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METHODS: We analyzed postmortem brain RNA-sequencing and 

neuropathological data for 441 subjects from the Religious Orders 

Study/Memory and Aging Project, and molecular and structural neuroimaging 

data for 1 285 subjects from the Alzheimer's Disease Neuroimaging 

Initiative. 

RESULTS: We found one SORL1 RNA transcript strongly regulated by SORL1-

BDNF interactions in elderly without pathological AD, and showing 

stronger associations with diffuse than neuritic Aβ plaques. The same 

SORL1-BDNF interactions also significantly influenced Aβ load as measured 

with [18F]Florbetapir PET.  

DISCUSSION: Our results bridge the gap between risk and resilience 

factors for AD, demonstrating interdependent roles of established SORL1 

and BDNF functional genotypes. 

 

 

 

 



January 26, 2017 
Dr. Ara S. Khachaturian 
Executive Editor, Alzheimer’s & Dementia 
 
 
 
 
Dear Editor, 
 
 
We are pleased to re-submit our revised manuscript entitled “Genetic Epistasis Regulates Amyloid 
Deposition in Resilient Aging” for publication in Alzheimer’s & Dementia. We have made changes in 
accordance with the editor’s suggestion, and the limitations section of our discussion has been 
enhanced as a result. 
 
Again, we greatly appreciate the time taken by editors and reviewers to re-evaluate our manuscript, and 
will await further notice regarding our submission. 
 
 
Sincerely, 
 
Aristotle N. Voineskos 
Head, Kimel Family Translational Imaging-Genetics Laboratory, Centre for Addiction and Mental Health, 
Toronto, ON, Canada 
Director, Slaight Family Centre for Youth in Transition, Centre for Addiction and Mental Health 
Associate Professor, Department of Psychiatry, University of Toronto, Toronto, ON, Canada 

revised cover letter (revision 2)



Response to Editor 

 

“Please incorporate your response to Reviewer #1 into the discussion, perhaps in the paragraph that 

describes the limitations.   2-4 sentences should suffice and read like, "it has been suggested...(reviewer 

#1 comments)".  "Unfortunately...(your response)."  And the third (or fourth) sentence should propose 

some future research/experiments to address this limitation.” 

 

As requested, we have incorporated a brief summary of this exchange regarding the 

measurements of SORL1 proteins as a limitation in our paper’s discussion: 

(Pg. 15, paragraph 2): “Finally, we acknowledge that mRNA levels of SORL1 may not be reliable 

indicators of protein levels. Unfortunately, we did not measure protein directly in our 

experiments. Future studies will need to measure protein directly in the tissues.  In fact, 

proteomic projects are currently underway in the ROS/MAP cohort that will include both SORL1 

and BDNF. However, there are also limitations to targeted proteomics; for example, it cannot 

capture individual post-translational modifications. Thus, ultimately, a variety of approaches, 

including the mRNA approach used in the present study, are useful for identifying genes and 

proteins important in the pathogenesis of AD.” 

 

Again, we thank the editor for their time and consideration. 

 

 

Response to editor comment (revision 2)



Research in Context 

 

Systematic review: Authors reviewed relevant literature using traditional sources (e.g., Pubmed) and 

meeting abstracts and presentations. SORL1 is a major risk factor for Alzheimer’s disease and several 

studies have demonstrated its interactions with other genes and proteins within neuroplastic and 

canonical Alzheimer’s-related pathways. 

Interpretation: We demonstrate that there is a genetic interaction between SORL1 and BDNF that 

influences SORL1 isoform expression and amyloid deposition both postmortem and in vivo. This result is 

convergent with previous reports of SORL1-dependent aspects of Alzheimer’s disease biology. 

Future directions: We find that one SORL1 isoform, SORL1-005, is an interactively regulated transcript 

and should be a focus of future studies. In addition, the relative impact of SORL1- and BDNF-related 

mechanisms on diffuse and neuritic amyloid accumulation should be explored further. 

Revised Research in Context
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Highlights: 
 

 BDNF Val66Met interacts with SORL1 variants to impact expression of SORL1-005. 

 SORL1-005 may influence diffuse rather than neuritic amyloid pathology in postmortem brain. 

 The BDNF-SORL1 interaction effect is present in individuals without confirmed Alzheimer’s 

disease. 

 In vivo amyloid, measured by PET imaging, is also impacted by the BDNF-SORL1 interaction. 
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Abstract 
INTRODUCTION: The brain-derived neurotrophic factor (BDNF) interacts with important genetic 

Alzheimer’s disease (AD) risk factors. Specifically, variants within the SORL1 gene determine BDNF’s 

ability to reduce Aβ in vitro. We sought to test whether functional BDNF variation interacts with SORL1 

genotypes to influence expression and downstream AD-related processes in humans. 

METHODS: We analyzed postmortem brain RNA-sequencing and neuropathological data for 441 

subjects from the Religious Orders Study/Memory and Aging Project, and molecular and structural 

neuroimaging data for 1 285 subjects from the Alzheimer’s Disease Neuroimaging Initiative. 

RESULTS: We found one SORL1 RNA transcript strongly regulated by SORL1-BDNF interactions in elderly 

without pathological AD, and showing stronger associations with diffuse than neuritic Aβ plaques. The 

same SORL1-BDNF interactions also significantly influenced Aβ load as measured with [18F]Florbetapir 

PET.  

DISCUSSION: Our results bridge the gap between risk and resilience factors for AD, demonstrating 

interdependent roles of established SORL1 and BDNF functional genotypes. 

 

Keywords: Alzheimer’s disease, epistasis, RNA sequencing, amyloid, BDNF, SORL1, PET imaging  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 

 

1. Background 
Genetic epistasis may be a major contributor to the “missing heritability” of late-onset Alzheimer’s 

disease (AD) [1], and recent efforts have demonstrated the importance of evaluating gene-gene 

interactions among AD risk variants using integrative approaches [2]. Variants within the sortilin-related 

receptor (SORL1, SORLA, LR11) gene are among the most highly-replicated genetic risk factors for late-

onset Alzheimer’s disease (AD); they have been associated with AD diagnosis in candidate studies [3], 

genome-wide association studies [4], and meta-analyses [5]. While studies have implicated SORL1 

genotypes independently in gene expression [6], the transcriptional control of SORL1 also depends on 

extragenous factors, particularly levels of the brain-derived neurotrophic factor (BDNF) [7]. Accordingly, 

it was recently shown that BDNF administration in iPSC-derived neuron cultures up-regulates SORL1 

expression in a SORL1-genotype dependent manner [8]. The BDNF Val66Met polymorphism determines 

the activity-dependent secretion of BDNF [9] and also the function of the BDNF pro-peptide in 

facilitating neuroplasticity (LTD) [10]. As such, BDNF Val66Met may serve as a functional assay for BDNF 

activity in the brain. Effects of BDNF Val66Met have been shown on early AD phenotypes, such as 

structural [11] and functional [12] neuroimaging, and cognition [13]. These effects may be downstream 

consequences of BDNF’s stimulation of SORL1 activity [14], and therefore may be subject to modulation 

by both BDNF and SORL1 genotypes interdependently. Studying the interaction of functional BDNF and 

SORL1 genotypes in large, well-characterized samples may provide insight into the nature of this 

transcriptional regulatory mechanism and risk vs. resilience for AD. 

We have previously shown a main effect of SORL1 genotype on levels of prefrontal SORL1 mRNA in 

postmortem brain [15] using microarray technology that was unable to detect specific SORL1 transcript 

isoforms. Since previous reports show differential SORL1 transcript expression both in AD [16] and as a 

result of SORL1 genotype [6], microarray analyses may have missed crucial transcript-specific 

information. RNA-sequencing (RNA-seq) offers distinct advantages over probe-based methodologies as 
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it allows for the alignment of assembled transcript reads to any sequence template and the estimation 

of isoform expression based on these reads. We have also previously shown age-dependent effects of 

the BDNF Val66Met polymorphism on white matter microstructure, cortical thickness, and episodic 

memory performance in healthy adults [17], suggesting that as-of-yet unidentified factors may act to 

influence BDNF’s protective effects on neurodegeneration and cognitive aging. 

Given the regulatory interaction of BDNF protein with SORL1 genotype in human iPSC-derived neurons 

[8], we hypothesized that common SORL1 gene variants may interact with BDNF Val66Met to influence 

the expression of SORL1 transcripts. Further, given the functions of SORL1 within the amyloidogenic 

cascade, we hypothesized that genetic interactions predicting altered SORL1 expression may affect 

amyloid neuropathology as well as brain structures at risk in the early stages of AD. To test this, we 

performed an unbiased locus-wide gene-gene interaction analysis of SORL1 SNPs with BDNF Val66Met 

to model the expression of multiple SORL1 transcripts, quantified by RNA-seq of postmortem brain 

tissue, in 441 subjects from the Religious Orders Study and Memory and Aging Project (ROS/MAP). 

