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Abstract: This article addresses the coupling of acoustic secondary sources in a confined space in a sound 

field reduction framework. By considering the coupling of sources in a rectangular enclosure, the set of 

coupled equations governing its acoustical behavior are solved. The model obtained in this way is used to 

analyze the behavior of multi-input multi-output (MIMO) active sound field control (ASC) systems, where 

the coupling of sources cannot be neglected. In particular, the article develops the analytical results to 

analyze the effect of coupling of an array of secondary sources on the sound pressure levels inside an 

enclosure, when an array of microphones is used to capture the acoustic characteristics of the enclosure. 

The results are supported by extensive numerical simulations showing how coupling of loudspeakers 

through acoustic modes of the enclosure will change the strength and hence the driving voltage signal 

applied to the secondary loudspeakers. The practical significance of this model is to provide a better insight 

on the performance of the sound reproduction/reduction systems in confined spaces when an array of 

loudspeakers and microphones are placed in a fraction of wavelength of the excitation signal to 

reduce/reproduce the sound field. This is of particular importance because the interaction of different 

sources affects their radiation impedance depending on the electromechanical properties of the 

loudspeakers.   

 
Keywords: Active Sound Control System, Coupling of Sources, Enclosure, Loudspeaker and Microphone 
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1. INTRODUCTION 

 

  The problem of active sound field reduction/reproduction in enclosed spaces has been widely 

studied because of its practical significance. In case that the incident sound is annoying this 

problem is studied mostly under the title of active sound control in the literature. Nevertheless, 

when the sound field conveys some useful information it is desirable to control it actively while 

retaining some specific characteristics. Examples in which reduction of the target sound field in 

confined spaces is desired, include active control of tonal noise inside the cabin of aircraft and 

helicopters, i.e. noise resulting from blade passing frequency of the propeller driven aircraft and 

helicopters [1, 2]; and in cars at specific engine orders [18, 19, 22]. Fundamental theoretical and 

experimental investigations on proof of concept of active control techniques in the global 

reduction of harmonically excited enclosed sound fields are provided in references [5, 7, 17]. 

From the perspective of sound field reproduction active methods have shown promising results in 

applications such as immersive audio [25] and immersive communication systems [24].  

  Theoretical approaches of sound field reproduction systems in free field are referred to as Wave 

Field Synthesis and Ambisonics [3]. However, inaccuracies in the reproduction due to the 
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listener’s movement and room reverberations led to the development of another technique known 

as multichannel inversion [4]. The underlying principles of this method share significant 

analogies with the theories of active control of sound fields [6]. The corresponding term 

associated with these two strategies in enclosed space are referred to as global and local control 

[8]. In global control, reduction of the acoustic pressure level at all points in the confined space is 

important (see e.g. [10] and the references therein) whilst local control aims to generate a quiet 

zone inside the enclosure (see e.g. [20, 23] and the references therein). Two quantities used for 

global control of the sound field inside the enclosure are energy density and potential energy, 

whereas a norm of sound pressure at some discrete points in space is attempted most of the time 

to address local active noise control problems. Having a proper control strategy, the next 

important step in the design of an active control system is to find the optimal position for any 

secondary loudspeakers and error microphones according to the characteristics of the primary 

noise [13, 15]. Most of the literature (e.g. [11, 17]) suggests placement of secondary loudspeakers 

and error microphones at the corners of the enclosure to attenuate the low-frequency sound field 

in a global active control setting. However, analysis in reference [14] shows that when the 

dimensions of the enclosure are multiple integers of each other, placement of secondary 

loudspeakers at the corner of the cavity will not necessarily result in the maximum achievable 

global noise reduction.  

  Coupling of sources refers to the situation in which two coherent sources are placed within a 

fraction of the wavelength and affect each other’s radiation impedance. This problem is studied in 

free space in reference [9]. In an enclosed space, the coupling happens through acoustic modes 

which in turn will change the radiation impedance of sources. However, relatively few articles to 

date have studied coupling of acoustic sources within a working environment [12, 21] and in the 

context of an active control system. A preliminary investigation by the present first author on 

modeling coupling of a loudspeaker with the acoustic modes in an enclosed space is reported in 

[16] where the results for two loudspeakers when no microphone is available are presented. In 

this article, we extend these results to an array of L loudspeakers and M microphones, and 

investigate the effect of coupling of secondary sources on the overall performance of an active 

sound control system in a confined space. The modeling and analysis performed in this paper 

explains some of the behaviors of active control systems occur in practice as a result of coupling 

of the secondary loudspeakers.  

  To be able to find a closed form solution for the problem, the enclosure is considered to have 

rigid boundary conditions. The proposed analytical model can be used to find an upper bound on 

the level of reduction of sound pressure and the required source strength when coupling exists 
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among the sources in a multichannel active control system. The results are supported by extensive 

numerical simulations for both resonant and non-resonant frequencies of the enclosure. 

Preliminary results and notation are presented in section 2. A closed form solution and the 

associated theorems derived from modeling and analysis of the coupling of secondary sources in 

an ASC system with L loudspeakers and M microphones is given in 

section 3. These analytical results are obtained by generalization of the results from section 2 and 

are supported by extensive numerical simulations in section 5. Finally, the conclusions are 

presented in section 6 

2. PROBLEM FORMULATION AND STATEMENT  

 
2.1. Notations and hypothesis  

  In this section we present important definitions and notation used later in the article to formulate 

the problem. For all these definitions and assumptions refer to Fig. 1, where it is assumed that an 

array of N loudspeakers is distributed inside the enclosure. For clarity, just two typical coupled 

loudspeakers, namely SPK1 and SPK2 are shown in Fig. 1. To make the formulation of the 

problem mathematically tractable, it is assumed that all loudspeakers inside the enclosure are in 

the xz plane with different y coordinates. Furthermore, the loudspeakers are considered to have 

square shapes of dimension l. To be more specific, the points on the surfaces of loudspeaker SPKi 

are defined by the set SPi as follows: 

{ }lzzzlxxxyyzyxSP iiiiii +≤≤+≤≤== ,,),,(                                                        (1)                                                        

where ),,( iii zyx  is the corner point of the ith loudspeaker. This is illustrated in Fig. 1 for i=1, 2. 

  To be able to model coupling of loudspeakers they are considered to operate similar to a piston 

in response to the voltage signal applied to their terminal. The equation governing the sound 

pressure inside the enclosure when several loudspeakers are working together is stated in the 

frequency domain by the following standard partial differential equation: 
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where ),,( zyxr = indicates a point in the Cartesian coordinate system and 0c  and 0ρ are the 

velocity of sound and density of air respectively. In addition, ),( ωru and ),( ωrp denote the 

total volume velocity and acoustic pressure inside the enclosure. By following the approach 

presented in [14], the solution of (2) with a rigid boundary condition assumption can be found 
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using the separation principle. More specifically, the acoustic pressure inside the enclosure shown 

in Fig. 1 can be written as: 
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is the shape of the nth acoustic mode of the enclosure and vε is a coefficient used for 

normalization and is defined as: 
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Moreover, n1, n2 , n3 are integer indices representing the nth acoustic mode with amplitude )(ωna  

which is calculated as [14]: 
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and nζ  and nλ  are the damping and natural frequency of the nth acoustic mode of enclosure. In 

equation (7), ),,( zyxnψ represents the shape of the nth acoustic mode and integration is 

performed over the entire volume V of the enclosure. 

