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Abstract— In this paper, a new type of feedforward non-
parametric deep learning network with automatic feature 
extraction is proposed. The proposed network is based on 
human-understandable local aggregations extracted directly 
from the images. There is no need for any feature selection and 
parameter tuning. The proposed network involves nonlinear 
transformation, segmentation operations to select the most 
distinctive features from the training images and builds RBF 
neurons based on them to perform classification with no 
weights to train. The design of the proposed network is very 
efficient (computation and time wise) and produces highly 
accurate classification results. Moreover, the training process 
is parallelizable, and the time consumption can be further 
reduced with more processors involved. Numerical examples 
demonstrate the high performance and very short training 
process of the proposed network for different applications. 

Keywords— deep learning; fast training; feedforward; 
feature extraction; learning network. 

I. INTRODUCTION 
Nowadays, with the very fast development of the electronic devices and information technologies, the number of images and videos uploaded to the websites and social media is increasingly growing. Other domains like industry [1], healthcare [2] as well as security [3] also have a very strong need of handling huge amounts of images and videos. As a result, image processing is now an increasingly popular research area [1]–[4]. 
Deep learning [5] is a hot research area attracting the attention of machine learning researchers as well as the public. Relying on extracting high level abstractions in data by using a multiple layer structure composed of linear and non-linear transformations, the published methods have presented very promising results in image processing [6]–[10]. Nonetheless, there are four major deficiencies in the current deep learning methods: 
i) The features extracted and the steps to get them by the encoder-decoder methods have low level of human interpretability (are opaque)  [5]–[8]; 
 ii) The training process is off-line and requires a large 

amount of time as well as complex computational resources [8]–[10]; 
iii) There are too many ad hoc decisions and parameters (the number of layers, neurons, parameter values) [6]–[10]; 
iv) The training process is not parallelisable [6]–[10]. 
These deficiencies largely hinder the acceptability of the deep learning network. Realising the fact that the success of deep neural networks (DNNs) is built upon huge amounts of numerical experiments with significant expertise, an alternative approach was proposed in [11] using the wavelet scattering convolution network as the descriptor to extract SIFT-type features from images and based on this to train the SVM or PCA classifiers. Although, this approach successfully avoids the ambiguous ad hoc decisions made in the DNNs design [6]–[10], the wavelet scattering convolution network actually requires the wavelets to be well defined in advance [11]. 
In this paper, we introduce a novel fast feedforward non-parametric deep learning method with automatic feature extraction. The proposed network is based on the local aggregations extracted directly from the images and has no parameters to train. As a result, the design process is very fast. The proposed network converts the extracted local aggregation matrices into vectors and involves a nonlinear mapping function to improve the distinctiveness of the identified local aggregations. Using the grid segmentation operation, the extracted local aggregations are divided into smaller blocks according to their original positions within the images. Since the blocks are independent from each other, multi-level parallelization is also possible. By selecting the most distinctive local aggregations within each block, the network is able to build a number of radical-basis function (RBF)  neurons based on them and perform classification. Compared with the DNNs [6]–[10] and the alternative approach [11], the proposed network has the following advantages: 
i) The extracted features are human understandable and can easily be visualised; 
ii) The learning process is simple and fast, there are no iterations for parameter training; This work was supported by The Royal Society (Grant number 

IE141329/2014) 



 Fig.1. Architecture of the fast feedforward deep learning network 
iii) The learning process is fully parallelisable. 
The numerical examples clearly demonstrate that the proposed network is able to perform highly accurate classification after a very short learning process and it can be applied to various fields.  
The remainder of this paper is organised as follows. The architecture of the proposed network for feature extraction is described in section II. The architecture of the network for predicting the class label is described in section III. The details of the training of the proposed network are presented in section IV. Numerical examples and discussion are given in section V. Section VI concludes the paper. 
II. ARCHITECTURE OF THE PROPOSED NETWORK FOR 

FEATURE EXTRACTION 
The architecture of the proposed fast feedforward deep 

learning network up to the final, class prediction stage is 
depicted in Fig. 1. As it is shown in Fig.1, the proposed 
network has 6 layers plus the prediction layer. The first layer 
is for non-overlapping mean pooling with size 2 2 . The 
second layer is for extracting local aggregations as features 
from the pooled images. The third layer is nonlinear mapping 
layer. The forth layer is the segmentation layer. The fifth 
layer is for filtering out the overlapping/similar features 
extracted from images of different classes. The sixth layer 
includes the RBF neurons build based on the extracted local 
aggregations.  

