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Abstract

We consider a challenging resource allocation problem arising in
mobile wireless communications. The goal is to allocate the avail-
able channels and power in a so-called OFDMA system, in order to
maximise the transmission rate, subject to quality of service (QoS)
constraints. Standard MINLP software struggled to solve even small
instances of this problem. Using outer approximation, perspective cuts
and several implementation “tricks”, we are able to solve realistic in-
stances in about one minute. A novel ingredient of our algorithm is
what we call pre-emptive cut generation: the generation of cutting
planes that are not violated in the current iteration, but are likely to
be violated in subsequent iterations.

Keywords: mixed-integer nonlinear programming, mobile wireless
communications, OFDMA systems

1 Introduction

Telecommunications provides a rich source of interesting, and often chal-
lenging, optimisation problems (see, e.g., Resende & Pardalos [22]). This
paper is concerned with a mixed-integer convex optimisation problem that
arises in mobile wireless communications systems. In such systems, mobile
devices (such as smartphones or tablets) communicate with one another via
transceivers called base stations. Each base station must periodically allo-
cate its available resources (time, power and bandwidth) in order to receive
and transmit data in an efficient way (see, e.g., Fazel & Kaiser [7]).

The problem under consideration arises when the base stations have
an Orthogonal Frequency-Division Multiple Access (OFDMA) architecture.
This means that the base station divides the available bandwidth into a
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number of frequency bands called subcarriers. Each subcarrier can be as-
signed to only one mobile device (or user) in any given time period, but a
given user may be assigned to more than one subcarrier. The data trans-
mission rate for any given subcarrier is a nonlinear function of the power
allocated to that subcarrier.

There are several distinct optimisation problems associated with OFDMA
(and related) systems, with differing objective functions, side-constraints
and so on (e.g., [12,17–19,23,24,26,27,29,31–35]). The problem that we fo-
cus on in this paper is that of simultaneously allocating subcarriers to users
and power to subcarriers, subject to certain quality of service (QoS) con-
straints called rate constraints, in order to maximise the total data transmis-
sion rate. We call this problem the subcarrier and power allocation problem
with rate constraints (SPARC).

The SPARC has a natural formulation as a convex mixed-integer non-
linear program (MINLP). Since we found that standard software for convex
MINLP was unable to solve even small instances of our problem in reason-
able computing times, we developed our own specialised exact algorithm. It
uses a combination of outer approximation [8] and perspective cuts [11,13],
together with three implementation “tricks” of our own, which improve the
running time by several orders of magnitude.

A novel ingredient of our algorithm, which turned out to be crucial, is
what we call pre-emptive cut generation. By this, we mean the generation
of cutting planes that are not violated in the current iteration, but are likely
to be violated in subsequent iterations.

It turns out that our exact algorithm is capable of solving SPARC in-
stances of realistic size and complexity to proven optimality in about one
minute. In fact, instances with relatively loose QoS constraints can be solved
in a fraction of a second. As far as we know, our algorithm is the first viable
exact algorithm for a realistic OFDMA optimisation problem. It is also the
first algorithm to apply perspective cuts to a problem in mobile wireless
communications.

The paper is structured as follows. The relevant literature is reviewed in
Section 2. In Section 3, we define the SPARC formally and present a convex
MINLP formulation for it. The exact algorithm is described in Section
4. The results of some extensive computational experiments are given in
Section 5, and some concluding remarks are made in Section 6.

We assume throughout that the reader is familiar with basic concepts of
MINLP, such as continuous relaxation, convexity, lower and upper bounds,
and branching. For tutorials, see, e.g., [1, 5, 30].
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2 Literature Review

Now we briefly review the literature on optimisation in OFDMA and related
systems. Good reference texts are [4, 7, 14].