  The net acoustic pressure on the surface of each loudspeaker is calculated by taking the average 

of pointwise acoustic pressure on the surface of each loudspeaker. This is obtained for the ith 

loudspeaker as follows 

∫=
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The total volume velocity (in sm3
) of the ith loudspeaker is achieved by integrating the volume 

velocity per unit surface, of all points on the surface of the loudspeakers, i.e., 

∫=
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Figure 1. A typical rectangular enclosure with coupled secondary loudspeakers. 

The pointwise volume velocity on the surface of the ith loudspeaker with a uniform distribution 

hypothesis is expressed as: 

[ ][ ])()()()(
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ω                     (10) 

where iS  is the surface area of loudspeaker SPKi. It is possible to relate the total volume velocity 

on the surface of the ith loudspeaker to the movement of its coils using the following integral   

∫=

i

stzyxutxS iii

S

d),,,()(�                                                                                                            (11)    

where )(txi  is the displacement of the coil and diaphragm of SPKi.  

  In the case that L loudspeakers are distributed inside the enclosure, using the principle of 

superposition, the volume velocity ),,,( ωzyxu  in equation (7) can be written as 

∑
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where ),,,( ωzyxu ii is defined by equation (10). Substituting ),,,( ωzyxu  from equation (9) 

into (7) will determine the acoustic pressure in the modal space,  
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Here it is assumed that all loudspeakers are identical with the same area equal to S .  

 

2.2 Preliminary results 

  The first step towards modeling coupling of loudspeakers inside the enclosure is to find out how 

the voltage applied across the input terminals of a loudspeaker will result in the required volume  
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Table 1: List of parameters 

Symbol Definition of parameter 

iR  Resistance of the loudspeaker coil 

iL  Inductance of the loudspeaker coil 

iB  Permanent magnetic field of the loudspeaker 

il  Length of voice coil in the magnetic field  

im  Mass of loudspeaker 

ic  Damping of loudspeaker 

ik  Stiffness of loudspeaker 

 

velocity and acoustic pressure on the surface of that loudspeaker. We assume that an array of L 

loudspeakers is distributed inside the enclosure, as shown in Fig. 1, and each loudspeaker 

operates at low frequencies as a piston. In this case, it is possible to model each loudspeaker as a 

simple mass-spring-damper system. By following the approach presented in reference [16], for 

each loudspeaker SPKi, the equation that relates the input voltage applied to the loudspeaker to 

the volume velocity and acoustic pressure produced on the surface of loudspeaker SPKi, can be 

written in the frequency domain as , 

)()()()()( eS ωωωωω iiiii VZPSUZ
i

=+                      (14) 

where )(e ωiV  is the voltage applied to the loudspeaker i and 
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The list of all parameters in equations (9) to (11) along with their definitions are presented in 

Table 1. The detailed derivation of equations (9) to (11) is presented in [16] and to avoid 

duplication it is not repeated here. The most important indication of relation (9), is that the 

volume velocity )(ωiU  is determined as a result of the voltage applied to the terminals of the 

loudspeaker and the acoustic pressure on the surface of the loudspeaker as a result of coupling 

with other loudspeakers through acoustic modes of the enclosure. This is not the case in almost 

all modeling work to date, in which the loudspeaker is generally assumed to be rigid and hence 
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)(ωiP  will be equal to zero. Therefore, in case of lack of coupling, equation (9) will be 

simplified as follows: 

)(
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where )(ωiU is a sole linear function of )(e ωiV . This reveals that coupling of the acoustic 

sources with the environment inside the enclosure changes the amplitude and phase of the source 

strength, and consequently the pattern of acoustic pressure inside the enclosure. However, it can 

also be inferred from equation (9) that even when zero voltage is applied to the terminal of 

loudspeaker SPKi, the source strength depends on the net external acoustic pressure applied to the 

surface of SPKi from the surrounding environment. To be able to derive )(ωiU  as a direct 

function of )(e ωiV  in (9), it is necessary to substitute for )(ωiP  in terms of )(ωiU . These results 

for two loudspeakers are presented in reference [16]. However, for the sake of clarity on how to 

derive the results for L loudspeakers, it is repeated here for a single loudspeaker. From equation 

(13), the acoustic pressure in the modal space for L=1 is, 
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Substituting )(ωna  from equation (18) into equation (3) and then integrating the achieved sound 

pressure over the surface of the loudspeaker SPK1 from equation (8) yields, 
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Substitution of )(1 ωP  from (19) into (14) and then factorizing )(1 ωU results in, 
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As we have only a single loudspeaker in this preliminary analysis, the coupling is happening with 

the acoustic modes of the enclosure. However, in the case that multiple acoustic sources exist 

inside the enclosure, each loudspeaker affects the acoustic modes of the enclosure in turn and the 

result after superposition will appear as the net acoustic pressure on the surface of all 

loudspeakers in the form of coupling. A novel generalization of these results for an array of L 

loudspeakers and M microphones is developed in the next section. 
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3. GENERALIZATION  TO  MULTI-CHANNEL ASC  SYSTEM  

3.1 Coupling of an array of L loudspeakers 

  In the first instance, it is assumed that an array of L identical loudspeakers, i.e. SPK1, SPK2, …, 

SPKL, are operating as secondary sources for an ASC system inside the enclosure shown in Fig.1. 

