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Abstract

The Lovász theta function of a graph is a well-known upper bound
on the stability number. It can be computed efficiently by solving
a semidefinite program (SDP). Actually, one can solve either of two
SDPs, one due to Lovász and the other to Grötschel et al. The former
SDP is often thought to be preferable computationally, since it has
fewer variables and constraints. We derive some new results on these
two equivalent SDPs. The surprising result is that, if we weaken the
SDPs by aggregating constraints, or strengthen them by adding cutting
planes, the equivalence breaks down. In particular, the Grötschel et
al. scheme typically yields a stronger bound than the Lovász one.

Keywords: stable set problem; semidefinite programming; Lovász
theta function

1 Introduction

Consider an undirected graph G with vertex set V and edge set E. A set of
pairwise non-adjacent (respectively, adjacent) vertices is called a stable or
independent set (resp. clique). Given a graph G, the maximum cardinality
of a stable set (resp. clique) in G is called the stability number (resp. clique
number) and denoted by α(G) (resp. ω(G)). The problem of determining
α(G) (resp. ω(G)) is called the maximum stable set problem or MSSP (resp.
maximum clique problem or MCP).

The complement of G, denoted by Ḡ, is the graph with vertex set V and
edge set

Ē =
{
{i, j} ⊂ V : {i, j} /∈ E

}
.

Since α(G) = ω(Ḡ), the MSSP and MCP are equivalent. They have a
wide range of applications in operational research and computer science.
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Unfortunately, they are NP-hard in the strong sense, and hard even to
approximate (H̊astad [15]).

In his seminal paper, Lovász [18] defined the so-called theta function of
a graph G, denoted by ϑ(G). He then proved that α(G) ≤ ϑ(G) ≤ χ(Ḡ),
where χ(Ḡ) denotes the chromatic number of Ḡ. Grötschel et al. [12] showed
that ϑ(G) can be computed in polynomial time (to arbitrary fixed precision)
by solving a semidefinite program (SDP). This result is remarkable, given
that computing the chromatic number of a graph, or even approximating it,
is also NP-hard in the strong sense (Feige & Killian [8]).

In fact, there are two alternative SDP characterisations of ϑ(G) [13, 19].
The one in [19], having fewer variables and constraints, seems preferable
computationally. Gruber & Rendl [14] showed how to map any feasible
solution to the larger SDP onto a feasible solution of the smaller SDP with
no smaller profit. Yildirim & Fan [26] gave a partial mapping in the reverse
direction. In this paper, we give a complete mapping in both directions,
and then extend it to the weighted case, in which each node has a positive
weight and the goal is to find a maximum weight stable set.

One can define stronger variants of the theta function by adding cutting
planes to the SDPs (see, e.g., [6, 9, 14, 19, 25]). We show that, perhaps
surprisingly, the two SDPs behave differently in this context. In particular,
adding a cutting plane to the smaller SDP can lead to less bound improve-
ment than adding the analogous inequality to the larger SDP.

Going in the opposite direction, Lieder et al. [17] recently proposed to
weaken the theta function, by aggregating equations in the larger SDP. We
show that here, too, the two SDPs behave differently.

The paper is structured as follows. Section 2 is a literature review.
Section 3 presents the results on the theta function and its weighted version.
Section 4 presents the results on strengthened and weakened variants of
the theta function. Some computational results are presented in Section 5.
Concluding remarks are made in Section 6.

Throughout the paper, n will denote |V |, m will denote |E|, e will denote
the all-ones vector of dimension n and J = eeT will denote the all-ones
square matrix of order n. The trace of a square matrix M will be denoted
by Tr(M). Given two symmetric matrices A,B of the same order, A•B will
denote Tr(AB), the usual inner product of A and B.

We will also use the following facts (see, e.g., [13]). A symmetric matrix
M ∈ Rn×n is positive semidefinite (psd) if vTMv ≥ 0 for all v ∈ Rn. The set
of psd matrices of order n forms a convex cone in Rn×n, which is denoted
by Sn+. If M is psd, there exists a matrix Y ∈ Rn×n such that M = Y TY
(Cholesky factorisation). If we let yi denote the ith column of Y , then
Mij = yTi yj for all i and j. The vectors y1, . . . , yn form the so-called Gram
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representation of M . Finally, an augmented matrix of the form(
1 vT

v M

)
,

where v ∈ Rn is psd if and only if the matrix M − vvT is psd (Schur
complement).

2 Literature Review

Now we review the relevant literature. For simplicity of notation, we assume
throughout this section that G contains no isolated nodes.

2.1 LP-based bounds

The standard 0-1 LP formulation of the MSSP is constructed as follows (e.g.,
[13, 21]). For each i ∈ V , let xi be a binary variable, taking the value 1 if
and only if i is in the stable set. The formulation is then:

max eTx

s.t. xi + xj ≤ 1 (∀{i, j} ∈ E) (1)

xi ∈ {0, 1} (∀i ∈ V ).

To strengthen the LP relaxation one can add valid linear inequalities, such
as the following ones, due to Padberg [21]:

• clique inequalities, which take the form
∑

i∈C xi ≤ 1, where C is a
maximal clique in G;

• odd hole inequalities, which take the form
∑

i∈H xi ≤
⌊
|H|
2

⌋
, where H

is a set of nodes that induce an ‘odd hole’ (chordless odd cycle) in G.

