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Abstract

Since spectrum is the invisible infrastructure that powers the wire-

less communication, the demand has been exceptionally increasing in

recent years after the implementation of 4G and immense data re-

quirements of 5G due to the applications, such as Internet-of-Things

(IoT). Therefore, the effective optimization of the use of spectrum is

immediately needed than ever before.

The spectrum sensing is the prerequisite for optimal resource allo-

cation in cognitive radio networks (CRN). Therefore, the spectrum

sensing in wireless system with lower latency requirements is pro-

posed first. In such systems with high spatial density of the base

stations and users/objects, spectrum sharing enables spectrum reuse

across very small regions. The proposed method in this Thesis is a

multi-channel cooperative spectrum sensing technique, in which an in-

dependent network of sensors, namely, spectrum monitoring network,

detects the spectrum availability. The locally aggregated decision in

each zone associated with the zone aggregator (ZA) location is then

passed to a decision fusion centre (DFC). The secondary base station

(SBS) accordingly allocates the available channels to secondary users

to maximize the spectral efficiency. The function of the DFC is for-

mulated as an optimization problem with the objective of maximizing

the spectral efficiency. The optimal detection threshold is obtained

for different cases with various spatial densities of ZAs and SBSs. It is

further shown that the proposed method reduces the spectrum sensing

latency and results in a higher spectrum efficiency.

Furthermore, a novel power allocation scheme for multicell CRN is

proposed where the subchannel power allocation is performed by in-

corporating network-wide primary system communication activity. A
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collaborative subchannel monitoring scheme is proposed to evaluate

the aggregated subchannel activity index (ASAI) to indicate the ac-

tivity levels of primary users. Two utility functions are then defined to

characterize the spectral efficiency (SE) and energy efficiency (EE) as

a function of ASAI to formulate a utility maximization problem. The

optimal transmit power allocation is then obtained with the objective

of maximizing the total utility at the SBS, subject to maximum SBS

transmit power and collision probability constraint at the primary re-

ceivers. Since optimal EE and SE are two contradicting objectives to

obtain the transmit power allocation, the design approach to handle

both EE and SE as a function of common network parameter, i.e.,

ASAI, is provided which ultimately proves the quantitative insights

on efficient system design. Extensive simulation results confirm the

analytical results and indicate a significant improvement in sensing

latency and accuracy and a significant gain against the benchmark

models on the rate performance, despite the proposed methods per-

form with lower signalling overhead.
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Chapter 1

Introduction

We have experienced a substantial wireless data traffic growth in the last decade

due to the rapidly growing number of mobile users and data hungry applications,

e.g., video streaming, and voice over internet protocol (VoIP). It is expected that

the wireless data traffic will increase exponentially until next decade due to the

emerging applications of internet of things (IoT) [1], machine-to-machine (M2M)

communications [2] in addition to the traditional use of cellular communication

for voice and data traffic.

The IP traffic is expected to increase nearly 100-fold from 2005 to 2020 when

11 billion smart devices are connected to the internet virtually creating the infor-

mation superhighway, according to recent Cisco virtual networking index (VNI)

report [3]. Similarly, the smartphone traffic generated by mobile and wireless

terminals will account for 66 percent of the total IP traffic by 2020. For in-

stance, M2M devices will have a huge contribution on it with the impressive

traffic growth rate by 44 percent during the same period. To manage such a

high level of demand, fifth generation (5G) of wireless communication has been

recently proposed with the aim of implementing it by 2020 [4].

The aim of 5G is to provide the 1 to 10 Gbps connections to the end users

with 1 ms of round trip delay, i.e., latency, on the data packet. Such type of con-

nections are expected to be provided with 100 percent network coverage, however

it also targets to reduce the energy consumption by 90 percent simultaneously [5].

A huge technical shift in current wireless protocol stack is necessary to simultane-

ously achieve the majority of targets put forward by 5G community. As a result,
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various new technologies have been proposed in recent years by both industry

and academia as possible candidate technologies for 5G, for instance, mmWave

communication, non-orthogonal multiple access (NOMA), massive multiple input

multiple output (MIMO), cognitive radio networks (CRN) including many others

[6], [7].

As a matter of fact, there is no need of a complete generational shift in tech-

nologies innovation to achieve the targets set for 5G. One of the views in the

research community is that the next generation telecommunication technologies

should have a backward compatibility with the existing network infrastructure

from economic as well as user experience perspectives. We come to this conclusion

just by observing the technology development trends from beginning of mobile

communication to the fourth generation (4G) in recent years. Therefore, even

in the case of transition from 4G to 5G, many 5G services should be provided

through the existing technologies of 4G wireless communication. However, one of

the exceptions could be the data transmission with latency in the range of 1 ms.

This is a very challenging task in the current telecoms infrastructure, therefore a

huge technology transformation may be needed to achieve it [8].

The third generation partnership project (3GPP) Release-11, and subsequent

releases, provide the most promising wireless technology platforms, which is re-

ferred as long term evolution advanced (LTE-A) [9]. It aims to provide better

peak/average spectral efficiency, improved coverage and better cell-edge through-

put. The Release-11 introduces new capabilities, e.g., self-organized network

(SON), carrier aggregation (CA), machine type communication (MTC), coordi-

nated multi-point (CoMP) transmission and reception, among many other can-

didate technologies.

As a matter of fact, to achieve the target set by 3GPP, all of the proposed tech-

nologies that build a complete LTE-A platform include the ad-on features which

ultimately create a complex and large network, which if not properly managed,

defeats the benefits of the developed system. Therefore, 3GPP developed SON

solutions to handle, for instance, coverage and capacity optimization, handover

management, energy saving features, among many other [10]. The functions of

SON is divided into three broad categories: self-configuration, self-optimization

and self-healing.
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The concept of CoMP transmission/reception is to improve the coverage of

cellular network, and has been regarded as a key technology of LTE-A. It is easy

to maintain the higher system throughput when the user is close to the trans-

mitter, however cell edge users receive a fraction of throughput due to the path

loss and channel fading in addition to the interference from neighbour base sta-

tions. In CoMP scheme, the transmitters and receivers dynamically coordinate

to provide joint scheduling and transmissions as well as joint processing of the

received signals. In this way, a user at the edge of a cell is able to be served

by two or more base stations to improve signals reception and transmission and

increase throughput particularly under cell edge conditions [11]. It mainly fo-

cuses on transmission schemes, channel state information reporting, interference

measurement, and reference signal design.

The 4G in terms of LTE-A also introduces the MTC enhancements such that

the communication involves no or little human interactions among large number

of low data rate devices with longer battery life. Here, MTC is also expected

to virtually extend the WiFi into the LTE-A and optimize LTE-A for M2M

communications [12]. Some of the enhanced features identified by 3GPP for

MTC are remote management, congestion control, security, low device cost, and

many other features are still being investigated.

The carrier aggregation feature enables a flexible way of frequency-bandwidth

allocation to different users to support varying high data rate and wide bandwidth

on a different basis [13]. Therefore, CA is the technical solution to overcome the

spectrum fragmentation, where up to five carriers can be aggregated, each with a

bandwidth of 1.4, 3, 5, 10, 15, or 20 MHz, thereby allowing for overall bandwidth

of 100 MHz. For instance, in the UK, two 20 MHz carriers are combined in

1800/2600 MHz band to provide the maximum downlink speed of 300 Mbps [14].

Moreover, CA is supported for both frequency division duplex (FDD) and time

division duplex (TDD) with all carriers using the same duplex scheme.

The technique of carrier aggregation is an important contribution from 3GPP

in the LTE-A platform to achieve greater capacity from the large number of

fragmented spectrum. There have been a number of field tests and commercial

implementations of CA to date by various service providers around the globe.

Based on its technical aspect and commercial success, it can be argued that CA

3



1.1 Cognitive Radio Networks

is a very first step along the long road to implement cognitive radio networks in

future wireless communication system. Spectrum availability in various band is

highly variable and may include long idle periods. This fact encouraged spectrum

sharing concept which is one of the prominent features of CRN.

In the next section, the detail explanation, opportunities and challenges asso-

ciated to the CRN will be briefly discussed.

1.1 Cognitive Radio Networks

The Federal Communication Commission (FCC) studied and published a report

in 2002 that about one fourth of allocated spectrum in the USA is not fully utilized

[15], and similar study was published in the UK by Office of Communication

(OfCom). There is also a similar trend in many developed or developing nations

around the globe. In the current practice, spectrum for cellular communication

is exclusively allocated to licensed users which cannot be accessed by other users

or service providers even if the channels are not partially or fully being utilized.

When the demand of wireless technologies and services increases dramatically as

predicted by Cisco VNI report [3], the static spectrum allocation policy will be

obsolete. As a result, there is an immediate need of the dynamic spectrum access

(DSA) technologies [16] and new spectrum regulatory policies.

The dynamic nature of the wireless communication has put forward many

challenges to the system designers, e.g., inter and intra-cell interference, hidden

terminals, path loss and fading effects. Therefore, a reliable and feasible technique

has to be developed to exploit the spectrum opportunities in time, space and

frequency in such a way that licensed users are always protected from any harmful

interference and the possible degradation in quality of service (QoS). Therefore,

one of the highly anticipated technologies to solve the spectrum scarcity issue is

the cognitive radio [17].

A cognitive radio is defined, in [18], as an intelligent wireless communication

system capable of changing its transceiver parameters based on interaction with

external environments in which it operates. Therefore, it is intuitive that CRN is

an enabling technology to implement the important features of DSA. The ideal

DSA approach therefore allocates spectrum, transmit power, and other wireless
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1.1 Cognitive Radio Networks

communication parameters proportionally to the secondary systems in such a way

that every secondary user (SU) not only receives equal share of resources but also

sacrifices the QoS equally in cases of system misconfiguration [19]. Therefore, in

literature, DSA and CRN are sometimes interchangeably used.

In CRN, unlicensed users of the spectrum, also known as SUs, are allowed to

access the licensed bands under the condition that licensed users of the spectrum,

also known as primary users (PU), are protected from the harmful interferences

[20]. Broadly speaking, two types of CRN have been proposed based on the way

SUs access the spectrum [21]. In first case, the CRN adopts opportunistic spec-

trum access (OSA), where SUs opportunistically operate on the channel which

is originally allocated to the PUs. In this case, the SUs must ensure the status

of the primary channels are accurately observed. Therefore, in OSA based CRN

the accuracy of the observation strategy is exceptionally critical. Secondly, the

spectrum sharing (SS) based CRN allows SUs to transmit simultaneously with

the PUs over the same spectrum even in cases the PU transmission is active as

long as the QoS degradation in primary system due to the SU interference is

tolerable. The first type of spectrum sharing is called as overlay spectrum access,

whereas the second type is broadly known as underlay spectrum access [22].

1.1.1 Cognitive cycle

It is now very important to understand the cognitive radio cycle to develop the

efficient resource allocation methods in CRN. The cycle consists of four funda-

mental stages, which are spectrum sensing, spectrum decision, spectrum sharing

and spectrum handoff, a.k.a, spectrum mobility [23].

• Spectrum sensing : The very first stage of CRN is the spectrum sensing

which involves the real-time identification of the unused subchannels by

the primary systems. Such subchannels, in literature, are also referred as

spectrum holes. The details about various sensing methods are found in

[24], and some of them will be explained in detail in chapter 3 as well. This

stage also includes the identification, with minimum delay, of the arrival
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1.1 Cognitive Radio Networks

of licensed users on the subchannel(s). Such kind of sensing delay is gen-

erally defined by primary systems as a threshold value depending on their

interference suppressing capability.

• Spectrum decision: The second stage of the cognitive cycle is the spec-

trum decision based on the spectrum sensing results in the first stage. In

this stage, SUs have to select the best available subchannels which must

satisfy the minimum throughput requirements on both primary as well as

secondary systems. This is achieved by means of spectrum characteriza-

tion, selection and SU reconfiguration [25]. This, in general, involves the

analysis of continuous or discrete statistical information about the primary

user activity on the subchannels [26].

• Spectrum sharing : The stage of spectrum sharing has gained much attention

in the research community right from the beginning of research in cogni-

tive radio. It basically refers the management of coordinated access to the

selected (or available) subchannels by the SUs [27], [28]. The access mecha-

nism could be underlay, overlay or combination of them [29]. Therefore, in

this stage, it is not only about the spectrum sharing but also involves the

transmission power control, time-slot allocation among the SUs.

• Spectrum handoff : The spectrum handoff, as a last stage of the cognitive

cycle, is the ability of the secondary system to vacate the subchannel(s) as

immediately as it is reclaimed by the licensed user and access the new best

available subchannel(s) which satisfied the QoS requirements [30]. Although

it is very important aspect of CRN, it has gained very limited attention in

research community until the recent time. It can be further categorized

into proactive handoff and reactive handoff depending on when the handoff

process is supposed to be initiated [31].

After introducing the basics of cognitive radio, a brief historical notes on the

development of cognitive radio and communication will be presented in the next

section.
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Table 1.1: The historical development trend of cognitive radio networks

1999 One of the earliest concept paper published in IEEE Com-

munication Magazine

2000 A detail and comprehensive version of cognitive radio pub-

lished as a PhD dissertation by Joseph Mitola

2002 FCC release the report

2003 Published CRT proceeding (FCC ET Docket No. 03−108)

2004 One of the pioneering paper published by Simon Haykin in

IEEE JSAC

2004 The IEEE 802.22 WRAN standard committee established

2005 IEEE P1900 committee was established

2008/2009 FCC and OfCom opened up the TV white spaces for unli-

censed access.

2012 The IEEE802.22 WRAN final report published

2013 Proof-of-concept and experiment testbeds on cognitive ra-

dio network appeared

2016 Huge database of research journals in IEEE explorer in

spectrum sharing and cognitive radio.

1.1.2 Journey of Cognitive Radio Networks

The adaptability with the dynamic radio environment is one of the important

features of spectrum sharing system. This capability was highly discussed in a

platform known software-defined radio (SDR) in mid-nineties as a convergence of

digital radio and computer software. It is obvious to say that SDR is the turning

point to explore the potentials of the cognitive radio as a disruptive technology

for next generation of wireless communication. A brief historical development of

cognitive radio has been summarized in Table 1.1.

The term cognitive radio and software-defined radio were firstly framed by

J. Mitola in one of his pioneering paper [32] and later in his PhD dissertation

[33] in 1999 and 2000, respectively. In fact, the cognitive cycle was described
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1.1 Cognitive Radio Networks

as a means to enhance the flexibility of future wireless communication, however

no solutions and possible applications were proposed by those works. The work

published by Simon Haykin [17] in 2004 actually elaborated the signal processing

aspect of cognitive radio and opened the window of various research problems

and potentials in dynamic spectrum sharing system to apply in the cellular and

heterogeneous networks.

Until 2004, the standard committee, in FCC and IEEE, initiated the work

towards the dynamic spectrum sharing system. Moreover, a special credit should

be given to FCC’s Spectrum-Policy Task Force report [15], published in 2002,

which concluded that spectrum access is a more significant problem than the

actual physical scarcity of spectrum. In addition, the unused and underused

portion of spectrum were defined and the concept of spectrum hole was branded

for the first time which attracted the attention of wireless communication research

community. In 2003, FCC also published the proceeding in cognitive radio for

open discussion [18].

To speed up the implementation of dynamic sharing system in reality, a stan-

dard protocol was necessary so that the industry, academia and various telecom

service providers can work together. In 2004, IEEE established the 802.22 com-

mittee to make standards for sharing the unused portion of radio spectrum in

very-high frequency (VHF) and ultra-high frequency (UHF) band, i.e., 52 MHz

to 862 MHz, which are primarily used for analog and digital TV signal trans-

mission. In 2005, IEEE P1900 Committee1 was formed to enable the radio and

spectrum management for spectrum sharing system. The primary purpose has

been defined as to initiate the standardization of cognitive radio for the real-time

adjustment of spectrum utilization when the network circumstances and objec-

tives are changed.

The research and innovation activities in cognitive radio was encouraged by

various government and regulation agencies. The important decision taken by

FCC in the USA in 2009 and OfCom in the UK in 2010 to open up TV white

1P1900 committee was later reorganized as Standard Coordinating Committee 41 (SCC 41),

which later expanded as dynamic spectrum access network (DySPAN) Standards Committee.

Various P1900 committee, which are P1900.1 to P1900.7 Working Group, are actively working

for a range of specific research areas in cognitive radio.
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spaces, i.e., unused portion of TV band in particular time and location, for unli-

censed users implied very long term impact [34]. The final report on medium ac-

cess control and physical layer specifications for cognitive radio wireless regional

area networks (WRAN) was published in 2012 [35]. It defines the operational

policies and procedures that allow spectrum sharing where the communications

devices may opportunistically operate in the spectrum of the primary services.

Due to enormous potentials in the next generation mobile communication as

well as extensive industrial interests, many testbeds are being designed to enhance

the research and applicability of cognitive radio. One of the reasons is, of course,

WRAN 802.22 standard available which defines various standards for cognitive

radio operations. Few examples of such testbeds are Cognitive Radio Experi-

ments World (CREW) project conducted by EU ICT-2009 and Ghent University,

Cognitive Radio Network Testbed (CORNET) in Virginia Tech, CorteXLab in

France to shape the future IoT, Cognitive Radio Testbed (CoREX) in UCLA

among many others. In addition, there are more than 3,000 journal articles and

10,000 conference articles in IEEE database alone until 2016. The immense inter-

ests and dedication by academia, industry and government ultimately resulted the

cognitive radio communications as one of the important candidate technologies

for 5G and beyond [36].

1.2 Research Problems

In the modern cellular systems, one of the scarce resources for wireless data

transmission is the radio spectrum. The management of crowded radio spectrum

is more important due to the fact that large parts of spectrum are either unused or

underused at a given time and geographical location. Therefore, at first hand, the

problem domain must be properly identified to find the best strategy of resource

allocation. The problem domain, broadly speaking, constitutes spectrum sensing,

subchannel allocation and transmission power control in CRN. They are briefly

described in this section.

• The spectrum sensing is basically the stage of obtaining the usage pattern

of spectrum which significantly embeds the primary users activity on the
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subchannels in a given time and geographical locations. There are var-

ious methods to achieve this information, e.g., accessing the geolocation

database, using beacons and using the local spectrum sensing methods [37].

The geolocation database, which is authorized and administrated by regu-

latory authorities, is one of the latest prominent works to access the unused

subchannels in TV band that can be used for rural broadband access where

received SNR at the user terminal is minimum [38].

A number of different techniques of spectrum sensing are being proposed

to identify the presence or absence of primary user in the subchannel. Par-

ticularly considering the CRN scenario, energy detection, cyclostationary

feature detection, matched filter, waveform based sensing along with many

other are proposed in recent years [39], [40]. Some of them are also con-

sidered to be the candidate technology to enable cognitive communication,

e.g., WRAN in TV band using cognitive radio technique. In energy detec-

tion, the output of the energy detector is compared with a threshold which

heavily depends in the noise floor [41]. Moreover, the cooperative detection

methods are also getting a huge attention in research community because

it can suppress the effects of noise uncertainty, fading and shadowing in the

wireless channels [42].

As a matter of fact, whatever sensing methods are used, the performance

of sensing devices improves when high sampling rate, high resolution of

analog-to-digital converters(ADC) and high speed processors are provided.

In addition, the sensing devices should be able to detect relatively large band

of spectrum for identifying the spectrum opportunities. On the other hand,

the sensing duration is a very small fraction of the total frame duration.

In cases when the sensing duration is maintained higher which ultimately

increases the sensing accuracy, the data transmission duration gets smaller

which directly affects the throughput performance of the secondary system

[43]. This indicates that an stringent tradeoff do always exist in the CRN.

Therefore, the spectrum sensing methods need to identify and then solve

such a strict tradeoff into more flexible tradeoff for system designers.
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• One of the prominent research challenges in CRN is the allocation of the

subchannels to the users. The allocated subchannels must be available for

longer period of time such that the switching delay can be significantly

minimized. However, prediction of subchannel activities in the long term

is very difficult to achieve [44]. This subchannel allocation needs the sub-

channel characterization which involves to estimate various properties of

spectrum. The instances are channel switching delay, primary user activity

model, statistical QoS, channel holding time etc. [45], [46], [47]. Therefore,

the optimal subchannel allocation, on the first hand, needs to estimate

the activity level of primary users on the subchannels. However various

methods have been proposed to model such activities, e.g., using statisti-

cal database, Point Point Process (PPP) model [48], reinforcement learning

algorithm [49], a viable solution is still necessary to propose to solve the

issues in subchannel allocation.

• When the spectrum sensing is performed and subchannels are assigned, the

transmit power must be carefully allocated. In the multichannel and mul-

tiuser transmission scenario, the proposed method determines not only the

transmit power to each SU but also the power allocation to each subchannel

[27]. One of the reasons for such consideration is to protect the primary

system from any harmful interferences while sharing the subchannel. Many

power allocation methods have been proposed in literature which claim to

enhance the system performance in spectrum sharing system. Such power

allocation methods consider the maximization of sum-rate [50], spectral ef-

ficiency [51] and energy efficiency [52]. In addition, sensing and throughput

tradeoff [53] as well as channel handoff and switching delay minimization

are also equally considered [30].

• As a matter of fact, all the above mentioned objectives cannot be simultane-

ously achieved from a single strategy. For instance, when sensing duration

is minimized, the sensing accuracy is proportionally compromised whereas

the spectral efficiency gets improved. Furthermore, when the energy effi-

cient system is designed, the spectral efficiency may need to be compro-

mised. Similar situation occurs when switching delay is optimized, the
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primary users may be highly affected by the higher interference which ulti-

mately forces the SUs to terminate the transmission on cognitive subchan-

nel. Therefore, a new method for CRN must be proposed to put spectrum

sensing, spectrum allocation and transmit power control together with a

common network parameter such that a better as well as practically achiev-

able tradeoff can be obtained.

1.3 Motivation

The research presented in this thesis is highly motivated by the issues raised in

the previous section. Furthermore, the research in the field of spectrum sens-

ing and resource allocation, a low complexoty but highly efficient methods are

immediately required. The objective of my research is to bridge the gap in this

area.

With the revolution in wireless communication technologies and the cost of

wireless devices as well as services falling down dramatically in last two decades,

radio spectrum has become the extremely scarce resource for wireless networks to

provide the required QoS to the end users. The current static spectrum allocation

policy is one of the barriers to increase the spectrum utilization efficiency. Cog-

nitive radio, in parallel, emerged into the wireless communication framework as

a tool to solve the spectrum shortage and underutilization problems. Moreover,

to fulfil the requirements of 5G such as low latency, high throughput, high spec-

tral and energy efficiency, a very intelligent wireless communication technique is

needed. Therefore, the main motivation for this research emerged form finding

the best possible techniques which help to achieve the goals with minimum system

complexity and lower implementation cost.

The spectrum sensing methods in the literature, whether cooperative or non-

cooperative, deal with the tradeoff between sensing and transmission duration.

However, a few sensing methods do not work under low signal to noise ratio

(SNR), e.g., energy detection, or they are vulnerable to interference due to the

sampling clock offset, i.e., cyclostationary detection. Similarly, cooperative spec-

trum sensing method needs higher computational complexity to achieve an accu-

rate sensing information, whereas wideband sensing increases the hardware design
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complexity. Therefore, the research works presented in this thesis are highly mo-

tivated to find a low complexity but high sensing accuracy tradeoff in spectrum

sensing in CRN.

Similarly, various schemes have been proposed in subchannel allocation and

transmit power control in CRN. Many of the proposed methods tend to optimize

one network parameter, such as spectral efficiency, energy efficiency and switching

delay considering other parameters in the ideal range. In practice however, such

flexibility is not always possible to achieve. Therefore, the combined framework

was immediately realized to optimize the spectral efficiency, energy efficiency

and the primary user activities in which the sensing parameters can be tuned at

secondary system to control them. The research presented in this thesis also got

motivation from such requirement.

As a motivational work at the beginning of the research, a spectrum sensing

tasks were performed at various spectrum range to study the diversity of spectrum

usage and availability which will be discussed next.

1.3.1 Spectrum Sensing in Practice: Observation in Lan-

caster Area

Once spectrum sensing techniques and issues of cognitive radio communication

have been discussed, it is very important to elaborate how the idle as well as

under-utilized portion of the spectrum are distributed in real wireless communi-

cation scenario. For instance, the observation of primary signals in some cellular

and TV band in Lancaster City area have been presented in this section to further

understand the general concept of cognitive radio for cellular communication.

Depending on the nature of the available subchannel, i.e., both the unused

as well as under-utilized, different accessing modes can be used, for instance,

overlay and underlay mode of spectrum access. The recent announcement by

Ofcom assures the creation of White Spaces Databases (WSDBs) on UHF TV

band which is operated by selected organizations that have been qualified by

Ofcom to operate in the United Kingdom and they provide the WSDB Services

to white space devices (WSDs) [54]. However, similar concept is not feasible in
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the cellular communication due to the dynamic nature of users. Therefore, a real

time spectrum sensing result is needed to exploit the available subchannels.

As mentioned previously, cognitive radio concept can be implemented within

the TV band in VHF and UHF spectrum, typically in 54 MHz to 790 MHz [55], to

cellular communication in 900/1600 MHz, LTE in 800 MHz, UMTS in 2100 MHz

[56] and even most recently proposed in mmWave band. In this section, the

field based spectrum sensing results are presented showing the TV white spaces,

various cellular bands including 3G and 4G/LTE signals.

The software defined radio platform is used to find the spectrum availability

map using the device originally designed as a receiver for digital video broadcasting-

terrestrial (DVB-T). The frequency tuner uses the micro coaxial antenna port

with omnidirectional antenna. The received radio frequency signal at the tuner

are down-converted to intermediate frequency and then to the baseband signal.

The sampling rate in this spectrum sensing is set to 2.4 MHz and antenna gain

is 40.
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Figure 1.1: The received signal power in dBm in the radio spectrum of 400 MHz

to 670 MHz.
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Figure 1.2: The received signal power in dBm in the radio spectrum of GSM.

The received signal strength at the spectrum sensors between 400 to 670 MHz

is shown in Fig. 1.1. The sensing result shows how non-uniformly the spectrum

is utilized at any instant of time and location in which a robust cognitive radio

technology is required to increase the spectrum utilization. It can be observed

that the spectrum above 600 MHz can be used for WRAN for broadband access

in which large portion of spectrum is below -15 dBm signal strength. It must be

noted that the secondary system must maintain the interference to the primary

system below the threshold of -15 dBm. For TV white space applications, such

information is maintained as database which can be accessed by WSDs.

