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Abstract: In this paper, the supercritical carbonation process of cement-based materials is 

modelled by introducing a random porosity field to simulate the heterogeneous geometry of the 

carbonation profile. The suitability of two different random fields of porosity, based on the 

Probability Density Function (PDF) and the Ellipsoidal Autocorrelation Function (EAF) methods, 

are investigated, respectively, in simulating the distribution of porosity in cement mortar. After 

incorporating the above random fields into an established supercritical carbonation model, it is 

found that with some modifications, the EAF method with consideration of spatial correlation 

produces better simulation of the irregularities of the carbonation zones that have been observed 

from experimental results. It is also found that for given average porosity and coefficient of 

variation, the predicted average and maximum carbonation depths have much smaller coefficients 

of variation. The validated EAF supercritical carbonation model is then used in parametric studies 

that are conducted to assess the effect of various factors on the carbonation depth of the chemical 

process.  
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1. Introduction 

Carbonation is one of the main reasons affecting durability of concrete structures. Ashraf[1] 

and Šavija et al[2] presented a comprehensive review on the carbonation of cement-based materials, 

which showed that carbonation could have both positive and negative effects on concrete 

properties. Carbonation has long been recognized as one of the factors causing reinforcement 

corrosion[3]. Carbonation causes numerous chemo-mechanical changes in the cement mortar, 

including changes in porosity, pore size distribution and chemistry, that can enhance its strength 

and reduce its permeability[4-6]. The above researches on carbonation of cement based materials 

were mainly on natural carbonation and its potential negative impact on the performance of 

existing structures. In the recent years, however, the researchers in this area have paid more 

attention on studying the beneficial aspects of material carbonation, due to the rapid development 

of the accelerated and supercritical carbonation techniques. These researches include modification 

of composition and microstructure of cement based materials using carbonation[7-9], use of CO2 
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curing to improve material properties[10, 11], CO2 capture and storage[12] and carbonation of 

hazardous water materials[13]. Clearly, further research on the carbonation process of cement and 

concrete is required in order to maximize the benefits and reduce the negative effects caused by 

carbonation. 

Carbonation of cement based materials is a complex multi-physics process[12, 14-17], involving 

chemical reactions of CO2 with CH and C-S-H; gas-liquid two phase flow; dispersion and 

diffusion of CO2 in water; and temperature propagation. It is also a chemical-physical process of, 

e.g., calcium leaching and calcite precipitation. It is well known that carbonation will cause 

material property changes in porosity, coefficients of diffusion and permeability, saturation and PH 

value, etc. At the same time, the above changes of material properties will affect the on-going 

chemical-physical carbonation process. Additionally, the state of CO2 will have an impact on the 

chemical process. When the temperature and pressure exceed 304.12K and 7.38MPa, which are 

their respective critical values, CO2 is in a supercritical fluid state that has a similar density of 

fluid and can effuse through porous materials, such as cement based materials, like a gas[18]. When 

the state of CO2 are between supercritical and the natural atmospheric states, the carbonation of 

cement-based materials is defined as accelerated carbonation. Kinetic models of carbonation 

subjected to various carbonation conditions have already be developed and used often to predict 

depth of carbonation in cement-based materials. 
Carbonation depth is one of the most important characteristics that are used to define the 

extent of the chemical process taking place during carbonation. Experimental research has shown 

that under either natural[19] or supercritical[19] conditions, the boundaries of carbonation zones 

exhibit irregular shapes characterized by distinctive maximum and minimum carbonation depths. 

However, current theoretical and numerical models are almost exclusively based on the 

assumption that the materials are isotropic and homogenous[20], resulting in an average 

carbonation depth[20]. In practical applications, it is the maximum, rather than the average, 

carbonation depth that is critical in, e,g., reinforcement corrosion analysis. Cement-based 

materials, especially with added aggregates, are typical examples of nonhomogeneous porous 

materials that consist of randomly distributed pore in the cement mortar and randomly distributed 

aggregates. All the above inhomogeneity will have significant impact on the distribution of 

carbonation depth. Pan, et al[22] considered the randomness of aggregates in their natural 

carbonation model and found that though the cement mortar was assumed to be uniform, the 

existence of aggregates led to a variable carbonation depth. Rimmelé et al[22] studied random 

porosity of Portland cement by exposing it to liquid CO2. Zha and Yu[15] investigated 

experimentally the carbonation depth of cement mortar subjected to supercritical conditions, 

which has shown a carbonation zone of irregular boundaries. Moreover, Lu, et al’s[24] experiment 

confirmed that saturation was also randomly distributed. Clearly, all the above randomness will 

play a role in the carbonation process of porous materials. Thus, in order to accurately simulate the 

carbonation process of cement based materials, a model that takes into account material 



