be singular, as it is this definition which

forms the basis for the Penrose-Hawking singularity theorems.
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4.2 Hawking-Penrose Singularity Theorem

We now state the Hawking-Penrose Singularity Theorem, [56],[59], applicable to

an open or flat Universe and concerned with null geodesic congruences.

Theorem 4.2.1 (Singularity Theorem 1). A spacetime {M, g} cannot be null-

geodesically complete in the past direction if

1. Rµνk
µkν ≥ 0 for all null tangent vectors kµ;

2. There is a non-compact Cauchy surface H in M;

3. There is a closed trapped surface T in M.

Notes

1. Here, Rµν is the Ricci tensor and kµ are null geodesic congruences or ‘rays.’

This inequality is known as the null convergence condition and describes

a spacetime where null rays focus or converge to a point in a finite ‘time’

(affine parameter), thus describing a singular spacetime, according to our

definition above. The full significance of this convergence condition will be

revealed during the subsequent discussion on the Raychaudhuri Equation,

Section 4.3.

2. A Cauchy surface is defined as a closed, achronal set Σ for which the full

domain of independence D(Σ) = M, where

D(Σ) = D+(Σ) ∪D−(Σ), (4.1)

and the superscripts + and − refer to the future and past domain, respec-

tively, [24]. More formally, these domains are defined as

D+/−(Σ) = {p ∈M | Every past/future inextendible causal curve (4.2)

through p intersects Σ}
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As Σ is achronal, we may consider such a surface to be an instant of time.

A spacetime that possesses a Cauchy Surface is called globally hyperbolic.

A globally hyperbolic spacetime is causally simple in that the entire future

or past history of the Universe can be predicted from well-defined initial

conditions [91] or, indeed, a well-defined ‘instant of time.’

3. A closed trapped surface is a topological space where the congruences of null

geodesics, orthogonal to the topological space, converge. This convergence

is typified by negative ingoing and outgoing expansion. In a geometrically-

flat spacetime or open Universe, the convergence condition, denoted as point

(1.) in Theorem 4.3.1, necessarily implies a closed trapped surface, point

(3.)[92],[56]. However, this is not necessarily the case for a closed Universe,

see Ellis [57]. We return to the notion of trapped surfaces in Section 4.3.5.

4.3 The Raychaudhuri Equation and General Rel-

ativity

Before we delve into the derivation of the Raychaudhuri Equation, it is instructive

to define some of the terminology involved. Firstly, we will often refer to congru-

ences of geodesics, sometimes abbreviated to simply ‘geodesics’. The tangents to

these congruences yield a vector field, which we refer to as ‘tangent vectors’ or in-

deed ‘rays’ when discussing null geodesic congruences. A congruence of geodesics

is simply a bundle or family of geodesics. More formally, this bundle resides in an

open subset of a manifold M, which we may consider to be our spacetime, such

that each point in this spacetime passes through precisely one geodesic within

this bundle. The tangents to such a congruence yield a causal vector field within

the spacetime. Causal means that these tangents can be timelike or null, by

which we denote the vector fields ξµ and kµ, respectively [24],[58].
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4.3.1 Normalization of Timelike and Null Geodesics

When analysing the defocusing conditions of a spacetime, we will largely restrict

ourselves to analysing the null vector fields kµ and their associated null geodesic

congruences. This is because null rays more readily converge than their time-

like counterparts and, as our intent is to describe the conditions under which a

singularity-free cosmology may flourish, it is more revealing to restrict our dis-

cussion to null geodesic congruences. We will return to this point in a more

formal manner later in this section. In the meantime, however, it is instructive

to contrast some of the differences in behaviour of null and timelike geodesics,

beginning with a discussion on normalization. In contrast to the timelike case,

which can be readily normalized to unit length, there is no natural way of nor-

malizing a tangent vector field such as kµ. In the timelike case, a tangent field

ξµ is defined in terms of proper time τ , like so

ξµ =
dxµ

dτ
, (4.3)

so that the line element ds2 = gµνdx
µdxν , restricted to a timelike curve ds2|timelike =

−dτ 2, gives the straightforward normalization:

gµνξ
µξν = −1. (4.4)

We can then construct a metric tµν which satisfies, what we shall call, the spatial

condition,

tµνξ
µ = 0. (4.5)

This is given by

tµν = gµν + ξµξν . (4.6)

Similarly, the line element ds2 = gµνdx
µdxν , restricted to a light-like or null curve,

is given by ds2|null = 0. Here, the null tangent field kµ is defined as

kµ =
dxµ

dλ
, (4.7)
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where λ is an affine parameter. Thus, the normalization analogous to the timelike

case (4.4) is given by

gµνk
µkν = 0. (4.8)

The outstanding task for the null tangent vectors kµ is to construct a metric pµν ,

which satisfies the spatial condition pµνk
µ = 0 along with the above normaliza-

tion. Naively, one would assume a choice of pµν = gµν + kµkν , would suffice, as

this choice worked so well in the timelike case. However, on quick inspection, we

find that this does not satisfy the spatial condition pµνk
µ = 0. For this choice of

pµν , we have

pµνk
µ = gµνk

µ + kµkµkν = kν + 0 6= 0. (4.9)

A popular resolution, [58], of this difficulty is to introduce an additional null

vector Nµ, such that NµNµ = 0 and Nµkµ = −1. We can then construct the

two-dimensional metric

pµν = gµν + kµNν + kνNµ, (4.10)

satisfying the necessary conditions pµνk
µ = pµνN

µ = 0, as well as kµkµ = 0. This

is by no means a unique choice of metric but it is sufficient in the subsequent

derivation of the Raychaudhuri Equation and does not result in any loss of gen-

erality. In practice, the precise form of the metric will be largely irrelevant for

our purposes, so long as one has in mind a two-dimensional metric that conforms

to the spatial condition and satisfies (4.8).

4.3.2 Derivation of Raychaudhuri Equation

Let us now give the derivation of what will be the key instrument in our analysis

of singularity-free cosmologies - the Raychaudhuri equation for null geodesic con-

gruences. Using the aforementioned vector field kµ and following closely to [24],

we define a tensor field

Bµν = ∇νkµ (4.11)
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which satisfies the spatial condition Bµνk
µ = Bµνk

ν = 0 , due to the fact that

two vector fields of the same coordinate basis will commute. We then attribute

to it the positive definite, two dimensional, spatial metric pµν such that pµνk
µ =

pµνk
ν = 0, as discussed previously. We now define the expansion, shear [93] and

twist, respectively, as

θ ≡ pµνBµν = ∇µk
µ, σµν ≡ B(µν) −

1

2
θpµν , ωµν ≡ B[µν] (4.12)

To develop an intuitive understanding of these geometric terms, it is perhaps

best to first consider congruences of timelike geodesics. If we consider a set of

test particles, making up a sphere and centred on a geodesic, the expansion is

the change in volume of the sphere; the shear is the deformation of the geometry

of the sphere into an ellipsoid; and the twist is simply a rotation of the geometry

[94].

In order to illustrate the analogous evolution of null rays, we must first intro-

duce the notion of screen space. An observer’s screen space is a two dimensional

space orthogonal to kµ. Images are carried by the null rays and are displayed

upon the screen space. The shape and size of these images, which are independent

of the observer, are what concerns us in defining the kinematic quantities of the

expansion, shear and rotation. As such, the null expansion measures the change

in area of the image; the shear distorts the image; and the twist rotates the image.

These quantities make up the kinematic flow, generated by the tangent vector kµ

[54],[58].

Returning to mathematical identities for these geometric quantities (4.12), we

may now decompose Bµν to the following

Bµν =
1

2
θpµν + σµν + ωµν (4.13)

Next, consider the term kλ∇λBµν , which from (4.11), becomes

kλ∇λBµν = kλ∇λ∇νkµ

= kλ[∇λ,∇ν ]kµ + kλ∇ν∇λkµ. (4.14)
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Recall that the commutator of two covariant derivatives acting upon a tensor can

be expressed in terms of the Riemann tensor, like so

[∇ρ,∇σ]Xµ1...µk
ν1...νl = Rµ1

λρσX
λµ2...µk

ν1...νl +Rµ2
λρσX

µ1λµ3...µk
ν1...νl + ...

−Rλ
ν1ρσX

µ1...µk
λ...νl −Rλ

ν2ρσX
µ1...µk

ν1λν3...νl − ... , (4.15)

so that the term kλ∇λBµν develops as follows

kλ∇λBµν = −kλRκ
µλνkκ + kλ∇ν∇λkµ

= −kλRκ
µλνkκ +∇ν(k

λ∇λkµ)−∇νk
λ∇λkµ

= −kλRκ
µλνkκ +∇ν(k

λBµλ)−Bλ
νBµλ. (4.16)

The middle term then vanishes as the shear and rotation tensors are purely spatial

as is the metric pµν , so that from (4.13), Bµνk
µ = 0. Thus,

kλ∇λBµν = −kλRκ
µλνkκ −Bλ

νBµλ. (4.17)

We then take the trace to find

kλ∇λθ = −Rκ
λkκk

λ −BλµBµλ (4.18)

which upon reference to (4.13), leads us to the Raychaudhuri Equation for null

geodesic congruences, which we express as follows

dθ

dλ
+

1

2
θ2 = −σµνσµν + ωµνω

µν −Rµνk
µkν . (4.19)

Here, we have noted that kλ∇λθ = dθ
dλ

, with affine length λ. Following the same

approach, one may also derive the Raychaudhuri equation for timelike vectors,

which is given by

dθ

dτ
+

1

3
θ2 = −σ̄µν σ̄µν + ω̄µνω̄

µν −Rµνξ
µξν . (4.20)

74



4.3 The Raychaudhuri Equation and General Relativity

One can immediately see that these two identities take a broadly similar form

with some key differences. The factor of 3 in the denominator of the timelike

equation arises from the metric (4.6), which is 3-dimensional as opposed to the

2-dimensional null metric (4.10). This difference in metric also accounts for the

‘bar’ placed on the shear and twist tensors in the the timelike case. Finally, the

Ricci tensor is contracted with the null (timelike) vectors fields kµ (ξµ), such that

kµkµ = 0 (ξµξµ = −1) in the null (timelike) formulation.