Without loss of generality we assume that all physical parameters of the loudspeakers listed in 

Table 1 are the same and no microphone exists inside the enclosure. When coupling exists among 

an array of L loudspeakers, the total volume velocity of each loudspeaker is a function of all 

voltages applied to other secondary sources, and hence the derived expression will be more 

complicated than the result given in (20). To be able to find a closed form solution for the volume 

velocity of each loudspeaker )(ωiU  for Li �,2,1=  we start from (13). Substitution of )(ωna  

from equation (13) into (3) will determine the acoustic pressure inside the enclosure as a function 

of volume velocity of all L loudspeakers. By introducing the resulting expression into (8) it is 

possible to find the net acoustic pressure applied on the surface of each loudspeaker. For 

example, the expression for SPK1 becomes: 
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Changing the order of summations yields, 
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Using the same approach, the net acoustic pressure on the surface of SPK2 is calculated as 

follows: 
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By following the same principle, it is possible to find the acoustic pressure on the surface of all L 

loudspeakers. Putting the set of equations relating the volume velocities of the L sources to their 

net acoustic pressure in matrix form yields: 
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where )(ωcZ  is an LL ×  symmetric coupling matrix whose ij th element is written as: 
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Writing equation (14) for all L loudspeakers SPK1, SPK2, …, SPKL and formulating this in matrix 

form yields: 
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Substitution of the vector of net acoustic pressure sources from equation (24) into (26) makes it 

possible to derive the total volume velocity of all L secondary sources as a function of the 

voltages applied to all sources in a linear but coupled fashion, as follows: 
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By definition of a proper performance index in terms of volume velocity of acoustic sources and 

then replacing these in terms of )(1 ωeV , )(2 ωeV , … )(ωeLV  from equation (27), it would be 

possible to control the sound field inside the enclosure by considering coupling of secondary 

loudspeakers. As can be seen from equation (27) the coupling of secondary sources will change 

the strength of sources through the matrix )(ωcZ . 

Lemma 1. For any specific frequency ω  the complex LL ×  matrix )(ωcZ  is symmetric 

positive (or negative) definite.  

Proof: By looking at the ijth element of the matrix )(ωcZ  from (25) it can be clearly seen that 

[ ] [ ]
jicijc )()( ωω ZZ = and hence )(ωcZ  is symmetric. The positive definiteness of the complex 

matrix )(ωcZ  for L=1, 2 is proved in reference [16]. For 2≥L  we prove the lemma by 

induction. It is well-known that a complex matrix is positive definite if and only if its real part is 

positive definite. The real part of )(ωcZ  is obtained by taking the real part of )(ωnA  in 

equation (25). Assuming that [ ])(Re ωcZ  is an LL ×  positive definite matrix we need to prove 

that this remains true when 1+L  loudspeakers are placed inside the enclosure. By definition of 

positive definiteness for the LL ×  matrix [ ])(Re ωcZ , it can be written, 

[ ] 00)(Re ≠∀≥ xxZx ωc

T
                                       (29) 
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where x is an arbitrary 1×L  vector defined as [ ]T

Lxx ……1=x . Writing (29) in terms of the 

elements of the matrix [ ])(Re ωcZ  yields, 

[ ]∑∑ ∫∫∑
= =

∞

=

≥


























L

i

L

j

jnin

n

nji zxzyxzxzyxAxx
VS

c

1 1 SPSP0

2

00 0dd),,(dd),,()(Re

ji

ψψω
ρ

                  (30) 

By defining, 
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equation (30) can be rewritten as, 
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The inner summation in (33) can be written as a non-negative coefficient as follows, 
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By combining (33) and (34) the hypothesis of induction will be written as, 
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Finally, by adding one more loudspeaker and repeating equations (30) to (34) we achieve the 

same results with a new set of coefficients nβ ′  which are calculated as follows: 
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Therefore, since 0≥′
nβ and using the hypothesis of induction (34) it can be readily proven that,  
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This completes the proof of Lemma 1�.  

Remark 1. From (25) it can be inferred that the diagonal elements of )(ωcZ  concern the self-

coupling of each loudspeaker with the acoustic modes of the enclosure, while the off-diagonal 

elements concern the cross-coupling between each pair of sources. In the case that coupling 

between sources does not exist, namely 0)( =ωcZ , it can be deduced from (27) and (28) that 

the volume velocity of each loudspeaker merely depends on the input voltage of that loudspeaker 
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through the diagonal matrix )(ωcZ . By contrast, the off-diagonal zeros in this matrix imply zero 

coupling between sources. 

Remark 2. Noting the structure of the matrix )(ωcZ  in (25), it can be seen that this matrix will 

lose rank only at a few distinct frequencies, i.e. zeros of the frequency response of the system in 

the specified bandwidth, or when the coupled loudspeakers are placed in a specific way such that 

the rows of the matrix )(ωcZ  becomes linearly dependent at all frequencies. A trivial example is 

the case that all loudspeakers are placed in one position. In such cases the minimum singular 

value of )(ωcZ , i.e. cσ , tends to zero. Therefore, we say the ASC system is in a singular 

configuration when the matrix )(ωcZ  becomes singular.  

Remark 3. Without loss of generality it is assumed that all loudspeakers are identical with similar 

physical properties. Hence, for all loudspeakers, )(S ω
i

Z  and )(ωiZ  are considered to be equal 

to )(ωsZ  and )(ωZ  respectively. 

Remark 4. As a general notation and to distinguish the variables indicating the coupling of 

loudspeakers in the model with those when coupling is ignored, we use a dashed line on top of 

the variables. 

 

3.2 Formulation of coupling for an active noise control system 

  In this section, we formulate the effect of coupling of secondary sources in case that an array of 

loudspeakers and microphones are placed inside the enclosure. Since the primary noise most of 

the time is generated by another source, it is normal to assume that it is independent with respect 

to the secondary loudspeakers. Here we assume the primary noise is generated by a loudspeaker 

placed in the corner of the enclosure as shown in Fig. 1 and that no coupling exists for this 

source. Considering the effect of primary and secondary sources, the acoustic pressure inside the 

enclosure in a modal space can be calculated using the principle of superposition: 

∑
=

+=
L

l

nlnn aaa
1

p )()()( ωωω                                                                                                     (37) 

where )(p ωna is the modal amplitude of sound pressure resulting from the primary source, and 

)(ωnla  for Ll ,...2,1=  is the modal amplitude of the sound pressure resulting from the effect of 

the secondary loudspeakers SPK1, SPK2, …., SPKn. Substituting )(ωlU  for Ll ,...,2,1= from 

the matrix form (27) into equation (13) yields the modal amplitude of the sound pressure 

produced due to each individual secondary source as follows: 
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∑ ∫
=

=
L

k

lneklknnl

l

zxzyxVzA
VS

c
a

1 SP

2

00 dd),,()()()()( ψωωω
ρ

ω ,                                                    (38)  

where )(ωlkz is the lkth component of the matrix )(ωZ  expressed in equation (28). By 

combining the result obtained from the expression in (38) with equation (37), it is possible to 

derive a closed form for the acoustic pressure in modal space as a function of the control input 

voltages applied to the secondary sources as follows: 

∑∑ ∫∑
= ==

=
L

l

L

k

lneklkn

L

l

nl

l

zxzyxVzA
VS

c
p

1 1 SP

2

00

1

dd),,()()()()( ψωωω
ρ

ω                                              (39) 

Changing the order of summations in equation (39) yields: 

∑ ∑ ∫∑
= == 











=

L

k

ek

L

l

lnlkn

L

l

nl VzxzyxzA
VS

c
p

l
1 1 SP

2

00

1

)(dd),,()()()( ωψωω
ρ

ω .                                       (40) 

By defining )(ωnkb as: 