Transcripts showing significant evidence for regulation by SORL1-BDNF interactions were also tested for 

effects on postmortem neuropathology in the same subjects. We then tested significant SNP-SNP 

interactions for effects on in vivo frontal amyloid load, as measured by [18F]Florbetapir PET, in 710 

subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Finally, to explore potential 

downstream effects of these SNP-SNP interactions on brain structure, we examined 1 285 subjects from 

ADNI and 172 subjects from ROS/MAP with MRI estimates of entorhinal cortex volume, and 185 subjects 

from ADNI 2 with diffusion tensor imaging (DTI) data for tracts implicated in AD. 
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2. Methods 

2.1 Religious Orders Study and Memory and Aging Project (ROS/MAP) 

2.1.1 Study Participants 

A total of 441 subjects with genomic, RNA sequencing, and neuropathological data were included in the 

present study. All participants were from ROS [18] and MAP [18]; two large ongoing cohort studies 

enrolling non-AD subjects at baseline, centered at the Rush Alzheimer’s Disease Center at Rush 

University in Chicago, IL. Both studies were approved by the Institutional Review Board of Rush 

University Medical Center.  

2.1.2 Genetics 

Genotyping of all subjects was performed using the Affymetrix (Santa Clara, CA, USA) Genechip 6.0 

platform. APOE (rs7412 and rs429358) genotypes were imputed from MACH (version 1.0.16a) and 

HapMap release 22 CEU (build 36), as previously described [19]. Common variants within 10kb of the 

SORL1 locus (chr. 11, position 121,312,912 – 121,514,471; GRCh37 coordinates) were extracted using 

PLINK (v1.90b) [20]. Variants were pruned for minor allele frequency (MAF>0.1) and Hardy-Weinberg 

Equilibrium (HWE p>0.001), resulting in a final set of 160 for analysis.  

2.1.3 Postmortem SORL1 Isoform Expression 

RNA-seq data (50 million paired-end reads of 101 bp) were generated from frozen dorsolateral 

prefrontal cortex tissues following the construction of complementary DNA libraries, as previously 

published [21]. Expression abundance was calculated as fragments per kilobase of exon per million reads 

mapped (FPKM) (See Supplementary Methods). 

2.1.4 Postmortem Neuropathology 

A board-certified neuropathologist blinded to age and all clinical data established neuropathologic 

diagnoses for each subject. Five types of AD pathology were quantified for ROS/MAP subject samples: 
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mid-frontal neuritic plaques and diffuse plaques, total amyloid, paired helical filament tau, and 

neurofibrillary tangles (see supplementary Methods). 

2.1.5 In Vivo Structural MRI 

High resolution structural T1 images were acquired for a subset of n=172 ROS/MAP subjects (overlap of 

n=5 with subjects from expression dataset) [22] and entorhinal cortex volumes (mm3) were estimated 

for each subject using Freesurfer (http://surfer.nmr.mgh.harvard.edu) (see Supplementary Methods). 

 

2.2 Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

2.2.1 Study Participants 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI; phases 1, GO, and 2 – see Supplementary 

Methods) is a multi-center collaboration enrolling elderly subjects at various stages of cognitive 

impairment. All subjects are administered clinical evaluations at time of study enrollment by trained 

physicians as previously described [23]. See supplementary Methods for details. 

2.2.2 Genetics 

ADNI subjects were genotyped using the HumanOmniExpress BeadChip (Illumina Inc., San Diego, CA). 

Genetic quality control was conducted using PLINK (v1.90b). Imputation was performed using IMPUTE2 

(v2.3.1) [24], with the 1000 Genomes Phase1 integrated haplotypes as the reference panel. SNPs with 

an IMPUTE2 info score of less than 0.5, HWE p<0.001, and MAF <0.01 were excluded from further 

analyses.  

2.2.3 In Vivo Structural MRI and DTI 

A total of 1 285 subjects from ADNI 1, GO, and 2 underwent structural MRI protocols to generate 

estimates of entorhinal cortex volume. Entorhinal cortex and total intracranial volumes were estimated 

using FreeSurfer (v4.3) [25]. Diffusion-weighted images were acquired for a subset of 185 subjects from 

ADNI 2 using an optimized protocol and rigorous quality control [26]. Estimates of fractional anisotropy 
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(FA) were generated for specific white matter tracts according to the JHU “Eve” white matter atlas labels 

(see Supplementary Methods).  

2.2.4 In Vivo Aβ [18F]Florbetapir PET 
PET imaging data were available for 710 subjects from ADNI 2. Details of brain Aβ [18F]Florbetapir PET 

imaging and preprocessing in ADNI have been described elsewhere [27]. Signal from [18F]Florbetapir 

within cortical subregions were not standardized and so we co-varied for signal from a composite 

reference region (see Supplementary Methods). 

 

2.3 Statistical Analysis 
Analyses were performed using R (v3.1.1) statistical software (http://www.r-project.org/) [28]. 

Haploview (v4.2) [29] was used for calculations of LD structure. Based on lack of expression, data for 

three transcripts could not be analyzed: SORL1-003, SORL1-004, SORL1-007 (See Figure S1 for size and 

position of all transcripts). All 10 remaining transcripts showed heavily right-skewed FPKM distributions 

(skewness ranging from 0.71-5.3, all D’Agostino test p<1.3x10-5) that could not be coerced to normal 

(using Box-Cox power transformations) and thus were evaluated as binary outcomes (expressed above 0 

FPKM vs. 0 FPKM, or median split where the median>0). Each of 160 SNPs within the SORL1 locus were 

tested for interaction with BDNF Val66Met, with each transcript as outcome using logistic regression, 

co-varying for technical and demographic factors. 

To correct for multiple testing accounting for LD structure across SORL1 SNPs, we first calculated the 

effective number of independent SNPs across the SORL1 locus (as in Replogle et al. [30]); of the 160 

SORL1 tested, six independent SNPs captured the haplotypic diversity at this locus (strong LD structure 

shown in Figure S2). Considering 10 SORL1 transcripts, the final experiment-wise Bonferroni corrected 

significance threshold was p<8.33x10-4 (α=0.05 / 6 independent SNPs / 10 transcripts).  
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Transcripts that showed significant evidence for interactive regulation by SORL1 variants and BDNF 

Val66Met were analyzed for effects on neuropathology. Pathology levels were square-root transformed 

and analyzed using linear regression, and, since SORL1-005 expression was evaluated as a continuous 

predictor, influential observations (evaluated using dfbetas and Cook’s distance) were removed from 

these analyses (final n=439).  

SNP-SNP interactions from expression analyses that remained significant after correction for multiple 

testing were carried forward to test for effects on in vivo Aβ [18F]Florbetapir PET. To maintain regional 

specificity, average amyloid loads across seven bilateral frontal cortical regions of interest were analyzed 

as outcomes for each gene-gene interaction using linear regression. Interaction p-values were corrected 

for multiple testing using the False Discovery Rate (FDR) procedure (q=0.05).  

Finally, to examine potential downstream consequences of altered amyloid pathology on brain 

structure, the same set of SNP-SNP interactions identified by expression analyses were explored for 

effects on entorhinal cortex volume (one of the earliest brain regions to be affected by AD pathological 

lesions and atrophy [31]), and white matter FA across five bilateral tracts. 

See Supplementary Methods for details.  

 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

10 

 

3. Results 

3.1 SORL1 Transcript Expression and Postmortem Neuropathology 
Sample demographics for ROS/MAP are summarized in Table 1. Out of a total 1 600 tests, 36 remained 

significant after correction for multiple testing and all of these 36 modeled the same transcript, SORL1-

005 (ENST00000534286), as the outcome (Figure 1). The SNP showing the strongest interaction effect 

with BDNF Val66Met was rs12364988 (Wald X2
1=19.09, p=1.25x10-5, n=441), where the rs12364988T 

allele reduced likelihood of SORL1-005 expression in the BDNFVal homozygotes (ORTT:CC=0.38, 

C.I.95%=[0.18,0.80]), but greatly increased likelihood of expression among BDNFMet carriers (ORTT:CC=7.03, 

C.I.95%=[2.42,20.46]) (see Figure 2A). Rs12364988, within the 5’ region of SORL1, was in moderate to 

strong linkage disequilibrium (LD) with the remaining 35 SNPs that showed significant interaction with 

BDNF Val66Met in the ROS/MAP sample (D’ range=0.80-1, r2 range=0.35-1).  