2.1 Single-user systems

First, consider a single communications channel and a single user. The
classical Shannon–Hartley theorem [25] states that the maximum data rate
(in bits per second) that can be transmitted from a single channel is:

B log2 (1 + S/N) ,

where B is the bandwidth of the channel in Hertz, S is the average received
signal power in watts, and N is the average noise power in watts. The
quantity S/N is called the signal-to-noise ratio.

Now suppose that we still have a single user, but we now have a set I of
subcarriers, and each subcarrier i ∈ I has its own bandwidth Bi and noise
power Ni. If we allocate pi watts of power to subcarrier i, the data rate
for that subcarrier will be Bi log2(1 + pi/Ni), which we denote by fi(pi). A
natural optimisation problem is then to maximise the total data rate subject
to an overall power limit P . This can be formulated as the following NLP:

max

{∑
i∈I

fi(pi) :
∑
i∈I

pi ≤ P, p ∈ R|I|+

}
. (1)

Since the functions fi(pi) are concave, this NLP can be solved efficiently by
any standard technique for convex optimisation (see, e.g., Boyd & Vanden-
berghe [3]). It can also be solved quickly by a specialised iterative technique
called water filling; see, e.g., [4, 14].

2.2 Multi-user systems

As mentioned in the introduction, OFDMA systems are multi-user systems,
and each subcarrier can be assigned to an arbitrary user. If we let J de-
note the set of users, and Sj ⊂ I denote the set of subcarriers allocated
to user j ∈ J , then the total data rate for that user will be

∑
i∈Sj

fi(pi),
and the total data rate for the system will be

∑
j∈J

∑
i∈Sj

fi(pi). One then
faces optimisation problems in which one must simultaneously distribute the
available power between the subcarriers, and allocate each subcarrier to a
user, in order to meet some objective.

There are many papers on optimisation problems of this type. Wong
& Cheng [31] minimise total power subject to individual quality of service
(QoS) constraints that impose a lower bound on the data rate for each user.
(We will call them rate constraints.) Rhee & Cioffi [23] achieve QoS in a
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different way, by maximising the minimum data rate over all users, subject
to a limit on total power. Kim et al. [17] consider the problem of maximising
total data rate subject to a total power limit. Shen et al. [26] add a global
QoS constraint to that problem. Seung et al. [24] enforce QoS by giving
each user a weight, and maximising a weighted sum of the data rates. Yu
& Lui [34] consider an extension of the problem in [24], in which there is
interference between channels. Tao et al. [27] take the problem in [17], add
rate constraints, and also consider an extension in which transmissions can
suffer delays.

More recently, perhaps driven by environmental considerations, authors
have focused on maximising energy efficiency, which is defined as total data
rate divided by total power (e.g., [12, 15,29,32,33,35]).

It is proved in [18, 19] that many of the problem variants considered in
the above papers are NP-hard in the strong sense. Accordingly, in all of the
above-mentioned papers, the authors use relaxation techniques to compute
bounds, and heuristics to find feasible solutions. In this paper, we focus on
exact methods.

3 Problem Definition and MINLP Formulations

We now formally describe the problem under consideration and give two
MINLP formulations of it.

3.1 Problem definition

Although the methods developed in this paper can be applied to several
OFDMA optimisation problems, we restrict attention to one specific prob-
lem, for the sake of brevity and clarity. As mentioned in the introduction,
we call this problem the SPARC. A SPARC instance is given by sets I and
J , a bandwidth Bi > 0 and noise Ni > 0 for each i ∈ I, a user rate `j ≥ 0
for each j ∈ J , and a power limit P > 0. As in [17, 26], the task is to
allocate subcarriers to users, and power to subcarriers, in order to maximise
the total data rate, subject to a constraint stating that the total power must
not exceed P . In addition, however, we have rate constraints, as in [27,31],
stating that the total data rate for user j must be at least `j . We conjecture
that the SPARC is NP-hard in the strong sense.