The received signal strength in the GSM and LTE band are shown in Fig. 1.2.

The spectrum below 910 MHz is available to access at the time of sensing which

can be shared among the secondary users. However, it is not possible to use a

database concept in this case due to the fact that the spectrum access pattern is

highly dynamic. Therefore, a robust spectrum sensing method is needed in this

case. Above the 910 MHz, the spectrum are being accessed quite frequently, how-

ever there are many subchannels in the idle state which could be shared because

the received signal strength is relatively low, i.e., less than -20 dBm. A small
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Figure 1.3: The received signal power in dBm in the radio spectrum of 900 MHz.

portion of 900 MHz band is shown in Fig. 1.3. The spectrum is usually averaged

over many samples, the observed sequences are just an instantaneous observa-

tion. However it has been observed similar distribution of spectrum access, it can
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Figure 1.4: The OFDM subcarriers of LTE signal captured at the central fre-

quency 891 MHz in time and frequency axis.
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be argued that channel access distribution will follow similar pattern in average.

When closely observed the spectrum, subchannels are available to be accessed by

the secondary system, under strict interference constraint, even though they are

not contiguous.

In Fig. 1.4, the individual subcarrier have been identified at the baseband

central frequency 891 MHz and the bandwidth is 2.8 MHz. The red and yellow

vertical lines indicate the individual OFDM subcarrier where red line indicates

the higher received signal strength. Therefore, OFDM is considered as a ideal

candidate for multiplexing in CRN because the subcarriers allocation to users

can be done adaptively.

1.4 Thesis Outline

This thesis is organized into six different chapters, which covers spectrum sensing

and resource allocation strategies for cognitive radio networks.

In Chapter 2, various aspects of spectrum sensing for cognitive radio com-

munication will be presented. It will firstly describe the requirements of spectrum

sensing in cognitive radio along with the very important tradeoff between sens-

ing and transmission duration. Secondly, various spectrum sensing methods are

described that are available in the literature as a foundation of the proposed spec-

trum sensing methods later in the thesis. The cooperative and non-cooperative

spectrum sensing are also described with their respective advantages and disad-

vantages. The challenges of spectrum sensing methods for cognitive radio will also

be described. Thirdly, the spectrum sensing results obtained from the specially

designed spectrum sensors for TV band and GSM band, i.e., 500 MHz, 800 MHz

and 1600 MHz will be presented to show the nature of spectrum availability in

real network.

In Chapter 3, the considered system model will be described in detail.

The multi-cellular and multi-carrier system with primary and secondary service

providers collocated in the same geographical region for spectrum sharing system

will be presented. The subchannel division, orthogonal frequency division multi-

ple access (OFDMA) as modulation scheme and various channel and interference
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models are described to justify their usage in the considered system of spectrum

sensing and resource management.

In Chapter 4, the proposed spectrum sensing scheme will be exclusively

described. It is basically the sensor-enabled cognitive radio system where the

dedicated sensing devices replace the spectrum sensing task from the secondary

system. As a result, the secondary users can have more slot duration to transmit

the data packets in addition to the lower power consumption due to skipping the

sensing task. This chapter will also present design criteria of sensing devices such

that the tradeoff among the sensing accuracy, system throughput and sensing

network cost can be explained both mathematically and through the simulation

results. The detail communication protocol among secondary system and the

sensing devices will also be presented.

In Chapter 5, the proposed resource allocation method will be presented.

Firstly, a reliable method of estimating the activities of primary users on the

subchannels are explained defining a parameter called subchannel activity index.

This parameter will be later obtained in the multiple cell scenario which indicates

the best possible subchannel in the vicinity of the cell at a particular time and

location. Furthermore, the transmit power allocation problem is defined and

solved to find the optimal transmit power. While formulating the optimization

problem, both spectral efficiency and energy efficiency will be considered. Later in

the chapter, the integrated method of analysis is presented which shows a better

system design approach to maintain the balanced energy and spectral efficiency

by changing the sensing parameters in the secondary system.

Finally, Chapter 6 presents the conclusions of the thesis by briefly reviewing

the contributions of the proposed methods and associated challenges while imple-

menting them in real network scenario. Based on the recent research activities,

the future directions of resource allocation in cognitive radio in terms of 5G and

its standardization are also discussed.
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Chapter 2

Spectrum Sensing for Cognitive

Radio

Spectrum sensing is the mechanism to identify the fully or partially unoccupied

spectrum by primary users at a particular time and geographical location. The

fully unoccupied spectrum are also defined as the spectrum holes. In more gen-

eral cognitive radio term, spectrum sensing techniques result the spectrum usage

characteristics in terms of multiple dimension of frequency, time and space [24].

Spectrum sensing has been considered to be the fundamental requirement for

spectrum sharing in cognitive radio framework.

The primary users (or primary systems) and secondary users (or secondary

systems) are frequently used while discussing the cognitive radio and spectrum

sensing. Primary users are the mobile terminals who have the exclusive right to

access the specific part of the spectrum as soon as there is data packet to transmit.

It means, in cellular system, the primary users are the incumbent licensee of the

spectrum for which they pay the cost to get access. On the other hand, secondary

users have the lower right to access the same spectrum which they have to exploit

in such a way that they do not cause any harmful interference to the primary

system.

The spectrum sensing task is generally performed by the secondary users. As

a result, the secondary users must have a reliable and accurate cognitive radio

capabilities to exploit the unused part of radio spectrum. However, in some

latest advancements, the database service provider may disseminate the accurate
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status of the target frequency band. One of the examples is the geolocation

database (GD) of TV white spaces to be used for broadband access when the TV

transmitter is not using a particular band [57]. This has been proposed in the

IEEE 802.22 standard and it is partially implemented with wireless regional area

network (WRAN) in practice. The basic information about this standard will be

discussed in the next chapter.

The wideband spectrum sensing is necessary in some cognitive radio applica-

tions where large band of spectrum is to be opportunistically accessed. However,

wideband spectrum sensing requires higher power consumption for analog-to-

digital conversation in addition to high sampling rate [40]. To avoid such prob-

lems, the wideband can be divided into the narrowband subchannels which is also

known as the multiband spectrum sensing. They can be sensed either sequen-

tially or in parallel depending on the availability of number of sensing antennas.

The advantage of multiband sensing is that the subchannels are assumed to be

independent and the narrowband spectrum problems becomes a binary hypoth-

esis test. In the following section, we will present various multiband spectrum

sensing techniques that are in practice.

2.1 Spectrum Sensing Techniques

The output of spectrum sensing decides whether a particular subchannel is avail-

able or being occupied. Therefore, the problem, in its simplest form, can be

modelled as binary hypothesis test at the secondary users, or spectrum sensors

if sensing is done at the separate entity. The null hypothesis is denoted by H0

when a particular subchannel is idle. In this case, the received signal is of course

only the random channel noise. In contrast, the alternative hypothesis is denoted

by H1 when a particular subchannel is occupied by primary users. In this case,

the received signal is both the noise and signal transmitted by primary system.

To define the spectral sensing techniques, various discrete signals are defined

from mathematical and signal processing perspectives. Let the received signal at

the secondary users receiving antenna is denoted by y = [y[0], y[1], . . . , y[K − 1].

Here y[k] denotes the kth sample in the sequence for k = 0, 1, . . . , K − 1. The

sampled signal is y[k] , y(kTs) where fs = 1
Ts

is the sampling rate. The digitally
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modulated signal samples transmitted by the primary system is represented by

x = [x[0], x[1], . . . , x[K − 1], where kth element of the sequence is denoted by

x[k] , x(kTs). The noise vector is denoted by w = [w[0], w[1], . . . , w[K−1] where

the kth sample in the sequence is denoted by w[k] , w(kTs). For mathematical

tractability, the channel gain between primary transmitter and secondary receiver

is considered to be unit, though this assumption is practically not feasible. This

channel gain will be considered in the next chapter onwards when more advance

form of spectrum sensing and resource allocation methods are presented.

The spectrum sensing technique should be able to differentiate between the

following two contrast hypotheses.

y[k] =

{
w[k], : H0,

x[k] + w[k], : H1,
(2.1)

where, w(k) is considered to be circulatory symmetric zero mean complex Gaus-

sian random variables with variance σ2.

2.1.1 Energy detection

The energy detection, also known as radiometer, is one of the well known spec-

trum sensing methods due to its low computational complexity and easy to im-

plement [58], [59]. This is due to the fact that it does not involve any complex

signal processing techniques. The energy detectors, i.e., secondary users unless

otherwise stated, measures the energy received during the finite sensing duration

which is then compared against the predetermined threshold which depends on

the noise floor [60]. This is a popular spectrum sensing technique because the

detectors do not need a priori knowledge of signal transmitted by the primary

system, but it is assumed that large number of signal samples are available at the

detector.

The energy detection spectrum sensing method comes with various challenges,

for instance, selection of the energy detection threshold. If the detection threshold

is not properly obtained, the spectrum sensing efficiency needs to be highly com-

promised. In addition, energy detectors are also unable to differentiate between
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the channel noise and the interference signal from primary users. Therefore, this

method provides relatively poor performance when received SNR is very low [61].

In order to identify whether particular subchannel is idle or busy, the test

statistics in the form of decision metric, i.e., Λ[y], is first calculated by averaging

the energy received over a period of N observed samples as following.

Λ[y] =
1

K

K−1∑

k=0

|y[k]|2. (2.2)

In the next stage, the decision metric is compared against the detection threshold

εth to make the decision about whether the subchannel is idle, i.e., in favour of

hypothesis H0, or occupied, i.e., in favour of hypothesis H1. Therefore, the energy

detector decides that H1 is true under the condition Λ[y] > εth and secondary

users are not allowed to use the subchannel. Similarly, H0 is true in all other

cases in which the subchannel is allowed to be accessed by secondary users to

transmit their data.

Two parameters are very important to measure the performance of energy

detection method, which are probability of false alarm, denoted by Pf, and prob-

ability of detection, denoted by Pd. Moreover, the probability of miss detection,

Pm, refers to the case when detection of subchannel is failed and they are related

as Pd + Pm = 1. The Pf is the probability that the spectrum sensors incorrectly

decide that a particular subchannel is occupied by primary users when actually

the hypothesis H0 is true, i.e., the subchannel is idle. The probability of false

alarm is then formulated as below.

Pf = Pr{Λ[y] > εth|H0}. (2.3)

Similarly, the Pd is the probability that the spectrum sensors correctly decide

that a particular subchannel is occupied by primary users when actually the

hypothesis H1 is true, i.e., the subchannel is busy. The probability of detection

is then formulated as below.

Pd = Pr{Λ[y] > εth|H1}. (2.4)

From the very basic definition of Pf and Pd, it is easy to say that the larger

Pd is always expected whereas Pf is expected to be smaller. When Pd is lower,
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Figure 2.1: Receiver operating characteristics curve for energy detection method

through AWGN channel for various received SNR.

the primary user transmission in the subchannel is missed which ultimately cause

undesired interference to the primary users. Similarly, when Pf is higher, many

opportunistic spectrum accesses on the subchannels are missed which causes lower

spectrum utilization. Therefore, it is very important to restrict them within a

acceptable values. The general concept on the spectrum sensing design is to

minimize the Pf while Pd is kept above the minimum level to protect the primary

system from the interference. However, various advanced methods have been

proposed in the literature to achieve this tradeoff.

When Pd is plotted against the Pf, the resulting plot is known as the receiver

operating characteristics (ROC) curve. At a particular instance of sensing, a pair

of (Pf, Pd) can be obtained which lies in the ROC curve as shown in Fig. 2.1. It

shown how Pf and Pd are achieved for various received signal SNR from 0 dB to 8

dB. It can be observed that when Pf is relaxed to the higher value, the detection

accuracy can be improved with higher Pd. Moreover, when the received SNR is
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higher, the better (Pf, Pd) pair is achieved.

The performance of energy detection varies according to the fading channels.

This method highly depends on the sensing threshold which merely depends on

the noise variance. In practice however, such noise variance cannot be predicted

in advance. Due to this uncertainties, accurate subchannel detection is impossible

below certain SNR, which is also known as SNR wall [61].

2.1.2 Matched Filter Detection

The matched filter technique to obtain the subchannel information requires per-

fect knowledge of signalling features on the data transmitted by the primary

systems [62], [63]. The features include the operating frequency, bandwidth,

modulation type, frame format or pulse shaping. Therefore, for a known de-

terministic signal, matched filter detector acts as a replica correlator. The test

statistic simply correlates the nth sample of the observed sequence y[n] at the

receiver of the spectrum sensors to the replica of primary user signal x[n]. The

null hypothesis (H0) and alternative hypothesis (H1) are then tested as following.

Λ[y] = R

[
N−1∑

n=0

y[n]x∗[n]

]
> εth : H1,

Λ[y] = R

[
N−1∑

n=0

y[n]x∗[n]

]
≤ εth : H0,

(2.5)

where εth is the detection threshold1, R[·] denotes the real part of complex number

whereas ()∗ denotes the complex conjugate.

The advantage of using the matched filter is that it takes low sensing duration

to meet the Pf and Pd requirements set by primary system [64]. It is due to the

fact that the smaller number of samples are required to detect the subchannel

in comparison to the energy detection. As a result, the matched filter detector

may acquire the higher transmission duration, and therefore improved system

throughput. In this method, the required number of samples grows according to

1Just for simplicity, the same threshold symbol is used as in the energy detection, however

they are characteristically different parameters.
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O(1/SNR) which indicates that higher the variance of channel noise, larger num-

ber of samples must be processed to meet the required level of Pf. However, the

beauty of matched filter detection cannot be achieved without sacrificing some-

thing. firstly, secondary users may require to demodulate or decode the signal

transmitted from primary system which consumes more energy while sensing the

subchannels. Secondly, the implementation complexity is relatively higher due to

the requirements of dedicated receiver for every known signal type [59].

2.1.3 Cyclostationary Detection

The information bearing signal in communication system exhibit a form of pe-

riodicity, for instance, symbol rate, chip rate, channel code or cyclic prefix [65],

[66]. The noise presents no correlation due to the wide sense stationary whereas

the modulated signals exhibit the correlation due to the redundancy of signal

periodicities. This feature of periodic pattern on the transmitted signal can be

exploited for spectrum sensing by cyclostationary detection. One of the features

that make cyclostationary detection method a very attractive option is that it

has ability to differentiate the primary user signal not only from the channel noise

but also from another primary user signal or interference [67].

The orthogonal frequency division multiplexing (OFDM) signals can be con-

sidered which are embedded with the cyclic prefix to protect the signals from

intersymbol interference. The cyclic prefix basically means each OFDM symbol

preceded by replica of end part of the same symbol. Therefore cyclic prefix can be

easily exploited for spectrum sensing using cyclostationary detection. When the

cyclic frequency is considered to be α, the cyclic spectral density (CSD) function

of received signal y[n] is calculated as following [68].

S(f, α) =
∞∑

l=−∞

Rα
y (l)e−j2πfl, (2.6)

where,

Rα
y (l) = E[y[k + l]y∗[k − l]e2παk]. (2.7)

The peak value of CSD is attained when the fundamental frequency and cyclic

frequency of y[k] are matched which merely indicates the hypothesis H1 is correct.
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In all other cases, the hypothesis H0 is correct. If the cyclic frequency is unknown,

it can be easily extracted from the received signal. The drawbacks of this detec-

tion technique is that it reduces the system capacity due to signalling overhead

because the same information has to transmit twice within a frame. Moreover,

the computational complexity is very high in comparison to the matched filter

and energy detector because it has to cope with the effect of sampling frequency

offset in the system.

Many other spectrum sensing techniques have been proposed in the literature,

for instance, blind sensing, filter-bank based sensing, multi-taper sensing, com-

pressive sensing. All of them have a set of advantages and disadvantages and the

choice depends on the network scenario and the sensing hardware available.

2.2 Cooperative Spectrum Sensing

The primary and secondary systems may not be in the line-of-sight (LoS) com-

munication due to the mobility of the users. This results the noise uncertainty,

path loss, channel fading and shadowing on the received signal. Therefore, the

spectrum sensors receive very low primary signal and may incorrectly detect the

presence or absence of primary users on subchannels. This condition is also

referred as hidden terminal problem of spectrum sensing. On the other hand,

the secondary users must sense the channels as correctly as possible to maintain

the sensing reliability even in worst fading scenario to mange the interference to

primary system below the predefined threshold.

To improve the sensing accuracy, i.e., sensitivity, of cognitive radio spectrum

sensors and to make it more robust against the hidden terminal problem and

channel fading irrespective of the sensing methods in use, cooperative spectrum

sensing has been considered as an appropriate solution [69]. The concept of

spectrum sensing with cooperation is to use multiple sensors distributed across

the coverage area and combine their individual measurements into one common

decision. The probability of miss detection and probability of false alarm would

be considerably minimized when cooperative sensing technique is used [70] in

addition to solve the hidden primary terminal problem and it may also lower the

sensing duration [71].
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Table 2.1: The comparison and summary of three spectrum sensing methods.

Energy Detector Matched Filter Cyclostationary

Detector

Test statistics The total energy

of received

signal at the CR

receivers

Correlation with the

received signal at CR

receiver and a replica

of the signal

The cyclic

spectrum

density function

of the received

signal

Sensing

accuracy

Low with no

prior

information of

the PUs

High: It is optimum

detection method

with a short sensing

time (It needs a prior

information of the

PU’s signal).

Medium: It can

differentiate

between

different PU

signals.

Implementation

complexity

Low: It is

simple and

easier to

implement in

practice.

High if the SU

receivers need to

estimate different

types of PU signals,

however pre-stored

information can be

used to reduce this

complexity.

High but in less

extent to that of

the Matched

Filter

Robustness

against low

SNR

low: The energy

detector is very

sensitive to

noise power

mismatch.

High: It offers good

detection in very

noisy scenarios.

Medium: Its

performance in

the low SNR is

better than the

energy detector.

When the cooperative sensing is performed among large number of secondary

users or cooperative sensors, the sensing performance as well as the sensing re-

liability are significantly improved. In contrast, the complexity of the system
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design also increases simultaneously due to the flooding of large number of con-

trol signals. Such control signals are possibly transmitted through the ISM band,

dedicated band or even an underlay system such as ultra wide band. Therefore,

an efficient information sharing algorithm is required to achieve the maximum

benefits of the cooperation in cognitive radio enabled wireless communication.

When the distributed sensing devices detect the subchannel state, they are

either shared among them or forwarded to the central processing unit depending

on the mode of operation. Once the final decision is made, the spectrum sensing as

well as channel sharing information are shared among the multiple users through

the control channel. In many cooperative sensing method, the cognitive radio

network is divided into the clusters and the decision information is transmitted

to the cluster head in an assigned frame/slot [72]. While executing this task,

the coordination algorithm should be designed such that the minimum delay

is achieved [46]. The cooperative sensing is performed either centrally or in

distributed fashion depending on where the sensing results are processed.

2.2.1 Centralized Sensing

In centralized spectrum sensing, individual spectrum sensors or secondary users

sense the subchannel in its geographical location which are then collected at the

central processing unit, also known as decision fusion centre (DFC). The available

subchannels are identified at the DFC using various decision fusion rules which

are being proposed in literature with their own pros and cons. The information

is then multicasted through the dedicated control channel to the secondary users

[73]. The obstructions in between primary and secondary systems may cause

multipath fading and shadowing, however another user in its vicinity may have

good channel condition which helps the cooperative detection process to be more

robust than the case when single user is sensing the subchannel. Even the control

channel could be under deep fading, however they are assumed to be a perfect

channel in the network design.

Depending on the nature of sensing results obtained at the local sensors and

the processing of information at the DFC, centralized sensing method are cate-

gorised as the soft combining and hard combining methods.
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2.2.1.1 Soft Combining

In soft combining method, the locally sensed subchannel information is forwarded

to the DFC without taking any local decision or hypothesis test [74]. The decision

is made at the DFC by combining those unprocessed data using the appropriate

methods. One of the conventionally used rule is the square law combining of

received data from the individual sensing data. In this method, the estimated

energy level is reported back to the DFC and all energy levels from secondary

users are combined with square law which is then compared against the threshold

value to decide the status of the subchannel. However, there are various methods

to combine soft data together, such as correlation based soft combining [75].

Let us consider that there are z = 1 . . . Z sensors or secondary users to co-

operatively sense the subchannels. By assuming the noise vector wz and signal

vector xz are independent for each sensors, the received signal vector from z sen-

sors is obtained as y = [yT1 ,y
T
z . . .y

T
Z ]. The log-likelihood ratio provides the test

statistics as following.

log

(
Pr(y|H1)

Pr(y|H0)

)
=

Z∑

z=1

||yz||2
σ2
z

=
Z∑

z=1

Λz, (2.8)

where, Λz is the log-likelihood ratio from the zth sensor. The statistics ||yz ||
2

σ2
z

is the soft decision from z secondary users. The weighted sum in (2.8) is then

compared against the threshold value to decide the status of the subchannels.

The soft combining cooperative technique provides accurate estimation of the

subchannel status, however it need a relatively huge bandwidth due to embedding

much information in control packets. On the other hand, if one of Z number of

the secondary users is untrustworthy, it severely degrades the cooperative gain

and therefore the spectrum sensing efficiency [76].

2.2.1.2 Hard Combining

The soft combining potentially require the complex structure of signal processing

hardware because DFC may receive large amount of data to process. The best

alternative of this technique is that the sensing devices take decision from the

locally sensing data and quantize the decision in binary format, which are, in
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general terms, known as hard decision bits. Therefore, in hard combining, the

DFC is just to process the received bits and take the decision using various logic

fusion rules; for instance, AND-logic rule, OR-logic rule, majority-count-login

rule amongst others are proposed in literature [77].

When the individual sensing device z take local decision, the individual test

statistics are quantized into a single bit such that Λ(z) ∈ {0, 1} are the hard deci-

sion bits. It indicates that when local test statistics is greater than the predefined

threshold, the decision is taken as 1 which indicates the subchannel is busy. In

other cases, the decision is taken as 0 which indicates the subchannel is idle.

When there are Z number of sensors, the test statistic at the DFC using simple

voting rule decides in favour of the hypothesis H1 when the following condition

is satisfied.

Z−1∑

z=0

Λ(z) ≥ C, (2.9)

where, 1 ≤ C ≤ Z. The fusion AND, OR and majority count rules are the special

cases when C is fixed at a particular value [40]. In cases when C = Z, the fusion

rule is known as AND fusion rule in which all the local sensors must unanimously

agree on the status of the subchannel. When C = 1, the fusion rule is known

as OR-logic where even one of the sensing devices decides the channel to be idle,

the channel is declared to be available to use by cognitive users. Finally, when

C = Z/2, the decisions are fused using majority count rule where majority of the

sensing devices must agree on the channel status. The detail of each method is

skipped here, however they will be briefly described when they are used in the

following chapters.

2.2.2 Distributed Sensing

When the number of secondary users are increased in centralized cooperation,

the cooperation complexity is simultaneously increased. In the distributed coop-

erative sensing method, the sensing devices act as relay and share the subchannel

status information with each other rather than sensing to the centralized DFC

[78]. In this case, the secondary users according to their detection performance
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may form a logical cluster on a temporary basis. Such cluster may be dynamically

forming depending on the distribution of the sensing devices. However in some

cases, the secondary users may share subchannel information to each other on an

ad hoc manner where information is forwarded to its one hop neighbour using

the amplify-and-forward technique.

The obvious advantage of distributed sensing is that no deployment of DFC is

needed which reduces the implementation cost. However, the signalling overhead

could be higher than in centralized system due to flooding of control signal among

the sensors if the cluster is not perfectly formed. The sensing and reporting time

is significantly reduced due to the decentralized decision taking procedure which

helps to increase the system throughput [79]. The detail of this method will also

be explained in next chapters when the proposed methods are presented in detail.

2.3 Challenges in Spectrum Sensing

Despite the spectrum sharing system is the solution to solve the spectrum scarcity

problem, there are many impediments to achieve a balance tradeoff. The factors,

for instance, interference protection, spectrum efficiency, energy efficiency, sensing

duration, implementation cost etc., depend among each other and finding the

optimal operating point is a challenging task in CRN.

The probabilities of false alarm and miss detection always maintain a funda-

mental tradeoff in spectrum sensing. The false alarm probability is related to the

implementation cost in CRN whereas probability of miss detection is responsible

for the performance of the sensing system. The higher the false alarm, the lesser

is the spectrum opportunity, whereas, higher miss detection increases the inter-

ference to the primary system. In practice, unfortunately, both of them cannot be

minimized simultaneously with a single detection algorithm or hardware. In the

recently proposed methods, one probability is kept fixed and another probability

is minimized. From primary system point of view, probability of miss detection

is expected to be minimum, whereas from secondary system point of view, the

probability of false alarm should be kept minimum. Therefore, the balance of

both of them is an interesting as well as a challenging task.
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The management of sensing accuracy and data transmission duration tradeoff

is another challenging task in spectrum sensing. As a matter of fact, when the

large number of samples are received at the secondary system receiver, the higher

accuracy in spectrum sensing is achieved. However, in doing so, secondary users

have to spend more slot duration to the sensing task which causes the shorter

duration for data transmission [80]. As a result, the achievable spectral efficiency

at the secondary system is minimized. Some solutions have been proposed in [81],

[82] where the optimal sensing duration is possible to obtain which maximizes the

secondary user throughput and, at the same time, the interference to primary

system can be kept at minimum. However, a perfect tradeoff between sensing

duration and throughput is very difficult to handle in practice.

When the cooperative method of spectrum sensing is used, irrespective of

the decision fusion methods, the energy consumption of the secondary system

increases when the number of cooperative users grows. Therefore, the energy

efficient design of cooperative sensing method is always a challenging task. The

methods such as censoring [83], sleeping [84], clustering [85], amongst others, have

been proposed to solve energy consumption problems, however optimal sensing

and energy tradeoff is difficult to achieve in cooperative CRN.