Post-hoc tests in diagnostic subgroups revealed different patterns of effect in non-AD vs. pathologically-

confirmed AD subjects. In the non-AD subgroup (n=179), 44 tests showed interaction p-values below our 

threshold for multiple testing. As in the overall sample, all significant models predicted SORL1-005 

expression as outcome, though with much stronger effect sizes observed for the top interacting SORL1 

SNP (rs676759, Wald X2
1=19.27, p=1.14x10-5) in the BDNFVal homozygote (ORCC:TT=0.093, 

C.I.95%=[0.026,0.34]) and BDNFMet carrier groups (ORCC:TT=23.12, C.I.95%=[3.04,175.36]) (see Figure 2B). In 

the pathologically-confirmed AD subset (n=262), no test survived correction for multiple testing (for 

rs676759, interaction p=0.16, see Figure 2C), suggesting that the interaction effect is specific to 

individuals without confirmed AD.  

Since all interactions showed regulatory effects on the same transcript, SORL1-005, we evaluated the 

effect of SORL1-005 expression on five measures of postmortem neuropathology in the ROS/MAP 

sample. Across diagnostic groups, there was a modest effect of SORL1-005 on diffuse plaques, whereby 
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increased levels of SORL1-005 were associated only with increased number of plaques SORL1-005 

(F1,428=4.91, p=0.027, n=439), though this result did not survive correction for multiple testing (see 

Supplementary Results). No effects were observed for any other pathology at praw<0.05. 

 

3.2 In Vivo Neuroimaging 

Sample demographics for ADNI subjects are summarized in Table 2. A total of 36 SNP-SNP interactions 

surviving correction for multiple testing in SORL1 expression analyses were analyzed across seven 

bilateral frontal cortical regions of interest for in vivo Aβ using [18F]Florbetapir PET, resulting in a total of 

252 significant tests before correction. After FDR correction, 44 models remained significant. Between 

these 44 models, 18 different SORL1 SNPs demonstrated significant interaction with BDNF Val66Met to 

predict levels of frontal Aβ across five regions of interest (see Supplementary Results). The top SNP 

showing interaction was rs618874 (F1,649=12.12, praw=5.3x10-4, n=710); the rs618874T allele was 

associated with decreased amyloid burden in BDNFVal homozygotes, but increased amyloid in BDNFMet 

carriers (see Figure 3). This is in alignment with effects observed on gene expression and 

neuropathology in ROS/MAP, whereby the rs12364988T allele, which is strongly linked to rs618874T 

(ADNI r2=0.73; ROS/MAP r2=0.74), resulted in BDNFMet-dependent increases in SORL1-005. 

Structural imaging analyses revealed similar patterns of SORL1-BDNF interaction at p<0.05; however, 

effects did not survive correction for multiple testing (see Supplementary Results; Figure S3). 
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4. Discussion 
We found that linked SORL1 variants interacted with BDNF Val66Met to regulate prefrontal expression 

of one SORL1 transcript, SORL1-005 (ENST00000534286), and that this isoform was weakly associated 

with increased diffuse amyloid plaques in midfrontal tissue from the same subjects. We then 

demonstrated that the same genetic interactions regulating SORL1-005 expression determined frontal 

amyloid deposition in vivo using PET imaging. The gene variant that most significantly interacted with 

BDNF Val66Met to influence SORL1-005 expression, rs12364988, is part of the same highly-linked 

haplotype block recently shown to interact with BDNF in human iPSC-derived neurons to regulate SORL1 

mRNA expression [8]. By combining layers of genetic, transcriptomic, and neuroimaging data, we have 

shown that BDNF Val66Met status may determine the background on which SORL1 risk variants exert 

their effects (results across phenotypes are summarized in Table S1). Through this lens, BDNF’s 

modulation of resilience via cognitive reserve [32] is also clarified; depending on SORL1 genotype, the 

effects of Val66Met may influence protection against AD by promoting diffuse plaque deposition 

preferentially over neuritic. 

SORL1 is a member of the Vps10p-domain (Vps10p-D) family of neuronal receptors [33], several of 

which have been shown to interact directly with BDNF. Sortilin, another Vps10p receptor, is responsible 

for intracellular trafficking of newly synthesized proBDNF via its physical interaction with the region of 

BDNF pro-domain in which the Val66Met substitution resides [34]. BDNF Val66Met has been associated 

with risk for AD [35] and AD-related intermediate phenotypes [36], albeit inconsistently, and is thought 

to be an important factor in modulating neuroplasciticty [10]. Our results may provide insight into the 

inconsistent literature on the effects of BDNF Val66Met (i.e. why it has not been identified by GWAS for 

AD); the vast majority of studies in this area have not accounted for SORL1 genotype and thus may be 

missing crucial information determining the direction and magnitude of BDNF’s effects. The mechanisms 

via which BDNF Val66Met influences downstream risk for AD are complex and not yet understood; 
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recently it was shown that BDNF Val66Met alters the expression of miR-146 in humanized BDNF knock-

in mice [37], suggesting that this variant may influence the expression of multiple target genes 

simultaneously. 

SORL1-005 is a putative protein-coding transcript (UniProt ID: E9PP43) of 3 501bp, containing 25 exons 

(compared to 48 in the full length transcript), and lacking the Vps10p domain found in full length SORL1 

protein. The lack of this domain could potentially interrupt the function of SORL1-005 protein within the 

amyloid cascade and contribute to the accumulation of pathogenic Aβ species [3], consistent with our 

observations of concomitant increases in diffuse plaques postmortem and amyloid burden in vivo. A 

second mechanism via which increased SORL1-005 may exert pathological effects on brain structure is 

regulated intramembrane proteolysis [38]; SORL1 has been shown to undergo sequential cleavage by 

alpha and gamma-secretase enzymes [39], liberating protein fragments that are internalized to the 

nucleus and play roles in gene regulation. It is possible that altered recognition of SORL1-005 by gamma-

secretase results in the absence of SORL1 COOH-terminal fragments that may preserve pathologically-

protective gene regulation; such absence is also seen in cells co-transfected with FAD-linked PS1 

mutations [39]. In either case, given SORL1’s dual roles in recycling APP [3] and lysosomal targeting of 

Aβ [40], alternative splicing causing loss-of-function would be expected to influence amyloid levels in 

the direction observed in our study.  

While functional annotations of SORL1 variants within our top interacting SORL1 haplotype block (which 

lie approximately 50kb 5’ exon 25 of the full length transcript; Figure S4) do not directly reveal an 

underlying mechanism related to alternative splicing (See Supplementary Materials), it has been shown 

that a functional SORL1 rare variant (rs117260922, E270K), which is located only one base pair from our 

top SNP, rs12364988, is responsible for a conformational change in SORL1 that results in failure to 
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interact with APP at the cell surface [41]. In addition, another nearby variant in high LD with rs12364988 

– rs923893 – is a cis-eQTL for SORL1 expression in human brain tissue [42]. 

Our observation that SORL1-BDNF interactions influenced SORL1-005 expression in non-pathological AD 

subjects may be due to the interruption or masking of transcriptional mechanisms by AD-related 

neuropathology: it has been shown that Aβ oligomers are capable of inducing gene expression changes 

across diverse functional classes in human brain tissue [43], and that genes involved in intracellular 

trafficking specifically show marked down-regulation in postmortem AD brain [44]. These findings may 

have implications for identifying gene regulatory mechanisms in AD brain, as the effects of 

transcriptional machinery may be altered depending on levels of cellular pathology. 

The weak association of SORL1-005 with only diffuse plaques of midfrontal cortex may suggest a 

differential contribution of the SORL1-BDNF interaction to diffuse vs. neuritic plaque pathology. Diffuse 

plaques account for the majority of plaque pathology in human brain [45], are associated with AD 

diagnosis [46], but are also found frequently in so-called “normal” aging [47], suggesting that they may 

be indicative of the early, pre-symptomatic stages of disease or even just a non-pathological form of 

aging. It has been shown that Aβ plays crucial roles in neuroplasticity [48], and may be produced as part 

of a neuroprotective response to synaptic pathology in AD [49]; Aβ1-28 has been shown to promote 

growth and survival of hippocampal neurons [50]. As a result, it is possible that the regulatory action of 

SORL1 and BDNF may act on amyloid pathways in such a way that influences both neuritic plaque 

(neurotoxic) and diffuse plaque (neuroprotective) pathologies. Particularly, the interactive effects of 

variants identified by our study may influence the latter pathway to the greatest degree; hence why 

genetic effects are only observed in the non-AD group. Further, [18F]Florbetapir has been shown to 

measure both neuritic and diffuse plaque burden in the brain [51], meaning that our in vivo Aβ findings 

may be reflective of SORL1-005’s effect on diffuse plaques in postmortem frontal cortex. Taken 
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together, we suggest that the interaction between BDNF and SORL1 may provide links between AD risk 

and the healthy aging process by influencing the expression of a transcript that is not related to AD risk, 

but nonetheless modulates diffuse amyloid deposition postmortem and in vivo.  

