
Accepted Manuscript

Title: Response-based selection of barley cultivars and legume
species for complementarity: Root morphology and exudation
in relation to nutrient source

Author: Courtney D. Giles Lawrie K. Brown Michael O. Adu
Malika M. Mezeli Graeme A. Sandral Richard J. Simpson
Renate Wendler Charles A. Shand Daniel Menezes-Blackburn
Tegan Darch Marc I. Stutter David G. Lumsdon Hao Zhang
Martin S.A. Blackwell Catherine Wearing Patricia Cooper
Philip M. Haygarth Timothy S. George

PII: S0168-9452(16)30617-3
DOI: http://dx.doi.org/doi:10.1016/j.plantsci.2016.11.002
Reference: PSL 9514

To appear in: Plant Science

Received date: 15-6-2016
Revised date: 26-9-2016
Accepted date: 4-11-2016

Please cite this article as: Courtney D.Giles, Lawrie K.Brown, Michael O.Adu, Malika
M.Mezeli, Graeme A.Sandral, Richard J.Simpson, Renate Wendler, Charles A.Shand,
Daniel Menezes-Blackburn, Tegan Darch, Marc I.Stutter, David G.Lumsdon, Hao
Zhang, Martin S.A.Blackwell, Catherine Wearing, Patricia Cooper, Philip M.Haygarth,
Timothy S.George, Response-based selection of barley cultivars and legume species for
complementarity: Root morphology and exudation in relation to nutrient source, Plant
Science http://dx.doi.org/10.1016/j.plantsci.2016.11.002

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.plantsci.2016.11.002
http://dx.doi.org/10.1016/j.plantsci.2016.11.002


1 
 

Title 1 

Response-based selection of barley cultivars and legume species for complementarity: Root 2 

morphology and exudation in relation to nutrient source  3 

Author names 4 

Courtney D. Gilesa, Lawrie K. Browna, Michael O. Adua1, Malika M. Mezelia, Graeme A. Sandralb, 5 

Richard J. Simpsonc, Renate Wendlera, Charles A. Shanda, Daniel Menezes-Blackburnd, Tegan 6 

Darche, Marc I. Stuttera, David G. Lumsdona, Hao Zhangd, Martin S. A. Blackwelle, Catherine 7 

Wearingd, Patricia Coopera, Philip M. Haygarthd, Timothy S. Georgea 8 

Author affiliations 9 

a James Hutton Institute: The James Hutton Institute, Aberdeen, AB15 8QH and Dundee, DD2 5DA, 10 

Scotland, UK 11 

b Wagga Wagga Agricultural Institute, Wagga Wagga NSW, Australia 12 

c CSIRO Agriculture, Canberra ACT, Australia 13 

d Lancaster University: Lancaster Environment Centre, Lancaster, LA1 4YQ, UK 14 

e Rothamsted Research: North Wyke, Okehampton, Devon, EX20 2SB, UK 15 

1Present address:   University of Cape Coast, College of Agriculture & Natural Sciences, School of 16 

Agriculture, Department of Crop Science, Cape Coast, Central Region, Ghana. 17 

 18 

Corresponding author Courtney D. Giles, Courtney.Giles@hutton.ac.uk, (p) +44 7933 546838 19 

 20 

 21 

 22 

mailto:Courtney.Giles@hutton.ac.uk


2 
 

 23 

Abstract 24 

Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in 25 

agroecosystems. Phenotypic variation in plants’ response to nutrient deficiency may influence 26 

positive complementarity in intercropping systems. A multicomponent screening approach was used 27 

to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits 28 

in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six 29 

plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient 30 

treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and 31 

phytase activity were most variable in barley. Changes in root morphology were minimized in plants 32 

provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase 33 

activity and pH varied with legume species, whereas citrate efflux, specific root length, and root 34 

diameter lengths were more variable among barley cultivars. Three legume species and four barley 35 

cultivars were identified as the most responsive to P deficiency and the most contrasting of the 36 

cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach 37 

for the selection of plant combinations for minimal input cropping systems.  38 

Highlights  39 

 Phenotypic response to nutrient source in barley cultivars and legume species 40 

 Divergent responses based on root morphology and exudation  41 

 Potential plant combinations for improved nutrient acquisition identified 42 

Keywords barley, legumes, plant nutrition, root morphology, exudation 43 
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Abbreviations A, ammonium-N; Aroot, Aitchison distance of root diameter length distribution; B, 44 

balanced nitrate-ammonium;  CV, coefficient of variation;  pH, change in pH.;  H+, proton;  HCO3
- 45 

bicarbonate;  K+, potassium ion;  N, nitrogen;  NH4
+, ammonium;  NO3

-, nitrate; P, phosphorus;  P0, 46 

no P;  P1, 0.5 mM P;  P2, 1.0 mM P;  SRL, specific root length.  47 

1. Introduction 48 

There is a mounting concern for the long-term viability of conventional cropping practices, which rely 49 

on non-renewable mineral phosphate supplies to maintain yields and meet the dietary requirements of 50 

a growing global population [1, 2]. Agricultural biotechnologies and practices which maximize the 51 

utilization of added and endogenous soil P supplies are therefore needed to reduce the dependence of 52 

agricultural production on external fertilizer inputs and minimize the loss of nutrients to surface 53 

waters [3]. Intercropping of cereals and legumes has been proposed as an approach to improve crop 54 

yields and nutrient use efficiency in agricultural systems through increased biodiversity, resource 55 

sharing, resilience to pests, and inter-species facilitation [4]. Understanding the response of barley 56 

cultivars and legume species to P supply and N source could therefore improve the selection of plants 57 

for biodiverse and nutrient efficient agroecosystems. 58 

Complementarity between two or more plants in poly-culture is characterized by improved resource 59 

acquisition and productivity relative to a monoculture [5].  Facilitation and reduced competition for 60 

soil resources by plants in poly-culture occur due to reduced competition for spatial (e.g., top-soil 61 

nutrient foraging) and non-spatial soil resources (e.g., chemically distinct nutrient pools), as well as 62 

enhanced productivity through N-fixation by legumes and other environmental modifications (e.g., 63 

soil moisture retention, disease suppression) [4, 6]. The success of intercropping strategies is 64 

predicted to depend on architectural and anatomical properties of roots as well as the exudation of 65 

carboxylates and phosphatase enzymes, which optimize the extraction of soil nutrients and 66 

exploration of niche space in soil by the individual plant species [7]. If however the nutrient 67 
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acquisition strategies of two or more plants are too similar, for example targeting the same niche 68 

space or nutrient pool in soil, competitive effects may limit the success of intercropping strategies. 69 

Therefore, the plasticity of root morphology and exudation under conditions of limited or 70 

heterogeneous nutrient sources is expected to minimize competition between plants and enhance the 71 

acquisition of nutrients by individual plants and intercrops [8].  72 

The recovery of P from organic forms is achieved by the production of phosphatases by plants or 73 

microorganisms in the soil environment. The purple acid phosphatase and histidine acid phosphatase 74 

classes of phytase have been characterized in plants [9, 10] and are reported to be expressed within the 75 

cell and exuded under conditions of P limitation [11]. Several species of grasses (e.g., Brachiaria, 76 

Dactylis) and legumes (e.g., Stylosanthes, Medicago, Trifolium) respond to P deficiency through the 77 

increased exudation of phytase from roots [11, 12]. For example, wheat plants (Triticum L.) with 78 

greater root-associated phosphatase activity could assimilate more P from organic forms than plants 79 

with less or no activity [13]. When constitutively expressed in transgenic plants (e.g., Nicotiana 80 

tabacum, Trifolium L.), various fungal phytases (e.g., Aspergillus sp., Peniophora sp.) are shown to 81 

improve the assimilation of P from sparingly available P sources in vitro [14, 15]. Whilst the 82 

modification of plants with single traits such as fungal phytase exudation has had a limited effect on P 83 

acquisition by plants grown in unfertilized soils [16], studies with model tobacco [17] and 84 

cereal/legume systems [8, 18] suggest that the combination of phytase/phosphatase exudation and 85 

citrate efflux could improve the ability of plants to acquire P due to the combined action of these 86 

exudates on the solubilization and mineralization of soil P [19].  87 

Organic anions/carboxylates represent a major component of root exudates, which directly affect the 88 

diffusivity and availability of P in soils [20]. A secondary effect of carboxylate exudation is the co-89 

transport of counter ion species (e.g., H+, K+, HCO3
-) to maintain cytosolic charge balance during 90 

exudation [21]. This exudation leads to the modification of rhizosphere pH with potential 91 

consequences on the solubility of nutrients, enzyme function, and cascading effects within the 92 
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microbial community [22]. The genetic and environmental controls on carboxylate exudation (e.g., 93 

citrate, malate) have been studied extensively in cereals (e.g., Tritucum L., Hordeum L., Zea mayes) 94 

[23-25] and are known to depend on various nutrient deficiencies (e.g., P) [20], metal toxicities (e.g., 95 

Al3+, Mn2+) [26], or as a mechanism for below ground C partitioning and the facilitation of microbial 96 

community symbiosis [27]. Phosphorus deficiency leads to increased citrate efflux in several legume 97 

species (e.g., Medicago sativa, Lupinus spp.) [28, 29] and may be further enhanced when ammonium 98 

is supplied as the primary source of N due to rhizosphere acidification during ammonium uptake (e.g., 99 

Lupinus albus) [30, 31]. In contrast, nitrate acts as a signal to induce the production of organic anions 100 

in tobacco (Nicotiana tabacum), which act as receptors of nitrate or counter ions for the maintenance 101 

of cytosolic pH [32]. Citrate efflux in barley (H. vulgare L.) is primarily studied with regard to its 102 

genetic variation across cultivars or role in Al3+ toxicity tolerance in acid soils and is therefore 103 

typically assessed under either P sufficient or deficient conditions [33-35]. To our knowledge, there 104 

are no reports of citrate efflux among barley cultivars being affected by both P supply and N source 105 