*Correspondence author: Jianqiao Ye [j.ye2@lancaster.ac.uk] 
 

inhomogeneity, rather than the current commonly-used model based homogenization, is essential, 

especially in predicting the maximum carbonation depth.  

Currently, material inhomogeneity of concrete is considered by incorporating a randomly 

distributed aggregates or porosity model. Using a random aggregate model, Han, et al [25] studied 

the effect of aggregates on carbonation penetration. Huang, et al[26] and Ruan, et al[27] studied the 

carbonation process of concrete and obtained a non-uniform distribution of carbonation depth. 

There have been extensive and well developed research reported in the literature on using random 

aggregates models in micro-scale concrete modelling for, such as damage and failure[28, 29] and 

ionic transport[30], etc.；For cement mortar, Diamond et al[31] and Shi et al[32] have shown that a log 

normal function could be used to model pore size distribution. To the authors’ best knowledge, 

there is no published work on using random porosity models in supercritical carbonation research, 

though they have been used in some other applications. For example, Liu, et al[33] used a random 

porosity field of log normal distribution to simulate the heterogeneous nature of saline aquifers 

and study the pressure and saturation distributions of the supercritical CO2 after injection; Li[34] 

studied the effect of pore size distribution on chloride diffusion in concrete. Both models did not 

consider spatial correlation of porosity. For detecting void content in composite materials 

ultrasonically, Lin, et al[34] developed a two-dimensional porosity model based on the method of 

ellipsoidal autocorrelation function, where spatial correlation was considered. Since the size of 

pores in cement mortar is small, it is difficult to simulate its pore distribution by following a 

random aggregate distribution model. Using a random distribution field to define the magnitude of 

porosity and spatial inhomogeneity of cement mortar can be a better option. 

To address the issues raised above, this paper, on the basis of Liu, et al’s[33] probability 

density function method and Lin, et al’s[35] ellipsoidal autocorrelation function method, proposes a 

random distribution field for cement based materials that can take into account both random 

distribution of porosity and its spatial correlation. Introducing the improved random field into the 

supercritical carbonation model developed previously by the authors[15], new studies are carried 

out on the supercritical carbonation of cement based materials. Comparisons are made against the 

experimental tests reported also by the authors[15] to investigate the effect of random distribution 

of porosity in cement mortar on the carbonation depth, such that the irregular carbonation depths, 

particularly, the maximum and minimum depths can be statistically explained and predicted. 

 

2. Random field model of porosity for cement-based materials 

Random field models of porosity are studied in this section for modelling supercritical 

carbonation process in cement-based materials. The random field models of porosity based on the 

method of probability density function[33] and the method of ellipsoidal autocorrelation function[35] 

are compared.  

2.1 Random field model of porosity based on probability density function 
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A random porosity field based on probability density function was used to simulate the 

heterogeneous nature of saline aquifers[33], where the function was assumed to be lognormal 

distribution, as shown in Eq.(1).  
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where x is the random porosity taking between 0 and 1; f(x) is the probability density of x; µ and σ 

are the log mean and log standard deviation.  

The relationship between µ, σ, the average porosity, εm, and the variance of porosity ν can be 

represented by Eqs.(2) and (3). The coefficient of variation CV is described in Eq.(4): 
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In order to generate a lognormal distribution of porosity defined by Eq.(1), a random 

generator based on the Monte Carlo method[36], which can generate any required probability 

density, was used. Fig.1(a) shows the generated porosity distribution with an average porosity of 

0.13 and a variance of 0.01. The probability density function of Fig.1(a) is shown in Fig.1(b) and 

compared with the one calculated from Eq.(1). The comparisons show that the probability density 

function of the generated porosity distribution is very close to that of Eq.(1).  
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Figure 1 Random distribution of porosity based on the method of probability density function 