4.3.3 Convergence Conditions

By making a number of straightforward observations about the geometric terms in

the Raychaudhuri equation (4.19), we may reduce this identity to an inequality,

which when satisfied necessitates that the associated null geodesics cannot be

maximally extended in the past direction. This is known as the null convergence

condition and depicts congruences that converge to meet a singularity in a finite

time. As previously discussed, the shear tensor is purely spatial and therefore

contributes positively to the RHS of (4.19), whereas the twist tensor vanishes if

we take the congruence of null rays to be orthogonal to a hypersurface. Applying

these constraints to the RE gives us the null convergence condition (null CC):

dθ

dλ
+

1

2
θ2 5 −Rµνk

µkν . (4.21)

General Relativity

The behaviour of null rays in GR can be discerned by referring to the perfect fluid

equation in Appendix B. The null energy condition (NEC) requires [58],[63],[59]

Rµνk
µkν = κTµνk

µkν = κ(ρ+ p)(k0)2 ≥ 0. (4.22)

Thus, a spacetime will not be geodesically past-complete and will be plagued by

a singularity if either of the following conditions are met

dθ

dλ
+

1

2
θ2 5 0, Rµνk

µkν ≥ 0. (4.23)
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Thus, General Relativity will contain a singularity as long as the associated energy

condition is retained. Another question remains, however, and that concerns

the geometric terms we managed to ‘edit’ out of proceedings. Is it possible for

the shear and the twist to distort the geometry in such a way that geodesic

congruences may be made past-complete? We discuss this below.

4.3.4 Rotation and Convergence

We may express the null convergence condition of (4.19), more generally, without

making any refinements to the geometric tensors. In this case, null geodesic

congruences will converge in accordance with [58]

Rµνk
µkν + σ2 − ω2 ≥ 0 (4.24)

where σ2 ≡ σµνσ
µν and ω2 ≡ ωµνω

µν [58]. Thus, the shear induces convergence,

whereas the rotation inhibits it. Upon studying the inequality given in (4.24),

one might think, naively, that as the rotation inhibits convergence, this may be

enough to render the null rays past-complete, without the aid of gravity.

Shear-free Expansion of Dust

To understand the role of rotation more clearly, let us consider the simplest case

of a rotating and expanding Universe, which is given by the shear-free expansion

of dust. In order to do this, let us first redefine the expansion as θ = 2 Ḟ
F

, where

Ḟ = dF
dλ

, and substitute this into the RE (4.19) to find [95]

2
F̈

F
+ σ2 − ω2 +Rµνk

µkν = 0. (4.25)

In the case of shear-free expansion of dust, we have σ = 0, θ > 0, ω = Ω/F 2 and

Ω̇ = 0 [54], whereas from the Einstein field equations with vanishing pressure, we

have Rµνk
µkν = κρ(k0)2, where k0 is taken to be constant along kµ. The above
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equation can then be rewritten as

2F̈ Ḟ − Ḟ

F 3
Ω2 + ḞFκρ(k0)2 = 0. (4.26)

Here, we have multiplied by a factor of Ḟ on both sides so that we may integrate

in a straightforward manner. Integrating, we find

Ḟ 2 +
Ω2

2F 2
+

1

2
κρ(k0)2F 2 = constant. (4.27)

This equation suggests that there exists a solution to Einstein’s equations where

a period of intense rotation at early times will result in sufficient centrifugal force

so as to cause a bounce in the stead of the initial singularity of the Universe [54].

However, it was shown by Ellis [96] that no such solution can exist, via the Dust

Shear-Free Theorem:

Theorem 4.3.1 (Dust Shear-Free Theorem). If a dust solution of the Einstein

Field Equations is shear-free in a domain U , it cannot both expand and rotate in

U :

{u̇µ = 0, σµν = 0} =⇒ ωµνθ = 0. (4.28)

Thus, if a dust solution is shear-free and expanding, the rotation must vanish, so

that we may not realise the period of intense rotation outlined above [97],[98].

Gödel Universe

Another exact solution of Einstein’s Field Equations is the Gödel solution [99],

which can be described by the line element [56]

ds2 = −dt2 + dx2 − 1

2
e2
√

2ωxdy2 + dz2 − 2e
√

2ωxdtdy, (4.29)

where ω is the magnitude of the vorticity. Gödel’s solution has vanishing ex-

pansion and shear but is characterised by a non-zero rotation and rotational
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symmetry around every point. In this case, the Raychaudhuri equation in terms

of timelike tangent vectors (4.20), can be expressed as

Rµνξ
µξν − 2ω2 = 0, (4.30)

where in the timelike case Rµνξ
µξν = κ

2
(ρ + 3p) − Λ = κρ. Comparing these

identities in the absence of pressure reveals κ
2
ρ = −Λ, while substitution into

(4.30) gives ω2 = −Λ. We may then write the analogous Friedmann equation for

the Gödel Universe as

κρ+ Λ− ω2 = 0. (4.31)

Such a Universe is indeed geodesically complete but leads to a breakdown in

causality due to the prevalence of closed timelike curves. Whereas proper time

can be measured consistently along a given world line, there exists no concept of

cosmic time. An observer travelling along such a closed curve will travel forward

in time as measured locally by the observer but, globally, may return to an event

in the past [54],[100],[101]. While undoubtedly revealing with regards to the role

of rotation in gravitational theories and geodesic-completeness, as well as offering

a tantalising glimpse at the possibility of time travel, Gödel universe’s violation

of causality means that we cannot consider it to be a viable non-singular theory

in the present text.

4.3.5 Cosmological Expansion

In this section, we will build upon the mathematical definition of the expansion

given by (4.12), by first giving an intuitive picture of the general concept, before

moving on to the details and consequences in a cosmological setting. Given a

sphere of test particles, the expansion is defined by the change in volume of this

sphere and can be subdivided into ingoing and outgoing expansions, which are

delineated by the respective ingoing and outgoing (timelike) tangent vectors. The

type of surface formed by these ingoing and outgoing tangent vectors can have

profound consequences for the nature of the spacetime, as we shall see below.
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Normal, Trapped and Antitrapped Surfaces

In order to gain a better understanding of ingoing and outgoing expansions, let

us, by way of example, consider a two dimensional spatial sphere S on a curved

space [94]. Let A be the area of S at cosmic time t = 0. After a small amount

of time, t = ε, has passed, ingoing geodesics will describe a surface S1 with area

A1, whereas outgoing rays will form a surface S2 with area A2. The respective

expansion rates will then be given by

θIN =
dA1

dε
, θOUT =

dA2

dε
. (4.32)

Conventionally, one would expect the outgoing geodesics to describe a growing

surface and the ingoing geodesics to describe a shrinking one. This is the be-

haviour in an asymptotically-flat spacetime and as such the surfaces formed are

known as normal surfaces. An example of such a surface is depicted in Fig. 4.1.

[94]

S1

S2

S

Figure 4.1: From surface S, ingoing geodesics produce a smaller surface S1 with
area A1 after a time t = ε, while outgoing geodesics form a larger surface S2

with area A2. This is the behaviour of ingoing and outgoing expansions in a flat
spacetime and the surfaces S1 and S2 are known as normal surfaces.

However, at points close to a singularity, these expansions can behave very

differently. For example, inside the event horizon of a Schwarzschild black hole,

with r < 2GM , both sets of geodesics would form a surface of smaller area, after

a given time has passed. The resulting surfaces are known as trapped surfaces, the

existence of which strongly suggests and, in some case, necessitates the formation

of a singularity. In broad strokes, we may say that singularities are an inevitable

consequence of trapped surfaces, in a geometrically-flat or open Universe, so long
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as positive energy density is maintained [94]. However, this is not necessarily the

case for a closed Universe, see [57].

There is another type of surface called an antitrapped surface, which is formed

when the expansion is rapid enough that both in- and outgoing tangent vectors

form a surface of a larger area after a given time has passed. A minimally anti-

trapped surface (MAS) has vanishing outgoing expansion and any surface greater

in radius to the MAS will necessarily be antitrapped. Furthermore, an apparent

horizon is found on the inner boundary of the MAS, like so

xmas = H−1, (4.33)

where xmas is the physical size of the minimally antitrapped surface. We will

return to this relation to the the apparent horizon shortly, but conclude here

with a summary of the surfaces we have introduced:

Normal Surface: θIN < 0 and θOUT > 0 (4.34)

Trapped Surface: θIN < 0 and θOUT < 0 (4.35)

Antitrapped Surface: θIN > 0 and θOUT > 0. (4.36)

Further note that surfaces termed marginally trapped, are those with negative ex-

pansions as opposed to negative definite, i.e. marginally trapped surfaces include

those with vanishing expansion and are defined by simply replacing the < sign

with ≤, above. Similarly for marginally antitrapped surfaces, > is replaced with

≥.

Cosmological Expansion

In order to understand more clearly the nature of these surfaces, it is pertinent

to derive the exact form of the ingoing and outgoing expansions in a cosmological

setting. To this end, we invoke the spatially flat, homogenous and isotropic

Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)
(
dr2 + r2dΩ2

)
. (4.37)
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Recall from (4.12), that we may write the expansion θ as follows

θ = ∂µk
µ + Γµµσk

σ. (4.38)

We also note that the two geodesic equations for the time and spatial coordinate

read
d2t

dλ2
+ aȧδij

dxi

dλ

dxj

dλ
= 0,

d2xi

dλ2
+
ȧ

a

dt

dλ

dxi

dλ
= 0, (4.39)

respectively, where λ is an affine parameter. Without loss of generality, we may

consider paths along the x-direction only 1, with xµ(λ) = {t(λ), x(λ), 0, 0}. For

ds2|null = 0, we then have

dt2 = a2(t)dx2, =⇒ dx

dλ
=

1

a

dt

dλ
. (4.40)

Substituting this latter identity into the geodesic equation for the time coordinate

gives
d2t

dλ2
+
ȧ

a

(
dt

dλ

)2

= 0 (4.41)

One can easily verify that dλ = a
N
dt with constant N is a solution of this equation.