3.2 Initial convex MINLP formulation

We formulate the SPARC as an MINLP as follows. For all i ∈ I and j ∈ J ,
let xij be a binary variable, taking the value 1 if and only if user j is assigned
to subcarrier i. Also let pij be a continuous variable, taking the value zero
if xij = 0, but otherwise representing the amount of power supplied to
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subcarrier i. We then have:

max
∑

i∈I
∑

j∈J fi(pij) (2)

s.t.
∑

i∈I
∑

j∈J pij ≤ P (3)∑
j∈J xij ≤ 1 (∀i ∈ I) (4)∑

i∈I fi(pij) ≥ `j (∀j ∈ J) (5)

pij ≤ Pxij (∀i ∈ I, j ∈ J) (6)

pij ∈ R+ (∀i ∈ I, j ∈ J) (7)

xij ∈ {0, 1} (∀i ∈ I, j ∈ J). (8)

The objective function (2) represents the total data rate. The constraint (3)
imposes the power limit. The constraints (4) ensure that each subcarrier is
allocated to at most one user. The constraints (5) are the user rate con-
straints. The constraints (6), called variable upper bounds (VUBs), ensure
that pij is zero whenever xij is zero. The remaining constraints are the usual
non-negativity and binary conditions.

Note that, for all i ∈ I, the function fi is concave over the domain [0, P ].
As a result, the objective function (2) is concave, and the constraints (5) are
convex. This means that the MINLP is convex, and therefore its continuous
relaxation can be solved efficiently via convex programming techniques.

Many other OFDMA optimisation problems can be formulated in a sim-
ilar way. For brevity, we give just three examples. If one wishes to give
each user j ∈ J a weight wj ≥ 0, as in [24, 34], then one changes the objec-
tive function (2) to

∑
j∈J wj

∑
i∈I fi(pij). If one wishes to impose an upper

bound u on the power assigned to each subcarrier, as in [15], one changes
P to u in the VUBs (6). If one does not have enough capacity to satisfy all
of the users, and one wishes to maximise the number of satisfied users, one
changes the right-hand side of the rate constraints (5) to `jzj , where zj is a
new binary variable, and changes the objective function to

∑
j∈J zj .

3.3 Modified convex MINLP formulation

It is well known (see, e.g., Section 2 of [28]) that MINLPs can often be
made easier to solve by the addition of new variables, representing simple
components of nonlinear functions. This turned out to be the case for our
problem. Accordingly, for i ∈ I and j ∈ J , we introduce a new non-negative
continuous variable, say rij , representing the quantity fi(pij). (We use rij
because it represents the data rate of subcarrier i when xij = 1.) We then
modify the formulation to:

max
∑

i∈I
∑

j∈J rij (9)

s.t. (3), (4), (6)− (8) (10)∑
i∈I rij ≥ `j (∀j ∈ J) (11)
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rij ≤ fi(pij) (∀i ∈ I, j ∈ J). (12)

rij ∈ R+ (∀i ∈ I, j ∈ J). (13)

With these modifications, eveything is linear apart from the (convex) con-
straints (12).

4 An Exact Algorithm for the SPARC

We now present our exact algorithm for the SPARC. Subsection 4.1 presents
the algorithm in its simplest form. Enhancements to the algorithm are
presented in Subsections 4.2 to 4.5.

4.1 A simple outer approximation algorithm

Since MILP solvers are more readily available (and often more reliable)
than MINLP solvers, we decided to solve the SPARC by means of Outer
Approximation (OA), which involves the solution of a series of progressively
finer MILP relaxations of the original convex MINLP [6, 8]. The key idea
is to approximate the convex constraints (12) with a collection of linear
constraints of the form:

rij ≤ fi(p̄) + f ′i(p̄) (pij − p̄), (14)

where the p̄ values are selected from the domain [0, P ], and f ′i denotes the
first derivative of fi. The constraints (14) are called Kelley cuts, since they
were first developed by Kelley [16] to solve convex NLPs.