(NH4
+, NO3

-). 106 

Root plasticity in response to selective pressure (e.g., nutrient supply/source) allows plants to explore 107 

heterogeneous soil environments and forage for nutrients [7]. Common physiological responses of 108 

cereals and legumes to P deficiency include the partitioning of biomass to roots, increased production 109 

of fine roots, and the generation of ‘low metabolic cost’ roots, characterized by increased proportion 110 

of aerenchyma cells and greater root length relative to root biomass (i.e., specific root length, SRL; 111 

[36-42]. The initiation or inhibition of root branching and elongation is also affected by N source 112 

(NO3
-, NH4

+). For example in barley and wheat, the localized application of nitrate initiates the growth 113 

and extension of seminal and lateral roots [43-45]. Plants provided with ammonium can suppress root 114 

branching and elongation in the absence of P, with these effects reversed and associated with 115 

improved seedling growth at higher rates of P application [46, 47]. If yields in cereal and legume 116 

systems are significantly impacted by root architectural [5] and morphological traits, which affect the 117 
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acquisition of soil mineral nutrients (e.g., lateral root angle, rhizosheath, SRL), the selection of plants 118 

with traits appropriate to a particular growth environment will be needed [48]. 119 

The effective combination of traits for the efficient recovery of P in complementary plant systems 120 

must also consider the genotypic variation of physiological and biochemical responses of plants to 121 

nutrient availability [49]. Therefore, the objective of this study was to take a systematic approach to 122 

the selection of barley cultivars and legumes species based on the morphological and biochemical 123 

response of genotypes to P supply and N source. We assessed root exudation (citrate efflux, phytase 124 

activity, pH change) and root morphological traits (root length, specific root length, root diameter size 125 

distribution) and identified plants with the greatest potential to access sparingly available or poorly 126 

soluble P in soil. 127 

2. Materials and methods 128 

2.1 Plant materials 129 

Barley seeds (Hordeum vulgare L.) from a genome-wide association mapping collection (144 elite 130 

European germplasm) and previously assessed for P use efficiency and rhizosheath [50, 51] were used 131 

for the initial screening in hydroponics, with a sub-set of these selected for further characterization 132 

following growth in sterile sand (Table A.1). Seeds from six pasture legumes representing a range of 133 

root morphological [36] and exudation characteristics [52] were obtained from the New South Wales 134 

Department of Primary Industries, Wagga Wagga Agricultural Institute, NSW, Australia. These 135 

legume species, originally sourced from the southern Mediterranean and studied extensively in 136 

Australian pasture systems [53], were: Subterranean clover (Trifolium subterraneum cv. Leura), 137 

Purple clover (Trifolium purpureum cv. Electra), Biserrula (Biserrula pelecinus cv. Casbah), Yellow 138 

serradella (Ornithopus compressus cv. Santorini), French serradella (Ornithopus sativus cv. 139 

Margurita), and Barrel medic (Medicago truncatula cv. Sultan; Table A.1).  140 
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2.2 Chemical and Enzyme Sources 141 

Standard nutrient salts were sourced from Sigma-Aldrich or BDH for all plant growth experiments. 142 

Myo-inositol hexakisphosphate dodecasodium heptahydrate salt (InsP6; Sigma-Aldrich P8810; 143 

Gillingham, UK) was used for the determination of phytase activity in plant exudate solutions. 144 

Ammonium sulphate suspensions of lactic dehydrogenase (LDH; Sigma-Aldrich L2500), malic 145 

dehydrogenase (MDH; Sigma-Aldrich M1567), -Nicotinamide adenine dinucleotide (NADH; 146 

Sigma-Aldrich N4505), citrate lyase from Klebsiella pneumoniae (CL; Roche Ltd., West Sussex, 147 

UK), and a stock citrate standard from Fluka Analytical (Seelze, Germany) were used for the analysis 148 

of citrate in plant exudate solutions. 149 

2.3 Exudate Collection Following Growth in Hydroponics 150 

One-hundred and forty-three of the 144 barley cultivars were screened in hydroponics for root growth 151 

and pH response to P deficiency in order to select a sub-set (n=12) for determination of citrate efflux 152 

and phytase activity in exudates. Seeds were pre-germinated on distilled water agar (1% agarose w/v). 153 

After three days, when radicles were approximately 1 cm long, 5 replicate seedlings were planted in 154 

hydroponic solutions and grown for 3 weeks in batches of 90 plants per 60 L. The standard nutrient 155 

solution (pH 5.5) contained 3 mM NH4Cl, 4 mM Ca(NO3)2, 4 mM KNO3, 3 mM MgSO4, 0.1 mM Fe-156 

EDTA with micronutrients (6 M MnCl2, 23 M H3BO3, 0.6 M ZnCl2, 1.6 M CuSO4, 1.0 M 157 

Na2MoO4, 1.0 M CoCl2) and was either supplemented with 1 mM KH2PO4 or left unamended. 158 

Nutrient solutions were changed on a weekly basis beginning with a quarter strength solution, 159 

followed by half strength, and then full strength nutrients for the final week of the experiment. The pH 160 

in nutrient solutions was adjusted to 5.5 using sodium hydroxide as necessary. Due to the size of the 161 

experiment, four screening cycles of 36 cultivars (5 replicates each, including one plant control, cv 162 

Optic) were carried out for each P condition. Plants were grown for three weeks under controlled 163 

conditions (22oC day 16h/14oC night, 200 W m-2) and then transferred to 50 mL of P-free nutrient 164 
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solution for exudate collection over 24h. Shoot and root materials were collected for biomass weight 165 

determination after drying for 1 week (70oC).  166 

2.4 Exudate Collection Following Growth in Sterile Sand 167 

A representative subset of 12 barley cultivars (cvs Domen, Chieftan, Dialog, Waggon, Spire, 168 

Thuringia, Kym, Prague, Aramir, Krystal, Rainbow, Kenia) and the six legumes (Table A.1) were 169 

selected for exudate screening following six weeks of growth in sterile sand. Course river sand was 170 

washed through a 500 micron sieve and potted (250 – 300 g air-dried sand) prior to sterilization by 171 

autoclaving (180oC). Seeds were vapour sterilized as described previously by enclosing seeds in an 172 

airtight container for 1 h with a solution containing 100 mL hypochlorite solution (4% w/v) and 3 mL 173 

concentrated hydrochloric acid [14]. Seeds were germinated on sterile distilled water agar (0.1% m/v) 174 

for 2 d prior to planting, after which time plants were monitored for incomplete emergence and 175 

replaced with germinated seeds to achieve one plant per pot. Plants were supplied with 20 mL of full-176 

strength nutrients each day during the 21 d growth period in a glasshouse (22oC/14oC day/night) with 177 

16 h light and additional lighting provided at incident radiation less than 200 W m-2. Five replicate 178 

pots were prepared for all cultivars and nutrient conditions including plant-free controls, which 179 

received nutrients for the duration of the growth period.  180 

Plant nutrient solutions were adjusted to pH 5.5 with 10 M sodium hydroxide and filter sterilized (0.3 181 

µm pore size) before use. The N-balanced treatment (B) included equal molarities (6 mM) of NO3
--N 182 

and NH4-N and other macronutrients as described for the hydroponics experiment above. The 183 

ammonium treatment (A) contained 9 mM NH4Cl and 1 mM each of Ca(NO3)2 and KNO3. 184 

Phosphorus was added to each N treatment as KH2PO4 at three concentrations (mM): 0.0 (P0), 0.5 185 

(P1), 1.0 (P2). The resulting solutions are annotated based on the combination of nutrient conditions 186 

as follows: low P (P0XA, P0XB), intermediate P (P1XA, P1XB), and high P (P2XA, P2XB). 187 
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At the end of the growth period, plants were carefully removed from the sand pots and rinsed 188 

thoroughly with tap water for removal of sand. Plants were transferred to 30 mL of the P-free nutrient 189 

solution corresponding to the appropriate N treatment (P0XA or P0XB). Plant exudates were 190 

collected for 2 h in the laboratory at ambient temperature (approx. 20oC) and light. Filtered exudate 191 

solutions (0.2 m, PES) were stored immediately for analysis of pH (4oC), phytase activity (4oC), 192 

dissolved organic C and N, and organic anion composition (-20oC). Sand remaining in pots after the 193 

plant harvest was stored at 4oC for pH determination in 0.01 M CaCl2 (1:2 w/v).  194 

2.5 Exudate Analysis 195 

The pH of exudate solutions was measured within one week of collection using a combination 196 

electrode (Mettler Toledo, Ltd., Leicester UK) and compared to blank P-free collection solutions to 197 

determine the relative ability of plants to alkalize or acidify the starting solution from pH 5.5.  198 

Exudates collected from plants grown in sterile sand were assayed for phytase activity and citrate. 199 

Phytase activity was measured as described by Hayes et al. [54] and modified by Giles et al. [14]. 200 

Briefly, 240 µL of exudates were combined with 30 µL150 mM MES (pH 5.5) and 30 µL of 20 mM 201 

Na12IHP and incubated at 37oC for one hour. The reaction was stopped immediately (t=0) or after one 202 

hour (t = 60 min) by adding equal parts of incubation solution to chilled 10 % trichloroacetic acid. 203 

Phosphate in stopped reaction solutions was measured by malachite green colorimetry [55]. The 204 

difference in phosphate concentration for a given sample was proportional to phytase activity as 205 

expressed in nKat and normalized to root dry weight and the exudate collection period (nKat g-1 root 206 

dry wt. h-1). 207 

Citrate was assayed enzymatically according to Dagley [56] with the following modifications. Freeze-208 

dried exudate solutions were reconstituted at 8.33 times the original concentration by adding 1 mL 209 