Setting N to unity we find (
dt

dλ
,
dxi

dλ

)
=

(
1

a
,

1

a2

)
. (4.42)

Due to the isotropic nature of the FRW metric (4.37), the spatial components

are equal and can therefore be truncated into the index i = {1, 2, 3} 2. We may

now express kµ, the tangential vector field to the congruence of null geodesics, as

follows

kµ =

(
1

a
,± 1

a2

)
= (k0, ki), (4.43)

1where, at this time, we are considering the isotropic form of (4.37) with dr2 + r2dΩ2 =
dx2 + dy2 + dz2

2Greek indices indicate spatial and temporal components, i.e. µ, ν, λ, . . . = {0, 1, 2, 3},
whereas Latin letters indicate the spatial components i, j, k, . . . = {1, 2, 3}
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where the sign attached to ki is negative for ingoing rays and positive for outgoing

rays. The final step is to compute the expansion, itself. To this end, we note that

the expansion can be rewritten in the following form

θ ≡ 1
√
g
∂µ(
√
gkµ) (4.44)

For the FRW metric given in (4.37), we have g = | det(gµν)| = a6r4 sin2 ψ, al-

lowing us to write the ingoing and outgoing expansion for the given cosmological

spacetime

θIN =
2

a(t)

(
ȧ

a
− 1

ra

)
, θOUT =

2

a(t)

(
ȧ

a
+

1

ra

)
. (4.45)

[102],[63].

Cosmological Apparent Horizons and Conformal Diagram

The first thing to note from these ingoing and outgoing expansions is that the

term x ≡ ra denotes the physical size of the surface described by the expansion

in a geometrically-flat spacetime. This can be seen by the general formula for

comoving distance of a general FRW metric, which is given by [103]

x ≡ a

∫
dr(1− kr2)−

1
2 = ar, when k = 0. (4.46)

As the inner boundary of an antitrapped surface is the region where the surface

becomes marginal, by definition, this region will have vanishing expansion. Thus,

we may justify the assertion (4.33) that the minimally antitrapped surface is

bounded by an apparent horizon on its inner margin, upon reference to the ingoing

expansion given in (4.45). By setting (4.45) to zero, we find that for a comoving

distance rmas, we have

xmas = H−1
FRW , (4.47)

where HFRW is the cosmological apparent horizon of the FRW background [103],

[63],[94],[104].
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Accelerated Expansion of the Universe

Inflation theory suggests a period of rapid expansion soon after the Big Bang is

required for the formation of the large scale structures we see today. Whereas,

expansion slows after this inflationary period, observational data has found that

the Universe is still undergoing accelerated expansion at present [105]. In terms

of the FRW metric (4.37), accelerated expansion of the universe is defined by

ä > 0, equivalently Ḣ +H2 > 0. (4.48)

On comparing this with the curvature scalar in FRW, R = 6
(
Ḣ + 2H2 + k

a2

)
, we

find that in a period of accelerated expansion, the curvature scalar R is always

positive, at least in a geometrically flat or open Universe. Fig. 4.2 illustrates

such inflation within a Big Bang cosmology.

[63],[103]

J +

i0

J +

Big Bang

O P Q

RS

Figure 4.2: A conformal diagram of a Big Bang cosmology with local inflation.
Shaded regions are antitrapped and white regions are normal surfaces. A patch
begins to inflate at cosmic time t from O to Q with inflationary size xinf, where the
line OP borders the apparent inflationary horizon. The arrow depicts an ingoing
null ray entering an antitrapped region from a normal region, which is prohibited
under the convergence condition (4.23). The inflationary patch OQ may indeed be
extended into the antitrapped region so that no such violation occurs.
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Null vs. Timelike Geodesic Congruences

We stated earlier that null geodesic congruences more readily converge than their

timelike counterparts and therefore, an analysis of null rays is more illuminating

in terms of defocusing and past-completeness. In this section, we will show that

if a geometrically-flat spacetime is singularity-free in the context of null rays, its

timelike counterpart will necessarily be singularity-free. For our purposes here,

we begin with the isotropic form of the FRW metric

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (4.49)

while following closely to [106]. We then compute the null and timelike conver-

gence conditions, which are

aä ≤ ȧ2, aä ≤ ȧ2

1 + 3a2

2γ20v
2
0u

2
0

(4.50)

respectively. Here, the timelike vector field is taken to be of the form ξµ = γ(1, νi),

where γ ≡ 1√
1−a2v2 ; and the subscript 0 refers to the quantities being evaluated

at t = t0. Further details can be found in [106]. For the present discussion, the

precise details of these quantities are not strictly relevant. We simply note that

the respective convergence conditions take the form

aä ≤ ȧ2, aä ≤ ȧ2

1 + A2
(4.51)

with A2 = 3a2

2γ20v
2
0u

2
0
, being a positive parameter. The limiting case of the null

convergence condition can be found by framing the left inequality as an identity

and solving the differential equation. We find this to take the form

a(t) = c0e
c1t, (4.52)
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for some integration constants c0, c1. Pleasingly, this conforms to the scale factor

in de Sitter space,

a(t) = a0e
H̄t, (4.53)

where H̄ is the Hubble constant [106]. Comparing this with the timelike case and

we find that of the two convergence conditions, the null CC is less restrictive.

In other words, timelike geodesics are more easily made past-complete by this

condition and so, in a study of singularity-free cosmologies, it makes sense to study

null rays over their timelike counterparts. To summarise, in a geometrically-flat

cosmology, if a spacetime is non-singular for null rays, it will also be devoid of

singularities for timelike geodesics.

4.4 Defocusing Conditions for Infinite Deriva-

tive Gravity around Minkowski Space

In this section, we extend our study of geodesic congruences away from gen-

eral relativity into the novel approach of infinite derivative gravity (IDG), the

groundwork of which was laid in Chapter 2, where the non-linear and linearised

equations of motion were derived and in Chapter 3, where the theory was ren-

dered free of ghosts and tachyons. It is now time to return to the central question

of this thesis, first raised in the Introduction, by asking the question:

Can null rays defocus in an infinite derivative theory of gravity, with-

out introducing ghosts, tachyons or exotic matter?

In essence, we wish to show how infinite derivative extensions of gravity, in

contrast to GR and finite models, have the potential to describe a stable and

singularity-free theory of gravity.

Recall that in Section 2.3, we derived the linearised field equations for the in-
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finite derivative action of gravity:

S =
1

2

∫
d4x
√
−g
(
M2

PR +RF1(�)R +RµνF2(�)Rµν + CµνλσF3(�)Cµνλσ

)
,

(4.54)

where, within the form factors Fi(�) =
∑∞

n=0(�/M2)n, each D’Alembertian op-

erator is modulated by the scale of non-locality M . The resulting field equations

are given by

κTµν = a(�)Rµν −
1

2
ηµνc(�)R− f(�)

2
∂µ∂νR, (4.55)

where the infinite derivative functions a(�), c(�), f(�) are made up of the form

factors Fi(�), defined in (2.82), and conform to the constraint

f(�)� = a(�)− c(�). (4.56)

Furthermore, through our lengthy discussion on the Raychaudhuri equation in

General Relativity in Section 4.3, we learned of its powerful role in conveying

the focusing behaviour of geodesic congruences, where the sole contribution of

gravity stems from the Rµνk
µkν term, with kµ representing a null tangent vector

or ray. We may then find the contribution of gravity to the RE for the infinite

derivative theory of gravity, described by the action (4.54), by contracting the

linearised field equations (4.55) with the tangent vectors kµ. Thus, we obtain the

IDG convergence condition

Rµνk
µkν = a−1(�)

(
κTµνk

µkν +
1

2
kµkνf(�)∂µ∂νR

)
≥ 0. (4.57)

If a theory satisfies this condition, the associated null rays cannot start to diverge

until they reach the origin. In other words, these null rays converge towards a

singularity in a finite time, as is the behaviour in GR. However, in contrast to

GR, where Rµνk
µkν must remain positive so as not to violate the null energy

condition (B), we have modified the stress-energy tensor in such a way that it

may indeed be possible to reverse the sign of Rµνk
µkν whilst retaining the NEC.

We call the inequality Rµνk
µkν < 0 the defocusing condition, as it is the condition
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whereby null rays may defocus, suggestive of a singularity-free theory of gravity.

Homogenous Solution.

The linearised field equations (4.55) describe the curvature of a spacetime that has

been perturbed away from Minkowski space. We begin our analysis by discussing

perturbations that are entirely homogenous, with all curvature dependent only on

the cosmic time t. One could think of the time-dependent, perturbed metric hij

which makes up the curvature, as being closely related to the cosmological scale

factor of FRW, which is useful in this context, as we are considering cosmological

singularities. In the homogenous case, the D’Alembertian simply becomes � =

−∂2
t , so that the defocusing condition Rµνk

µkν < 0 reads [18]

Rµνk
µkν = a−1(�)

(
κTµνk

µkν − 1

2
kµkνf(�)�R

)
< 0, (4.58)

where in order to preserve the NEC, we have Tµνk
µkν ≥ 0. We may then say

that the minimum requirement for such a theory to display the desired defocusing

behaviour is given by

f(�)�
a(�)

R =
a(�)− c(�)

a(�)
R > 0, (4.59)

with Tµνk
µkν set to zero. Immediately, we are confronted with some important

observations, which we outline below.