Other known inequalities are surveyed, e.g., in [3, 9, 13, 19].
The upper bound obtained if one uses all clique (and non-negativity)

inequalities is called the fractional clique covering number and denoted by
χf (Ḡ). By definition, α(G) ≤ χf (Ḡ) ≤ χ(Ḡ). Unfortunately, computing
χf (Ḡ) is also NP-hard [13]. Nevertheless, reasonably good computational
results have been obtained using LP relaxations (e.g., [1, 4, 10, 11, 20, 23,
24]).

2.2 The theta function

A rather different upper bound on α(G) was derived by Lovász [18]. Suppose
that a vector x ∈ {0, 1}n is feasible for the 0-1 LP formulation presented in
the previous subsection. Define the matrix Z = xxT /(eTx) ∈ [0, 1]n×n. By
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definition, Z is psd and J • Z = (eTx)2/(eTx) = eTx. Moreover, diag(Z) =
x/(eTx), which implies that Tr(Z) = 1. This leads naturally to the following
SDP relaxation of the MSSP, which we will call ‘SDP1’:

max J • Z (2)

s.t. Zij = 0 (∀{i, j} ∈ E) (3)

Tr(Z) = 1 (4)

Z ∈ Sn+. (5)

Lovász called the resulting upper bound ϑ(G), and proved that α(G) ≤
ϑ(G) ≤ χ(Ḡ). Nowadays, ϑ(G) is called the Lovász theta function.

Shortly after the publication of [18], it was shown that SDPs can be
solved in polynomial time (to arbitrary fixed precision) [12]. Thus, ϑ(G)
can be computed efficiently, at least in theory.

Another characterisation of ϑ(G) was derived by Grötschel et al. [13].
Given a feasible vector x ∈ {0, 1}n as before, consider the matrix X = xxT ∈
{0, 1}n×n. By definition, X is psd, its main diagonal is equal to x, and it
has zero entries for all edges. Moreover, the augmented matrix

X+ =

(
1
x

)(
1
x

)T
=

(
1 xT

x X

)
is also psd. This leads to the following SDP relaxation, which we call ‘SDP2’:

max eTx (6)

s.t. Xii = xi (∀i ∈ V ) (7)

Xij = 0 (∀{i, j} ∈ E) (8)(
1 xT

x X

)
∈ Sn+1

+ . (9)

The resulting upper bound is again ϑ(G).
Note that SDP2 has n+m linear constraints, whereas SDP1 has only m+1.

On the other hand, SDP2 has a very nice property [13]: if one projects its
feasible region into x-space, the resulting convex set satisfies all clique and
non-negativity inequalities. This implies that

α(G) ≤ ϑ(G) ≤ χf (Ḡ) ≤ χ(Ḡ),

with equality if G is perfect.
The relationship between SDP1 and SDP2 is more complicated than it

might appear. Gruber & Rendl [14] proved the following. Let (x∗, X∗) be
any feasible solution to SDP2, and let γ = eTx∗ denote its profit. If γ > 0,
then one can obtain a feasible solution Z∗ to SDP1 whose profit J • Z∗ is
no smaller than γ by setting Zij to X∗ij/γ for all i and j. Yildirim & Fan
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[26] proved a partial result in the other direction. Let Z∗ be any feasible
solution to SDP1, again with positive profit γ. Then there exists a feasible
solution (x∗, X∗) to SDP2 whose profit is no smaller than γ, in which

x∗i =

(∑n
j=1 Z

∗
ij

)2

γZ∗ii
if Z∗ii > 0

= 0 otherwise.

We remark that a third SDP formulation of ϑ(G), with n + |Ē| con-
straints, was given by Dukanovic & Rendl [6]. This is preferable when G is
very dense.

2.3 The weighted theta function

Now consider the weighted version of the stable set problem, mentioned in
the introduction. For each vertex i ∈ V , let wi > 0 be the associated weight.
Adapting SDP2 to this case is trivial: just change the objective function to
wTx. Grötschel et al. [12] showed that to adapt SDP1, it is necessary to
replace the objective function with∑

i∈V

∑
j∈V

√
wiwjZij . (10)

The resulting bound, the weighted theta function, is denoted by ϑ(G,w). A
proof that both SDPs yield the same bound can be found in [13].

2.4 Variants of the theta function

As mentioned in the introduction, it is possible to strengthen both SDP1

and SDP2 by adding cutting planes (i.e., valid linear inequalities). Schri-
jver [25] proposed to strengthen SDP1 simply by adding the non-negativity
inequalities

Zij ≥ 0 (∀{i, j} ∈ Ē). (11)

The resulting bound is denoted by ϑ′(G) [13].
Dukanovic & Rendl [6] proposed to add, in addition,

Zik + Zjk ≤ Zkk (∀{i, j} ∈ E, k ∈ V \ {i, j}) (12)

Zik + Zjk ≤ Zij + Zkk (∀ stable {i, j, k}). (13)

As for SDP2, Lovász & Schrijver [19] proposed to add

Xij ≥ 0 (∀{i, j} ∈ Ē) (14)

Xik +Xjk ≤ xk (∀{i, j} ∈ E, k 6= i, j) (15)

xi + xj + xk ≤ 1 +Xik +Xjk (∀{i, j} ∈ E, k 6= i, j). (16)
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Gruber & Rendl [14] proposed to add, in addition,

Xik +Xjk ≤ xk +Xij (∀ stable {i, j, k}) (17)

xi + xj + xk ≤ 1 +Xij +Xik +Xjk (∀ stable {i, j, k}). (18)

For further strengthenings of SDP2, see, e.g., [9, 10, 16, 19]. For compu-
tational results, see, e.g., [1, 4, 6, 14]. Generally speaking, adding cutting
planes usually yields some improvement in the upper bound, but at the cost
of dramatically increased computing times.

