Parallel Computing TEDA for High Frequency
Streaming Data Clustering

Xiaowei Gu', Plamen P. Angelov', German Gutierrez?, Jose Antonio Iglesias?, and
Araceli Sanchis?

! Data Science Group, School of Computing and Communications,
Lancaster University, LA1 4WA, UK
{x.gu3,p.angelov}@lancaster.ac.uk
2 CAOS Research Group, Computer Science Department,
Carlos III University of Madrid, 28918 Leganes, Spain
{ggutierr, jiglesia, msam}@inf.uc3m.es

Abstract. In this paper, a novel online clustering approach called Parallel_ TEDA
is introduced for processing high frequency streaming data. This newly proposed
approach is developed within the recently introduced TEDA theory and inherits
all advantages from it. In the proposed approach, a number of data stream proces-
sors are involved, which collaborate with each other efficiently to achieve parallel
computation as well as a much higher processing speed. A fusion center is in-
volved to gather the key information from the processors which work on chunks
of the whole data stream and generate the overall output. The quality of the gen-
erated clusters is being monitored within the data processors all the time and stale
clusters are being removed to ensure the correctness and timeliness of the overall
clustering results. This, in turn, gives the proposed approach a stronger ability
of handling shifts/drifts that may take place in live data streams. The numer-
ical experiments performed with the proposed new approach Parallel TEDA on
benchmark datasets present higher performance and faster processing speed when
compared with the alternative well-known approaches. The processing speed has
been demonstrated to fall exponentially with more data processors involved. This
new online clustering approach is very suitable and promising for real-time high
frequency streaming processing and data analytics.

Keywords: High frequency streaming data, TEDA, Parallel computation, Clus-
tering, Real time

1 Introduction

The amount and scale of the data streams grow rapidly because of the more mature
technologies and lower prices of various electronic devices as well as wider distributed
sensor networks. As the world has already entered the Era of Big Data, data-intensive
technologies have been extensively used in the developed economies and numerous
international organizations and companies are now much more frequently getting in-
volved in Internet-based activities. All of these have largely increased the demand for
developing advanced intensive data processing/analysis methodologies and technolo-
gies.

2 X.Gu, P. Angelov, G. Gutierrez, J.A.Iglesias, A. Sanchis

Traditional clustering methods more often share several common problems [1-8],
for example, they require the number of clusters [2, 3] or thresholds [4-6] or radii [7].
Most of the existing methods are offline [9], require iterative calculations. The minority
of online, incremental, one pass approaches [10] still require user-defined parameters
like radii, thresholds which makes them not fully autonomous and unsupervised. Very
recently, completely autonomous approaches were proposed [11, 12], however, they do
not consider the big data, high frequency, parallel computation aspects. In this paper,
we propose Parallel TEDA approach which is addressing precisely these aspects. It is
memory- and computation-efficient. Indeed, a single data processor might also have
difficulties in handling data samples which arrive in a very high speed.

Some published algorithms [13—16] try to improve computation efficiency by di-
viding the streaming data chunk by chunk and processing them separately. Then the
algorithms fuse the individual clustering results together. However, such algorithms
[13-16] lack the ability to detect the evolutions and transitions of the clusters, which
sometimes lead to the fusion of non-related clusters [17].

TEDA (Typicality and Eccentricity Data Analysis) was introduced in [18-20] as a
fully data-driven and prior-assumptions-free framework for data analysis. Moreover,
TEDA supports the recursive form of calculation and is parameter-free. Therefore,
TEDA is a suitable algorithm for real-time streaming data processing.

In this paper, we propose a novel online clustering approach for big data streams
called Parallel_ TEDA, which is developed on the basis of TEDA [18-20]. As a result,
the proposed approach inherits all its advantages, including no requirement of user input
or assumptions, regardless the shape of clusters, recursive computation, self-adaptation
to the data pattern. Meanwhile, the idea of parallel processing [13—16] is involved to
make it suitable for high frequency data streams processing. Within the Parallel TEDA
framework, a number of data streams processors and a fusion center are involved to
collaborate with each other to process the high frequency data stream. As a result,
the processing speed is largely improved because of its parallel computation structure.
Within the proposed approach, the high frequency data stream is split into data chunks,
which are passed to different processors. Once the data samples are being processed by
the processors, they are discarded to improve the memory-efficiency and only the key
information is stored. The fusion center automatically gathers all the key information
from the individual processors and fuses together into the final clustering results. Be-
cause of the computationally lean recursive expression, the calculations are very fast
and no iterations or search is involved which makes possible for real time processing of
high frequency data streams. Moreover, compared with the traditional parallel process-
ing techniques [13—16], the proposed Parallel_TEDA is able to follow the ever changing
data pattern and successfully avoids the problem of meaningless fusion because of ad-
vantages of TEDA.