A high-level description of a rudimentary OA algorithm for the SPARC
is given in Algorithm 1. Here are some words of explanation:

• The algorithm requires two tolerance parameters. The parameter ε1
is the minimum acceptable violation of a Kelley cut, expressed as a
percentage of the right-hand side of constraint (12), and the parameter
ε2 is the maximum acceptable relative gap between the final values of
the bounds U and L.

• For SPARC instances arising in practice, the Ni values can be very
small (e.g., 10−12). This means that the coefficient f ′i(p̄) in the Kelley
cut can be very large when p̄ is close to zero, which can cause serious
numerical difficulties. For this reason, instead of setting p̄ to p∗ij , we
set it to f−1(r∗ij), which is larger (see Figure 1).

• To construct our initial MILP relaxation, we include the objective
function (9), the constraints (3), (4), (6)-(8), (11) and (13), and a
collection of |I| |J | Kelley cuts; namely, those Kelley cuts that are
tight at the optimal solution to the continuous relaxation of (9)–(13).
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Algorithm 1: Outer Approximation for SPARC

input : power P , bandwidths Bi, noise powers Ni,
data rate limits `j , tolerances ε1, ε2.

Set lower bound L to 0 and construct initial MILP;
repeat

Solve the current MILP;
if the MILP is infeasible then

Output “The instance is infeasible.” and quit;
end
Let (x∗, p∗, r∗) be the optimal solution to the MILP;
Let U be the associated upper bound;
Solve an NLP to find the best p for the given x∗;
if the NLP is feasible then

Let p′ be the optimal NLP solution;
Let L′ be the associated profit;

end
if L′ > L then

Set L to L′ and save the incumbent solution (x∗, p′);
end
for all i ∈ I and j ∈ J such that x∗ij = 1 do

if the constraint (12) is violated by more than ε1 then
Let p̄ = f−1(r∗ij);

Generate the Kelley cut (14) for the given i, j and p̄;
Add the cut to the MILP;

end

end

until L > 0 and (U − L)/L ≤ ε2;
output: A near-optimal solution (x∗, p′) or an infeasibility warning.
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Figure 1: Choosing p̄ in order to avoid numerical issues.

• The best SPARC solution found so far, if any, is called the “incum-
bent”. After each MILP relaxation has been solved, we attempt to
find a new incumbent by solving the NLP:

max

∑
i∈I

fi(pi) :
∑
i∈I

pi ≤ P,
∑
i∈Sj

fi(pi) ≥ `j (j ∈ J), p ∈ R|I|+

 ,
where Sj = {i ∈ I : x∗ij = 1} is the set of subcarriers that were
allocated to user j in the MILP solution. Since this NLP has only |I|
variables, it is usually solved very quickly.

Our preliminary experiments with this OA algorithm revealed that it
struggled to solve even very small SPARC instances. Fortunately, we were
able to improve the algorithm dramatically with four modifications. These
are described in the following four subsections.

4.2 Perspective cuts

The main problem with the OA algorithm turned out to be that the MILPs
had extremely weak continuous relaxations. To strengthen them, we used
the following ideas of Frangione & Gentile [11].

Consider a convex MINLP in which the objective or constraints contain
a term f(y), where y is a vector of continuous variables and f is a convex
function. Suppose that the convex MINLP also contains a binary variable x,
with the property that, if x takes the value zero, then all of the components
of y must also take the value zero. Then the continuous relaxation of the
convex MINLP is strengthened if we replace the function f(y) with the
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perspective function xf(y/x). The effect of this strengthening on an OA
algorithm is as follows. Let z be a continuous variable representing the
function f(y), and let

z ≥ f(ȳ) +∇f(ȳ) · (y − ȳ),

be the associated Kelley cuts. Letting z represent the perspective function
xf(y/x) instead, the Kelley cuts change to:

z ≥ ∇f(ȳ) · y +
(
f(ȳ)−∇f(ȳ) · ȳ

)
x.