In the rest of this section, we will describe the novel 
characteristics of our method. In this paper, for simplicity, 
we only consider grayscale images with pixel values scaled 
into  0,1 . The size of the original images is denoted 
as 2 2d d , and, thus, after the mean pooling, the size of 
images becomes d d .  
A. Local aggregations extraction layer 

In this layer, the local aggregations within images are 
extracted. These are based on the gradients between the grey 
level values of the surrounding/neighboring pixels to a 
given pixel. In our method, the local aggregations for the 
pixel ,i jp  ( ,i j  are the coordinates indicating the position of 
this pixel within the image) is achieved by using a n n  ( n  
is a small odd number) sliding window with a stride of 1 

pixel, and the pixel ,i jp  is in the center of the sliding 
window. The local aggregation around ,i jp  is expressed as: 
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c  ( 1, 2,...,c C ) is the class label of the image; C  is the 
number of classes in the image dataset; l  is the index of the 
image within its class. 

By using the gradients of the grey level as local 
aggregations, the local features, i.e. edges, shapes, are 
preserved, while the influence of illumination is reduced. In 
order to get the most effective local aggregations, we only 
consider valid features ,

,
c l
i j which have more than half of its 

elements being non-zero. The ,
,
c l
i j that fail to meet this 

requirement are being discarded. 
After the n n  local aggregations are extracted, the 

matrix is converted into a long vector by concatenating 
different rows from the local aggregation matrix. Because, 
the center of each aggregation is always equal to zero, we 
can omit the center in the vector, and, thus, obtain a  2 1 1n   local aggregation vector: 
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Fig.2. The curves of the nonlinear mapping function and its gradient 

 Fig.3. The architecture of the proposed network for evaluation  
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Due to the fact that the gradients of grey level values are 
not available in all directions in the edges of the images, we 
discard the pixels that do not have full/whole local 
aggregations around the edges. Thus, after the local 
aggregation extraction, the size of images becomes  2( 1) ( 1) 1d n d n n       . 
B. Nonlinear Projection Layer 

After the extraction of the local aggregations, their 
values are limited to the range  1,1 because the pixel grey 
level values are normalized into the range  0,1 . This makes 
it hard to linearly separate the classes. In this paper, we 
employ the following nonlinear one-to-one mapping 
function to amplify the differences between various local 
aggregations: 

     2sgn( ) exp 1 sgn( ) exp 1x x x x                    (3) 
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. The curves of   x  and its 

gradient are depicted in Fig. 2. 
As it is shown in Fig. 2, by using  x , small 

differences in the x-axis are amplified in the y-axis. By 
using the nonlinear mapping, the proposed method amplifies 
the differences between local aggregations, and, thus, 
improves the distinctiveness of the extracted local 
aggregations. After the nonlinear mapping, each local 
aggregation vector ,

,
c l
i j  is expressed as: 
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C. Grid Segmentation 
Layer 
In the proposed 

method, the grid 
segmentation is 
achieved using a sliding 
window with size of m m pixels and a stride 
of p pixel. The grid 
segmentation layer 
further divides the 

image space into   21 1d n m
p

       small blocks with 
size of  2 1m m n   overlapping with each other. This 
operation is equal to the over-sampling. By assigning the 
local aggregations to the blocks they belong to, the original 
positions of the local aggregations are replaced by the 
positions of their corresponding blocks, which allows the 
local aggregations small space for shifting. In addition, as 
the blocks are independent from each other, parallel 
computation can be easily achieved to process each block 
separately and, thus, improves the computation efficiency of 
the proposed network.  

After the grid segmentation, each block can be viewed 
as a set of local aggregations from different images of 
different classes: 

      1 2, ,..., C
i i i iB                                               (5) 

where i  is the index of the blocks, 
  211,2,..., 1d n mi p

        ;  c
i denotes the local 

aggregations extracted in the range covered by the thi block 
from the images from the thc  class. 
D. Overlapping Filtering Layer 

The proposed network relies on the extracted local 
features to make the classification decision. However, in 
many cases, the same local features can appear in different 
classes. It is, therefore, important to select the most 



distinctive features only. 
Considering the dimensionality of the extracted local 

aggregations in our method, Euclidean distance is not the 
best choice due to its inherited deficiencies for high 
dimensionality problems [12], [13]. Instead, we apply 
cosine dissimilarity of the local aggregations from two 
different classes within the same block: 
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j  and k .  
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As a result,  ,j kd    is re-written as [14]: 
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Then we check the following condition: 
     