MilliQ water and 125 µL Tris-HCl (1 mM, pH 8). To 250 L of exudate solutions, 4 L NAD 210 
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solution (8 mg NAD and 7 mg NaHCO3 in 1 mL water) and 2 L of 1:1 solution of LDH and MDH 211 

were added. Samples were allowed to equilibrate for 1h at room temperature in order for natural 212 

NADH depletion to stabilize. Two L citrate lyase (CL; 100 mg mL-1) was added to half of the well 213 

replicates (n=4) and incubated for an additional hour. The concentration of NADH was measured at 214 

340 nm. The depletion of NADH in wells treated with CL was proportional to citrate concentration in 215 

standards (0, 5, 10, 15, 20, 40, 60, 80 nmol citrate). All standard solutions were prepared in blank 216 

P0XA or P0XB solutions containing 8.33 times nutrient salts.  217 

2.6 Shoot and Root Analysis  218 

Plants were separated into above- (shoots) and below- (roots) ground biomass. Shoots were oven 219 

dried for 48 h (70oC) and weighed for the determination of dry weight. Roots from exudate screening 220 

experiments in sterile sand were stored at 4oC in 50% ethanol (v/v) prior to root scanning (EPSON, 221 

Hertfordshire, UK) and image analysis. Root images (300 dpi, grey scale) using the Lagarde 222 

transformation for pixel identification and analysed for total root length (cm), average diameter (mm), 223 

and root lengths in each diameter size class (in 0.1mm increments to >1.9mm) using the root 224 

architectural algorithm in WinRHIZO (Regent Instruments, Inc., Quebec, Canada). The percentage of 225 

root length in each diameter size class was calculated relative to the total root length determined for 226 

individual plant replicates. 227 

2.7 Statistical Analysis 228 

Means and standard errors are presented for five replicate plants and three technical replicates for 229 

citrate and phytase-activity measurements. For exudate screening in sterile sand, Tukey Least Square 230 

Difference (LSD <.05) was used to compare plant growth and exudate characteristics of cultivars 231 

within a single nutrient condition and across nutrient conditions for a single cultivar. Principal 232 

component analysis (PCA) was used to visualize and quantify the variation in plant response to the six 233 
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nutrient treatments based on physical root parameters and exudation traits. All variables were checked 234 

for normality and those not normally distributed were log-transformed prior to correlation and 235 

significance testing (Pearson pair-wise, p<.05). Aitchison distance was calculated to identify system 236 

wide changes in the distribution of root diameter size classes in response to nutrient treatment and 237 

defined as Aroot. The length distributions of root diameter size classes (0 to >1.9mm, 0.1mm 238 

increments) were transformed using the isometric log ratio (ilr) procedure (Equation A.1) and a 239 

sequential binary partition matrix (Table A.2)[57]. Aitchison distances (Equation A.2) [58, 59] were 240 

computed for each nutrient treatment (P1XB, P2XB, P0XA, P1XA, P2XA) relative to the reference 241 

nutrient condition (P0XB) for each barley cultivar and legume species based on the averaged sum of 242 

ilr values (n=5). The variance of Aroot was determined using the propagation of error procedure for the 243 

difference of means with equal variance (n=5). The 95% confidence interval (n-1=4 degrees of 244 

freedom) was determined for comparison of mean Aroot values across plant and nutrient treatments. 245 

3. Results 246 

3.1 Hydroponics Screening of Barley under P-Deficient and P-Sufficient Conditions 247 

3.1.1 Root Morphology and Exudate pH Change 248 

In order to evaluate the response of barley cultivars to P deficiency, root morphological characteristics 249 

and pH change of exudate solutions was assessed following three weeks growth in hydroponics with 250 

(P1) and without added P (P0). Phosphorus deficiency led to significant changes in the morphological 251 

characteristics of roots among the 143 barley cultivars (5 replicates each) tested. Averaged across all 252 

cultivars, root dry weight, root surface area, and total root length were significantly larger in P-253 

deficient plants compared to plants grown with P (p<.001; Table 1). The proportion of roots smaller 254 

than 0.5 mm and larger than 3 mm in diameter increased due to P-deficiency, whereas intermediate 255 

diameter roots (0.5 – 3 mm) either decreased or stayed the same (Table 1). For roots greater than 3 256 
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mm in diameter, the length of subsequent size classes increased progressively from 23.5% to 111%. 257 

The lengthening of thicker roots due to P deficiency is also reflected by increases in total root length, 258 

dry weight, and surface area. These trends represent the average response of the entire population to 259 

P-deficiency and a large variability of root morphological traits among individual cultivars.  260 

Differences in the P0 and P1 values of root diameter proportions and total surface area have been used 261 

here to indicate the response of individual cultivars to P-deficiency, whereby positive differences 262 

indicate root elongation or increased surface area, and negative differences indicate shortening or loss 263 

of surface area. There were significant positive relationships between the change in total root length 264 

with dry weight (r=0.61, p<.0001) and surface area (r=0.56, p<.0001) due to P-deficiency for the 265 

entire population (Table 1). Difference values for the proportion of roots in specific diameter size 266 

classes displayed significant positive relationships with total root surface area (r>0.51, p<.0001; Table 267 

1) with the exception of roots <0.5mm in diameter. On average, roots less than 0.5 mm in diameter 268 

were ~6% more abundant in P0 relative to the P1 condition (Table 1); however, the greater length of 269 

<0.5mm roots was related to the net loss of root surface area (r=-0.57, p<.0001). On average, specific 270 

root length (m g-1) was approximately 12% larger in barley cultivars provided with P (p<.0001; Table 271 

1) with 58% of cultivars increasing SRL in response to P deficiency. Therefore, the lengthening of 272 

thicker roots and an increased proportion of fine roots dominated the physiological response of barley 273 

cultivars with a large variation among cultivars identified based on the SRL (Fig. 1). 274 

The growth of barley cultivars in P0 and P1 hydroponics solutions resulted in significant differences 275 

in the ability of P0 and P1 plants to affect the pH of exudate collection solutions. Although the 276 

average pH in exudate solutions from P-deficient plants (6.28±0.29) was not significantly different 277 

from P-sufficient plants (6.12±0.29), exudate solutions from plants supplied with P contained a wider 278 

range of pH (4.12-7.19) in comparison to P-deficient plants (5.07-6.85) and were generally more 279 

acidic (Table 1, Fig. 1). Individual cultivars varied in their ability to change the pH from the starting 280 
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value of 5.5 in the P0 (pH range: -0.57 - +1.81 pH units) and P1 treatments (pH range: -1.48 - 281 

+2.00 pH units; Fig. 1, Fig. A.1).  282 

3.1.2 Selection of Barley Cultivars for Further Study 283 

A subset of 12 barley cultivars were selected for the screening of citrate efflux and exudate phytase 284 

activity based on changes in specific root length and exudate pH in response to P-deficiency (Table 1, 285 

Fig. 1). Fig. 1 shows the wide range of responses among individual cultivars based on these two 286 

variables. More than 50% of cultivars alkalized the pH of exudate collection solutions in response to 287 

P-deficiency, whereas less than 25% responded by acidifying the media. Phosphorus deficiency led to 288 

increased SRL in less than half of the population with changes ranging from +100 to -250 m g-1 root 289 

dry wt. (Fig. 1). The cultivars selected for further screening included those representing extremes in 290 

pH change (cv Domen, -0.67; cv Kenia, +1.8) and SRL (cv Aramir, -251.5 m g-1; cv Chieftain, +65.9 291 

m g-1) as well as cultivars with a minimal response to P deficiency based on one or both of these 292 

metrics (e.g., cvs Waggon, Spire, Kym; Fig. 1). Five cultivars responded to P deficiency with gains in 293 

SRL, which were associated with acidification (cvs Chieftan, Dialog, Spire) or alkalization of exudate 294 

solutions (cvs Prague, Rainbow). Of the seven cultivars that expressed reduced SRL due to P 295 

deficiency, one acidified (cv Domen), three had no effect on pH (cvs Waggon, Kym, Thuringia), and 296 

three alkalized the media (cvs Aramir, Krystal, Kenia; Fig. 1). 297 

3.2 Screening of Barley Cultivars and Legume Species for Root Morphological Characteristics and 298 

Exudation of Citrate and Phytase  299 

Twelve barley cultivars and six legume species were grown in sterile washed river sand for 3 weeks in 300 

order to evaluate shoot and root growth, root morphological characteristics, and the exudation of 301 

citrate and phytase in response to 6 nutrient conditions (P0XA, P1XA, P2XA, P0XB, P1XB, P2XB), 302 
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representing various combinations of P supply (P0=0, P1=0.5, P2=1.0 mM) and N source 303 

(A=Ammonium; B=‘Balanced’ nitrate-ammonium N). 304 

3.2.1 Shoot and root Growth of Barley Cultivars in Sterile Sand 305 

Phosphorus supply (p<.0001) and N source (p=0.0003; Table 2) had a significant effect on shoot 306 

biomass and R:S ratios in barley. Barley cultivars were responsive to P supply by increasing the 307 

length of roots with no added P (P0) and greater shoot biomass accumulation with the greatest P 308 

addition (P2). Across nutrient treatments, shoot biomass in barley ranged from 0.05 to 0.69 g dry 309 

weight and increased with greater P supply (p<.0001; Table 2, Table 3). Under P deficient conditions, 310 

there was no significant difference in shoot dry weight among barley cultivars supplied with 311 

ammonium or balanced N (CV=0.20; Table 2), with the exception of the large biomass of cv Waggon 312 