2.2 Random field model of porosity based on the ellipsoidal autocorrelation function 

A literature review showed that a random field model can also include spatial correlation 

effect. For example, researchers[35, 37, 38] have used ellipsoidal autocorrelation function to generate 

random field to take into account spatial correlation. 
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Lin, et al[35] developed a two-dimensional (2-D) random field model of porosity based on the 

method of ellipsoidal autocorrelation function for random voids distribution in composite 

materials. The random distribution is characterized by an ellipsoidal autocorrelation function in the 

medium. Eq.(5) is the governing equation of random voids distribution based on the method of 

ellipsoidal autocorrelation function[35]. 
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where f is an ellipsoidal autocorrelation function ; a and b are the autocorrelation lengths in the x 

and y directions, respectively; r is the roughness factor (when r=0, it is the Gaussian 

autocorrelation function).  

By following Lin, et al[35]’s process, the porosity distribution with the same average porosity 

and variance as those of Fig.1(a) is shown in Fig.2(a). A close study of the porosity distribution in 

Fig.2(a) showed that the porosity exhibited approximately a normal distribution, as shown in 

Fig.2(b). Also, the distribution of porosity is ranged only from 0.08 to 0.16, which is obviously too 

restrictive to cover a broader range of porosity distribution. In order to generate a log normal 

distribution of porosity and cover a full range of porosity distribution, the process proposed by Lin, 

et al[35] was modified in this research and the modified procedure is shown in the flow chart in 

Fig.3, where log mean and log standard deviation are used and the final random field is expressed 

in terms of an exponential function (see the right branch of the last step in Fig. 3).  
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Figure 2 Random distribution of porosity based on the method of ellipsoidal autocorrelation 
function 
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Figure 3 The flow chart of generating the random porosity model based on the method of 

ellipsoidal autocorrelation function 

The distribution of porosity using the modified ellipsoidal autocorrelation function method is 

presented in Fig.4(a), where the spatial correlation of porosity is evident. The calculated 

probability density of Fig.4(a) is shown in Fig.4(b) and compared with the target probability of 

Eq.(1). It is clear that the modified ellipsoidal autocorrelation function method has now provided a 

log normal distribution of porosity that is ranged from 0 to 1. The comparisons also show that the 

probability density from the modified ellipsoidal autocorrelation function method agrees well with 

the targeted log normal distribution. 
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a) Distribution of porosity            b) Validation of porosity model 

Figure 4 Random distribution of porosity based on the method of modified ellipsoidal 

autocorrelation function 

 

From the above analysis, it can be seen that both the random generator based on the Monte 

Carlo method and the modified ellipsoidal autocorrelation function method can produce almost 

equally well the required log normal distribution of porosity. The suitability of the methods in 

simulating the distribution of pores in a supercritical carbonation process will be further tested in 

the next section.  

3. Theoretical model for supercritical carbonation of cement-based materials 

Concrete carbonation is a complex multi-physics coupling process that can be described by 

the rate of equation of chemical reactions, mass conservation equation, momentum conservation 

equation and energy conservation equation. The mathematical model of supercritical carbonation 

is briefly described below and the details of the model can be found from Zha and Yu[15]. 

3.1 Governing equations of supercritical carbonation 

Eqs. (6), (7), (8), and (9) below are the governing equations of supercritical carbonation, in 

which the rate of chemical reaction, mass conservation for gas-liquid two phase flow, diffusion 

and dispersion of CO2 in water, energy conservation for porous medium, and the solubility of CO2 

in water are all considered. 
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where Rc is the degree of carbonation; g is the mass concentration of CO2 in water; Pa  is the 

pressure of phase α; subscript α refers to w for liquid phase and g for gaseous phase; T denotes 

temperature. The detailed description of the other parameters can be found in Zha and Yu[15]. 

In Eq.((8a)b), k is the intrinsic permeability according to Bary[39] and Shen[12]: 
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where, k0 is the initial intrinsic permeability before carbonation; n is the porosity of material that 

decreases during carbonation. n0 is the initial porosity that depends mainly on the average porosity 

εm, and the coefficient of variation CV, which are derived from a random field model of porosity, 

e.g., a model from Section 2. 