The present study has several limitations. First, the decision to analyze gene expression as a binary 

outcome necessarily introduces a level of bias into the analyses; it is possible that by splitting the 

distributions of transcript expression into expressed vs. not expressed, we missed quantitative 

information that here we would have been unable to test without violating statistical assumptions. 

Second, the expression of SORL1 has been shown to be cell-type specific [52], whereby some individuals 

with AD have loss of expression in neurons, but not glia. We are unable to test this directly in our 

sample, as the ROS/MAP expression data are derived from tissue homogenate of the prefrontal cortex. 

We took steps to maintain regional specificity in our analyses by analyzing frontal pathology, which 

should help mitigate some concerns over differences between regions. Third, as with any RNA 

sequencing experiment, alignment error must be considered as a potential confounder. Fourth, BDNF’s 

effects on amyloid pathology [8] as well as TrkB-dependeng trophic signaling [14] have been shown to 

depend on SORL1, and in this study we used the functional Val66Met variant as an indirect proxy for 

brain BDNF activity [9]. However, due to inconsistency in the literature surrounding the influence of 

Val66Met on BDNF protein and mRNA expression in blood and brain tissue, we acknowledge the 

uncertainty in this assumption. Finally, we acknowledge that mRNA levels of SORL1 may not be reliable 

indicators of protein levels. Unfortunately, we did not measure protein directly in our experiments. 

Future studies will need to measure protein directly in the tissues.  In fact, proteomic projects are 

currently underway in the ROS/MAP cohort that will include both SORL1 and BDNF. However, there are 

also limitations to targeted proteomics; for example, it cannot capture individual post-translational 
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modifications. Thus, ultimately, a variety of approaches, including the mRNA approach used in the 

present study, are useful for identifying genes and proteins important in the pathogenesis of AD. 

In conclusion, we have demonstrated a novel interaction between two AD-associated genes that 

determines the isoform-specific expression of SORL1, and impacts levels of amyloid deposition in two 

large samples. We believe that this interaction may provide insight into the convergence of prototypical 

neurotoxic Aβ deposition and the brain reserve found in aged individuals who are resilient to AD. This 

work has implications for the way that genetic association studies of SORL1 and BDNF are interpreted 

and may be of use in determining specific groups of genetically at-risk individuals in future clinical trials 

of novel therapies directed toward amyloidogenic and neuroplastic mechanisms. 
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Figure Legends 
 

Figure 1. –Log(p-values) for interaction terms of SNPs across the SORL1 locus with BDNF Val66Met in 

logistic regression models for expression of SORL1-005 (ENST00000534286). The top interacting SNP 

was rs12364988 (Wald X2
1=19.09, p=1.25x10-5, n=441). Colour coding shows LD structure in the region 

(according to 1000 Genomes hg19 EUR reference), with red indicating high LD (r2>0.8) and dark blue 

indicating low LD (r2<0.2) with respect to rs12364988. Plot was generated with LocusZoom [53]. 

Figure 2. Top interaction effects of SORL1 variants (rs12364988 and rs676759) and BDNF Val66Met on 

prefrontal mRNA expression of SORL1-005 (ENST00000534286) in A) the whole ROS/MAP sample (Wald 

X2
1=19.09, p=1.25x10-5, n=441), B) only non-pathologically confirmed AD (non-pathoAD) subjects (Wald 

X2
1=19.27, p=1.14x10-5, n=179), and C) pathologically confirmed AD (pathoAD) subjects (Wald X2

1=1.99, 

p=0.16, n=262). 

Figure 3. SORL1-BDNF interaction effect on in vivo Aβ in the pars orbitalis measured by [18F]Florbetapir 

PET in the ADNI 2 sample (n=710). A) Residual amyloid load according to SORL1 rs618874 and BDNF 

Val66Met groups. B) Effect of SORL1 rs618874 within BDNFVal homozygote and BDNFMet carrier groups 

separately, adjusted for co-variates, with 95% confidence intervals. Rs618874T was associated with 

decreased amyloid burden in BDNFVal homozygotes (ΔAβTT:CC=-0.067, C.I.95%= [-0.13,-0.01]), but increased 

amyloid in BDNFMet carriers (ΔAβTT:CC=0.12, C.I.95%= [0.03,0.21]). Results were not impacted by removal of 

observations lying beyond 1.5*interquartile range of mean binding.  
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Tables 
Table 1. ROS/MAP Sample Demographics 

ROS/MAP expression (n=441) Non-AD (n=179) PathoAD 
(n=179) 

Diff (p)
1
   

Sex (F/M) 107 F, 72 M 171 F, 91 M 0.027   

Age at death (y(SD)) 86.6 (7.2) 89.8 (5.9) <0.0001   

Education (y(SD)) 16.3 (3.6) 16.6 (3.4) 0.47   

MMSE (SD) 25.1 (6.8) 19.1 (9.4) <0.0001   

RIN (SD) 7.2 (1.0) 7.1 (0.9) 0.21   

PMI (SD) 6.8 (4.1) 7.3 (5.4) 0.25   

APOE ε4 status (-/+) 153-, 26+ (15%+) 168-, 94+ 
(36%+) 

<0.0001   

BDNF genotype (valval/met 
carrier) 

116Val, 63M 170Val, 92M 1   

ROS/MAP MRI (n=172) CN (n=112) MCI (n=41) AD (n=13) Other
2
 

(n=6) 
Diff (p)

1
 

Sex (F/M) 81 F, 31 M 30 F, 11 M 12 F, 1 M 3 F, 3 M 0.25 

Age at scan (y(SD)) 83.3 (6.7) 85.3 (5.1) 85.8 (3.8) 86 (2.8) 0.072 

Education (y(SD)) 15.6 (3.3) 15.22 (3.1) 15.9 (2.4) 14.7 (2.4) 0.82 

MMSE (SD) 28.3 (1.5) 26.9 (2.1) 19.2 (6) 22.7 (4.5) <0.0001 

APOE ε4 status (-/+) 95-/17+ (15%+) 29-/12+ 
(29%+) 

8-/5+ 
(38%+) 

5-/1+ 
(17%+) 

0.084 

BDNF genotype (valval/met 
carrier) 

77/35 29/12 7/6 4/2 0.81 

Note: 
1
p-values are two-sided and derived from Fisher’s exact test (for sex, APOE ε4 status, and BDNF genotype) 

and either two-sample t-tests (in expression dataset for age at death, education, MMSE, RIN, and PMI) or ANOVA 
(in imaging dataset for age at scan, education, and MMSE). ROS/MAP = Religious Orders Study / Memory and 
Aging Project; CN = cognitively normal; non-AD = non-neuropathologically-confirmed Alzheimer’s disease; pathoAD 
= neuropathologically-confirmed Alzheimer’s disease; MMSE = Mini Mental Status Exam score at last visit before 
death; Val = Val/Val homozygotes; Met = Met allele carriers; F = female; M = male; y = years; SD = standard 
deviation; R = right; L = left. 
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Table 2. ADNI Sample Demographics 

ADNI 1/GO/2 MRI (n=1 
285) 

CN (n=335) SMC (n=82) EMCI (n=235) LMCI (n=407) AD 
(n=226) 

Diff (p)
1
 

Study phase (1, GO, 2) 193 (1), 142 
(2) 

82 (2) 111 (GO), 124 
(2) 

291 (1), 116 
(2) 

131 (1), 95 
(2) 

<0.0001 

Sex (F/M) 159 F, 176 M 51 F, 31 M 101 F, 134 M 155 F, 252 M 102 F, 124 
M 

0.0012 

Age (y(SD)) 74.7 (5.4) 71.7 (5.4) 71.0 (7.1) 73.3 (7.4) 74.3 (8.1) <0.0001 

Education (y(SD)) 16.2 (2.7) 16.7 (2.6) 16.1 (2.6) 15.8 (2.9) 15.2 (2.9) <0.0001 

MMSE (SD) 29 (1.1) 29 (1.2) 28.4 (1.6) 27.1 (1.8) 23.1 (2.1) <0.0001 

APOE ε4 status (-/+) 251-/84+ 
(25%+) 

53-/29+ 
(35%+) 

132-/103+ 
(44%+) 

175-/232+ 
(57%+) 

68-/158+ 
(70%+) 

<0.0001 

BDNF genotype 
(valval/met carrier) 