∑ ∫
=

=
L

l

lnlknnk

l

zxzyxzA
VS

c
b

1 SP

2

00 dd),,()()()( ψωω
ρ

ω                                                                   (41)  

equation (37) is written as: 

∑
=

+=
L

k

eknknn Vbaa
1

p )()()()( ωωωω                                                                                         (42) 

If we limit the bandwidth of the controller and hence the active control system to the first N 

acoustic modes of the enclosure, it would be possible to write expression (42) in the matrix form 

as: 

ep vBaa +=                                                                                                                               (43) 

Here a and pa  are the vectors of complex modal amplitudes due to the effect of primary and 

secondary loudspeakers and ev is the vector of voltages applied to the array of secondary 

loudspeakers. The index ω  is omitted for simplicity and B  is an LN ×  matrix whose 

components are defined by equation (41). Rewriting (3) in matrix form and combining it with 

(43) make it possible to find the acoustic pressure at different points inside the enclosure, as 

follows: 

aΨp T=                                                                                                                                       (44) 
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where p  is a 1×M vector showing acoustic pressure at M discrete points inside the enclosure 

and Ψ  is an MN ×  matrix whose elements ),( mn  are the value of the shape of the n
th
 mode at 

point m. 

  A suitable performance index to formulate the active noise control system in case of coupling is 

acoustic potential energy inside the enclosure and is calculated by 

aaH

c

V
E

2

00

P
4ρ

=                            (45) 

By minimizing 
PE  in equation (45), the optimal excitation voltage of the secondary loudspeakers 

as well as the maximum acoustic potential energy reduction inside enclosure is [14] 

p

1

eo ][ aBBBv
HH −−=                     (46) 

pp

p

1

p

pp

po ][
1

aa

aBBBBa

H

HHH

E

E −

−=                    (47) 

Here eov  is used to distinguish the optimal excitation voltage in case of coupling with eov when 

no coupling exists. The latter corresponds to the case where the matrix B  in (46) and (47) is 

replaced with B . The simplest way to approximate this quantity in practice is to deploy an array 

of M microphones at proper positions inside the enclosure.  In this case, the acoustic potential 

energy of the enclosure is estimated by: 

pp H

Mc

V
J

2

00

P
4ρ

=                                                                                                                   (48) 

where p  is defined by (44). Combining (43) and (44) and replacing p  in equation (48) with that 

from equation (44) yields: 

epep vGpvBΨaΨp +=+= TT                                                                              (49) 

BΨG T=                           (50) 

where G  is an LM ×  matrix of frequency response functions from secondary sources to error 

microphones when coupling exists between sources, and pp  is the acoustic pressure sensed by 

the microphones as a result of primary noise. Applying p  from equation (49) to equation (48) 

and minimizing the resulting quadratic performance index yields the optimal excitation voltage of 

the secondary loudspeakers in case of coupling among secondary sources: 

p

1

so ][ pGGGv HH −−=                                                                                                              (51) 



 14

pp

p

1

p

pp

po ][
1

pp

pGGGGp

H

HHH

J

J −

−=                                                                                              (52)  

Here 
sov  is used to represent the optimal excitation voltage in case of coupling and when 

microphones are present. To compare the results with the case that no coupling exists among 

sources, it is necessary to find a relation between the frequency response functions G  and G . 

According to (50) this problem is equivalent to finding the relation between the matrices B  and 

B . This problem is addressed in the following sections of the article using both analytical and 

numerical results. 

 

3.3 Comparison with the uncoupled case 

  To answer the question of how coupling of secondary loudspeakers will influence the behavior 

of a multichannel active noise control system in a confined space, it is necessary to find the 

relationship between the matrices B  and B  for the coupled and uncoupled sources respectively. 

We can extract elements of the matrix B , i.e. )(ωnkb , by referring to reference [14]: 

∫=

k

zxzyx
Z

Z
A

VS

c
b kn

s

nnk

SP

2

00 dd),,(
)(

)(
)()( ψ

ω

ω
ω

ρ
ω                                                           (53) 

Comparing these elements with those of B  derived in equation (41) demonstrates that )(ωnkb  

can be expressed in terms of )(ωnkb  as follows: 

∑
=

=
L

l

nllk
s

nk bz
Z

Z
b

1

)()(
)(

)(
)( ωω

ω

ω
ω                                                                                (54). 

Writing equation (54) in matrix form: 

cZBB =                                                                                                                                      (55). 

Here, for the sake of simplicity, the index ω  is omitted from both sides and )(ωcZ  is defined 

as:  

( ) )()()()(
1 ωωωω scsc ZZ

−
+= ZIZ                                                                            (56) 

Using the relationship between the matrices B  and B  it is possible to find the relationship 

between the matrix of frequency response functions between loudspeakers and microphones, as 

shown by the following lemma. 

Lemma 2. Assume L loudspeakers and M microphones are distributed inside the enclosure shown 

in Fig. 1. The transfer function matrix from the secondary loudspeakers to the microphones in 



 15

case of coupling, namely G , can be represented in terms of the transfer function matrix when 

coupling does not exist, namely G , as follows: 

cZGG =                                                                                                                                      (57) 

Proof: By combining equations (50) and (55) the proof is complete�.   

Lemma 3. For any full-rank LM ×  matrix G  and matrix X  of suitable size, the following 

equality is always true: 

HHHHHH GGGGGXGXGXGX 11 ][][ −− = .                                                                          (58) 

Proof: to be able to find the inverse in the left-hand side of (58), GX  must be assumed to be full 

rank. Multiplying of both sides of equation (58) from right-hand side by GX , and arranging the 

terms yields: 

[ ] [ ]XGGGGGGXGXGXGXGX HHHHHH 11 ][][ −− =                                                          (59). 

From (59) it is straightforward to verify that both sides are equal to GX  �. 

Theorem 1. The maximum singular value of )(ωcZ  is less than unity almost everywhere, unless 

the coupled secondary loudspeakers get very close to each other. 