Observations

a = c : If we recall the form of the modified graviton propagator from Section 3.1

Π(−k2) =
P2

k2a(−k2)
+

P0
s

k2 (a(−k2)− 3c(−k2))
, (4.60)

we find that the condition a(�) = c(�) necessitates that no additional pole,

other than the massless graviton, is introduced. In this case, the modified

propagator is simply the physical graviton propagator modulated by an
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overall factor of ∼ 1/a(�), where the function a(�) is an exponent of an

entire function, containing no roots:

Π(−k2) =
1

a(−k2)

(
P2

k2
− P0

s

2k2

)
. (4.61)

The curvature R is positive as a result of accelerated expansion of the Uni-

verse, Section 4.3, so that from (4.58), we see that the defocusing condition

can only be achieved if a(�) is negative when acting on the curvature. As

should be apparent from the above form of the propagator, such a nega-

tive function would reverse the sign of the spin-2 component, leading to

a negative residue and subsequently a ghost. This ghost is known as the

Weyl ghost and was discussed in Section 3.2. As a result, we conclude that

an additional scalar degree of freedom is required in order for null rays to

display the desired defocusing behaviour.

a 6= c : Having established the need for a departure from the pure massless mode

of the graviton propagator in (4.60), we move into the more general case

of a(�) 6= c(�). This condition tells us that in order for the null rays to

defocus - a minimum requirement of a singularity-free theory of gravity -

one requires an additional root in the spin-0 component of the graviton

propagator. As such, one additional scalar degree of freedom must propa-

gate in the spacetime besides the massless graviton, if we wish to satisfy the

defocusing condition. As a(�) does not introduce a new pole, the spin-2

component of the graviton propagator remains massless.

We have already demonstrated a significant departure from general relativity, in

that IDG corrections have allowed for the possibility of singularity avoidance, via

the defocusing condition (4.61), without violating the null energy condition.

Having established the need for an additional pole in the propagator, we

must now take steps to avoid the introduction of ghosts or tachyons. In Section

3.3.3, we derived the ghost-free condition around a Minkowski background. This

88



4.4 Defocusing Conditions for Infinite Derivative Gravity around Minkowski
Space

condition took the form

c(�) =
a(�)

3

[
1 + 2(1− αM−2

P �)ã(�)
]
, (4.62)

where the constant α = 6f10 + 2f20 −M2
P/M

2 and ã(�) is an exponent of an

entire function, containing no roots. Substitution into (4.60) reveals the ghost-

free modified propagator for an asymptotically-flat spacetime:

Π(−k2) =
1

a(−k2)

[
P2

k2
− 1

2ã(−k2)

(
P0

2

k2
− P0

s

k2 +m2

)]
, (4.63)

where we have defined

m2 = M2
P/α. (4.64)

m2 must be positive to ensure that the mass is non-tachyonic and α positive

definite in order to retain the essential new pole, i.e. the constant α = 6f10+2f20−
M2

P/M
2 satisfies α > 0. Armed with this, we are now in a position to describe

the defocusing condition which precludes the existence of ghosts. Substitution of

(4.62) into (4.59) leads to the central result

(1−�/m2)ã(�)R < R. (4.65)

4.4.1 Comparison with Starobinsky Model

Taking the limit M →∞, with F2 = F3 = 0, reduces the action (2.20) to that of

Starobinsky’s model of inflation [34]. Indeed, a curious question to ask is, could

Starobinsky’s action avoid the cosmological singularity? At the limit M → ∞,

the propagator (4.60) can be expressed as

ΠR2 = ΠGR +
1

2

P0
s

k2 +m2
, (4.66)

where m is given by (4.64), with α = 6f10 ≥ 0, and m2 > 0, to avoid tachy-

onic mass. However, the fundamental difference can be seen by comparing the

propagator for R2-gravity with the IDG propagator, (4.63). In the local limit,
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a(�) = ã(�) → 1. Furthermore, as we are making comparisons with the propa-

gator in momentum space, the D’Alembertian takes the form � → −k2. In this

case, the defocusing inequality (4.58) can only be satisfied for

m−2R < 0. (4.67)

In this scenario, to avoid focusing we require m2 < 0, rendering the theory tachy-

onic. Alternatively, negative curvature would contradict the requirement of ac-

celerated expansion of the Universe, see (4.48), which is vital to realise primordial

inflation, Section 3.2. As such, the Starobinsky model cannot pair inflation with

resolving the Big Bang Singularity.

4.5 Bouncing Solution

Up to this point, we have not spoken about what replaces the Big Bang singularity

in a non-singular spacetime. This is because, as opposed to [19],[107],[108],[16],[85],

we have made no assumptions on the nature of the cosmological scale factor,

which is closely related to the perturbed metric tensor hµν . The term scale factor

is most often associated with the function a(t) in an FRW metric (4.37). However,

in an homogeneous and isotropic spacetime such as the one we are considering

around Minkowski space, we note that we are very closely aligned to the FRW

metric, making cosmological predictions relevant. In this way, the metric can be

considered to be of the form

gµν = ηµν + hµν = {−1, a2(t), a2(t), a2(t)}. (4.68)

Bouncing cosmologies replace the initial big bang singularity with that of a

bounce, so that incoming geodesic congruences can be made past complete -

stretching to past infinity, leading to an extension of the conformal diagram Fig.

4.2, which is illustrated in Fig. 4.3. Although, we do not suppose a priori that the

initial singularity is replaced by a bounce, we would indeed expect cosmologies

with a bouncing scale factor to satisfy the defocusing condition (4.65).
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[19]

t

r

J +

J -

i0

J +

J -

Bounce

Figure 4.3: A conformal diagram depicting a bouncing cosmology, seen as an
extension of Fig. (4.2) into past infinity. Shaded regions are antitrapped surfaces,
bordered by a cosmological apparent horizon on their inner margins and white
regions are normal surfaces.

We illustrate this by way of example.

4.5.1 Integral Form

It may now be illuminating to test our defocusing condition (4.65). We proceed,

as in the Starobinsky case, by taking our analysis into momentum space and

testing against a well-known bouncing solution, that is, a cosmology defined by a

bouncing scale factor, which is necessarily an even function. However, due to the

infinite derivative nature of the function ã(�), this comes with an added degree

of complexity. One possibility in analysing the defocusing condition (4.65) lies in

recasting the defocusing condition into its integral form [109].
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Integral Form

As discussed in Chapter 3, we must choose ã(�) to be an exponent of an entire

function, the simplest case being 1

ã(�) = e�/M
2

, (4.69)

where, again, M is the scale of non-locality. Thus, we wish to compute e�/M
2
R(t),

where R(t) is the curvature scalar, solely dependent on t. To this end, we refor-

mulate this expression into its integral form by first defining the Fourier transform

and its inverse like so

R̂(k) ≡ 1√
2π

∫ ∞
−∞

eiktR̃(t)dt, R(t) ≡ 1√
2π

∫ ∞
−∞

e−iktR̂(k)dk. (4.70)

We may then write

ã(�)R(t) =
1√
2π

∫ ∞
−∞

exp(−k2/M2) exp(−ikt)R̂(k) dk. (4.71)

By using the properties of the Fourier transform and defining x ≡ k/M , we may

express this as follows

ã(�)R(t) =
M

2π

∫ ∫ ∞
−∞

exp
[
−x2 + ix (M(τ − t))

]
R̂(τ) dx dτ. (4.72)

Now, in order to compute in terms of the Gaussian integral
∫∞
−∞ exp (−a(x+ b)2) dx =√

π
a
, we rewrite ã(�)R(t) into the following form

ã(�)R(t) =
M

2π

∫ ∫ ∞
−∞

exp

[
−
(
x− i

2
(M(τ − t))

)2

− 1

4
(M(τ − t))2

]
R̂(τ) dx dτ.

(4.73)

1We note briefly the importance of the sign in the exponent of ã(�). In Appendix C,[66],[16],
it is shown that for the correct Newtonian potential to be observed, the non-local function a(�)
must be of the form a(�) = e−γ(�), where γ(�) is an entire function. As ã(�) is defined as
ã(�) ∝ 1/a(�), and both are defined as exponents of entire functions, it is reasonable to expect
a difference of a minus sign in the exponent.
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We then compute the Gaussian integral to find

ã(�)R(t) =
M

2
√
π

∫ ∞
−∞

e−
1
4
M2(τ−t)2R̂(τ)dτ. (4.74)

Similarly,

−�/m2ã(�)R(t) =
M3

8
√
πm2

∫ ∞
−∞

e−
1
4
M2(t−τ)2

(
2−M2(t− τ)2

)
R̂(τ)dτ. (4.75)

The defocusing condition (4.65) can then be written as

M

2
√
π

[∫ ∞
−∞

e−
1
4
M2(τ−t)2

(
1 +

M2

2m2
− M4

4m2
(t− τ)2

)
R̂(τ)dτ < R(t) (4.76)

Example: a(t) = cosh σ
2
t

We now turn to a particular example of a bouncing solution. In this case, we

assume a scale factor of a(t) = cosh σ
2
t, where σ is a parameter of mass dimension.

Solutions of this type have been studied extensively in [107],[108],[15] and found

to be a solution of the field equations (2.75), via an Ansatz-based approach. In

terms of the perturbed, t-dependent metric hµν , this scale factor can be written

as

hµν =

{
0, cosh2(

σt

2
)− 1, cosh2(

σt

2
)− 1, cosh2(

σt

2
)− 1

}
. (4.77)

Then, from the definition of curvature around Minkowski, (2.79), we find the

curvature to be

R(t) =
3

2
σ2 coshσt. (4.78)

We then substitute this form of the curvature into the defocusing condition (4.76)

and compute the integral to find that, for any cosmic time t, defocusing may be

realised according to
σ2

m2
> (1− e−

σ2

M2 ). (4.79)
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This is satisfied for all real σ such that σ 6= 0, so that we have confirmed that a

known bouncing scale factor does indeed display the desired ghost-free defocusing

behaviour, according to the constraint (4.65).

4.6 A simpler action of gravity.

From the defocusing condition (4.58), we can deduce the simplest infinite deriva-

tive action that can describe a singularity-free theory of gravity. The central

components for defocusing are the functions a(�) and c(�), which, in order to

achieve freedom from ghosts, are exponents of entire functions with zero roots

and one root, respectively. These functions are in turn made up of the infinite

derivative form factors Fi(�) with i = {1, 2, 3}, which make up the gravitational

action (2.20), as given by (2.82). Consequently, upon inspection of (2.82), it ap-

pears that we may be able to ‘switch off’ one or two of the form factors without

changing the nature of the functions a(�) or c(�).