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If the condition in equation (8) is met, it means that, in 
the Euclidean data space, the angle between j  and k  is 
smaller than 30o , which means that the two local 
aggregations are quite similar, i.e. the bottom parts of “0” 
and “6” in some handwritings are highly similar, and 
keeping them in iB  will lead to misleading results. 
Therefore, j  and k  are both removed. 
E. Cosine Dissimilarity based RBF Neurons Layer 

After the distinctive local aggregations are all selected, 
they are used to build the final layer of the proposed 
network. The final layer consists of a number of RBF 

neurons; each neuron is directly related to a distinctive local 
aggregation. The RBF neurons of each block are viewed as 
a group. It is important to stress that there is no dependence 
of different groups of RBF neurons between each other. 

By including equation (7), the RBF function based on a 
particular distinctive local aggregation   is, finally, 
expressed as equation (9):  
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21 1exp , exp2 8f d               

 
xx x x    (9) 

where x  is the input vector and  is the distinctive local 
aggregation corresponding to the neuron.    

After the RBF neurons are built based on the extracted 
distinctive local aggregations, the learning stage of the 
proposed network is finished, and it can be used for 
evaluation. As we can see from the above description, there 
is no parameter optimization and iterations in the training of 
the proposed feedforward network. It is based on the local 
features extracted automatically from the training images to 
build RBF neurons and further classify new images. As a 
result, the proposed network is able to learn from a large 
number of images in high speed. 

III. ARCHITECTURE OF THE PROPOSED NETWORK: 
CLASSIFICATION STAGE 

Once the proposed fast feedforward non-parametric deep 
learning network has extracted the local aggregations from 
the training images in the learning stage, the network is now 
prepared for classifying new images. The architecture of the 
proposed network is depicted in Fig. 3. In this section, we 
will only describe the components that have not been 
descriped prevously. 
A. RBF Neurons Layer 

For each testing image, the process will sequentially go 
through the mean pooling layer, local aggregation, nonlinear 
mapping, and grid segmentation layers. After the 
segmentation operation, the image will be divided into 
blocks in the same way as described in section II.C and the 
local aggregations within each block will serve as the inputs 
of the RBF neuron group connected to that block.  

When a local aggregation within the block, denoted as x , is sent to the connected neuron group, the likelihoods 
of x  belonging to each class are calculated according to the 
following rule: 
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 Fig.4. Visualization of the feature extraction process (local aggregation extraction and nonlinear projection layers)  

 (a) Example 1 

 (b) Example 2 
Fig.5. Zoom-in visual examples  

where cN  is the number of RBF neurons belonging to the 
thc  class in that group; c

i  is the thi  distinctive local 
aggregation of the thc  class within the group; 1,2,...,c C . 

Therefore, after all the local aggregations of the testing 
image, denoted as  x , have been segmented according to 
their positions in the image and gone through the 
corresponding RBF neuron groups, the outputs of the local 
classifiers will be obtained based on the true class labels 
as:         1 2, ,..., CL L Lx x x  . Then the outputs will be 
sent to the Few-Winners-Take-All module to decide the 
label of the testing image. 
B. Few-Winners-Take-All Operator 

Due to the fact that the proposed network is operating 
based on the local features, one cannot expect that a 
particular testing image have all the local features at the 
same time. However, for any two images within the same 
class, there is a very large chance that they can hold some 
similar local features. Therefore, we employ the Few-
Winners-Take-All strategy to decide the label. Considering 
the fact that the numbers of identified local features from 
the training images from different classes are different, we 
only take average value of the top 15% outputs of the local 
classifiers of each collection into account: 

 0.15

1
1 ˆ0.15

cM
c c i

ic
LM




   x                                         (11) 

where cM is the number of local classifiers in the collection 
  cL x ;   ˆc iL x is the ranked   cL x  in a descending 

order. 
Based on c ( 1,2,...,c C ), the label of the image is 

decided as: 
 

1,2,...,
arg max cc C

class label


                                            (12) 

IV. EXTRACTED FEATURES 
In this section, we will validate the proposed network 

with the well-known MINST dataset [15]. As it was 
stressed, there is no any iterations, parameter optimization 
and other search procedures involved in the proposed 
method. The classification by the proposed network is 
conducted based on the extracted local aggregations. We 
will present a number of visual examples for illustration. 
For visualization of the feature extraction process (including 
both the local aggregation extraction and the nonlinear 
projection layers), 10 images (1 images per class) are 
presented in Fig. 4.  