Going in the opposite direction, Lieder et al. [17] recently proposed to
weaken the theta function, as follows. Take SDP2 and replace the equations
(8) with the single equation ∑

{i,j}∈E

Xij = 0. (19)

The resulting bound can be computed much more quickly than ϑ(G), but,
unfortunately, it is typically significantly weaker.

3 The Theta Function and its Weighted Version

In this section, we consider the theta function and the two associated SDPs.
In Subsection 3.1, we show how to map a feasible Z∗ onto a feasible X∗. In
Subsection 3.2, we extend the mappings in both directions to the weighted
case.

3.1 The theta function

Yildirim & Fan [26] showed how to map a feasible matrix Z∗ to a feasible
vector x∗ without losing any profit, but they did not show how to construct
the associated matrix X∗. The following theorem shows how to do this.

Theorem 1 Let Z∗ be a feasible solution to SDP1, and let γ = J •Z∗ > 0 be
the associated profit. Let x∗ be defined according to Yildirim and Fan (see
the end of Subsection 2.2). If Z∗ij = 0, then set X∗ij to 0. Otherwise, set X∗ij
to

Z∗ij

√
x∗ix

∗
j

Z∗iiZ
∗
jj

= Z∗ij

(
∑n

k=1 Z
∗
ik)
(∑n

k=1 Z
∗
jk

)
γZ∗iiZ

∗
jj

.

Then the resulting pair (x∗, X∗) forms a feasible solution to SDP2, and its
profit, eTx∗, is at least as large as γ.

Proof. Since the profit of (x∗, X∗) is just eTx∗, it does not depend on
X∗. Therefore, the fact that the profit is at least as large as γ follows from
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the result in [26]. To complete the proof, it suffices to show that (x∗, X∗)
satisfies (7) – (9).

To see that (7) is satisfied, simply note that X∗ii = Z∗iix
∗
i /Z

∗
ii = x∗i by

construction. To see that (8) is satisfied, simply recall that Z∗ij = 0 for all
{i, j} ∈ E, and note that X∗ij = 0 whenever Z∗ij = 0.

To show that (9) is satisfied, it suffices to construct a Gram representa-
tion of the augmented matrix

(X+)∗ =

(
1 (x∗)T

x∗ X∗

)
.

Let Z∗ = Y TY and let y1, . . . , yn be the columns of Y . Note that ||yi|| =√
Z∗ii and that yi is the zero vector whenever Z∗ii = 0. We define vectors

v0, . . . , vn as follows. We set v0 to Y e/
√
γ. For all i ∈ V such that Z∗ii > 0,

we set vi to yi
√
x∗i /||yi||. For all i ∈ V such that Z∗ii = 0, we set vi to the

zero vector.
Now we show that v0, . . . , vn form a Gram representation of (X+)∗. We

do this in three steps. First, we note that vT0 v0 = 1, since

||v0||2 =
||Y e||2

γ
=

(eTY T ) (Y e)

γ
=

eTZ∗e

γ
=

J • Z∗

γ
=

γ

γ
= 1.

Second, we show that vT0 vi = x∗i for all i ∈ V . If Z∗ii = 0, this is trivial,
since vi is the zero vector and x∗i = 0 in this case. On the other hand, if
Z∗ii > 0, we have

vT0 vi =

(
Y e
√
γ

)T yi
√
x∗i

||yi||
= (eTY T yi)

√
x∗i√

γ ||yi||
=

n∑
j=1

Z∗ij

√
x∗i√

γ||yi||
.

Then, since

x∗i =

 n∑
j=1

Z∗ij

2

/ γZ∗ii

when Z∗ii > 0, we have that

vT0 vi =

n∑
j=1

Z∗ij

∑n
j=1 Z

∗
ij

γ||yi||
√
Z∗ii

= x∗i

as desired.
Third, we show that vTi vj = X∗ij for all i and j. If Z∗ij = 0, this is trivial,

since vi and vj are orthogonal and X∗ij = 0 in this case. On the other hand,
if Z∗ij > 0, we have

vTi vj =
(yTi yj)

√
x∗ix

∗
j

||yi|| ||yj ||
=

Z∗ij

√
x∗ix

∗
j√

Z∗iiZ
∗
jj

= X∗ij

as desired. �

7



We illustrate Theorem 1 on a small example:

Example 1: Let G be the graph on 3 nodes with E =
{
{1, 2}, {2, 3}

}
.

It holds trivially that α(G) = ϑ(G) = 2. One can check (e.g., with an
Eigenvalue calculator) that the following matrix is a feasible solution for
SDP1:

Z∗ =

1/3 0 1/3
0 1/3 0

1/3 0 1/3

 ,

We have γ = 5/3. Applying the procedure of Yildirim and Fan, we obtain
x∗ = (4/5, 1/5, 4/5)T , with profit 9/5 > γ. Applying our procedure, we
obtain

X∗ =

4/5 0 4/5
0 1/5 0

4/5 0 4/5

 .

One can check that the corresponding augmented matrix (X+)∗ is indeed
psd. �

The interesting thing about this example is that, if we take the matrix
X∗ and apply the mapping of Gruber and Rendl, we obtain the following
feasible solution of SDP1: 4/9 0 4/9

0 1/9 0
4/9 0 4/9

 ,

with an even better profit of 17/9. Further iterations of the mappings yield
the profit values 33/17, 65/33 and 129/65. It is apparent that this sequence
of profit values is rapidly converging to ϑ(G) = α(G) = 2.