Additionally, we use the time tag, age [21] to monitor the quality of the existing
clusters stored in the data stream processors and enhance its ability to self-evolve. Thus,
Parallel TEDA is able to follow the changes of the data pattern and avoid the accumula-
tion of error. Because of the time tag, when the Parallel_ TEDA approach is dealing with
multi-data streams, there is no need to wait for processing the data streams sequentially
one by one. Once, there is any free processor, the next data stream can be processed

Parallel Computing TEDA for High Frequency Streaming Data Clustering 3

seamlessly. In addition, several data streams can be processed together at the same time
because of the multi-processors structure.

The remainder of this paper is organized as follows: Section II introduces the the-
oretical basis of the TEDA framework. The details of the proposed Parallel _ TEDA ap-
proach are described in section III. In section IV, the algorithm of the proposed Par-
alle] TEDA approach is presented. Section V is for numerical experiments as well as
analysis and the conclusions are presented in section VI.

2 Theoretical basis of the TEDA framework

Typicality and Eccentricity based Data Analytics (TEDA) was introduced recently [18—
20] as a non-parametric, assumption-free methodology for extracting information from
data. In its nature, it is close to statistical learning; however, traditional statistical meth-
ods assume random variables and try to approximate these prior assumptions with the
experimental data. TEDA is free from the range of assumptions made in traditional
probability theory and statistical learning and is entirely data-driven. No assumption is
made for data (in)dependence, number, nature (determinative or stochastic). The main
quantities (measures) of mutual (ensemble) properties of the data, namely, typicality
can be seen as similar to probability and membership function in fuzzy sets, but it is
objective and assumptions and parameters free.

2.1 Cumulative Proximity

Cumulative proximity [18, 19, 22] is the sum of distances from a particular data sample
to all the available data samples. The cumulated proximity of x; to all other data samples
is expressed as:

k
Te(x) = > d>(xi,x); i =1,2,..,k; k> 1 1)
=1

where d(x;,x;) denotes any distance measure between x; and x;. For clarity, in this
paper, we use the most commonly used Euclidean type of distance, namely d(x;,x;) =
[lei — x|

2.2 Standardized Eccentricity

Eccentricity and its standardised form [18-20] are derived by normalising the cumu-
lative proximity and are very useful for anomaly detection, image processing, fault
detection, etc.

The eccentricity of x; is calculated as [18, 19]

_ 2my(x;)
Zf:ﬂﬁi(xl)’

Standardized eccentricity is derived directly from the eccentricity [18, 19].

fk(xi) i=12... ki k>1 (2)

4 X.Gu, P. Angelov, G. Gutierrez, J.A.Iglesias, A. Sanchis

Qkﬂ'k(xi) .
Ef’:l (X))

It is obvious that the sums of the eccentricity and standardized eccentricity are 2 and
2k, respectively. Compared with eccentricity, standardized eccentricity is a more con-
venient measure because when & tends to be infinity, its mean value does not drop fast,
namely more stable than eccentricity. Using it, the well-known Chebyshev inequality
[24] obtains a very elegant form.

en(x;) = kéi(x;) = i=1,2,... ks k>1 3)

2.3 Typicality

Typicality is the main measure introduced within TEDA [18-20] . It can be consid-
ered as a form of centrality or the normalized inverse cumulative proximity [20]. The
typicality of x; (j =1,2,...,k; k> 1) is [20]:

1

() = Z G = [mi(x; [Z () M) 4)
=1 Wk(xl)

Typicality represents spatial distribution pattern of the data and resembles the prob-
ability distribution function [19].