231/104 54/28 159/76 271/136 154/72 0.96 

ADNI GO/2 Amyloid 
Sample (n=710) 

CN (n=136) SMC (n=88) EMCI (n=244) LMCI (n=121) AD 
(n=121) 

Diff (p)
1
 

Study phase (GO, 2) 136 (2) 88 (2) 106 (GO), 138 
(2) 

121 (2) 121 (2) <0.0001 

Sex (F/M) 66 F, 70 M 55 F, 33 M 107 F, 137 M 55 F, 66 M 50 F, 71 M 0.024 

Age (y(SD)) 73.9 (5.9) 72.2 (5.8) 71.4 (7.4) 72.5 (7.5) 74.3 (8.5) 0.001 

Education (y(SD)) 16.5 (2.5) 16.8 (2.6) 16 (2.6) 16.5 (2.6) 15.8 (2.6) 0.016 

MMSE (SD) 29.1 (1.2) 29 (1.3) 28.3 (1.6) 27.7 (1.8) 23.1 (2.1) <0.0001 

APOE ε4 status (-/+) 104-/32+ 
(24%+) 

60-/28+ 
(32%+) 

130-/114+ 
(47%+) 

51-/70+ 
(58%+) 

43-/78+ 
(64%+) 

<0.0001 

BDNF genotype 
(valval/met carrier) 

95/41 58/30 167/77 89/32 79/42 0.66 

Note: *p-values are two-sided and derived from Fisher’s exact test (for study phase, sex, APOE ε4 status, and BDNF 
genotype) and ANOVA (for age, education, and MMSE). ADNI = Alzheimer’s Disease Neuroimaging Initiative; CN = 
cognitively normal; SMC = some memory concern; EMCI; early mild cognitive impairment; LMCI = late mild 
cognitive impairment; AD = Alzheimer’s disease; MMSE = Mini Mental Status Exam score; Val = Val/Val 
homozygotes; Met = Met allele carriers; F = female; M = male; y = years; SD = standard deviation. 
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Highlights: 
 

 BDNF Val66Met interacts with SORL1 variants to impact expression of SORL1-005. 

 SORL1-005 may influence diffuse rather than neuritic amyloid pathology in postmortem brain. 

 The BDNF-SORL1 interaction effect is present in individuals without confirmed Alzheimer’s 

disease. 

 In vivo amyloid, measured by PET imaging, is also impacted by the BDNF-SORL1 interaction. 
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Abstract 
INTRODUCTION: The brain-derived neurotrophic factor (BDNF) interacts with important genetic 

Alzheimer’s disease (AD) risk factors. Specifically, variants within the SORL1 gene determine BDNF’s 

ability to reduce Aβ in vitro. We sought to test whether functional BDNF variation interacts with SORL1 

genotypes to influence expression and downstream AD-related processes in humans. 

METHODS: We analyzed postmortem brain RNA-sequencing and neuropathological data for 441 

subjects from the Religious Orders Study/Memory and Aging Project, and molecular and structural 

neuroimaging data for 1 285 subjects from the Alzheimer’s Disease Neuroimaging Initiative. 

RESULTS: We found one SORL1 RNA transcript strongly regulated by SORL1-BDNF interactions in elderly 

without pathological AD, and showing stronger associations with diffuse than neuritic Aβ plaques. The 

same SORL1-BDNF interactions also significantly influenced Aβ load as measured with [18F]Florbetapir 

PET.  

DISCUSSION: Our results bridge the gap between risk and resilience factors for AD, demonstrating 

interdependent roles of established SORL1 and BDNF functional genotypes. 

 

Keywords: Alzheimer’s disease, epistasis, RNA sequencing, amyloid, BDNF, SORL1, PET imaging  
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1. Background 
Genetic epistasis may be a major contributor to the “missing heritability” of late-onset Alzheimer’s 

disease (AD) [1], and recent efforts have demonstrated the importance of evaluating gene-gene 

interactions among AD risk variants using integrative approaches [2]. Variants within the sortilin-related 

receptor (SORL1, SORLA, LR11) gene are among the most highly-replicated genetic risk factors for late-

onset Alzheimer’s disease (AD); they have been associated with AD diagnosis in candidate studies [3], 

genome-wide association studies [4], and meta-analyses [5]. While studies have implicated SORL1 

genotypes independently in gene expression [6], the transcriptional control of SORL1 also depends on 

extragenous factors, particularly levels of the brain-derived neurotrophic factor (BDNF) [7]. Accordingly, 

it was recently shown that BDNF administration in iPSC-derived neuron cultures up-regulates SORL1 

expression in a SORL1-genotype dependent manner [8]. The BDNF Val66Met polymorphism determines 

the activity-dependent secretion of BDNF [9] and also the function of the BDNF pro-peptide in 

facilitating neuroplasticity (LTD) [10]. As such, BDNF Val66Met may serve as a functional assay for BDNF 

activity in the brain. Effects of BDNF Val66Met have been shown on early AD phenotypes, such as 

structural [11] and functional [12] neuroimaging, and cognition [13]. These effects may be downstream 

consequences of BDNF’s stimulation of SORL1 activity [14], and therefore may be subject to modulation 

by both BDNF and SORL1 genotypes interdependently. Studying the interaction of functional BDNF and 

SORL1 genotypes in large, well-characterized samples may provide insight into the nature of this 

transcriptional regulatory mechanism and risk vs. resilience for AD. 

We have previously shown a main effect of SORL1 genotype on levels of prefrontal SORL1 mRNA in 

postmortem brain [15] using microarray technology that was unable to detect specific SORL1 transcript 

isoforms. Since previous reports show differential SORL1 transcript expression both in AD [16] and as a 

result of SORL1 genotype [6], microarray analyses may have missed crucial transcript-specific 

information. RNA-sequencing (RNA-seq) offers distinct advantages over probe-based methodologies as 
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it allows for the alignment of assembled transcript reads to any sequence template and the estimation 

of isoform expression based on these reads. We have also previously shown age-dependent effects of 

the BDNF Val66Met polymorphism on white matter microstructure, cortical thickness, and episodic 

memory performance in healthy adults [17], suggesting that as-of-yet unidentified factors may act to 

influence BDNF’s protective effects on neurodegeneration and cognitive aging. 

Given the regulatory interaction of BDNF protein with SORL1 genotype in human iPSC-derived neurons 

[8], we hypothesized that common SORL1 gene variants may interact with BDNF Val66Met to influence 

the expression of SORL1 transcripts. Further, given the functions of SORL1 within the amyloidogenic 

cascade, we hypothesized that genetic interactions predicting altered SORL1 expression may affect 

amyloid neuropathology as well as brain structures at risk in the early stages of AD. To test this, we 

performed an unbiased locus-wide gene-gene interaction analysis of SORL1 SNPs with BDNF Val66Met 

to model the expression of multiple SORL1 transcripts, quantified by RNA-seq of postmortem brain 

tissue, in 441 subjects from the Religious Orders Study and Memory and Aging Project (ROS/MAP). 

Transcripts showing significant evidence for regulation by SORL1-BDNF interactions were also tested for 

effects on postmortem neuropathology in the same subjects. We then tested significant SNP-SNP 

interactions for effects on in vivo frontal amyloid load, as measured by [18F]Florbetapir PET, in 710 

subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Finally, to explore potential 

downstream effects of these SNP-SNP interactions on brain structure, we examined 1 285 subjects from 

ADNI and 172 subjects from ROS/MAP with MRI estimates of entorhinal cortex volume, and 185 subjects 

from ADNI 2 with diffusion tensor imaging (DTI) data for tracts implicated in AD. 

  



6 

 

2. Methods 

2.1 Religious Orders Study and Memory and Aging Project (ROS/MAP) 

2.1.1 Study Participants 

A total of 441 subjects with genomic, RNA sequencing, and neuropathological data were included in the 

present study. All participants were from ROS [18] and MAP [18]; two large ongoing cohort studies 

enrolling non-AD subjects at baseline, centered at the Rush Alzheimer’s Disease Center at Rush 

University in Chicago, IL. Both studies were approved by the Institutional Review Board of Rush 

University Medical Center.  

2.1.2 Genetics 

Genotyping of all subjects was performed using the Affymetrix (Santa Clara, CA, USA) Genechip 6.0 

platform. APOE (rs7412 and rs429358) genotypes were imputed from MACH (version 1.0.16a) and 

HapMap release 22 CEU (build 36), as previously described [19]. Common variants within 10kb of the 

SORL1 locus (chr. 11, position 121,312,912 – 121,514,471; GRCh37 coordinates) were extracted using 

PLINK (v1.90b) [20]. Variants were pruned for minor allele frequency (MAF>0.1) and Hardy-Weinberg 

Equilibrium (HWE p>0.001), resulting in a final set of 160 for analysis.  