2.4 Conclusions

In this chapter, the spectrum sensing techniques for cognitive radio were described

considering both advantages and disadvantages of predominant spectrum sensing

methods. The energy detection method has been concluded to be the simplest

one from the system design point of view, however it does not perform well

under low receive SNR. The cyclostationary and matched filter based sensing

have better sensing efficiency but they have higher system complexity due to

the requirements of advance digital signal processors. The cooperative sensing

method and various decision fusion methods have also been presented along with

their merits and challenges. The cooperative sensing can reduce the probabilities

of miss detection and false alarm while sensing the subchannels but the system

complexity increases due to large number of control signals. The associated hard

combining and soft combining methods were also discussed in detail.
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The spectrum sensing for real signals in various radio spectrum, ranging from

TV transmission in UHF and VHF to cellular and LTE bands, have also been

discussed. The results demonstrated that the unused and under-utilized spectrum

can be exploited to build a complete spectrum sharing system. The OFDMA

subcarriers were also captured to show how OFDMA subcarriers can be allocated

to the secondary users to realize the cognitive radio communication.

The fundamental limitations with non-cooperative sensing, which at the end

when it comes to the sensing accuracy, could be addressed by means of cooper-

ation among sensing devices. However in this case the sensing complexity needs

to be addressed simultaneously. The problem with the current spectrum sensing

method is that they do not exploit the network structure to reduce the signalling

overhead without compromising the sensing accuracy of secondary system. This

highly motivates to investigate a sensing method by means of distributed sensing

network which would balance the tradeoff between sensing accuracy and signalling

overhead.
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Chapter 3

System Model

The generic system model is presented in this chapter which is going to be referred

in the subsequent chapters with the required add-on features and functions where

it is necessary. The system model in general accommodates the cellular network

structure, channel model, frame structure in addition to other physical (PHY)

and medium access control (MAC) layer technologies.

3.1 Network Modelling

The considered system model consists of a cellular network that is enabled with

the cognitive radio functionality. The specific reason to focus on the cellular sys-

tem for dynamic spectrum allocation is that cellular systems are in use through-

out the world and many devices and data applications for the spectrum used for

cellular communication are comprehensively researched, understood and imple-

mented. On the other hand, the usage pattern of cellular spectrum is much more

dynamic in comparison to the recently developed cognitive radio in TV spectrum

for rural broadband in which spectrum identification is relatively simple because

the spectrum is idle over the longer period of time [86]. Therefore, a robust, effi-

cient and less complex system must be designed for cellular systems to efficiently

utilize the idle or under-utilized portion of scarce cellular spectrum.

The reference system model is an autonomous cellular network where each

secondary user (or distributed and independent sensing device) performs the spec-

trum sensing task and the subchannels are accessed if and only if the received
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power on the channel is less than the threshold value. The considered cellular

network is characterized by the fact that the intercell interference is inevitable

due to the universal frequency reuse scheme. Therefore, the identical frequency

bands can be allocated between two adjacent cells. As a result, a dynamic trans-

mit power control at each base station is required in such systems to minimize

the interference.

The cellular cognitive radio network can possibly be represented as an au-

tonomous cellular network where primary system and secondary system are con-

sidered into the same geographical location sharing the common set of resources.

Therefore, in a such autonomous cellular system, the role of adaptation in efficient

resource allocation becomes increasingly important [87].

The considered system model is an infrastructure-based cellular CRN, also

referred to as the secondary system, collocated with a legacy primary cellular

network. The schematic of the considered network scenario is shown in Fig. 3.1.

The primary users communicate with the primary base station and secondary

users communicate with the cognitive radio base stations on the allocated time

slots and frequency subchannels. The primary and secondary users are served by

a single primary and secondary base station, respectively as considered in [88].

The transmit power control algorithm is executed in the secondary system

and the primary system’s transmit power is considered to be fixed, i.e., no power

control mechanism is considered on the primary transmitter. Without loss of

generality, all the transmitters and receivers in the system are equipped with the

single omnidirectional antenna unless otherwise stated. The analysis however can

be easily extended into sectorized cell by considering each sector as a cell with a

single antenna. There is no direct signalling between the primary system and the

secondary system.

3.2 Channel Modelling

The total frequency band of B Hz is licensed to the primary system which serves

primary users for voice and data communications. The primary users are indexed

by j ∈ {1, . . . , J}. The spectrum of the primary system is shared with a secondary

system for downlink transmission. The CRN is a multicell network with M
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Figure 3.1: The considered cellular cognitive raido network as a reference system

model.

secondary base stations (SBSs). In the central cell, SBS serves secondary users

indexed by s ∈ {1, . . . , S}. In addition, the radio spectrum is divided into N

non-overlapping Bi = B/N Hz subchannels which are indexed by i ∈ {1, . . . , N}.
The communication link between the secondary transmitter to the secondary

receivers, for subchannel i ∈ {1, . . . , N}, referred to as secondary channel which is

denoted by gsi(ν). Similarly, the secondary transmitter to the primary receivers,

for subchannel i ∈ {1, . . . , N}, is referred to as interference channel which is de-

noted by gji(ν). The parameter ν denotes the joint fading state which is dropped

hereafter for brevity. Due to the small-scale frequency-dependent multipath prop-

agation characteristics, each SU may experience different channel gains across

different subchannels, i = {1, . . . , N}, each with bandwidth of Bi Hz. Depending

on the PU activity and its required QoS at a specific time and location, secondary

users may have access to x number of subchannels where 0 ≤ x ≤ N .

To sense the subchannels by secondary users and dynamically adjust their op-

erating parameters, the physical layer of the secondary system needs to be highly
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flexible as well as adaptable. The method of accessing the subchannels in multi-

carrier transmission, also known as orthogonal frequency division multiple access

(OFDMA), has the potential to fulfil the requirements [89]. Therefore, OFDMA

has been highly anticipated to realize the cognitive radio concept to provide

an scalable and adaptive technology for air interface. In the considered system

model, the secondary system utilizes OFDMA to access N non-overlapping sub-

channels.

When OFDMA is used, the subcarriers are grouped together into a cluster

which are assigned to the individual user. This flexibility and adaptability makes

this the best candidate transmission technology for cognitive radio. Such appli-

cations of OFDMA in cognitive radio have been considered in significant number

of previous works as in [90], [91], [92]. The advantages of OFDMA in cognitive

radio as summarized below.

• Since the spectrum sensing may be required to achieve the benefits of cog-

nitive radio communication, the computational complexity of sensing algo-

rithm is significantly lowered when OFDMA is implemented. It is due to

the fact that the received signal is passed through the fast Fourier transform

(FFT) circuitry in OFDMA system to convert time domain signal into the

frequency domain. The primary signal detection can be performed on the

received signal in frequency domain since the signal of primary system is

spread over a group of range of FFT output samples.

• The improvement in spectrum utilization using the waveform shaping tech-

nique where some subcarriers can be turned off depending on the existence

of primary users.

• The interoperability associated with OFDMA makes it a good choice for

cognitive radio. Since OFDMA has been used in both long-range as well

as short-range communication systems, cognitive radio networks equipped

with OFDMA can be used with various technologies including WiMAX,

IEEE 802.11x, IEEE 802.22, amongst others.
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• Its adaptability to the changing environment is very good. For instance, it

can adaptively change the transmit power, channel coding or modulation

order based on the channel quality as well as the user requirements.

The objective in this system model is to maximize the parameters such as

spectral efficiency or energy efficiency. The optimization problem is thus in the

form of a utility function in terms of secondary system throughput and weighting

factor, which, in its simplest form, could be formed as a linear combination as

shown below:

max
∑

s∈S

∑

i∈N

αsiRsi, (3.1)

where Rsi is the average rate for user s while accessing subchannel i. Also, S is the

set of secondary users which access the available subchannels N whereas α is the

weighting factor which maintains fairness among the primary and secondary users

due to the fact that the gain at secondary system comes at the expense of primary

throughput because the interference is introduced at primary receivers [93]. Here,

α is the set of weights which is based on predefined QoS requirements and the

primary users activity. The total transmit power and maximum interference to

primary system constraints will also be considered in the proposed spectrum

sensing and resource allocation methods.

3.3 Frame Structures

The frame structure of the considered spectrum sensing and sharing model is

depicted in Fig. 3.2. Each frame consists of the sensing time slot which is

followed by the data transmission slot. The secondary users have to sense a

set of subchannels within the sensing duration using the energy detection as

mentioned in chapter 2. The decisions are then shared among other cellular base

stations or clusters within a cell depending on the system design. The information

then provides whether the subchannel is idle or occupied by the primary users

at particular time and location. If a particular subchannel is found to be idle,

the secondary base station allows particular user to access the subchannel with
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Frame n Frame n+ 1 - - - - - - - Frame K

1 2 3 4 - - n∗ T − Ts

Ts
∗(n ≤ N)

Sensing
duration

Sensing
sub-slot

Data transmission
duration

Figure 3.2: The frame structure of the considered reference system model with

distinct sensing sub-slots and data transmission duration.

allocated maximum transmit power. When the subchannel is found to be busy

due to possible arrival of primary user, a new subchannel is provided if one is

currently available. The secondary user will have to immediately trigger the

channel switching algorithm. If the subchannel is busy, the spectrum sensing

technique is repeated again.

The sensing slot is allocated for the spectrum sensing in addition to execute

many other cognitive radio related functions, for instance, decision taking, sub-

channel allocation and subchannel handoff whenever they are necessary. The

frame duration is denoted as T out of which Ts, where Ts ≤ T , is the sensing

duration. Therefore, the data transmission duration is T−Ts. The secondary sys-

tems may be able to sense the multiple subchannels within the sensing duration

in which case sensing duration is divided into the sub-slots. One sensing sub-slot

is considered as the duration to sense a single subchannel. Therefore, there are

maximum of N sensing sub-slots in which case the sensing slot is denoted as

Ts = {Ts1, Ts2, . . . , Tsk}k≤N .

In the considered system model, a very important tradeoff appears between

the sensing duration and the data transmission duration, thus the throughput on

the secondary system. In cases the Shannon capacity of the channel is considered

as Rc = log2(1+SNIR) where SNIR is the received signal to noise and interference

ratio, the effective throughput on the data transmission duration is achieved to
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be (T − Ts)Rc. When the sensing duration is increased to enhance the sensing

accuracy by receiving the larger number of samples for energy detection (or for

any other detection methods), the transmission duration is significantly reduced

which directly degrades the secondary system throughput. In other words, for any

two sensing durations T 1
s and T 2

s such that T 1
s < T 2

s , then (T−T 1
s )Rc > (T−T 2

s )Rc

which is described as a sensing-throughput tradeoff in CRN.

There have been series of proposed methods to find the optimal sensing

time and transmit power allocation scheme with the aim of achieving maximum

throughput. The CRN framework in [82] demonstrated that better achievable

throughput is achieved when average power constraint, instead of instantaneous

power constraint, is taken. Similarly, the design of optimal sensing time and

ergodic throughput on secondary system in wideband sensing based spectrum

sharing is presented in [53]. The auction based spectrum sensing and subchannel

allocation is also presented in [94] with the underlay and overlay spectrum ac-

cessing schemes. However, the spectrum accuracy and the achievable throughput

in CRN can never be attained simultaneously with any of the proposed meth-

ods. This is due to the fundamental limits of the available spectrum sensing

mechanisms. To solve this issue, a fundamental change is necessary to design the

spectrum sensing and throughput tradeoff from a unique and different perspective

of system design. The instance considered here, which is described in the next

chapter, is the independent sensing network model to achieve both with reduced

signalling overhead.

3.4 Cognitive Radio Standard: IEEE 802.22

The discussion of spectrum sensing and resource allocation in cognitive radio

enabled cellular network becomes incomplete without describing the IEEE 802.22

WRAN standard. It is also important to briefly mention it here because the

standard will be frequently used in the subsequent chapters when the cellular

CRN parameters have to be chosen while proposing new methods of spectrum

sensing and resource allocation as well as for the comparison purpose.

The first worldwide wireless standard to realize the cognitive radio commu-

nication in practice is IEEE 802.22 which was released in July 2011. Therefore,
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Table 3.1: The physical and medium access control layer parameters set for IEEE

802.22 WRAN standard.

FFT size 1024, 2048, 4096

Cyclic Prefix size Variable

Bits per symbol 2, 4, 6

Pilots 96, 192, 384

Bandwidth 6, 7 and 8 MHz

Multiple access OFDMA/TDMA

Code rate 1
2
, 2

3
, 3

4
, 5

6

Modulation schemes BPSK, QPSK, 16-QAM, 64-QAM

Duplex TDD

Frame size Super-frame: 160 ms, frame: 10 ms

this is the milestone for future CRN technology because it employs a number of

cognitive features such as spectrum sensing, subchannels allocation and transmit

power control. It provides network access for users within a cell by sharing a

vacant TV white spaces (TVWS) which has excellent radio propagation char-

acteristics to improve the wireless broadband connectivity in rural areas [95].

Various technologies in PHY and MAC layers are considered in this standard,

which defines the typical operating range of 17 to 30 km and up to maximum of

100 km is targeted in a particular geographical location with a maximum data

rate up to 22Mbps [96]. All other PHY and MAC layer parameters set for IEEE

802.22 WRAN standard are shown in Table 3.1.

The PHY layer of this standard is based on the OFDMA in which 1680 subcar-

riers are grouped into the 60 subchannels. The modulation schemes are defined

as binary phase shift keying (BPSK), quaternary phase shift keying (QPSK), 16-

quadrature amplitude modulation (16-QAM) and 64-QAM. The MAC layer is

responsible for the resource allocation in IEEE 802.22 standard in which a point-

to-multipoint mode is adopted. Therefore, the proposed cellular topology consists
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Table 3.2: The secondary users spectrum sensing sensitivity requirements for

IEEE 802.22 standard.

Analog TV Digital TV Wireless

Microphone

Sensitivity -94 dBm/6 MHz -116 dBm/6 MHz -107 dBm/6 MHz

SNR 1 dB -21 dB -12 dB

Pd 0.9

Pf 0.1

Ts 2 sec

of a single secondary base station1 communicate with many white-space-enabled

user devices.

The IEEE 802.22 supports two different methods to detect the primary users

on the subchannels. The first one is spectrum sensing methods and the second one

is geolocation database (GD) approach. There are some technical difficulties to

achieve the strict requirements set for spectrum sensing in TV band. The required

sensing sensitivity and other parameters are summarized in Table 3.2. It can now

be observed that some of the primary signals, e.g., digital TV, must be sensed

at a very low SNR as well the devices must be able to sense the signal below the

noise level. Furthermore, the probability of detection must be strictly maintained

at or above 0.9 whereas the false alarm probability should be maintained below

0.1. All of the defined parameters ultimately results that the spectrum sensing

in TVWS is a primary challenge.

In cases the spectrum sensing is not a reliable option for TVWS, the GD ap-

proach has also been considered to determine the presence or absence of primary

services in the subchannels within the area of interest. The GD, in its basic form,

stores and updates the channel availability information within TV band in cer-

tain area which is managed by spectrum management regulators2. Such database

1TV transmitters are obviously the primary system in this model.
2The GD based TV white spaces have been considered by regulators such as FCC and

Ofcom. The FCC approved ten companies including Google, Spectrum Bridge, Telcordia etc.
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information contains operating channels, duration of use, device transmit power,

user location and such other relevant information. In this scheme, the secondary

devices first send a query to the database server to know the available frequency

channels in TV band within their location. It is obvious that such devices must

be equipped with global positioning system (GPS) to find the precise location

of the user. The devices then receive the list of unoccupied subchannels before

initiating the communication [97].

The further step taken to enable GD is the radio environment mapping (REM)

which can be considered as advance knowledge base which keeps record of multi-

domain information about the subchannels and networks as well as the historical

information. The optimal scheme to access such database information is still

in the early research phase. However, recently proposed methods to choose the

database access strategy are the probabilistic decision process [98] and Markov

decision process [99], amongst others. In any accessing method, the existing rules

must be properly addressed and at the same time they have to maximize the

overall communication opportunities through the on-demand access.

3.5 Conclusions

In this chapter, the reference system model has been highlighted such that it will

be easier in the next two chapters where system model is discussed with some

add-on features. The network architecture is considered as infrastructure based

multi-cellular network where independent primary and secondary cellular systems

share the scarce radio spectrum. The network design has also been considered

keeping in mind the multi-tier small cell network, i.e., heterogeneous network, as

a network scenario for 5G and beyond. Therefore, the considered system model

and the proposed methods of spectrum sensing and resource allocation in the next

chapters are equally applicable to the next generation networks with minimum

level of modification.

Since there are primary and secondary cellular systems, there are communi-

cation links, i.e. secondary transmitter to secondary receivers and primary trans-

mitter to primary receivers, as well as interference links, i.e., from secondary

as a GD administrator and some of them have already completed the tests by 2015.
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transmitter to primary receivers. The stochastic behaviour of such channel gains

plays a vital role in system performance because they are random in nature and

difficult to predict in real time. Therefore, assumptions are frequently made

about the channel gains, such as channel reciprocity and probability distribution

function with known parameters when they have to be modelled in practice. The

basic channel property as well as some physical layer technologies have been also

discussed in this chapter. In addition, OFDMA plays vital role to realize CRN

which makes spectrum sensing task less computationally complex due to the FFT

circuitry available in OFDMA. It also maintains higher spectrum utilization and

is compatible with many existing systems and hardware.

The frame structure of the proposed system model is also discussed in this

chapter. The sensing duration and data transmission duration together form a

strict tradeoff in practice, also known as sensing and throughout tradeoff. There-

fore, it is very important to implement the optimal sensing method to find the

optimal sensing duration which maximizes the secondary system throughput by

keeping interference to the primary system below the threshold level. The cur-

rent work is highly inspired with this requirement by designing a novel technique

of spectrum sensing to realize the cognitive radio in practice. Moreover, a brief

working principle of first cognitive radio standard, i.e., IEEE 802.22, has been

also discussed which is available in the TV band where the spectrum holes can

be exploited to provide the remote broadband services.
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Chapter 4

Low-Latency Zone-Based

Cooperative Multichannel

Spectrum Sensing

In wireless communications, data is often transmitted within the allocated time

frames. The number of data bits transmitted in each time frame is directly re-

lated to the the system throughput. To enable the dynamic spectrum access

(DSA) in cognitive radio communication, part of each time frame is allocated

to spectrum sensing thus no transmission is allowed in this duration [22]. By

increasing the sensing duration the sensing accuracy is also increased, however

the remaining time for transmission thus the system throughput is also corre-

spondingly decreased. This results in a fundamental trade-off between sensing

accuracy and system throughput [43]. As a consequence, choosing the optimal

value of sensing duration is a challenging task [53]. Therefore, a unique method

of spectrum sensing is needed in CRN to achieve the better sensing-throughput

tradeoff deal without increasing the sensing complexity and signalling overhead.

In this chapter, the details of such spectrum sensing technique will be presented

as one of the proposed methods.

Conventionally, the spectrum availability is sensed at the SUs which are ran-

domly distributed over space and time. Fundamental characteristics of multiuser

wireless environment including multipath fading, user mobility and hidden termi-

nal problem, as well as limited sensing duration result in reducing the spectrum
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sensing accuracy. Therefore, in such environments conventional sensing mecha-

nisms are not able to efficiently sense the spectrum availability with an accept-

able level of accuracy required for protecting the PUs from inevitable interference

[100].

To address the sensing accuracy issue, cooperative spectrum sensing tech-

niques have been introduced in literature, e.g., [101], [102], [103], [104]. In co-

operative spectrum sensing, SUs sense the spectrum availability and share this

information with other network entities. Spectrum availability decision is then

made by combining the collected sensing information based on a rule, e.g., AND,

OR or K-out-of-N1 [43]. The advantages and challenges associated with the coop-

erative spectrum sensing are already discussed in Section 2.2 and Section 2.3. In

such methods, the spectrum availability information obtained from multiple SUs

can also be processed using more sophisticated techniques. Instances include

weighting [41], multidimensional correlation [42] and minimizing the collision

probability at the PUs [100]. In weighting, the share of the provided information

by each sensor in the final decision is determined by a weighting vector which

is a system design parameter. Further, [42] leverages the spatio-temporal corre-

lations between spectral observations among various nodes and across different

time instants to minimize the sensing cost and maximize its accuracy.

Various settings have been proposed for implementing cooperative spectrum

sensing, e.g., [105] and references therein present the detail survey. The cooper-

ative spectrum sensing proposed in [103] divides the coverage area into clusters,

where the SUs perform spectrum sensing and base station acts as a decision fusion

centre. The users considered as the cluster heads then make spectrum availability

decisions. In such a cooperative sensing model, a higher sensing duration results

in a shorter data transmission duration which results degradation in achievable

data rate. In addition, the signalling overhead is also higher in the secondary sys-

tem and the performance is highly sensitive to the reporting channel conditions.

The logical cluster formation proposed in [106] has been designed to tackle

the issues due to the imperfect reporting channel conditions. In [107], the cluster

formation is proposed based on the heterogeneous characteristics of primary and

1K-out-of-N rule is also mentioned as majority count rule in literature when K ≤ N/2,

however both can be used interchangeably in theory.
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secondary users such that users in the same cluster sense the identical set of

channels to increase the sensing accuracy. The cluster heads however act locally

therefore unable to incorporate their location information into the network wide

channel allocation. In addition, various decentralized cooperative schemes are

proposed, e.g., [108], where no decision fusion entity exists and therefore the SUs

themselves diffuse the received decisions.

In addition to the centralized and decentralized cooperative schemes, a relay-

based multiple hops cooperative sensing is proposed in [109], where source to

destination spectrum information is forwarded by the relay nodes, where either

amplify-and-forward or decode-and-forward method is implemented. This tackles

the issues of erroneous report channel by increasing the cooperation footprint.

A two channel sensing technique under imperfect spectrum sensing based on

the independent set of access and backup subchannels is also proposed in [110],

where both subchannels are sensed in a single time slot to improve the system per-

formance by jointly considering spectrum sensing and spectrum access. Although

cooperative sensing often improves the sensing accuracy, the corresponding sig-

nalling overhead further reduces the overall system throughput.

As a matter of fact, whether it is centralized, decentralized or relay-assisted

cooperative model mentioned in [101]-[109], the formation of clusters is very chal-

lenging due to the time varying nature of the wireless channels and mobility of

users. The merits of incorporating the location information are recognized in

conventional cognitive radio [111] as well as in advance cooperative communi-

cation [105]. However, embedding the location information in the CRN design

might increase the signalling overhead. The dynamic cluster formation algorithm

also causes very high signalling overhead. Therefore, an independent spectrum

monitoring network has been proposed in this chapter to improve the cooperative

sensing efficiency with reduced complexity.

In majority of the available cluster based cooperative sensing approaches, in

addition to the signalling overhead due to the cluster head selection, cooperative

spectrum sensing also introduces extra spectrum sensing latency. This is due to

the fact that the SUs need to allocate an extra part of their fixed time frame to

transmit the sensing information to a fusion centre and then wait for the sensing

decision to be made and received back. To address this issue, the sensor selection
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algorithms have been proposed in [112], [113]. However, cooperative sensing fails

to provide required low-latency access which is of an immense importance in use

cases including M2M communications [114]. Also, M2M plays an important role

in the structure of the Internet-of-Things (IoT) which will be mainly connected

through wireless communications.

4.1 Sensor Network Enabled Spectrum Sensing

The framework to offload the cooperative sensing to an independent monitor-

ing network has been proposed in [115] to tackle the latency issues due to the

sensing durations. It comprises of sensors deployed within the coverage area of

cellular network and continuously monitor the spectrum availability. The sensing

information is then communicated by the sensors to a central entity on sepa-

rate signalling channels. In this setting, by careful design of system parameters,

the same level of accuracy is achieved without reducing the system throughput.

There is, of course, cost associated with building the monitoring network, which

is justified in [115] considering extraordinary price of radio spectrum in mobile

communication bands. An independent network of sensors is further considered

in [116],[117] for nomadic cognitive networks in urban and sub-urban areas. The

advantages of considering a separate monitoring network are twofold. Firstly, it

lowers the corresponding sensing latency due to the reduced sensing duration,

thus the spectral efficiency is increased by offloading the spectrum sensing task

to an independent monitoring network. Secondly, the spectrum sensing accuracy

is significantly improved due to cooperative sensing.

The above mentioned techniques improve the sensing accuracy and the as-

sociated latency, however they ignore the location information of sensors. Due

to very high number of objects in the coverage area, incorporating the location

information into sensing is capable of enabling spectrum reuse across very small

regions in the network coverage area which is, in the proposed method, is re-

ferred as micro-spectrum-reuse. Incorporating the exact location of the sensors

however might introduce a new dimension to the spectrum sensing complexity

and increases its associated costs. Instead in this chapter a simple Zone-Based

Cooperative Spectrum Sensing will be proposed. The sensing architecture in the
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proposed method is based on dividing the coverage area into zones and defining a

zone aggregator (ZA) as an intermediate entity. A general case is considered here

in which the spectrum is divided into number of channels (i.e., subchannels in

multicarrier systems). The ZAs then process the sensing outcome of the sensors

for each subchannel located in their corresponding zone. The aggregated decision

for each zone is then passed to a fusion centre. In the proposed scheme, to ad-

dress the overhead issue it is further devised a one-bit-per-subchannel signalling

scheme between the ZAs and the fusion centre.

In the proposed method, a central decision fusion centre located, e.g., in

the secondary base station then utilizes the aggregated sensing information in

the network zones. The SBS accordingly allocates the available subchannels to

maximize the spectral efficiency and keep the interference at the PUs below the

system required threshold. The corresponding function of the DFC is formulated

as an optimization problem and show that it is a convex optimization problem.

The optimal detection threshold is then obtained for different cases with various

spatial densities of ZAs and SBSs. We further obtain a close form for the optimal

sensing threshold based on a weight-based approach.

Various factors are involved in the efficiency of the proposed method in this

chapter, including number of zones and base stations, the spatial distribution of

the sensing devices and the zone size. The impacts of these factors are deeply

investigated on the system performance and propose techniques for efficient de-

sign of the corresponding parameters. This provides extra degrees of freedom

in designing the spectrum monitoring network and provides quantitative insight

on deployment of such networks. In the analysis of the proposed method, it is

focused on energy detection as the main spectrum sensing method at the sensors.

The analysis presented here can be extended to design the parameters for cases

where other spectrum sensing techniques are utilized in the sensors.

In the proposed method, the latency associated with the spectrum sensing is

the time required for signalling between the SUs and the DFC. For a given re-

quired spectrum sensing accuracy, it is also shown that the the proposed method

ultimately provides a lower latency in comparison with conventional sensing meth-
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ods1. Therefore, the proposed method provides enabling techniques and protocols

for adopting DSA in low latency M2M communications.

The analyses presented here are unique as they provide quantitative insight

on the achievable gain on the spectral efficiency using cooperative sensing based

on an independent monitoring network.