An interesting question is to find conditions on the graph G and the
starting matrix Z∗ under which the sequence of profit values is guaranteed
to converge to ϑ(G). Potentially, this could yield a new (primal) algorithm
to compute ϑ(G). We do not examine this here, however. Instead, we give a
second example, which illustrates how the mappings in both directions work
when both Z∗ and (x∗, X∗) are already optimal.

Example 2: Let G be the odd hole on 5 nodes. That is, let n = 5 and let

E =
{
{1, 2}, {1, 5}, {2, 3}, {3, 4}, {4, 5}

}
.

It holds trivially that α(G) = 2, and Lovász [18] showed that ϑ(G) =
√

5 ≈
2.236. One can check with an SDP solver that the optimal solution Z∗ to
SDP1 has Z∗ii = 1/5 for i ∈ V , Z∗ij = 0 for {i, j} ∈ E, and Z∗ij = (

√
5−1)/10 ≈

0.1236 for {i, j} ∈ Ē. One can also check that the optimal solution (x∗, X∗)
to SDP2 has x∗i = X∗ii = 1/

√
5 ≈ 0.4472 for i ∈ V , X∗ij = 0 for {i, j} ∈ E,
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and X∗ij = (1 − 5−1/2)/2 ≈ 0.2764 for {i, j} ∈ Ē. Finally, one can check
that the mappings between Z∗ and (x∗, X∗) work in both directions. In
particular, (i) Z∗ij = X∗ij/γ for all i and j, as predicted by Gruber and

Rendl, (ii) x∗i =
(
∑n

j=1 Z
∗
ij)

2

γZ∗ii
for all i, as predicted by Yildirim and Fan, and

(iii) X∗ij = Z∗ij

√
x∗i x
∗
j

Z∗iiZ
∗
jj

for all i and j, as predicted by Theorem 1. �

3.2 The weighted theta function

In this subsection, we extend the mappings to the weighted case. We start
by giving an intuitive explanation for the weighted version of SDP1, due to
Grötschel et al. [12], that was presented in Subsection 2.3.

Recall that w ∈ Rn+ is the vector of node weights. Let
√
w denote the

vector in Rn whose ith component is
√
wi. Then, the objective function in

the weighted version of SDP1, namely (10), can be written in the simpler

form
√
w
T
Z
√
w. Now, let x̄ ∈ {0, 1}n be the incidence vector of a stable

set, whose weight γ = wT x̄ is positive. Let z̄ ∈ Rn+ be the vector whose ith
component is

√
wix̄i/

√
γ, and let Z̄ = z̄z̄T . We then have

Z̄ =
Diag(

√
w)x̄x̄T Diag(

√
w)

γ
.

One can check that Z̄ satisfies (3)–(5), and is therefore feasible for SDP1.
Moreover, we have

√
w
T
Z̄
√
w =

√
w
T

Diag(
√
w)x̄x̄T Diag(

√
w)
√
w

γ
=
wT x̄x̄Tw

γ
=
γ2

γ
= γ,

which explains the form of the objective function (10).
We are now in a position to extend the mappings to the weighted case.

This is accomplished in the following two theorems.

Theorem 2 Let (x∗, X∗) be a feasible solution to the weighted version of
SDP2, whose profit γ = wTx∗ is positive. We can obtain a feasible solution
Z∗ to the weighted version of SDP1, whose profit is at least as large, by setting
Z∗ij to

√
wiwjX

∗
ij/γ for all i and j.

Proof. By construction, Z∗ij = 0 whenever X∗ij = 0, and therefore Z∗

satisfies (3). Also, we have

Tr(Z∗) =
∑
i∈V

√
wiwiX

∗
ii

γ
=

1

γ

∑
i∈V

wix
∗
i = γ/γ = 1,

which shows that (4) is satisfied. Moreover, by construction, we have

Z∗ =
Diag(

√
w)X∗ Diag(

√
w)

γ
.
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Since X∗ is psd, it can be factorised as Y TY . This gives

Z∗ =
Diag(

√
w)Y TY Diag(

√
w)

γ
=

(
Y Diag(

√
w)

√
γ

)T (
Y Diag(

√
w)

√
γ

)
,

which shows that (5) is satisfied.
Finally, we have to show that the profit of Z∗ is at least γ. Due to (9)

and the Schur complement, X∗ − x∗(x∗)T must be psd. This implies that
wTX∗w − (wTx∗)2 ≥ 0, and therefore (wTX∗w)/γ ≥ wTx∗. But

wTX∗w

γ
=

√
w
T

Diag(
√
w)X∗Diag(

√
w)
√
w

γ
=
√
w
T
Z∗
√
w,

and this is the profit of Z∗. �

Theorem 3 Let Z∗ be a feasible solution to the weighted version of SDP1,
whose profit γ =

√
w
T
Z∗
√
w is positive. We can obtain a feasible solution

(x∗, X∗) to the weighted version of SDP2, whose profit is at least as large, as
follows. If Z∗ii = 0, set x∗i = 0. Otherwise, set x∗i to(∑n

j=1
√
wjZ

∗
ij

)2

γZ∗ii
.

If Z∗ij = 0, set X∗ij = 0. Otherwise, set X∗ij to

Z∗ij

√
x∗ix

∗
j

Z∗iiZ
∗
jj

= Z∗ij

(∑n
k=1

√
wkZ

∗
ik

) (∑n
k=1

√
wkZ

∗
jk

)
γZ∗iiZ

∗
jj

.