2.4 Recursive Form of Calculation

It is very important in the context of working with high frequency live data streams to
have one pass type of algorithms and recursive calculations. In this case, all quantities
considered within the TEDA framework, namely, the cumulative proximity, standard-
ized eccentricity and typicality can all be updated recursively. With Euclidean distance,
the cumulated proximity of new coming data sample x;,;; at the (k4 1)*" time instance
is recursively calculated as follows [18, 22]:

Tht1(Xpg1) = (K + 1)(||xk+1 - Hk+1||2 + X1 — ||Hk+1||2)
where p 1 = Ty, + XK1) = X1)

2 2
Xip1 = 75 Xn + 757 ensa 5 X0 = (e

The corresponding sum of cumulated proximity can be updated as follows [20]:

k+1 k+1k+1 2
ZWkJrl (5) =D (e —x) (x5 —x1) = 20k + 1)° (X1 — || ||)
j=11=1

Using equations (6) and (5), the recursive form of the standardized eccentricity can
be obtained as:

s — el + Xeon — Joal® | lbews e

Xky1 — H/J'k+1”2 Ket1 — HM@HH

N

Ehp1(Xpg1) =

Parallel Computing TEDA for High Frequency Streaming Data Clustering 5

The recursive update of the typicality 73 (x;) can obviously be achieved using equa-
tion (5).

Before and independently of TEDA, the clustering quality and monitoring parame-
ter, age, was introduced in 2005 [21]

2.5 Cluster Age

Since the proposed approach is for live streaming data, the data pattern of the stream
will potentially change along with time elapse, as a result, the old existing clusters may
not be able to represent well the ensemble properties of the data samples following a
possible shift or drift [22,23]. Cluster age [22] allows to decide whether a cluster is
outdated. Cluster age [21] is an accumulated relative time tag which allows to decide
whether a cluster is outdated and is expressed as follows:

Sk te
2 17 c

P=k—
k SIS)

=1,2,.C; S; > Lk>1 ®)

where the sub-label ¢ denotes the c'” cluster and C is the number of existing clusters
in the clustering result; S¢ is the support of the ¢ cluster at the time instance k (number
of data samples associated with it).

2.6 Chebyshev Inequality

The well-known Chebyshev inequality [24] describes the probability of the distance
between a certain data sample x; and the mean value to be larger than n times the
standard deviation, namely no. For Euclidean type of distance it has the following
form:

1
Pllx; = pyll < n20?) 21— = ©)

In TEDA, this condition is expressed regarding standardized eccentricity and in a
more elegant form [19]:

1
Pep(x;) <14+n°) >1—— (10)
n
That means, we can directly check the value of the standardized eccentricity, €, and
see if it is less than 10 for the 30 case.

3 The proposed approach Parallel TEDA

First of all, let us denote the data stream in the Hilbert space R as{x1,Xg, ..., X, ...},
where the index k indicates the time instance at which the k** data sample arriving. The
continuously arriving data samples are divided into chunks and sent to different data
stream processors (assuming there are processors and the chunk size is K') according to
the time instance of arrival, namely:

6 X.Gu, P. Angelov, G. Gutierrez, J.A.Iglesias, A. Sanchis

X1,X2,... XK
———

chunkl—processorl

YK+1,XK42; - - X2K

chunk2—processor2

X(N-1)K4+1:X(N-1)K+25 - - - XNK
X = (1

chunkN—processor N
XNK+1,XNK+25-- - X(N+1)K

chunk(N+1)—processorl
X(N+DK+LHX(N+1D)K+2y - - - X(N+2)K

chunk(N+2)—processor2

For each data chunk, once it is sent to the data stream processor, it will be processed
separately and the current processing result will only be influenced by the previous data
chunks processed within the same data stream processor and will also influence the
future output of the processor. Therefore, for the remainder of this section, all the basic
elements of Parallel TEDA approach introduced are considered to be within the same
particular data stream processor.

The collection of data samples entered the i data processor are denoted as X' =
{xi,xb,... x%} (i = 1,2,...,N), and the number of samples, which can also be
viewed as time instance, is k and will keep growing with time. The number of data
samples processed by each processor is considered to be the same.

Parallel TEDA approach is divided into two stages. The first stage is the clusters
and parameters updating within the individual data stream separately. We consider this
stage to be a separate processing. The second stage is for merging the separate clustering
results of all existing data streams together, called clusters fusion. The architecture of
the proposed approach is presented in Fig. 1.

In the remainder of this section, the proposed approach will be described in detail.