Using simulations the investigation on the accuracy of spectrum sensing in

the proposed method is performed as a function of the distributed sensing in-

formation. The achieved throughput gains of the proposed method for various

network parameters, e.g., sensing duration, detection threshold, primary user ac-

tivities, are also investigated. In addition, the proposed zone-based cooperative

spectrum sensing method is compared against the reference model where there is

no cooperation among the clusters or SBS. Moreover, the comparisons are also

made with the cases where the spectrum sensing information is combined using

only OR/AND method.

The contributions presented in this chapter are summarized as following.

1. A novel spectrum sensing method is proposed based on an independent

spectrum monitoring network and devise the associated system, algorithms

and signalling protocols which incorporate zone location information in the

spectrum sensing. The proposed method in this chapter enables micro-

spectrum-reuse and results in higher spectral efficiency, lower signalling

overhead, and thus the lower latency in comparison to the cases where

no subchannel monitoring network is implemented.

2. An analytical framework is developed with the objective of maximizing

system throughput under various monitoring network scenarios subject to

spectrum sensing accuracy and maximum tolerable imposed interference at

the primary systems.

3. Extensive simulations confirm the analytical results and indicate the through-

put performance and sensing latency improvement using the proposed sens-

ing method. The simulation results also outline the parameter design ex-

1Hereafter, conventional sensing is referred to any spectrum sensing technique in SUs in

which the time frames are divided into sensing, and transmission durations.
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plain the role of various factors including spatial density of ZAs, and SBSs,

primary system activity, and sensing threshold on the sensing performance.

4.2 Network Model

The general concepts of the system model, which consists of multi-cellular multi-

carrier CRN, has been already presented in chapter 3 and further details and

add-on features associated with the proposed techniques will be discussed in this

chapter. A schematic of the system is shown in Fig. 4.1 in which a primary base

station (PBS) provides service to the PUs which are randomly distributed within

the coverage area. The secondary system is also a cellular network which utilizes

OFDMA, where the frequency spectrum is divided into N non-overlapping chan-

nels. The detail of OFDMA in terms of cellular CRN is described in Section 3.2.

The channel model and the frame format are also the same as described previ-

ously. The add-on components in this case are the distributed sensing devices for

spectrum sensing purpose. Therefore, in addition to the cellular architecture, the

concept of clusters is also designed for sensing purpose as shown in Fig. 4.1.

4.2.1 Spectrum Monitoring Network

The spectrum sensors are distributed uniformly within the coverage area. In

practice, their locations can be engineered by the service providers. For simplicity,

a homogeneous network of sensors is further assumed, where sensing parameters of

all the sensor nodes are the same. Unlike the conventional sensing methods, where

SUs sense the subchannels sequentially before accessing them, in the proposed

method, the sensing task is offloaded to a spectrum monitoring network. In this

setting, each sensing device detects the primary spectrum activity on a subset of

channels, i ∈ {1, . . . , N}, within a circular region with radius, rsen and reports

their availability to the SBS. As a result of the proposed independent sensing

network, the sensing order of multiple subchannels becomes irrelevant due to the

sufficiently longer sensing duration available. During transmitting the subchannel

availability reports to the zone aggregators, the sensing function is stopped. The
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Zone 2

Zone 1

SBS/DFC

SU

PBS

PU

: Zone Aggregator

: Sensing Devices

Figure 4.1: The system model for zone-based cooperative spectrum sensing tech-

nique.

connectivity of the sensing network therefore depends on rsen and distribution of

sensing devices.

To associate the sensing information with the location, the coverage area

is then divided into the overlapped zones. The zones are chosen assuming a

uniform distribution of sensing devices. In each zone, there is a zone aggregator

(ZA) which receives the sensing information from sensors located in its circular

sensing zone with radius rZA. The sensing devices and ZAs collectively form a

monitoring network which is designed for cooperative spectrum sensing in the

secondary network. Each ZA is associated to the location of its covered zone and
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broadcast a pilot signal including a zone identification (ZID). Monitoring network

utilizes a narrow band pre-allocated spectrum independent from the primary and

secondary systems.

The received information in the ZAs is then processed and forwarded to the

DFC located, e.g., in the SBS indexed by m = 1, . . . ,M . Based on the sensing

information provided by the corresponding ZAs, DFC then decides the availability

of each channels in that particular zone. Here, ZAs are indexed by z = 1, . . . , Z,

where Z is the number of zone aggregators in the system.

4.2.2 Sensing Devices

Sensors utilize energy detection technique for detecting the availability of the

channels. Energy sensing has been considered here due to its simplicity and

tractability as it does not need a priori channel information [84], [118] as explained

in chapter 2.

The sampled signals received at the sensor during the sensing duration are

yi[k] = wi[k], and yi[k] = gi[k]xi[k] + wi[k], under hypothesis H0 and H1, respec-

tively, where H0 (H1) represents the absence (presence) of the primary signals.

In addition, yi[k] is the k-th received sample over subchannel i and gi[k] is the

channel gain from primary transmitter to the secondary receiver, i.e., the interfer-

ence link, which is assumed to be fixed during the signalling period. Noise signal,

wi(k), is independent and identically distributed circularly symmetric complex

Gaussian with zero mean and variance of E[|wi[k]|2] = σ2
w. The detail of energy

detection is same as explained in Section 2.1.1.

Time is slotted into frames in which the frame duration and the sensing du-

ration for each sensing device are denoted by T , and Ts,i, respectively. The

sampling frequency is fs, thus the number of samples during the sensing duration

is K = Ts,ifs. The received signal energy is

Ei[y] =
1

K

K∑

k=1

|yi[k]|2. (4.1)

In cases where the PUs are communicating with the PBS, the transmitted

signal is also being received by the sensing devices which are located within the
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transmission range of the PU. Therefore, the sensors periodically sense subchan-

nel i and obtain the corresponding test statistics, i.e., energy levels, and the

hypothesis test is then performed based on the measured parameters and the sys-

tem defined parameters. The performance of the spectrum sensing techniques,

similar as mentioned previously, is characterized by false alarm and miss detec-

tion probabilities. For a subchannel i, the probability of false alarm, and miss

detection are represented by Pf,i, and Pm,i, respectively, and detection probability

is defined as Pd,i = 1 − Pm,i. The lower the detection probability, the higher

is the chance of collision between PU and SU transmission; thus lower is the

the system spectral efficiency. Similarly, having a higher false alarm results in

under-utilization of the practically available primary spectrum by the SUs [22].

The miss detection and false alarm probabilities are obtained as Chi-squared

distribution with 2K degrees of freedom, however it is shown, according to the

central limit theorem, that for a large number of independent and identically

distributed (i.i.d) samples (K > 40) obtained from primary transmitter, the

cumulative density function (CDF) of the estimated energy can also be approx-

imated by a normal distribution, see, e.g., [119]. In such cases, the false alarm

and detection probabilities are as following [43].

Pf,i(εi, Ts,i) = Pr(Ei[y] > εi|H0)

, Q

((
εi
σ2
w

− 1

)√
Ts,ifs

)
, (4.2)

and

Pd,i(εi, Ts,i) = Pr(Ei[y] > εi|H1)

, Q

((
εi
σ2
w

− γi − 1

)√
Ts,ifs

2γi + 1

)
, (4.3)

where

γi =
E[|xi|2]|gi|2

σ2
w

is the average received SNR of the PUs signal on subchannel i. Here, εi and Ts,i

are the energy detection threshold and sensing duration for the sensing devices.
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Moreover, εi and Ts,i are the design parameters and they represent the trade-off

between Pf,i(εi, Ts,i), and Pm,i(εi, Ts,i) = 1 − Pd,i(εi, Ts,i) which is often referred

to as receiver operating characteristics (ROC) curve [120]. One of the instances

of ROC curve is described in Fig. 2.1. The sensing results and therefore the

Pf,i(εi, Ts,i), and Pm,i(εi, Ts,i) are obtained from the individual ROC curve for

each subchannel, therefore the subscript i can also be removed in this chapter for

brevity to subsequently represent them as Pf(εi, Ts,i), Pd(εi, Ts,i) and Pm(εi, Ts,i),

respectively.

4.3 Zone-Based Cooperative Spectrum Sensing

In the proposed method, spectrum sensors report the locally sensed subchannel

decisions to their corresponding ZAs. ZAs then transmit their aggregated decision

to the SBS. In cases when the SUs request for the new channel, an available

subchannel from {1, . . . , N} is granted to the SU. Therefore, the efficiency of the

proposed method depends on the accurate detection of the PU activity on each

subchannel rather than sensing duration, since in the proposed method, sensors

are, in fact, independent from the secondary network.

The logical AND rule is implemented at the ZAs which is applied on the

sensing information collected from individual sensors in its corresponding zone.

Based on AND rule, for a subchannel to be available in a zone all sensors located

in a zone must unanimously agree on the subchannel availability. In other words,

if any sensor in a given zone observes subchannel i as busy, then subchannel i

is considered busy thus the SUs located in that zone are not granted access to

subchannel i by the SBS. This rather pessimistic strategy is designed to best

protect the active PUs within the zone. As a result, the achievable spectral

efficiency in this case acts as a lower bound to the maximum achievable spectral

efficiency. Other techniques, e.g., k-out-of-N, can be applied depending on the

interference suppression capability of the primary system. In addition, using

this fusion method maintains the mathematical tractability to obtain the sensing

thresholds later in the paper. Here, SBS may also act as ZA in cases where the

cell size is small such that sensors have direct communication with the SBS.
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Corresponding to each subchannel, one bit information is generated by each

sensor, where 0 indicates the subchannel is available and, 1 otherwise. For in-

stance, if there are 10 sensors in a zone monitoring a total of 128 subchannels,

for each sensing period, a total 1280 bits of signalling is transmitted in that zone.

ZA then feeds back the subchannel availability to the DFC as a binary vector,

where each entry shows the availability of the corresponding subchannel in that

zone. DFC then allocates channels to maximize micro-spectrum-reuse.

The signalling diagram for the proposed zone-based cooperative sensing tech-

niques is shown in Fig. 4.2. The sensing devices are synchronized and they sense

the subchannels periodically. Therefore, every sensing device is programmed to

sense the spectrum and reports its sensing decisions back to its corresponding ZA.

The proposed protocol in this chapter is based on providing best-effort service

to the SUs. The SU which requires access to the subchannel transmits a request

message (REQ) to the SBS including its required bandwidth (B) as well as its

corresponding ZIDs (Zk). The received ZIDs by each SU act as a location pointer

by enabling location pointer in the channel information field.

The DFC then allocates subchannels, i ∈ {1, . . . , N}, to the SU in that zone

(if any) as well as corresponding thresholds, Ith. Here, Ith is a system defined

parameter and it is set by primary system according to their capacity to sup-

press the inter-zone interference, via a response message (RES). Furthermore,

the DFC is able to incorporate other information in its decision making, such

as subchannel and traffic variations. Thus DFC has a potential to act as a

knowledge-based/expert entity which keeps record of relevant primary channel

information such as traffic activities and load variations, transmission power, and

subchannel power gain.

The SUs then start communicating on the allocated subchannels while con-

stantly checking the ZIDs. Here, the coexistence beacon protocol is adopted as

in [35] in which the subchannel information is embedded in the transmission. In

the proposed method and later in the simulations, a unique identity is set for the

PUs and SUs which is also embedded in their transmitted signal. As soon as a

PU starts transmission, then using this unique identity field, the sensing devises

are capable of recognizing that the detected signal is in fact from a PU transmit-

ter. The monitoring network continuously senses the subchannels. Therefore, if
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Figure 4.2: The signalling diagram of the proposed zone-based cooperative spec-

trum sensing technique.

a PU starts transmitting on a given subchannel, the SUs transmission on that

subchannel is immediately stopped and other available subchannels, if any, will

be allocated to that SU. Similarly, if a SU moves into another zone, i.e., its

corresponding ZID is changed, the allocated subchannel in its original zone is

released and a new subchannel, if available, is allocated to the SU in its new

zone. Alternatively, to identify whether a detected signal is from a PU transmit-

ter, inter-frame quiet period (IFQP) protocol [35] can also be implemented. In

such cases, the DFC sends an interrupt message (INT) to the SU to immediately

release the allocated subchannel(s). If SU still requires access and previously al-

located subchannels are no longer available, a NEW message is sent by the DFC

allocating new subchannel(s) (if available), where NEW message has same param-

eters as RES message. In cases, where the SU does not require access anymore,

a terminating message (TER) is sent to the DFC to release the corresponding

subchannels i ∈ {1, . . . , N} within zone Zk.
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Frame n Frame n+1 - - - - - Frame K

Ts T − Ts

Tq T − Tq

Conventional
Sensing

Zone-based Cooperative
Sensing Technique

Figure 4.3: The time frame in the proposed method consists of the query duration

(Tq), and transmission duration (T − Tq). In the conventional sensing, a frames

consists of the sensing duration, Ts,i, and transmission duration (T − Ts,i).

In the proposed protocol for the zone-based cooperative spectrum sensing, the

required signalling between the sensors and the ZAs, and similarly ZA and the

DFC is designed to be very limited to reduce the spectrum resources allocated

to the monitoring network. Note that a given subchannel might be available in

more than one zones thus based on the proposed method in this chapter, micro-

spectrum-reuse is expected to enable multiple zones inside the SBS coverage.

4.3.1 Offloading and Sensing Latency

The offloading technique of spectrum sensing activities to the independent sensing

devices has a direct implication on the latency, and thus on the system through-

put. Due to a separate sensing network which maintains almost real-time primary

subchannel availability status, the corresponding subchannel allocation latency

in the secondary user is significantly reduced comparing to the cases without

the spectrum monitoring network. This has been investigated in detail which is

presented in next section and finally the analysis is validated through the simu-

lations.

The time frames structure of the proposed method and that of the conven-

tional sensing are shown in Fig. 4.3. Here, Ts,i is the sensing duration for the
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conventional spectrum sensing and Tq is the duration of the required communica-

tion between the secondary system and the secondary base station. Hereafter, we

refer to Tq as the query time, where Tq << Ts,i. The low latency of the proposed

signalling method is due to substituting the sensing duration Ts,i with Tq. The

extra transmission time, Ts,i − Tq, results in increasing the total system spectral

efficiency and its corresponding cost is deploying the spectrum monitoring net-

work. Therefore, careful analysis is required to evaluate whether the gain on the

spectral efficiency dominates the costs of deploying the monitoring network.

Without sensing devices, a portion of the frame duration, i.e., Ts,i, must be

sacrificed for spectrum sensing by the SUs. As a result, a shorter time is available

to the SUs for data transmission. Therefore, offloading the sensing task to the

sensing devices significantly increases transmission durations without reducing

the sensing accuracy. The optimal sensing duration, Ts,i is not defined in WRAN

standard [35], however it is shown in [43] that the optimal
Ts,i
T

is 4% to 5%. In

the proposed method, Tq
Ts,i

is chosen to be less than 1%.

Because of the independent spectrum sensing network, the sensing devices are

able to sense the subchannel throughout the frame duration. Therefore, using

the zone-based cooperative sensing protocol enables simultaneous sensing, in the

monitoring network, and data transmission at the secondary system. In this case,

the only time interval required for obtaining the availability of the subchannel is

Tq which is the duration of signalling between REQ messages sent by the SU and

RES message sent by the DFC. The signalling duration in the proposed method is

a very small fraction of sensing duration of the conventional approach of spectrum

sensing.

4.4 Sensing Design

4.4.1 Spectrum Sensing Accuracy

Inaccurate sensing either negatively affects the primary system performance through

creating interference (in cases of miss detection), or results in a lower spectral effi-

ciency in the secondary network by missing an actual access opportunity (in cases
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of false alarm). To investigate the sensing accuracy, here it is simply assumed

that the sensors are uniformly distributed in the network coverage area.

Lemma 4.1. In a monitoring network with Z ZAs/cell indexed by z = 1, . . . , Z

and M cooperative SBS indexed by m = 1, . . . ,M , the probability of accurate

sensing for equiprobable hypotheses subchannels [121], i ∈ {1, . . . , N}, at the SBS

is:

P
(SBS)
cs,i

∆
= 1−

[{
1− Pd(εi, Ts,i)

}Z
+

{
Pf(εi, Ts,i)

}Z]M
,∀i. (4.4)

Proof. See Appendix A.

Remark 4.1. The probabilities for hypotheses H0, and H1 are denoted by PH0,

and PH1, respectively. Equiprobable subchannel assumption indicates that half

of the channels are busy at any observation window. However, the analytical

and simulation results in the next sections in this paper are equally credible for

other scenarios, for instance, unutilized, i.e., PH0 << 0.5, underutilized, i.e.,

PH0 > 0.5, and crowded, i.e., PH0 > 0.9 subchannels. This assists obtaining

analytical solutions in terms of detection threshold, and normalized throughput

later in this Thesis.

Here, Lemma 1 indicates that Pcs,i depends on probabilities of miss detection

and false alarm, as well as the number of ZAs and sensors in each zone. This

provides two new degrees of freedom which could be exploited to improve the

sensing accuracy. In practical systems, the summation of the two terms inside

the bracket in (4.4) constitutes a small value for a given sensing device. This is due

to the fact that miss detection and false alarm probabilities cannot independently

adopt arbitrary values as they follow the corresponding sensors’ ROC.

Note that in (4.4), Pcs,i ∈ [0, 1] which can be obtained by varying the operating

points in ROC curve within the limits, i.e., Pm(εi, Ts,i) ≤ 0.5, and Pf(εi, Ts,i) ≤
0.5. These cases will be considered as constraints while formulating the optimiza-

tion problem P1. By applying these constraints, it is assured that the probability

of correctly sensing the subchannel stays within the feasible range and therefore
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value of Pcs,i stays within 0 and 1. This also ensures the protection from sys-

tem failure due to the bad detectors. Therefore, the worst detection cases, e.g.,

Pf(εi, Ts,i) ≥ 0.5 and Pm(εi, Ts,i) ≥ 0.5, are excluded in the proposed method. As

a result, if a subchannel is badly detected, the resources will not be allocated by

the SBS to any user to protect the primary users from probable interference.

4.4.2 Optimal Sensing to Improve Spectral Efficiency

Here, the system function as an optimization problem is formulated with the

objective of maximizing the spectral efficiency at the secondary system. In ad-

dition, R00
i , and R01

i are the SUs’ throughput conditioned over hypotheses H0,

and H1, respectively. Therefore, based on conditional probability of correctly

sensing the subchannel and [43], [53], the achievable throughput is obtained

as
T−Ts,i
T

(
Pcs,i|H0PH0R

00
i + Pcs,i|H1PH1R

01
i

)
. Assuming equiprobable hypothesis in

which PH0 = PH1 as in [121], the secondary system throughput for subchannel i

is reduced as following.

R(εi, Ts,i) =
T − Ts,i

T
PH1

[
Pcs,iR

00
i + Pcs,iR

01
i

]
,∀i. (4.5)

Here, Pcs,i represents the measure of spectral efficiency of the secondary system.

A higher sensing accuracy contributes towards a higher spectral efficiency thus

improves the system throughput.

For a special case of Z = M = 1, using (4.4) and (4.5) the total secondary

system throughput, R(εi, Ts,i), is

T − Ts,i
T

PH1

[
(1− Pf)R

00
i + (1− Pf)R

01
i −KL

]
, (4.6)

where, KL = PH1 [(1− Pd)R00
i + (1− Pd)R01

i )] is the throughput loss due to the

miss detection (Pm > 0). Note that if Pm → 0, then KL → 0.

For given values of Z and M , the optimal sensing parameters are obtained

via the following optimization problem.
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Problem P1:

max
εi,Ts,i

R(εi, Ts,i), (4.7a)

s.t. Ip(εi, Ts,i) ≤ Ith, (4.7b)

Pm(εi, Ts,i) ≤ Pm, (4.7c)

Pf(εi, Ts,i) ≤ Pf, ∀i, (4.7d)

where

Ip(εi, Ts,i) =
∑

i

Pm,i(εi, Ts,i)Pt,s gi (4.8)

is the aggregated interference received at the PUs. For subchannel i, (4.7b)

ensures that the received interference remains below the given threshold level, I th.

This will protect the PUs against the potential sensing errors [122]. In addition,

the minimum detection probability of “spectrum holes” is enforced by (4.7c) and

(5.17a). In P1, Pt,s is the SU’s maximum transmit power, gi is the channel gain

between the secondary transmitter and the primary receiver, and Pm, and Pf are

the maximum miss detection, and false alarm probabilities, respectively. These

parameters are provided by the related communication standards, see, e.g., [35].

In P1, PH0R
00
i +PH1R

01
i is constant during a time frame duration, T . Moreover,

in the proposed method, Ts,i = Tq � T , therefore
T−Ts,i
T

is almost constant (See

Fig. 4.3) which is referred to as TTx throughout this Thesis. Consequently, the

only optimization parameter in P1 is Pcs,i, which is a function of εi, and Ts,i.

Based on the above, P1 is then reduced to the following optimization problem.

Problem P2:

max
εi,Ts,i

1−
[{

1− Pd(εi, Ts,i)

}Z
+

{
Pf(εi, Ts,i)

}Z]M
, (4.9a)

s.t.
∑

i

Pm(εi, Ts,i)Pt,sgi ≤ Ith, (4.9b)

Pm(εi, Ts,i) ≤ Pm, (4.9c)

Pf(εi, Ts,i) ≤ Pf , ∀i. (4.9d)

The following set of Lemmas are needed for further analysis to obtain the

solutions of P2. It is also due to the fact that (4.9c) and (5.17b) are the proba-

bilistic constraints which make the optimization problem difficult to handle, thus
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difficult to obtain the closed form solution. Therefore, it is necessary to find the

equivalent approximation with the deterministic nature with the help of following

Lemmas.

Lemma 4.2. If Pm(εi, Ts,i) ≤ 0.5, and Pf(εi, Ts,i) ≤ 0.5, then σ2
w ≤ εi ≤ (1 +

γi)σ
2
w.

Proof. See Appendix B.

Here, the necessary conditions to maximize the system throughput are there-

fore Pd(εi, Ts,i) ≥ 0.5 and Pm(εi, Ts,i) ≤ 0.5 must be maintained at the cognitive

radio system. Moreover, they also exactly follow the requirements of one of the

cognitive radio standards, i.e., IEEE 802.22, in practice.

Lemma 4.3. For a fixed, Ts,i, and εi ≥ σ2
w, Pf(εi, Ts,i) is a decreasing and convex

function of εi.

Proof. See Appendix C.

Lemma 4.4. For a fixed Ts,i, εi ≤ (1 + γi)σ
2
w, Pm(εi, Ts,i) is an increasing and

convex function of εi.

Proof. See Appendix D.

Using Lemmas 4.2 - 4.4, the probabilistic constraints in (5.17b) and (4.9c) are

approximated by σ2
w ≤ εi ≤ (1 + γi)σ

2
w.

Using Lemmas 4.2, 4.3 and 4.4 it is straightforward to prove the following

Lemma.

Lemma 4.5. For a given Ts,i, if Pm(εi, Ts,i) ≤ 0.5, and Pf(εi, Ts,i) ≤ 0.5, then

Pm(εi, Ts,i), and Pf(εi, Ts,i) are both convex functions of εi.

It is now important to examine the convexity of the constraints defined in P2

to further generalize the problem [123]. Therefore, the following Lemma is also

needed for further simplification of P2.
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Lemma 4.6. Lemma 6: For σ2
w ≤ εi ≤ (1 + γi)σ

2
w, Pm(εi, Ts,i) and Pf(εi, Ts,i)

are decreasing convex functions of Ts,i.

Based on Lemmas 4.2 - 4.5, it can be easily concluded that both Pm(εi, T s,i)

and Pf(εi, T s,i) are convex functions of εi, where sensing duration is fixed at

T s,i under the conditions to protect the PUs. Here, the conditions to maximize

the throughput are: Pd(εi, Ts,i) ≥ 0.5, and Pm(εi, Ts,i) ≤ 0.5, which are the

requirements of IEEE 802.22 standards [35].

Based on the above, P2 is approximated as the following.

Problem P3:

max
εi

1−
[{

1− Pd(εi)

}Z
+

{
Pf(εi)

}Z]S
, (4.10a)

s.t.
∑

i

Pm(εi, Ts,i)Pt,sgi ≤ I th, (4.10b)

σ2
w ≤ εi ≤ (1 + γi)σ

2
w, ∀i. (4.10c)

In P3, (4.10c) is convex under the stated conditions in Lemmas presented

above. The interference constraint at the PU, (4.10b), is due to the imperfect

channel sensing, where |gi|2 is the gain of subchannel i. Here, Pt,s > 0 is the

transmission power of the SU and Pm,i(εi, T s,i) is a convex function of εi under

the condition given in Lemma 4.2. Since non-negative sum of convex functions

is a convex function in the same domain, the interference constraint is also a

convex function of εi. To show the convexity of P3, it is further needed to inves-

tigate (4.10a). Note that throughout this chapter Pm(f)(εi, T s,i) and Pm(f)(εi) are

interchangeably used for brevity.

Corollary 4.1. In the zone-based cooperative spectrum sensing, for any combi-

nation of M and Z, the throughput, (4.10a), is a concave function of εi .

Proof. See Appendix E.

Based on the above, P3 is a convex optimization problem.
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4.4.3 Optimal Detection Threshold

When the spectrum sensing problem is a linear programming problem, several

established methodologies to solve such problems, such as simplex and interior

point methods, do exist. However, even when the optimization problem is non-

linear but its convexity could be established, as explained in the previous sections

for the current system model, several known methods can be employed to solve

such problems. One of the examples is of course to use the Lagrangian duality

method, where local optimal is also the global optimal solution, usually with

the application of Karush-Kuhn-Tucker (KKT) conditions [124]. Therefore, the

Lagrangian method is implemented here to find the solutions of P3 and the La-

grange duality property is applied as described in [125]. The Lagrangian function

corresponding to P3 is

L(εi, λ1,λ2,λ3) =1−
[{

1− Pd(εi)

}Z
+

{
Pf(εi)

}Z]M

+ λ1(Ith −
N∑

i=1

PmPt,s gi) +
N∑

i=1

λ2i(εmax − εi)

+
N∑

i=1

λ3i(εi − εmin),

(4.11)

where, εmax = (1+γi)σ
2
w, εmin = σ2

w, and λ1, λ2, λ3 are non-negative Lagrangian

dual variables corresponding to the constraints. Here, λ1 is scalar because sub-

channel i accessed exclusively by only one PU. The interference constraint pro-

tects the PUs on subchannel i = 1, . . . , N in case of miss detection. Similarly,

λ2 and λ3 are the Lagrangian multipliers associated with detection threshold

constraints. Throughput this Thesis, vectors are presented using bold fonts.