(0.23 g) and small biomass of cv Prague in P0XB (0.05 g; Fig. 2). Root to shoot ratios were, on 313 

average, 3.4-fold larger in the P deficient treatments (P0XA: 0.36; P0XB: 0.51) compared to P 314 

sufficient treatments (P2XA: 0.13; P2XB: 0.13; Fig. 2), indicating the partitioning of resources to root 315 

biomass in response to P deficiency.  316 

There was significant variation in shoot biomass (p=0.0002) and R:S ratio (p<.0001) among 317 

individual barley cultivars (Table 2). With respect to R:S, the interaction identified between cultivar 318 

and nutrient treatment (p<.0001; Table 2) was related to the greater variability of root and shoot 319 

biomass measurements among cultivars supplied with balanced N in comparison to ammonium-fed 320 

plants. Shoot biomass of barley was significantly greater when plants were supplied with a balanced 321 

N source (in g dry wt. P1XA: 0.41±0.10; P1XB: 0.49±0.13; P2XA: 0.48±0.06; P2XB: 0.53±0.11; Fig. 322 

2).  The coefficients of variation for shoot dry weights in the P1 and P2 treatments were also larger 323 

among cultivars supplied with balanced N (P1XB: CV=0.28; P2XB: CV=0.22) in comparison to the 324 

ammonium-fed plants (P1XA: CV=0.25; P2XA: CV=0.13).  325 
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Specific root length ranged from 54 (cv Prague, P1XB) to 519 m g-1 (cv Rainbow, P2XB) and varied 326 

significantly across nutrient treatments (p<.0001; Table 2, Fig. 2).  On average, SRL was consistently 327 

greater when plants were provided with ammonium and minimal P (in m g-1 P0XA: 280; P0XB: 220; 328 

P1XA: 270; P1XB: 123; P2XA: 217; P2XB: 258; Table 2). This was in part due to root dry weights in 329 

ammonium treatments, which were 1.3 to 2.3-fold less than plants supplied with balanced N across P 330 

treatments. Nitrogen source had a greater effect on SRL (p=0.0001) than P supply (p=0.0166), but 331 

interacted with P supply (p=0.0003) to significantly affect SRL in the population of barley cultivars 332 

tested (Table 2).  333 

Aitchison distance (Aroot) was derived from the length of roots in the various root diameter size classes 334 

of the barley cultivars. Aroot was used to compare the root morphology of cultivars in P0XB (reference 335 

condition) to plants grown in the other nutrient treatments (Fig. 4). Nutrient treatments with 336 

increasing P and N provided as ammonium significantly affected the distribution of root lengths in the 337 

various diameter size classes for the majority of barley cultivars tested, including Aramir, Chieftan, 338 

Kenia, Krystal, Kym, Prague, Rainbow, Spire, and Waggon (p<.05; Fig. 4). In contrast, there was no 339 

significant change in Aroot among Dialog, Domen, and Thuringia cultivars, relative to plants grown in 340 

P0XB (p<.05; Fig. 4). Aroot increased with increasing levels of P for Aramir, Kenia, Krystal, Spire, 341 

and Waggon cultivars, however this affect was more pronounced when ammonium was provided as 342 

the primary N source. The increasing trend in Aroot with greater P is reflected in the raw proportions of 343 

root lengths in the smallest diameter classes, for example in the 0-0.1 and 0.1-0.2 mm (Fig. A.2). The 344 

response of barley cultivars to the nutrient treatments was therefore associated with a global changes 345 

to root morphology, including a shift in the proportion of roots from larger to smaller diameter size 346 

classes. 347 

3.2.2 Shoot and Root Growth of Legumes in Sterile Sand 348 
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In terms of shoot biomass, legumes responded to P supply (p<.0001) and N source (p=0.0124), with 349 

significant differences identified between cultivars and across all nutrient treatments (p<.0001; Table 350 

2). Legume species increased shoot biomass with increasing P supply from a minimum of 0.08 in the 351 

P0XB treatment (T. purpureum) to 0.25 g dry wt. in P2XB (T. subterraneum; Fig. 3). Under P-352 

deficient conditions, legumes provided with ammonium produced larger shoot biomasses (0.16±0.00 353 

g dry wt.) compared to balanced N (0.10±0.01 g dry wt.), whereas at larger P treatments, legumes 354 

provided with balanced N were larger (e.g., in g dry wt. P2XA: 0.14, P2XB: 0.20; Fig. 3). Legumes 355 

responded to P deficiency by partitioning more biomass to roots, as indicated by larger R:S ratios in 356 

the lowest P treatments (Fig. 3) and significant interactions of R:S with P supply and N source 357 

(p<.0001; Table 2). Across P treatments, average R:S ratios of legumes provided with ammonium as 358 

the primary N source were 1.5 to 2-fold greater than plants provided with balanced N (Fig. 3). 359 

However, unlike barley, legume species did not have a significant effect on R:S ratios (p=0.1812; 360 

Table 2).  361 

Specific root length of individual legume species ranged from 0.3 to 38.2 m g-1 dry wt. and was 362 

significantly affected by P supply, N source, and cultivar type (p<.0001), with no interactions 363 

identified between nutrient treatment and cultivar (p=0.2538; Fig. 3, Table 2). Averaged across 364 

legume species, SRL was greatest for plants supplied with ammonium as the primary N source and 365 

increased with added P (e.g., in m g-1 root dry wt. P0XA: 7.8, P0XB: 4.5; P2XA: 20.8, P2XB: 8.3). 366 

The effect of the N source was more pronounced for some species, such as M. truncatula, O. sativus, 367 

and T. subterraneum, which in terms of SRL, responded to increasing P more dramatically when 368 

supplied with ammonium as the primary source of N (Fig. 3).  369 

Aitchison distances of root lengths in various diameter size classes were larger and more variable 370 

(Aroot: -5.7 to 15.4) than the barley cultivars tested (Aroot: -6.0 to 7.1; Fig. 4). All legume species 371 

responded to the nutrient treatments through a change in the distribution of root diameter length 372 

distributions at the greatest P levels (P2XA, P2XB). Medicago truncatula cv Sultan was the only 373 
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legume to show a significant shift in Aroot under all nutrient conditions relative to the reference. There 374 

was an increasing trend of Aroot with P supply in the ammonium treatments of O. sativus and T. 375 

subterranem, with a significant difference found between P0XA and P2XA treatments only (Fig. 4).   376 

The Aroot of O. sativus and T. subterranem corresponded to SRL, which increased with P supply in the 377 

ammonium treatments (Fig. 3). This was in contrast to Medicago, which displayed the greatest 378 

increase in SRL with P supply despite having similar Aroot values at P0XA and P2XA (Fig. 4).  379 

3.2.3 Exudation Response of Barley cultivars to P and N Treatments 380 

Relative to uncultivated controls, the average pH change of the sterile sand media (pH) by barley 381 

cultivars ranged from -0.23 to +0.38 pH units depending on nutrient treatment (Fig. 5). P supply had a 382 

more significant effect on pH (p<.0001) than N supply alone (p=0.4105; Table 3). In general, the 383 

average pH change caused by barley cultivars was positive and most pronounced in P deficient 384 

treatments (P0XA: +0.23±0.12; P0XB: +0.13±0.08), whereas plants supplied with P did not 385 

significantly affect the pH of the sand media (P2XA: -0.07±0.06; P2XB: 0.02±0.05; Fig. 5). There 386 

was a significant interaction between P supply and N source on pH by barley (p<.0001; Table 2). 387 

For example, pH of plants provided with ammonium as the primary source of N was greater than in 388 

the N-balanced plant treatment under P deficiency, whereas small differences between N treatments 389 

were observed as P addition increased (Fig. 5). Consistent with results of the barley screening in 390 

hydroponics (Fig. 1), there was significant variation in the ability of individual cultivars to affect pH 391 

of the growth media under different nutrient treatments (p<.0001; Table 2). 392 

As for pH, citrate efflux was significantly affected by P supply (p=0.0408), and not N source 393 

(p=0.1974), with a significant interaction between P supply and N source identified in barley 394 

(p=0.0317; Table 2). On average, citrate efflux by barley cultivated under P deficiency did not differ 395 

significantly between N treatments, but was 2.4 fold greater in plants provided with balanced N at the 396 

largest P additions (Fig. 5). The interaction of P supply and N source is evident when considering 397 
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citrate efflux by plants provided with ammonium as the primary source of N, which was greatest 398 

under P deficiency and declined with increasing P (in mol g-1 dry wt. h-1 P0XA: 44.0±20.8; P2XA: 399 

14.9±7.9). In contrast, plants cultivated under balanced N displayed the opposite trend, with the 400 

greatest citrate efflux being measured in the largest P treatment (in mol g-1 dry wt. h-1 P0XB: 401 

26.1±10.5; P2XB: 36.7±13.8; Fig. 5). A significant variation in the ability of individual barley 402 

cultivars to exude citrate was identified (p=0.0005) and was found to depend on the nutrient treatment 403 

provided (p=0.0005; Table 2); for example, in the extreme cases of cvs Krystal (8.9 mol g-1 dry wt. 404 

h-1) and Waggon (81.6 mol g-1 dry wt. h-1) in P0XA or cvs Spire (12.5 mol g-1 dry wt. h-1) and 405 

Aramir (63.1 mol g-1 dry wt. h-1) in the P2XB nutrient treatment (Fig. 5). 406 

Phytase activity ranged from 0.02 to 0.23 nKat g-1 root dry wt. h-1 and was not detected in all nutrient 407 

treatments for the barley cultivars tested (Fig. 5). P supply did not have a significant effect 408 

(p=0.4787), whereas N source (p=0.0028) and its interaction with P supply (p=0.0062) were 409 

significant factors affecting exudate phytase activity in barley (Table 2). On average, phytase activity 410 

was greatest for plants grown under P deficient conditions with ammonium as the primary N source 411 