3.1 Separate Processing Stage

In this stage, all the data chunks separated from the data stream are processed sep-
arately in their corresponding processors. For the i data stream processor, at each
time instance a new data sample arrives, denoted as x}'c 11, their standardized eccen-
tricity per cluster is calculated using equation (7). Then, we monitor 62‘; (xi,) c=
1,2,...,C% here C' denotes the number of existing clusters in the i*" processors. ‘

For every cluster , the standardized eccentricities of all its members sum to 25;°,
and the average standardized eccentricity is €4perage = 2. Combining the Chebyshev
conditions in terms of the standardised eccentricity (equation (10)) [19], we use n = 2
to achieve a balance between sensitivity to anomalous data and tolerance to the intra-
cluster variance, namely, €, = 5. The condition for associating a data sample with a
particular cluster can be expressed as follows:

Parallel Computing TEDA for High Frequency Streaming Data Clustering 7

Data Chunk ! Data Stream
1. N+1, 2N+1.... Processor 1

Data Chunk
2 INF2 2N 2

Data Stream
Processor 2

Fusion v, Clustering
Center _} Result)

Data Chunk Data Stream
NOIN 3N i E Processor NV
1
! Separate Clusters
1
1

FProcessing Stage

Fig. 1: The architecture of Parallel TEDA

IF (4%, (¥} 1) <) THEN (¢}, € o) (12)

For each new data sample x}, 41 if the condition to a particular existing cluster is
met, it is associated with this cluster. If 7, 1 is associated with two or more clusters, it
is associated with the cluster that satisfies the following condition:

- Ci 1, i
Cselected = aTgmmC:ﬁ;L(sz) (13)

Once, the cluster that x% 41 should be assigned to is decided, the corresponding

mean (center) g, %", the mean of the scalar product X, {¢7'***¢, age A} fotecte

and support ,i’i"fl“*”" of the cluster need to be updated accordingly:

i Cselected

%,Cselected S 1,Cselected 1 i
ll’k+1 = (Tesetected g Mk + ©:Cselected xk+1)
Sy +1 Sy +1

g} Cselected i,Cselected 1 i 2
Xy + [[€%1111)

©Cselected
Xk+1 - (S::‘C.selected 41

S:""seleated +1

(14)

i “:Cselected (. “:Cselected)
1,Cselected Sy e (k—A, V+k+1
AR —(k+1 Sietecred 11)

S]?islelected . (Sliycselected + 1)

In contrast, if there is no cluster that meets the condition (equation (12)) for a partic-
ular data sample, x} , ;, the new data sample x} , ; forms a new cluster. The parameters
of the new cluster are then initialised as follows:

i,C; i . yiCi i 2. 46.Cs e
Ci + (Ci+1); ppls xiyrs X0 < sl ARfi <00 S5« 135

8 X.Gu, P. Angelov, G. Gutierrez, J.A.Iglesias, A. Sanchis

For the existing clusters which do not have new member at the (k + 1) time
instance, their age should be updated using equation (16) All other parameters do not
change.

AP (A9 4+ 1), ¢ € Other (16)

After the parameters updating, before the processor handles the next input data sam-
ple, every existing cluster needs to be checked whether it is already out of date according
to its age using the following ageing condition:

IF (AZfi > pYy+oly) AND (A;fl > K) THEN (The ¢! cluster is out of date) (17)

where 11 is the average value of the ages of all clusters within the processor, o, is
standard deviation of all clusters’ages within the ¥ processors.

Once, the processor detects a stale cluster, the stale cluster is removed automatically
because it may have adverse influence on the future clustering results. After the stale
clusters cleaning operation, the data stream processor will be ready for the next data
sample and begin a new round of data processing and parameters updating. Based on
the needs of users, the clustering results can be viewed and checked at any time. Once
requested by users, all the processors will send the existing clusters and the correspond-
ing parameters stored in their memories to the fusion center, and the fusion center will
fuse all the clustering results together and give the final output. However, this user in-
ference is entirely optional. The algorithm is designed to work fully autonomously and
will perform fusion anyway unless specifically prompted not to.

3.2 Clusters Fusion Stage

In this stage, the clustering results from all the data stream processors will be fused
together to generate the final output of the proposed Parallel_ TEDA approach.