 

Proof: the theorem can be proved by following exactly the same steps as given by reference [16] 

and hence is not repeated here. In this manner, it can be shown: 

[ ]
[ ]( )





 +

=

cscs

s

c

ZZ

Z

Z

Z

2Re,min

)(

min

22
λσ

ωσ                 (60) 

where sZ and sZ  represent the magnitude and complex conjugate of sZ repectively. Since for a 

typical loudspeaker and acoustic environment inside the enclosure, the values of sZ  at each 

frequency are much larger than the magnitude of the frequency responses of the enclosure, i.e. 

elements of 
cZ , it can be inferred that the value of the expression [ ]( )csZ Z′2Reminλ  is much 

larger than 
22

csZ σ+ , unless the matrix 
cZ  approaches a singular point, as discussed in 

Remark 2. From this argument it can be deduced that in normal situations when the loudspeakers 

are sufficiently far apart, equation (60) is simplified to: 

[ ] 1)(
22

<
+

=

cs

s

c

Z

Z

σ
ωσ Z               a.e.                                                                               (61) 

which is less than unity at almost all frequencies when the ASC system is not singular �.  
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Noting the relationship between the matrices G  and G  in (57) obtained in Lemma 2, along with 

the results of Lemmas 1 and 3, it is possible to evaluate how the active sound field control system 

will perform to reduce the acoustic potential energy inside the enclosure when coupling exists 

between loudspeakers. This is formulated with the following theorem: 

Theorem 2. Having an array of L loudspeakers and M microphones inside the enclosure as shown 

in Fig. 1, the following statements are true: 

1- In the case that the loudspeaker positions are such that the system is non-singular, the 

maximum achievable reduction of acoustic noise with coupling among secondary 

loudspeakers is the same as the amount of reduction when coupling does not exist. 

2- In the frequency range between two consecutive zeros of the frequency response function 

from secondary loudspeakers to error microphones, coupling of loudspeakers will change 

the amplitude and phase of the optimal voltage applied to the secondary loudspeakers 

such that 
22 soso vv ≤ . 

Proof: The maximum reduction of approximated potential energy inside the enclosure when 

coupling exists among secondary sources is obtained from equation (52). To prove the first part 

of Theorem 2, we substitute G  from equation (57) into equation (52): 

pp

pGZZGGZZGp
H

HH

cc

HH

cc

H

J

J 1

pp

po ][
1

−

−=                                                                             (62) 

Applying Lemma 3 to equation (52) yields: 

pp

pGGGGp
H

HHH

J

J 1

pp

po ][
1

−

−=                                                                                                   (63) 

This expression is exactly the same as the approximation of acoustic potential energy inside the 

enclosure when no coupling exists. To prove the second part of Theorem 2, it is necessary to 

substitute equation (57) into (51). In this case, the optimal voltage applied to the secondary 

loudspeakers is: 

pGZZGGZv HH

cc

HH

cso

1][ −−= .                                                                                               (64) 

Multiplying both sides of equation (64) by cZG  yields: 

pGZZGGZZGvZG HH

cc

HH

ccsoc

1][ −−= .                                                                               (65) 



 17

          

                                                   (a)                                                                (b) 

Figure 2. (a) Schematic of the array of primary and secondary sources in the enclosure, (b) Arrangement of 

array of secondary loudspeakers and error microphones inside the enclosure. 

 

Using Lemma 3: 

pGGGGvZG HH

soc

1][ −−=                                                                                                     (66). 

Writing the right hand side of equation (66) in terms of sov results in, 

sosoc GvvZG =                                                                                                                            (67) 

Under the assumption of having a full rank G  matrix, i.e GGH
 is invertible, it can be readily 

inferred that, 

socso vZv =                                                                                                                                 (68) 

According to (68) it can be seen that coupling will change the amplitude and phase of secondary 

loudspeakers due to the effect of the coupling matrix cZ . As the maximum singular value of cZ  

is less than unity in most of the in-bandwidth frequencies of the system (according to Theorem 1), 

if the coupled loudspeakers are far enough apart, it is deduced that the ∞ -norm of 
cZ  between 

two consecutive zeros of the frequency response function of the system is less than unity and 

hence 
22 soso vv ≤  �.  
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4. PERFORMANCE ANALYSIS IN EXTREME CASES 

  For a better insight on the performance of the system in extreme cases a further analytical study 

is conducted in this section. By the extreme case we mean the conditions under which the applied 

voltages to the loudspeakers in (51) go to infinity or will be beyond an acceptable range. We 

distinguish two cases when the transfer matrix G  loses rank at a specific frequency and the case 

when G  loses rank due to observability or controllability of a specific mode.   

 

4.1. High Control Effort at Specific Frequencies 

High control effort in equation (51) might occur in two cases: 1- Right half plane zeros of the 

transfer matrix G  which might appear as right half plane poles in (51) due to the matrix 

inversion. 2- Increase in the control action eov  when the matrix G  loses rank or at frequencies 

where the matrix G  has a small magnitude. To address the first point we use an inner-outer 

factorization technique. The basic idea behind the inner-outer (or outer-inner factorization) is to 

factorize dynamic systems in a part which is stably (causally) invertible (the outer factor) and a 

remaining part (the inner factor) which only yields a phase shift (e.g. due to delays) and thus does 

not affect the energy of the signals. 

Lemma 4 (Outer-Inner factorization [26]). Let 
M L

RH
×

∞∈G  then G  has an inner-outer 

factorization  

i o=G G G                                                                                                                                    (69) 

with 
M L

i RH ×
∞∈G  is an isometry ( )H

i i MI=G G  and the outer factor  
M L

o RH ×
∞∈G  has a stable 

right inverse, with . If the transfer matrix G  does not lose rank on the 

imaginary axis then oG  has an asymptotically stable right inverse. By substituting G  from (69) 

to equation (51) and using the isometry property of iG  it can be written as 

1

eo p[ ]H H

o o

−= −v G G G p                                                      (70) 

Since oG  has a stable right inverse it is said to be minimum-phase and as long as the transfer 

matrix G  does not lose rank at a specific frequency it will also have a stable left inverse and 

hence 
eov  in (70) is finite. To address the problem of singularity of the transfer matrix G  at 

specific frequencies another performance index needs to be introduced. The proposed 

performance index is in the following form          
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H H

P 2

0 04
e e

V
J

c Mρ
= +p p v v�                               (71) 

where 
ev�  is the filtered control signal and is given by 

e e=v Wv�
 

Here W  is an L L×  user defined filter and gives the freedom to restrict the control signal at 

specific frequencies. Minimization of the new performance index (71) yields the optimal 

excitation voltage of the secondary loudspeakers in case of coupling among secondary sources 

1

so p[ ]H H H−= − +v G G W W G p                                                                                                 (72) 

1

po p p

pp p p

[ ]
1

H H H H

H

J

J

−+
= −

p G G G W W G p

p p
                                                               (73) 

As can be seen from (72) at the frequencies where the transfer matrix G  loses rank it is possible 

to increase the magnitude of the weight matrix W to solve the singularity in matrix inversion and 

thus avoid high control efforts. This is of course at the expense of reducing the performance of 

the system in (73).  A simpler version of this technique when the filter W  is replaced by a scalar 

is investigated by the first author in [15] for optimal placement of loudspeakers and microphones 

considering coupling of secondary sources.  

 

4.2. Controllability and Observability of Modes 

Modelling and analysis carried out in section 3 facilitates studying of the optimal placement of 

loudspeakers and microphones for the active sound field control problem. This problem is 

addressed in a number of investigations by the first author [27, 28], and in [29] by considering the 

coupling of the secondary loudspeakers. In all of these papers the optimization problem is solved 

by choosing a quadratic performance index and, after finding the control law, position for 

loudspeakers and microphones is optimized to achieve the maximum potential energy reduction. 