(0.16±0.06 nKat g-1 root dry wt. h-1) and declined as P increased (P2XA: 0.08±0.04 nKat g-1 root dry 412 

wt. h-1; Fig. 5). In contrast, plants provided with balanced N displayed less exudate phytase activity 413 

under P deficiency (0.09±0.05 nKat g-1 root dry wt. h-1; Fig. 5) and did not vary significantly with P 414 

treatment. There was no significant effect of cultivar on the phytase activity of barley exudates 415 

(p=0.4503), however individual cultivars did respond differently to the various nutrient treatments 416 

(p=0.0119; Table 2); for example, cv Prague, which varied considerably with N source (P0XA: 0.05; 417 

P0XB: 0.15 nKat g-1 root dry wt. h-1), or cv Waggon, which did not differ in exudate phytase activity 418 

across nutrient treatments (Fig. 5).  419 

3.2.4 Exudation Response of Legumes to P and N Treatments 420 
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All legume species and nutrient treatments led to a decline in pH of the sterile sand growth media 421 

(Fig. 6). P supply affected pH in the exudate solutions of legumes (p<.0001), whereas N source did 422 

not (p=0.4105); however, a significant interaction between P supply and N source was observed 423 

(p<.0001; Table 2). On average, there was no difference in pH for legumes cultivated with 424 

ammonium and balanced N under P deficiency (-0.40 to -0.46 pH units) or the intermediate P addition 425 

(-0.14 to -0.15 pH units); however, plants in the P2 treatment showed a significant acidification of the 426 

sand media when provided with ammonium (-0.66±0.01) in comparison to balanced N (-0.17±0.02; 427 

Fig. 5). Significant differences between legume species were observed (p=0.0037) with the response 428 

of individual legumes depending on the nutrient treatment (p<.0001; Table 2). For example, 429 

acidification by O. sativus relative to other legumes in the balanced N treatments was greater under P 430 

deficient (-0.19 to -0.31) than under P sufficient (-0.04 to -0.22) conditions (Fig. 6).  431 

Citrate efflux ranged from 2.4 to 74.0 mol g-1 dry wt. h-1 and was significantly affected by P supply, 432 

N source, and the interaction of nutrient factors (p<.0001; Fig. 6, Table 2). As for pH, there was no 433 

difference between citrate efflux between the N treatments in the P deficient condition (10.3 to 10.7 434 

mol g-1 dry wt. h-1 on average). However, as P supply increased, the average difference between 435 

citrate efflux in the two N treatments increased by 2-fold at P1 and 4-fold at P2 (Fig. 5). Legume 436 

species did not significantly affect citrate efflux (p=0.1412) unless nutrient treatment was also 437 

considered (p<.0001), as illustrated by the increasing variation in citrate efflux P supply by legumes 438 

provided with balanced N and the greatest amount of P (e.g., in mol g-1 dry wt. h-1: B. pelecinus: 2.4 439 

vs O. sativus: 74.0; Fig. 6, Table 2). 440 

Phytase activity occurred in a similar range for legumes as for barley (0.01 to 0.25 nkat g-1 root dry 441 

wt. h-1; Fig. 6); however in contrast to barley, legume phytase activity was effected by P supply 442 

(p=0.0429) rather than N source (p=0.1238) and no interaction was found between the two nutrient 443 

conditions (p=0.1315; Table 2). On average, legume phytase activity was greatest in the P deficient 444 
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condition and did not differ significantly between N treatments (in nKat g-1 root dry wt. h-1 P0XA: 445 

0.13±0.03; P0XB: 0.10±0.06). The variation between individual legume species was weakly 446 

significant (p=0.0482) and individual legume species responded differently to the various nutrient 447 

treatments in terms of phytase activity (p=0.0004; Table 2). For example, T. subterraneum plants 448 

provided with ammonium as the primary N source had greater phytase activity in exudates compared 449 

to balanced N plants across P treatments (e.g., in nKat g-1 root dry wt. h-1 P0XA: 0.17; P0XB: 0.08). 450 

In contrast, phytase activity was not detected in the exudates of O. sativus at P0 but increased to a 451 

maximum among legumes at P2, particularly when provided with balanced N (0.23 nKat g-1 root dry 452 

wt. h-1; Fig. 6). 453 

3.3 Multivariate Analysis of Root Morphological and Exudation Traits in Barley and Legumes 454 

Principal component analysis was used to assess the contribution of plant-induced pH change, citrate 455 

efflux, exudate phytase activity and SRL to the variation in response of barley cultivars and legume 456 

species to P supply and N source. Principal component 1 (PC1) accounted for 48.6% of the variation 457 

between treatments and was primarily explained by SRL (0.854), citrate efflux (0.781), and pH 458 

0.749), whereas PC2 (27.0%) was primarily influenced by differences in phytase activity (0.944; Fig. 459 

7). The shift in values along the PC1 axis illustrates the contrasting responses of barley cultivars and 460 

legume species to N source regarding citrate efflux, which was most pronounced under P deficient 461 

conditions but greatest in legumes with balanced N (Fig. 7). The response of barley to ammonium is 462 

observed in a shift to more positive loading values along the PC1 and PC2 axes, corresponding to 463 

increased citrate efflux and exudate phytase activities, particularly under P deficiency (Fig. 7). In 464 

contrast, the distribution of legume loadings shows a large variation in pH and exudate phytase 465 

activity and a more restricted response of plants in terms of SRL and citrate efflux (Fig. 7).  466 

4. Discussion 467 
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We investigated root morphological and biochemical responses of several barley cultivars and legume 468 

species to P limitation and N source in order to identify plant combinations for complementarity and 469 

facilitation. Root morphology (R:S, SRL, Aroot) and exudation (citrate efflux, phytase activity) varied 470 

with P supply and N source, as well as plant cultivar and species. We identified significant effects and 471 

interactions of these factors on the measured root traits, with contrasting responses to six nutrient 472 

treatments among barley cultivars and legume species, specifically with regards to citrate efflux, pH 473 

change, and root diameter size distribution (Aroot). Whilst the response of barley and legume varieties 474 

to the nutrient treatments were generally consistent with the literature (e.g., root elongation response 475 

to P deficiency, stimulation/inhibition of root growth with ammonium), our results provide additional 476 

information on the conservation and plasticity of biochemical (e.g., citrate, phytase) and 477 

morphological (e.g., SRL) root traits, as well as a compositional metric for describing the entire 478 

distribution of root lengths in various diameter size classes (Aroot). Based on this analysis, we identify 479 

promising barley cultivars and legume species for testing some of the questions and ecological 480 

principles pertaining to complementarity and growth facilitation between multiple plant species and 481 

further discuss the potential importance of selecting companion plants with contrasting responses to 482 

nutrient source.  483 

4.1 Conservation of Specific Root Length in Legumes Across Nutrient Treatments  484 

Yang et al. [36] reported SRL in legume varieties following six weeks growth in defined soil mixtures 485 

with rhizobial inoculation and superphosphate amendment, which were one to two orders of 486 

magnitude larger than those measured in the current study and which followed the order (in m g-1): T. 487 

subterraneum 159; T. purpureum 177; M. sativa 209; B. pelecinus 299; O. compressus 307; O. sativus 488 

320. Our results indicate that the relative ranking of legumes based on SRL was consistent across 489 

nutrient treatments and followed the order (in m g-1):  M. truncatula 19; T. subterraneum 10; T. 490 

purpureum 9; O. sativus 8; B. pelecinus 2; O. compressus 1 (Fig. 3). This is consistent with the 491 

prediction that, although the response of these legumes to nutrient availability may vary, the relative 492 
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ranking of intrinsic root traits such as SRL should be conserved [36]. We can also confirm that the 493 

relationship between the length of fine roots (<0.1mm diam.) and SRL is conserved across nutrient 494 

treatments for these legume varieties (r=0.84, p<.0001; Table 3). However, the rankings of Medicago 495 

and Biserulla relative to other legume genera differed in this study relative to the report of Yang et al. 496 

[36]. An important difference between these studies was the use of rhizobial inoculants. In the current 497 

study, legumes were cultivated in sterile sand and provided with N in order to optimize the recovery 498 

of root carboxylates, which, as a labile source of C, are readily degraded by soil microorganisms. 499 

Rhizobia play an important role in nodulation as well as root proliferation, branching and pathogen 500 

resistance in legumes [60]. In Vigna spp. for example, root length, number, branch points, and weight 501 

were 67 to 100% reduced in uninoculated plant treatments [61] with similar effects on root biomass 502 

accumulation reported in soybean (Glycine max)[62]. This indicates a significant effect of rhizobia on 503 

the physical development and absolute magnitude of SRL, which may be exacerbated in plants 504 

cultivated in sterile sand. This warrants further investigation into the dependence of individual 505 

legumes on rhizobia for stimulating root growth as well as SRL values and ranking among other 506 

legume varieties.  507 

4.2 Plasticity of Root Diameter Size Distribution in Response to Nutrient Availability 508 

The proportion of root lengths of particular diameter size classes represents a compositional dataset 509 

with a sum equivalent to one. As for other compositional datasets, changes in the length of one 510 

diameter class will affect the relative proportion of the others [57, 58]. This was observed in the initial 511 

analysis of barley cultivars in hydroponics as simultaneous changes in the smallest and thickest root 512 

diameters (on the basis of both % and absolute length) in response to P deficiency (Table 1). 513 