Once we get all the clusters from all the processors and re-denote their parameters
as: centers p1;, means of scalar product X; and supports Sj, j = 1,2,...,Co(Co =

Zf;l C;), the fusion process will start. The clusters fusion stage begins from the clus-
ter with the smallest support and ends with the largest one. For each cluster, starting
from its closest neighboring cluster to the farthest cluster away from it, we check the
condition to decide whether this cluster should be merged with the neighboring cluster:

IF (e1(p;) < €5) AND (e;(p;) < €o)

THEN (The j*" and I*" clusters should merge together) (18)

where p; and p, are the centers of the 4" and I*" clusters, ; and €; are calculated
using the following equations:

Sf||(u,-—uz)||2+(Sz+1)(SzXz+||uj 1) = ||r2;+S1a ||
(S DE i, Ty ST

51(#‘]') =
19
_ SE) [(S D (S5 X 1)~ 4 S ||
(S5 1) (85X +)= [0+ 15[

g5 (1)

Parallel Computing TEDA for High Frequency Streaming Data Clustering 9

If the merging condition is met, the two clusters merge together:

S; Sy . Sj s .
Ppew (mﬂj + mﬂl)a Xnew (Sj.:,.'sl Xj + sj_,fsl X1); (20)

Snew (SJ + Sl)7 Co (CU - 1)

After the merging, there may be some trivial clusters (with small support) left satis-
fying the following condition:

Zf:ol S] -th .
IF (S; < T) THEN (Merge the i'"cluster with the nearest larger cluster)
’ @n
where the nearest larger cluster is determined as follows:
. . Y5 5
Cmerge = argmin®, (|, —); 1 #14; 8 > =L~ (22)

5C,

Then, equation (20) is used to merge the minor cluster with the larger one.

4 Parallel_ TEDA Procedure

In this section, the proposed Parallel TEDA approach is summarized in a form of
pseudo-code in two parts according to the structure given in Fig.1.

The first part of this approach is executed in every processor independently, namely
the separate processing stage. The second part of the proposed algorithm is executed in
the fusion center, namely clusters fusion stage.

1. Parallel TEDA Algorithm Part 1:

— While the data sample of the i** data stream is available (or until nor interrupted):
e If (k = 1) Then:
Cie1; pb% —xi; XP9 [l |
e Else: _
1. Calculate £¢, (x},), ¢ =1,2,...,C; using equations (5) and (7);
2. If (Association Condition is met (equation (12)) Then:
* Find the target cluster csejecieq Using equations (12) and (13);
* Update Mgisialected, X]?isldecmd’ S]Z”-T-SleleCted’ AZiSfLECtEd llSiIlg equation
(14);
* Update the ages of other clusters using equation (16);
3. Else
* Add a new cluster and its corresponding parameters using equation
(15);
* Update the ages of other clusters using equation (16);
4. End If
e EndIf
— End While

2 i O O
; AZ’O’ «—0; S,@C «— 1

10 X.Gu, P. Angelov, G. Gutierrez, J.A.Iglesias, A. Sanchis

2. Paralle]_ TEDA Algorithm Part 2:

— While the existing clusters exhibit the potential of merging
e Calculate £;(pt;) and £ (gt;) using equations (19).
o If (Merging Condition is met) Then:
* Merge the two clusters using equations (20);
— End While
— Merge the minor clusters with the nearest larger clusters using equations (21), (22)
and (20)

S Numerical Experiments

In this section, several numerical experiments using benchmark datasets from [25] are
conducted to study the performance of the newly proposed Parallel TEDA approach.
The details of the benchmark datasets are given in Table 1.

Table 1: Benchmark Dataset Description
Details

DataSet|| Number of |Number of|Number of| Maximum | Minimum
Data Samples| Clusters | Attributes [Cluster Size|Cluster Size
Al 3000 20 2 150 150
A2 5250 35 2 150 150
A3 7500 50 2 150 150
S1 5000 15 2 350 300
S2 5000 15 2 350 300

The Parallel TEDA approach was developed into a software which run within MAT-
LAB R2015a. The performance was evaluated on a PC with processor 3.60 GHz2, and
8 GB RAM. The first experiment is conducted to verify the correctness and effective-
ness of the Parallel TEDA approach. Datasets A1 and A2 are used together to testify
the ability of the parallel computation as well as handling multi-data streams. In this
experiment, 11 data stream processors are involved and the data chunk size is set to be
250. The processing procedure of the data chunks of the three datasets is given in Fig.
2. The time-varying clustering results of each process cycle are presented in Fig. 3.

As it is clearly shown in Fig. 3, the proposed approach can successfully follow the
changes of the data pattern including the shift leading to creation of new clusters (evolv-
ing the structure). Parallel processors automatically discard the stale clusters which
cannot represent adequately the latest ensemble properties of the data. Moreover, it also
shows that the proposed approach is capable to seamlessly handle multiple data streams.