Proof. The proof that (x∗, X∗) is feasible is similar to the proof of Theorem
1. The only difference is that, in the Gram representation of the augmented
matrix (X+)∗, we need to set v0 to Y

√
w/
√
γ.

The hard part is to show that the profit of (x∗, X∗) is at least as large
as that of Z∗. We adapt the proof in [26]. Let V ′ = {i ∈ V : Z∗ii > 0}. By
construction, we have the following for all i ∈ V ′:

x∗i = vT0 vi =

√
x∗i√

γ||yi||
(
yTi Y
√
w
)

=

√
x∗i√

γ||yi||
∑
j∈V

√
wjZ

∗
ij .

Multiplying both sides by ||yi||/
√
x∗i , we have

||yi||
√
x∗i =

1
√
γ

∑
j∈V

√
wjZ

∗
ij .

Now, multiplying these equations by
√
wi and summing over all i ∈ V ′, we

obtain ∑
i∈V ′
||yi||

√
wix∗i =

√
w
T
Z∗
√
w

√
γ

= γ/
√
γ =

√
γ.
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Equivalently,

γ =

(∑
i∈V
||yi||

√
wix∗i

)2

.

By the Cauchy-Schwarz inequality, this cannot exceed(∑
i∈V
||yi||2

)(∑
i∈V

wix
∗
i

)
= Tr(Z∗) wTx∗.

The result then follows from the fact that Tr(Z∗) = 1. �

Together, Theorems 2 and 3 provide an alternative proof that both SDPs
yield the same upper bound, namely ϑ(G,w). They are illustrated on the
following example.

Example 3: Let G be the odd hole on 5 nodes, as in Example 2, but now
suppose that nodes 1, . . . , 4 have weight 2 and node 5 has weight 3. There
are two optimal stable sets, each of weight 5. One can check with an SDP
solver that the optimal solution to the weighted version of SDP1 is as follows
(to 3 d.p.):

Z∗ =


0.074 0 0.057 0.057 0

0 0.194 0 0.057 0.198
0.057 0 0.194 0 0.198
0.057 0.057 0 0.074 0

0 0.198 0.198 0 0.464

 .

One can also check that the optimal solution to the weighted version of SDP2
is

(X+)∗ =



1 0.188 0.494 0.494 0.188 0.788
0.188 0.188 0 0.145 0.145 0
0.494 0 0.494 0 0.145 0.412
0.494 0.145 0 0.494 0 0.412
0.188 0.145 0.145 0 0.188 0
0.788 0 0.412 0.412 0 0.788

 .

These solutions both yield ϑ(G,w) ≈ 5.091 > 5. Finally, one can check that
the mappings described in Theorems 2 and 3 work in this case. �

4 Variants of the Theta Function

Now we consider the variants of the theta function mentioned in Subsection
2.4. In Subsection 4.1, we consider stronger variants that are obtained by
the addition of cutting planes. In Subsection 4.2, we consider the weakened
variant of Lieder et al. [17].
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4.1 Strengthening the function with cutting planes

It is interesting to observe that SDP1 and SDP2 behave rather differently
when it comes to cutting planes. For example, whereas the inequalities
(11), (12) and (13) are very similar to the inequalities (14), (15) and (17),
respectively, the remaining inequalities for SDP2, i.e., (16) and (18), have
not been adapted to SDP1. To explain this fact, we will need the following
definition:

Definition 1 (Padberg [22]) The Boolean quadric polytope of order n,
denoted by BQPn, is

conv
{

(x, y) ∈ {0, 1}n+(n2) : yij = xixj (1 ≤ i < j ≤ n)
}
.

This family of polytopes has been studied in great depth, and many families
of valid and facet-defining inequalities are known (see Deza & Laurent [5] for
a survey). In particular, Padberg showed that the non-negativity inequalities
yij ≥ 0 define facets for 1 ≤ i < j ≤ n.

We will also need the following notation:

• S denotes the set of all incidence vectors of stable sets. That is,

S = {x ∈ {0, 1}n : (1) hold} .

• S+ denotes the set of incidence vectors of non-empty stable sets. That
is,

S+ = {x ∈ S : ||x|| 6= 0} .

• P (Z) denotes the convex hull of all feasible solutions to SDP1 that
represent stable sets. That is,

P (Z) = conv

{
Z ∈ Rn×n+ : Z =

xxT

eTx
for some x ∈ S+

}
.

• P (x,X) denotes the convex hull of all feasible solutions to SDP2 that
represent stable sets. That is,

P (x,X) = conv
{

(x,X) ∈ Rn+n2
: x ∈ S, X = xxT

}
.

We have the following propositions:

Proposition 1 If the inequality λTx+µT y ≤ 0 is valid for BQPn, then the
inequality ∑

i∈V
λiZii +

∑
{i,j}∈Ē

µijZij ≤ 0 (20)

is valid for P (Z). Moreover, the inequalities of this type, together with the
equations (3), (4) and Zij = Zji for 1 ≤ i < j ≤ n, give a complete linear
description of P (Z).

12



Proof. For the sake of brevity, we only sketch the proof. Let Z∗ be an

extreme point of P (Z). We construct a point (x∗, y∗) ∈ Rn+(n2) by setting
x∗i to Z∗ii for i ∈ V and y∗ij to Z∗ij for 1 ≤ i < j ≤ n. Let P (x, y) denote
the convex hull of all such points. Note that P (Z) and P (x, y) are affinely
congruent.