In this sense, the optimization is carried out in closed-loop. An alternative view to the problem of 

loudspeaker and microphone placement is to use the notion of modal controllability and 

observability. It is well-known that the control effort of the designed control system is directly 

related to the controllability and observability of the in bandwidth modes of the system under 

control [31]. The controllability and observability of the transfer matrix G  can be determined by 

checking the rank of controllability and observability matrices for a specific realization of G . 

However, a more quantitative measure to determine how hard it is to control or observe a specific 

mode is to use the concept of Gramians in control theory. Before being able to calculate a 
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measure of controllability and observability of the acoustic modes, a state space realization of the 

transfer matrix G  should be available. 

By combining equations (50) and (55), it can be seen that G  is written as a series connection of 

two transfer matrices, G  and cZ     

T

c c= =G Ψ BZ GZ               (74) 

By element-wise multiplication of the matricesΨ and B , the transfer matrix G  in (74) can be 

written as  

T

1

( ) ( )
N

n n n

n

Aω ω
=

=∑G ψ α                                     (75) 

Where nψ  and nα  are defined as  and  vectors  

[ ]
T

1 2( , , ), ( , , ), , ( , , )n n n n Mx y z x y z x y zψ ψ ψ=ψ ……                                                 (76) 

[ ]
T

1 2, , ,n n n nLα α α=α ……                                                   (77) 

iSP

( , , )d dni n ix y z x zα ψ= ∫                                  (78) 

 and ( )nA ω  is defined in (7). According to (75) the state space realization of G  can be written as 

1 2

N N N N

N N N N

× ×

× ×

 
=  
 

0 I
A

A A
                            (79.1) 

( )
( )

2 2 2

1 1 2

2 1 1 2 22

N

N N

diag

diag

ω ω ω

ξ ω ξ ω ξ ω

= −

= −

A

A

…

…

                        (79.2) 

T

1

T

N L

N

× 
 
 =
 
 
 

0

α
B

α

�
, [ ]1 2, , , ,M N N×=C 0 ψ ψ ψ……                                                                      (79.3) 

Before being able to find the state space realization for the transfer matrix cZ , equation (54) 

should be rewritten in a suitable form. This is achieved by combining the scalar factor ( )sZ ω  

with the transfer matrix ( )c ωZ , and hence it can be rewritten as 

( )
1

1( ) ( ) ( )
c s c

Zω ω ω
−−= +Z I Z                               (80) 
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It is possible to find the state space realization of the transfer matrix 
cZ  in (80) by putting all 

elements defined in (25) in the following matrix form  

T

1

( ) ( )
N

c n n n

n

Aω ω
=

=∑Z α α                               (81) 

where nα  is defined in (77) and (78). The state space realization for cZ  in (81) is similar to the 

one achieved for the transfer matrix G  in (75) except the matrix C  is changed. The state space 

realization for the transfer matrix cZ  can be written as 

1 2

N N N N

c

N N N N

× ×

× ×

 
=  
 

0 I
A

A A
                              (82.1) 

( )
( )

2 2 2

1 1 2

2 1 1 2 22

N

N N

diag

diag

ω ω ω

ξ ω ξ ω ξ ω

= −

= −

A

A

…

…

                            (82.2) 

T

1

T

N L

c

N

× 
 
 =
 
 
 

0

α
B

α

�
, [ ]1 2, , , ,c L N N×=C 0 α α α……                       (82.3) 

   By having the state space realization of 
cZ in (82), it would be enough to find a realization for 

the third order strictly proper transfer function 
1( )sZ ω−

. Therefore, a state space realization of the 

transfer matrix 
1( )s LZ Iω−

 can be written as 

spk s LA I= ⊗A , spk s LB I= ⊗B , spk s LC I= ⊗C , and spk 0L L×=D                           (83) 

where ( ), ,s s sA B C  is a minimal realization of 
1( )sZ ω−

 and ⊗ is the Kronecker product. The 

matrices , ,s s sA B C  are 3 3× , 3 1×  and 1 3×  respectively. In this way, the state space realization 

of the transfer matrix achieved from series connection of 
cZ  followed by

1( )s LZ Iω−
 can be 

written as   

2 3

series

spk spk

0c N L

c

× 
=  
 

A
A

B C A
                            (84.1) 

series series 2 pk series

3

, 0 , 0
0

c

L N s L L

L L

× ×

×

 
 = = =   

 

B
B C C D                          (84.2) 

Therefore, the state space realization of the feedback system represented by cZ  can be found as 
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spk

spk spk
c

c c

Z
c

 
=  
 

A B C
A

B C A
, 

0c

c

Z

 
= −  

 

B
B ,  pk0 ,

c
sZ

 = −  C C  0
c

L LZ ×=D                         (85) 

In steady state conditions, the controllability Gramian matrix cW , and the observability Gramian 

matrix oW  can be determined by solving the following Lyapunov equations [32]. 

T T

c c 0
c c c cZ Z Z Z

+ + =A W W A B B                             (86) 

T T

o o 0
c c c cZ Z Z Z

+ + =A W W A C C                              (87) 

where the state space matrices ( ), ,
c c cZ Z Z

A B C represent a realization of the transfer matrix G  

derived in (85). Although Gramians depend on the state-space realization, the eigenvalues of the 

product
c oW W , ( )1,2,i i Nλ = … are invariant under the coordinate transformations and provide 

valuable information regarding the system controllability and observability. In order to show how 

the position of loudspeakers and microphones affect the degree of controllability or observability 

of different modes, the system Hankel Singular Values (HSV) are defined as 

                                                                       
H

i iσ λ=  

where iλ s are ordered to obtain 
H H H

1 2 Nσ σ σ≥ ≥ ≥� . The number of non-zero HSV 

corresponds to the number of controllable and observable modes and their magnitude show the 

degree of controllability and observability of each mode. An identical approach for optimization 

of PZT sensors and actuators on a flexible plate is reported in [30]. 

5. SIMULATION RESULTS  

  To verify the theoretical results presented in the previous sections, a simulation study is 

performed here. All simulations are carried out in MALTAB and are based on the analytical 

derivations presented in the previous section. The simulations are divided into two parts: in the 

first part it is assumed that only loudspeakers are included in the enclosure, and the modal 

information of the enclosure is known.  

For the second part, both loudspeakers and microphones are considered to simulate a practical 

coupled multichannel ASC system. In both cases the effect of coupling on both resonance and 

non-resonance frequencies of the enclosure is investigated. Figure 2 illustrates the arrangement of 

the primary and secondary loudspeakers as well as microphones used in the simulation of the 

ASC system.  To facilitate a better understanding of the effect of coupling inside the enclosure 

the numerical results in all cases are compared with and without coupled sources. 
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5.1 Array of loudspeakers in enclosure 

  To show how the position of secondary sources may affect the performance of the ASC system, 

the configuration of loudspeakers shown in Fig. 2 (a) is used for simulation. An array of three 

loudspeakers is placed on three different walls of the enclosure at the height 1.8m and the source 

S1 is moving in the z-direction towards the primary source Sp, half-way through the same plane. 