These cutting planes are called perspective cuts. Note that, when x = 1,
they reduce to Kelley cuts, but when x < 1, they are stronger.

To apply this idea to the SPARC, observe that, for all i ∈ I and j ∈ J ,
the continuous variable pij must be zero whenever xij is zero. Accordingly,
we can replace the Kelley cuts (14) with the perspective cuts

rij ≤ f ′i(p̄) pij +
(
fi(p̄)− f ′i(p̄) p̄

)
xij (∀i ∈ I, j ∈ J, p̄ ∈ [0, P ]). (15)

We found that using perspective cuts in place of Kelley cuts improved the
running time of the MILP solver, and therefore of the whole OA algorithm,
by two orders of magnitude (for given values of the tolerance parameters
ε1, ε2).

We believe that this is the first time that perspective cuts have been
applied to an optimisation problem from mobile wireless communications.
For applications to problems in wired communications, see, e.g., Frangioni
et al. [9, 10]. Applications in location, scheduling, network design, finance
and power generation are surveyed in Günlük & Linderoth [13].

4.3 Pre-Emptive Cut Generation

In our experiments with the OA algorithm, we noticed the following phe-
nomenon. The upper bound U would remain virtually unchanged for several
iterations, then decrease, then remain virtually unchanged for several iter-
ations, and so on. The cause of this turned out to be symmetry, or, more
precisely, near-symmetry, among users. (See, e.g., Margot [20] for an intro-
duction to symmetry issues in integer programming.)

Consider a fixed subcarrier i ∈ I, and suppose that x∗ij = 1 in the
optimal solution to the current MILP relaxation. If r∗ij > fi(p

∗
ij), then a

perspective cut is generated for the given i and j. In the next iteration,
however, the MILP solver simply selects a user j′ such that `j′ is similar
to `j , sets xij′ = 1, and sets pij′ and rij′ to the values that pij and rij had
before. If this happens for all i ∈ I, then the upper bound does not decrease
even after adding a whole round of perspective cuts. In the worst case, when
all of the `j values are similar, the upper bound will decrease only after |J |
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Figure 2: Typical evolution of percentage gap between upper bound and
optimum, without pre-emptive cut generation (hollow circles) and with pre-
emptive cut generation (filled circles).

MILPs have been solved, i.e., only after a perspective cut has been added
for all pairs i and j.

We experimented with several ways to address this symmetry problem.
In the end, the most effective approach was to generate more cuts in each
major OA iteration. Specifically, in Algorithm 1, we replaced the line

“Generate the Kelley cut (14) for the given i, j and p̄”

with the line

“For all j ∈ J , generate the perspective cut (15) for the given i, j and p̄.”

Note that the additional cuts are not violated in the current iteration, but
are likely to be violated in future iterations. For this reason, we call this
technique pre-emptive cut generation (PCG). We found that PCG reduced
the number of OA iterations, and therefore the running time of the whole
OA algorithm, by at least an order of magnitude (again, for given values of
ε1, ε2).

Figure 2 demonstrates the benefits of PCG. It shows the evolution of the
percentage gap between the upper bound and the optimal objective value,
for a random instance with |I| = 36 and |J | = 10, both with and without
PCG. Without PCG, over 70 iterations are needed to obtain an upper bound
within 0.1% of optimal. With PCG, only 8 iterations are needed. A similar
benefit is obtained with regard to running time. We remark that the benefit
of PCG increases as the number of users increases.
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4.4 Pre-processing

Thirdly, and perhaps most surprisingly, we discovered that many SPARC
instances can be solved very quickly with some (relatively) straightforward
procedures, which we refer to as pre-processing. Our pre-processing consists
of three phases: an upper-bound computation, an infeasibility test, and a
primal heuristic.