3.2 Initial and boundary conditions 

The governing equations presented in the above section can be solved by imposing 

appropriate initial and boundary conditions. In this study, the conditions used in [15] are introduced. 

They are 

 0 0 0 0 00,  ,  ,  0,  ,  0  c c g g w wR R P P P P g g T T t on= = = = = = = = W   (11) 

 20,  0  cn R n g on×Ñ = ×Ñ = G   (12) 
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where Rc0 (=0) is the initial conditions specifying the degree of carbonation; Pg0 is the initial gas 

pressure; Pw0 is the initial water pressure that can be determined by initial gas pressure Pg0; g0 is 

the initial concentration of dissolved CO2 in water, setting to be zero; T0 is the initial temperature; 

n  is the normal vector of the boundary; Γ2 is the boundary using Neumann's conditions; Γ1 is the 

boundary using Dirichlet’s conditions; Pg,sur is the surrounding gas pressure that is a function of 

time, Pw,sur is the surrounding liquid pressure, and Tsur is the surrounding temperature. The detailed 

description of the other parameters can be found in Zha and Yu[15]. 

4. Effects of random field modeling on the supercritical carbonation process in 
cement mortar 

Fig.5 Shows the carbonation profile of the cement mortar and concrete blocks experimentally 

tested in the previous work[15]. The size of the cement mortar and concrete cubes are both 

100×100×100 (mm). The cement mortar and concrete blocks were all subjected to supercritical 

condition for 5.8 hours. Fig.5 shows clearly that the non-carbonized zones around the centre of the 

blocks have irregular boundaries and the maximum and minimum carbonation depths 

(perpendicular distance to a side of the section) are significantly different. 
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a) Cement mortar block                       b) Concrete block 
Figure 5 Carbonation depth of cement mortar and concrete test blocks[15] 

To simulate the carbonation process shown in Fig.5, two-dimensional cement mortar and 

concrete models were developed, in which the two random fields of porosity distribution 

discussed in Section 2 were implemented, respectively, to simulate the random nature of the 

materials. The size of the 2D models of the cement mortar and concrete cubes are both 100×100 

(mm). It is assumed that the cubes have the following typical porosity properties as listed in Table 

1.  

Table 1 Parameters for cement mortar and concrete 

Materials Porous properties Value References 

Cement mortar 
Average porosity, εm 0.13 [40] 
Coefficient of variation, CV 0.77  
Intrinsic permeability, k0 35×10-21 m2 [40] 

Concrete 
Average porosity, εm 0.122 [41] 
Coefficient of variation, CV 0.50  
Intrinsic permeability, k0 3×10-21 m2 [41] 

 

4.1 The effects of randomness and spatial correlation on carbonation of cement mortar 

COMSOL[42] was used as a numerical platform to simulate the chemical reactions associated 

with carbonation and the results were compared with available laboratory test results[15]. Details of 

how the supercritical carbonation equations were solved by COMSOL can been found in Zha and 

Yu[15]. In this paper, the initial porosity of the supercritical carbonation model was derived first 

from the random field model in Section 2, using the given average porosity and coefficient of 

variation. The initial porosities at each node were then saved in Matlab as a .mat file to be 

allocated to node the supercritical carbonation COMSOL model. Finally a subroutine was written 

to introduce the saved file to the COMSOL model to implement the random distribution of 

porosity in the cement. 

For the sake of comparisons, the predicted carbonation for with and without considering 

randomness and spatial correlation of the porosity of the cement mortar blocks are shown in 
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Figure 6. Fig. 6(a-c) show, respectively, the sections with a uniformly distributed porosity, a 

randomly distributed porosity without spatial correlation (PSD) and a randomly distributed 

porosity with spatial correlation (EAF). To include spatial correlation in Fig. 6 (c), it was assumed 

that the autocorrelation lengths, a and b, in equation (5) were both 0.005. Fig.6(d-f) show the 

respective carbonation results of the cement mortar blocks.  