The corresponding duality gap is expected to be zero as P3 is convex and the

Slater’s condition [125] is satisfied. The KKT conditions for any set of ε∗i , λ1, λ2,
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λ3 are [125]:

∇L(ε∗i , λ
∗
1,λ

∗
2,λ

∗
3) = 0, (4.12a)

I(ε∗i ) ≤ Ith, (4.12b)

λ∗1 > 0,λ∗
2 � 0,λ∗

3 � 0, (4.12c)

λ∗1(Ith −
N∑

i=1

Pm,iPtx gi) = 0, (4.12d)

N∑

i=1

λ2i(εmax − ε∗i ) = 0, (4.12e)

N∑

i=1

λ3i(ε
∗
i − εmin) = 0, ∀i. (4.12f)

Here, a similar approach as in [122] is followed to obtain the solutions. If the

condition σ2
w < εi < (1 + γi)σ

2
w holds, the constraint (4.12b) becomes linear, i.e.,

I(ε∗i ) = Ith. Therefore, for any λ∗1 ≥ 0, λ∗1(Ith − I(ε∗i )) = 0.

The complementary slackness conditions in (4.12e) and (4.12f) are further

analysed. From (4.12e), for λ∗2i > 0 for any subchannel, εmax − ε∗i = 0, the

optimal detection value, ε∗i , is equal to εmax. For cases where λ∗2i = 0 for any

subchannel i, then (εmax − ε∗i ) > 0, therefore ε∗i < εmax. Similar observation on

(4.12f) results in ε∗i > εmin. Under the same condition, λ∗3i = 0 for any channel,

i = {1, . . . , N}. However, this assumption may not be correct anymore in case

of ε∗ /∈ [εmin, εmax], since the optimization problem is exclusively convex within

this interval.

In the considered multi-channel scenario, it is now assumed that the subchan-

nels are identically distributed and sensed similarly, thus the results obtained are

valid for all subchannels, i ∈ {1, . . . , N}. Therefore, the subchannel index i is

dropped hereafter for brevity. From the Lagrangian stationary point, (4.12a), is

∂L(ε∗, λ∗1,λ
∗
2,λ

∗
3)

∂ε
= 0. (4.13)

If both Z and M vary, then it is not easy to obtain a closed form solution for

P3. Instead, this problem is solve separately for different numbers of Z and M
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Table 4.1: The optimal SNR threshold for different scenarios

Scenario 1

(Z = 1, M = 1)

εX = σ2
w

2γ

[
γc + 2

fsTs
ln
(

TTx

TTx+λ1Pt,s g

)]

Scenario 2

(Z = 2, M = 1)

εX = σ2
w

2γ

[
γc + 2

fsTs
ln

(
2PfTTx

2PmTTx+λ1Pt,s g

)]

Scenario 3

(Z = 3, M = 1)

εX = σ2
w

2γ

[
γc + 2

fsTs
ln

(
3P

2

fTTx

3P
2

mTTx+λ1Pt,s g

)]

Scenario 4

(Z = 1, M = 2)

εX = σ2
w

2γ

[
(γ + 1)2 − 1 + 2

fsTs
× ln

(
2(Pm+Pf)TTx

2(Pm+Pf)TTx+λ1Pt,s g

)]

Scenario 5

(Z = 1, M = 3)

εX = σ2
w

2γ

[
(γ + 1)2 − 1 + 2

fsTs
× ln

(
3(Pm+Pf)

2TTx

3(Pm+Pf)2TTx+λ1Pt,s g

)]

similar to the approach used in proving Corollary 4.1. Here, εM is obtained which

is defined as sensing detection threshold for all subchannels, where M is constant.

Similarly, εZ is then obtained which is defined as sensing detection threshold for

all subchannels, where Z is constant. The optimal detection threshold will be

shown to be a linear combination of εM and εZ .

The optimal detection threshold for various design scenario has been summa-

rized in Table 4.1 where εX is either εZ or εM . In the following, each scenario

shown in the table will be investigate in detail for further analysis and to obtain

the closed form optimal solution.

68



4.4 Sensing Design

4.4.3.1 Scenario 1 (Z = 1,M = 1)

In this case, (4.13) is rewritten as

∂L1(ε∗, λ∗1)

∂ε
=
∂

∂ε

(
TTx

[
1− (Pm(ε) + Pf(ε))

]

+ λ1(Ith − Pm(ε)Pt,s g)

)
= 0,

(4.14)

which results in the following equation.

TTx
∂Pd(ε)

∂ε
+ λ1Pt,s

∂Pd(ε)

∂ε
= TTx

∂Pf(ε)

∂ε
. (4.15)

To derive the solution in terms of detection threshold, ∂Pd(ε)
∂ε

and ∂Pf(ε)
∂ε

are

utilized which have been obtained in Lemma 4.3, and Lemma 4.4, respectively.

For a given Ts, straightforward mathematical derivations result in a closed form

expression for the optimal SNR threshold for all subchannels.

ε∗M(Z) =
σ2
w

2γ

[
γc +

2

fsTs
ln

(
TTx

TTx + λ1Pt,s g

)]
, (4.16)

where γc = (γ + 1)2 − 1.

4.4.3.2 Scenario 2 (Z = 2,M = 1)

In this case, similar to (4.14) and (4.15) and straight mathematical derivation,

following is easily obtained.

∂L2(ε∗i , λ
∗
1)

∂εi
=

∂

∂εi

(
TTx
[
1− (P2

m(εi) + P2
f (εi))

]
+ λ1(Ith − Pm(εi)Pt,s gi)

)
= 0,

(4.17)

∂L2(ε∗, λ∗)

∂ε
=
∂

∂ε

(
TTx
[
1− (P2

m(ε) + P2
f (ε))

]

+ λ1(Ith − Pm(ε)Pt,s g)

)
= 0,

(4.18)
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ε∗M =
σ2
w

2γ

[
(γ + 1)2 − 1 +

2

fsTs
ln

(
ZPZ−1

f TTx

ZPZ−1
m TTx + λ1Pt,s g

)]
. (4.17)

ε∗Z =
σ2
w

2γ

[
(γ + 1)2 − 1 +

2

fsTs
ln

(
M(Pm + Pf)

M−1TTx

M(Pm + Pf)M−1TTx + λ1Pt,s g

)]
. (4.18)

which results in the following equation.

TTx

[
− 2Pm

∂Pd(ε)

∂ε
+ 2Pf

∂Pf(ε)

∂ε

]
= λ1Pt,s g

∂Pf(ε)

∂ε
. (4.19)

Following the same line of argument as in deriving (4.16), the optimum SNR

threshold is then obtained for any subchannel as following.

ε∗M =
σ2
w

2γ

[
γc +

2

fsTs
ln

(
2PfTTx

2PmTTx + λ1Pt,s g

)]
. (4.20)

Here, ε∗M is the optimum SNR threshold valid for the frame duration T .

4.4.3.3 Scenario 3 (Z = 3,M = 1)

Similar to the above, it can be obtained as

ε∗M =
σ2
w

2γ

[
γc +

2

fsTs
ln

(
3P2

f TTx

3P2
mTTx + λ1Pt,s g

)]
. (4.21)

Finally based on the results above, and following the same line of argument

as in Corollary 4.1, for a fixed M and any number of ZAs, i.e., z = 1, . . . , Z, the

optimal SNR threshold can be generalized as shown in (4.17).

4.4.3.4 Scenario 4 (Z = 1,M = 2)

In this case, at a particular time and location, a SBS may receive sensing in-

formation from more than one ZAs. In this scenario, similar to the case where
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Z is variable, Lagrangian stationary point is used as mentioned in (4.12a). For

M = 2, it is simple to show that

ε∗Z =
σ2
w

2γi

[
(γ + 1)2 − 1 +

2

fsTs
× ln

(
2(Pm + Pf)TTx

2(Pm + Pf)TTx + λ1Pt,s g

)]
. (4.19)

4.4.3.5 Scenario 5 (Z = 1,M = 3)

Similar to the previous cases, the optimal threshold can be obtained for different

values of M , for instance M = 3. Finally, following the same steps as in obtaining

(4.17), the generalized optimal solution for any number of SBSs as shown in (4.18).

Note that in (4.16)-(4.19), the miss detection and false alarm maximum tol-

erable values are selected such that Pm < 0.5, and Pf < 0.5 as described in the

previous Section.

4.4.4 Unified Detection Threshold

As it is seen above, the optimal values of detection thresholds, ε∗M and ε∗Z , both

depend on Z and M . In addition, due to the random nature of wireless channel

the exact number of sensing devices that their sensing information received at

ZA cannot be considered fixed. For instance, some sensing devices may fail to

communicate with the ZAs and apparently with SBS. In some cases, the commu-

nication channel between sensing devices may also undergo deep fading in which

the sensing network scenario is changed. Therefore, a unified detection mode

is necessary so that the proposed technique works for any possible scenario and

various combinations of Z and M . Here, a linear combination of ε∗M and ε∗Z is

proposed as described below.

ε∗ = αε∗M + (1− α)ε∗Z , (4.20)

where α is directly related to the network structure, i.e., Z and M : if Z < M then

α is 0 < α < 0.5 to emphasize on the contribution of ε∗Z comparing to ε∗M in (4.20).

This is simply because ε∗Z is the detection threshold for cases, where Z < M . In

contrast, where Z > M , system sets 0.5 < α < 1, so ε∗M contributes more than

ε∗Z in ε∗. However, in cases where Z and M are equal, system sets α = 0.5 and
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apparently ε∗M and ε∗Z contribute equally in (4.20). In the simulations presented

later in this chapter, system selects α within the ranges mentioned above based

on the densities of Z and M , for instance, when Z � M , α is selected on the

lower range of 0.5 < α < 1. For the cases where M = 0, and Z = 0, the system

sets α = 1, and α = 0, respectively.

In cases where due to the random time varying nature of wireless communi-

cation, such as channel fading, interference, hidden terminal problem, etc., either

or both of Z and M are equal to zero, then the optimal detection threshold is

undefined because ε∗M and ε∗Z are −∞. As a matter of fact, this situation does

not normally occur in the proposed model of zone-based cooperative spectrum

sensing but should be considered as a special case to avoid singularities. Here

the proposed method has a specific treatment to tackle such issues as described

in the following.

According to (4.17) and (4.18), M = 0, and Z = 0 indicate ε∗Z → −∞, and

ε∗M → −∞, respectively. At the same time, the sensing system controls α to avoid

such a condition. Therefore, for M → 0, sensing system sets α ≈ 1. Therefore,

lim
M→0

ε∗Z(M).(1− α) ≈ 0, (4.21)

which indicates that optimal detection threshold solely depends on the ε∗M in

(4.20). Similarly, if Z → 0, the sensing system selects α ≈ 0, thus,

lim
Z→0

ε∗M(Z).(α) ≈ 0, (4.22)

i.e., the optimal detection threshold solely depends on the ε∗Z in (4.20). Using

this method, it is now possible to obtain a unified version of optimal spectrum

sensing threshold.

In the next section, a step by step algorithm is discussed for obtaining an

estimation for ε∗ based on the above analysis. In obtaining the optimal detec-

tion threshold which maximizes the system throughput, the bisection method is

implemented.
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Algorithm 1 : ε∗ Estimation for Zone-Based Cooperative Spectrum Sensing

Input: T s,i ,Pf(T s,i), Pd(T s,i), fs, γi, ε1,min, ε1,max, δ, Ith

Output: ε∗i , λ
∗
i , ∀i

1: find the value of α from control packets of SBS and ZAs

2: calculate λ1,min, and λ1,max from ε1,min, and ε1,max, respectively using (4.20)

3: for i = 1, . . . , N do

4: while Ith − Ic < δ do

5: find the effective λ1 using bisection method:

λ1 =
λ1,min+λ1,max

2

6: calculate optimal SNR threshold, ε∗i , from

(4.17), (4.18), (4.20)

7: obtain Pm(ε∗i ) and interference at the PUs, i.e.,

Ic = Pt,s giPm(ε∗i )

8: if Ic > Ith then λ1 ← λ1,min

9: else λ1 ← λ1,max

10: end if

11: end while

12: end for

13: obtain ε∗ and λ∗1 and throughput gain R(ε∗), for all subchannels

4.4.5 An Algorithm for Estimating ε∗

The proposed method to estimate ε∗ is presented in Algorithm 3, where γ, Pd(ε),

and Pf(ε) are subchannel dependent parameters which are different for each sub-

channel. Here, the channel independent parameters are adjusted to obtain the

optimal channel detection threshold such that the system throughput is maxi-

mized while the constraints are also satisfied by the spectrum sharing system.

In the proposed method, Ts � T is a given system parameter thus the opti-

mization variable for each subchannel is the detection threshold, εi. It is to note

that (4.20) is a monotonically decreasing function of λ1, i.e., for every λa1 < λb1, we

get ε(λa1) > ε(λb1). Therefore, bisection method is adopted to find the detection

threshold by solving the P3 subject to the constraints in (4.10b) and (4.10c).
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4.5 Simulation Results and Analysis

In this section, the performance of the proposed zone-based cooperative spec-

trum sensing is evaluated under various network settings and parameters with

the help of the simulation tools. Further comparisons will be presented regard-

ing the performance of the proposed method against the benchmark systems.

The first benchmark model is the case where there is no cooperation among the

clusters/SBS, and the second benchmark network setting is when the decisions

are diffused at the central entity using the OR/AND rule. The corresponding

resource allocation framework in terms of latency, detection probability, commu-

nication activity of primary systems etc. are then compared. The considered

system is a cognitive radio system, where N = 16 and T = 100 ms. The mean

signalling duration for each SU, E[Ts,i], is maintained at 2 ms. The sampling rate

is fs = 20 kSample/Second and therefore the sampling overhead is fsTs,i = 60

and σ2
w = 1 is also considered.

It is further assumed that the subchannels are equiprobable such that PH0 =

0.5. The traffic on the subchannels is randomly generated and SUs always have

data packets ready to be transmitted unless otherwise stated. The subchannels

between primary and secondary systems are modelled as Rayleigh fading with

scale parameter of 1. The primary channel protection and spectrum utilization

level are defined according to the IEEE 802.22 standard [35] as Pd ≥ 0.9, and

Pf ≤ 0.1, respectively. The parameters have been chosen following the available

standards for cognitive radio standard as explained in Section 3.4.

4.5.1 Comparative Study of Sensing Accuracy

The proposed zone-based cooperative spectrum sensing, as defined in (4.4), is

validated by considering the appropriate value of probability of detection which

fulfils the requirement of constraint (4.7c) as well as the cognitive radio standard

for WRAN, i.e., IEEE 802.22. Moreover, the false alarm probability is obtained

from the corresponding ROC curve which is the basis of the performance indicator

in spectrum sensing. Therefore, the instantaneous Pd and Pf pair is chosen for
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a given combination of M and Z to test the spectrum sensing accuracy of the

proposed method.

For comparison, Z = 1 is considered as the conventional cooperative spectrum

sensing based on Lemma 4.1 at the SBSs and therefore there is no subchannel

reusability. The case of higher Z represents the special scenario that the multiple

antennas are transmitting at the BSs and the cell is divided into sectors. In this

case, each sector can be considered as a single antenna cell and therefore number of

ZAs and SBSs are increased. The case Z = 1 will be considered as a benchmarking

scenario for comparison. In Fig. 4.4, the normalized system throughput, which

is directly related to the system spectral efficiency, is plotted versus the number

of zone aggregators for different number of SBSs. Here, it is seen for the case

Z = 1 that the normalized throughput is 0.6 whereas in a zone-based cooperative

spectrum sensing method as indicated by Z ≥ 2, it is significantly improved from

0.9 to 0.96 when ZAs are set to 2 and 3, respectively. This is due to the fact that

the proposed method has better spectrum sensing accuracy due to the higher

number of locally sensing decisions obtained from distributed spectrum sensors

than majority of the conventional cooperative channel sensing techniques.

The higher sensing accuracy ensures that no access to that particular subchan-

nel is granted by the SBS to protect the PUs. The result also provides insight

on the rate of spectral efficiency increased by increasing M as a result of the

proposed micro-spectrum-reuse technique. Here, it is also confirmed in Fig. 4.4

that the increase of normalized throughout from 0.9 to 0.96 when cooperative

SBSs are increased from 2 to 3.

As it is further observed, in cases where there are larger number of ZAs, the

spectral efficiency is relatively higher. It is due to the fact that the number

of spectrum sensors per ZA becomes lower in this scenario. As a result, the

probability of unanimous agreement of subchannels to be available in a zone

is higher due to the implementation of AND rule among less number sensing

devices. It can also be concluded from Fig. 4.4 that when higher number of ZAs

are installed, the number of cooperative SBS does not necessarily need to increase

to achieve better system throughput. This helps to find the optimal number of

zones and SBS to set up within the cell to achieve the objective.
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Figure 4.4: Normalized throughput vs. different values of Z and M .

Fig. 4.5 compares the spectrum sensing accuracy of the proposed method

against the non-cooperative technique as well as the subchannel assignment with

cooperative sensing [126] in which the OR fusion method is implemented for vari-

ous received SNR. It is obvious that the performance gain in terms of the sensing

accuracy is achieved with the expense of installing new sensing infrastructure,

however it brings multiple advantages in the proposed network scenario. In ad-

dition to sensing accuracy as shown in Fig 4.5, it also increases the transmission

duration for the SUs which contributes to achieve higher aggregated throughput

at the secondary system with reduced system complexity.

In this particular case, the simulation is performed for AWGN channel using

QPSK modulation with sampling overhead Ts,ifs = 100 and Pf is no more than

0.1. The sensing network has been created by setting Z = 3 and M = 2 for the

proposed method. In addition, there are 3 cooperative sensors installed for OR
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Figure 4.5: Probability of correctly detecting the subchannels vs. average received

SNR when false alarm rate is fixed.

fusion method. It can be observed in figure that the correctly sensing probability

of the proposed method is improved to 0.99 in comparison to 0.6 in case of non-

cooperation sensing technique and 0.85 in case of hard decisions are aggregated

with OR fusion method at −4 dB received SNR.

However the sensing performance at higher SNR, i.e., greater than 0 dB in

the considered scenario, is observed to be similar in all three cases, this situation

cannot be guaranteed in wireless communication due to the severe fading and

hidden terminal problems. Moreover, energy detection performs better in such

ideal case of higher SNR. Therefore, the sensing efficiency of the proposed method

is higher than other two references cases in low received SNR regimes.
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4.5.2 Tradeoff Between Sensing Latency and Detection

Threshold

In Fig. 4.6, the optimal spectrum detection threshold, ε∗, is plotted versus sensing

duration at the spectrum sensors for different values of maximum acceptable miss

detection probability, where one ZA aggregates subchannel availability informa-

tion from four spectrum sensing devices. The threshold in fact determines the Pm

and Pf pair for the proposed sensing method and thus the system performance.

As it is seen, for long sensing duration in the secondary system, obtaining the

optimal detection threshold deems irrelevant and not related to the maximum

acceptable miss detection probability. However in the proposed method, the

sensing duration is represented by the short signalling duration, i.e., less than

2 ms in Fig. 4.6, the optimal detection threshold must be obtained to improve

the system throughput. Therefore, the length of transmission duration does not

need to be compromised whilst latency is significantly reduced.

The obvious tradeoff is to relax the sensing duration (Ts > 2 ms) in which the

transmission duration is shorter, but higher will be the latency associated with

the spectrum sensing. In contrast, the sensing duration, thus the latency, can be

reduced (Ts < 2 ms), where a higher complexity is expected as the appropriate

sensing threshold must be evaluated through the proposed algorithm. Note that

in the proposed method the latency associated with the sensing is very small and

the cost is limited to the corresponding computational complexity required for

evaluating the optimal detection threshold.

4.5.3 Performance Evaluation with Optimal Detection

Here, the performance of the proposed cooperative spectrum sensing method

in terms of probabilities of false alarm and miss detection, thus probability of

correct sensing, is further examined as a function of sensing duration, Ts, i.e.,

equivalently Tq in the proposed method. In the simulation settings, the conditions

in Lemma 4.2 to Lemma 4.5 are strictly held. This means that for the simulated

system, optimization problem P3 is convex thus (4.17) and (4.18) are the optimal

solutions.
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Figure 4.6: Optimal spectrum detection threshold vs. sensing duration (latency)

for various miss detection constraints.

In the proposed method, the sensing duration, Ts, is significantly smaller

compared to the frame duration, T , therefore it is independent of the optimization

procedure. However, in the conventional spectrum sharing methods, where SUs

sense and utilize the ideal subchannels, optimal choice of Ts is crucial. Under the

scenario mentioned above, Pm(ε∗), and Pf(ε
∗) for an optimal value of detection

threshold have been obtained as shown in Fig. 4.7. While obtaining Pm(ε∗) for an

optimal detection threshold, Pf(ε
∗
i ) is kept fixed and vice versa. As expected, the

longer the signalling duration, the lower will be the miss detection and false alarm

probabilities. In addition, lowering Ts,i from 9 ms to 6 ms significantly reduces

Pm(ε∗) and Pf (ε
∗) for all subchannels. On the other hand, reduction of Ts from

6 ms to 3 ms does not reduce sensing accuracy in the same proportion. This

suggests a way to adjust the signalling duration based on the required spectrum
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Figure 4.7: Probability of miss detection and false alarm of the first eight sub-

channels for different values of Ts.

detection accuracy at the secondary system.

4.5.4 System Throughput Analysis

Here, the performance of the proposed cooperative spectrum sensing method to

maximize the system throughput is examined in which the aggregated interference

to the PU is considered to be less than the threshold. The conditions in Lemma

4.2 to Lemma 4.5 are strictly held in the simulation settings.

In Fig. 4.8, the average throughput per subchannel is plotted versus the num-

ber of SBSs which transmit the cooperative control packet for the spectrum detec-

tion. It can be observed that as the number of SBSs are optimal for a given cluster

heads, the throughput is maximized. However, lower number of SBS will receive

80



4.5 Simulation Results and Analysis

1 2 3 4 5 6 7 8
3

4

5

6

7

8

9

Number of SBSs transmitting subchannel information (S) to its neighbours

A
v
er
a
g
e
sy
st
em

th
ro

u
g
h
p
u
t
p
er

su
b
ch

a
n
n
el

(k
b
p
s)

 

 

Operating ZAs = 1

Operating ZAs = 3

Operating ZAs = 5

Figure 4.8: The average throughput per subchannel vs. number of SBS.

less information about the subchannel availability and, as a result, the through-

put per subchannel decreases. In addition, when the number of signalling bits

at the SBS increases, secondary system has to perform logical AND operation

among large decision variables which results in detecting less opportunities to

access the primary subchannel.

Furthermore the higher the number of ZAs, the higher is the accuracy of

spectrum sensing. Therefore, the system throughput is increased accordingly.

For a given simulation setup, the increment of ZAs from 1 to 3 significantly

increases per subchannel throughput in comparison to increment from 3 to 5. As

shown in Fig. 4.8, for a network setup of 3 SBSs, the subchannel throughput is

achieved to be 7 kbps which can be increased to 8 kbps by increasing ZAs by 2

within a SBS region. However, further increase in ZAs to 5 does not improve the

throughput at the same rate, i.e., it is just increased by 0.2 kbps by increasing

ZAs to 5. It proves that finding the optimal number of SBSs and ZAs is more
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Figure 4.9: Average system throughput per subchannel vs. the primary subchan-

nel activity for various detection probability constraints.

important then increasing their numbers which is also a feasible conclusion from

the economic point of view on network design.

Fig. 4.9 shows average throughput per subchannel versus the primary channel

occupancy rate. When the primary subchannels that can not be accessed by the

secondary systems is lower, i.e., typically at 10%, the access constraint is relaxed

and thus more subchannels are available to be shared among SUs. As a result, the

system throughput is relatively higher at 7.7 kbps and 8.9 kbps when probability

of detection is below 0.97 and 0.9, respectively. In contrast, when 90% of the

subchannels are occupied, secondary system maintains a very tight constraint on

subchannel selection as well as the protection of primary system. In this case,

the subchannel throughput is achieved to be 4.2 kbps and 5.2 kbps, respectively.

Therefore, it can be concluded that when the primary system has very strict rule
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Figure 4.10: Average system throughput per subchannel vs. the probability of

detection for various false alarm probability constraints.

of interference the secondary systems have to sacrifice a portion of throughput

which can be compensated with the proposed spectrum sensing network.

On further analysis, it can be observed that when the probability of detec-

tion constraint is relaxed, for instance, from 0.97 to 0.9, there is a higher chance

to access the subchannels. In both cases, the subchannel occupancy rate is lin-

early decreased with the increasing primary channel activities. Therefore, for a

particular cellular network scenario, the secondary system throughout cannot be

increased beyond a certain limit depending on nature of primary system.

The subchannel throughput versus the probability of detection constraint, i.e.,

Pd, is given in Fig. 4.10 for various false alarm probabilities. When Pd is main-

tained at the lower value, e.g., at ≈ 0.8, there is higher chance of miss detection

of the subchannel status and therefore the throughput is relatively lower than the
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case where Pd is constrained at ≈ 0.9. However, by increasing Pd from 0.9 to 0.97,

the throughput falls down quickly because the detection constraint becomes tight

and smaller number of primary subchannels are available for secondary users. It

has also been observed that as long as Pf remains within the maximum limit

defined in the simulation setup for a given optimal Pd, the throughput is not

significantly degraded even if the false alarm constraint is relaxed from Pf = 0.1

to 0.2. Therefore, along with selection of optimal detection threshold (ε), the

optimal choices of Pd and Pf are always important for the accurate sensing of

the subchannels and efficiently utilizing them. The proposed spectrum sensing

network approach thus helps not only to enhance the performance but also to

choose the accurate network parameters for cellular cognitive radio design and

implementation.

4.6 Conclusions

In this chapter, a new method for multichannel spectrum sensing through an

independent monitoring network has been presented in which the location of the

sensor is partly incorporated into the subchannel allocation. It was also shown

that the proposed zone-based cooperative spectrum sensing method increases

the sensing accuracy which facilitates higher spectrum reusability. The detail

description of spectrum sensing algorithms and signalling protocols which incor-

porate zone location information in the spectrum sensing has been also presented

which enables the micro-spectrum-reuse and results in higher system throughput,

lower signalling overhead, and thus the lower latency. It is obvious that the cost

involved in designing overlaid spectrum sensing network is higher, however the

advantages of spectrum sensing accuracy and subchannels reusability outnumbers

the disadvantages.