In the first phase, we relax the SPARC by dropping the rate constraints.
The assignment of subcarriers to users then becomes irrelevant, and only the
power allocation matters. Accordingly, we can compute an upper bound for
the SPARC by solving the NLP (1). Given that the NLP is convex and
separable, and has only |I| variables, one can expect to solve it much more
quickly than the SPARC itself. We let p∗ denote the optimal solution of the
NLP, and let U =

∑
i∈I fi(p

∗
i ) be the associated upper bound.

The second phase is a quick test for infeasibility. The idea is that, if
U <

∑
j∈J `j , then the SPARC instance must be infeasible, since there is

no way to satisfy all of the rate constraints simultaneously. In that case, we
can stop immediately.

The final phase is based on the following observation: since the fi(p
∗
i )

achieves the optimal transmission rate, if we can find an allocation of chan-
nels to users that meets all rate constraints, it must be optimal, and we can
again stop immediately. We experimented with constructive heuristics for
finding such a solution. In the end, however, it turned out to be best simply
to feed the following 0-1 LP into an MILP solver:

max
∑

i∈I
∑

j∈J fi(p
∗
i )xij∑

j∈J xij ≤ 1 (∀i ∈ I)∑
i∈I fi(p

∗
i )xij ≥ `j (∀j ∈ J)

xij ∈ {0, 1} (∀i ∈ I, j ∈ J).

One can check that this 0-1 LP is feasible if and only if there exists a SPARC
solution with profit equal to U . (Details on the MILP solver and parameter
settings are given at the start of Section 5.)

In general, one can expect our pre-processing routines to be effective
when the `j values are either very large (in which case the instance is quickly
proven infeasible) or reasonably small (in which case the pre-processing al-
gorithm can easily find an optimal solution). The results in Section 5 show
that, in fact, the range of `j values for which pre-processing fails is very
narrow.

4.5 Warm-starting

Our fourth and final improvement is concerned with warm-starting the OA
algorithm. In our preliminary experiments with the algorithm, we noticed
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that some of the r∗ij values started out very high and then decreased very
slowly from one iteration to the next. Investigation of the output revealed
the following:

• The reason for the initial high r∗ij values is that, in the optimal solution
to the continuous relaxation of (9)–(13), all x variables take the value
1/|J |, and all p variables take very small values (typically close to
P/(|I| |J |)). This in turn is due to the very high slope of the functions
fi(pij) near zero. As a result, the initial family of perspective cuts is
generated with excessively small values of p̄.

• The reason for the slow decrease was caused by our “cautious” rule
for selecting p̄ when generating additional cuts (see Subsection 4.1).
That is, it tends to generate cuts with rather large values of p̄ in the
early iterations of the OA algorithm.

In order to address this issue, we decided to use a different rule for
selecting the initial set of perspective cuts. Specifically, for a given i ∈ I
and j ∈ J , we include three cuts, with p̄ set to each of:

• P , the maximum value possible;

• p∗i , where p∗ is the vector obtained in the first pre-processing phase
(see the last subsection);

• the harmonic mean of p∗i and P , i.e.,
√
p∗iP .

We found that this change led to a roughly 40% additional reduction in both
the number of OA iterations and the overall running time.

5 Computational Experiments

The enhanced Outer Approximation algorithm was coded in Julia v0.5 and
run on a virtual machine cluster with 16 CPUs (ranging from Sandy Bridge
to Haswell architectures) and 16GB of RAM, under Ubuntu 16.04.1 LTS.
The program calls on MOSEK 7.1 (with default settings) to solve the NLP
(1) in the first pre-processing phase, and on the mixed-integer solver from
the CPLEX 12.6.3 Callable Library (again with default settings) to solve the
MILP relaxations. We also used the mixed-integer solver to solve the 0-1 LP
in the third pre-processing phase, but with the parameter MIPemphasis set
to “emphasize feasibility” and a time limit of 5 seconds imposed. Finally,
both tolerance parameters ε1, ε2 were set to 0.1%.