 

   

a) Uniform porosity distribution 
b) Random porosity distribution 

without spatial correlation 
c) Random porosity distribution 

with spatial correlation 

   
d) Carbonation of model (a) e) Carbonation of model (b) f) Carbonation of model (c) 

Figure 6 Porosity model and carbonation results of cement mortar blocks 

From the above results and comparisons with the test results shown in Fig.6, it can be seen 

that the porosity distribution models of Fig.6(a) and Fig.6(b) cannot satisfactorily capture the 

irregular boundaries of the non-carbonated zones, while the modified ellipsoidal autocorrelation 

function model, which takes into account spatial correlation, is capable of providing more realistic 

and a better prediction to the carbonation depths. Therefore, in the following sections, the 

modified ellipsoidal autocorrelation function method will be incorporated into the supercritical 

carbonation model mentioned in Section 3 to study the carbonation process of cement mortar. 

 

4.2 Effect of random sampling on the variation of carbonation depths in cement mortar 

Applying the above carbonation model for cement mortar blocks with the porosity properties 

shown in Table 1 ( εm=0.13 and a CV=0.77), the carbonation process of 12 random samples were 

studied after they were in the same supercritical condition for 5.8 hours. For illustration purpose, 

only the cross-sections of 6 samples are shown here in Figure 7, where the central blue areas 

represent the non-carbonized zones. In Figure 7, the maximum and minimum carbonation depths 

are also shown, respectively. 
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a) Sample 1                  b) Sample 2                  c) Sample 3 

             

d) Sample 4                  e) Sample 5                  f) Sample 6 
Figure 7 Carbonation results of 6 cement mortar samples 
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Figure 8 Carbonation depths of 12 cement mortar samples 

Fig.8 shows the average, maximum and minimum carbonation depths of the 12 cement 

mortar samples with the same average porosity and coefficient of variation. It can be seen that the 

results are relatively consistent. As expected, the maximum and the minimum depths fluctuate 

more than the average depth. 

Table 2 presents detailed comparisons between the test[15] and the simulation results from the 

12 samples illustrated in Fig.8. In Table 2, the simulated average carbonation depths, the 

maximum and the minimum carbonation depths of the 12 sample obtained from the modified 

ellipsoidal autocorrelation function model are presented along the carbonation depths obtained 

from the uniform porosity model. 

Table 2 The average, maximum and minimum carbonation depth of cement mortar 

Max 

Min 

Max 
Min 

Max 

Min 

Min 

Max 

Max 

Min 

Max 

Min 
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Variables Test[15] Uniform 
model 

Modified EAF model 

Average CV 

Average carbonation depth, D (mm) 26.4 29.5 26.6 0.05 

Maximum carbonation depth, Dmax (mm) 35.7 29.5 39.7 0.09 

Minimum carbonation depth, Dmin (mm) 17.9 29.5 11.9 0.30 

 

From Table 2, it can be seen that the modified ellipsoidal autocorrelation function model can 

provide much better predictions to the carbonation depths than those from the uniform porosity 

model. Especially, the modified ellipsoidal autocorrelation function model provides a good 

estimate of not only the average carbonation depth, but also the maximum and the minimum 

carbonation depths. Moreover, from the samples with a given coefficient of variation of porosity 

(0.77), the coefficients of variation of the average, the maximum and the minimum carbonation 

depths are far smaller and are, respectively, 0.05, 0.09 and 0.30. Especially, the smallest 

coefficient of variation of the average carbonation depth suggests that the average carbonation 

depth is least sensitive to the variation of porosity, followed by those of the maximum and the 

minimum depths.   

Overall, it can be concluded that the proposed random porosity model that considers spatial 

correlation can provide a much improved prediction to the overall cement mortar carbonation 

process. 

 

4.3 The influence of average porosity and coefficient of variation on carbonation process of 

cement mortar 

In the previous sections, an improved cement mortar carbonation model was developed based 

on the consideration of spatially correlated random porosity, and validated against available test 

results. In this section, the model is applied to predict the carbonation depths for cement mortar 

blocks having various average porosities and coefficients of variation. The blocks have the same 

dimensions and under the same supercritical carbonation condition as those analyzed in the 

previous section. The range of the average porosities considered here is from 0.09 to 0.21, 

representing typical cement mortar used in construction design[43]. The coefficients of variation are 

chosen as 0, 0.4, 0.5, 0.6, 0.7, 0.8. Fig. 9. shows the carbonation results of the mortar blocks based 

on the modified ellipsoidal autocorrelation function porosity model. When the coefficient of 

variation, CV, is 0, the porosity is distributed uniformly, resulting in a constant carbonation depth 

and a regular non-carbonated zone. Irregularities occur when the CV becomes non-zero. Figure 9 

shows the images of the predicted carbonation. 
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Figure 9 Carbonation of mortar blocks based on the random porosity model 

 

Fig.10 shows the measured minimum, average and maximum carbonation depths from Fig.9  

for the selected range of average porosities and coefficients of variation.  