Non-linear Regime

For example, by setting F2 = 0, whilst retaining the infinite derivative form fac-

tors F1 and F3 and noting that in a conformally-flat background, such as FRW,

(A)dS or Minkowski, the Weyl tensor vanishes on the background, the action

(2.20) reduces to the following

SNL =
1

2

∫
d4x
√
−g
[
M2

PR +RF1(�)R
]
. (4.80)

This reduced action would clearly prove useful in a non-linear cosmological anal-

ysis, where the contribution of the Weyl tensor would be precisely zero, even with

a non-zero form factor F3, but it may also prove to be of interest in the linearised

regime.

Linearised Regime

On inspection of the infinite derivative functions (2.82) which make up the field

equations in the linearised regime, it should be clear that it is possible to ‘switch
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off’ any one of the form factors Fi, whilst still retaining the infinite derivative na-

ture of the functions a, c, f and thus, not adversely affecting the theory. We may

extend this further to switching off two of the form factors Fi. Straightforward

examples, include: setting F1 = F3 = 0 with

a(�) = 1 +M−2
P F2(�)�

a(�)− 3c(�) = −2 + 4M−2
P F2(�)� (4.81)

and F1 = F2 = 0:

a(�) = 1 + 2M−2
P F3(�)�

a(�)− 3c(�) = −2 + 12M−2
P F1(�)�, (4.82)

which retain the infinite derivative modification of both the scalar and tensorial

sectors of the propagator. Slightly less clear, however, is the proposition of setting

F2 = F3 = 0. This results in a correction of the scalar sector of the propagator,

while leaving the spin-2 sector of the propagator unmodified. In this instance the

relevant sectors of the propagator can be obtained from (2.82) and are given by

a(�) = 1

a(�)− 3c(�) = −2 + 12M−2
P F1(�)�, (4.83)

One can easily check, from (4.65), that this is indeed sufficient to realise the

desired ghost-free defocusing behaviour. It appears then, that the modification

of the spin-2 component of the propagator - which is rootless and positive so as

to avoid the Weyl ghost - does not play a leading role in singularity avoidance.

Furthermore, the simplicity of this case allows us to more easily convey defocusing

conditions in more complicated scenarios, such as around de Sitter space, which

is our next focus.
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4.7 Defocusing Conditions around de Sitter Space

Here, we extend our discussion to include ghost-free, defocusing conditions around

the de Sitter spacetime, with the reduced action

S =
1

2

∫
d4x
√
−g
(
M2

PR− 2Λ +RF(�)R

)
. (4.84)

As we have seen from the previous section on a simpler action of gravity, this

is adequate for our aims of describing a ghost- and singularity-free theory. This

reduced form is equivalent to setting F2 = F3 = 0 in the general action (2.20)

and dropping the remaining subscript from the function F1 ≡ F, for convenience.

From here, we can deduce the expected behaviour of the propagator around

de Sitter space by inspecting the modified propagator around Minkowski (4.60).

Upon reference to (2.82), we find that, by imposing F2 = F3 = 0, the spin-2 or

tensorial sector of the propagator is no longer modified and all subsequent correc-

tions take place in the scalar sector. This is as expected due to the purely scalar

modification of the Einstein-Hilbert action taking place in (4.84). An exposition

of the ghost-free conditions for the full action (2.20) has recently been discussed in

[80], where the perturbed metric hµν is decomposed into its 10 individual degrees

of freedom via

hµν = h⊥µν +∇µA
⊥
ν +∇νA

⊥
µ + (∇µ∇ν −

1

4
ḡµν�)B +

1

4
ḡµνh. (4.85)

Here, the transverse and traceless, massless, spin-2 graviton h⊥µν , accounts for

5 degrees of freedom; the transverse vector field A⊥µ contributes 3 degrees of

freedom; and the two scalars h and B provide a further 2 degrees of freedom. In

this case, transverse simply refers to a tensor that has vanishing divergence, i.e.

∇µA
µν... = 0. In the present discussion, we invoke an alternative method, similar

to the previous discussion around Minkowski space.
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Field Equations

The field equations of the action (4.84) can be read off from (2.109) and are given

by

κT µν =
(
1 + 24M−2

P H2λf0

) (
rµν − 1

2
δµν r
)
− 2λM−2

P (∇µ∂ν − δµν�)F(�)r

+6λM−2
P H2δµνF(�)r. (4.86)

Upon reflection, we find that these field equations can be recast in precisely the

same form as in the Minkowski case, (2.86)

κT µν = arµν −
1

2
δµν c(�)r − 1

2
∇µ∂νf(�)r, (4.87)

according to the following definitions

a = 1 + 24M−2
P H2λf0

c(�) = 1 + 24M−2
P H2λf0 − 4λM−2

P (�+ 4H2)F(�)

∇µ∂νf(�) = 4M−2
P λ (∇µ∂ν + δµνH

2)F(�), (4.88)

which return (2.82) at the limit H → 01. In order to be consistent with the

Minkowski case, we next note that these infinite derivative functions must con-

form to the same constraints given by (2.83), namely that

�f(�) = a− c(�). (4.89)

By taking the trace of the final equation in (4.88), we find that this is indeed the

case.

Ghost-free Conditions

Having established established consistency with the Minkowski case, in that the

field equations take the same form and obey the same generic conditions, the

1provided that F = F3 = 0 due to the reduced action (4.84)
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propagator will be modified in a similar manner, according to

Πds(�) =
P2
GR

a
+

(P0
s)GR

a− 3c(�)
. (4.90)

Here, the subscript GR denotes the physical (GR) graviton propagators around de

Sitter space and contain the GR roots of the propagator via [80],[110],[111],[112].

P2
GR =

P2

−�+ 2H2
, (P0

s)GR = − P0
s

�+ 4H2
, (4.91)

which reduce to the familiar root k2 = 0 at the Minkowski limitH → 0 1 . We note

here that the spin-2 sector is modulated by the constant a = 1 + 24M−2
P H2λf0.

From our discussion on pathologies of the propagator in Section 3.2, we know

that in order to avoid the Weyl ghost, this constant must be positive definite. In

truth, the positive nature of this constant is determined by fundamental physical

constraints. In Appendix D, we discuss the role of this constant in the gravi-

tational entropy of such an infinite derivative action around de Sitter space, see

also [68]. The upshot is that the point a = 0 coincides with a physical system

defined by vanishing entropy, while a < 0 describes non-physical spacetimes with

negative entropy. Thus, a > 0 and as a result, the tensorial structure of the prop-

agator can not be said to be modified in any meaningful manner, as the positive

constant

a = 1 + 24M−2
P H2λf0 > 0, (4.92)

could be normalized to unity, if so desired. This is as expected, as the modifica-

tion that is taking place is within a purely scalar modification of GR.

Ghost-free Conditions

In order to avoid negative residues in the spin-0 component of the propagator,

we proceed in much the same manner as in the Minkowski case, by relating the

trace equation to an exponent of an entire function that has been furnished with

1Note that in de Sitter space the D’Alembertian operator acting on a scalar is given by
�S = gµν∇µ∇νS = gµν∂µ∂νS − gµνΓκµν∂κS = (−∂2t − 3H∂t)S. In momentum space, we can
write this as �S → (−(k0k0)− 3Hik0)S.
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an additional root, like so

κT =
1

2
(a− 3c(�))r = (α�m̄−2 − 1)ā(�)r, (4.93)

where the trace equation is given by

κT = −
(
1 + 24H2M−2

p λf0

)
r + 6M−2

p λ
(
�+ 4H2

)
F(�)r. (4.94)

As before, the substitution �→ 0 reveals that the Brans-Dicke Scalar m̄2 = M2
P ,

whereas expanding to first order reveals the constant α to be now given by

α = 6λf0 −M2
P/M

2 + 24λH2M−2f1. (4.95)

Again, we check the limit as H → 0 returns (3.69), with f20 = 0.

Tachyon Criteria

Now, by decomposing the propagator (4.93) into partial fractions, we find the

modified propagator in dS to be

ΠdS(�) =
1

a

[
P2

−�+ 2H2
+

1

2ã(�)

(
m2

m2 + 4H2

)(
P0
s

�+ 4H2
− P0

s

�−m2

)]
,

(4.96)

where m2 ≡ M2
P/α and ã(�) = ā(�)/a. This form of the modified propagator

reduces to the previously derived propagator around Minkowski space (3.71) at

the limit H → 0, which implies �→ −k2. Furthermore, the constant α must be

positive definite in order to avoid tachyons and to retain the additional scalar pole.

Defocusing Conditions

We are now in a position to describe the minimum conditions whereby a space-

time, linearised around de Sitter, may indeed be considered to be non-singular,

in that it avoids converging null geodesic congruences. We find the contribution

of gravity to the Raychaudhuri equation by contracting the field equations (4.87)
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with the tangent vectors kµ, like so

rµνk
νkµ =

1

a

(
κT µν kµk

ν +
1

2
kνkµ∇µ∂νf(�)r

)
, (4.97)

so that the minimum condition for these null rays to defocus is given by

rµνk
νkµ =

1

2a
kνkµ∇µ∂νf(�)r < 0. (4.98)

Expanding out the covariant derivatives , we may express the defocusing condition

in the following manner

(k0)2

2

(a− c(�))r

a
> −2H(k0)2

a
∂tf(�)r, (4.99)

which can, in turn, be rewritten as

(
1 + 4H∂t�

−1
) [

1− (1−�/m2)ã(�)
]
r > 0. (4.100)

Here, we see that at the limit H → 0, the defocusing condition around Minkowski

(4.65) is recovered. Thus, we have then succeeded in our aim of deriving the

ghost-free, defocusing condition around de Sitter space, comparable to Section

4.4.
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Chapter 5

Conclusion

The stated objective of this thesis was to present a viable extension of general

relativity, which is free from singularities, where ‘viable’, in this case means devoid

of ghosts, tachyons or exotic matter. With this in mind, we outline the results of

the present work.

Outline of Results

We began in Chapter 2, with a lengthy computation of the non-linear field equa-

tions for the IDG action (2.20). First, we outlined the general methodology

and introduced a number of novel techniques, which proved useful in the ex-

plicit calculation that followed. Having attained the non-linear field equations,

we perturbed around both Minkowski space and de Sitter space up to linear or-

der, for later use in deriving the modified propagator, ghost-free conditions and

defocusing condition, required to construct a viable non-singular cosmology.