Aitchison distance, a univariate compositional metric, has been used as a statistical approach for 514 

treating compositional data including the distribution of soil P species and fractions [58], soil 515 

aggregate size distribution [63], and microbial community compositions [64].  516 
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Here, we used Aitchison distance (Aroot) to assess global changes in the distribution of root lengths of 517 

various diameters in response to changes in P supply and N source for each of the barley cultivars and 518 

legume species tested. Aroot is independent of unit (length or %), provides a single representation of all 519 

root diameter size classes, and can therefore be used to statistically verify global changes to the 520 

distribution of thick and fine roots simultaneously. Furthermore, the metric is defined relative to a 521 

reference condition, in this case, the P0XB nutrient treatment. Aroot values that are significantly 522 

different to the P0XB condition represent a change in the distribution of root lengths in the various 523 

diameter size classes. Large positive or negative Aroot values may therefore be interpreted as belonging 524 

to plants with highly plastic root systems. In the current study, legume species displayed the largest 525 

magnitude and range of Aroot values despite having smaller roots and SRL relative to the barley 526 

cultivars (Fig. 4). This illustrates the scale-independence of the Aroot measure as an indicator of root 527 

morphological plasticity. Limited phenotypic plasticity among barley cultivars has been reported and 528 

is linked to a narrow range of selective pressures during the domestication of wild and land-race 529 

varieties [65]. In contrast, the large plasticity of legumes based on Aroot values were consistent with 530 

changes observed in root size classes less than 0.1 mm in diameter and SRL, particularly in response 531 

to P availability (Fig. 3, Table 3). However, in contrast to the SRL ranking described above, the 532 

patterns of Aroot response to nutrient treatment were not conserved among legumes. Though not 533 

investigated in the current study, measures of root diameter size length distributions using Aroot could 534 

provide additional insight into fine-scale differences in root morphology and root biomass 535 

partitioning, which cannot be captured by gross measures such as SRL. 536 

4.3 Mechanisms of Plant Response to Nutrient Availability  537 

Barley cultivars responded to P deficiency by an increased partitioning of biomass to roots, 538 

alkalization of the growth media, and increasing citrate efflux and phytase activity in exudates.  This 539 

is consistent with previous accounts of root biomass accumulation in response to nutrient deficiencies 540 

by several cereal crops including barley [66], maize (Zea mays L.) [47], and wheat (Triticum aestivum 541 
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L.) [67]. P deficiency resulted in diminished SRL in a limited number of spring barley and wheat 542 

varieties [68] and in some cultivars of this study (e.g., cvs Prague, Krystal). However, in both 543 

hydroponics and sterile sand media, the response of barley to P deficiency was highly variable and 544 

was not reflected as a decrease in SRL in all cases (Fig. 2). Barley cultivars provided with ammonium 545 

as the primary source of N had the greatest response to P deficiency, including larger SRL, citrate 546 

efflux and phytase activity and smaller average R:S in comparison to plants in the balanced N 547 

treatment. Drew [43] reported the inhibition of lateral root growth in response to localized 548 

applications of ammonium to barley. Similar responses have been shown in wheat, with the inhibitory 549 

effects of ammonium reversed with greater applications of P [46]. The localized application of 550 

ammonium and P is recommended as an approach for improving root growth, rhizosphere 551 

acidification, and nutrient acquisition in calcareous soils with maize and other cereal/legume systems 552 

[31, 46].  Whilst the application of ammonium may inhibit root growth in the absence of P, it is also 553 

associated with improved leaf expansion and chlorophyll content as P supply increases [31]. This 554 

effect was not evident in the shoot biomass measurements of the barley or legume cultivars tested, but 555 

may explain the greater citrate efflux (and possibly other photosynthates) of some barley cultivars in 556 

the ammonium treatment.  557 

Under P deficiency, the smaller SRL of barley cultivars provided with ammonium was due to 558 

diminished root biomass and a relatively constant distribution of root diameter lengths (Fig. 2). SRL 559 

of the barley cultivars tested in the current study were similar in magnitude, but more variable than 560 

those reported for spring barley varieties previously (186-329 m g-1 root dry wt.)[68]. Whereas Løes 561 

and Gahoonia [68] reported minimal variation in SRL in 35 accessions from Scandanavia and 562 

Norway, other studies have indicated large variations in as few as eight cultivars in glass-house [37] 563 

and field conditions [69]; however, those studies were based only on fertilization with nitrate. 564 

Although barley generally alkalized the growth media, this effect was dampened in the presence of 565 

ammonium with the greatest P supply (Fig. 5). Rhizosphere alkalization occurs during the uptake of 566 
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inorganic anions (H2PO4
-/HPO4

3- and NO3
-) and exchange with alkaline counter ions (HCO3

-, OH-), 567 

proton sequestration by organic anions (e.g., citrate, maleate, oxalate), and ammonification processes.  568 

Conversely, acidification results from the uptake of inorganic cations (NH4
+) and export of protons, 569 

atmospheric N2 fixation by microbial symbionts, and denitrification processes [70]. Rhizosphere 570 

alkalization by cereals and grasses is typically explained by the uptake of nitrate and release of 571 

hydroxyl/bicarbonate ions [71], however considering the large concentration and affinity of phosphate 572 

transporters in barley, alkalization is likely to be associated with phosphate transport as well [66]. In 573 

the current study, plants provided with balanced N consistently increased rhizosphere pH with 574 

increasing P supply and did not vary significantly in terms of citrate efflux (Fig. 5). The limited effect 575 

of P deficiency on citrate efflux by barley (H. vulgare cv Marie) provided with a balanced source of N 576 

was recently reported for a single cultivar [72]. In contrast, plants provided with ammonium as the 577 

primary source of N appear to have reduced the pH of the growth media at the largest P supply, 578 

possibly through the release of acidic counter ions during the uptake of ammonium in larger plants. 579 

Citrate efflux was positively correlated with pH among barley cultivars in the ammonium treatment 580 

(r=0.2303, p=0.0193). The relationship of pH and citrate efflux in the ammonium treatment supports a 581 

secondary mechanism of alkalization, whereby citrate sequesters or is coupled with the efflux of 582 

protons during ammonium uptake by barley [21].  583 

Extracellular release of barley histidine acid phosphatase (HAP) has been linked to the ability of 584 

cultivars to grow on phytate due to constitutive levels of exudation regardless of P supply or source 585 

[10]. Low levels of phytase activity were measured in barley exudates with contrasting levels of 586 

activity, which were found to depend on P supply and N source. Consistent with the results of 587 

Ciereszko et al. (2011), no difference in phytase activity was found across P supply when a balanced 588 

source of N was provided (Fig. 5). In contrast, plants provided with ammonium responded to P 589 

deficiency by increasing exudate phytase activity, which was positively correlated with citrate efflux 590 

(r=0.75; p<.0001) and pH (r=0.32; p=0.0113; Fig. 5). Similar interactions between P supply and N 591 
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source have been reported based on root and soil acid phosphatase (APase) activity in ryegrass 592 

(Lolium perenne) and tall fescue (Festuca arundinaceae)[73]. To our knowledge, this is the first 593 

report that the induction of phytase exudation by P deficiency in barley may depend on N source.  594 

4.4 Selection of Complementary Barley and Legume Varieties Based on Contrasting Responses to 595 

Nutrient Availability 596 

When combined in intercropping systems, species with contrasting responses to nutrient source and 597 

availability are expected to contain a greater range of adaptations for improved P acquisition [4, 8]. 598 

Our results indicate that barley and legumes both respond to increasing P supply through 599 

physiological (increased SRL) and biochemical traits (increased phytase activity; r=0.27, p<.0001), 600 

particularly with ammonium as the primary source of N (Fig. 5, Fig. 6). Contrasting responses of 601 

barley cultivars and legume species include greater acidification by legumes and the interaction of P 602 

supply and N source in controlling citrate efflux by these varieties (Fig. 6). Larger rates of acid 603 

production by legumes in comparison to barley are expected based on the relatively greater 604 

physiological demand for N by legumes, higher rates of N uptake, and, under ammonium treatment, 605 

increased proton export [74, 75].  606 

Contrasting responses to P deficiency among plant species based on citrate efflux have been reported 607 

to occur in barley (H. vulgare L. cv Heder), canola (Brassica napus cv Marie), and potato (Solanum 608 

tuberosum cv Pimpernel), whereby canola was the only species with the greatest citrate efflux in the 609 

absence of P [72]. We found citrate efflux by legumes to vary as a function of P supply only when 610 

provided with balanced N (Fig. 6) and found no relationship between citrate and pH in either N 611 

treatment. In contrast, citrate efflux by barley varied with P supply only with ammonium as the 612 

primary source (Fig. 5) and was likely linked to an acid tolerance mechanism induced in response to 613 

ammonium nutrition. These results indicate that intercropping of barley and legume species with 614 

contrasting responses to N source could improve the adaptation of plants to P deficiency, sub-optimal 615 
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soil pH, and the heterogeneous distribution of nutrients in soil while promoting the expression of 616 

citrate and phytase exudation in one or both plant species.   617 

Barley and legume varieties with the ability to respond to local nutrient conditions represent 618 

promising candidates for improving nutrient efficiency in multi-crop and biodiverse agroecosystems 619 

[7]. However, response-based approaches for the selection of complementary plant varieties should 620 

consider the morphological and biochemical bounds of response, which will likely vary across 621 

species. As would be expected for comparisons made at the species versus cultivar level, differences 622 

in SRL, phytase activity, citrate efflux, and pH were more significant among legume species in 623 

comparison to the variation identified within the H. vulgare L. cultivars (Fig. 5, Table 2).  624 

Li et al. [46] reported greater plasticity of leguminous root systems (e.g., faba bean, chickpea) in 625 

comparison to graminoids (e.g., maize, wheat) in response to nutritional variation. Consistent with the 626 

analysis of Li et al. [46], we found limited variation in the distribution of root diameter sizes among 627 

cultivars of the single Hordeum species tested (Fig. 2), and considerably more variability in Aroot 628 

values among legumes in all of the nutrient treatments (Fig. 3, Table 2). In contrast, the variation 629 

among barley cultivars was considerably greater than legumes in the P-deficient condition with 630 

regards to plant-induced pH change, citrate efflux, and phytase activity (Fig. 5, Table 2).  631 