2.1.3 Postmortem SORL1 Isoform Expression 

RNA-seq data (50 million paired-end reads of 101 bp) were generated from frozen dorsolateral 

prefrontal cortex tissues following the construction of complementary DNA libraries, as previously 

published [21]. Expression abundance was calculated as fragments per kilobase of exon per million reads 

mapped (FPKM) (See Supplementary Methods). 

2.1.4 Postmortem Neuropathology 

A board-certified neuropathologist blinded to age and all clinical data established neuropathologic 

diagnoses for each subject. Five types of AD pathology were quantified for ROS/MAP subject samples: 
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mid-frontal neuritic plaques and diffuse plaques, total amyloid, paired helical filament tau, and 

neurofibrillary tangles (see supplementary Methods). 

2.1.5 In Vivo Structural MRI 

High resolution structural T1 images were acquired for a subset of n=172 ROS/MAP subjects (overlap of 

n=5 with subjects from expression dataset) [22] and entorhinal cortex volumes (mm3) were estimated 

for each subject using Freesurfer (http://surfer.nmr.mgh.harvard.edu) (see Supplementary Methods). 

 

2.2 Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

2.2.1 Study Participants 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI; phases 1, GO, and 2 – see Supplementary 

Methods) is a multi-center collaboration enrolling elderly subjects at various stages of cognitive 

impairment. All subjects are administered clinical evaluations at time of study enrollment by trained 

physicians as previously described [23]. See supplementary Methods for details. 

2.2.2 Genetics 

ADNI subjects were genotyped using the HumanOmniExpress BeadChip (Illumina Inc., San Diego, CA). 

Genetic quality control was conducted using PLINK (v1.90b). Imputation was performed using IMPUTE2 

(v2.3.1) [24], with the 1000 Genomes Phase1 integrated haplotypes as the reference panel. SNPs with 

an IMPUTE2 info score of less than 0.5, HWE p<0.001, and MAF <0.01 were excluded from further 

analyses.  

2.2.3 In Vivo Structural MRI and DTI 

A total of 1 285 subjects from ADNI 1, GO, and 2 underwent structural MRI protocols to generate 

estimates of entorhinal cortex volume. Entorhinal cortex and total intracranial volumes were estimated 

using FreeSurfer (v4.3) [25]. Diffusion-weighted images were acquired for a subset of 185 subjects from 

ADNI 2 using an optimized protocol and rigorous quality control [26]. Estimates of fractional anisotropy 
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(FA) were generated for specific white matter tracts according to the JHU “Eve” white matter atlas labels 

(see Supplementary Methods).  

2.2.4 In Vivo Aβ [18F]Florbetapir PET 
PET imaging data were available for 710 subjects from ADNI 2. Details of brain Aβ [18F]Florbetapir PET 

imaging and preprocessing in ADNI have been described elsewhere [27]. Signal from [18F]Florbetapir 

within cortical subregions were not standardized and so we co-varied for signal from a composite 

reference region (see Supplementary Methods). 

 

2.3 Statistical Analysis 
Analyses were performed using R (v3.1.1) statistical software (http://www.r-project.org/) [28]. 

Haploview (v4.2) [29] was used for calculations of LD structure. Based on lack of expression, data for 

three transcripts could not be analyzed: SORL1-003, SORL1-004, SORL1-007 (See Figure S1 for size and 

position of all transcripts). All 10 remaining transcripts showed heavily right-skewed FPKM distributions 

(skewness ranging from 0.71-5.3, all D’Agostino test p<1.3x10-5) that could not be coerced to normal 

(using Box-Cox power transformations) and thus were evaluated as binary outcomes (expressed above 0 

FPKM vs. 0 FPKM, or median split where the median>0). Each of 160 SNPs within the SORL1 locus were 

tested for interaction with BDNF Val66Met, with each transcript as outcome using logistic regression, 

co-varying for technical and demographic factors. 

To correct for multiple testing accounting for LD structure across SORL1 SNPs, we first calculated the 

effective number of independent SNPs across the SORL1 locus (as in Replogle et al. [30]); of the 160 

SORL1 tested, six independent SNPs captured the haplotypic diversity at this locus (strong LD structure 

shown in Figure S2). Considering 10 SORL1 transcripts, the final experiment-wise Bonferroni corrected 

significance threshold was p<8.33x10-4 (α=0.05 / 6 independent SNPs / 10 transcripts).  
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Transcripts that showed significant evidence for interactive regulation by SORL1 variants and BDNF 

Val66Met were analyzed for effects on neuropathology. Pathology levels were square-root transformed 

and analyzed using linear regression, and, since SORL1-005 expression was evaluated as a continuous 

predictor, influential observations (evaluated using dfbetas and Cook’s distance) were removed from 

these analyses (final n=439).  

SNP-SNP interactions from expression analyses that remained significant after correction for multiple 

testing were carried forward to test for effects on in vivo Aβ [18F]Florbetapir PET. To maintain regional 

specificity, average amyloid loads across seven bilateral frontal cortical regions of interest were analyzed 

as outcomes for each gene-gene interaction using linear regression. Interaction p-values were corrected 

for multiple testing using the False Discovery Rate (FDR) procedure (q=0.05).  

Finally, to examine potential downstream consequences of altered amyloid pathology on brain 

structure, the same set of SNP-SNP interactions identified by expression analyses were explored for 

effects on entorhinal cortex volume (one of the earliest brain regions to be affected by AD pathological 

lesions and atrophy [31]), and white matter FA across five bilateral tracts. 

See Supplementary Methods for details.  
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3. Results 

3.1 SORL1 Transcript Expression and Postmortem Neuropathology 
Sample demographics for ROS/MAP are summarized in Table 1. Out of a total 1 600 tests, 36 remained 

significant after correction for multiple testing and all of these 36 modeled the same transcript, SORL1-

005 (ENST00000534286), as the outcome (Figure 1). The SNP showing the strongest interaction effect 

with BDNF Val66Met was rs12364988 (Wald X2
1=19.09, p=1.25x10-5, n=441), where the rs12364988T 

allele reduced likelihood of SORL1-005 expression in the BDNFVal homozygotes (ORTT:CC=0.38, 

C.I.95%=[0.18,0.80]), but greatly increased likelihood of expression among BDNFMet carriers (ORTT:CC=7.03, 

C.I.95%=[2.42,20.46]) (see Figure 2A). Rs12364988, within the 5’ region of SORL1, was in moderate to 

strong linkage disequilibrium (LD) with the remaining 35 SNPs that showed significant interaction with 

BDNF Val66Met in the ROS/MAP sample (D’ range=0.80-1, r2 range=0.35-1).  

Post-hoc tests in diagnostic subgroups revealed different patterns of effect in non-AD vs. pathologically-

confirmed AD subjects. In the non-AD subgroup (n=179), 44 tests showed interaction p-values below our 

threshold for multiple testing. As in the overall sample, all significant models predicted SORL1-005 

expression as outcome, though with much stronger effect sizes observed for the top interacting SORL1 

SNP (rs676759, Wald X2
1=19.27, p=1.14x10-5) in the BDNFVal homozygote (ORCC:TT=0.093, 

C.I.95%=[0.026,0.34]) and BDNFMet carrier groups (ORCC:TT=23.12, C.I.95%=[3.04,175.36]) (see Figure 2B). In 

the pathologically-confirmed AD subset (n=262), no test survived correction for multiple testing (for 

rs676759, interaction p=0.16, see Figure 2C), suggesting that the interaction effect is specific to 

individuals without confirmed AD.  

Since all interactions showed regulatory effects on the same transcript, SORL1-005, we evaluated the 

effect of SORL1-005 expression on five measures of postmortem neuropathology in the ROS/MAP 

sample. Across diagnostic groups, there was a modest effect of SORL1-005 on diffuse plaques, whereby 
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increased levels of SORL1-005 were associated only with increased number of plaques SORL1-005 

(F1,428=4.91, p=0.027, n=439), though this result did not survive correction for multiple testing (see 

Supplementary Results). No effects were observed for any other pathology at praw<0.05. 