Chapter 3, focused on the notion of ghosts or tachyons that may appear at the

level of the propagator. First, these manifestations were defined and illustrated

with a number of examples from finite extensions of GR. The form of the modified

propagator was also derived for the IDG action (2.20). Next, the elimination of

ghosts by way of an exponential correction in the scalar propagating mode was

motivated, before being put to use in a linearised regime around Minkowski space.

Typically, such an exponential function in the propagator weakens the classical
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and quantum effects of gravity in the UV. With the precise form of the modified

graviton propagator in hand, the requisite tachyon criteria were also established

by a decomposition into partial fractions.

Having established the foundation for presenting a viable infinite derivative

extension to GR in the preceding chapters, we then turned our attention to the

main crux of the present work – the avoidance of singularities – in Chapter 4.

The chapter began with a discussion on the nature of singularities and indeed,

the difficulty in defining such phenomenon, before introducing the Raychaud-

huri equation and analysing its import in the context of GR. Having established

the focusing behaviour of null rays via the convergence condition and Hawking-

Penrose theorems, we turned our attention to spacetimes that do not conform to

this convergent behaviour. By reversing the inequality, we were able to examine

the behaviour of null rays as they diverge or defocus, within a geometrically flat

framework. We dubbed this reversal the defocusing condition and null rays con-

forming to this condition will not converge to a point in a finite time and are said

to be null geodesically complete – stretching to past infinity. This is in direct

contrast to converging rays, where a photon travelling along a geodesic of this

type will cease to exist in a finite time. We illustrated this defocusing behaviour

with a known example of a bouncing cosmology.

From the behaviour around Minkowski space, we were able to deduce a simpler

form of IDG action, which was purely scalar in its modification, with which one

could realise the desired ghost-free, defocusing behaviour. With this action in

hand, it proved quite straightforward to rearrange the linearised field equations

around de Sitter in precisely the same form as in the Minkowski case. From this

vantage point, the defocusing conditions around de Sitter space, were also derived

and found to conform to the Minkowski case at the limit H → 0, as expected.

This thesis presents a number of novel results by the author. Firstly, the

calculation of non-linear field equations for the most general, infinite derivative

action of gravity that is quadratic in curvature, (2.20), had never been fully cap-

tured before the work that the chapter is based on, [82], was published. Previous

work, such as [113],[114],[115] has centred on finite orders of the D’Alembertian

acting on the curvature scalar.
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The form of the IDG-modified propagator around Minkowski space was estab-

lished in [17], along with the associated ghost-free condition. The present work

reaffirms these results, while also extending them in to de Sitter space, in a novel

approach, by way of a simplification of the gravitational action - a reduced action

that still exhibits the required defocusing behaviour. This allowed for the exten-

sion of the recent article, [18], which detailed the defocusing conditions around

Minkowski space to include defocusing conditions also around de Sitter space.

Comparisons were made with finite derivative extensions of gravity, where it was

found that non-locality plays an integral role in realising the desired defocusing

behaviour.

The methodology used in deriving the defocusing conditions is in stark con-

trast to previous work on bouncing solutions in infinite derivative theories of

gravity. In [15], [107],[108], an Ansatz was invoked as a solution to the field equa-

tions, admitting bouncing solutions, with scale factor ∝ cosh(σ
2
t). In the present

work, we make no assumption on the nature of the scale factor a priori, except

that it must conform to the requirement of accelerated expansion of the Universe

within a homogeneous framework. Having acquired the generic ghost-free defo-

cusing conditions, we do indeed check the bouncing solution a(t) = cosh(σ
2
t) for

consistency and, as expected, it did display the desired behaviour.

Future Work

Homogeneous Solutions

Within the context of a homogeneous framework, the defocusing condition (4.65)

could perhaps be analysed for specific restrictions on the curvature. For example,

we analysed a bouncing solution in Section 4.5 and it is perhaps straightforward

to generalise this analysis with a generic bouncing scale factor, using the same

integral form method. Such a scale factor would result in the curvature being

given by an even function, i.e. R(t) = r0 + r2t
2 + .... This would have some

similarities to the analysis in [19] where, similarly, a generic bouncing scale factor

was analysed but through the prism of the diffusion equation method [116].

More illuminating still would be to solve the inequality for all forms of cur-

vature that may satisfy the defocusing conditions (4.65) and (4.100) – to see,
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explicitly, whether there curvature must conform to a bouncing scale factor or

whether other solutions do exist. In this way, we could conceivably build up

a precise form of non-singular metric, which would always satisfy the desired

defocusing behaviour.

Another quite straightforward approach in the homogenous setup would be

to extend the methodology to non-linear FRW. Whereas the generic defocusing

conditions can be derived without difficulty, some issues remain in terms of the

ghost-free conditions. Recall that the ghost-free conditions and modified propa-

gator were derived within a background of constant curvature. As the curvature

in an FRW background is a time-dependent function rather than a constant,

these conditions must be generalised to make revealing predictions. One possi-

ble method would be to proceed with an analysis that stipulates slowly varying

curvature.

Furthermore, an extension of the progress made in [63] to include bouncing

cosmologies could be particularly illuminating. Vachaspati and Trodden found

that the convergence condition (4.23) restricted trajectories passing from normal

regions to antitrapped regions, detailed in Fig. 4.2. It would be interesting to see,

geometrically, if a relaxation of the convergence condition allows such behaviour.

One could also trace the trajectories of rays starting out at past infinity in Fig.

4.3 to shed light on the behaviour at times in and around the bounce.

Other Solutions

A further avenue of exploration involves extending our defocusing analysis to

include inhomogenous solutions, with spatial as well as temporal dependencies.

This was briefly covered in [18], where the inhomogeneous generic defocusing

condition was given by
f(�̄)

a(�̄)

(
∂2
t + ∂2

r

)
R(L) < 0. (5.1)

As before, we required Tµνk
µkν ≥ 0 so as not to violate the NEC. Note also that

∂2
r = ∂i∂

i is the Laplace operator. Although, the defocusing condition can be

attained in quite a straightforward manner, a full analysis remains incomplete,

in that the spatial dependencies must be made tractable. Similarly, we may also
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wish to consider anistropic spacetimes, conforming to a general metric of the type

ds2 = −dt2 + a2(t)
∑
i

e2θi(t)σiσi, (5.2)

as in [117], where t is cosmic time and σi are linearly independent at all point in

the spacetime. This is an example of an anisotropic but homogeneous metric in

four dimensions, but could conceivably be generalised further to include spatial

dependencies.

This thesis presents a concrete methodology in describing a viable non-singular

theory of gravity within the framework of an homogenous cosmology. Through

the analysis it is clear that non-locality, arising from IDG, plays a pivotal role,

as does an additional degree of freedom in the scalar propagating sector. Such a

methodology can be extended into more complex pictures of IDG, such as those

described above. As we extend our study, we will understand more about the

relationship between the geometry of spacetime and gravity in a non-singular

spacetime. We may even broaden our analysis into the study of the blackhole

singularity problem, with the overall aim of, perhaps one day, presenting a defini-

tive picture of a non-singular theory of gravity.
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Appendix A

Useful Identities and Notations

A.1 Curvature

Metric signature

gµν = (−,+,+,+). (A.1)

Christoffel Symbol

Γλµν =
1

2
gλτ (∂µgντ + ∂νgµτ − ∂τgµν), (A.2)

Riemann Tensor

Rλ
µσν = ∂σΓλµν − ∂νΓλµσ + ΓλσρΓ

ρ
νµ − ΓλνρΓ

ρ
σµ, (A.3)

Rµνλσ = −Rνµλσ = −Rµνσλ = Rλσµν , (A.4)

Rµνλσ +Rµλσν +Rµσνλ = 0. (A.5)

Ricci Tensor

Rµν = Rλ
µλν = ∂λΓ

λ
µν − ∂νΓλµλ + ΓλλρΓ

ρ
νµ − ΓλνρΓ

ρ
λµ, (A.6)
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A.2 Bianchi Identities

Rµν = Rνµ. (A.7)

Curvature scalar

R = gµνRµν = gµν∂λΓ
λ
µν − ∂µΓλµλ + gµνΓλλρΓ

ρ
νµ − gµνΓλνρΓ

ρ
λµ, (A.8)

Weyl Tensor

Cµ
ανβ ≡ Rµανβ− 1

2
(δµνRαβ−δµβRαν+Rµ

νgαβ−R
µ
βgαν)+

R

6
(δµν gαβ−δ

µ
βgαν). (A.9)

Cλ
µλν = 0 (A.10)

Einstein Tensor

Gµν = Rµν −
1

2
gµνR. (A.11)

Traceless Einstein Tensor

Sµν = Rµν −
1

4
gµνR (A.12)

General formula for commuting covariant derivatives

[∇ρ,∇σ]Xµ1...µk
ν1...νl = Rµ1

λρσX
λµ2...µk

ν1...νl +Rµ2
λρσX

µ1λµ3...µk
ν1...νl + ...