An analytical framework is also developed with the objective function to max-

imize the secondary system throughput under various monitoring network scenar-

ios subject to the spectrum sensing accuracy and maximum tolerable interference

imposed at the primary system. Moreover, various required conditions have been

identified and derived mathematically to achieve the optimal solution in the form
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of detection threshold. The spectrum sensing accuracy has been derived for vari-

ous configurations of ZAs and SBSs and shown that the optimization problem is

convex under all possible configurations. As a result, a closed form solution for

the optimal sensing threshold value has been successfully determined. Similarly,

the obtained solutions would be linearly combined based on allocated weights to

make the optimal detection threshold valid for possible configurations. It has

been also shown that the proposed method outperforms many conventional coop-

erative sensing techniques in terms of sensing accuracy with the help of numerical

analysis and simulations results.

Higher system throughput is partly due to the extra subchannel reusability

created by exploiting location information of the spectrum sensors through the

micro-spectrum-reuse. In addition, it provided the concept of spectrum sens-

ing network collocated with the cellular CRN system and its design aspect for

next generation network. Using simulations, the sensing accuracy and system

throughput have been evaluated against various network parameters to prove

the efficiency of the proposed method of spectrum sensing. The simulations also

demonstrated the improvement on the spectrum sensing accuracy due to the

proposed method with significantly lower latency and higher system through-

put comparing to the cases without zoning. Furthermore, it is also shown that

when the sensing duration is lowered as described in the proposed method, it

is very important to find the optimal sensing threshold to improve the system

throughput. In addition, there are always optimal numbers of sensing devices to

be installed inside the cellular region in which maximum system throughput is

achieved. The optimal choice of probabilities of miss detection and false alarm

are equally important in the considered spectrum sensing method as described in

this chapter.

This chapter dealt with the spectrum sensing techniques by deploying the

spectrum sensing network to maximize the secondary system throughput. How-

ever, the issues that are frequently faced in CRN, such as modelling the primary

user activity in the subchannels, are not considered in this model. As a matter

of fact, such issue is equally important to be considered in the problem domain

because the activity of primary users put the limitations on the cognitive radio

network due to the imposed interference constraint as well as transmit power
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constraint. In the next chapter, a detail mathematical modelling of primary user

activity for the proposed optimal resource allocation techniques will be discussed.

In addition, spectral efficiency and energy efficiency are important measures of

CRN performance. The detail study of such parameters is lacking in this chapter,

which are particularly considered in terms of primary user activity model in the

next chapter. Also, few interesting analytical results and simulations will also be

presented to validate the proposed resource allocation methods.
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Chapter 5

Resource Allocation in Multicell

Collaborative Cognitive Radio

Networks

When the spectrum sensing is executed by the secondary system to obtain the

channel availability information, they must be efficiently utilized with a minimum

level of transmit power to achieve higher spectral and energy efficiencies. In cog-

nitive radio enabled wireless communications, a secondary network, i.e., cognitive

radio networks, opportunistically accesses the available spectrum initially licensed

to the primary network. As mentioned in the previous chapters, cognitive radio

technique is one of the solutions that has been considered to improve the spectral

efficiency (SE), which is defined as the total capacity normalized by the avail-

able bandwidth measured in bps/Hz, in the cellular band [127]. However, the

main challenge in spectrum sharing is to efficiently exploit the underutilized por-

tions of the primary spectrum without compromising the QoS requirements in

the primary system.

The level of underutilized radio resources available to the cognitive multicell

networks depends on the nature of users communication activities in the primary

system. Several spectrum sharing methods have been defined for the CRNs in-
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cluding overlay, underlay and a combination of both [22],[128]. In the overlay

spectrum sharing, the secondary system accesses the subchannel only when it

is in idle state. In the underlay method, the secondary system simultaneously

utilizes the subchannel subject to keeping the aggregated interference at the pri-

mary receiver below a predefined threshold. This threshold is a system parameter

which depends on the primary system characteristics [29]. Ideally, to assure the

QoS in the primary system, in overlay (underlay) access, accurate information of

spectrum sensing (perfect channel state information for the channel between the

secondary transmitters and the primary receivers) is a prerequisite. In practice

however, attaining such parameters is very challenging because there is generally

no or very limited resources for inter-system signalling.

On the other hand, the research on energy efficiency (EE) has attracted sig-

nificant attention because of the environmental concern as well as the device

requirements of longer battery life [129]. The impact of the proposed primary

subchannel activity profile on the EE is further investigated on the considered

multicell system. Here, EE measures how efficiently the available energy is uti-

lized to maintain the QoS in the end-to-end communications [130]. The EE metric

can take various forms such as energy-per-bit to noise power spectral density ra-

tio, i.e., Eb/N0, bit per Joule capacity, rate per energy, or Joule per bit, however

they are essentially equivalent and mutually convertible [131]. Both EE and SE

are required to study in a single framework because there is a very strict tradeoff

exist between them such that improvement of one may deteriorate the other [132].

In the considered multicarrier multicell CRN, the coordination among the

neighbouring secondary base stations plays a paramount role in efficient de-

sign of the network-wide optimal assignment of the scarce radio resources [133].

Network-wide resource allocation significantly reduces the impact of intra-system

interference on the overall secondary system performance. It also enables the

secondary system to exploit the temporal variations in the idle or underutilized

spectrum due to the stochastic nature of primary system communication activ-

ity on the subchannels. Exploiting the real-time primary subchannel behaviour,

which is temporal and nondeterministic, can enhance the performance of the radio

resource allocation in the secondary system [94].
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To characterize the primary users communication activity, Poisson Point Pro-

cess (PPP) based models have been proposed in [134]. However, due to the

dynamic but unpredictable nature of the primary traffic, such models often fail

to apprehend instantaneous primary subchannel activity [86]. Other researchers

propose schemes which are designed to exploit the primary service activity, how-

ever it is usually assumed that the activity information is available to the sec-

ondary system, either through signalling or a priori knowledge, see, e.g., [29]. Yet,

this assumption may not always be valid in practical scenarios where multicell

networks are considered.

In this chapter, the activity levels of primary users on the subchannels are in-

corporated into the transmission power allocation at SBS such that the maximum

possible SE can be achieved. The higher signalling level is expected when sub-

channel activities are necessary to broadcast to the centralized system. However,

the proposed method simplifies the power allocation method in CRN thereby

significantly reducing the signalling overhead. Moreover, when the SE and sub-

channel activity profile are integrated, the objective function is characterized as

a utility function.

On the other hand, the EE as an objective function depends directly on the

level of accuracy of the channel state information (CSI), however such information

may not be available to the SU transmitter [135]. The proposed method in

this chapter addresses the problems due to the unknown channel gain by means

of incorporating the estimated primary users’ activity level on the subchannels

with the minimum signalling overhead. An energy per received bits has been

considered as a metric in [136] as the basis for a resource allocation approach that

adopts the spectrum sharing along with soft-sensing information by adaptively

setting the sensing threshold. Irrespective of the proposed method, the energy

and spectral efficient design for CRN is studied in [137],[138] to optimize one of

them at a time which remains valid for a frame duration.

The accurate prediction of the primary system activity on subchannels is a

function of arrival and departure rate of the PUs in addition to the allocated trans-

mitted power and channel gains, which are random in nature and very difficult to

obtain, if not impossible, in practice. Instead, the subchannel activity index (SAI)

as a new parameter is now defined, which indicates the level of communication

89



activity within the primary subchannels. Therefore, SAI is a probabilistic metric

which is based on the sensing outcomes using energy detection by a limited num-

ber of spectrum decision makers. In this chapter, a novel scheme to evaluate the

aggregated SAI (ASAI) among the SBSs will be presented. The ASAI parameter

is then utilized in an optimal and efficient design of the SU’s transmission power

allocation strategy which maintains better achievable SE and EE such that the

best possible scenario can be obtained from both energy and spectrum utilization

perspectives.

The purpose of the SAI (or ASAI when all the neighbour cells are considered)

is to address the signalling overhead issue in multicell CRN. When the subchan-

nels are found to be underutilized, there is still room, subject to careful and

controlled power allocation, to accommodate secondary users due to low primary

system activity. In a secondary cell covered by a SBS, ASAI carries dual informa-

tion, i.e., firstly, activity of the primary users located in that cell, and secondly,

the primary users accessing the subchannels in the adjacent cells. A combination

of both is utilized in this case to design the efficient resource allocation scheme.

It is therefore proposed a simple, yet efficient, collaborative spectrum monitoring

scheme with very low signalling overhead to estimate the ASAI based on one bit

per subchannel feedback transmitted by the neighbour SBSs as a control packet.

Depending on the ASAI estimation, a very important tradeoff occurs which

has a significant impact on the optimal subchannel and transmit power allo-

cations. In cases where the SBS allocates a higher transmission power to the

subchannels with a higher ASAI, the minimum QoS requirements to the primary

services may be compromised along with significant degradation on EE. On the

other hand, a low utilization of the available spectrum is achieved by allocating a

lower power to a subchannel with a lower ASAI. To model this tradeoff, A notion

of utility function is adopted [139],[140]. For each SU communicating over the

subchannel, two utility functions are then formulated as a decreasing function

of the ASAI and, first, increasing function of the achievable rate and, second,

increasing function of EE for each cognitively utilized subchannel.

At first, optimal power allocation method is formulated in which the objective

is to maximize the total SBS utility, in terms of the SE, subject to total available

transmit power at the SBS and primary system collision probability constraints.
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Secondly, under the same system settings, the optimal power allocation will be

formulated with the objective of maximizing the total SBS utility, in terms of EE,

subject to the similar constraints described above. The first optimization prob-

lem is non-convex, and the second case is a fractional optimization problem which

can be approximated as quasi-convex under certain assumptions. The formulated

problems are the instances of weighted sum-rate maximization which have been

substantially studied in the related literature, see, e.g., [27],[133],[141],[142] al-

though most of the previous works require accurate channel state information

and/or spectrum sensing, thus need direct inter-system and heavy intra-system

signalling. A unique feature of our proposed method is its very low signalling

overhead which uses only one bit per sunchannel.

The detail comparison of the system performance is discussed in terms of EE

against a cognitive cellular network when there is no signalling among the SBSs

in which the SBS executes equal subchannel power allocation. The significant

sum-rate improvement is confirmed by the simulation results. The sum-rate per-

formance of the proposed method will also be compared with a scenario in which

the combination of underlay and overlay access techniques are adopted, where

perfect knowledge of interference channel state and spectrum sensing information

are available at the SBS. Finally, the energy efficient CRN design under the sim-

ilar network settings will be discussed and obtain the practical network scenario

in which both EE and SE can be optimized. Simulation results also show that the

proposed method closely follows the ideal spectrum access with a slightly lower

achievable rate although the required signalling overhead is significantly reduced.

The major contributions of this chapter are summarised as following.

• The subchannel activity index is first defined and characterized as an in-

dicator of activities level of the primary users in their corresponding sub-

channels. It is then followed by a simple yet efficient collaborative spectrum

monitoring among the base stations to obtain the aggregated SAI (ASAI)

for efficient transmit power allocation at the SBSs which also maintains a

very low signalling overhead among the cellular systems.

• A utility function is defined to incorporate the ASAI into the corresponding

spectral efficiency for all subchannels. The joint efficient transmit power

91



5.1 System Model

and subchannel allocation schemes are then formulated as an optimization

problem in the SBS to maximize the total SBS utility function.

• The further investigation is presented to examine the impact of ASAI into

the energy efficiency on the similar system settings. This case is also handled

in a similar approach to that of the previous one by defining utility function

in terms of energy efficiency to find the efficient transmission power profile.

The obtained solutions can be easily extended to many practical cellular

network scenarios with relevant modifications.

• Finally, a suboptimal subchannel and transmit power allocation schemes

are studied considering both spectral and energy efficiencies using various

mathematical and optimization tools. Moreover, the design technique to

achieve the near optimal spectral and energy efficiencies based on ASAI by

varying the spectrum sensing parameters will be elaborated. The obtained

SE and EE relation based on ASAI in the proposed method is practically

more efficient than the conventional EE and SE tradeoff which is, in most

cases, based on the transmit power. The results are then validated through

the extensive simulations.

In the next section, a brief description of the considered system model in this

chapter will be presented.

5.1 System Model

The considered system includes a cellular CRN which is collocated with a legacy

cellular primary system which is the same as presented in chapter 3 and chapter

4 with some add-on features which are described in this Section. A schematic

of the considered network is presented in Fig. 5.1. In this system model how-

ever, the independent sensing network is optional and therefore the clusters are

not presented. In addition, the subchannel activity information is shared among

the base stations to achieve the parameter known as ASAI. Here, a B Hz fre-

quency band is licensed to the primary system which serves primary users in-

dexed by j ∈ {1, . . . , J}. The spectrum of the primary system is shared with
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Figure 5.1: A schematic of the considered cognitive cellular network.

secondary system for downlink transmission. The CRN is a multi-cell network

with M base stations. In the central cell, SBS serves secondary users indexed

by s ∈ {1, . . . , S}. The secondary system utilizes orthogonal frequency division

multiple access (OFDMA), as mentioned in Section 3.2, where the radio spectrum

is divided into N non-overlapping Bi = B/N Hz subchannels which are indexed

by i ∈ {1, . . . , N}.
The communication link between the secondary transmitter to the secondary

receivers and secondary transmitter to the primary receivers, for subchannel

i ∈ {1, . . . , N}, are referred to as secondary channel, and interference channel,

and denoted by gsi(ν), and gji(ν), respectively. Parameter ν denotes the joint
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fading state which is dropped hereafter for brevity. The value of gsi is updated

through the measurement in each time frame by the CRN user. Making gji avail-

able at the secondary system is a challenging task because there is often no direct

signalling between primary and secondary systems. Here, similar to [142], the ba-

sic assumption is that it is estimated through the aggregated interference received

at the SUs due to the primary transmission.

In this setting, the spectral efficiency for SU, s, accessing subchannel i is:

rsi = log2(1 + Psihsi) bps/Hz, (5.1)

where, hsi is the subchannel gain to interference plus noise ratio which is a random

variable, and Psi is the allocated transmission power on subchannel i at the SBS

corresponding to secondary user s. Here, rs = [rs1 . . . rsi . . . rsN ]T is defined as the

rate vector for secondary user s, where [.]T indicates vector transpose operator.

The optimal transmit power vector in the central SBS, P∗i = [P ∗1i . . . P
∗
s,i . . . P

∗
Si]

T ,

is directly related to the primary network communication activity on subchannel

i as well as the associated constraints for protecting PU’s QoS.

Time is slotted into frames and SBSs are synchronized in the frame level.

There is no signalling between the primary system and the CRN. The secondary

service either adopts underlay or overlay spectrum access technique based on each

subchannel status. In underlay access the secondary service can always access to

the subchannel subject to the interference constraint for the primary system. In

overlay access, the secondary service senses the subchannel status and conducts

transmission if the corresponding frequency band is idle. While implementing

OFDMA in CRN, the inter-channel interference is negligible due to high spectral

distance and sharp bandpass filter in the secondary system [29].

5.1.1 Spectrum Sensing

The energy detection based spectrum sensing has been described in detail in

previous chapters, however a brief review is presented here. In the considered

energy detector spectrum sensing technique, spectrum sensing is performed in

each sensing slot at the SUs to determine whether the subchannel is idle or busy.
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Therefore, when the subchannel status is estimated, it is either a correct estima-

tion or embedded with a sensing errors. It is further assumed that subchannel i’s

status remains unchanged during a sensing slot, Ts,i. The actual state of the sub-

channel i ∈ {1 . . . N} is represented by hypothesis {H0,i, H1,i}, where H0,i (H1,i)

indicates the idle (busy) state of the subchannel i. The probabilities of H0,i, H1,i

are denoted by PH0, and PH1, respectively.

In energy detection, the SUs receive Ts,ifs baseband complex samples during

the sensing slot, Ts,i, where sampling rate is fs. Let yi[k] denote the kth sampled

signals received at the SU during the sensing duration are

yi[k] =

{
wi[k], : H0,

gi[k]xi[k] + wi[k], : H1,
(5.2)

where xi[k] is the received signal from PUs and wi[k] is the additive white Gaus-

sian noise (AWGN) with variance σ2
w = E[|wi[k]|2], and gi[k] is the channel gain

which is assumed to be constant during the signalling duration. The test statistic

of the received signal is thus obtained as

Ei[y] =
1

Ts,ifs

Ts,ifs∑

k=1

|yi[k]|2. (5.3)

For each subchannel i, the test statistic is then compared with the threshold

energy level, εi, to locally obtain the status of subchannel i. In practice, εi is

a system parameter which mainly depends on the primary system requirements,

such as their interference suppression capability [27].

5.1.2 Subchannel Activity Index

For a subchannel i ∈ {1, . . . , N}, the outcomes of detection are: idle (Ei[y] <

εi|H0,i), busy (Ei[y] ≥ εi|H1,i), miss detection (Ei[y] < εi|H1,i), and false alarm

(Ei[y] ≥ εi|H0,i). A necessary condition for the SUs to access the subchannel i is

Pr(idle) + Pr(miss detection) > Pr(busy) + Pr(false alarm). Here for brevity

equiprobable subchannels are generally assumed in which the probability of a

subchannel being idle is equal to that of being busy as in [121]. The above
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necessary condition for subchannel being available thus reduced to the following

probability ratio.

Ψi ,
Pr(Ei[y] < εi|H0,i) + Pr(Ei[y] < εi|H1,i)

Pr(Ei[y] ≥ εi|H1,i) + Pr(Ei[y] ≥ εi|H0,i)
> 1. (5.4)

The parameter δi is now defined as a measure of the primary system activity

as following.

δi ,





1, if
Pr(Ei[y]<εi|H0,i)+Pr(Ei[y]<εi|H1,i)

Pr(Ei[y]≥εi|H1,i)+Pr(Ei[y]≥εi|H0,i)
< 1,

0, if
Pr(Ei[y]<εi|H0,i)+Pr(Ei[y]<εi|H1,i)

Pr(Ei[y]≥εi|H1,i)+Pr(Ei[y]≥εi|H0,i)
> 1,

either 0 or 1, otherwise.

(5.5)

It is straightforward to express Ψi in terms of miss detection and false alarm

for the outcomes of subchannel detection method as Ψi =
1−Pf,i+Pm,i

1+Pf,i−Pm,i
, where for

subchannel i ∈ {1, . . . , N}, Pm,i and Pf,i are the probabilities of miss detection

and false alarm, respectively.

In cases δi , 0, the activity of primary system on subchannel i is most likely

low. In such cases, the SUs can access subchannel i with a low risk of interference.

Conversely, when δi , 1, it is likely that the subchannel is in use by the primary

system, and thus SUs are not allowed to access the subchannel without proper

transmit power control mechanism.

When the probability ratio, Ψi in (5.4) is equal to 1, although it occurs with

a low probability, δi randomly selects either 0 or 1, which is basically a decision

deadlock situation. If this decision does not fall towards the correct state of the

subchannel, the interference to the primary transmission system is likely to be

unavoidable. This situation occurs if and only if Ψi = 1 thus Pm,i = Pf,i,∀i. For

a given energy detector, such cases are less likely which can be concluded from

the complementary receiver operating characteristic (CROC) curve, i.e., the plot

of Pm,i against Pf,i in a cognitive radio environment.

In the following, the cases δi = 0 and δi = 1 are further investigated to find

the optimal resource allocation among users. In addition, Ψi = 1 is a less likely

event and therefore further exploration is irrelevant for the considered system.

For the sensing duration, Ts,i, and sampling frequency, fs, Pd,i for energy de-

tection is [143]: Q
((

εi
σ2
w
− γi − 1

)√
Tif0

2γi+1

)
, where Q(z) := (1/

√
2π)

∫ +∞
z

e−(τ2/2)dτ ,
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and εi, σ
2
w, and γi are energy detection threshold, variance of the additive white

Gaussian noise at the spectrum sensors, and the average received signal to noise

ratio (SNR) of primary system signal received at the spectrum sensors, respec-

tively. The sensing parameters are assumed to be fixed during the sensing dura-

tion. Noting (5.4), Ψi ≷ 1 reduces to Pm,i ≷ Pf,i, thus

Pf,i ≷ 1−Q

((
εi
σ2
w

− γi − 1

)√
Tif0

2γi + 1

)
, ∀i. (5.6)

Pf,i is thus obtained from (5.6) as

Q−1(1− P̄f,i)√
Ts,ifs

≷

(
εi
σ2
w

− 1

)
1√

2γi + 1
− γi√

2γi + 1
, ∀i. (5.7)

Setting Θ1i = εi
σ2
w
− 1, Θ2i =

Q−1
(1−P̄f,i)√
Ts,ifs

, (5.7) is further reduced to

γi ≷ Θ1i + Θ2
2i ±Θ2i

√
Θ2

2i + 2Θ1i + 1, ∀i. (5.8)

Using (5.7) as an equation, the maximum tolerable false alarm probability, i.e.,

P̄f, is obtained along with its corresponding received SNR, γ̄i. In Fig. 5.2, the

Pf,i is shown versus the received SNR. The SNR threshold is obtained at γi = γ̄i,

where δi is randomly chosen, thereby introducing the interference due to imperfect

decision. Here, γ̄i is in fact the SNR threshold based on which the subchannel

availability is detected. Furthermore, when the condition γi > γ̄i (γi < γ̄i) is

satisfied, the interference to the primary system due to the imperfect decision

is very low. The plot in Fig. 5.2 is presented while other sensing parameters

including sensing overhead, frame duration etc. are kept constant.

In cases where a lower P̄f,i is set, which ultimately enhances the spectrum

utilization, the subchannel is available only in high received SNR regime. However

when the constraint is relaxed, the condition γi > γ̄i is achieved even for lower

SNR. Therefore, more subchannels become available to be accessed by the SUs.

Note that in Fig. 5.2, Pm,i = Pf,i, or γ = γ̄, is the region in CROC curve around

which the maximum interference occurs because of the uncertainty in decision

made on the availability of subchannel i. In the considered system, having γi = γ̄i

is however always less likely than γi ≷ γ̄i. Therefore in the proposed method, the

interference due to the random subchannel decision would be negligible.
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Figure 5.2: Probability of false alarm vs. the received SNR to estimate the idle

(or busy) primary channels.

5.2 Inter-Cell Collaborative Spectrum Monitor-

ing

The SBSs perform the spectrum sensing and estimate the status of the subchan-

nels. Corresponding to subchannel i in SBS m, where m = 1, . . . ,M , spectrum

sensing returns a decision variable δm,i. If subchannel i is busy (idle), then δm,i = 1

(δm,i = 0). Sensing vector, δm = [δm,1, . . . , δm,N ]T , indicates the status of the sub-

channels in SBS m.

The cooperative detection technique on δm,i|{m=1...M, i∈{1...N}} is then imple-

mented among the SBSs to obtain the aggregated SAI (ASAI). The subchannel

sensing however is not perfect, which results the subchannel status, e.g., idle or

busy, is likely subject to sensing errors. Therefore, when the subchannel is busy
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(idle), there are two possible statuses, i.e., either in the idle state or busy state

in which only one of them is correct.

For subchannel i in a SBS with M − 1 neighbouring SBSs, the ASAI is then

obtained as following.

δ̂i =
1

M

M∑

m=1

wmδm,i, ∀i, (5.9)

where wm is the weight associated with δm,i provided by SBS m ∈ {1, . . . ,M}
which primarily depends on the priority given to the decision, e.g., depending

on the distance of the neighbour SBSs. Here, we simply consider unit weights,

wm = 1, m = 1, . . . ,M to ensure the equal contributions from all the SBSs.

The weights could be also assigned based on the level of interference from the

neighbouring SBSs, or depending on the nature of traffic in the neighbour base

stations. The aggregated activity index vector for an SBS is then defined as

following.

δ̂ =
[
δ̂1, . . . , δ̂N

]T
, (5.10)

where according to (5.9), 0 ≤ δ̂i ≤ 1, ∀i.
To obtain ASAI, each SBS only needs to transmit 1-bit of information per sub-

channel to the neighbouring SBSs. In the proposed method, each SBS broadcasts

its corresponding δi at the beginning of each time frame which is received and rec-

ognized by all its neighbouring SBSs. Therefore, in a SBS obtaining ASAI for all

N subchannels in a SBS with M−1 neighbouring cells only requires (M−1)×N
bits of feedback.

5.2.1 Collaborative Spectrum Access

In a given SBS, the availability of subchannel i is then evaluated based on the

value of δ̂i. The SBS then adopts an appropriate access technique for each sub-

channel based on its corresponding ASAI.

In this section, a power allocation scheme is proposed in which incorporating

δ̂i, the transmit power of the SBS is obtained to maximize the achievable rate of
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Algorithm 2 Inter-Cell Collaborative Spectrum Monitoring Scheme at SBS0

1: Neighboring SBSs, feedback δm = [δm1, . . . , δmN ]T , to SBS0,

2: for each subchannel i, do

3: SBS0, obtains δ̂i, using (5.9)

4: if δ̂i = 1, then

5: the subchannel is not allocated in SBS0.

6: else if δ̂i = 0, then

7: overlay access is adopted by the SBS0 on

subchannel i,

8: obtain optimal transmit power,P∗a, and maximize

spectral efficiency,

9: go to step (12),

10: else if 0 < δ̂i < 1, then

11: SBS0 adopts underlay access on subchannel i and

allocates power based on scheme in Section III.D.

12: obtain optimal transmit power,P∗bbased on the

scheme in Section IV.

13: end if

14: end for

the secondary system subject to the maximum SBS transmit power and the QoS

constraints in the primary network. The proposed spectrum access method at

the SBS based on ASAI is summarized in Algorithm 2.

There are three possible cases: i) δ̂i = 0, ii) δ̂i = 1, and iii) 0 < δ̂i < 1. For

δ̂i = 0, there is no PU transmission detected on subchannel i both within the

SBS and in the neighbouring cells. Therefore, overlay spectrum access is adopted

for transmission over subchannel i. In cases where δ̂i = 1, subchannel i is busy

both in the SBS and its neighbouring cells, therefore secondary transmission

on this subchannel is not allowed. In cases where 0 < δ̂i < 1 which is most
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likely to occur, underlay spectrum access technique is adopted by the secondary

system. The larger the δ̂i, the higher will be the chance of imposing interference on

subchannel i, thus the transmit power at the SBS should be adjusted accordingly

to protect the primary system communication activity. In the following section,

the detail analytical solution of the proposed subchannel power allocation for the

case 0 < δ̂i < 1 is presented.