Now, one shows that P (x, y) can instead be obtained as follows. Take
all extreme points of BQPn that satisfy yij = 0 for {i, j} ∈ E, construct
the cone of these points, and then intersect that cone with the hyperplane
defined by the equation eTx = 1. From this, it follows that P (x, y) is
completely described by the equation eTx = 1, the equations yij = 0 for
{i, j} ∈ E, and all valid homogeneous inequalities for BQPn. The result
follows easily. �

Proposition 2 If the inequality λTx+µT y ≤ ν is valid for BQPn, then the
inequality ∑

i∈V
λixi +

∑
{i,j}∈Ē

µijXij ≤ ν

is valid for P (x,X). Moreover, the inequalities of this type, together with
the equations (7), (8) and Xij = Xji for 1 ≤ i < j ≤ n, give a complete
linear description of P (x,X).

Proof. Again, we only sketch the proof. Let (x∗, X∗) be an extreme
point of P (x,X). We construct a point (x∗, y∗) by setting y∗ij to X∗ij for
1 ≤ i < j ≤ n. Let P ′(x, y) denote the convex hull of all such points. Note
that P (x,X) and P ′(x, y) are affinely congruent.

Now, one notes that P ′(x, y) is also equal to

{(x, y) ∈ BQPn : yij = 0 (∀{i, j} ∈ E)} .

From this, it follows that P ′(x, y) is completely described by the equations
yij = 0 for {i, j} ∈ E, and all valid inequalities for BQPn. The result follows
easily. �

As an illustration of these results, we recall that Padberg [22] showed
that the following triangle inequalities define facets of BQPn:

yik + yjk ≤ xk + yij (∀{i, j, k} ⊂ {1, . . . , n}) (21)

xi + xj + xk ≤ 1 + yij + yik + yjk (1 ≤ i < j < k ≤ n). (22)

It is apparent that the inequalities (21) are the source of the inequalities
(12) and (13) for SDP1 and the inequalities (15) and (17) for SDP2. The
inequalities (22) are the source of the inequalities (16) and (18) for SDP2,
but, being inhomogeneous, do not yield any useful inequalities for SDP1.
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Another issue that turns out to be worth considering is the effect that
cutting planes have on the quality of the upper bound on the stability num-
ber. We start with the simplest cutting planes, the non-negativity inequal-
ities (11) and (14). One can check that the mappings given by Gruber &
Rendl [14], Yildirim & Fan [26] and ourselves all preserve non-negativity.
Thus, the bound obtained by imposing non-negativity on X in SDP2 is the
same as the one obtained by imposing it on Z in SDP1, i.e., is nothing but
Schrijver’s bound ϑ′(G).

More generally, suppose we strengthen SDP2 by adding an arbitrary col-
lection of homogeneous valid inequalities, such as some or all of (14), (15)
and (17). Let (x̃, X̃) be the optimal solution to the strengthened relaxation.
The mapping of Gruber and Rendl, which merely divides X̃ by a constant,
yields a feasible solution Z̃ to SDP1 that satisfies the analogous homogeneous
inequalities, and has at least as much profit. This implies that the bound
obtained by adding the inequalities to SDP2 is at least as strong as the one
obtained by adding the analogous inequalities to SDP1. Surprisingly, it can
be strictly stronger in some cases. This is shown in the following example.

Example 2 (cont.): Again, let G be the odd hole on 5 nodes. The opti-
mal solution to SDP1 violates the homogeneous inequality Z13 + Z14 ≤ Z11,
which is of the form (12). One can check with an SDP solver that, if this
inequality is added to SDP1 as a cutting plane, the optimal solution becomes
(to 3 d.p.): 

0.272 0 0.136 0.136 0
0 0.185 0 0.113 0.113

0.136 0 0.179 0 0.113
0.136 0.113 0 0.179 0

0 0.113 0.113 0 0.185

 .

The associated upper bound is 2.224.
The optimal solution to SDP2 violates the analogous homogeneous in-

equality X13 + X14 ≤ x1, which is of the form (15). One can check that, if
this is added to SDP2, the optimal matrix X+ becomes

1 0.586 0.293 1/2 1/2 0.293
0.586 0.586 0 0.293 0.293 0
0.293 0 0.293 0 0.293 0.121
1/2 0.293 0 1/2 0 0.293
1/2 0.293 0.293 0 1/2 0

0.293 0 0.121 0.293 0 0.293

 .

The associated upper bound is 2.172. �

Thus, if one wishes to add cutting planes, the choice between SDP1 and
SDP2 is not at all clear-cut. It is true that we reduce the number of variables
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and constraints by using SDP1, but this can come at the cost of a weakened
upper bound.

We remark that Proposition 1 is not valid in the weighted case. In
that case, one has to modify the inequality (20) by dividing each λi by wi
and dividing each µij by

√
wiwj . It remains true, however, that adding

homogeneous cutting planes to SDP2 always leads to at least as much bound
improvement as adding the analogous cutting planes to SDP1. (This can be
shown by a modification of the proof of Theorem 2.)

4.2 The weakened theta function

Recall that the weakened theta function of Lieder et al. [17] is obtained by
taking the constraints (8) in SDP2 and replacing them with the single weaker
constraint (19). We will denote this bound by ϑLRJ(G). A natural question
is whether one obtains the same bound if one weakens SDP1 by replacing the
constraints (3) with the following single constraint:∑

{i,j}∈E

Zij = 0. (23)

The following proposition shows that the bound obtained in this way cannot
be better than ϑLRJ(G).

Proposition 3 If we weaken SDP1 by replacing (3) with (23), the resulting
upper bound on α(G) is at least as large as ϑLRJ(G).