−Rλ
ν1ρσX

µ1...µk
λ...νl −Rλ

ν2ρσX
µ1...µk

ν1λν3...νl − ... . (A.13)

A.2 Bianchi Identities

The Bianchi identity is given by

∇κRµνλσ +∇σRµνκλ +∇λRµνσκ = 0. (A.14)

Contracting with gµλ gives the contracted Bianchi identity,

∇κRνσ −∇σRνκ +∇λRλνσκ = 0. (A.15)
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A.3 Variation of Curvature

Contracting further with gνκ implies

∇κR
κ
σ =

1

2
∇σR, (A.16)

which similarly implies

∇σ∇κR
κ
σ =

1

2
�R (A.17)

and

∇µG
µ
ν = 0. (A.18)

A.3 Variation of Curvature

We have from the definitions of the Riemann and Ricci tensor

δRλ
µσν = (δΓλµν);σ − (δΓλµσ);ν

δRµν = ∇λδΓ
λ
µν −∇νδΓ

λ
µλ

δΓλµν =
1

2
(hλν;µ + hλµ;ν − h ;λ

µν ). (A.19)

Substitution of the varied Christoffel symbol reveals,

δRλ
µσν =

1

2
(hλν;µ;σ − h ;λ

µν ;σ − hλσ;µ;ν + h ;λ
µσ ;ν)

δRµν =
1

2
(hλν;µ;λ + h ;λ

µλ ;ν −�hµν − h;µ;ν). (A.20)

For simplicity, it is often preferable to arrange these identities in terms of the

metric variation hαβ, like so,

δRµνλσ =
1

2
[δαλδ

β
ν (hαβ);σ;µ − δαλδβµ(hαβ);σ;ν + δαµδ

β
σ(hαβ);ν;λ − δασδβν (hαβ);µ;λ]

δRµν =
1

2
[δβν (hαβ);µ

;α + δαµ(hαβ);β
;ν − δαµδβν�(hαβ)− gαβ(hαβ);µ;ν ]. (A.21)
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A.3 Variation of Curvature

We can then find the variation of the curvature scalar, δR,

δR = δ(gµνRµν)

= δgµνRµν + gµνδRµν

= −hαβRαβ + gµνδRµν

= −hαβRαβ + (hαβ);α;β − gαβ�(hαβ), (A.22)

where we have used the following notations

hµν = −hαβgαµgβν , h = gµνhµν , hµν = δgµν , ∇µR = R;µ. (A.23)

In summary, we have

δRµνλσ =
1

2
[δαλδ

β
ν (hαβ);σ;µ − δαλδβµ(hαβ);σ;ν + δαµδ

β
σ(hαβ);ν;λ − δασδβν (hαβ);µ;λ]

δRµν =
1

2
[δβν (hαβ);α

;µ + δβµ(hαβ);α
;ν − δαµδβν�(hαβ)− gαβ(hαβ);µ;ν ]

δR = −hαβRαβ + (hαβ);α;β − gαβ�(hαβ)

δΓλµν =
1

2
(gλαδβνhαβ;µ + gλαδβµhαβ;ν − δαµδβνh

;λ
αβ ) (A.24)

A.3.1 δ(�)R

Recall

� = gµν∇µ∇ν (A.25)

Then we have

δ(�)R = δgµνR;µ;ν + gµνδ(∇µ)R;ν + gµν [δ(∇ν)R];µ

= −hαβR;α;β + gµνδ(∇µ)R;ν + gµν [δ(∇ν)R];µ (A.26)
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A.3 Variation of Curvature

From the general definition of the covariant derivative of a tensor we deduce the

following

gµνδ(∇µ)R;ν = −gµνδΓλµνR;λ (A.27)

gµν [δ(∇ν)R];µ = 0 (A.28)

The last term vanishes in this case as R is a scalar. This will not be true for

δ(�)Rµν and δ(�)Rµνλσ. We then integrate by parts to find

δ(�)R = −hαβR;α;β +
1

2
gαβR;λ(hαβ);λ −R;α(hαβ);β (A.29)

with

δΓλµν =
1

2
[gαλδβµ(hαβ);ν + gαλδβν (hαβ);µ; − δαµδβν (hαβ);λ] (A.30)

A.3.2 δ(�)Rµν

δ(�)Rµν = δgλσRµν;λ;σ + gλσδ(∇λ)Rµν;σ + gλσ[δ(∇σ)Rµν ];λ

= −hαβR;α;β
µν + gλσδ(∇λ)Rµν;σ + gλσ[δ(∇σ)Rµν ];λ (A.31)

From the general definition of the covariant derivative of a tensor we have

gλσδ(∇λ)Rµν;σ = −δΓτλµR;λ
τν − δΓτλνR;λ

µτ − gλσδΓτλσRµν;τ (A.32)

gλσ∇λδ(∇σ)Rµν = −(δΓτλµ);λRτν − δΓτλµR;λ
τν − (δΓτλν)

;λRµτ − δΓτλνR;λ
µτ (A.33)

So that

δ(�)Rµν = −hαβR;α;β
µν − gλσδΓτλσRµν;τ − (δΓτλ(µ);λRτν) − 2δΓτλ(µR

;λ
τν) (A.34)
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A.3 Variation of Curvature

Expanding using δΓλµν = 1
2
[gαλδβµ(hαβ);ν + gαλδβν (hαβ);µ; − δαµδβν (hαβ);λ], we have

δ(�)Rµν = −hαβR;α;β
µν − (hαβ);βR;α

µν +
1

2
gαβ(hαβ);σRµν;σ

− 1

2

[
�(hαβ)δβ(µR

α
ν) − (hαβ);τ ;αδβ(µRτν) + (hαβ) ;β

;(µR
α
ν)

]
−Rα;β

(ν hαβ;µ) − δβ(µR
α;λ
ν) hαβ;λ + δβ(µR

;α
τν)h

;τ
αβ ) (A.35)

A.3.3 δ(�)Rµνλσ

From the definition of the D’Alembertian operator � = gµν∇µ∇ν , we have

δ(�)Rµνλσ = δgκτRµνλσ;κ;τ + gκτδ(∇κ)Rµνλσ;τ + gκτ [δ(∇τ )Rµνλσ];κ

= −hαβR;α;β
µνλσ + gκτδ(∇κ)Rµνλσ;τ + gκτ [δ(∇τ )Rµνλσ];κ (A.36)

and from the general definition of the covariant derivative of a tensor and treating

Rµνλσ;τ as a (0, 5)-tensor, we have

gκτδ(∇κ)Rµνλσ;τ = −δΓρκµR
;κ
ρνλσ − δΓ

ρ
κνR

;κ
µρλσ − δΓ

ρ
κλR

;κ
µνρσ − δΓρκσR

;κ
µνλρ

−gκτδΓρκτRµνλσ;ρ (A.37)

and

gκτ [δ(∇τ )Rµνλσ];κ =
[
−δΓρκµRρνλσ − δΓρκνRµρλσ − δΓρκλRµνρσ − δΓρκσRµνλρ

];κ
= −(δΓρκµ);κRρνλσ − δΓρκµR

;κ
ρνλσ − (δΓρκν)

;κRµρλσ − δΓρκνR
;κ
µρλσ

− (δΓρκλ)
;κRµνρσ − δΓρκλR

;κ
µνρσ − (δΓρκσ);κRµνλρ − δΓρκσR

;κ
µνλρ (A.38)

So that

δ(�)Rµνλσ = −hαβR;α;β
µνλσ − g

κτδΓρκτRµνλσ;ρ

−
[
(δΓρκµ);κRρνλσ + (δΓρκν)

;κRµρλσ + (δΓρκλ)
;κRµνρσ + (δΓρκσ);κRµνλρ

]
−2
[
δΓρκµR

;κ
ρνλσ + δΓρκνR

;κ
µρλσ + δΓρκλR

;κ
µνρσ + δΓρκσR

;κ
µνλρ

]
(A.39)
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A.3 Variation of Curvature

Then, using δΓλµν = 1
2
[gαλδβµ(hαβ);ν +gαλδβν (hαβ);µ;−δαµδβν (hαβ);λ], and the Bianchi

identities, we find

δ(�)Rµνλσ = −hαβR;α;β
µνλσ − (hαβ);βR;α

µνλσ +
1

2
h;τRµνλσ;τ (A.40)

−1

2
[gατ (hαβ);β

;µRτνλσ + gατ (hαβ);β
;νRµτλσ + gατ (hαβ);β

;λRµντσ + gατ (hαβ);β
;σRµνλτ ]

−
[
gατ (hαβ);µR

;β
τνλσ + gατ (hαβ);νS

;β
µτλσ + gατ (hαβ);λR

;β
µντσ + gατ (hαβ);σR

;β
µνλτ

]
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Appendix B

Friedmann-Lemâıtre-Robertson-

Walker

Framework

The Friedmann-Lemâıtre-Robertson-Walker (FRW) metric forms an exact solu-

tion of Einstein’s field equations and can be expressed in terms of the following

isotropic and homogenous metric

ds2 = −dt2 + a2(t)γijdx
idxj, (B.1)

where γij is a 3-dimensional maximally symmetric metric of Gaussian curvature

k and the scale factor a(t) is a time-dependent function of unit dimension which

parametrizes the relative expansion of the Universe. To understand the geometric

curvature of the spacetime more readily, it is perhaps preferable to reformulate

the FRW metric in a spherically symmetric coordinate system, like so

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
, (B.2)
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where the spherical coordinates are contained within dΩ2 ≡ dθ2 + sin2 θdϕ2. The

spatial curvature, in terms of a hypersurface of cosmic time t, is given by the real

constant k, such that

k =


−1 Negatively curved hypersurface (Closed Universe)

0 Flat hypersurface

1 Positively curved hypersurface (Open Universe)

(B.3)

Exact Solution

As the present work is largely cosmological in focus, we will now go into some

detail to verify that the FRW metric is indeed an exact solution to the Einstein

field equations (1.5). In order to do this, we must derive all the relevant com-

ponents that make up the metric (B.1), beginning with the components of the

metric tensor

g00 = −1 = g00, gij = a2(t)γij, gij = a−2(t)γij. (B.4)

Next, we move on to the Christoffel symbols

Γλµν =
1

2
gλτ (∂µgντ + ∂νgµτ − ∂τgµν), (B.5)

of which the non-vanishing components are given by

Γi0j = Γij0 =
ȧ

a
δij, Γ0

ij = aȧγij, (B.6)

where the superscript · denotes a derivative with respect to cosmic time t. We

may then use the remaining Christoffel symbols to derive the relevant forms of

curvature that make up the Einstein equation, from the general definitions given

in Appendix A.1.

Ricci Tensor

R00 = −3
(
Ḣ +H2

)
, Rij = gij

(
Ḣ + 3H2 +

2k

a2

)
(B.7)
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Curvature Scalar

R = 6

(
Ḣ + 2H2 +

k

a2

)
. (B.8)

Einstein Tensor

The Einstein tensor Gµν = Rµν − 1
2
gµνR is then given by

G00 = 3

(
H2 +

k

a2

)
, Gij = −gij

(
2Ḣ + 3H2 +

k

a2

)
, G0i = 0. (B.9)

Comparing this with the Einstein Equation (1.5), we deduce that the energy-

momentum tensor must take the form

T00 = ρ(t), Tij = p(t)gij, T0i = 0, (B.10)

where ρ denotes the energy density and p denotes the pressure. Thus, the FRW

is an exact (fluid) solution of Einstein’s General Relativity [24, 25, 61, 62].