The dataset A3 is used to investigate the relationships between execution time and
the number of processors as well as the chunk size. The amount of time consumed (in
seconds) for processing the dataset A3 are listed in Table 2 with different number of

Parallel Computing TEDA for High Frequency Streaming Data Clustering 11

Al Al Al .| PROCESSOR
DCl DCS pce [1

al al Al .| PROCESSOR
DC2 DC6 pci = %

Al Al Al PROCESSOR
DC2 DCY pcu1 = 3

Al a1 Al PROCESSOR
DC4 DCS pci2 [4

Az Az Az PROCESSOR
DCl DCS pcls = 5

a2 a2 A2 PROCESSOR
DC2 DCo pcis [6

A2 A2 A2 .| PROCESSOR
DC3 DC10 pc1r 7 7

Az) Az PROCESSOR
DC4 Dcll pais 8

A2 A2 Az .| PROCESSOR
DCS DC12 pcle [9

a2] A2 .| PROCESSOR
DC6 DC13 pc2o =7 10

Az Az Az .| PROCESSOR
DCT DCl4 pc21 = 11

‘ Cycle | Cycle ‘ Cycle

1

Fig. 2: The processing procedure of first experiment (DC is short for data chunk)

processors and chunk sizes. The amount of the time consumed by the two processing
stages are presented separately for easier analysis. The relationship between average
processing time and the number of processors is additionally depicted in Fig. 4 for
visual clarity.

Table 2 and Fig.4 show that, the processing speed becomes higher and the time
required, respectively, becomes lower when more processors are involved. It is also in-
teresting to notice that, when more processors are involved in the task, there will be
an approximately exponential decrease of the execution time used by the first stage of
the proposed approach. However, the fusion center needs time to fuse all the clusters
together as there will be more clusters generated by individual processors. Correspond-
ingly, the execution time of stage 2 of the proposed approach will increase with the
larger chunk size because the larger chunk size will lead to more clusters generated in
the processors in each process cycle, which in turn, also cost more time in processing
the future data chunk as well as in fusing clustering results together. Nonetheless, the
number of processors has the most significant influence on the overall processing speed.
Combining the two stages of the approach, there is still an approximately exponential
decrease of the processing time (see Fig. 4)

In order to further study the performance of the proposed approach, the well-known
subtractive [6,7] and ELM clustering approaches [10] were used for comparison pur-
pose.

Since Parallel TEDA approach is for live data streams, no processed data samples
will be kept in memory, we consider the following alternative measures as indicators
of clustering performances: 1) Number of clusters, Cp; 2) Maximum support of the
clusters, S;,42; 3) Minimum support of the clusters, S,,,;,,; and 4) Execution time, .

12 X.Gu, P. Angelov, G. Gutierrez, J.A.Iglesias, A. Sanchis

<10t

(c) Process cycle 3

Fig.3: The time-varying clustering result (The green dots are the data samples from
A1 dataset, blue dots are the ones from A2 dataset and red circles are centers of the
clusters).

Parallel Computing TEDA for High Frequency Streaming Data Clustering 13

Table 2: Execution Time Study (in seconds)

Chunk Number of Processors

Size |Stages 2 | 3 | 4 | 5 | 6 | 7 | 8

100 1 0.5746 0.4093 0.3137 0.2517 0.2097 0.1911 0.1715
2 0.0088 0.0111 0.0105 0.0237 0.0115 0.0289 | 0.0132

200 1 0.6018 0.4276 0.3141 0.2698 0.2213 0.2018 | 0.1773
2 0.0091 0.0118 0.0125 0.0149 0.0135 0.0158 | 0.0248

300 1 0.6359 0.4468 0.3317 0.2900 0.2308 0.2018 | 0.1829
2 0.0100 0.0140 0.0166 0.0127 0.0162 0.0175 0.0215

400 1 0.6764 0.4739 0.3447 0.291 0.2389 0.2159 | 0.1916
2 0.0222 0.0148 0.0140 0.0186 0.0166 0.0308 | 0.0389

500 1 0.7438 0.5316 0.3721 0.3047 0.2602 0.2196 | 0.1996
2 0.0114 0.0133 0.0178 0.019 0.0418 0.0523 | 0.0550