The contrasting responses of barley and legumes to P deficiency indicate differences in the 632 

morphological and biochemical adaptations of these species to acquire soil nutrients [76]. In the case 633 

of domesticated barley, the limited morphological plasticity of roots implies that plants must respond 634 

to changes in nutrient availability through exudation and modifications to the chemical environment 635 

[65]. In contrast, the greater root morphological plasticity of legumes may allow for the physical 636 

exploration of soils, but at the cost of biochemical plasticity. Through the identification of contrasting 637 

nutrient acquisition strategies such as these, complementary plant combinations may be selected to 638 

minimize competition between plants for soil resources (i.e., niche space, nutrients) and maximize 639 



28 
 

productivity within sustainable cropping systems [5, 6]. The selection of complementary plant 640 

combinations may therefore be improved through an understanding of plant genetic variation and 641 

phenotypic response to nutrient source and limitation.  642 

5. Conclusion 643 

This study investigated the variation of root exudation and morphological traits among barley 644 

cultivars and legume species in order to identify plants with contrasting responses to P supply and N 645 

source. The selected traits were based on those previously linked to the capacity of plants to acquire P 646 

from poorly soluble and organic forms of P in soils (citrate efflux, exudate phytase activity, pH, root 647 

diameter size distribution, specific root length). Three legume species (M. truncatula, T. 648 

subterraneum, O. sativus) and four barley cultivars (cvs Prague, Waggon, Spire, Krystal; Fig. 7) 649 

displayed the greatest variation in root responses to nutrient supply and represent promising 650 

candidates for future facilitation and complementarity studies. It is likely that the selection of 651 

complementary cereal and legume varieties will not only depend on intrinsic or constitutive 652 

expression of root traits, but condition-specific trade-offs in the expression of these traits between 653 

individual plants in the combination. The optimized selection of plant species and cultivars for 654 

nutrient-efficient and biodiverse cropping systems will be critical for improving the productivity and 655 

export of nutritional resources (e.g., carbohydrates, protein, micronutrients) amidst declining global 656 

soil fertility and loss of arable land area.  657 

6. Appendices 658 

Fig. A.1 Characteristics of shoot, root, and exudate solutions of barley cultivars (n=143) grown in 659 

hydroponics under P-deficient (P0) and sufficient (P1) conditions. 660 

Table A.1 Barley cultivars and legume species used in the study.   661 
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Equation A.1 Isometric log-ratio transformation (ilr) 662 

Table A.2 Sequential binary partition used for the calculation of isometric log ratios (ilr) associated 663 

with root diameter size classes of barley cultivars and legume species cultivated in sterile sand.  664 

Equation A.2 Aitchison distance (Aroot) 665 

Figure A.2 Root diameter size class, length distribution of barley cultivars (H. vulgare L.; top) and 666 

legume species (bottom) grown under three phosphorus treatments (P0=0, P1=0.5, P2=1.0mM) with 667 

ammonium as the primary source of nitrogen (A) or with balanced nitrate-ammonium (B).  668 
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Figure captions 867 

Fig. 1 The effect of phosphorus deficiency on specific root length (SRL, m g-1) and the ability of barley cultivars (n=143) to affect the pH of 24 h exudate 868 

collection solutions following growth in hydroponics (A). The ranked distribution values of SRL (B) and pH (C) responses of barley cultivars to P deficiency 869 

are based on the difference between cultivars grown with (1 mM) or without added P (subset of cultivars listed). Quartiles are defined based on pH response 870 

in 24 h exudate collection solutions (pH 5.5). Labelled symbols represent cultivars that were selected for further screening of exudate citrate and phytase 871 

activity.  872 

Fig. 2 Shoot dry weight, root to shoot ratio, and specific root length (SRL) of the listed barley cultivars (H. vulgare L.) grown under three phosphorus 873 

treatments (P0=0mM, P1=0.5mM, P2=1.0mM) with ammonium as the primary source of nitrogen (XA) or with balanced nitrate-ammonium (XB). Box 874 

(interquartile range) and whiskers (1.5*quartile 1 or 3) accompanied by mean values across cultivars.  875 

Fig. 3 Shoot dry weight, root to shoot ratio, specific root length (SRL), and root diameter length distribution expressed in terms of Aitchison distance (Aroor) 876 
of legume species cultivated under three phosphorus treatments (P0=0mM, P1=0.5mM, P2=1.0mM) with ammonium as the primary source of nitrogen (XA) 877 
or with balanced nitrate-ammonium (XB). Box (interquartile range) and whiskers (1.5*quartile 1 or 3) accompanied by mean values across species.  878 

Fig. 4 Response of (A) barley cultivars (H. vulgare L.) and (B) legume species (Biserulla sp. cv Casbah, Medicago sp. cv Sultan, Ornithopus compressus cv 879 
Santorini, O. sativus cv Margarita, Trifolium purpereum cv Electra, T. subterraneum cv Leura) to nutrient treatments based on changes in root diameter size 880 
length distribution as represented by Aitchison distance (Aroot).  Aroot values are calculated relative to the reference treatment (P0XB) for plants grown under 881 
three phosphorus treatments (P0=0, P1=0.5, P2=1.0mM) with ammonium as the primary source of nitrogen (XA) or with balanced nitrate-ammonium (XB). 882 
Error bars represent the 95% confidence interval (n=5). *Aroot values significantly different from the reference treatment (=0.05).   883 

Fig. 5 Plant-induced change in pH of the sand growth media, citrate efflux, and phytase activity of root exudates collected from barley (H. vulgare L.) 884 

cultivated under three phosphorus treatments (P0=0mM, P1=0.5mM, P2=1.0mM) with ammonium as the primary source of nitrogen (XA) or with balanced 885 

nitrate-ammonium (XB). Box (interquartile range) and whiskers (1.5*quartile 1 or 3) accompanied by mean values across cultivars.  886 

Fig. 6 Plant-induced change in pH of the sand growth media, citrate efflux, and phytase activity of root exudates collected from legume species cultivated 887 

under three phosphorus treatments (P0=0mM, P1=0.5mM, P2=1.0mM) with ammonium as the primary source of nitrogen (XA) or with balanced nitrate-888 

ammonium (XB). Box (interquartile range) and whiskers (1.5*quartile 1 or 3) accompanied by mean values across species.  889 

Fig. 7 Principal components analysis of barley cultivars and legume species based on plant-induced pH change in sand, exudate phytase activity, specific root 890 
length, and citrate efflux. The PCA illustrates the divergent response of barley and legume species to nutrient treatments [No P (P0), 0.5mM P (P1), 1.0mM P 891 
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(P2) with ammonium rich (XA) or balanced nitrate-ammonium (XB) supply] based on root morphological and exudation properties. * indicates location of O. 892 
sativus in PCA plot. 893 

Table 1. Root morphological and exudation properties of barley cultivars grown in hydroponics with (P1, 1 mM P) and without added P (P0).  894 

  Phosphorus treatment     

Root morphological  

or exudation property 
P0 P1 % change P-value 

 

Exudate solution pH 6.277 6.125 +2.5 0.0065  

Exudate solution pH change 0.975 0.805 +21.1 0.0096  

Root dry wt. g 0.051 0.041 +22.6 <.0001  

Root surface area cm2 148.9 128.2 +16.1 0.0006  

Total root length cm 688.4 612.8 +12.3 <.0001  

Specific root length m g-1 root dry wt. 140.0 159.6 -12.3 0.0001  

Specific surface area cm2 g-1 3054.2 3196.5   0.2333  

% root length <0.5mm diam. 62.37 59.11 +5.5 0.0082  

% root length 0.5-1.0mm diam. 25.68 29.70 -13.5 <.0001  

% root length 1.0-1.5mm diam. 6.203 6.253   0.8652  

% root length 1.5-2.0mm diam. 2.297 2.182   0.3835  
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% root length 2.0-2.5mm diam. 1.276 1.146   0.1119  

% root length 2.5-3.0mm diam. 0.735 0.636   0.0620  

% root length 3.0-3.5mm diam. 0.421 0.341 +23.5 0.0187  

% root length 3.5-4.0mm diam. 0.287 0.217 +32.0 0.0119  

% root length 4.0-4.5mm diam. 0.205 0.135 +51.4 0.0017  

% root length >4.5mm diam. 0.454 0.215 +111.4 0.0073  

Oneway ANOVA of paired means by P treatment. % 

root length data were checked for normality and log-

transformed prior to statistical comparisons. 

% change represents percentage increase in P0 
condition above that measured in P1.         