Perfect Fluid

Furthermore, this form of the energy-momentum tensor describes a perfect fluid.

A perfect fluid is one where a comoving observer views the fluid around him as

isotropic [46]. In terms of the energy-momentum tensor Tµν , isotropic spacetimes

must have vanishing T0i-components in order to remain rotationally invariant

[61]. The remaining components are given as above, which we can express in a

covariant form as follows

Tµν = (ρ+ p)uµuν + pgµν . (B.11)

Here, uµ is the fluid four-velocity, i.e. uµ = {1, 0, 0, 0}, such that gµνuµuν = −1

and (uµk
µ)2 = (k0)2. We then perform the operations of (1) contracting with this

fluid four velocity, (2) contracting with the null geodesic congruence kµ and (3)

taking the trace to express three distinct identities:

Tµνu
µuν = ρ (B.12)
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Tµνk
µkν = (ρ+ p)(k0)2 (B.13)

T = −ρ+ 3p. (B.14)

These identities allow us to write the relevant energy conditions for the present

text. The Weak Energy Condition (WEC) states that the energy density will

be positive for an observer along a timelike tangent vector ξµ. The null energy

condition (NEC), given by Tµνk
µkν , is a special case of the WEC, where the

timelike tangent vector is replaced by a null ray. In this case, the energy density

may conceivably be negative so long as this is balanced by sufficiently positive

pressure. In terms of the perfect fluid, these are given by

• Null Energy Condition: Tµνk
µkν ≥ 0 implies ρ+ p ≥ 0

• Weak Energy Condition: Tµνξ
µξν ≥ 0 implies ρ+ p ≥ 0 and ρ ≥ 0 [61].

The NEC, in particular, will play an important role in the later discussion on

singularity-free theories of gravity in Chapter 4.
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Appendix C

Newtonian Potential

In order to compute the Newtonian potential, we must consider the Newtonian

weak field limit of the field equations (2.86). In a non-relativistic system, the

energy density is the only significant element of the energy-momentum tensor

[61],[24],[62]. As such, we have ρ = T00 � |Tij|, where the energy density ρ is

static. Recall, from the discussion on the perfect fluid in Section B, that the

trace equation is given by T = −ρ+ 3p ≈ −ρ, while the 00-component is simply

T00 = ρ. Furthermore, the perturbed metric for a static, Newtonian point source

is given by the static line element [114],[84]

ds2 = −(1 + 2Φ(r))dt2 + (1− 2Ψ(r))(dx2 + dy2 + dz2). (C.1)

We turn then to the IDG field equations around Minkowski space (2.86), from

which we can then read off the trace and 00-component of such a metric

−κρ =
1

2
(a(�)− 3c(�))R

κρ = a(�)R00 +
1

2
c(�)R. (C.2)

With the line element in hand (C.1), we first compute the metric hµν , using the

algorithm (2.78)

h00 = −2Φ(r), hij = −2Ψ(r)ηij, (C.3)
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before substituting these values into (2.79) to find the pertinent values for the

curvature:

R = 2(24Ψ−4Φ), R00 = 4Φ. (C.4)

Recall that at the linearised limit � = ηµν∂µ∂ν which, for a static source, reduces

to � = 4, where 4 ≡ ∇2 = ∂i∂
i is the Laplace operator. Thus, we find the

energy density (C.2) for the given metric (C.1) to be

−κρ = (a(�)− 3c(�))(24Ψ−4Φ)

κρ = (a(�)− c(�))4Φ + 2c(�)4Ψ. (C.5)

By comparing these two expressions for the energy density, we find that the two

Newtonian potentials relate to each like so

4Φ = −a(�)− 2c(�)

c(�)
4Ψ. (C.6)

Using this identity, we find

κρ =
a(�) (a(�)− 3c(�))

a(�)− 2c(�)
4Φ = κmδ3(~r), (C.7)

where in the weak-field limit, the energy density is simply the point source, i.e.

ρ = mδ3(~r) and δ3 refers to the 3-dimensional Dirac delta-function, while m

is the mass of the test particle. We proceed in a manner familiar to that of

the Coulomb potential, [84],[32], by performing a Fourier transform in order to

express the Newtonian potential Φ(r). Recall that the Fourier transform of the

Dirac delta-function is given by

δ3(~r) =

∫
d3k

(2π)3
eik~r. (C.8)

Thus, with �→ −k2 in Fourier space on a flat background, we solve for Φ(r),

Φ(r) = − κm

(2π)3

∫ ∞
−∞

d3k
a− 2c

a(a− 3c)

eik~r

k2
= − κm

2π2r

∫ ∞
0

dk
(a− 2c)

a(a− 3c)

sin(kr)

k
, (C.9)
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where we have abbreviated the functions a = a(−k2) and c = c(−k2) for con-

venience. It is then straightforward to compute the other Newtonian potential

Ψ(r), using (C.6)

Ψ(r) =
κm

2π2r

∫ ∞
0

dk
c

a(a− 3c)

sin(kr)

k
. (C.10)

a = c: No additional degrees of freedom in the scalar propagating sector

Recall that, for the particular case when a = c no additional poles are introduced

to the scalar sector of the propagator and we retain the original degrees of freedom

of the massless graviton. In this instance, one would expect the two distinct

Newtonian potentials to converge to a single potential. By substituting a = c

into (C.10) and (C.9), one can quickly verify that this is the true, with the

potential then given by

Φ(r) = Ψ(r) = − κm

(2π)2r

∫ ∞
0

dk
sin(kr)

a(−k2)k
. (C.11)

We may then test a particular ghost-free choice of the function a to see whether

it exhibits the expected behaviour of a Newtonian potential. In Section 3.3.3,

we found that in order for the spacetime to be ghost-free, a must be an entire

function containing no roots. The simplest choice is then,

a(�) = e−�/M
2

. (C.12)

Thus, we find the Newtonian potential to be [16],

Φ(r) = − κm

(2π)2r

∫ ∞
0

dk

k
e−k

2/M2

sin(kr) = −κm erf(Mr/2)

8πr
. (C.13)

Observe now that at the limit, r → ∞ 1, erf(r)/r → 0 and the metric (C.1) is

returned to flat space. On the other hand, taking the limit r → 0, results in the

1Alternatively, if we take M → ∞, which is the familiar limit to return IDG to a local
theory, we recapture the familiar 1/r divergence of GR, as expected.
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Newtonian potential converging to a constant

lim
r→0

Φ(r) =
κmM

8π3/2
. (C.14)

We see here that the Newtonian potentials remain finite with Φ(r) ∼ mM/M2
P

and, as such, the linear approximation is bounded all the way to r → 0.
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Appendix D

A Note on the Gravitational

Entropy

In this section, we give a brief outline of the connection between Wald’s gravita-

tional entropy and the defocusing conditions around de Sitter space, derived in

Section 4.7. In a recent work [68], Wald’s gravitational entropy [118],[119], was

computed for a non-local action of the type

I =
1

16πG4

∫
d4x
√
−g
(
R− 2M−2

P Λ + αRF(�)R
)
. (D.1)

This was found to take the form

SI =
AdSH
4G4

(
1 + 8f10αM

−2
P Λ

)
, (D.2)

where α is a constant of dimension inverse mass squared. The primary thing to

note here is that a non-physical, negative entropy state is realised if the following

inequality holds:

M2
P + 8αΛf10 < 0. (D.3)

The action (D.1) is a simple reformulation of (2.20), where F2(�) and F3(�)

have been set to zero and we have taken the dimensionless parameter λ to be
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λ = αM2
P .

If we were to now turn our attention to the defocusing condition around de

Sitter space, these may be obtained directly from the linearised field equations

(2.109) by contracting with the tangent vector kµ. Hence, we find that in order

for the associated null rays to diverge, we require,

rµνk
νkµ =

1

M2
P (1 + 24αH2f10)

(k0)2

[
(ρ+ p) + 2αM2

P

(
∂2
t −H∂t

)
F1(�)r

]
< 0.

(D.4)

Here, we have used the fact that in de Sitter space, Λ = 3M2
PH

2, see (2.98). Then,

it is straightforward to read off the central conditions for null rays to defocus

M2
P

(
1 + 24αH2f10

)
≷ 0, (ρ+ p) + 2αM2

P

(
∂2
t −H∂t

)
F1(�)r ≶ 0. (D.5)

From (D.3), we find that the lower signs describe a non-physical spacetime defined

by negative entropy and can therefore me omitted. Thus, the central constraints

are simply

M2
P + 24λH2f10 > 0, (ρ+ p) + 2λ

(
∂2
t −H∂t

)
F1(�)r < 0, (D.6)

where we have reintroduced the counting tool λ ≡ αM2
P , in accordance with the

general formalism of this work.

Now, if we turn our attention to the defocusing calculation around de Sitter

space given in A.3.2, we find that, by (4.92), the left-most inequality is simply

the constant a. In general, the function a(�) is responsible for modifying the

tensorial structure of the propagator but as the action considered is scalar in its

modification, (D.1), the function a reduces to the constant,

a = 1 + 24λM−2
P H2f10 . (D.7)

We have already established that this tensorial modification must be positive

in order to avoid negative residues and the Weyl ghost, see Section 3.2 but the

entropy calculation gives an interesting insight into the physical consequences of
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introducing ghosts into a theory. In this case, such an addition would result in a

non-physical spacetime, defined by negative entropy.

A further, intriguing property of the gravitational entropy described by (D.2),

is the possibility of realising a zero entropy state by taking α =
M2
P

8Λ
. Taking this

value saturates the defocusing condition (D.4), meaning little can be inferred from

this vantage point. It would be interesting to pursue this line of enquiry in order

to understand if this zero entropy state is indeed physical; at what cosmic time

in a bouncing cosmology such a state could be realised; and whether there are

any potential implications for the laws of thermodynamics prior to the bounce.
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