For a better comparison, in the following experiments, Parallel_ TEDA approach will
not discard old clusters, and each time these approaches only handle one data stream.
We use 4 processors in the proposed Parallel TEDA approach in comparative experi-
ments and the chunk size is set to 200 data samples/points. The comparison results are
presented in Table 3. As it is shown in Table 3, compared with the two comparative
clustering approaches, Parallel_ TEDA approach exhibits more accurate clustering re-
sults. Note that, both subtractive and ELM clustering approaches require the radius (r
or IR, respectively) to be pre-defined. Moreover, its choice heavily influences the result
(see Table 3). The proposed Parallel TEDA approach does not require such parameter
to be pre-defined. Yet, it is able to identify the correct number of clusters and is the
fastest of them. The subtractive clustering approach can be comparable with the pro-
posed approach in terms of clustering accuracy, but its performance heavily relies on
the proper user input. In addition, it is offline and iterative. Moreover, even though only
4 processors are involved, Parallel TEDA algorithm is already the fastest among the
three. Apparently, the proposed Parallel TEDA approach has clear advantages because
of the high performance and the potential for even higher processing speed.

6 Conclusions

In this paper, we proposed a novel real-time clustering approach for high frequency
streaming data processing, called Parallel_ TEDA. This approach inherits the advantages
of the recently introduced TEDA theoretical framework and has the ability of parallel
computation due to its multi-processors structure. In addition, it can successfully follow
the drifts and/or shifts in the data pattern. Within the TEDA framework, the streaming
data samples are divided into a number of data chunks and sequentially sent to the data
processors for clustering. Each generated cluster is additionally assigned a time tag for
online cluster quality monitoring. The fusion center gathers the clustering results from
each data processor and fuses them together to obtain the overall output. Numerical
experiments show the superior performance of the proposed approach as well as the

14 X.Gu, P. Angelov, G. Gutierrez, J.A.Iglesias, A. Sanchis

Fig. 4: The relationship between processing time and number of processors (The blue
bars represent the time consumed in stage 1 and the green ones represent the time con-
sumed in stage 2)

potential for an even higher processing speed. This approach will be a promising tool
for further applications in online high frequency data processing and analysis.

7 Acknowledgements

The second author would like to acknowledge the partial support through The Royal
Society grant IE141329/2014 Novel Machine Learning Paradigms to Address Big Data
Streams. The third, fourth, and fifth authors would like to acknowledge the support
by the Spanish Goverment under the project TRA2013-48314-C3-1-R and the project
TRA2015-63708-R.

References

1. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applica-
tions in pattern recognition. IEEE Transactions on Information Theory, vol. 21(1), pp. 32-40
(1975).

2. MacQueen, J.: Some methods for classification and analysis of multi-variate observations.
In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Statistics, Berkeley, pp. 281-297 (1967).

3. Bezdek, J. C., Ehrlich, R. and Full, W.: FCM: The fuzzy c-means clustering algorithm. Com-
puters & Geosciences, vol.10(2), pp.191-203 (1984).

4. Johnson, S.: Hierarchical clustering schemes. Psychometrika, Vol. 32(3), pp. 241-254 (1967).

5. de Oliveira, J. V. and Pedrycz, W.(eds.). Advances in Fuzzy Clustering and Its Applications.
New York: Wiley (2007).

6. Yager, R. and Filev, D.: Generation of fuzzy rules by mountain clustering. Journal of Intelli-
gent & Fuzzy Systems, vol.2(3), pp. 209-219 (1994).

7. Chiu, S.L.: Fuzzy model identification based on cluster estimation. Journal of Intelligent &
Fuzzy Systems, vol.2(3), pp. 1064-1246 (1994).

Parallel Computing TEDA for High Frequency Streaming Data Clustering 15

Table 3: Performance Comparison (PTE denotes Parallel TEDA; SuC denotes Subtrac-
tive clustering)

Clustering | User | Data Measures
Approaches| Input | set || Co [Smaz | Smin | fewe

PTE None 20 166 135 | 0.1388
SuC R=0.3 9 560 152 | 0.3728
R=0.1 | Al 31 153 27 | 0.3445

ELM R=600 4 2532 2 0.8820
R=200 63 914 1 5.6551

PTE None 35 176 125 | 0.2741
SuC R=0.3 11 712 166 |0.6811
R=0.1 | A2 35 157 143 | 0.6954

ELM R=600 9 3583 1 1.7233
R=200 105 | 914 1 [14.8939

PTE None 50 176 125 | 0.4956
SuC R=0.3 13 884 298 | 1.1141
R=0.1 | A3 50 165 140 | 1.1323