The reduction of potential energy inside the enclosure for both coupled and uncoupled secondary 

sources (equation (47)) when the primary source excites the enclosure at the resonance 

frequencies 85Hz and 170Hz and non-resonance frequencies 120Hz and 300Hz are shown in Fig. 

3. As can be seen in this figure, when S1 moves towards Sp, reduction of potential energy for  

 

Figure 3. The performance of ASC system when S1 moves towards Sp at different resonant and non-

resonant frequencies in Fig. 2(a). 
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Figure 4. The magnitude and phase of optimal excitation signal of S1 (top) and S2 (bottom) in terms of S1 

speaker position at two resonant frequencies of the enclosure, i.e. 85Hz and 170Hz. 
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Figure 5. The magnitude and phase of optimal excitation signal of S3 (top) and S4 (bottom) in terms of S1 

speaker position at two resonant frequencies of the enclosure, i.e. 85Hz and 170Hz. 
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both coupled and uncoupled sources is the same for all frequencies. This is in accordance with the 

first part of Theorem 2 formulated in section 3.3. Figures 4 and 5 depict the optimal magnitude 

and phase of four secondary loudspeakers as a function of the position of loudspeaker S1 for both 

coupled and uncoupled case for two resonance frequencies.  

  Analysis in [14] revealed that the response of the enclosure at 85Hz is dominated by one axial 

mode shape while at 170Hz this is obtained from a combination of three axial modes. In the non-

resonant modes 120Hz and 300Hz this requires cancellation of an even higher number of modes 

by a greater number of loudspeakers to achieve the same amount of reduction. This explains the 

reason for the highest reduction at 85Hz and the lowest reduction at 300Hz in Fig. 3. The 

magnitude and phase of all four secondary sources (equation (46)) as a function of the position of 

S1 for both coupled and uncoupled cases are shown in Figs. 4 to 7. The magnitudes are 

normalized by the supplied excitation voltage of the primary source to demonstrate their relative 

values. As can be seen from Figs. 4 and 5, in both resonant frequencies, when S1 is far away from 

the primary loudspeaker Sp, the optimal relative magnitude of the voltage applied to this 

loudspeaker is very small compared to the other three loudspeakers. However, when S1 is getting 

close to Sp its magnitude relative to Sp rises gradually and this corresponds to the reduction of 

magnitude of three other sources to compromise the effect of S1. A closer look at the phase of the 

voltages of loudspeakers for uncoupled case shows that for the resonance frequency 85Hz, S2 and 

S3 are predominantly canceling the mode shape at this frequency and the role of S4 is to absorb 

the extra energy produced by other loudspeakers. This is also true in the case of couple, except 

that the magnitude of the applied voltages is greater as predicted by the second part Theorem 2. 

At the resonant frequency 170Hz due to the existence of degenerate mode shapes, all three 

loudspeakers S2, S3, and S4 are tuned properly to cancel the effect of these three mode shapes. 

This is seen from Figs. 4 and 5 by noting that the amplitude of the voltages applied to all 

loudspeakers is almost the same in both coupled and uncoupled cases. Nonetheless, when S1 gets 

close to Sp the rise in voltage amplitude of S1 is equalized by reduction of the amplitude of 

voltages of other loudspeakers, and hence all four loudspeakers contribute in cancelling the mode 

shapes of this frequency. The results for the non-resonant frequencies 120Hz and 300Hz are 

shown in Figs. 6 and 7. Analysis shown in [14] reveals that the response of the enclosure at 

120Hz is mostly dominated by the modes of the resonant frequencies at 170Hz with some 

contributions from 85Hz. Therefore, it is worthy to note that the change in amplitude and phase of 

sources S1 to S4 as a function of the position of source S1 is similar to what is shown in Figs. 4 

and 5 for the resonant frequency 170Hz. 
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Figure 6. The magnitude and phase of optimal excitation signal of S1 (top) and S2 (bottom) in terms of S1 

speaker position at two non-resonant frequencies of the enclosure, i.e. 120Hz and 300Hz. 
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Figure 7. The magnitude and phase of optimal excitation signal of S3 (top) and S4 (bottom) in terms of S1 

speaker position at two non-resonant frequencies of the enclosure, i.e. 120Hz and 300Hz. 
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Figure 8. Magnitudes of the first and second parts of (58) at 85Hz, 170Hz, 120Hz, and 300Hz. 

 

Figure 9. Maximum singular value of the coupling matrix 
cZ  at 85Hz, 170Hz, 120Hz, 300Hz. 
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The response of the enclosure at non-resonant frequency 300Hz is dominated by 295Hz with 

some contributions from the resonance frequencies at 255Hz.  Therefore in both coupled and 

uncoupled cases S2 and S3 are cancelling the effect of each other while S1 and S4 are tuned to 

cancel the effect of the resonant modes. This is carried out in the coupled case by spending more 

energy and having a continuous change in the phase of the voltages applied to the secondary 

loudspeakers compared to the uncoupled loudspeakers. Simulation results show that when two 

secondary loudspeakers are very close to each other since the matrices B  and B  are near to lose 

rank the optimal voltage will be much larger than the excitation signal applied to the primary 

loudspeaker. 

 To understand how coupling affects the performance of the system, the magnitude of the first 

and second parts of the denominator of (58) for both resonant and non-resonant frequencies are 

plotted as a function of the position of S1 in Fig. 8. As can be seen from this figure, for both 

resonant and non-resonant frequencies the magnitude of the second part is far greater than the 

first part, except at 120Hz. This is due to the fact that this frequency is very close to the zeros of 

the transfer matrix of the system cZ and hence the second term tends to zero. Closer examination 

of this plot reveals that due to this fact the magnitude of the second part becomes very close to the 

first part at some positions. Hence, computation of the maximum singular value of cZ  as 

illustrated in Fig. 9, shows that it is always less than one for all resonant and non-resonant 

frequencies, although this value is almost equal to one for 120Hz. This numerical simulation 

demonstrates the validity of the Theorem 1 about the magnitude of the coupling matrix.  

 

5.2 Including microphones 

  To realize a practical ASC system microphones are added to the enclosure and the performance 

of a MIMO ASC system is simulated. The configuration of primary, secondary loudspeakers, and 

error microphones is shown in Fig. 2 (b). As can be seen in this figure, an array of four secondary 

loudspeakers, one on each wall of the enclosure is placed at the height of 1.8m of the enclosure. 