As it is illustrated in Fig. 4, for a particular pixel on the 
training image, its neighboring/surrounding pixels are 
selected using a sliding window at the beginning. Then, its 
gradient-based local aggregation matrices are extracted and 
converted into vectors. The local aggregation vectors are 
further nonlinearly mapped to improve their distinctiveness. 
After the local aggregations of all the training images have 
been identified, the proposed network is ready to be used for 
classification.  

One of the most important characteristics of the 
proposed network is that the extracted/learned features are 
human understandable. A number of zoomed-in examples of 
the extracted local aggregations in Fig 4 (red ellipses) are 
presented in Fig. 5. As we can see from Fig. 5, the extracted 



TABLE I.   RECOGNITION RESULTS AND COMPARISON 
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1000 94.42% 86.54% 95.92% 92.70% 
2000 96.04% 96.42% 96.70% 93.89% 
3000 96.34% 96.55% 96.67% 94.93% 
4000 96.62% 96.62% 96.88% 95.31% 
5000 96.94% 96.85% 97.16% 95.54% 

10000 - 97.19% 97.38% 96.31% 
20000 - 97.32% 97.53% 96.67% 
30000 - 97.46% 97.68% 96.86% 
40000 - 97.45% 97.66% 96.97% 
50000 - 97.46% 97.65% 97.03% 
60000 - 97.46% 97.63% 97.11% 

 

 
Fig.6. Curves of classification accuracy of the four methods 

 

 Fig.7. Curves of time consumption 
 

gradient-based local aggregation matrices expressed in the 
form of histograms preserve well the shapes and edges of 
the extracted local features. Moreover, because the gradients 
of the grey level values of the pixels are employed, the 
influences of original grey levels and differences in 
illumination of the images on the feature extraction 
operation are reduced. By using the nonlinear mapping 
function, the small differences between the values of the 
elements within the vectors are amplified, which effectively 
improves the distinctiveness of the extracted local 
aggregations. 

V. NUMERICAL EXAMPLES 
In this section, several numerical examples are presented 

to evaluate the performance of the proposed fast 
feedforward non-parametric deep learning network. The 
proposed network was developed into a software run within 
MATLAB R2015a. The performance was evaluated on a PC 
with dual core i7 processor with clock frequency 3.6GHz 
each and 8GB RAM using WIN10 operation system. As the 
proposed network can be trained very fast, there is no GPU 
or additional computational devices involved. In the 
following numerical experiments, the size of the sliding 
window for local aggregations extraction is 7 7  ( 7n  ); 
the size and stride of the sliding window for the Grid 
segmentation is 2 2  ( 2m  ) and 1 ( 1p  ) 
A. Symbol Image Recognition 

Firstly, we have selected the MINST dataset [15] for 
symbol image recognition. The dataset has 60000 images as 
training set and 10000 images for validation. In this 
experiment, we use the images with their original size 
( 2 28d   ). We also tested the proposed network with 
several well-known algorithms: 

i) Neocognitron neural network [16]; 
ii) Evolving fuzzy rule-based classifier eClass1 using  

GIST and Haar global features [17]; 
iii)TEDAClass evolving fuzzy rule-based classifier 

using  GIST and Haar global features [18]; 
The classification results are tabulated in Table I 

compared with the results of the previously published 
methods [16]–[18]. The results are visualized in Fig. 6. 

The corresponding amount of time consumed by the 
proposed algorithm is presented in Table II and the curve of 
time consumption is depicted in Fig. 7. As it has been stated 
in section II, the proposed network can be trained in a 
parallel mode using several processors. Several simple 
parallelism experiments have also been done by using the 
parpool function of MATLAB. The parallel training was 
done by 2 and 4 local workers and the time consumptions 
are also presented in Table II. It has to be stressed that, the 
time costs are measured within MATLAB R2015a on a PC 
using WIN10 operation system and using Linux and 
programing language like C can improve by an order of 
magnitude. 

B. Human Action Recognition 
In this subsection, we evaluate the performance of the 

proposed network for human action recognition. The 
numerical experiments are conducted based on a subset of 
the well-known KTH dataset [19]. The dataset contains 6 
classes (Walking, Jogging, Running, Boxing, Hand waving 



 Fig.8. Visual examples of the KTH dataset 
TABLE III.   HUMAN ACTION RECOGNITION RESULTS 

Training 
images 

per class 
Testing 
images 

per class 
Classification 

errors 
Error 
rate 

Time 
consumption 

60 40 5 2.1% 39.2s 
80 20 2 1.7% 48.7s 

  