5.2.2 Optimal Power Allocation for 0 < δ̂i < 1

Here, an analytical framework is proposed to obtain the optimal subchannel power

allocation based on δ̂i. As it is seen in (5.1), the achievable rate for user s on

subchannel i, rsi, is a function of hsi, where hsi = |gsi|2/(N0 + Ipi), N0 is the

power of AWGN at the secondary receiver, and Ipi is the aggregated interference

due to simultaneous transmissions by the PUs. It is assumed that the primary

transmitters follow a non-adaptive and constant transmission power. On the

other hand, the higher the value of δ̂i, the higher is the activity of the primary

system over subchannel i. Therefore, a higher Psi is required to keep rsi at the

same level to maintain the QoS.

It is again considered that for a SU s, two subchannels i, k, provide the same

achievable rate, rsi = rsk. If δ̂i < δ̂k, then Ipi < Ipk. Therefore, according to (5.1)

a higher transmit power is required to provide the same rate, i.e., Psi < Psk. In

other words, the “cost” of providing the same rate to user s on subchannel i is

lower than that of subchannel k.

Since there are multiple network parameters in the objective function, one way

to incorporate them in an optimization problem is by defining a utility function.

Here the purpose is to quantify the impact of δ̂i on the system performance at the

SBS when deciding for the access method, and the transmit power on subchannel

i, Psi. Thus corresponding to SU s, transmitting on subchannel i, the utility

function, usi, is defined as following. The utility based resource allocation for

OFDMA system has been considered in many previous work, see, e.g, [140].

usi ,
rsi

δ̂i
αsi, (5.11)

101



5.2 Inter-Cell Collaborative Spectrum Monitoring

where αsi is a weight parameter assigned by the secondary system for the user

fairness and prioritize the traffic. The larger the value of usi, the lower is the

cost of transmission on subchannel i. Total secondary system utility, Ua, is then

defined as

Ua =
S∑

s=1

N∑

i=1

usi. (5.12)

If 0 < δ̂i < 1, the SBS adopt underlay spectrum access. Thus interference

is introduced at the primary receivers. Transmission collision may then occur at

the primary receiver if the inflicted interference by the secondary transmission,

Iji =
∑S

s=1 Psi gji,∀i, j, which is the interference at primary user due to secondary

transmission, gets higher than a predefined threshold βji,∀j, i. To protect the

QoS in the primary system, a radio resource allocation is devised so that the

probability of collision in the primary system is kept below a threshold, ηji, which

is a primary system parameter related to the primary QoS [142]. The optimal

radio resource allocation is then formulated as following.

A1 : max
P

Ua, (5.13a)

s.t.
S∑

s=1

N∑

i=1

Psi ≤ PT , (5.13b)

Pr

{
S∑

s=1

Psi gji > βji

}
≤ ηji, ∀j, i, (5.13c)

where Psi is the allocated transmission power for SU s on subchannel i, P is

a S × N matrix, P = [P1| . . . |PS], and Ps = [Ps1, . . . , PsN ]T . Constraint in

(5.13b) ensures that the total transmit power in the SBS is always smaller than

its maximum transmit power, PT . Furthermore, (5.13c) is to keep the collision

probability for the primary users below ηji. Hereafter, for brevity it is assumed

that the same QoS requirements for all users and over all subchannels, thus

βji = β, and ηji = η.

The probabilistic constraint in (5.13c) is difficult to be handled analytically.

Instead, similar to [142], the constraint is transformed into a convex approxima-
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tion, assuming that the channel distribution information (CDI) of the interference

channel, gji, is known to the SBS. The constraint in (5.13c) is then reduced to

Pr

{
gji >

β∑S
s=1 Psi

}
= 1− Pr

{
gji ≤

β∑S
s=1 Psi

}
,

= 1− Fgji

[
β∑S

s=1 Psi

]
,

≤ η, ∀j, i, (5.14)

where, FX(x) represents the cumulative distribution function (CDF) of a random

variable X.

5.2.2.1 Rayleigh Distributed Interference Link

If gji follows a Rayleigh distribution with parameter r, then (5.14) is further

reduced as following.

exp

(
−β

2r2
∑S

s=1 Psi

)
≤ η, ∀i. (5.15)

For Rayleigh distributed gji, using (5.15), (5.13c) is then reduced to

S∑

s=1

Psi ≤
β

2r2
(

ln 1
η

) , ∀i. (5.16)

Therefore, under Rayleigh fading interference channels, A1 is reduced to the fol-

lowing optimization problem.

A2 : max
P

S∑

s=1

N∑

i=1

rsi

δ̂i
αsi, (5.17a)

s.t.
S∑

s=1

N∑

i=1

Psi ≤ PT , (5.17b)

S∑

s=1

Psi ≤
β

2r2
(

ln 1
η

) , ∀i. (5.17c)

Hereafter, for brevity, we assume αsi = 1 ∀i, s.
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5.2.2.2 Optimal Power Allocation in SBS

It can be observed that the optimization problem A2 is non-convex due to its non-

convex feasible power allocation set, P. Here, the dual decomposition approach

[125] is adopted to obtain a sub-optimal solutions. There is a duality gap between

the obtained solutions which are obtained using the dual decomposition method

and the actual optimal solutions. However, it is shown in [144] that if the number

of subchannels is sufficiently large, the duality gap becomes very small. Note

that the obtained Ua using dual decomposition is in fact a lower bound on the

maximum achieved total secondary system utility.

Lagrange function, L, corresponding to A2 is obtained as following.

L(P, λ,µ) =
N∑

i=1

1

δ̂ i

∑

s∈S

log2

(
1 +
|gsi|2Psi(δ̂i)
N0 + Ipi

)
+ λ

(
S∑

s=1

N∑

i=1

Psi ≤ PT

)

+
N∑

i=1

µi




S∑

s=1

Psi(δ̂i) ≤
β

2r2
(

ln 1
η

)


 , (5.18)

where, λ ≥ 0 is the Lagrangian multiplier associated with the constraint (5.17b),

and µ ≥ 0 is the Lagrangian vector associated with the constraints in (5.17c).

Here, Ipi is the aggregated interference observed at secondary system. The dual

function is accordingly defined as:

D(λ,µ) = max
P

La(P, λ,µ). (5.19)

Therefore, the corresponding dual function is:

D(λ,µ) = max
P

N∑

i=1

1

δ̂i

∑

s∈S

log2

(
1 +
|gsi|2Psi(δ̂i)
N0 + Ipi

)

− λ
N∑

i=1

S∑

s=1

Psi(δ̂i)−
N∑

i=1

µi

S∑

s=1

Psi(δ̂i), (5.20)

and thus the corresponding dual optimization problem is
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min D(λ,µ),

s.t. λ ≥ 0, µ ≥ 0. (5.21)

The optimal transmission power obtained from (5.21) maximizes the total system

utility, however it needs to adjust λ,µ, which are in fact the prices associated

with the constraints in A2.

Here, the Lagrangian multipliers (λ,µ) are iteratively estimated using the sub-

gradient method [145], where the suitable direction of (λ,µ) is obtained. This

reduces the computational complexity of finding the solution of the optimization

problem. The value of λ and µ are calculated through the following iterations.

λ(l + 1) =

(
λi(l) + ∆s(l)

(
PT −

S∑

s=1

N∑

i=1

Psi

))+

, (5.22)

µi(l + 1) =


µi(l) + ∆s(l)


 β

2r2
(

ln 1
η

) −
S∑

s=1

Psi(δ̂i)






+

, (5.23)

where, (a)+ = max{0, a} and ∆s(l) is the step size at the lth iteration. The step

size is initialized as ∆s(l) ≥ 0, where
∑∞

l=1 ∆2
s(l) <∞, and

∑∞
l=1 ∆s(l)→∞.

The optimal power allocation for each subchannel which maximizes the total

utility in the SBS is a classic water-filling problem [125], thus, after few mathe-

matical manipulations, the transmit power profile is obtained as following.

P ∗si =

(
1/ln(2)

δ̂i(λ+
∑

i µi)
− N0 + Ipi
|gsi|2

)+

. (5.24)

As it is seen, (5.24) returns P ∗si = 0 for subchannel i if
N0+Ipi
|gsi|2 > 1/ln2

δ̂i(λ+
∑

i µi)
,∀s.

Note that P ∗si is independent from η and β. Therefore, the constraint in (5.17c)

needs to be re-evaluated as a further requirement of optimum transmit power

allocation.

In OFDMA based cognitive radio systems only one SU, s∗, accesses subchannel

i , therefore the maximum transmission power for the case where there is a free
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subchannel is calculated as the maximum value of the constraint in (5.17c) as

following.

P ∗s∗i =
β

2r2
(

ln 1
η

) . (5.25)

Therefore, the optimum transmission power is

P opt
si = min {max(0, P ∗si),max(P ∗s∗i, 0)} ,∀s, i, (5.26)

which maintains the collision probability requirement for all the PUs as well as

the transmission power constraint for the SBSs. Here, (5.26) is in fact the mini-

mum value of (5.24) and (5.25), which is considered as the optimal transmission

power because this does not violate other constraints and also fulfils the QoS

requirements of the primary system.

5.3 Energy Efficient Power Allocation

In this section, the efficient transmission power allocation method is investigated

from the energy efficiency (EE) perspective. As mentioned in the previous section,

the ASAI provided an extra degree of freedom in system design to achieve the

optimal spectral efficiency. Here, the implication of δ̂i on the energy efficiency

(EE) of the CRN is studied as a new design criteria. Furthermore, the concept of

EE is extended and accordingly defined as the achievable utility per unit power

consumption. Similar to the case of spectral efficiency, the total interference

constraints is considered to guarantee the minimum QoS to the PUs. Therefore,

a utility function Ub is further defined to characterize the energy efficiency of the

system as following.

Ub =

N∑
i=1

1

δ̂i

∑
s∈S

log2

(
1 + |gsi|2Psi(δ̂i)

N0+Ipi

)

k1 + k2

N∑
i=1

S∑
s=1

Psi(δ̂i)

αsi, (5.27)

where, k1 and k2 are the circuit operation power and power amplifier consump-

tions, respectively. For brevity, hereafter it is assumed that αsi = 1, ∀i, s.
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The maximum achievable EE is obtained through the following optimization

problem.

A3 : ξ∗ = max
P

N∑
i=1

1

δ̂i

∑
s∈S

log2

(
1 + |gsi|2Psi(δ̂i)

N0+Ipi

)

k1 + k2

N∑
i=1

S∑
s=1

Psi(δ̂i)

, (5.28a)

s.t.
S∑

s=1

Psi gji < βji, (5.28b)

Psi ≥ 0 ∀s, i. (5.28c)

The optimization problem A3 needs to be approximated to be transformed

into a convex optimization problem. Therefore, the fractional function in (5.28a)

requires further analysis to show that it is quasi-concave. Since the global optimal

and local optimal solutions match when it satisfied the KKT conditions, it can be

concluded that P ∗s,i(δ̂i) is an optimal solution if it satisfies the KKT conditions,

see, e.g., [136] and references therein.

The results in [146] can be used here in which it is shown that utilizing

Charnes-Cooper Transformation (CCT), a quasi-concave fractional optimization

can be further reduced to a concave optimization problem. Therefore, to further

simplify A3, here y = tP is set, i.e., P = y
t
, where t = 1

k1+k2
N∑
i=1

S∑
s=1

Psi(δ̂i)

, and

y , {ysi}{s=1...S, i=1...N}.

By following further analytical manipulation, A3 is then reduced to

A4 : max
y,t>0

t

N∑

i=1

1

δ̂i

∑

s∈S

log2

(
1 +

y

t

|gsi|2
N0 + Ipi

)
, (5.29a)

s.t.
S∑

s=1

ysi gji − β t ≤ 0, (5.29b)

t

(
k1 + k2

N∑

i=1

S∑

s=1

ysi(δ̂i)

)
= 1, (5.29c)

ysi ≥ 0 ∀s, i. (5.29d)
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A4 can be further reduced as following.

A5 : max
y,t>0

N∑

i=1

t
1

δ̂i

∑

s∈S

log2

(
1 +

y

t

|gsi|2
N0 + Ipi

)
−

S∑

s=1

tlog2(t), (5.30a)

s.t. (5.29b), (5.29c), (5.29d), (5.30b)

which has been now converted to the convex optimization problem. The La-

grangian function corresponding to A5 is then obtained as:

L(y, t, λ, µ, φ, υ) =
N∑

i=1

t
1

δ̂i

∑

s∈S

log2

(
1 +

y

t

|gsi|2
N0 + Ipi

)
−

S∑

s=1

t · log2(t)−
N∑

i=1

λi

(
S∑

s=1

ysi gji − β t
)
−

µ

(
t · k1 + k2

N∑

i=1

S∑

s=1

ysi(δ̂i)− 1

)
+

S∑

s=1

φsys + υ · t, (5.31)

where λ, µ, φ and υ are Lagrangian coefficients associated with the correspond-

ing constraints in A5. In addition, ξ can also be defined as EE and we find

optimal transmission power profile which maximizes ξ. Following the same line

of arguments as in the chapter 4, by taking the complimentary slackness of KKT

condition and noting that 0 ≤ P ≤ PT , the optimal transmission power is ob-

tained as P ∗ = y∗

t∗
which ultimately is reduced as following.

P ∗si = min





[ 1

ln(2)

δ̂i (
∑

i λigji + µ)
− N0 + Ipi
|gsi|2

]+

, PT



 . (5.32)

A new optimization problem can also be obtained by adding a new constraint

to the total transmission power in A5. The closed form solution of the optimal

transmission power can be obtained similar to (5.32). Therefore, PT has been

considered as maximum range of P ∗si which is similar analysis as in [147] and

references therein.

For further observation, fractional utility function, Ub, in (5.27) can be written

as ξ = XN(P,δ̂i)

XD(P,δ̂i)
. Dinkenlbach’s theorem [148], [149] is then utilized to obtain the

optimal ξ and transmit power as shown in Theorem 5.1.
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Algorithm 3 Iterative power allocation algorithm and EE optimization

Input: error tolerance: ε > 0, maximum iterations: Imax, iteration index: n,

λ(0) =λ(0), µ
(0) =µ(0), initial EE: ξ(0) = ξ(0)

Output: ε-optimal power profile: P∗, optimal EE: ξ∗

1: while (n ≤ Imax AND XN(P∗, δ̂i)− ξ∗XD(P∗, δ̂i) ≥ 0) do

2: obtain P(n) from (5.32) for a given (or obtained) ξ(n)

3: obtain λ(n), and µ(n) using subgradient method

4: set n = n+ 1, and ξ(n) = XN(P∗,δ̂i)

XD(P∗,δ̂i)

5: end while

6: return the ε-optimal power allocation profile P∗ = P(n), and ξ∗ = ξ(n).

Theorem 5.1. The optimal energy efficiency, ξ∗, is achieved in A3 when the

condition max
P
XN(P, δ̂i)−ξ∗XD(P, δ̂i) = XN(P∗, δ̂i)−ξ∗XD(P∗, δ̂i) = 0 is satisfied

for XN(P, δ̂i) ≥ 0 and XD(P, δ̂i) > 0.

The iterative power allocation algorithm is adopted to obtain the optimal

power allocation profile, P∗ based on (5.32), to resolve the EE optimization prob-

lem. According to Theorem 5.1, the iteratively calculated transmission power pro-

file is optimal if and only if, in Algorithm 3, XN(P∗, δ̂i) − ξ∗XD(P∗, δ̂i) becomes

equal to zero after n iterations. In other cases, the ε-optimal transmission power

and energy efficiency, XN(P∗, δ̂i) − ξ∗XD(P∗, δ̂i) < ε is achieved, where ε > 0

is an error tolerance which is a very small positive number. The convergence

of Algorithm 3 depends on the associated constraints, channel gain information,

error tolerance factors etc.

5.4 Simulation Results

In this Section, the analytical results of the proposed techniques are simulated

and then compared against the reference models for validation.
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5.4.1 Simulation Settings

Table 5.1: Simulation Parameters

Channel Model Rayleigh with r = 1.

Number of Subchannels (N) 32

Subchannel Bandwidth (Bi) 125 KHz

Number of The Secondary Users (S) 6

Interference Threshold (β) 0.15

Collision Probability Threshold (η) 0.1-0.6

Maximum SBS Transmit Power (PT ) 10-30 dBm

Probability of Idle Subchannel (PH0) 0.5

Noise Spectral Density (N0) -174 dBm/Hz1

Location of SUs Random around SBS0 (origin)

In this Section, the simulation is performed considering an OFDMA based

cellular cognitive radio network, where primary system is collocated with the

secondary system, as shown in Fig. 5.1. Firstly, one secondary base station is

considered, e.g., SBS0, which implements the proposed Algorithm 2 presented in

Section 5.2. Both primary and secondary users are randomly dispersed within the

transmission range of SBS0. In each time frame, ASAI, i.e., 0 < δ̂i ≤ 1, where i ∈
{1, . . . , N}, is estimated using the low complexity collaborative spectrum sensing

approach. As mentioned in the previous sections, ASAI in all subchannels are

independently estimated through the energy detection method. The simulation

parameters are shown in Table 5.1, unless otherwise stated.

At first, the investigation results on the impact of system parameters on the

performance of the proposed method is presented which will be briefly discussed

later in this Section. The system performance of the proposed method is then

compared against two benchmark system models. Various schemes have been

1The noise power in the considered subchannel is 4.976× 10−13 mW.
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proposed in literature to measure the performance of channel and power alloca-

tion technique, e.g., [29], [47], [150], [151]. Based on them, several benchmark

models have been developed for comparison, therefore they will be referenced

in this chapter as well. The concepts of equal power allocation, perfect channel

utilization, and bursty primary traffic are some of the designs from the previous

works for comparison purpose in this chapter.

The first one is branded as Equal Power Allocation (EPA). Here, EPA is the

scenario under which standalone SBS0 with no signalling among the adjacent

SBSs is considered. As a result, the base station does not have a priori knowl-

edge of ASAI which ultimately forces to allocate equal transmit power in all the

subchannels. Therefore, in such cases, the SBS has to allocate the equal transmit

power to users even when the channel gain is measured to be the lower bound.

Moreover, Perfect Channel Utilization (PCU) is considered as a second reference

model for comparison. This ideal scenario is the upper-bound benchmark, which

may not be generally available in practice. Here, PCU is a scenario in which

an ideal spectrum sharing system is considered, where both accurate spectrum

sensing information and perfect interference channel state are available on the

secondary system. Therefore, depending on the subchannel access rate, PCU

utilizes overlay spectrum sharing for idle subchannels, and underlay spectrum

sharing method for underutilized subchannels.

For underlay spectrum access method, the secondary system utility is maxi-

mized for a proposed power allocation method subject to aggregated interference

constraint and maximum SBS transmit power constraint. Moreover, EPA can be

considered as a worst case scenario due to the lack of knowledge about primary

user activity and interference channel status, whereas PCU is considered as the

best case scenario due to the availability of interference channel and primary user

activity information. The investigated performance metric is the total achievable

spectral efficiency defined as
∑S

s=1

∑N
i=1 rsi which is the sum-rate normalized over

the system bandwidth.

111



5.4 Simulation Results

5.4.2 Impact of Maximum Transmit Power

Here, it is examined how primary traffic load and total transmit power constraint

at SBS affect the total achievable spectral efficiency of secondary system. When

the PUs are more active by accessing subchannels more frequently, i.e., higher

δ̂i, the achievable rate at SBS is decreased as shown in Fig. 5.3. Interestingly

however, it is observed that when the rate of PUs accessing their subchannel is

less frequent, e.g., δ̂i < 0.5, increasing PT does not significantly help to achieve

better system throughput. As it can be further observed that the increase in PT

from 10 dBm to 30 dBm, the maximum SE achievement is below 1 bps/Hz. This

is due to the fact that, for lower δ̂ where a large number of subchannels are avail-

able for secondary systems, even by allocating a higher PT , the transmit power

per subchannel at SBS remains almost constant due to the imposed interference

constraint.

5.4.3 Impact of Collision Probability Constraint

The total achievable spectral efficiency at the SBS versus the interference con-

straint at the primary system (η) is plotted in Fig. 5.4 for the proposed power

allocation scheme as well as the system settings for PCU. As it can be observed,

allocating a higher maximum transmission power results in a higher spectral effi-

ciency which can be considered as an obvious case. However, it is further observed

that increasing PT from 10 to 30 dBm results in an improvement of 1 bps/Hz on

the spectral efficiency mostly in all considered interference constraints from 0.01

to 0.12. Corresponding to a larger PT , a relatively greater throughput improve-

ment is observed for larger values of η. Since a primary system with a larger

η demonstrates a higher tolerance against the secondary interference, the SBS

is able to allocate a higher transmission power, thus achieves a higher spectral

efficiency.

Fig. 5.4 further indicates that the spectral efficiency performance of the pro-

posed method closely follows the scenario of PCU where the underlay and overlay

method of cognitive radio channel access is implemented. Note that comparing

to PCU, the proposed method requires a significantly lower signalling overhead.
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Figure 5.3: Total achievable spectral efficiency at the secondary system vs. ag-

gregated subchannel activity index for various transmit power constraints.

In other words, the lower level of required signalling in the proposed method is

associated with a reasonable cost on throughput.

5.4.4 Impact of Primary Network Activity

In this Section, the total achievable spectral efficiency obtained through the pro-

posed method for two distinct primary network load conditions are compared.

The first scenario is the case in which the primary service transmitter has very

limited amount of data to transmit. This situation is modelled by setting very

low duty cycle which apparently simulates the low traffic intensity at primary

transmitter. This will result in a very low ASAI which is typically obtained with

average value of δ̂ = 0.001. The next is a case when moderately loaded primary

service is considered, where subchannel activity index is achieved to be δ̂ = 0.6.
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Figure 5.4: Total achievable spectral efficiency of SBS vs. collision probability

threshold for PT = 10, 30 dBm for the proposed method and the PCU for δ̂ = 0.6.

When the network scenario is set such that δ̂ is achieved to be 0.001, the power

allocation in Section 5.2 acts very approximately to an overlay method of spec-

trum access. Therefore, the comparison presented here indicates how efficient

is the proposed power allocation scheme in exploiting the load variations in the

primary network.

The total achievable spectral efficiency at the secondary system is plotted in

Fig. 5.5 when the number of SUs (S) varies in the range of 4 to 10, and total

transmit power (PT ) varies from 10 to 30 dBm. Also the network scenario is

maintained such that ASAI is achieved to be at δ̂ = 0.001, 0.6, 0.999 to simulate

three different network load conditions and η is set to be 0.05. As it is observed in

Fig. 5.5, when the ASAI (δ̂i) in the primary network is increased, the achievable

spectral efficiency at secondary system simultaneously decreases. Surprisingly

however, the achievable spectral efficiency of the proposed method is very close
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Figure 5.5: The total achievable spectral efficiency of the SBS vs. the number of

SUs, S, for PT = 10, 30 dBm, δ̂ = 0.001, 0.6 and η = 0.05.

to that of the overlay access for a low to moderate secondary network load. It is

also observed in Fig. 5.5 that for PT = 10 dBm, 30 dBm, the spectral efficiency

does not increase with the same rate due to the imposed collision probability

constraint while formulating the optimization problem. This apparently suggests

that the proposed method achieves the total spectral efficiency very close to

the when there is very low traffic load on the primary network with the lower

signalling complexity.

5.4.5 Comparison with EPA and PCU

The spectral efficiency of the proposed system along with its comparison against

two benchmark power allocation settings, i.e., EPA and PCU, are presented in

Fig. 5.6. The variations in traffic demand in the secondary system represented
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Figure 5.6: Total achievable spectral efficiency of the secondary system vs. the

total number of the secondary users for different scenarios and PT values.

by the number of secondary users, S, when maximum transmit power is kept at

10 dBm, 30 dBm. As expected, PCU achieves the highest system utility due to

ideally utilizing the subchannels, whereas EPA has the lowest due to the absence

of subchannel activity profile at the primary system which enforces system to

allocate equal transmit power. The proposed resource allocation scheme however

achieves a significantly higher spectral efficiency than that of the EPA. This

is due to the fact that the primary system activity provided by incorporating

ASAI is exploited in the subchannel power allocation. It is further observed that

the proposed method closely follows the ideal subchannel access, i.e., PCA with a

slightly lower spectral efficiency but significantly lower signalling overhead among

the secondary base stations.
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Figure 5.7: Energy efficiency vs. normalized interference from primary system

for various primary network traffic.

5.4.6 Impact of Primary Network Traffic on Energy Effi-

ciency

The performance of the proposed method in terms of energy efficiency is inves-

tigated against the case when the ASAI is not estimated. When the impact of

interference from primary system increases, the achievable energy efficiency de-

teriorates due to the higher transmit power requirement at the secondary system

to suppress the interference. The lowest energy efficiency is achieved when the

primary network traffic is of bursty nature in which the variation of δ̂ becomes

high. Therefore, even in the lower interference regime, the energy efficiency is not

significantly higher. For instance, energy efficiency is achieved to be four times

higher (≈ 20 b/Hz/Joule) when δ̂ = 0.7 than the case of bursty primary network
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traffic (≈ 5 b/Hz/Joule). Therefore, it can be concluded that the δ̂ estimation

enables the improved resource allocation to achieve higher energy efficiency as

shown in Fig. 5.7. Moreover, when the primary users activity is higher and is

considered to be accurately estimated, there are more opportunities available

to access the subchannels such that the system energy is significantly utilized

for data transmission to achieve improved energy efficiency. However when the

interference from the primary system is higher, energy efficiency cannot be sig-

nificantly improved in the same way. For instance, at the normalized interference

of 0.6, the energy efficiency is improved just from 4 to 6 b/Hz/Joule, in cases of

bursty primary traffic and δ̂i = 0.3, respectively.

5.4.7 Energy Efficiency and Total Spectral Efficiency

Here, further analysis is presented regarding the optimal energy and spectral

efficiencies as a unified model for the real-time measurement of the subchannel

activity index, δ̂, since both EE and SE depend on optimal transmit power and

QoS requirements imposed by the primary system. In addition, the ASAI is

used in the proposed analytical models to design the optimal transmit power

allocation. Such an articulated analysis is possible to design due to the proposed

system model and utility functions presented in previous sections.