Proof. We follow the strategy used in [14]. Suppose the pair (x∗, X∗)
satisfies (7), (9) and (19), and let γ = eTx∗ > 0 be the associated objective
value. Consider the matrix Z∗ = X∗/γ. It satisfies (4), since

Tr(Z∗) = Tr(X∗)/γ = eTx∗/γ = γ/γ = 1.

It satisfies (5), since X∗ is psd; and it satisfies (23), since

∑
{i,j}∈E

Z∗ij =

 ∑
{i,j}∈E

X∗ij

 /γ = 0/γ = 0.

Now, since X∗− (x∗)(x∗)T is psd, we have eTX∗e− eT (x∗)(x∗)T e ≥ 0. This
implies that J •X∗ ≥ γ2, which in turn implies that J • Z∗ ≥ γ. �

The following example shows that, in fact, the bound obtained by weak-
ening SDP1 can be larger than ϑLRJ(G). For this reason we will denote it
by ϑLRJ+ (G).

Example 4: Let n = 4 and E =
{
{1, 2}, {1, 3}, {2, 3}, {3, 4}

}
. One can

check with an SDP solver that α(G) = ϑ(G) = ϑLRJ(G) = 2, while
ϑLRJ+ (G) ≈ 2.3855. �
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5 Computational Results

We have seen that relaxations based on SDP1 can be weaker than the analo-
gous relaxations based on SDP2. We conducted some computational experi-
ments to see whether this is likely to occur in practice. To this end, we be-
gan by creating some random graphs according to the classical Erdös–Rényi
process [7], in which each edge is present independently with probability
p. For n ∈ {20, 30, 100} and p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, we
constructed five graphs, making 135 graphs in total.

For each graph, we then solved several different SDP relaxations, using
CSDP version 6.1.1 (see Borchers [2]). The experiments were conducted on
a 2.299 GHz AMD Opteron 6376 with 16Gb RAM, under a 64 bit Linux
operating system (Ubuntu 12.4). The C code was compiled with gcc 4.4.3,
with -O3 optimisation.

The results for the 90 smaller instances, with 20 and 30 nodes, are dis-
played in Tables 1 to 3. Table 1 shows the mean gap (averaged over 5
instances) between the upper bound and the optimum, expressed as a per-
centage of the optimum, for eight SDP relaxations and nine different den-
sities. The columns headed ϑ and ϑ′ are self-explanatory, but note that
ϑ′(G) can be obtained in two ways: by adding constraints (11) to SDP1 or
adding constraints (14) to SDP2. The column headed “+(12)” was obtained
by adding both constraints (11) and (12) to SDP1, and the column headed
“+(13)” was obtained by adding, in addition, constraints (13). Similarly, the
column headed “+(15)” was obtained by adding both constraints (14) and
(15) to SDP2, and the column headed “+(17)” was obtained by adding, in
addition, constraints (17). We did not experiment with adding constraints
(16) or (18), since they have no analogue for SDP1.

We see that ϑ′(G) is only a little stronger than ϑ(G), a fact already
observed in [4, 6]. On the other hand, adding further cutting planes to
either SDP1 or SDP2 typically leads to significant improvements in the upper
bound. In fact, for at least 50 instances out of 90, the additional cutting
planes were able to close all of the gap. This accords with results given
in [4, 6, 14]. As for the bounds based on weakening SDP1 or SDP2, their
performance is disappointing.

The crucial point, however, is that the bounds based on SDP1 (in columns
5, 6 and 9) are frequently worse than their SDP2 counterparts (columns 7, 8
and 10). This indicates that the phenomenon mentioned in Section 4 is of
practical importance.

Tables 2 and 3 show the times (in seconds) taken to compute the var-
ious bounds for the small instances. It is apparent that the addition of
the cutting planes (12), (13) or (15), (17) slows down the SDP solver sig-
nificantly, whereas weakening the SDP relaxations leads to a big saving in
time. Strangely, however, the times for the variants of SDP2 are not much
longer than for the variants of SDP1, even though the former have n fewer
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n Density ϑ ϑ′ +(12) +(13) +(15) +(17) ϑLRJ
+ ϑLRJ

0.1 0.00 0.00 0.00 0.00 0.00 0.00 17.83 6.50
0.2 0.94 0.94 0.09 0.07 0.00 0.00 24.81 9.64
0.3 2.85 2.75 0.69 0.68 0.32 0.32 28.89 14.05
0.4 1.91 1.90 0.51 0.50 0.16 0.15 37.70 19.34

20 0.5 0.79 0.79 0.00 0.00 0.00 0.00 32.65 15.01
0.6 1.36 1.36 0.14 0.13 0.00 0.00 38.42 18.67
0.7 6.22 6.01 4.00 4.00 3.36 3.34 61.86 40.24
0.8 0.00 0.00 0.00 0.00 0.00 0.00 46.88 28.59
0.9 2.36 2.36 2.02 2.02 1.34 1.34 44.73 23.56

0.1 0.30 0.30 0.00 0.00 0.00 0.00 20.46 8.82
0.2 0.28 0.21 0.00 0.00 0.00 0.00 27.83 11.09
0.3 2.36 2.03 1.01 0.79 0.72 0.68 41.90 18.68
0.4 5.89 5.57 4.25 4.22 3.49 3.47 54.21 28.94

30 0.5 0.31 0.24 0.00 0.00 0.00 0.00 41.64 21.80
0.6 1.36 1.19 0.24 0.24 0.12 0.12 49.09 30.75
0.7 2.34 2.28 1.49 1.45 1.08 1.05 66.23 41.92
0.8 1.31 1.31 0.82 0.82 0.69 0.69 50.09 32.74
0.9 0.00 0.00 0.00 0.00 0.00 0.00 40.88 28.63

Table 1: Mean percentage integrality gaps for various upper bounds.

constraints than the latter. It is also remarkable that “SDP2+(15)” is both
stronger and faster to compute than “SDP1+(13)”.