0.06 0.09 0.12 0.15 0.18 0.21
0

10

20

30

40

50

60

 

 

 M
in

im
um

 c
ar

bo
na

tio
n 

de
pt

h 
(m

m
)

Average porosity

CV=
 0.0
 0.4
 0.5
 0.6
 0.7

 
0.06 0.09 0.12 0.15 0.18 0.21
0

10

20

30

40

50

60

 

 

A
ve

ra
ge

 c
ar

bo
na

tio
n 

de
pt

h 
(m

m
)

Average porosity

CV=
 0.0
 0.4
 0.5
 0.6
 0.7

 
0.06 0.09 0.12 0.15 0.18 0.21
0

10

20

30

40

50

60

 

 

M
ax

im
um

 c
ar

bo
na

tio
n 

de
pt

h 
(m

m
)

Average porosity

CV=
 0.0
 0.4
 0.5
 0.6
 0.7

 
a) Minimum depth             b) average depth           c) Maximum depth 

Figure 10. Effect of average porosity and coefficient of variation on carbonation depth  
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As expected, for a constant coefficient of variation, the carbonation depth always increases 

with the increase of average porosity. For a constant average porosity, the carbonation depths do 

not show any definitive relationship with the coefficient of variation. However, the coefficient of 

variation has the least impact on the average carbonation depth, while has the highest impact on 

the minimum carbonation depth. This observation coincides with the conclusion drawn from Table 

2. Also it is a general trend that an increase of coefficient of variation will normally lead to a 

decrease (increase) of the maximum (minimum) carbonation depths. 

5. Effects of random porosity field on the supercritical carbonation process in 
concrete 

5.1 The effects of randomness and spatial correlation on carbonation of concrete 

In this section, the random porosity field used in the previous section for cement mortar is 

applied to simulate carbonation of concrete where randomly distributed aggregates present. It is 

assumed that aggregates are impermeable[30] due to their much lower porosity. Fig.11(a-c) show 

the randomly distributed aggregates within cement mortar blocks having uniformly distributed 

porosity, randomly distributed porosity without spatial correlation and randomly distributed 

porosity with spatial correlation, respectively. The distribution of the aggregates shown in Fig.11 

is an approximate mapping of a laboratory test block used for validating the numerical model. 

Similar to the comparisons made in Fig.6 for cement mortar, Fig.11(d-f) show the respective 

carbonation profile of the blocks using the three different porosity fields. 

   

a) Uniform field 
b) Random field without spatial 

correlation 
c) Random field with spatial 

correlation 

   
d) Carbonation of model (a) e) Carbonation of model (b)  f) Carbonation of model (c) 

Figure 11 Porosity models and carbonation results of concrete blocks 

 

From Fig.11(f) and a comparison with the test results shown in Fig.5(b) for the concrete 
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blocks, once again, the modified ellipsoidal autocorrelation function model with spatial correlation 

provides the best simulation of the irregularities of the non-carbonated zone (in blue), which 

shows significant difference between the maximum and minimum carbonation depths.  

 

5.2 Effect of random sampling on the variation of carbonation depths in concrete 

Applying the above carbonation model for concrete blocks, the carbonation profiles of six 

concrete samples after being in supercritical condition for 5.8h were studied. Two cases, based on 

the selection of the average porosity εm, coefficient of variation CV and intrinsic permeability k0, 

are presented, respectively in Fig.12 and Fig.13. Fig.12 presents the carbonation profile of the 

section of the concrete blocks when the cement mortar takes the overall concrete porosity shown 

in Table 1 (εm=0.122, CV=0.5 and k0=3×10-21 m2). Fig.13, however, used the cement properties 

(εm=0.13, CV=0.5 and k0=1.5×10-20 m2[40]) for the cement mortar in the concrete blocks. 