The optimal spectral efficiency and energy efficiency as a function of δ̂i for the

proposed method, for a range of total transmit power, is shown in Fig. 5.8. The

proposed methods improve the performance in various range of ASAI, i.e., δ̂i. It

is shown in Fig. 5.8, for instance, that when subchannels are busy, as indicated

by δ̂i in the range of [0.65, 0.9], the transmission power is controlled in such a

way that the EE is improved whereas the SE does not degrade significantly when

maximum PT is 30 dBm. Also in the lower ASAI, as indicated by δ̂i in the range

of [0.1, 0.3], EE remains in the same level of around 15 b/Hz/Joule without signif-

icant decrease in the spectral efficiency. Moreover, when the primary subchannels

are moderately occupied, i.e., δ̂i in the range of [0.4, 0.6], the secondary system

can achieve acceptable levels of both EE and SE simultaneously. In this case, the

maximum PT does not play a vital role on the system performance.
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Figure 5.8: Achievable spectral and energy efficiency vs. primary user activity

index for various total power constraints.

In a conventional EE and SE optimization, the improvement in EE as well as

SE is obtained either by considering a linear combination of EE and SE objectives

[129], or defining an objective function based on the transmit power as discussed

in [138]. In such cases, when the transmit power is increased, improved SE is

obtained with the sacrifice on the EE and vice-versa. The major concern in such

models of CRN design is that there is a limited range of transmit power for SUs

due to the interference constraints imposed by primary system. For instance, the

higher the transmit power, larger will be the interference to the primary system

which puts the limitations on the secondary system. In the proposed model

however, by relaxing (or tightening) the constraint in (5.8), larger (or smaller)

number of subchannels could be available for SUs such that δ̂i slightly moves to

the higher (or lower) range. Therefore, depending on the requirements, i.e., either

better EE or better SE is anticipated, system parameters can be optimized to
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achieve the target without compromising the primary system QoS in the proposed

method.

Therefore, the proposed method provides an entirely new perspective on cogni-

tive radio and communication system design where the operating point in terms

of ASAI, as shown in x-axis in the Fig. 5.8, can be dynamically obtained by

adjusting the sensing parameters, e.g., sensing duration, sensing threshold, and

detection probability threshold.

5.5 Conclusions

At the beginning of this chapter, the reference system model with the add-on

features considered for the proposed method of resource allocation has been pre-

sented. In addition, the essentials of energy detection method for spectrum sens-

ing and the associated hypothesis testing are reviewed. Based on the conditional

probabilities of hypotheses tests, the decisions parameters are identified which ul-

timately provides information about the primary subchannels. This resulted the

parameter subchannel activity index which has been defined and characterized

to incorporate the communication activity associated with the PUs in efficient

resource allocation. Moreover, a simple yet efficient intercell collaborative spec-

trum monitoring scheme has been proposed with very low signalling overhead to

evaluate the activities level of users in the subchannels, i.e., aggregated subchan-

nel activity index, as an indicator of network wide activities level of PUs on the

subchannels.

The efficient power allocation profile is then obtained at the SBS with the

objective of maximizing total SBS utility and total primary users interference

constraint as well as the total transmit power constraint. The SBS utility has

been defined based on ASAI and system throughput. In addition, the impact

of ASAI into the energy efficiency is also investigated by defining the utility

function and obtained the efficient transmit power profile with the associated

constraints. In the cognitive radio network, the energy and spectral efficiencies

contradict each other due to the fact that both cannot be maximized at the same

time. A general practice is that one of them is maximized keeping another at
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a certain level. However in the proposed method, a novel and practically viable

design between spectral and energy efficiencies has been successfully achieved

considering the primary communication activity on the allocated subchannels.

The simulation results have further confirmed that the proposed scheme ex-

ploits the variations in the primary system communication activity to improve

the secondary system achievable rate. It is also confirmed the slight decrease of

the rate comparing to the ideal case in which both underlay and overlay methods

of spectrum sensing are implemented, however it is greater than the case when

no optimal power allocation algorithm is implemented, i.e., the equal power allo-

cation method. Further investigation has been executed to measure the impact

of ASAI into the energy efficiency and concluded that the proposed method is

a better design approach to obtain the optimal energy efficiency and/or spec-

tral efficiency concurrently by adjusting the spectrum sensing parameters at the

secondary system.
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Chapter 6

Conclusions and Future Works

6.1 Summary of the Thesis

In Chapter 1, the very beginning picture of cognitive radio networks has been

discussed. The requirements of cognitive radio is basically due to the current con-

vergence of various wireless communication technologies, the exponential growth

of user densities and the data-hungry applications. In addition, the require-

ments for M2M and Internet-of-Everything also demanded more data transmis-

sion through the wireless channel. On this context, software-defined network and

cognitive radio communication have been studied for last one and half decade. A

detail study of cognitive cycle to enable the cognitive radio concept has also been

discussed in this chapter. The journey of cognitive radio networks has come long

way to make it worldwide acceptable by industry, government and academia.

Various organizations, for instance the IEEE, have worked together to make a

global standard for cognitive radio, such as IEEE 802.22 to be used in TV band,

in this period. The journey of cognitive radio has been briefly described in this

chapter. Since the research domain of cognitive radio networks is very wide, there

are even many challenges to implement them in practice. Such research challenges

in terms of spectrum sensing, resource allocation, energy efficiency etc. have also

been described along with the relevant examples. The factors that motivated

122



6.1 Summary of the Thesis

to conduct this research, which apparently produced this Thesis, have also been

included in this chapter.

In Chapter 2, a brief description of various spectrum sensing techniques pro-

posed for cognitive radio networks has been presented. The spectrum sensing task

is obviously one of the first requirements to enable the cognitive radio communi-

cation in current cellular network architecture. Therefore, based on the outcome

of sensing technique, an efficient resource allocation method could be designed,

i.e., higher the spectrum sensing accuracy, better will be the resource allocation

strategy. Nevertheless, a very important tradeoff between sensing duration and

transmission duration do exist in cognitive radio communication. Such issues

have been clearly identified and described in this chapter. Moreover, various

spectrum sensing methods have been described that are available in the liter-

ature as a foundation of the proposed spectrum sensing methods proposed in

this Thesis. Specifically, the cooperative and non-cooperative spectrum sensing

also have been described with their respective advantages and disadvantages. In

a cooperative spectrum sensing method where local information about the sub-

channel availability is diffused at a centralized system, soft combining and hard

combining methods are, in general, used in such cases. The benefit have been

described in this chapter, such as the hard combining method has less complexity

with lower accuracy on the spectrum sensing results. The challenges of spectrum

sensing methods for cognitive radio have been briefly discussed. At last but not

the least, the spectrum sensing results obtained from the specially designed spec-

trum sensors for TV band and GSM band, i.e., 500 MHz, 800 MHz and 1600 MHz

have been collected in the Lancaster City area to show the nature of spectrum

availability in real network. The rest of the chapters discussed to exploit the

available spectrum as shown on the obtained spectrum sensing results.

In Chapter 3, a brief introduction of the considered system model has been

presented. The concepts of multi-cellular and multi-carrier system with pri-

mary and secondary service providers collocated in the same geographical re-

gion for spectrum sharing have been discussed with the appropriate network dia-

grams. The concept of subchannels, orthogonal frequency division multiple access

(OFDMA) as an optimal modulation scheme for cognitive radio in addition to

the interference models have also been described to justify their usage in the
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considered system of spectrum sensing and resource management. Furthermore,

the channel models, frame structure where spectrum sensing and transmission

durations are embedded have also been discussed. The features presented in this

chapter is the basis for the follow-up chapters with some add-on features when

they are needed. The last part of the chapter discussed one of the available cog-

nitive radio standards for the TV band, i.e, IEEE 802.22 standard, to explain

the strict requirements to implement cognitive radio in practice. The purpose

of this subsection is that the rest of the proposed methods would follow such

requirements to choose the appropriate cognitive radio parameters.

In Chapter 4, the proposed low-latency zone-based cooperative spectrum

sensing scheme in a multicell network has been exclusively described. It was

basically the sensor-enabled cognitive radio system where the dedicated sensing

devices took control the spectrum sensing task from the secondary system. In

conventional cognitive radio however, the secondary users have to consume the

precise resource of time frame in terms of the sensing duration. As a result of

the proposed methods, the secondary users can have more frame duration to

transmit the data packets which apparently improves the system throughout. In

addition, the proposed method significantly improves the power consumption in

the secondary system due to skipping the bulky spectrum sensing task. This

chapter also presented the design criteria of sensing devices such that the trade-

off among the sensing accuracy, system throughput and sensing network cost can

be explained both mathematically and through the simulation results. The de-

tail communication protocol among secondary system and the sensing devices

have also been presented. However offloading the sensing task to an independent

network is a good idea, the design of such a network is equally a challenging

task. In this chapter, various combination of spectrum sensing devices and base

stations have been considered and it has been shown mathematically that the op-

timization problem is a convex optimization problem under some specific network

parameters. Such conditions have been explained and solved the problem to find

the optimal design of such network. Finally, the simulation results demonstrated

the improved sensing accuracy and thus the system throughput in the proposed

network scenarios.
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In Chapter 5, the proposed method of subchannels and transmit power al-

location have been presented. It is obvious to believe that the communication

activities of primary users on the subchannels highly affect the resource allocation

strategy in secondary system. As a result, a reliable method of estimating the

activities of primary users on the subchannels was explained by defining a param-

eter called the subchannel activity index. This parameter was later obtained in

the multiple cell scenario such that the aggregated version is obtained by incorpo-

rating such decision vectors from the neighbouring cells. This parameter literally

indicates the best possible subchannel in the vicinity of the cell at a particular

time and location. Furthermore, the transmit power allocation problem is defined

as an optimization problem with the primary system interference constraint and

total transmit power constraint. The problem was then solved using dual decom-

position method to find the optimal transmit power profile. While formulating

the optimization problem, both spectral efficiency and energy efficiency have been

considered. Therefore, the energy efficiency also has been defined as a utility

function in terms of the subchannel activity index. The fractional optimization

problem has been defined with the similar constraints mentioned above. Later

in the chapter, the obtained results from the optimization problem have been

analysed together which concluded that the proposed method maintains a better

system design approach to maintain the balanced between energy efficiency and

spectral efficiency by changing the sensing parameters in the secondary system.

Finally, in this Chapter 6, the summary and contributions of this Thesis have

been presented. Based on the recent research activities, the future directions of

radio resource allocation in cognitive radio in terms of the requirements of 5G

are also discussed.

6.2 Future Research

It is in fact too early to predict the features of 5G telecommunication system.

Nevertheless, the early prediction shows that the data volume has to be 1000

times higher per area with up to 100 times higher data rate and 10 times longer
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battery life of devices [152]. Such services must be available with the millisec-

onds of end-to-end delay. Therefore, it can be anticipated that a single technology

alone cannot fulfil such a vibrant requirements. Therefore, there must be diverse

technologies which converge together with appropriate protocols to achieve the

targets. Some of the recently proposed technologies for 5G are mmWave, NOMA,

heterogeneous network (HetNet), massive MIMO etc. [153]. The cognitive radio

enabled M2M communication has gained huge attention recently to solve spec-

trum scarcity and energy efficiency issues in M2M communications [154]. However

it is needless to say that one of the highly celebrated and matured technologies in

5G and beyond is cognitive radio network. It is due to the fact that the scarcity

of spectrum will be the key challenge to provide the services in 5G and cognitive

radio is capable of tackling such issues. Therefore, a further research work is

to obtain the reliable and robust spectrum sensing and radio resource allocation

methods to make cognitive radio as one of the inevitable candidate technologies of

5G. One of the solutions to solve the spectrum scarcity problem is to use mmWave

in 35 GHz or 70 GHz where huge amount of bandwidth is available. However, it

is too immature to expect mmWave communication in near future because the

early stage of channel modelling has just been undertaken. Also, microwave band

is very attractive for wireless communication among service providers because it

travels longer distance and its channel properties are well understood. As a result,

more effort should be devoted to make cognitive radio an important technology

at early stage of 5G and beyond.

Since cellular mobile communication system from 1G to 4G were basically

human oriented, such as they carry audio, video and data generated by users.

On the other hand, in case of 5G, the things oriented communication system is

considered to be enabled [155]. The recent research and development efforts in

D2D and M2M to enable IoT are the early signs of future wireless communica-

tion system [156],[157]. These are the short range radio communication systems

where peer devices are close to each other with line-of-sight (LOS) or non-LOS

communication range. In such cases, the cognitive radio technique could be im-

plemented using the underlay access mode such that they do not interfere, or with

minimum interference, to the primary system. Therefore, finding the appropriate
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protocols and techniques for such communication systems is another important

future research.

The important milestone of cognitive radio to make it commercially available

is by drifting the IEEE 802.22 standard in TV bands to solve connectivity issue

such as in the rural broadband services. The recent announcement by FCC and

Ofcom to enable spectrum occupancy database temporarily solves the spectrum

sensing requirements, so the key issues now have to do with cognitive networks,

particularly of the integration of space-time-spectrum databases into cognitive

networks. A further research is needed to make such database to be useful in real-

time as well as enabled with context-aware functionality. One of the important

issue in this approach is the security in the database system. Although some

recent research provides the theory on how a cognitive radio can be inherently

secure, including smart enough to examine uploads to accept trustable updates

from the local spectrum sensors and to reject that are potentially malicious, the

foundations have yet to be embraced by the cognitive radio community. Similarly,

the access mechanism to such spectrum database by the authentic users is another

unsolved research problem which needs further research to propose the robust

solution.

The concept of NOMA at the first hand emerged from the concept of dy-

namic spectrum access in cognitive radio, such as the underlay spectrum sharing

scheme between secondary and primary systems. In NOMA, distinct power lev-

els are allocated among the multiple users depending on the channel gain, where

communication takes place at the same time frame and frequency subchannels

[158]. This concept is similar to the concept of underlay spectrum access where

the secondary users transmit even when primary system is using subchannels with

the constraint of interference to the primary system is below threshold. There-

fore, it can be argued that the advancement in cognitive radio not only improves

the spectrum utilization but also assists to initiate new technologies which ulti-

mately enforce to achieve the target of 5G. Further research must be conducted

in NOMA implying the similar concepts proposed for CRN.

There are also various research issues to make CRN as an enabling technology

for next generation networks. The instances are LTE over CRN to improve the

QoS of LTE users and the spectrum handoff mechanism [159] to minimize the
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switching delay when secondary system has to communicate (or terminate) on the

next available subchannel. Furthermore, the accurate and real-time estimation

of primary user activities such that opportunities are not missed by secondary

users. The concept of Kalman filter is also considered to be a future work to

evaluate the temporal characteristics in the cognitive network, for instance, the

primary users activities, for optimal resource allocation. Nevertheless, the future

research direction is not only limited to the above mentioned areas but also to

explore further as an multi-disciplinary research area.
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Appendix A

Proof of Lemma 4.1

Proof. In this proof, equiprobable hypotheses, i.e., the probability of the chan-

nel being in idle or busy states are equal, is being considered. Therefore, the

probability of accurate channel sensing in the sensing devices is,

Pcs,i(εi, Ts,i)
∆
= 1−

{
Pm,i(εi, Ts,i) + Pf,i(εi, Ts,i)

}
,∀i. (A.1)

The cases with no sensing errors, i.e., Pf,i(εi, Ts,i) = 0, and Pm,i(εi, Ts,i) = 0, are

referred to as perfect channel sensing, in such cases Pcs,i(εi, Ts,i) = 1. However,

practically Pcs,i(εi, Ts,i) ∈ [0, 1] which can be obtained by varying the operating

points in ROC curve within the range, Pm(εi, Ts,i) ≤ 0.5, and Pf(εi, Ts,i) ≤ 0.5,

which is also described in detail in (4.7c), (5.17a), and Lemmas 4.6-4.4. In the

maximally inaccurate sensing case, i.e., Pm(εi, Ts,i) = 0.5, (or Pd(εi, Ts,i) = 0.5),

and Pf(εi, Ts,i) = 0.5, we get Pcs,i(εi, Ts,i) = 0. Similarly in the perfect sensing

case, i.e., Pm(εi, Ts,i) = 0, (or Pd(εi, Ts,i) = 1), and Pf(εi, Ts,i) = 0, we get

Pcs,i(εi, Ts,i) = 1.

The logical AND rule is implemented in the ZAs, based on the sensing infor-

mation collected from sensing devices. Therefore, the aggregated information is
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Pag,i =
∏N

i=1 Px,i, where Px,i is either miss detection or false alarm probability.

Therefore, for any channel i,

P
(ZA)
cs,i (εi, Ts,i) = 1−

{
Z∏

z=1

Pm,i(εi, Ts,i) +
Z∏

z=1

Pf,i(εi, Ts,i)

}
. (A.2)

The ZAs then make the spectrum sensing decision for each channel in its

corresponding zone based on applying AND rule on the sensing decisions provided

by the sensor in their corresponding zone. The obtained information is combined

at the SBS such that one channel can be utilized by multiple users within the

transmission range of SBS but no adjacent zones are permitted to access the same

channels.

Therefore, for possible micro-spectrum-reuse, the aggregate information is

Pag,i = 1 − ∏N
i=1(1 − Py,i), where Py,i is either miss detection or false alarm

probability for channel i. Consequently, Pag,i = 0 for Py,i = 0, ∀i thus (A.2) is

written as

P
(SBS)
cs,i = 1−

M∏

m=1

1−
[
1−

Z∏

z=1

Pm,i(εi, Ts,i)−
Z∏

z=1

Pf,i(εi, Ts,i)

]
. (A.3)

Straightforward mathematical manipulations for independent decisions from ZAs

result in the following

P
(SBS)
cs,i = 1−

[{
1− Pd(εi, Ts,i)

}Z
+

{
Pf(εi, Ts,i)

}Z]M
,∀i (A.4)

which completes the proof.
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Appendix B

Proof of Lemma 4.2

Proof. Starting from Pf(εi, Ts,i) ≤ 0.5 along with (4.2), we write:

(
εi
σ2
w

− 1

)√
Ts,ifs ≥ Q−1(0.5) = 0. (B.1)

Since Ts,ifs > 0, then εi
σ2
w
− 1 ≥ 0, therefore, εi ≥ σ2

w.

Similarly, substituting (4.3) in Pm(εi, Ts,i) ≤ 0.5, results in:

(
εi
σ2
w

− γi − 1

)√
Ts,ifs

2γi + 1
≤ Q−1(0.5) = 0. (B.2)

Since
Ts,ifs
2γi+1

> 0, then εi
σ2
w
− γi − 1 ≤ 0. Therefore, εi ≤ (1 + γi)σ

2
w.
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Appendix C

Proof of Lemma 4.3

Proof. Starting from (4.2), the first derivative of Pf(εi, Ts,i) is

∂Pf(εi, Ts,i)

∂εi
= −

√
Ts,ifs√
2πσ2

w

exp

(
−
(
εi
σ2
w

− 1

)2
Ts,ifs

2

)
, (C.1)

which is always negative; thus, Pf(εi, Ts,i) is a decreasing function of εi. The

second derivative of Pf(εi, Ts,i) is

∂2Pf(εi, Ts,i)

∂2εi
=

Ts,ifs√
2πσ4

w

exp

(
−C2

1

Ts,ifs
2

)(
εi
σ2
w

− 1

)
, (C.2)

where C1 = εi
σ2
w
− 1. Since σ2

w ≤ εi, the second derivation is always positive;

therefore, Pf(εi, Ts,i) is a convex function of εi.
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Proof of Lemma 4.4

Proof. Starting from (4.3), the first derivative of Pd(εi, Ts,i) is

∂Pd(εi, Ts,i)

∂εi
= −

√
Ts,ifs

2π(2γi + 1)

1

σ2
w

exp

(
−C2

Ts,ifs
2

)
, (D.1)

where, C2 =
(
εi
σ2
w
− γi − 1

)2

. Since
∂Pd(εi,Ts,i)

∂εi
< 0, and Pm(εi, Ts,i) = 1 −

Pd(εi, Ts,i), it can be shown by substitution that
∂Pm(εi,Ts,i)

∂εi
> 0. This also shows

that Pm(εi, Ts,i) is an increasing function of εi.

The second derivative of Pd(εi, Ts,i) is

∂2Pd(εi, Ts,i)

∂2εi
=

√
Ts,ifs

2π(2γi + 1)

1

σ4
w

exp (−C3)

(
εi
σ2
w

− γi − 1

)
, (D.2)

where, C3 =
(
εi
σ2
w
− γi − 1

)2
Ts,ifs

2
. Here, all the terms are positive except εi

σ2
w
−

γi − 1. However, the inequality εi
σ2
w
− γi − 1 ≤ 0 holds under the condition

εi ≤ (1 + γi)σ
2
w. Therefore,

∂2Pd(εi,Ts,i)

∂2εi
< 0 holds and Pm(εi, Ts,i) = 1−Pd(εi, Ts,i)

proves that
∂2Pm(εi,Ts,i)

∂2εi
> 0. Consequently, Pm(εi, Ts,i) is an increasing and convex

function of εi. This completes the proof.
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Proof of Corollary 4.1

Proof. To prove Corollary 4.1, the probability of channel accurate sensing in

(4.10a) is shown to be concave. We start with the scenario, where Z = M = 1.

Scenario 1 : For Z = 1, M = 1, and a fixed signalling duration, T s,i, and

frame duration, T , under the stated conditions in Lemma 4.6-Lemma 4.4, the

probability of accurate sensing of channel i is a concave function of εi.

In this scenario, Pcs,i(εi) = 1− ((1− Pd(εi)) + Pf(εi)). The second derivative

of Pcs,i is

∂2Pcs,i(εi, T s,i)

∂2εi
= −∂

2Pm(εi, T s,i)

∂2εi
− ∂2Pf(εi, T s,i)

∂2εi
. (E.1)

It was already shown that
∂2Pm(εi,T s,i)

∂2εi
> 0, and

∂2Pf(εi,T s,i)

∂2εi
> 0, therefore

∂2Pcs,i(εi,T s,i)

∂2εi
< 0.

Therefore, the second derivative of Pcs,i is negative ∀i, thus it is a concave

function of εi for which the maximum occurs at optimal detection threshold, ε∗i .

Scenario 2 : Following the same line of argument as in Scenario 1, the proba-

bility of accurate sensing of channel i is a concave function of εi, for Z = 2 and
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M = 1.

In this scenario, Pcs,i(εi) = 1− ((1− P2
d(εi)) + P2

f (εi)). The second derivative

of Pcs,i is

∂2Pcs,i(εi, T s,i)

∂2εi
= −∂

2P2
m(εi, T s,i)

∂2εi
− ∂2P2

f (εi, T s,i)

∂2εi
. (E.2)

Now the second derivative of P2
f,i(εi) is

∂2P2
f (εi, Ts,i)

∂ε2
i

=− 2

√
Ts,ifs√
2πσ2

w

[
exp

(−A
2

)
∂Pf(εi, Ts,i)

∂εi

+ Pf
∂

∂εi

(
exp

(−A
2

))]
,

(E.3)

where A = Ts,ifs

(
εi
σ2
w
− 1
)2

. According to Lemma 4.3,
∂Pf(εi,Ts,i)

∂εi
< 0; we further

notice that for Pf > 0 and any x 6= 0, ∂e−x

∂x
< 0. Using (E.3), we conclude that

∂2P2
f (εi,Ts,i)

∂ε2i
> 0.

Following the same line of argument as in (E.3), it is straightforward to show

that
∂2P2

d(εi,Ts,i)

∂ε2i
> 0. Substituting P2

d,i(εi) = (1− Pm,i(εi))
2, we then get:

∂2P2
d(εi, Ts,i)

∂ε2
i

=

(
−2

∂2Pm(εi, Ts,i)

∂ε2
i

+
∂2P2

m(εi, Ts,i)

∂ε2
i

)
> 0. (E.4)

According to Lemma 4.4, we also have
∂2Pm(εi,Ts,i)

∂ε2i
> 0, therefore we conclude

∂2P2
m(εi,Ts,i)

∂ε2i
> 0.

From (E.3) and noting that the positive sum of two concave functions is also a

concave function, one can conclude that
∂2Pcs,i(εi,Ts,i)

∂ε2i
< 0. It means the probability

of accurate sensing is a concave and decreasing function of εi.

Scenario 3 : Similar to Scenario 1 and 2, the probability of accurate sensing

of channel i is concave for Z = 1 and M = 2. In this case, the probability of
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accurate sensing is calculated as below.

Pcs,i(εi) = 1−
[
Pm(εi) + Pf(εi)

]2

= 1− P2
m(ε1)− 2Pm(ε1)Pf(ε1)− P2

f (ε1).

(E.5)

The second order derivative of (E.5) is

∂2P2
cs,i(εi)

∂ε2
i

=− ∂2P2
m(εi)

∂ε2
i

− 2Pm
∂2Pf(εi)

∂ε2
i

− 2Pf
∂2Pm(εi)

∂ε2
i

− ∂2P2
f (εi)

∂ε2
i

. (E.6)

For a fixed signalling duration T s,i, we already showed that ∂2Pf(εi)

∂ε2i
> 0 in

Lemma 4.3, ∂2Pm(εi)

∂ε2i
> 0 in Lemma 4.4, and ∂2P2

m(εi)

∂ε2i
> 0, and

∂2P2
f (εi)

∂ε2i
> 0 in

Scenario 2. Moreover, we note that the maximum acceptable probability of miss

detection, and false alarm are bounded as 0 ≤ Pf ≤ 0.5, and 0 ≤ Pm ≤ 0.5,

respectively. Therefore, we can conclude that
∂2P2

cs,i(εi)

∂ε2i
< 0 and is concave function

of εi, and the maximum value occurs at εi = ε∗i which has been obtained in

Section 4.4.4.

Scenario 4 : Following the same line of argument as in Scenarios 1-3, the

probability of accurate sensing of channel i is a concave function of εi for Z = 1,

M = 3, as well as Z = 3, M = 1.

We then argue that the function is concave for the combination of ZAs, i.e.,

n1 = 2 and n2 = n1 + 1 and SBSs, i.e., n3 = 2 and n4 = n3 + 1 and it also

holds for n1 = 1 and n3 = 1. It means that it must be also true for any possible

combination of natural numbers of ZAs and SBSs according to the principal of

mathematical induction.
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