 

3.2 In Vivo Neuroimaging 

Sample demographics for ADNI subjects are summarized in Table 2. A total of 36 SNP-SNP interactions 

surviving correction for multiple testing in SORL1 expression analyses were analyzed across seven 

bilateral frontal cortical regions of interest for in vivo Aβ using [18F]Florbetapir PET, resulting in a total of 

252 significant tests before correction. After FDR correction, 44 models remained significant. Between 

these 44 models, 18 different SORL1 SNPs demonstrated significant interaction with BDNF Val66Met to 

predict levels of frontal Aβ across five regions of interest (see Supplementary Results). The top SNP 

showing interaction was rs618874 (F1,649=12.12, praw=5.3x10-4, n=710); the rs618874T allele was 

associated with decreased amyloid burden in BDNFVal homozygotes, but increased amyloid in BDNFMet 

carriers (see Figure 3). This is in alignment with effects observed on gene expression and 

neuropathology in ROS/MAP, whereby the rs12364988T allele, which is strongly linked to rs618874T 

(ADNI r2=0.73; ROS/MAP r2=0.74), resulted in BDNFMet-dependent increases in SORL1-005. 

Structural imaging analyses revealed similar patterns of SORL1-BDNF interaction at p<0.05; however, 

effects did not survive correction for multiple testing (see Supplementary Results; Figure S3). 
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4. Discussion 
We found that linked SORL1 variants interacted with BDNF Val66Met to regulate prefrontal expression 

of one SORL1 transcript, SORL1-005 (ENST00000534286), and that this isoform was weakly associated 

with increased diffuse amyloid plaques in midfrontal tissue from the same subjects. We then 

demonstrated that the same genetic interactions regulating SORL1-005 expression determined frontal 

amyloid deposition in vivo using PET imaging. The gene variant that most significantly interacted with 

BDNF Val66Met to influence SORL1-005 expression, rs12364988, is part of the same highly-linked 

haplotype block recently shown to interact with BDNF in human iPSC-derived neurons to regulate SORL1 

mRNA expression [8]. By combining layers of genetic, transcriptomic, and neuroimaging data, we have 

shown that BDNF Val66Met status may determine the background on which SORL1 risk variants exert 

their effects (results across phenotypes are summarized in Table S1). Through this lens, BDNF’s 

modulation of resilience via cognitive reserve [32] is also clarified; depending on SORL1 genotype, the 

effects of Val66Met may influence protection against AD by promoting diffuse plaque deposition 

preferentially over neuritic. 

SORL1 is a member of the Vps10p-domain (Vps10p-D) family of neuronal receptors [33], several of 

which have been shown to interact directly with BDNF. Sortilin, another Vps10p receptor, is responsible 

for intracellular trafficking of newly synthesized proBDNF via its physical interaction with the region of 

BDNF pro-domain in which the Val66Met substitution resides [34]. BDNF Val66Met has been associated 

with risk for AD [35] and AD-related intermediate phenotypes [36], albeit inconsistently, and is thought 

to be an important factor in modulating neuroplasciticty [10]. Our results may provide insight into the 

inconsistent literature on the effects of BDNF Val66Met (i.e. why it has not been identified by GWAS for 

AD); the vast majority of studies in this area have not accounted for SORL1 genotype and thus may be 

missing crucial information determining the direction and magnitude of BDNF’s effects. The mechanisms 

via which BDNF Val66Met influences downstream risk for AD are complex and not yet understood; 
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recently it was shown that BDNF Val66Met alters the expression of miR-146 in humanized BDNF knock-

in mice [37], suggesting that this variant may influence the expression of multiple target genes 

simultaneously. 

SORL1-005 is a putative protein-coding transcript (UniProt ID: E9PP43) of 3 501bp, containing 25 exons 

(compared to 48 in the full length transcript), and lacking the Vps10p domain found in full length SORL1 

protein. The lack of this domain could potentially interrupt the function of SORL1-005 protein within the 

amyloid cascade and contribute to the accumulation of pathogenic Aβ species [3], consistent with our 

observations of concomitant increases in diffuse plaques postmortem and amyloid burden in vivo. A 

second mechanism via which increased SORL1-005 may exert pathological effects on brain structure is 

regulated intramembrane proteolysis [38]; SORL1 has been shown to undergo sequential cleavage by 

alpha and gamma-secretase enzymes [39], liberating protein fragments that are internalized to the 

nucleus and play roles in gene regulation. It is possible that altered recognition of SORL1-005 by gamma-

secretase results in the absence of SORL1 COOH-terminal fragments that may preserve pathologically-

protective gene regulation; such absence is also seen in cells co-transfected with FAD-linked PS1 

mutations [39]. In either case, given SORL1’s dual roles in recycling APP [3] and lysosomal targeting of 

Aβ [40], alternative splicing causing loss-of-function would be expected to influence amyloid levels in 

the direction observed in our study.  

While functional annotations of SORL1 variants within our top interacting SORL1 haplotype block (which 

lie approximately 50kb 5’ exon 25 of the full length transcript; Figure S4) do not directly reveal an 

underlying mechanism related to alternative splicing (See Supplementary Materials), it has been shown 

that a functional SORL1 rare variant (rs117260922, E270K), which is located only one base pair from our 

top SNP, rs12364988, is responsible for a conformational change in SORL1 that results in failure to 
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interact with APP at the cell surface [41]. In addition, another nearby variant in high LD with rs12364988 

– rs923893 – is a cis-eQTL for SORL1 expression in human brain tissue [42]. 

Our observation that SORL1-BDNF interactions influenced SORL1-005 expression in non-pathological AD 

subjects may be due to the interruption or masking of transcriptional mechanisms by AD-related 

neuropathology: it has been shown that Aβ oligomers are capable of inducing gene expression changes 

across diverse functional classes in human brain tissue [43], and that genes involved in intracellular 

trafficking specifically show marked down-regulation in postmortem AD brain [44]. These findings may 

have implications for identifying gene regulatory mechanisms in AD brain, as the effects of 

transcriptional machinery may be altered depending on levels of cellular pathology. 

The weak association of SORL1-005 with only diffuse plaques of midfrontal cortex may suggest a 

differential contribution of the SORL1-BDNF interaction to diffuse vs. neuritic plaque pathology. Diffuse 

plaques account for the majority of plaque pathology in human brain [45], are associated with AD 

diagnosis [46], but are also found frequently in so-called “normal” aging [47], suggesting that they may 

be indicative of the early, pre-symptomatic stages of disease or even just a non-pathological form of 

aging. It has been shown that Aβ plays crucial roles in neuroplasticity [48], and may be produced as part 

of a neuroprotective response to synaptic pathology in AD [49]; Aβ1-28 has been shown to promote 

growth and survival of hippocampal neurons [50]. As a result, it is possible that the regulatory action of 

SORL1 and BDNF may act on amyloid pathways in such a way that influences both neuritic plaque 

(neurotoxic) and diffuse plaque (neuroprotective) pathologies. Particularly, the interactive effects of 

variants identified by our study may influence the latter pathway to the greatest degree; hence why 

genetic effects are only observed in the non-AD group. Further, [18F]Florbetapir has been shown to 

measure both neuritic and diffuse plaque burden in the brain [51], meaning that our in vivo Aβ findings 

may be reflective of SORL1-005’s effect on diffuse plaques in postmortem frontal cortex. Taken 
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together, we suggest that the interaction between BDNF and SORL1 may provide links between AD risk 

and the healthy aging process by influencing the expression of a transcript that is not related to AD risk, 

but nonetheless modulates diffuse amyloid deposition postmortem and in vivo.  

The present study has several limitations. First, the decision to analyze gene expression as a binary 

outcome necessarily introduces a level of bias into the analyses; it is possible that by splitting the 

distributions of transcript expression into expressed vs. not expressed, we missed quantitative 

information that here we would have been unable to test without violating statistical assumptions. 

Second, the expression of SORL1 has been shown to be cell-type specific [52], whereby some individuals 

with AD have loss of expression in neurons, but not glia. We are unable to test this directly in our 

sample, as the ROS/MAP expression data are derived from tissue homogenate of the prefrontal cortex. 

We took steps to maintain regional specificity in our analyses by analyzing frontal pathology, which 

should help mitigate some concerns over differences between regions. Third, as with any RNA 

sequencing experiment, alignment error must be considered as a potential confounder. Fourth, BDNF’s 

effects on amyloid pathology [8] as well as TrkB-dependeng trophic signaling [14] have been shown to 

depend on SORL1, and in this study we used the functional Val66Met variant as an indirect proxy for 

brain BDNF activity [9]. However, due to inconsistency in the literature surrounding the influence of 

Val66Met on BDNF protein and mRNA expression in blood and brain tissue, we acknowledge the 

uncertainty in this assumption. Finally, we acknowledge that mRNA levels of SORL1 may not be reliable 

indicators of protein levels. Unfortunately, we did not measure protein directly in our experiments. 

Future studies will need to measure protein directly in the tissues.  In fact, proteomic projects are 

currently underway in the ROS/MAP cohort that will include both SORL1 and BDNF. However, there are 

also limitations to targeted proteomics; for example, it cannot capture individual post-translational 
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modifications. Thus, ultimately, a variety of approaches, including the mRNA approach used in the 

present study, are useful for identifying genes and proteins important in the pathogenesis of AD. 