 

     

a) Sample 1                   b) Sample 2                  c) Sample 3 

     

d) Sample 4                  e) Sample 5                 f) Sample 6 
Figure 12 Carbonation of 6 concrete samples (εm=0.122, CV=0.5 and k0=3×10-21 m2) 
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a) Sample 1                   b) Sample 2                  c) Sample 3 

     

d) Sample 4                  e) Sample 5                 f) Sample 6 
Figure 13 Carbonation of 6 concrete samples (εm=0.13, CV=0.5 and k0=1.5×10-20 m2) 

 

Fig.14(a) and Fig.14(b) show the respective average, maximum and minimum carbonation 

depths of the 6 concrete samples observed from Fig.12 and Fig.13. It can be seen that for both 

cases, the results are relatively consistent across the six samples.  
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a) Using concrete parameters    b) Using cement mortar parameters  

Figure 14 Carbonation depths of 6 concrete samples 

Table 3 presents detailed comparisons between the laboratory tests and the simulated average 

maximum and minimum carbonation depths taken as the respective average of the six samples. 

Table 3 The average, maximum and minimum carbonation depth of concrete 

Carbonation depth  

/mm 
Test[15] 

εm=0.122, k0=3×10-21 m2  εm=0.13, k0=15×10-21 m2 

Uniform 
model 

Modified EAF 
model 

Uniform 
model 

Modified EAF 
model 
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Average CV Average CV 

Average, D  12.5 8.6 8.5 0.09 18.5 17.6 0.04 

Maximum, Dmax  27.0 9.7 17.5 0.07 20.3 25.5 0.08 

Minimum, Dmin  2.7 6.3 2.6 0.41 15.3 7.2 0.18 

 

From Table 3, it can be observed that in general the modified ellipsoidal autocorrelation 

function provides much better predictions to the maximum and minimum carbonation depths of 

the concrete block than those obtained from using the uniform porosity model. As observed from 

Table 2 for cement mortar, using the modified ellipsoidal autocorrelation function method, the 

coefficients of variation of the average and the maximum carbonation depths of the predicted 

results are much smaller than the coefficient of variation of porosity (0.5). However, from the 

comparisons with the test results shown in Table 3, the simulated carbonation depths are less 

satisfactory for the concrete than for the cement mortar (Table 2). The increased discrepancies 

could be partially attributed to the errors introduced in mapping the random distribution of the 

aggregates and also the effect of aggregates on the porosity distribution of cement mortar, which is 

a challenging topic that is subject to further investigation. 

Overall, it can be concluded that the proposed random porosity model with spatial correlation 

provides much improved predictions to the carbonation process of cement-based materials. 

6. Conclusions 

An improved multi-phase and -physics model for simulating supercritical carbonation 

process of cement-based materials has been presented in this paper. A random porosity model for 

cement-based materials has been used to simulate a supercritical carbonation test. The random 

field model of porosity based on the method of ellipsoidal autocorrelation function was developed 

to take into account the randomness and spatial correlation of porosity that follows a log normal 

distribution. Numerical results were obtained and compared with the experimental results. 

Parametric studies were carried out to assess the effect of average porosity and coefficient of 

variation on the carbonation profile and the carbonation depth. From the present study the 

following conclusions can be drawn: 

1) The developed supercritical carbonation model with random porosity field can be used 

satisfactorily to simulate the carbonation process of cement-based materials with or without 

aggregates. 

2) Introducing spatial correlation of porosity is essential in modelling carbonation of 

cement-based materials to simulate the non-uniform carbonation depth. 

3) Though the simulated shapes of the non-carbonated zones are significantly different for 

different samples due to their randomly generated porosity distributions, the predicted average and 

maximum carbonation depths are more comparable across the samples. It was observed that the 

coefficient of variation of the predicted carbonation depths was always significantly smaller than 
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that of porosity of the tested material. 

4) Compared with the coefficient of variation, the average porosity has a more significant 

effect on the carbonation depth. 

Though the random field model presented in this paper has produced reasonably satisfactory 

results in simulating carbonation of cement mortar and concrete, it was observed that the 

simulations for concrete were less comparable with the laboratory results. Further research is 

required to modify the random porosity model further so that the influence of aggregates on the 

random porosity distribution of concrete can be more accurately considered.  
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