5.1 Test instances

For our batch of experiments, the number of subcarriers, |I|, was set to 72,
the noise powers Ni were set to random numbers distributed uniformly in
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(0, 10−11), and the power limit P was set to 36W, i.e., 0.5W per subcarrier.
These figures are typical of a small (typically indoor) base station. Following
the IEEE 802.16 standard, the bandwidths Bi were all set to 1.25MHz. We
considered four values for the number of users, |J |: 4, 6, 8 and 10.

Generating suitable user demands (i.e., `j values) turned out to be more
difficult, for the following reason. Consider the initial upper bound U com-
puted in the pre-processing phase (Subsection 4.4), along with the quantity∑

j∈J `j

U
,

which we call the demand ratio (DR) of the given SPARC instance. If the
DR exceeds 1, then the instance is immediately detected to be infeasible
in phase 2 of the pre-processing procedure. On the other hand, if the DR
is much smaller than 1, then an optimal solution to the instance is easily
found in phase 3 of the pre-processing procedure. Thus, the DR is a critical
parameter in determining the difficulty of an instance. Unfortunately, the
DR cannot be known without solving the NLP (1).

This led us to use the following rather complicated procedure to generate
the `j values. For a given |I|, |J |, B, N and P , we solve the NLP (1) to
obtain U . Then, for all j ∈ J , we generate a random number zj , which
follows the unit lognormal distribution. (That is, zj = etj , where tj is
Normally distributed with zero mean and unit variance.) We then use the
formula:

`j =
zj ∗DR ∗ U∑

k∈J zk
.

One can check that this procedure yields instances with the desired DR. We
considered DR values from 0.90 to 0.99 in steps of 0.01. For each combination
of |J | and DR, we generated 500 random instances. This makes 4×10×500 =
20, 000 instances in total.

5.2 Experimental results

We start by presenting results obtained with pre-processing alone. We were
surprised to find that all instances with DR below 0.96, and many instances
with higher DR value, could be solved by pre-processing within the 5s time
limit. Table 1 shows, for various combinations of |J | and DR, the number
of instances (out of 500) that could not be solved by pre-processing.

We see that, as expected, pre-processing grows less effective as the DR
approaches 1 from below. Interestingly, it also tends to get less effective
as |J | increases. This is probably because, as |J | increases, each user is
allocated fewer subcarriers, which gives the pre-processing algorithm fewer
opportunities to meet the demand of each user.

We remark that pre-processing was very fast for the majority of the
instances. In about 80% of the cases, it took less than 0.1s. In about 97%
of the cases, it took less than 1s. The time limit of 5s was rarely exceeded.
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Table 1: Number of instances not solved by pre-processing

Demand Ratio

|J | 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

4 0 0 0 0 0 0 0 0 0 15
6 0 0 0 0 0 0 0 0 2 71
8 0 0 0 0 0 0 0 4 43 250
10 0 0 0 0 0 0 1 47 209 435

Table 2: Number of instances proved infeasible by OA algorithm

Demand Ratio

|J | 0.97 0.98 0.99

4 — — 9
6 — 1 24
8 — 2 56
10 — 8 81

We call the instances that were unsolved by pre-processing hard. For
each hard instance, we ran our exact OA algorithm until either (a) the
gap between the upper bound U and the lower bound L, measured as a
percentage of L, dropped below 0.1%, (b) the instance was proved to be
infeasible, or (c) we exceeded a time limit of 120 seconds.

In Table 2, we report the number of hard instances proved to be infeasible
by the OA algorithm. As expected, when DR and/or |J | take higher values,
the proportion of infeasible instances increases. We remark that the average
time taken to prove infeasibility of these instances was about 1.35s.

Finally, in Table 3, we report the number of feasible hard instances solved
within the time limit, and the mean time (in seconds) taken to solve them.
We see that the OA algorithm solves many of these instances quickly, but
runs into difficulty for large values of DR and/or |J |.