In conclusion, we have demonstrated a novel interaction between two AD-associated genes that 

determines the isoform-specific expression of SORL1, and impacts levels of amyloid deposition in two 

large samples. We believe that this interaction may provide insight into the convergence of prototypical 

neurotoxic Aβ deposition and the brain reserve found in aged individuals who are resilient to AD. This 

work has implications for the way that genetic association studies of SORL1 and BDNF are interpreted 

and may be of use in determining specific groups of genetically at-risk individuals in future clinical trials 

of novel therapies directed toward amyloidogenic and neuroplastic mechanisms. 
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Figure Legends 
 

Figure 1. –Log(p-values) for interaction terms of SNPs across the SORL1 locus with BDNF Val66Met in 

logistic regression models for expression of SORL1-005 (ENST00000534286). The top interacting SNP 

was rs12364988 (Wald X2
1=19.09, p=1.25x10-5, n=441). Colour coding shows LD structure in the region 

(according to 1000 Genomes hg19 EUR reference), with red indicating high LD (r2>0.8) and dark blue 

indicating low LD (r2<0.2) with respect to rs12364988. Plot was generated with LocusZoom [53]. 

Figure 2. Top interaction effects of SORL1 variants (rs12364988 and rs676759) and BDNF Val66Met on 

prefrontal mRNA expression of SORL1-005 (ENST00000534286) in A) the whole ROS/MAP sample (Wald 

X2
1=19.09, p=1.25x10-5, n=441), B) only non-pathologically confirmed AD (non-pathoAD) subjects (Wald 

X2
1=19.27, p=1.14x10-5, n=179), and C) pathologically confirmed AD (pathoAD) subjects (Wald X2

1=1.99, 

p=0.16, n=262). 

Figure 3. SORL1-BDNF interaction effect on in vivo Aβ in the pars orbitalis measured by [18F]Florbetapir 

PET in the ADNI 2 sample (n=710). A) Residual amyloid load according to SORL1 rs618874 and BDNF 

Val66Met groups. B) Effect of SORL1 rs618874 within BDNFVal homozygote and BDNFMet carrier groups 

separately, adjusted for co-variates, with 95% confidence intervals. Rs618874T was associated with 

decreased amyloid burden in BDNFVal homozygotes (ΔAβTT:CC=-0.067, C.I.95%= [-0.13,-0.01]), but increased 

amyloid in BDNFMet carriers (ΔAβTT:CC=0.12, C.I.95%= [0.03,0.21]). Results were not impacted by removal of 

observations lying beyond 1.5*interquartile range of mean binding.  
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Tables 
Table 1. ROS/MAP Sample Demographics 

ROS/MAP expression (n=441) Non-AD (n=179) PathoAD 
(n=179) 

Diff (p)
1
   

Sex (F/M) 107 F, 72 M 171 F, 91 M 0.027   

Age at death (y(SD)) 86.6 (7.2) 89.8 (5.9) <0.0001   

Education (y(SD)) 16.3 (3.6) 16.6 (3.4) 0.47   

MMSE (SD) 25.1 (6.8) 19.1 (9.4) <0.0001   

RIN (SD) 7.2 (1.0) 7.1 (0.9) 0.21   

PMI (SD) 6.8 (4.1) 7.3 (5.4) 0.25   

APOE ε4 status (-/+) 153-, 26+ (15%+) 168-, 94+ 
(36%+) 

<0.0001   

BDNF genotype (valval/met 
carrier) 

116Val, 63M 170Val, 92M 1   

ROS/MAP MRI (n=172) CN (n=112) MCI (n=41) AD (n=13) Other
2
 

(n=6) 
Diff (p)

1
 

Sex (F/M) 81 F, 31 M 30 F, 11 M 12 F, 1 M 3 F, 3 M 0.25 

Age at scan (y(SD)) 83.3 (6.7) 85.3 (5.1) 85.8 (3.8) 86 (2.8) 0.072 

Education (y(SD)) 15.6 (3.3) 15.22 (3.1) 15.9 (2.4) 14.7 (2.4) 0.82 

MMSE (SD) 28.3 (1.5) 26.9 (2.1) 19.2 (6) 22.7 (4.5) <0.0001 

APOE ε4 status (-/+) 95-/17+ (15%+) 29-/12+ 
(29%+) 

8-/5+ 
(38%+) 

5-/1+ 
(17%+) 

0.084 

BDNF genotype (valval/met 
carrier) 

77/35 29/12 7/6 4/2 0.81 

Note: 
1
p-values are two-sided and derived from Fisher’s exact test (for sex, APOE ε4 status, and BDNF genotype) 

and either two-sample t-tests (in expression dataset for age at death, education, MMSE, RIN, and PMI) or ANOVA 
(in imaging dataset for age at scan, education, and MMSE). ROS/MAP = Religious Orders Study / Memory and 
Aging Project; CN = cognitively normal; non-AD = non-neuropathologically-confirmed Alzheimer’s disease; pathoAD 
= neuropathologically-confirmed Alzheimer’s disease; MMSE = Mini Mental Status Exam score at last visit before 
death; Val = Val/Val homozygotes; Met = Met allele carriers; F = female; M = male; y = years; SD = standard 
deviation; R = right; L = left. 
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Table 2. ADNI Sample Demographics 

ADNI 1/GO/2 MRI (n=1 
285) 

CN (n=335) SMC (n=82) EMCI (n=235) LMCI (n=407) AD 
(n=226) 

Diff (p)
1
 

Study phase (1, GO, 2) 193 (1), 142 
(2) 

82 (2) 111 (GO), 124 
(2) 

291 (1), 116 
(2) 

131 (1), 95 
(2) 

<0.0001 

Sex (F/M) 159 F, 176 M 51 F, 31 M 101 F, 134 M 155 F, 252 M 102 F, 124 
M 

0.0012 

Age (y(SD)) 74.7 (5.4) 71.7 (5.4) 71.0 (7.1) 73.3 (7.4) 74.3 (8.1) <0.0001 

Education (y(SD)) 16.2 (2.7) 16.7 (2.6) 16.1 (2.6) 15.8 (2.9) 15.2 (2.9) <0.0001 

MMSE (SD) 29 (1.1) 29 (1.2) 28.4 (1.6) 27.1 (1.8) 23.1 (2.1) <0.0001 

APOE ε4 status (-/+) 251-/84+ 
(25%+) 

53-/29+ 
(35%+) 

132-/103+ 
(44%+) 

175-/232+ 
(57%+) 

68-/158+ 
(70%+) 

<0.0001 

BDNF genotype 
(valval/met carrier) 

231/104 54/28 159/76 271/136 154/72 0.96 

ADNI GO/2 Amyloid 
Sample (n=710) 

CN (n=136) SMC (n=88) EMCI (n=244) LMCI (n=121) AD 
(n=121) 

Diff (p)
1
 

Study phase (GO, 2) 136 (2) 88 (2) 106 (GO), 138 
(2) 

121 (2) 121 (2) <0.0001 

Sex (F/M) 66 F, 70 M 55 F, 33 M 107 F, 137 M 55 F, 66 M 50 F, 71 M 0.024 

Age (y(SD)) 73.9 (5.9) 72.2 (5.8) 71.4 (7.4) 72.5 (7.5) 74.3 (8.5) 0.001 

Education (y(SD)) 16.5 (2.5) 16.8 (2.6) 16 (2.6) 16.5 (2.6) 15.8 (2.6) 0.016 

MMSE (SD) 29.1 (1.2) 29 (1.3) 28.3 (1.6) 27.7 (1.8) 23.1 (2.1) <0.0001 

APOE ε4 status (-/+) 104-/32+ 
(24%+) 

60-/28+ 
(32%+) 

130-/114+ 
(47%+) 

51-/70+ 
(58%+) 

43-/78+ 
(64%+) 

<0.0001 

BDNF genotype 
(valval/met carrier) 

95/41 58/30 167/77 89/32 79/42 0.66 

Note: *p-values are two-sided and derived from Fisher’s exact test (for study phase, sex, APOE ε4 status, and BDNF 
genotype) and ANOVA (for age, education, and MMSE). ADNI = Alzheimer’s Disease Neuroimaging Initiative; CN = 
cognitively normal; SMC = some memory concern; EMCI; early mild cognitive impairment; LMCI = late mild 
cognitive impairment; AD = Alzheimer’s disease; MMSE = Mini Mental Status Exam score; Val = Val/Val 
homozygotes; Met = Met allele carriers; F = female; M = male; y = years; SD = standard deviation. 
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