ELM R=600 4 3583 1 2.7453
R=200 132 | 818 1 |28.0227

PTE None 15 359 294 | 0.3372
SuC R=0.3 10 670 323] 0.6281
R=0.1 | S1 15 355 296 |0.6114

ELM [R=10000 4 2532 2 0.8820
R=3000 63 914 1 5.6551

PTE None 15 359 286 | 0.3288
SuC R=0.3 10 833 319 |0.6313
R=0.1 | S2 15 351 289 |0.6215

ELM [R=10000 13 1700 1 2.4259
R=3000 102 | 358 1 |14.9862

8. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters
in large spatial databases with noise. In: 2nd International Conference on Knowledge Discov-
ery and Data Mining. Portland, Oregan, vol. 96(34), pp. 226-231 (1996).

9. Wang, C,, Lai, J., Huang D. and Zheng, W.: SVStream: A support vector-based algorithm for
clustering data streams. IEEE Transactions on Knowledge and Data Engineering, vol.25(6),
pp.1410-1424 (2013).

10. Baruah, R. and Angelov, P.: Evolving local means method for clustering of streaming data.
IEEE Congress on Computational Intelligence, Brisbane, Australia, pp.2161-2168 (2012).
11. Hyde, R. and Angelov, P.: A fully autonomous data density based clustering technique. In:
IEEE Symposium on evolving and autonomous learning systems, Orlando, USA pp. 116-123

(2014).

12. Angelov, P, Gu, X., Gutierrez, G., Iglesias, J. A. and Sanchis, A.: Autonomous data den-
sity based clustering method. In: 2016 IEEE World Congress on Computational Intelligence.
Vancouver, Canada, to appear (2016).

13. Guha, S., Mishra, N., Motwani, R. and O’Callaghan, L.: Clustering data streams. In: Pro-
ceedings of the Annual Symposium on Foundations of Computer Scuebce (FOCS), Redondo

16 X.Gu, P. Angelov, G. Gutierrez, J.A.Iglesias, A. Sanchis

Beach, CA, pp.359-366 (2000).

14. Guha, S., Meyerson, A., Mishra, N., Motwani, R. and O’Callaghan, L.: Clustering data
streams: Theory and practice. IEEE Transactions on Knowledge and Data Engineering, vol.
15(3), pp. 515-528 (2003).

15. Aggarwal, C., Han, J., Wang, J. and Yu, S.: A framework for clustering evolving data streams.
In: proceedings of the International Conference on Very Large Data Bases, Berlin, Germany,
pp. 81-92 (2003).

16. Comode, G., Muthukrishnan, S. and Zhang, W.: Conquering the divide: Continuous clus-
tering of distributed data streams. In: Proceedings of the International Conference on Data
Engineering, Istanbul, pp.1036-1045 (2007).

17. Gama, J., Rodrigues, P., and Sebastio, R.: Evaluating algorithms that learn from data streams.
In: Proceedings of the ACM Symposium on Applied Computing, Hawaii, pp.1496-1500
(2009).

18. Angelov, P.. Outside the Box: An Alternative Data Analytics Framework. Journal of Au-
tomation, Mobile Robotics and Intelligent Systems, 8(2), pp. 53-59 (2014).

19. Angelov, P.: Typicality distribution function- a new density-based data analytics tool. In:
IEEE International Joint Conference on Neural Networks (IJCNN), Killarney, pp. 1-8 (2015).

20. Angelov, P., Gu, X., Kangin, D. and Principe, J.: TEDA: Typicality based Empirical Data
Analytics. Submitted to Information Sciences (2016).

21. Angelov, P. and Filev, D.: Simpl_eTS: A simplified method for learning evolving Takagi-
Sugeno fuzzy models. In: IEEE International Conference on Fuzzy Systems, Reno, USA, pp.
1068-1073 (2005).

22. Angelov, P.: Autonomous Learning Systems from Data Stream to Knowledge in Real Time.
West Sussex, United Kingdom: John Wiley & Sons, Ltd. (2012).

23. Lughofer, E. and Angelov, P.: Handling drifts and shifts in on-line data streams with evolving
fuzzy systems. Applied Soft Computing Journal, vol.11(2), pp.2057-2068 (2011).

24. Saw, J., Yang, M. and Mo, T.: Chebyshev inequality with estimated mean and variance. The
American Statistician, vol.38(2), pp. 130-132 (1984).

25. Clustering Datasets - University of Eastern Finland, last access: 12 May, 2016. http://
cs.joensuu.fi/sipu/datasets/