 Fig.9. Visual examples of the Wang dataset 
TABLE IV.    IMAGE CLASSIFICATION RESULTS 

Training 
images 

per class 
Testing 
images 

per class 
Classification 

errors 
Error 
rate 

Time 
consumption 

25 15 6 5% 30.6s 
30 10 1 1.3% 34.5s 
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                                                                                                                       1 2 local workers; 2 4 local workers.  and Hang clapping) with 100 images per class randomly 
extracted from 18 videos with the same background (3 
videos per class). The visual examples of the images are 
presented in Fig. 8. In the experiments, the original images 
are converted to 64 64  size ( 2 64d   ) because some of 
the actors are not large enough within the images. The 
experimental results are presented in Table III.  
C. Image Classification 

In this subsection, numerical examples with the 
proposed network for image classification are presented 
based on a subset of the Wang dataset [20]. The dataset used 
in this subsection consists of 8 classes with 40 images in 
each class. The 8 classes are: Airplanes, Cars, Dinosaur, 
Dolls, Doors, Motorbikes, Roses and Sailing ships. Example 
images of the 8 classes are given in Fig. 9. The original 
images are converted to 64 64  size and the experimental 
results are presented in Table IV. 
D. Discussion 

As it is shown in Table I and Fig. 6, the classification 
accuracy of the proposed network reaches 97.11% after all 
60000 training images are used, which is slightly worse than 
the eClass1 and TEDAClass developed and published by 
our team earlier but outperform Neocognitron (and other 
approaches, i.e. neural networks, k-nearest neighbors 
classifiers [15]). One can also see that the performance of 
the proposed network keeps increasing if more training 
images are provided. In contrast, the eClass1 reaches its 
maximum accuracy after 40000 training images being 
processed. TEDAClass reaches its maximum accuracy after 
30000 images being processed, with more training images, 
the accuracy of the TEDAClass decreases. For the proposed 
network, with more training samples and time 
consumptions, one can always obtain a higher accuracy. 

Table II and Fig. 7 show that the training time 
consumption grows with the amount of training dataset. It 
only takes 113.4 seconds (using WIN10 OS and MATLAB 
and no parallelization) to train the network using 4000 
images and the classification accuracy has already achieved 
over 95%, which by far, is the fastest training process 
among the established deep learning networks to the 
authors’ best knowledge. In additional, moving to Linux and 
C or Python can further speed up to an order of magnitude. 
For the published algorithms based on the global features 
(i.e. GIST and Haar), it already takes a larger amount of 
time (220.7 seconds) to only extract the GIST features from 
4000 images. The Neocognitron neural network failed to 

give us consistent result as the network has a 
large number of parameters and the training 
process for 5000 training images takes more 
than 5 hours [16], [18]. 

In addition, the proposed network supports 
parallel processing. The computation can be 
distributed to a number of processers, which 
largely reduces the amount of time consumed by 
the training process. As it is presented in Table 

II, by distributing the computation to more local workers, 



the training process becomes much faster. It has to be 
stressed that, this parallelization experiments are not real 
parallel computation as all the training is still conducted 
within a single dual core PC. With more processers, or using 
GPUs, the training process will be even faster, and, 
critically, this algorithm allows parallelization at many 
levels. 

Tables III and IV presented in sections V.B and V.C 
both demonstrate that the proposed network can be applied 
in different areas and is able to perform highly accurate 
classification results even if using a small amount of 
training images.  

In summary, the numerical examples in section V clearly 
show the three advantages of the proposed network in 
addition to the advantage of interpretable features detailed 
in section IV: i) Fast, ii) highly accurate with increasing 
accuracy for more training samples and iii) Parallelizable.  

VI. CONCLUSIONS 
In this paper, a novel fast feedforward nonparametric 

deep learning network with automatic feature extraction is 
proposed. This new method is free from iterative parameter 
training and can learn from the training dataset very fast. In 
the learning stage, it automatically extracts the local 
aggregations from the training images and uses a nonlinear 
mapping function to improve their distinctiveness. The local 
area-based grid segmentation layer divides the extracted 
features into independent smaller sets that enables high level 
of parallelization. By selecting the most distinctive local 
aggregations, the network is able to build RBF neurons and 
further perform classification according to the Few-
Winners-Take-All strategy. The advantages of the proposed 
network presented in this paper are as follows: 

i) The extracted features are human understandable. 
ii) No need for training of any parameters; 
iii) The learning process is very fast; 
iv) The learning process is fully parallelizable; 
The numerical examples also illustrate that the proposed 

network is able to perform accurate classification for 
various problems.  
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