To measure the potential energy distributed inside the enclosure an array of 16 microphones are 

placed around the enclosure at two different levels. The selected heights correspond to the peaks 

of different modes contributing to the acoustic response of the enclosure. In this case 64 transfer 

functions in total between each pair of loudspeakers and microphones are calculated. The 

corresponding coordinates of the loudspeakers and microphones are listed in Table 2 and 3. The 

optimal magnitude and phase of the secondary loudspeakers S1 to S4 and the  
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Figure 10. potential energy inside enclosure (blue, solid trace), potential energy inside the enclosure when 

Ep is minimized by knowing the modal information of the enclosure without coupling  (black, dashed trace), 

and potential energy inside enclosure when sixteen microphones are used to minimize Jp considering 

coupling (red, dashed-dot line).     

 

Table 2 Coordinates of array of error microphones inside enclosure.  

Microphones Position Microphones Position 

 Error microphone 1 [0.075,0.075,1.5]  Error microphone 9 [0.075,0.875,1.5] 

Error microphones 2 [0.275,0.075,1] Error microphones 10 [0.875,0.275,1] 

Error microphones 3 [0.475,0.075,1.5] Error microphones 11 [0.875,0.475,1.5] 

Error microphones 4 [0.675,0.075,1] Error microphones 12 [0.875,0.675,1] 

Error microphones 5 [0.875,0.075,1.5] Error microphones 13 [0.875,0.875,1.5] 

Error microphones 6 [0.075,0.275,1] Error microphones 14 [0.275,0.875,1] 

Error microphones 7 [0.075,0.475,1.5] Error microphones 15 [0.475,0.875,1.5] 

Error microphones 8 [0.075,0.675,1] Error microphones 16 [0.675,0.875,1] 
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Table 3 Coordinates of array of loudspeakers inside the enclosure along with the two-norm of secondary 

loudspeakers excitation voltage with and without coupling. 

Speaker 
Position 

two-norm 

(uncoupled)  

two-norm 

(coupled) 

Primary speaker [0.925, 1, 1.925] - - 

Secondary Speaker 1 [0.5, 0.925, 1.8] 3116.5 3192.4 

Secondary Speaker 2 [0.075, 0.5, 1.8] 2235.4 2293.4 

Secondary Speaker 3 [0.925, 0.5, 1.8] 2985.8 3063.6 

Secondary Speaker 4 [0.5, 0.075, 1.8] 2208.5 2259.2 

 

associated maximum achievable potential energy reduction inside the enclosure are calculated 

using equations (51) and (52). Figure 10 shows the potential energy inside the enclosure, and the 

maximum potential energy reduction at the frequency range between 0 to 300Hz when the exact 

potential energy, pE in (45), and its approximation, pJ  in (48), with and without coupling of 

secondary sources is minimized. Small deviation of the reduced potential energy in case of 

minimization of (45) and (48) indicates that the array of microphones shown in Fig 2(b) could 

capture most of the acoustic energy inside the enclosure. The simulations show the same amount 

of reduction in acoustic potential energy when the ASC system is active for both the coupled and 

uncoupled secondary sources. This is in agreement with part 1 of Theorem 2. However, 

differences between the two cases emerge when the magnitudes and phases of the excitation 

voltages applied to sources S1 to S4 are plotted in Fig. 11. As can be seen from this figure the 

energy of the applied voltages to all four loudspeakers in case of coupling is greater than the case 

when no coupling exists. This is shown in Fig. 12 by plotting the magnitude of the first and 

second parts of equation (60) against the frequency.  

  For typical parameters of a loudspeaker and acoustic properties of the enclosure, the values of 

sZ  at each frequency are much larger than the magnitude of the frequency responses of the 

enclosure (elements of 
cZ in (25)). Hence the magnitude of the second term at almost all 

frequencies is much larger than the first term. The exception is the case that the minimum 

eigenvalue of cZ  tends to zero. This can happen only at a few distinct frequencies (zeros of the 

frequency response of the system in the specified bandwidth), or when the ASC system is in the 

singularity condition as explained in Remark 2. 
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Figure 11. The magnitude and phase of optimal excitation voltages of S1, S2 (top), S3, and S4 (bottom) 

with and without coupling as a function of frequency. 
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Figure 12. Magnitudes of the first and second parts of equation (60) as a function of frequency. 

 

Figure 13. Maximum singular value of the coupling matrix 
cZ  as a function of frequency. 
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The maximum singular value of the coupling matrix 
cZ  along with the separating line indicating 

‘1’ is plotted in Fig. 13. From these two figures it is clear that the maximum singular value of 
cZ  

is greater than one only at some distinct frequencies, which are the zeros of the frequency 

response of the system. In fact the zeros of the matrix 
cZ occur at these frequencies, and as 

illustrated in Fig. 13, in the intervals between these frequencies the ∞ -norm of 
cZ  is less than 

one. The 2-norm of excitation voltages of all four sources with and without coupling is listed in 

Table 3. These results are in agreement with the statement and proof of the second part of 

Theorem 2 for the whole bandwidth of the system. The small peaks in the magnitude of the 

voltages applied to the loudspeakers correspond to the poles of the matrix cZ . At these 

frequencies [ ])(ωσ cZ  in (61) is smaller and hence its inverse causes greater voltage magnitude. 

Rapid changes in the phase of the excitation voltages in this figure are also due to the existence of 

these poles and zeros. 

6. CONCLUSIONS  

  This article has considered the problem of modeling and analysis of coupling of secondary 

sources, with the aim of designing an active sound control system. In order to find an analytical 

closed form solution for the problem, at hand a rectangular enclosure with rigid boundary 

conditions is assumed to formulate the problem. For this purpose it is assumed that an array of L 

loudspeakers and M microphones are distributed inside the enclosure and the characteristic of the 

system are analyzed by looking at the frequency response functions of the system, as determined 

between the loudspeakers and microphones. The results summarized in several theorems and 

lemmas confirm that coupling of secondary loudspeakers will change the amplitude and phase of 

the optimal excitation voltage applied to the secondary sources, compared to the case when 

coupling of loudspeakers is not an issue. Furthermore, looking at the optimal value of the 

performance index, i.e. the potential energy inside the enclosure, reveals that coupling of 

secondary loudspeakers will not affect this value. This means the same control objective is 

achievable at the expense of more control effort by secondary loudspeakers. The analytical results 

are illustrated by means of numerical simulations to evaluate the performance of the active noise 

control system. Numerical simulations with two loudspeakers have been used to show the 

configurations that will lead to singularity and demonstrate the required strength of the secondary 

sources in comparison with a not coupled system. As the next step we will investigate how 

coupling of secondary loudspeakers will affect the performance of adaptive feedforward control 
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algorithms for practical implementation of the system. In this regard, one approach would be to 

combine frequency domain subband adaptive algorithms with the model developed in this article. 
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