 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 
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 903 

Table 2 Factors and interactions affecting shoot dry wt. (g), root to shoot ratio (R:S), specific root length (SRL, m g-1 root d.w.), pH change in sand (pH), 904 

citrate efflux (nmol g-1 root d.w. h-1), and exudate phytase activity (nKat g-1 root d.w. h-1). * indicates significant effects and interactions (p<.05). 905 

 906 

  
Factors and interactions 

Shoot        

dry wt.  
R:S SRL pH 

Citrate 

Efflux 

Phytase 

Activity 

All plants P supply <.0001* 0.0083* 0.1427 <.0001 0.3341 0.0322* 

  N source 0.0413* 0.0428* 0.0013* 0.0245* 0.9276 0.0035* 

  P supply × N source 0.3842 0.7128 0.0101* <.0001 0.1392 0.0236* 

  Nutrient Treatment <.0001* <.0001* 0.8496 0.0011* 0.9831 0.3285 

  Genus species <.0001* <.0001* <.0001* <.0001* <.0001* 0.3185 

  Nutrient treatment × Genus species <.0001* <.0001* 0.858 <.0001* 0.0012* 0.0162* 

                

Barley P supply <.0001* <.0001* 0.0166* <.0001* 0.0408* 0.4787 

  N source 0.0003* 0.0131* 0.0001* 0.4105 0.1974 0.0028* 

  P supply × N source 0.1526 0.1561 0.0003* 0.0017* 0.0317* 0.0062* 

  Nutrient Treatment <.0001* <.0001* <.0001* <.0001* <.0001* 0.8654 

  Cultivar 0.0002* <.0001* 0.0004* <.0001* 0.0005* 0.4503 

  Nutrient treatment × Cultivar 0.4273 <.0001* <.0001* <.0001* 0.0005* 0.0119* 

                

Legume P supply <.0001* <.0001* <.0001* <.0001 <.0001* 0.0429* 

  N source 0.0124* <.0001* <.0001* 0.4105 <.0001* 0.1238 
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 907 

 908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

  P supply × N source <.0001* 0.0171* 0.0161* 0.0017* <.0001* 0.1315 

  Nutrient Treatment <.0001* <.0001* <.0001* <.0001 0.2861 0.4216 

  Cultivar <.0001* 0.1812 <.0001* 0.0037* 0.1412 0.0482* 

  
Nutrient treatment × Cultivar <.0001* <.0001* 0.2538 <.0001 <.0001* 0.0004* 
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Table 3 Pair-wise correlations between biomass and root exudate properties of barley cultivars and legume species cultivated in sterile sand for 21 days with 925 

six nutrient treatments containing 3 P X 2 N conditions. Empty cells indicate no correlation between variables. 926 

Barley/Legume 
Shoot dry 

wt. g 

Root dry 

wt. g 
R:S pH 

Citrate 

efflux                  

Phytase 

activity               

Total root 

length cm 

Root length                            

(0-0.1 mm 
diam.)  

Root length 

% (0-0.1 
mm diam.) 

Root length                    

(>1.9 mm 
diam.)  

Root length 

% (>1.9 
mm diam.) 

SRL m g-1 

Root dry wt. g + + 
       

        

R:S - - + + 
      

Significantly correlated (p<.05)  among barley 

cultivars and legume species 

pH - + + + + 
   

 

 

Significantly correlated (p<.05)  among barley 

cultivars only 

Citrate efflux                 

nmol g-1 root dry wt. 

h-1 
- - + 

      

Significantly correlated (p<.05)  among legume 

species only 

Phytase activity              

nKat g-1 root dry wt. 
h-1 

- - - - 
 

+ - 
  

+ - 

Positive or negative correlation; left and right 

symbols correspond to barley and legume if 
different 

Total root length cm + + + - + 
 

- - 
  

        

Root length                            

(0-0.1 mm diam.)  
+ + + - + 

 
- - + + 

     

Root length %                    

(0-0.1 mm diam.) 
+ + 

    
+ + + 

    

Root length                    
(>1.9 mm diam.)   

+ 
   

- + + 
    

Root length %               
(>1.9 mm diam.) 

- 
 

+ + 
 

- + 
  

+ + 
  

SRL m g-1 
 

- - - - 
 

+ + + + + 
    

Avg. Root diam. mm + + + - + 
 

- - + + + + + + + + + 

 927 



40 
 

 928 

Figure A.1 Shoot and root dry weight and exudate solution pH of barley cultivars (n=143) grown in hydroponics under P-deficient (P0) and 929 

sufficient (P1) conditions.  930 

 931 
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Table A.1 Barley cultivars and legume species used in the study. 932 

 933 

Genus species (common name) Cultivar 

Hordeum vulgare L. (spring barley) Akka, Alabama, Alexis, Alliot, Aluminium, Anais, Annabell, Apex, Appaloosa, 

Aramir, Armelle, Atem, Athena, Athos, Atribut, Avec, Balga, Barke, 

Baronesse, Beatrix, Berenice, Berwick, Beryllium, Brazil, Camargue, 

Campala, Carafe, Carlsberg, Cellar, Centurion, Century, Chad, Chalice, 

Chariot, Chaser, Chieftain, Chime, Class, Colada, Cooper, Corniche, CPBT 

B76, Cristalia, Kym, Landlord, Latvijas Vietejie, Linga, Livet, Lysiba, Lysimax, 

Macaw, Maja, Maresi, Maris Mink, Marthe, Maypole, Meltan, Midas, Novello, 

Optic, Orbit, Perun, Pewter, Pitcher, Poker, Potter, Power, Prague, Prestige, 

Prisma, Proctor, Publican, Putney, Quench, Rainbow, Reggae, Renata, 

Riviera, Romi, Rummy, Saloon, Scandium, Scarlett, Sebastian, Simba, Skagen, 

Skittle, Spartan, Spey, Spire, Crusader, Danuta, Decanter, Derkado, Dialog, 

Domen, Doyen, Drum, Fairytale, Georgie, Gitane, Golden Promise, Golf, 

Hanka, Hellas, Heron, Hydrogen, Imidis, Isabella, Isaria, Kassima, Kenia, 

Koral, Krystal, Starlight, Static, Steffi, Steina, Sultan, SW SCANIA, Taphouse, 

Tartan, Tavern, Thuringia, Tocada, Toddy, Torup, Toucan, Tremois, Trinity, 

Triumph, Trosa, Tyne, Union, Vegas, Waggon, Westminster, Wikingett, Wisa, 

Zephyr 

Trifolium subterraneum (Subterraneum clover) Leura 

Trifolium purpureum (Purple clover) Electra 

Biserrula pelecinus (Biserrula) Casbah 

Ornithopus compressus (Yellow serradella) Santorini 
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Ornithopus sativus (French serradella) Margurita 

Medicago truncatula (Barrel clover) Sultan 

Equation A.1 Isometric log-ratio transformation (Egozcue et al., 2003): 934 

 935 

𝑖𝑙𝑟𝑖 = √
𝑟𝑠

𝑟 + 𝑠
ln
𝑔(𝑥𝑖

+)

𝑔(𝑥𝑖
−)

 936 

 937 

ilri is the ith balance between two sub-compositions: i [1, D-1] 938 

r is the number of components in the numerator position of the subset (+) 939 

s is the number of components in the denominator position of the subset (-) 940 

𝑔(𝑥𝑖
+) and 𝑔(𝑥𝑖

−) are the geometric means of the components in r and s subsets, respectively 941 

 942 

The selection of subsets for the root diameter class length compositions are defined by the sequential binary partition matrix provided in Table A.2. 943 

 944 

 945 

 946 

 947 

 948 
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 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

Table A.2 Sequential binary partition used for the calculation of isometric log ratios (ilr) associated with root diameter size classes of barley 960 

cultivars and legume species cultivated in sterile sand. The sequential binary partition is based on the length of roots (cm) in each root diameter size 961 

class (mm). 962 

 963 
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 964 

 965 

 966 

 967 

 968 

 969 

 970 

 971 

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 1.0-1.1 1.1-1.2 1.2-1.3 1.3-1.4 1.4-1.5 1.5-1.6 1.6-1.7 1.7-1.8 1.8-1.9 >1.9 r s coefficient

ilr1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 19 1 0.975

ilr2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 0 18 1 0.973

ilr3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 0 0 17 1 0.972

ilr4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 0 0 0 16 1 0.970

ilr5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 0 0 0 0 15 1 0.968

ilr6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 0 0 0 0 0 14 1 0.966

ilr7 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 0 0 0 0 0 0 13 1 0.964
ilr8 1 1 1 1 1 1 1 1 1 1 1 1 -1 0 0 0 0 0 0 0 12 1 0.961

ilr9 1 1 1 1 1 1 1 1 1 1 1 -1 0 0 0 0 0 0 0 0 11 1 0.957

ilr10 1 1 1 1 1 1 1 1 1 1 -1 0 0 0 0 0 0 0 0 0 10 1 0.953

ilr11 1 1 1 1 1 1 1 1 1 -1 0 0 0 0 0 0 0 0 0 0 9 1 0.949

ilr12 1 1 1 1 1 1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 8 1 0.943

ilr13 1 1 1 1 1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 7 1 0.935
ilr14 1 1 1 1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 0.926

ilr15 1 1 1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0.913
ilr16 1 1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0.894

ilr17 1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0.866
ilr18 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0.816

ilr19 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0.707

Root	diameter	size	class	(mm)
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Equation A.2 Aitchison distance (Aroot) is calculated based on ilr values (Equation A.1, Table A.2) and compares the composition of root diameter 972 

length distributions of the reference nutrient conditions (P0XB) relative to the other nutrient treatments (P1XB, P2XB, P0XA, P1XA, P2XA) within a 973 

barley cultivar or legume species. The computation of Aroot is made as follows (Egozcue and Pawlowsky-Glahn, 2006):  974 

 975 

 976 

𝐴 = √∑ (𝑖𝑙𝑟𝑖
𝑥 − 𝑖𝑙𝑟𝑗

𝑦)
2𝐷−1

𝑖=1
= √(𝑖𝑙𝑟𝑖

𝑥 − 𝑖𝑙𝑟𝑖
𝑦)

𝑇
𝐼−1(𝑖𝑙𝑟𝑖

𝑥 − 𝑖𝑙𝑟𝑖
𝑦) 977 

 978 

where 𝑖𝑙𝑟𝑖
𝑥  and 𝑖𝑙𝑟𝑖

𝑦 correspond to the ith balances of the diagnosed (x) and reference (y) compositions, respectively, I is the identity matrix, and T is 979 

the transposed matrix. 980 

 981 

 982 

 983 

 984 

 985 

 986 

 987 

 988 

 989 
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 990 

 991 

 992 

 993 

 994 

 995 

 996 

 997 

 998 



47 
 

 999 

Figure A.2 Root diameter size class, length distribution of barley cultivars (H. vulgare L.; top) and legume species (bottom) grown under three 1000 

phosphorus treatments (P0=0, P1=0.5, P2=1.0mM) with ammonium as the primary source of nitrogen (A) or with balanced nitrate-ammonium (B). 1001 

 1002 

 1003 
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 1004 