For the instances with 100 nodes, the SDP solver was unable to compute
some of the stronger bounds in a reasonable amount of time. The results
with the remaining bounds are shown in Tables 4 and 5. We see that, again,
ϑ′(G) is only a little stronger than ϑ(G), ϑLRJ(G) is much weaker, and
ϑLRJ+ (G) is much weaker still. As for running times, the effect of adding or
aggregating constraints is even more marked. Moreover, we now see that the
bounds based on SDP2 now take about 50% longer to compute than those
based on SDP1.

6 Concluding Remarks

It has been known since the 1980s [13] that the Lovász theta function can be
computed by solving either of two equivalent SDPs, which we have labelled
SDP1 and SDP2. We have shown, however, that the equivalence between
SDP1 and SDP2 breaks down when they are either strengthened (via cutting
planes) or weakened (via constraint aggregation).

Our results have implications for the development of exact algorithms
for the maximum stable set problem. In a branch-and-bound algorithm, a
trade-off must be made between the quality of the upper bound and the time
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n Density ϑ ϑ′ +(12) +(13) ϑLRJ
+

0.1 0.00 0.03 0.90 8.43 0.00
0.2 0.01 0.03 2.66 9.97 0.00
0.3 0.01 0.03 6.26 13.00 0.00
0.4 0.01 0.03 12.79 18.03 0.00

20 0.5 0.01 0.02 18.37 22.20 0.00
0.6 0.01 0.02 34.28 35.41 0.00
0.7 0.02 0.02 61.24 59.58 0.00
0.8 0.03 0.03 84.54 78.52 0.00
0.9 0.04 0.02 95.45 90.67 0.00

0.1 0.01 0.42 18.02 345.17 0.01
0.2 0.02 0.24 58.52 316.61 0.01
0.3 0.03 0.44 204.57 484.02 0.01
0.4 0.04 0.23 405.88 665.35 0.01

30 0.5 0.08 0.42 843.04 1053.02 0.01
0.6 0.10 0.23 1505.87 1673.03 0.01
0.7 0.18 0.25 2618.84 2610.24 0.01
0.8 0.16 0.19 3222.37 3166.29 0.01
0.9 0.23 0.21 4124.27 3857.24 0.01

Table 2: Mean time taken to solve relaxations based on SDP1.

n Density ϑ ϑ′ +(15) +(17) ϑLRJ

0.1 0.01 0.04 0.88 8.89 0.01
0.2 0.01 0.04 3.55 12.18 0.01
0.3 0.01 0.05 7.73 15.23 0.00
0.4 0.02 0.05 14.73 20.41 0.01

20 0.5 0.02 0.04 20.33 24.04 0.01
0.6 0.02 0.04 39.82 41.08 0.00
0.7 0.03 0.04 64.19 61.60 0.01
0.8 0.04 0.04 82.08 77.82 0.01
0.9 0.05 0.03 106.64 101.67 0.01

0.1 0.02 0.63 18.38 367.98 0.01
0.2 0.02 0.35 69.34 415.20 0.01
0.3 0.04 0.63 214.68 572.30 0.01
0.4 0.06 0.33 433.66 736.79 0.01

30 0.5 0.11 0.56 790.25 1041.33 0.01
0.6 0.14 0.37 1537.81 1711.69 0.01
0.7 0.20 0.35 2589.68 2673.10 0.02
0.8 0.22 0.30 2948.88 2989.95 0.01
0.9 0.31 0.26 3854.47 3850.89 0.01

Table 3: Mean time taken to solve relaxations based on SDP2.
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Density ϑ ϑ′ ϑLRJ
+ ϑLRJ

0.1 7.71 7.00 45.20 23.20
0.2 11.60 10.67 65.19 40.41
0.3 13.69 12.64 79.08 52.91
0.4 15.49 14.55 92.90 68.45
0.5 16.80 16.03 107.30 81.78
0.6 10.88 10.27 103.94 83.85
0.7 8.28 7.94 109.61 87.54
0.8 2.55 2.38 107.78 89.60
0.9 0.00 0.00 88.35 73.55

Table 4: Mean percentage integrality gaps for instances with 100 nodes.

SDP1 SDP2

Density ϑ ϑ′ ϑLRJ
+ ϑ ϑ′ ϑLRJ

0.1 0.45 249.19 0.12 0.85 483.40 0.20
0.2 2.11 242.63 0.10 2.39 430.05 0.13
0.3 4.84 233.45 0.13 6.53 381.38 0.21
0.4 10.14 233.33 0.09 13.81 367.74 0.12
0.5 18.80 237.10 0.12 25.30 478.52 0.20
0.6 32.32 224.19 0.09 42.78 332.43 0.13
0.7 51.99 214.54 0.12 65.34 320.85 0.28
0.8 83.10 232.80 0.09 106.57 298.75 0.13
0.9 122.62 213.00 0.09 147.30 312.65 0.13

Table 5: Mean time taken to solve SDP relaxations for instances with 100
nodes.
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taken to compute it. If one wishes to use the theta function itself as the
upper bound, then SDP1 is to be preferred to SDP2. If, however, one wishes to
use a strengthened or weakened variant of the theta number, then the choice
between SDP1 and SDP2 is no longer obvious, and further experimentation
will be needed.
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