Table 3: Number of instances solved / Mean time taken by OA algorithm

Demand Ratio

|J | 0.95 0.96 0.97 0.98 0.99

4 — — — — 4/35.65
6 — — — 1/30.93 40/36.77
8 — — 3/64.37 33/67.51 116/53.24
10 — 1/31.25 22/58.66 80/66.57 54/67.78
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The upshot of all this is that the majority of the instances could be
solved in less than a second with the pre-processing algorithm, and most of
the remaining instances could be solved (or proved infeasible) in about one
minute by the OA algorithm. This means that our algorithms are potentially
of practical use, especially in a so-called slow fading environment, where
users switch base stations infrequently (as long as DR is not unusually close
to 1).

5.3 Comparison with BONMIN

Finally, we compared our algorithm with the open-source MINLP solver
BONMIN [2]. In our initial experiments, we tried feeding four different
formulations to BONMIN: the original formulation (2)–(8), the modified
formulation (9)–(13), and the formulations obtained from those by replacing
the functions fi(pij) with their perspective functions xijfi(pij/xij). It turned
out that BONMIN consistently solved the second formulation at least one
order of magnitude faster than the first, and generated an error message
(presumably due to division by zero) when attempting to solve either of the
perspective-based formulations.

Surprisingly, even with the best formulation, BONMIN struggled to solve
most of the 20,000 instances that we mentioned above. Thus, we created
some simpler instances. Specifically, for four combinations of channels and
users, we created instances with DR set to 20%, 50% and 99%. This makes
12 instances in total.

Table 4 presents details of the 12 instances, along with the running times
in seconds for four algorithms: B-OA (Outer Approximation from BONMIN
with MILP sub-solver set to CPLEX), B-BB (simple branch-and-bound from
BONMIN), our pre-processing procedure, and our OA algorithm. A time
limit of 12 hours was applied to all the algorithms. We mark instances
where the time limit was exceed as “TL”, instances where BONMIN wrongly
concluded that a local optimum was a global optimum as as “LOC”, and
instances not solved by pre-processing as “NS”.

Clearly, BONMIN struggles to solve the SPARC. We think that this is
due mainly to (i) the ill-conditioning of the functions fi(pij) at zero men-
tioned in Subsection 4.1, and (ii) the high degree of near-symmetry, as dis-
cussed in Subsection 4.3.

6 Conclusion

Joint subcarrier and power allocation problems arise frequently in mobile
wireless communications. For one such problem, that we have called the
SPARC, we have shown that it is possible to devise an effective exact al-
gorithm based on intelligent pre-processing and a judicious use of known
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Table 4: Running times of our algorithms compared with two algorithms of
BONMIN (when using formulation (9)–(13))

Algorithm

|I|/|J | DR B-OA B-BB Pre-Processing OA Exact

10/2
20% 22.56 387.51 0.01 0.06
50% 115.75 352.10 0.01 0.14
99% 253.52 5328.88 0.01 0.19

10/4
20% 42390.65 TL 0.01 0.07
50% 11578.19 TL 0.01 0.31
99% 17806.97 TL NS 1.28

72/2
20% LOC TL 0.01 0.49
50% LOC TL 0.01 0.50
99% TL TL 0.01 0.70

72/4
20% LOC TL 0.01 1.45
50% LOC TL 0.01 1.50
99% TL TL 0.01 5.87

MINLP tools, including outer approximation, perspective cuts and symmetry-
breaking.

There are several interesting topics for future research. First, we would
like to prove that SPARC is NP-hard in the strong sense. Second, it would
be interesting to try using a “one-tree” approach, such as LP/NLP-based
branch-and-bound, instead of OA (see [2, 21]). Third, it would be worth
trying to adapt our exact algorithm to other resource allocation problems in
mobile wireless systems, especially variants in which one wishes to maximise
energy efficiency (see Subsection 2.2), or in which not all user demands can
be met (see Subsection 3.2). Finally, one could consider how to allocate
OFDMA resources dynamically in a fast-fading environment, in which users
arrive and depart frequently in a stochastic manner.
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